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ABSTRACT  

Nowadays, increasingly complex systems are critical due to the sectors and enterprises which 

they support. These are designed to be highly reliable and they are not expected to fail 

frequently. If a failure occurs, the safety, economical and operational consequences can be 

severe. Improvements and upgrades generate risk and uncertainty on their future performance. 

Therefore, there is a need for a procedure to estimate the expected lifetime of these highly 

reliable systems using a methodology based on available information. 

The aim of this thesis is to obtain highly accurate reliability estimations for highly reliable 

systems using Bayesian analysis when few or no historical data is available. For this purpose, 

a model for reliability estimations of expected lifetime based on Bayesian analysis was created 

and tested. The model estimates the probability of survival, probability of failure, histograms 

and plots for four predefined statistical distributions. The estimations are based on available 

historical data of performance and elicited expert knowledge to create posterior sample data of 

the system using Montecarlo simulations. Some relevant examples are included to compare the 

results with another estimation method such as Maximum Likelihood Estimation. 

Two main conclusions are derived; first, Bayesian analysis constitutes a powerful method to 

estimate the expected lifetime of highly reliable systems with high accuracy, compared to other 

methods such as Maximum Likelihood Estimation. Second, the model for reliability estimates  

provides decision support in a risk and operational context for maintenance or replacement. 
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CHAPTER 1 

1.1 Introduction 

Nowadays there is an increase of aging and complex systems in many industries. This creates 

a need for them to be highly reliable under the variety of conditions in which they operate. 

Therefore, decisive steps to prevent failures that are considered critical must be taken. 

One example is the increase of decommissioning and abandonment of wells in the oil and gas 

industry. Such systems, considered to be highly reliable, are aging and no monitoring or follow 

up of their performance has been systematically done. In addition, the negative consequences 

due to oil leakage or gas emission to the environment can be extensive.  

These are the main reasons that indicate the need for a reliable method to estimate the expected 

lifetime of highly reliable systems. This method must combine available historical performance 

data and available expert knowledge. One method is Bayesian analysis.   

Based on literature, there are several statistical distributions can be used for modelling the 

behaviour of most highly reliable systems. Among them  are: Exponential, Weibull, 

Lognormal,  Gamma, Beta, Poisson, Geometric, Normal and some more. However, this thesis 

is limited to the first four.  

This thesis intends to give a relevant statistical background of estimation techniques and to 

explore the advantages and benefits of using Bayesian analysis as a method to estimate the 

expected lifetime of highly reliable systems. A computational tool to perform the estimation of 

expected lifetime of two case studies will be presented the corresponding practical model and 

results according to the characteristics of each case. The applicability of the methodology will 

be demonstrated on two examples with a discussion. 

As a result of this report a model was created based on Bayesian analysis method and uses one 

of these four distribution methods in case of existing performance data. 
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1.2 Background 

In the past decades, there has been an increase of complex processes and systems. 

Technological components, improved materials and the increasing demand for highly reliable 

systems require a methodology to predict the behaviour of such systems. In accordance with 

the latter, this report intends to obtain an innovative alternative for this methodology of 

statistical inference.   

Common knowledge suggests that the expected lifetime of a highly reliable systems depends 

of several factors such as, operational techniques, quality of material and surrounding 

environment. However, in many cases a methodology to establish the expected lifetime of 

highly reliable systems that accounts for these factors has not been fully developed. Whereas 

such methodology relies in two fundamental pillars.  

Previous expert knowledge of the system and data sets of historical performance. These pillars 

are the foundation for modelling behaviour of Bayesian analysis (𝐵𝐴) for systems like plugged 

of oil and gas bores, water dams, high voltage isolators in transmission lines or railroads that 

are treated as highly reliable. 

Both prior knowledge and historical data contribute to determine a posterior statistical 

distribution through 𝐵𝐴, that will help to predict the behaviour of any system modelled under 

these premises. Therefore, the use of 𝐵𝐴 instead of other methodologies such as Maximum 

Likelihood Estimation (𝑀𝐿𝐸) when predicting the expected lifetime gains relevance for cases 

where historical data is not available, or the sample data is scarce to be considered 

representative. 

1.3 Objectives 

The main objective of this report is to develop and test a method to estimate the expected 

lifetime of highly reliable systems using Bayesian analysis. For that, the following activities 

must be performed. 

1. Define the assumptions and scope, given the software tool and the type of reliability 

data available. 

2. Develop the codes for both methods 𝑀𝐿𝐸 and 𝐵𝐴 of expected lifetime estimation using 

the software tool Matlab R2018.  
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3. Obtain the expected lifetime and sensitivity analysis of a study case with 𝑀𝐿𝐸 and 𝐵𝐴 

using the developed codes in Matlab R2018 and real data available. 

4. Discuss and compare the results of the example and study case.  

5. Describe the possible applications of this thesis in real-life cases when estimating 

expected lifetime of highly reliable systems. 

1.4 Content 

This report is divided in six chapters, plus the appendix. The first chapter provides the 

background, objectives and content of the thesis. The second chapter presents a theoretical 

basis of statistical distributions, specifically for the four types of Probability Density Functions 

(𝑃𝐷𝐹) handled throughout this thesis.  

The third chapter covers the two estimation models used in this report 𝐵𝐴 and 𝑀𝐿𝐸, including 

an example of a random data set used to test the Matlab’s codes. It also describes the types of 

reliability data including examples of a random data set and censored data set of failures times 

Moreover, a section for considerations of highly reliable systems that contains risk and 

uncertainty aspects.  

In the fourth chapter, real study case of highly reliable systems is presented, with background, 

prior knowledge and historical data for estimation of expected lifetime using both methods 𝐵𝐴 

and 𝑀𝐿𝐸. The results of this study case are presented and discussed in the fifth chapter, 

including a comparison between both methods and a sensitivity analysis. 

The sixth and final chapter presents the conclusions and recommendations of the two study 

cases. Moreover, the applicability of 𝐵𝐴 to estimate the expected lifetime and other parameters 

for many real-life cases is discussed. Finally, several findings are presented for the reader to 

assess the relevance, accuracy and practicality of this method when estimating the expected 

lifetime and other relevant indicators for performance of highly reliable systems. 
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CHAPTER 2 

2.1 Probability Models 

To maximize system’s performance and use the available resources in the most efficient way, 

it is important to predict the occurrence of failures (Modarres, 2010) Therefore, technologies 

and systems require lifetime prediction, often with only small samples available and a 

considerable degree of uncertainty. Hence, the need to use proven techniques to represent 

observations of the phenomena (Tobias, 2012). In addition to these observations, the use of 

numerical descriptive measures of a population called parameters, help to build a statistical 

function to predict the expected lifetime (Tobias, 2012)  

Before discussing the 𝑀𝐿𝐸 and 𝐵𝐴 approaches, it is useful to establish some previous 

definitions about probability models. Most of them are used for continuous sets of random 

variables. These are listed as follows: 

• Probability density function 

• Cumulative distribution function 

• Reliability function 

• Unreliability function 

• Hazard function 

• Cumulative Hazard function 

• Average failure number 

• Mean time to failure 

One of the main definitions which is going to be used through this report is the 𝑃𝐷𝐹. A 

probability density function is that which satisfies these three conditions for a random set of 

continuous variables (Hamada, 2008). 

1. 𝑓(𝑡) ≥ 0, the function must be greater or equal than zero. 

2. −∞ ≤ 𝑡 ≤ ∞, the random variable must be real.  

3. ∫ 𝑓(𝑡)𝑑𝑡
∞

−∞
= 1, its integral must be equal to 1.  

Another important definition is the 𝐶𝐷𝐹. The Cumulative Distribution Function expresses the 

cumulative probability of failure  𝐹(𝑡) and survival 𝑅(𝑡) (Hamada A., 2008). 𝐹(𝑡) is 

interpreted as the probability that a random element from a population fails by 𝑡 hours. Hence 
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that it takes a value equal or less to 𝑡 (Hamada, 2008). The other interpretation is the fraction 

of all units in the population that fail by 𝑡 hours (Tobias, 2012).  

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑠)𝑑𝑠
𝑡

−∞

 (1) 

A Reliability function 𝑅(𝑡) estimates the probability that a system or component will survive 

by 𝑡 hours. Hence, is the complement of 𝐹(𝑡). I.e. the fraction of all units in the population that 

will survive by 𝑡 hours, see formula 2 (Tobias, 2012).   

𝑅(𝑡) = 1 − 𝐹(𝑡) = 𝑃(𝑇 > 𝑡) = ∫ 𝐹(𝑠)𝑑𝑠
∞

𝑡

 (2) 

 

Hazard function ℎ(𝑡), is interpreted as the propensity to fail in the next short interval of time, 

given that the system or component has survived to time 𝑡 (Hamada A., 2008). The general 

formula for ℎ(𝑡) is shown in formula 3. 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
 (3) 

𝐶𝐻𝐹, the Cumulative Hazard Function is the integral of the failure rate or conditional 𝑃𝐷𝐹 of 

the component time to failure, given the component has survived to time 𝑡 ℎ𝑜𝑢𝑟𝑠 (Modarres, 

2010) (Formula 4). 

𝐻(𝑡) = ∫ ℎ(𝑠)𝑑𝑠
𝑡

0

 (4) 

𝐴𝐹𝑅, the Average Failure Rate specifies failure-rate behaviour of a system over an interval of 

time (Tobias, 2012). It is expressed by formula 5. 

𝐴𝐹𝑅(𝑡1,𝑡2,) =
𝐻(𝑡2,) − 𝐻(𝑡1,)

𝑡2, − 𝑡1,
 (5) 

𝑀𝑇𝑇𝐹, the Mean Time to Failure  expresses the expected time to failure. Hence the time which 

the system is expected to perform its function successfully (Modarres, 2010), See formula 6. 

𝑀𝑇𝑇𝐹 is also called the expected lifetime of the system. 

𝑀𝑇𝑇𝐹 = 𝐸(𝑡) = ∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

0

 (6) 
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All previous definitions are conditioned by 𝑓(𝑡) = 0 for 𝑡 < 0. Therefore, all the failure times 

censored or not must be positive. A summary including the relationships between them in the 

reliability setting is presented in Table 1 (Hamada, 2008). 

Table 1. Relationships between probability density function, cumulative function, reliability 

function, hazard function and cumulative hazard function assuming 

 𝒇(𝒕) 𝑭(𝒕) 𝑹(𝒕) 𝒉(𝒕) 𝑯(𝒕) 

𝑓(𝑡) 𝑓(𝑡) 
𝑑

𝑑𝑡
𝑓(𝑡) −

𝑑

𝑑𝑡
𝑅(𝑡) ℎ(𝑡). 𝑒

[− ∫ ℎ(𝑠)𝑑𝑠
𝑡

0
]
 [

𝑑

𝑑𝑡
𝐻(𝑡)] . 𝑒[−𝐻(𝑡)] 

𝐹(𝑡) ∫ 𝑓(𝑠)𝑑𝑠
𝑡

0

 𝐹(𝑡) 1 − 𝑅(𝑡) 1 − 𝑒
[−∫ ℎ(𝑠)𝑑𝑠

𝑡

0
]
 1 − 𝑒[−𝐻(𝑡)] 

𝑅(𝑡) ∫ 𝑓(𝑠)𝑑𝑠
∞

𝑡

 1 − 𝐹(𝑡) 𝑅(𝑡) 𝑒
[−∫ ℎ(𝑠)𝑑𝑠

𝑡

0
]
 𝑒[−𝐻(𝑡)] 

ℎ(𝑡) 
𝑓(𝑡)

∫ 𝑓(𝑠)𝑑𝑠
∞

𝑡

 
𝑑
𝑑𝑡
𝐹(𝑡)

[1 − 𝐹(𝑡)]
 −

𝑑

𝑑𝑡
𝑙𝑜𝑔[𝑅(𝑡)] ℎ(𝑡) 

𝑑

𝑑𝑡
𝐻(𝑡) 

𝐻(𝑡) −𝑙𝑜𝑔 [1 −∫ 𝑓(𝑠)𝑑𝑠
𝑡

0

] −𝑙𝑜𝑔[1 − 𝐹(𝑡)] 𝑙𝑜𝑔[𝑅(𝑡)] ∫ ℎ(𝑠)𝑑𝑠
𝑡

0

 𝐻(𝑡) 

From all the 𝑃𝐷𝐹′𝑠 available only four are going to be considered for this report. The selected 

𝑃𝐷𝐹′𝑠 are Exponential, Weibull, Lognormal and Gamma. The main reasons for this choice 

are: 

1. How well-fitted they are to model a highly reliable system regardless the type of 

variation through time it may have. 

2. The flexibility in shape and scale parameters for any given historical data, if available, 

and prior expert knowledge.  

3. The sensitivity when selecting initial values of parameters for predictive prior 

distributions.  

4. The availability of built-in functions for these four statistical distributions in Matlab 

R2018 such as random generated samples, 𝑀𝐿𝐸 estimators, Goodness of fitness with 

Kolmogorov-Smirnov, Anderson-Darling and Chi-square methods, acceptance-

rejection sampling and iterative calculations with 𝑃𝐷𝐹and 𝐶𝐷𝐹.  

An example of a random data set with 100 values within a time range from 0 to 5 years will be 

presented in chapter 2. This is used to test how the estimation of expected lifetime is done for 

each one of the four statistical distributions. The goal is to run the codes for 𝑀𝐿𝐸 and 𝐵𝐴 of 

all four 𝑃𝐷𝐹′𝑠, and compare the obtained results.  
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2.1.1 Exponential Distribution  

The exponential distribution is perhaps the most commonly used 𝑃𝐷𝐹 in reliability assessments 

(Tobias, 2012). This can be attributed primarily to its simplicity and to the fact that it provides 

a constant failure rate, which is often the case for real life systems (Modarres, 2010). The 

notation for an exponential function is 𝐸(𝜆, 𝑡), where 𝜆 represents the constant failure rate over 

time. The exponential 𝑃𝐷𝐹 is shown in formula 7 (Tobias, 2012). 

𝑓(𝑡) = 𝜆𝑒−𝜆.𝑡 (7) 

The exponential 𝐶𝐷𝐹 is shown in formula 8 (Tobias, 2012). 

𝑓(𝑡) = 1 − 𝑒−𝜆.𝑡 (8) 

For the exponential hazard function ℎ(𝑡) see formula 9 (Tobias, 2012). 

ℎ(𝑡) = 𝜆 (9) 

From formula 9 it is obvious that the hazard function is equivalent to a constant failure rate 

over time. Hence, when modelling highly reliable systems with an exponential distribution, 

one considers them equally likely to fail as survival time increases and in the case of failure 

the system will be immediately replaced for a new one with the same properties (Modarres, 

2010).  

The exponential 𝑀𝑇𝑇𝐹 is shown in formula 10 (Tobias, 2012).  

𝑀𝑇𝑇𝐹 = 𝐸(𝑡) =
1

𝜆
 (10) 

The lack of memory property of the exponential function can be interpreted as a system that 

follows such function does not remember how long it has been operating. Therefore, the 

probability of failure for example in the next hour is the same for the system when it is 

considered new, recent or when it has been operating for a long time (Tobias, 2012)  

In Matlab, there are two ways to define and generate an exponential 𝑃𝐷𝐹. It can be done either 

by using the prebuilt function y=exppdf(data,lambda), (Magrab, 2011)or by writing the 

formula directly y=lambda.*exp(-lambda.*t) (Chapman, 2004). The latter also applies for 

𝐶𝐷𝐹 and 𝑀𝑇𝑇𝐹. 
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A typical Exponential histogram with fixed parameter of failure rate 𝜆 is displayed in figure 1 

for illustrative purposes.   

 

Figure 1. Typical histogram of an Exponential distribution.  

In addition, a theoretical example of a random data set of 100 values between 0 to 5-time units, 

is presented in chapter 3. The idea is to test the 𝑀𝐿𝐸 and 𝐵𝐴 codes for an Exponential 𝑃𝐷𝐹. 

Numerical and graphical representation of the results for comparison with other statistical 

functions in the scope of this report are also shown on chapter 3. 

Typical Exponential plots with different parameters values of 𝜆 are displayed in Figure 2 for 

illustrative purposes. 𝜆 represents the failure rate for an exponential distribution.  



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

11 
 

 

Figure 2. Typical plots of PDF for Exponential distributions 

2.1.2 Weibull Distribution  

Systems that follow this type of statistical functions have one common characteristic; a flexible 

failure rate over time. Hence, three types of failures rate are implicit in Weibull distributions 

(Tobias, 2012). These are increasing failure rate 𝐼𝐹𝑅, decreasing failure rate 𝐷𝐹𝑅, and the 

already known constant failure rate. Moreover, Weibull distribution is an extreme value 

distribution. The latter suggests its applicability when failure is due to the weakest link of many 

where failure can occur (Tobias, 2012). 

The Weibull 𝑃𝐷𝐹 is shown in formula 11 (Modarres, 2010). 

𝑓(𝑡) =
𝛽. 𝑡𝛽−1

𝛼𝛽
𝑒
−(

𝑡
𝛼
)
𝛽

 (11) 

The Weibull 𝐶𝐷𝐹 is shown in formula 12 (Modarres, 2010). 

𝐹(𝑡) = 1 − 𝑒−(
𝑡
𝛼
)
𝛽

 (12) 

For the Weibull hazard function ℎ(𝑡) see formula 13 (Tobias, 2012). 

ℎ(𝑡) =
𝛽

𝑡
(
𝑡

𝛼
)
𝛽

 (13) 



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

12 
 

 

The Weibull 𝑀𝑇𝑇𝐹 is shown in formula 14 (Modarres, 2010) 

𝑀𝑇𝑇𝐹 = 𝐸(𝑡) = 𝛼𝛤 (
1 + 𝛽

𝛽
) (14) 

The parameter 𝛽 sets the shape of the curve in the Weibull distributions, it has three main 

intervals to do so. For 0 < 𝛽 < 1 the 𝑃𝐷𝐹 tends to infinite, therefore is decreasing as time 

increases. For  𝛽 > 1 the 𝑃𝐷𝐹 has an 𝐼𝐹𝑅 up to a maximum value of 𝛼 [1 −
1

𝛽
]

1

𝛽
 (Tobias, 2012). 

Finally, for 𝛽 = 1 the Weibull distribution is equivalent to an exponential distribution with a 

constant failure rate of 𝜆 =
1

𝛼
 (Tobias, 2012). 

In Matlab  there are two ways to define and generate a Weibull 𝑃𝐷𝐹. It can be done either by 

the using the prebuilt function y=wblpdf(data,lambda) (Magrab, 2011). Or by writing the 

Weibull formula directly, y=((beta.*t.^(beta-1))./(alpha.^beta)).*exp(-

(t./alpha).^beta) (Chapman, 2004). This  also applies for 𝐶𝐷𝐹 and 𝑀𝑇𝑇𝐹. 

A typical Weibull histogram with fixed scale and shape parameters is displayed in figure 3 for 

illustrative purposes.   

 

Figure 3. Typical histogram of a Weibull distribution 
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In addition, a theoretical example of a random data set of 100 values between 0-5 years is 

presented in chapter 3. The idea is to test the 𝑀𝐿𝐸 and 𝐵𝐴 codes for a Weibull 𝑃𝐷𝐹. Numerical 

and graphical representation of the results for comparison with others statistical functions in 

the scope of this report are also shown on chapter 3. 

Typical Weibull plots with different parameters values of 𝛼 and 𝛽 are displayed in Figure 2 for 

illustrative purposes, 𝛼 and 𝛽 represent the scale and shape parameters of a Weibull 

distribution.    

 

Figure 4. Typical plots of PDF for Weibull distributions 

2.1.3 Lognormal Distribution 

A simple way to understand the lognormal distribution is to compare with the normal. Where 

a random variable 𝑋 has a normal distribution 𝑁(𝜎, 𝜇, 𝑡), another random variable 𝑇 = 𝑒𝑋 has 

a lognormal distribution 𝐿𝑜𝑔𝑁(𝜎, 𝜇, 𝑇50, 𝑡) (Hamada, 2008). The flexibility of the lognormal 

distribution for skewed data as time increases makes it useful. Moreover, its 𝑃𝐷𝐹 shape 

resembles the Weibull distribution. Hence, a technique to determine which of these 

distributions fits better the data is based on the histogram of the logarithm of the data (Tobias, 

2012). 

The lognormal 𝑃𝐷𝐹 is shown in formula 15 (Modarres, 2010). 
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𝑓(𝑡) =
1

𝜎𝑡. 𝑡. √2𝜋
𝑒
[−

1
2.𝜎𝑡2

.(𝑙𝑛 𝑡 −𝜇𝑡)
2]

 (15) 

The lognormal 𝐶𝐷𝐹 is presented in formula 16 (Modarres, 2010). 

𝐹(𝑡) =
1

𝜎𝑡𝑡√2𝜋
 ∫

1

𝜃
𝑒
[−

1
2𝜎𝑡2

(𝑙𝑛 𝜃 −𝜇𝑡)
2]

𝑡

0

𝑑𝜃 (16) 

For the lognormal hazard function ℎ(𝑡) see formula 17 (Modarres, 2010). 

ℎ(𝑡) =

1

𝜎𝑡𝑡√2𝜋
𝑒
[−

1
2.𝜎𝑡2

(𝑙𝑛𝑙𝑛 𝑡 −𝜇𝑡)
2]

1 −
1

𝜎𝑡𝑡√2𝜋
∫
1
𝜃 𝑒

𝑡

0

[−
1

2𝜎𝑡2
(𝑙𝑛𝑙𝑛 𝜃 −𝜇𝑡)

2]

𝑑𝜃

 (17) 

The lognormal 𝑀𝑇𝑇𝐹 is shown in formula 18 (Tobias, 2012). 

𝑀𝑇𝑇𝐹 = 𝑇50𝑒
𝜎2

2  (18) 

The failure rate for this type of distribution increases over time and then decreases. It depends 

on the parameters 𝜇𝑡 and 𝜎𝑡, the mean and standard deviation respectively (Modarres, 2010). 

On the other hand, the parameter 𝑇50 represents the median time of failure for a population of 

lognormal lifetimes (Tobias, 2012).  

The lognormal 𝑃𝐷𝐹, is especially appropriate to model the time to failure of systems which 

early failure dominate its overall failure behaviour (Modarres, 2010). Moreover, it is a common 

model to represent Prior distributions.  

In Matlab there are two ways to define and generate a Lognormal 𝑃𝐷𝐹. It can be done by using 

the prebuilt function y=lognpdf(data,lambda) (Magrab, 2011). Or by writing the Lognormal 

formula y=((1./(sigma.*t.*sqrt(2*pi))).*exp((-1/(2.*sigma.^2)).*log((t-

mu).^2))) (Chapman, 2004). The latter also applies for 𝐶𝐷𝐹 and 𝑀𝑇𝑇𝐹. 

In Figure 5, a typical histogram of a Lognormal distribution 𝐿𝑜𝑔𝑁(𝜎, 𝜇, 𝑇50, 𝑡) with fixed 

parameters 𝜎 and 𝜇 over time 𝑡 is displayed for illustrative purposes.   
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Figure 5. Typical Histogram of a Lognormal distribution 

In addition, a theoretical example of a random data set of 100 values between 0-5 years is 

presented in chapter 3. The idea is to test the 𝑀𝐿𝐸 and 𝐵𝐴 codes for a Lognormal 𝑃𝐷𝐹. 

Numerical and graphical representation of the results for comparison with others statistical 

functions in the scope of this report are also shown on chapter 3. 

Typical Lognormal plots with different parameters values of 𝜎 and 𝜇 are displayed in figure 6 

for illustrative purposes. 𝜎 and 𝜇 represent the mean and standard deviation parameters of a 

Lognormal distribution.    
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Figure 6. Typical plots of PDF for a Lognormal distributions 

2.1.4 Gamma Distribution  

This type of distribution is considerably flexible with regards to its parameters 𝛽 and 𝛼. It 

contains the Gamma, Weibull and lognormal distributions as special cases (Ye, 2017). 

Moreover, from the generalized form when 𝛽 = 1 and 𝜇 = 0, it behaves as a Weibull 

distribution. The shape of the curve is given by 𝛽 and the failure rate by 𝛼 (Hamada, 2008). 

The main application in Bayesian Analysis when defining the prior distribution is related to 

systems with standby components. Also, for failure times between maintenance, recalibration 

and in (Modarres, 2010). In other words, the gamma distribution is often used as a distribution 

for waiting times and service times. Nevertheless, there are no closed-form expressions for the 

𝑃𝐷𝐹 estimators (Ye, 2017). To obtain the estimators for Gamma distributions statisticians rely 

in the moment estimators and techniques such as Newton Rapson (Ye, 2017). An additional 

feature of a gamma 𝑃𝐷𝐹 is its skewness to the left side of the curve. Hence to lower time 

intervals of survival (Hamada, 2008).   

The gamma 𝑃𝐷𝐹 is shown in formula 19 for 𝛼, 𝛽, 𝑡 > 0 (Hamada, 2008). 

𝑓(𝑡) =
1

𝛽𝛼𝛤(𝛼)
𝑡𝛼−1𝑒

(−
𝑡
𝛽
)
   (19) 
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The gamma 𝐶𝐷𝐹 is shown in formula 20 (Modarres, 2010). 

 𝐹(𝑡) =
1

𝛽𝛼𝛤(𝛼)
∫ 𝑦𝛼−1𝑒

(−
𝑦
𝛽
)

𝑡

0

𝑑𝑦  (20) 

For the gamma hazard function ℎ(𝑡) see formula 21 (Modarres, 2010). 

ℎ(𝑡) =
𝑡𝛼−1𝑒

(−
𝑡
𝛽
)

𝛽𝛼 [𝛤(𝛼) − ∫ 𝑦𝛼−1
𝑡

0
𝑒
(−
𝑦
𝛽
)
𝑑𝑦]

 (21) 

The gamma 𝑀𝑇𝑇𝐹 is shown in formula 22 (Ye, 2017). 

𝑀𝑇𝑇𝐹 = 𝛽𝛼 (22) 

In Matlab there are two ways to define and generate a Gamma 𝑃𝐷𝐹. It can be done by the using 

the prebuilt function y=gampdf(data,lambda) (Magrab, 2011). Or just by writing the   

Gamma formula, y=(1./(beta.^alpha).*gamma(alpha)).*(t).^(alpha-1).*exp(-

(t./beta))) (Chapman, 2004). Both apply for 𝐶𝐷𝐹 and 𝑀𝑇𝑇𝐹. 

The Figure 7 for a typical lognormal distribution 𝐺𝑎𝑚𝑚𝑎(𝛽, 𝛼, 𝑡) with fixed parameters 

𝛼 and 𝛽 over time 𝑡 is displayed for illustrative purposes.  

 

Figure 7. Typical histogram of a Gamma distribution 
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In addition, a theoretical example of a random data set of 100 values between 0-5 years is 

presented in chapter 3. The idea is to test the 𝑀𝐿𝐸 and 𝐵𝐴 codes for a Gamma 𝑃𝐷𝐹. Numerical 

and graphical representation of the results for comparison with others statistical functions in 

the scope of this report are also shown on chapter 3. 

Typical Gamma plots with different parameters values of are displayed in Figure 6 for 

illustrative purposes, 𝛼 and 𝛽 represent the scale and shape parameters of a Weibull 

distribution.    

 

Figure 8. Typical plots of PDF for Gamma distributions 

2.2 Estimation Models 

The relevance and amount of historical data determines how accurate the 𝑀𝐿𝐸 can be. Whereas 

expert knowledge and the techniques for elicit it to set a prior distribution determines the 

accuracy of Bayesian analysis. Moreover, the selection of prior distributions based on expert 

knowledge has an important effect on the posterior distributions (Mickelsson, 2015).  

Most estimation models are made by using 𝑀𝐶 simulations. It is defined as “a process that 

generates random number inputs for uncertain values, which are then processed by a 

mathematical model, so that many scenarios can be evaluated” (Skinner, 2009).  

There are several approaches to determine the parameters and probability distributions of a 

phenomena, and they are used according to the elements available (Modarres, 2010). In this 
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study two main approaches are going to be tested and compared. These approaches to 

determine the parameter ɸ, 𝑃𝐷𝐹 and 𝐶𝐷𝐹, are the classical approach based on Maximum 

Likelihood Estimation and the Bayesian Analysis approach. These are based on a combination 

of prior knowledge and likelihood data. This will be discussed further in this chapter. 

Furthermore, to select the proper 𝐷𝐹, it is necessary to verify the goodness of fit for the function 

with regards of the data if available (Hamada, 2008). There are several feasible techniques to 

test the goodness of fit for the selected statistical functions in the scope of this report. Among 

them are the following: 

• Kolmogorov-Smirnov test 

• Anderson-Darling test 

• Chi-Square test 

For this report the goodness of fit is done with Kolmogorov-Smirnov test for three main 

reasons. First, it is one of the easiest tests as it gives a probability value 𝑝 which indicates how 

likely it is for the likelihood data to fit a specific 𝑃𝐷𝐹 or 𝐶𝐷𝐹 if needed. Second, it is well 

supported in Matlab as a built-in function (Casella, 2002). Third, after many trials of fitting 

random data sets to the four 𝑃𝐷𝐹s of this report, the outcomes for the indicators of Chi-square 

and Anderson Darling tests were not as precise as the Kolmogorov ones. Moreover, in some of 

the trials 𝑁𝐴𝑁 outcomes for these indicators were obtained. A brief explanation for 

Kolmogorov-Smirnov test follows in the next section. 

2.2.1 Kolmogorov-Smirnov Test 

To determine the goodness of fit of a 𝐷𝐹 on a sample data set it is necessary to measure how 

well its predicted values match the observed data (James, 2014). In other words, it is necessary 

to quantify the extent to which the predicted response value of a given observation is close to 

the outcome value of the selected  𝐷𝐹. Kolmogorov-Smirnov proposed a measure of deviation 

between these two values (James, 2014). 

Given a sample 𝐷𝐹 defined by formula 23. 

𝑆𝑛(𝑥) = {

0,                 𝑥 < 𝑥(1)
𝑟

𝑛
, 𝑥(𝑟) ≤ 𝑥 < 𝑥(𝑟+1)

1,                𝑥(𝑛) ≤ 𝑥

} (23) 
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Where x, represents time values of the x axis, 𝑥(1) to 𝑥(𝑛) are the 𝑛 observation of the sample 

data and 𝑟 the step from one sample value to the next. Then, 𝑆𝑛(𝑥) is the proportion of 

observations from the sample data that do not exceed the 𝐷𝐹 value of  𝑥 (Kendall, 1987).  

For the Kolmogorov-Smirnov test of goodness of fit see the formula 24. 

lim
𝑛→∞

𝑃{𝑆𝑛(𝑥) = 𝐹0(𝑥)} = 1 (24) 

As most methods for testing the goodness of fit, Kolmogorov-Smirnov provides better results 

when large amount of iterative random sampling is performed. For such cases the probability 

value of the sample 𝐷𝐹 will be closer to 1 (Kendall, 1987).  

Matlab calculates the Kolmogorov-Smirnov goodness of fit using two prebuilt functions. The 

first one is h=kstest(x), which returns a test decision for the null hypothesis when the sample 

𝑥(1) to 𝑥(𝑛) comes from a specified distribution. Using the one-sample Kolmogorov-Smirnov 

test, the result of ℎ is 1 if the test rejects the null hypothesis at the 5% significance level, ℎ is 0 

if otherwise. 

The second one is [h1,p]=kstest(values,'CDF',cd1,'alpha',0.01), (Chapman, 2004), 

which also returns a probability value 𝑃{𝑆𝑛(𝑥)} of the hypothesis test, using any of the input 

arguments such as the type 𝐶𝐷𝐹 and the degree of confidence in this value. Notice that by 

default the degree of confidence is 1%. 

An example of the Kolmogorov-Smirnov test for goodness of fit with a typical Gamma 𝐶𝐷𝐹 

and a random Gamma sample data set of a thousand values is presented in Figure 9. 
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Figure 9. Kolmogorov-Smirnov test for Goodness of Fit for Gamma 𝐶𝐷𝐹 

For this report the probability values of goodness of fit vary from relatively low values        

(1x10-02 ) for the random data set presented in subchapter 3.1.1, to high values according to 

other data sets presented in the study cases, which behave more like a predefined 𝐶𝐷𝐹.  

2.2.2 Maximum Likelihood Estimation 

The classical approach of Maximum Likelihood Estimation provides a statistical framework 

for assessing wisely the information available in historical data (Eliason, 1993). The goal is to 

produce a point estimate ɸ𝑖 of some population parameter ɸ such that it maximizes the 

likelihood of observing the historical data of the phenomena to occur (Eliason, 1993). This 

point estimate (estimator) is not expected to estimate ɸ̂ without error. However, it is expected 

to be close enough (Walpole, 2016). The procedure to determine the maximum likelihood 

estimator of a random variable given historical data is based on the following seven steps: 

1. Define the set of independent and identically distributed variables 𝑌 = [𝑌1, 𝑌2, …𝑌𝑛] 

previously observed.  

2. Establish the joint 𝐹 𝑓(𝑦1; ɸ), supposed to represent the phenomena. 

3. Set the compound product of marginal distributions see formula 25. This is the 

likelihood function 𝐿(ɸ). 

𝐿(ɸ) =∏𝑓(𝑦1, ɸ)

𝑛

𝑖=1

 (25) 
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4. Apply the logarithm to the likelihood function to reduce computational difficulties and 

obtain the log-likelihood function 𝑙(ɸ) see formula 26. 

𝑙(ɸ) = 𝑙𝑛[𝐿(ɸ)] = 𝑙𝑛 [∏𝑓(𝑦1, ɸ)

𝑛

𝑖=1

] =∑𝑓(𝑦1, ɸ)

𝑛

𝑖

 (26) 

5. Maximize the value of the log-likelihood function by taking the 1st derivative 
𝑑{𝑙𝑛[𝐿(ɸ)]}

ɸ
 

and setting it equal to zero see formula 27.   

𝑑{𝑙𝑛[𝐿(ɸ)]}

ɸ
= 0 (27) 

6. Solve the equation to find the maximum likelihood estimator ɸ̂. 

7. Take the 2nd derivative of the log-likelihood function and verify that it is a maximum 

estimator by setting it lower than zero see formula 28.  

𝑑2{𝑙(ɸ)}

ɸ2
< 0 (28) 

With the maximum likelihood estimator, any point estimate for the set of independent 

distributed variables can be determined with a relatively high degree of accuracy. However, 

the latter will depend on the amount and quality of historical data available as the desirable 

properties of the 𝑀𝐿𝐸 are justified only in situations with large sample (Eliason, 1993). 

Otherwise, an assessment can be skewed. 

The main result of 𝑀𝐿𝐸 is a function of the unknown parameter, called the likelihood function 

(Pawitan, 2001). The parameter itself is called maximum likelihood estimator ɸ̂. (Eliason S, 

1993). The information provided from the likelihood function tells where ɸ̂ is likely to fall 

with an inherent degree of uncertainty, conveyed (Pawitan, 2001). A formal definition for the 

likelihood is provided by (Pawitan, 2001), “Assuming a statistical model parameterized by a 

fixed and unknown ɸ, the likelihood 𝐿(ɸ) is the probability of the observed data 𝑥 considered 

as a function of ɸ”. 

From the statistical perspective, the likelihood function is a tool for an objective analysis with 

available data. Moreover, when such data incorporates uncertainty due to the limited or 

restricted amount of information that it provides (Pawitan, 2001). In addition, ɸ̂ represents a 
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way to simplify an analysis when real data analysis is done. One can prefer to handle many ɸ̂′𝑠 

instead of their related likelihood functions (Kendall, 1987).  

The procedure to obtain ɸ̂ of all four 𝑃𝐷𝐹s discussed previously is the same. Therefore, only 

the exponential ɸ̂ is going to be shown for illustrative purposes. A summary table with the 

results of all the 𝑃𝐷𝐹s used in this report is presented in Table 2. 

A theoretical example on how to determine the 𝑀𝐿𝐸 ɸ̂ according to the procedure previously 

discussed is presented as follows: 

1. The theoretical set of independent and identically distributed variables 𝑌 =

[𝑌1, 𝑌2, … 𝑌𝑛] 

2. Establish the joint  𝑓(𝑡, 𝜆), supposed to represent the phenomena (Formula 29). 

𝑓(𝑡, 𝜆) = 𝜆𝑒−𝜆.𝑡 (29) 

3. The likelihood function 𝐿(𝜆) (Formula 30). 

𝐿(𝜆) =∏𝜆𝑒−𝜆.𝑡
𝑛

𝑖=1

= 𝜆𝑛𝑒−𝜆∑ 𝑡𝑖
𝑛
1  (30) 

4. The log-likelihood function 𝑙(𝜆) (Formula 31). 

𝑙(𝜆) = 𝑙𝑛[𝜆𝑛𝑒−𝜆∑ 𝑡𝑖
𝑛
1 ] = 𝑛𝑙𝑛(𝜆) − 𝜆∑𝑡𝑖

𝑛

1

 (31) 

5. The 1st derivative 
𝑑{𝑙𝑛[𝐿(ɸ)]}

ɸ
 and set it equal to zero. See formula 32 

𝑑{𝑙(𝜆)}

𝑑𝜆
=
𝑛

𝜆
−∑𝑡𝑖

𝑛

1

= 0 (32) 

6. The maximum likelihood estimator 𝜆̂ (Formula 33). 

𝜆̂ =
∑ 𝑡𝑖
𝑛
1

𝑛
 (33) 

 

7. Verification that it is a maximum estimator by setting it lower than zero. (Formula 34). 

𝑑2 {
𝑛
𝜆
− ∑ 𝑡𝑖

𝑛
1 }

𝑑𝜆
< 0 (34) 

Table 2 presents a summary of 𝑀𝐿𝐸 estimators for each 𝑃𝐷𝐹 (Hamada, 2008). 
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The 𝑀𝐿𝐸 codes in Matlab for each 𝑃𝐷𝐹 follow the same procedure described above. 

Furthermore, the general 𝑀𝐿𝐸 code applies for any type of data set as it evaluates the goodness 

of fit for each type of 𝑃𝐷𝐹, ranks them and selects the best fitted one to perform 𝑀𝐿𝐸. 

Table 2. Summary of MLE estimators for different PDF’s 

Type of 

distribution 
𝑷𝑫𝑭 𝑴𝑳𝑬 ɸ̂ 

Exponential 
𝑓(𝑡) = 𝜆𝑒−𝜆.𝑡 𝜆̂ =

∑ 𝑡𝑖
𝑛
1

𝑛
 

Weibull 𝑓(𝑡) =
𝛽𝑡𝛽−1

𝛼𝛽
𝑒−(

𝑡
𝛼
)
𝛽

 

𝛼̂ =
1

𝑛
∑ 𝑡𝑖

𝛽̂

𝑛

𝑖=1

1

𝛽̂

 

𝛽̂ = [
∑ 𝑡𝑖

𝛽̂𝑙𝑛(𝑡
𝑖
)𝑛

𝑖=1

∑ 𝑡𝑖
𝛽̂𝑛

𝑖=1

− 𝑙𝑛 (𝑡)]

−1

 

Lognormal 
𝑓(𝑡) =

1

𝜎𝑡𝑡√2𝜋
𝑒
[−

1
2𝜎𝑡2

(𝑙𝑛𝑙𝑛 𝑡 −𝜇𝑡)
2]

 
𝜇̂ =

∑ 𝑙𝑛(𝑡
𝑖
)𝑛

𝑖=1

𝑛
 

𝜎̂
2 =

∑ [𝑙𝑛(𝑡𝑖) − 𝜇̂]2𝑛
𝑖=1

𝑛
 

Gamma 
𝑓(𝑡) =

1

𝛽𝛼𝛤(𝛼)
𝑡𝛼−1𝑒

(−
𝑡
𝛽
)
 

𝛽̂ =
1

𝑛𝛼̂
∑ 𝑡𝑖

𝑛

𝑖=1

 

 

Matlab performs 𝑀𝐿𝐸 with built-in functions presented next: 

Steps 1 and 2: 

Lambda=rand()*3; 

Y=exppdf(data,lambda) 

Steps 3 to 6: 

phat=mle(data,'pdf',@(data,lambda)exppdf(data,lambda),'start',[lambda]); 

Where 𝑝ℎ𝑎𝑡 is the estimator according to the selected 𝑃𝐷𝐹, in this case is Exponential. Lambda 

is the initial parameter drawn from a uniform distribution for the 𝑀𝐶 iterative calculations and 

𝑑𝑎𝑡𝑎 constitutes the sample data from which phat is going to be estimated.  

Step 7: is not necessary as the maximum likelihood estimator already meet the condition.  
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Given a real set of sample data, the maximum likelihood estimators for each 𝑃𝐷𝐹 is obtained 

according to Table 3 (Magrab, 2011). In addition, point estimates can be easily found using a 

combination of available data and estimator(s) of the selected 𝑃𝐷𝐹. 

Table 3. Summary of MLE estimators in MatlabR2018 of different PDF’s 

Type of  

distribution  
𝑴𝑳𝑬 estimators  ɸ̂ (𝒑𝒉𝒂𝒕) 

Exponential 
phat = mle(data,'distribution','exponential'); 

Weibull 
phat = mle(data,'distribution','weibull'); 

Lognormal 
phat = mle(data,'distribution','lognormal'); 

Gamma 
phat = mle(data,'distribution','gamma'); 

In addition to maximum likelihood estimators, the classical approach requires an interval of 

confidence for such parameters, since the probability (Formula 35) that the random variable 

will be in this interval is unknown (Hogg, 2006). This interval is called confidence interval and 

it is denoted as 100(1 − 𝛼)% (Casella, 2002). Where 𝛼 accounts, to some extent, for the 

uncertainty related to the estimated parameter. Therefore, the larger 𝛼 is, the smaller the 

confidence interval will be, and vice versa (Hogg, 2006). Hence, given two random variables 

𝐴 and 𝐵 such that 𝐴 ≤ 𝐵 with probability equal to one, the confidence interval of an estimator 

ɸ̂ will be [𝐴, 𝐵] with a (1 − 𝛼) probability (Hasting, 1997).  

𝑃[ɸ ∈ [𝐴, 𝐵]] = 1 − 𝛼 (35) 

The method used to find a confidence interval for the different 𝑃𝐷𝐹 is based on finding its 

boundaries. It consists on setting a reference and an estimated margin of error for the 𝑃𝐷𝐹. 

Then assume upper and lower bounds for the estimator ɸ̂ according to the 𝑃𝐷𝐹. In many cases 

these bounds are symmetrical around ɸ̂ (Hasting, 1997). Moreover, the true value will be 

within the confidence interval obtained from a function that includes both estimator and 

parameter (Formula 36). 

−ɸ̂
𝛼/2

≤ ɸ ≤ +ɸ̂
𝛼/2

 (36) 



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

26 
 

Where the boundaries are = −ɸ𝛼/2 , 𝐵 = +ɸ𝛼/2 and according to Formula 11. The probability 

of the estimator being within the confidence interval for symmetrical 𝑃𝐷𝐹s is described in 

formula 37 (Hasting, 1997). 

𝑃[−𝑍𝛼/2 ≤ ℎ(ɸ, ɸ̂),≤ +𝑍𝛼/2] = 1 − 𝛼 (37) 

Where the bounds −𝑍𝛼/2 and +𝑍𝛼/2 are the quantiles normally distributed for the confidence 

interval, since ɸ̂ is asymptotically normally distributed. Hence, the function is presented in 

formula 38 (Walpole, 2016). 

ℎ(ɸ, ɸ̂) =
ɸ̂ − ɸ

√𝑉𝑎𝑟(ɸ̂)

 
(38) 

For 𝑃𝐷𝐹s where the bounds are not symmetrical to the estimator different types of intervals 

can be set. The most common one is shown in formula 39 (Walpole, 2016).  

𝑃[𝑊1−𝛼/2 ≤ ℎ(ɸ, ɸ̂),≤ 𝑊𝛼/2] = 1 − 𝛼 (39) 

Where the bounds 𝑊1−𝛼/2 and 𝑊𝛼/2 are the quantiles of the confidence interval. 

A summary of all the pre-built functions in Matlab to calculate confidence intervals and setting 

the degree of confidence in percentage given a scalar input is presented in Table 4 (Chapman, 

2004). 

Table 4. Summary of pre-built functions in Matlab to calculate confidence intervals 

Type of  

distribution  

Confidence Interval 

𝑷[ɸ ∈ [𝑨,𝑩]] = 𝟏 − 𝜶 

Exponential 
 [muhat,muci]=expfit(data,degree_value) 

Weibull 
 [muhat,muci]=wblfit(data,degree_value) 

Lognormal 
 [muhat,muci]=lognfit(data,degree_value) 

Gamma 
 [muhat,muci]=wblfit(data,degree_value) 

Notice that the input in Matlab of the degree for the confidence interval must be a decimal 

value, because the code is set to use  degree_value=degree/100. 
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The specific codes for Exponential, Weibull, Lognormal and Gamma 𝑃𝐷𝐹 are shown in the 

appendix. Furthermore, the general steps that the software follows are: 

1. Import the likelihood data set from an external file. The codes only read Microsoft 

Excel (.xlsx) format files 

2. Generate random values for the initial parameter(s) from a uniform distribution this can 

be 𝜆̂, 𝛼̂, 𝛽̂, 𝜇̂ or 𝜎̂, according to the type of distribution 

3. Evaluate the goodness of fit for each 𝑃𝐷𝐹 by the Kolmogorov Smirnov test and rank 

them to select the best fitted one, i.e. the highest 𝑝 value among them 

4. Estimate the parameter(s) of the selected 𝑃𝐷𝐹 

5. Asks for the 1 − 𝛼 degree of confidence intervals for the parameter(s) 

6. Calculates the confidence interval for each parameter 

7. Asks for a desired time 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 to evaluate the reliability of the system given the 

likelihood data set 

8. Calculates the reliability 𝑅(𝑡) 

9. Calculates the unreliability 𝐹(𝑡) 

10. Calculates the 𝑀𝑇𝑇𝐹 

11. Present a summary of the outcomes in a table 

12. Generates the plot of 𝑅(𝑡) 

13. Generates the histogram of 𝑅(𝑡) 

2.2.3 Bayesian Analysis 

Bayesian analysis is based on subjective probability (Hogg, 2006). It can yield more 

information from small size samples where classical statistical approaches such as 𝑀𝐿𝐸 cannot 

(Tobias, 2012). Furthermore, it relies on two types of information available to provide a reliable 

prediction for future outcomes (Ayyub, 2003). These types of information can be:  

• Objective information based on experimental results, observations or historical data 

• Subjective information based on prior experience, intuition, similar situation previously 

encountered and problem knowledge   

To perform 𝐵𝐴, four main steps need to be done following the classical approach referred to 

as “analytical” in this thesis (Gelman, 2014).   
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1. Assign a prior distribution 

2. Determine a likelihood distribution 

3. Obtain the posterior distribution 

4. Find the Bayesian estimator ɸ̂
𝐵𝑎𝑦𝑒𝑠

 

The other approach to perform 𝐵𝐴 is by “sampling” large amounts of data points between both 

prior and likelihood distributions to obtain the posterior. This is the procedure that is going to 

be followed in this thesis.  

The Bayesian methodology implies that the 𝑃𝐷𝐹 of a parameter to model a system`s behaviour 

can be obtained from the prior and posterior distributions (Modarres, 2010). In addition, more 

assumptions must be made for 𝐵𝐴 than a classical approach, especially to obtain the prior 

distribution (Tobias, 2012).   

The basis of 𝐵𝐴 is Bayes theorem, which defines conditional probabilities (Formula 40) (Aven 

T. , Risk Analysis, 2012). 

𝑃(𝐶 𝐴) =
𝑃(𝐴 𝐶). 𝑃(𝐴)

𝑃(𝐶)
 (40) 

Where 𝑃(𝐶 𝐴) is the conditional probability that event 𝐶 will occur, given the occurrence of 

event 𝐴. Hence, 𝑃(𝐴) characterizes the opposite and will represent the prior distribution. 𝑃(𝐶) 

characterizes the events that already occurred. Hence, the likelihood distribution (Aven T. , 

Risk Analysis, 2012).  

𝐵𝐴 heavily relies on the accuracy of the prior and likelihood probability distributions to 

produce a suitable posterior distribution. Moreover, the outcome of the posterior depends on 

elicited knowledge from experts to assign the prior and the availability of relevant data to 

produce the likelihood (Hayakawa, 2001).  In general, the probability of a theory becoming 

true will increase as supporting data increases (Lindley, 2014). 

Once a posterior distribution is obtained, several outcomes are of high interest for risk and 

reliability assessments. These are ɸ̂
𝐵𝑎𝑦𝑒𝑠

, expected lifetime of the system and credibility 

interval ɸ̂
𝐵𝑎𝑦𝑒𝑠

 for analytical approach. Nevertheless, from the sampling perspective the 

predictive prior, likelihood and predictive posterior distributions are the relevant ones. Based 

on this all the required indicators such as 𝑅(𝑡), 𝐹(𝑡) and MTTF can be obtained.   
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The 𝐵𝐴 general framework to estimate the expected lifetime is shown in Figure 9.  

 

 

 

 

 

 

 

 

 

 

 

Figure 10. General framework to estimate expected lifetime using Bayesian Analysis 

A way to interpret 𝐵𝐴 is that the prior distributions are assigned based on the previous 

knowledge with regards to the phenomena. Moreover, 𝐵𝐴 requires the selection of a 𝑃𝐷𝐹 and 

its initial parameters based on the prior expert knowledge. Likelihood distributions are obtained 

from the available historical data. This does not require expert knowledge. Posterior 

distributions are established via the data sampling from Prior vs. Likelihood to model the 

expected survival and failure behaviours of the system (Tobias, 2012).  

The weight that the likelihood and prior distributions will have on the posterior depends on 

how relevant and accurate they are. In other words, the posterior will be located closer to the 

likelihood or prior distribution according to the weight each one has (Mickelsson, 2015). See 

Figure 11 for a typical combination of a prior, likelihood and posterior distributions of a 

Normal PDF. 
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Figure 11. Combination of Prior, Likelihood and Posterior distributions of a Normal PDF 

A brief discussion on the predictive prior distribution, elicitation principles to obtain it and 

other related issues will be presented in the next section.  

Prior Distributions 

Prior distributions are the foundation of Bayesian statistical inference (Gelman, 2014). They 

represent the degree of belief that a system will behave according to an assigned 𝑃𝐷𝐹 based 

on the previous knowledge  experts can have (Hayakawa, 2001). In other words, it expresses 

the degree of uncertainty related to the value of a parameter from which the 𝑃𝐷𝐹 is based on. 

Suppose one needs to establish the relevance of the prior knowledge in 𝐵𝐴, then Bayes theorem 

can be written in general according to formula 41 (Hayakawa, 2001). 

𝑃(𝐾) = ∫ 𝑝(ɸ,𝐾). 𝑝(𝐾)
∞

0

 (41) 

Where 𝐾 expresses the prior knowledge, 𝑝(𝐾) represents the prior distribution and 𝑝(ɸ) 

represents the likelihood distribution. 

There are three main categories of prior distributions in 𝐵𝐴, these are conjugate, proper and 

informative, each one has pros and cons (Jurčiček, 2014). The most common category is the 

conjugate prior. Nevertheless, for the scope of this study 𝐵𝐴 is not going to be bounded only 
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to these, as any type of prior could be useful to determine a relevant posterior distribution based 

on limited data and limited knowledge.  

Conjugate prior distributions are distributions with similar shape and form than the likelihood 

𝑃𝐷𝐹. Therefore, they form a conjugate family if the posterior density is the one shown in 

formula 42 (Lee, 2012). In this case, the posterior 𝑃𝐷𝐹 is proportional to the conjugate prior. 

𝑃(𝑥) ∝ 𝑝(ɸ). 𝑙(𝑥) (42) 

The previous is an advantage of a conjugate prior distribution, because a posterior distribution 

can be used as a new prior when updated data is available as the proportionality between both 

distributions remains (Jurčiček, 2014).  

Informative prior distributions are formed by a population of possible parameter values, from 

which the parameter of interest is drawn (Gelman, 2014). Instead of including all possible 

values for a parameter, informative priors seek to concentrate in more truthful values around 

the true parameter (Gelman, 2014).  

Improper prior distributions are extremely small over an infinite range of possible parameter 

values and they can be ambiguous with regards to the true parameter value. The uniform 

distribution (Formula 43) is a good example of a common distribution to account for prior 

knowledge when there is a large degree of uncertainty (Berger, 1985). In addition, it gives 

almost no valuable information to increase the probability for the parameter to be in the interval 

of the posterior.  

𝑝(ɸ) = 1 (43) 

In this thesis posterior distributions are obtained by using Monte Carlo simulations (𝑀𝐶). The 

procedure for generating a predictive prior of an exponential distribution in Matlab is presented  

as an example: 

1. Determine the number of iterations for 𝑀𝐶 calculations of prior 

nprior=input('Number of iterations for prior Parameters ') 

2. Selecting the type of distribution according to the prior knowledge 

for i=1:nprior 

3. Draw an initial value for the parameter(s) of the 𝑃𝐷𝐹 from the selected prior 

lambda=rand()*5; 
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4. Generate a distributed random data set given the initial parameter(s)  

estimator=exprnd(lambda,1,1); 

5. Generate the predictive prior data by repeting step 3 with 𝑛𝑝𝑟𝑖𝑜𝑟 iterative calculations 

and the value of ɸ̂
𝑝𝑟𝑖𝑜𝑟 𝐵𝑎𝑦𝑒𝑠

  

t(i)=exprnd(estimator,1,1); 

end 

The same procedure applies to the Weibull, Lognormal and Gamma distributions. 

Elicitation Principles 

Although there is no generic approach to elicit expert knowledge, the elicitation process should 

be structured, unbiased and aligned with the statistical model that will be used to incorporate 

expert information (Kuhnert, 2010). Several issues must be considered when eliciting 

knowledge with regards to how useful this knowledge will be to 𝐵𝐴 (Albert, 2012). Moreover, 

several challenges rise when eliciting knowledge from different experts . This is fundamental 

to ensure the closeness of  ɸ̂
𝑃𝑟𝑖𝑜𝑟

 to ɸ̂
𝐵𝑎𝑦𝑒𝑠

  and the true parameter value. 

Any prior will push the estimate towards the mean of the prior distribution (Mickelsson, 2015). 

See Figure 12 to observe the influence of priors and likelihood 𝑃𝐷𝐹 on the posterior. 

Among such issues when eliciting expert knowledge is how to determine if the expert 

knowledge can be qualified as strong (Aven T. , Risk Analysis, 2012). To evaluate the strength 

of knowledge there is a list of five conditions that must be met so the expert knowledge is 

considered strong (Aven T. , Risk Analysis, 2012). Thus, the elicited information relevant. The 

conditions to be met for a strong knowledge are: 

• The assumptions made are very reasonable 

• Large amount of relevant/reliable data/information is available 

• There is a broad agreement among experts 

• The phenomena involved are well understood; the models used are known to give 

prediction with the required accuracy  
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Figure 12. Illustrative influence of Prior and Likelihood on Posterior distribution 

When there is no broad agreement between several experts and yet all experts’ opinions seem 

to be relevant due to their own contributions, an alternative methodology is required 

(Samaniego, 2010). Assuming different opinions from 𝑘 experts where the weight of each 

opinion is denoted by a factor 𝑎 which meets the condition seen on formula 44, 

∑𝑎𝑖 = 1

𝑘

1

 (44) 

Then the proposed ɸ̂
𝑃𝑟𝑖𝑜𝑟

 for the prior distribution is denoted by formula 45 (Samaniego, 

2010). 

ɸ̂
𝑃𝑟𝑖𝑜𝑟

=∑𝑎𝑖ɸ̂𝑖

𝑘

𝑖=1

 (45) 

This constitute a relatively simple way to approach the consensus problem among experts when 

the elicited prior is not necessarily conjugate of the posterior and each expert only consider one 

prior for the phenomenon, not a combination of two or more. An example with two scenarios 

of expert opinions is provided in the appendix A6. 

In practice many opinions for prior of real systems are more complex to examine as the weight 

for each one will tend to be similar. Therefore, the closer ɸ̂
𝑃𝑟𝑖𝑜𝑟

  will be to a standard mean 

(Samaniego, 2010). In addition, when eliciting expert knowledge for a few reliable sources, is 

not common to have such difference between the opinions with regards of prior parameter(s). 

The procedure used to estimate ɸ̂
𝑃𝑟𝑖𝑜𝑟

 for each of the four distributions is based on drawing ɸ̂ 
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from a normally random generated 𝐷𝐹. Then ɸ̂
𝑃𝑟𝑖𝑜𝑟

 from its corresponding 𝑃𝐷𝐹. Table 5 

presents a summary of the procedure used in each case of 𝑃𝐷𝐹 to generate ɸ̂
𝑃𝑟𝑖𝑜𝑟

. The initial 

values ɸ̂ can be modified easily in the code, according to expert knowledge of the specific 

study case. 

Table 5. Summary of procedures to generate ɸ̂
𝑃𝑟𝑖𝑜𝑟

 for each PDF 

Type of  

distribution  
Procedure to generate ɸ̂

𝑷𝒓𝒊𝒐𝒓
 

Exponential 
lambda=rand()*5; 

estimator=exprnd(lambda,1,1); 

Weibull 
alpha=normrnd(1,0.05); 

beta=normrnd(2,0.05); 

estimator=wblrnd(alpha,beta,1,2); 

Lognormal 
mu=0; 

sigma=0.25; 

estimator=lognrnd(mu,sigma,1,2); 

Gamma 

alpha=rand()*4; 

beta=rand()*2; 

estimator=gamrnd(alpha,beta,1,2); 

 

 

Posterior Distributions 

To determine the posterior distribution directly from Bayes theorem requires computing the 

integral for the likelihood distribution (Kruschke, 2015). This can be challenging as the 

expression for the posterior distribution can be extremely difficult and time consuming. One 

method to address this challenge is using conjugate priors which are similar to posterior and 

easier to calculate (Kruschke, 2015).  

In most cases, the type of posterior will not be strictly defined for different combinations of 

priors vs. likelihood distributions, i.e. the posterior will not behave the same way as a known 

𝑃𝐷𝐹 as its mathematical form will be similar but not equal to any of them. Therefore, the most 

recommended method to obtain the posterior is to generate a predictive posterior with random 

sampling. Otherwise, if one follows the analytical approach,  the results are impractical and 

difficult to process since the possible combinations of priors vs. likelihoods are too many.  

As previously mentioned, there are two major disadvantages when obtaining the posterior 

distribution following the analytical approach instead of using sampling. 

• The types of 𝑃𝐷𝐹s for a posterior distribution given all possible combinations of prior 

vs likelihoods is too large to include in a single programming code. Hence, to produce 
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and sample a posterior for reliability calculations can be time consuming and may 

require extensive computational capacity.  

• The posterior 𝐷𝐹s most likely will not follow any of the know 𝑃𝐷𝐹 such as 

Exponential, Weibull, Lognormal, Gamma, etc. Moreover, it may result in undesired 

outcomes such as infinite, negative or extremely large values. 

Based on the previous statement, it is better to obtain a predictive posterior distribution by 

randomly sampling a large amount of combinations of values with the pre-estimated 

parameters. This requires computer algorithms to do the iterative calculations, which are 

commonly referred as Monte Carlo simulations 𝑀𝐶 (Rossi, 2005). The algorithm used in 

Matlab is a pre-build function that generates random values which follow the pre-established 

condition between 𝑝(ɸ) and 𝑙(𝑥). The acceptance rejection sampling is useful to manage any 

type of prior other than conjugate in order to obtain a posterior (James, 2014). 

In this thesis posterior distributions are obtained by the sampling approach using the prebuilt 

function of Matlab called acceptance rejection sampling. This function generates a specific 

type of posterior population formed by a fixed amount of data points by sampling the prior and 

likelihood distributions (Hanselman, 2012). In other words, the user can define the type of 

distribution to randomly generate the data points, the number of iterations or size of this 

posterior population and the criteria to accept or reject into the posterior each evaluated data 

point. 

A code for 𝐵𝐴 has been written in Matlab following 𝑀𝐶. The following is the procedure for 

𝐵𝐴 that the software performs to obtain the predictive posterior distribution. 

1. Presents four options of 𝑃𝐷𝐹𝑠, Exponential, Weibull, Lognormal and Gamma, for the 

user to select one according to Prior Knowledge 

2. Generate random values for the initial parameter(s) from a uniform distribution this can 

be 𝜆̂, 𝛼̂, 𝛽̂, 𝜇̂ or 𝜎̂, according to the type of distribution. Asks for the number of iterations 

𝑛𝑝𝑟𝑖𝑜𝑟 to generate prior distribution 𝑝(ɸ) 

3. Generates 𝑝(ɸ) and prior parameters 

4. Generates the plot of 𝑝(ɸ) 

5. Generates the histogram of 𝑝(ɸ) 

6. Imports the likelihood data set from an external file. The codes only read Microsoft 

Excel (.xlsx) format files 
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7. Evaluates the goodness of fit for each 𝑃𝐷𝐹 by the Kolmogorov-Smirnov test and rank 

them to select the best fitted one, i.e the highest p value among them 

8. Generates random values for the initial parameter(s) from a uniform distribution this 

can be 𝜆̂, 𝛼̂, 𝛽̂, 𝜇̂ or 𝜎̂, according to the selected type of distribution 

9. Asks for the number of iterations 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 to generate likelihood distribution 𝑙(𝑥) 

10. Estimates the parameter(s) of the selected likelihood function 𝑙(𝑥) 

11. Asks for the 1 − 𝛼 degree of confidence intervals for the 𝑙(𝑥) parameter(s) 

12. Calculates the confidence interval for each parameter 

13. Performs an acceptance rejection sampling between 𝑝(ɸ) and 𝑙(𝑥). Here the code runs 

a predetermined number of iterations 𝑛𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟, which for accuracy purposes is equal 

to 1x106 

14. Generates the posterior 𝑃𝐷𝐹 

15. Asks for a desired time 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 to evaluate the reliability of the system given the 

posterior data set.  

16. Calculates the reliability 𝑅(𝑡) 

17. Calculates the unreliability 𝐹(𝑡) 

18. Calculates the 𝑀𝑇𝑇𝐹 

19. Presents a summary of the results in tree tables. The first for types of 𝑃𝐷𝐹s, the second 

for number of iterations of prior, likelihood, posterior, results of 𝑅(𝑡), 𝑃(𝑡) and 𝑀𝑇𝑇𝐹. 

The third table for the details of the 𝑀𝑇𝑇𝐹 for years as the time unit from the date the 

programs is run 

20. Generates the plot of 𝑅(𝑡) 

21. Generates the histogram of 𝑅(𝑡) 

A closer look into step 14th of the procedure for 𝐵𝐴 that the Matlab is necessary, as this covers 

the acceptance rejection sampling for the predictive posterior distribution. The key factor to 

obtain a representative predictive posterior are the size of the population data sets, the criteria 

to generate the semirandom iterative values and the criteria to accept or reject such value into 

the predictive posterior itself. See appendix A8 for the code of the acceptance rejection 

sampling function of Matlab. Figure 13 presents a general diagram of the acceptance rejection 

sampling function.  
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Figure 13. Diagram of the acceptance rejection sampling function in Matlab R2018. 

Next is Figure 14 with a layout of the result tables for predictive posterior obtained with the 

𝐵𝐴 Matlab code. 

 

Figure 14. Layout of Results tables for predictive posterior with 𝐵𝐴 Matlab code.  

Input predictive prior 
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CHAPTER 3 

3.1 Reliability Data 

Reliability is generally defined as the ability of a system, component or equipment to operate 

under specified conditions during a designated period of time or number of cycles (Modarres, 

2010). The concept of reliability applies to every element that must perform an activity within 

an expected lifetime. 

It is feasible to have different degrees of reliability based on the deterioration level of an 

element. Deterioration occurs gradually due to different physical and chemical variables which 

the elements are exposed to (Lydersen, 1988). Some of these variables for mechanical and 

electronical components are listed below. 

• Temperature 

• Mechanic Stress 

• Torque 

• Friction  

• Water depth 

• Pressure  

• PH level  

• Dust 

• Moisture 

• Number of operations 

To include the level of degradation in a reliability assessment requires a refined analysis of the 

multiple variables to be considered and the criticality of each one towards the element/system’s 

performance (Lydersen, 1988).  

In the scope of this study the main assumption is that system performance is either satisfactory 

or unsatisfactory. This proposes a binary measurement system; if the system performs its 

required functions it is considered 100% reliable (Tobias, 2012), regardless the conditions 

under it operates or the degree of degradation that it may have. Therefore, all the data sets in 

this study provide failure times. These express the completely inability of the system to operate 

as it is supposed to.  
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An overview of failure states and degradation levels for reliability assessment is presented in 

Figure 15.  

 

 

 

 

 

 

Figure 15. Overview of failure states and degradation levels for reliability assessment.  

A list of assumptions as follows for 𝐵𝐴: 

1. No replacement is considered. Hence, data sets show failure times or similar 

components before being replaced for the first time. See the expected lifetime without 

replacement in Figure 16. 

2. The time unit for failures is not fixed, i.e. the software codes do not differentiate 

between, hours, days, years, etc. unless required by the user. 

3. For the study case of chapter 3, a large amount of data contains several types of events 

that generate the failure of the systems. These events are not categorized nor classified; 

therefore, they are treated in the same way. 

4. Since there is no replacement the time to fix or replace a failed component is not 

considered. 

5. The initial values for prior parameters are pseudorandom as they will be the product of 

prior knowledge and reasonable numerical intervals. Otherwise, when selecting 𝑅(𝑡), 

𝐹(𝑡) and 𝑀𝑇𝑇𝐹, the outcomes can be extremely large and, in some cases, unrealistic. 

6. The number of iterations for prior, likelihood and posterior 𝐷𝐹 must be large to increase 

the accuracy of the results. The minimum recommended value is 1x104. 

Once the assumptions are established, it is necessary to quantitatively assess the reliability of 

a system. Hence, previous data about its behaviour is required. Failure times, types of failure, 
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number of failed units, conditions for system’s operations and more constitute the reliability 

data (Modarres, 2010).  

 

 

 

 

 

 

Figure 16. Expected lifetime without replacement. 

Reliability data may have different formats to express the previous performance of the systems 

under analysis (Meeker, 1998). Among these formats are: 

• Histograms 

• Plots 

• Tables 

• Subsets of data 

• Databases  

As mentioned before, the time unit of the reliability data is not fixed as the program is flexible 

to handle any unit. In other words, failure times can be hours, days, months, years, number of 

cycles, number of revolutions, etc. Hence, the result’s time unit will be the same as the data 

input. Nevertheless, the default time unit for the results is years. 𝑀𝑇𝑇𝐹 is shown in years, 

months, days and hours.  

Historical data is required to estimate the expected lifetime through maximum likelihood 

parameters of a 𝑃𝐷𝐹. However, fitting a given dataset to a distribution model may represent a 

challenge (Renyan, 2015). The relevance and importance of such data relies on the amount 

available and the main assumption that conditions of operations are maintained through time. 

In addition, censoring also influences reliability data (Meeker, 1998).  

3.1.1 Random data set 

Random data sets do not follow any pattern or statistical distribution as they are generated in 

an entirely aleatory process . They are used to represent uncertainty in models, 𝑀𝐶 simulations, 
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iterative calculations, acceptance rejection sampling and others. For practical uses random sets 

are limited to upper and lower boundaries. 

The rand function is used to generate a random data set in (Hanselman, 2012), where, size of 

the array or number of elements to be generated must be specified.  By default, the boundaries 

of a rand function are within 0 and 1. However, by multiplying a scalar value one can expand 

such boundaries to any given interval (Hanselman, 2012).  

a=rand(m,n)*scalar 

𝑎 represents the data set to be created, 𝑚 the number of columns, 𝑛 the number of rows and 

𝑠𝑐𝑎𝑙𝑎𝑟 the upper limit of the data set.  

Pseudo random data sets can also be generated in Matlab. These types of data sets follow a 

given pattern such as a 𝑃𝐷𝐹. The following is an example of a Lognormal data set 𝑏 that 

randomly generates (100,1) elements within a 0 to 4 interval. 

b=lognrnd(100,1)*4 

Table 6 shows a theoretical example of a random data set, used to compare the results of using 

𝑀𝐿𝐸 of each 𝑃𝐷𝐹 used in this report, and 𝐵𝐴. The goal is to determine the 𝑀𝑇𝑇𝐹, 𝑅(𝑡) and 

𝐹(𝑡) in each case using Matlab.  

A program was created to settle a random distributed data, evaluate it according to the 𝑃𝐷𝐹, 

obtain the parameters, corresponding confidence intervals, probability of survival 𝑃(𝑇 ≥ 𝑡), 

probability of failure 𝑃(𝑇 ≤ 𝑡), produce the histogram and finally 𝑀𝑇𝑇𝐹. 
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Table 6. Random data set for 𝑀𝐿𝐸 and 𝐵𝐴 example 

𝒕 time values randomly generated within 0 to 5 units interval 

1.31 0.96 0.43 4.60 3.71 1.95 0.83 4.34 3.78 

4.70 2.31 2.76 4.79 4.29 0.14 2.99 3.21 4.04 

4.54 2.88 0.42 3.05 4.69 3.93 3.77 3.51 2.52 

4.90 3.07 0.03 0.71 3.59 1.99 3.26 4.47 3.65 

3.54 4.33 1.54 1.91 2.79 3.24 2.83 3.89 4.78 

0.78 3.91 3.08 3.34 0.48 1.46 1.55 4.98 0.48 

4.66 2.12 3.17 0.79 0.75 3.95 0.17 4.74 4.83 

3.09 4.22 3.41 0.13 2.29 0.22 4.55 4.88 0.06 

0.17 4.53 1.58 0.08 2.00 2.52 4.56 0.90 0.46 

2.60 2.03 3.63 1.93 2.09 1.12 3.24 0.83 0.04 

3.72 4.92 1.59 3.88 2.96 2.58 1.99 3.94 1.31 

 

Exponential Distribution 

The results for the example for 𝑀𝐿𝐸 of Exponential distribution are presented in the summary 

Table 7. 

Table 7. Summary Table for MLE of Exponential random data set using Matlab. 

Data  Parameter  Confidence Interval T Expected Lifetime 

𝒏 𝝀 
𝑴𝒖𝒉𝒂𝒕    

𝝀̂              

𝒅𝒆𝒈  

% 
𝑴𝒖𝒄𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛 and variable 𝜆, 𝑑𝑒𝑔 and 𝑡 

 

100 

 

1.04    

 

2.651 

 

5 2.200 3.259 1 0.070 0.929 

0.377 

2.22 10 2.266 3.151 2 0.005 0.995 

0.09 15 2.311 3.084 3 3x10-3 0.998 

2.01 20 2.346 3.033 4 2.47x10-5 0.999 

1.85 25 2.376 2.992 5 1.74x10-6 1 

Table 7, 𝑛 is the number of observations for each case of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙. 𝐿𝑎𝑛𝑑𝑎 (𝜆) is initial value 

of the estimated parameter. The failure rate for the exponential 𝑃𝐷𝐹. 𝑀𝑢ℎ𝑎𝑡 is the estimated 

parameter 𝜆̂. 𝑀𝑢𝑐𝑖 is the confidence interval with the upper and lower bounds for the estimated 
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parameter. 𝑑𝑒𝑔 (α) is the % of freedom for the confidence interval. 𝑅(𝑡) represents the 

reliability or survival function and 𝐹(𝑡) the unreliability  given a time value 𝑡. 

To interpret the results of Table 7 let us take row 2 for example. The number of elements from 

the historical data sample is 100. The initial random value generated by the program for the 

parameter 𝜆 is 1.04. The estimated value of parameter 𝜆 is 2.6518 with a 90% of confidence 

that the real value will be within 2.2666 and 3.1517. For a selected time of 2 units the system 

has a probability of survival of 0.5% and a probability of failure of 99.5% with a fixed 𝑀𝑇𝑇𝐹 

of 0.3771. 

Table 7 shows the variation of boundaries for the confidence interval of the parameters as the 

% of freedom decreases. The higher the % of freedom, the more accurate is the estimated 

parameter. In addition, it also shows how 𝑅(𝑡) and 𝐹(𝑡) complement each other to the total 

value of 1. Therefore, whilst one decreases the other increase in the exact proportion. Finally, 

the results show a constant value of 𝑀𝑇𝑇𝐹 regardless of the selected 𝑡 and estimated parameter.  

The results for the example of BA with exponential prior distribution are presented in the 

summary Table 8. 

Table 8. Summary Table for BA with Exponential Prior and random data set using Matlab. 

Data  Number of Iterations  T Expected Lifetime 

𝒏 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍𝒊 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable 𝜆 and 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

100 1x104 1x104 1x104 

1 0.2495 0.7505 0.7152 

2 0.1468 0.8532 0.7086 

3 0.0796 0.9204 0.7187 

4 0.0392 0.9608 0.7171 

5 0.0143 0.9857 0.7021 

Several observations can be drawn from the comparison of results on Tables 7 and 8. First, the 

number of iterations for prior and likelihood influence the 𝑅(𝑡) and 𝐹(𝑡) values as the sample 

is random generated. Hence the larger 𝑛𝑝𝑟𝑖𝑜𝑟 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 and 𝑛𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 the more accurate 

will 𝑅(𝑡) and 𝐹(𝑡) be. Second, 𝑅(𝑡) and 𝐹(𝑡) tend to decrease as time increases. Third, the 

influence of predictive prior on the 𝑀𝑇𝑇𝐹. Which now is around 0.71 years instead of 0.377 

as shown in Table 7. Fourth, 𝑀𝑇𝑇𝐹 values in 𝐵𝐴 for each case are not identical as they are in 
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𝑀𝐿𝐸. Nevertheless, all five values are very close to each other. Figure 17 presents the 

estimation of  𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹 when 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5. 

 

Figure 17. BA with Exponential Prior, random data set for tsurvival=5 

 

Weibull Distribution 

The results of the example for  𝑀𝐿𝐸 with Weibull distribution are presented in the summary 

table 9. 

Table 9. Summary Table for MLE of Weibull random data set using Matlab. 

Data 
Parameters & 

Estimators 
Confidence Intervals T Expected Lifetime 

𝒏 𝜶 𝜷 
𝑴𝒖𝒉𝒂𝒕  

𝜶̂             𝜷̂ 

𝒅𝒆𝒈  

% 
𝑴𝒖𝒄𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Variable 𝑡 and 𝑑𝑒𝑔, fixed 𝑛, 𝛼, 𝛽   

100 

1.9 1.2 

2.886 1.497 

5 
[2.519, 

3.305] 

[1.261, 

1.778] 
1 0.815 0.184 

2.605 

0.1 0.5 10 
[2.575, 

3.234] 

[1.296, 

1.730] 
2 0.561 0.438 

1.9 1.2 15 
[2.612, 

3.188] 

[1.320, 

1.699] 
3 0.346 0.653 

0.8 1.8 20 
[2.641, 

3.153] 

[1.338, 

1.6758] 
4 0.195 0.804 

1.2 0.1 25 
[2.665, 

3.125] 

[1.354, 

1.656] 
5 0.102 0.897 

In Table 9, 𝑛 is the number of observations for each case of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙. 

𝐴𝑙𝑝ℎ𝑎 (𝛼) 𝑎𝑛𝑑 𝑏𝑒𝑡𝑎 (𝛽) are the initial values of the estimated parameters. The scale and shape 

for the Weibull 𝑃𝐷𝐹. 𝑀𝑢ℎ𝑎𝑡 are the estimated parameters 𝛼̂ and 𝛽̂, respectively. 𝑀𝑢𝑐𝑖 are the 

confidence intervals with the upper and lower bounds for the estimated parameters. 𝑑𝑒𝑔 (α) is 
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the % of freedom for the confidence intervals. 𝑅 represents the survival function 𝑅(𝑡) given a 

time value 𝑡. 

Table 9 shows the variation of boundaries for confidence interval of the parameters as the % 

of freedom decreases. The higher the % of freedom, the more accurate the estimated parameters 

𝛼̂ and 𝛽̂. In addition, Table 9 also shows that 𝑅(𝑡) and 𝐹(𝑡) complement each other to the total 

value of 1. Therefore, whilst one decreases the other increase in the exact proportion. Finally, 

it  shows a constant value of  𝑀𝑇𝑇𝐹 regardless of the selected 𝑡s and estimated parameter.  

To interpret the results of Table 9 let us take row three for example. The number of elements 

from the historical data sample is 100. The initial random value generated by the program for 

the parameters 𝛼 and 𝛽 are 1.96 and 1.25 respectively. The estimated values by the program are 

2.886 and 1.497 with a 85% of confidence that real values will be within [2.612, 3.188] and 

[1.320, 1.699] accordingly. For a selected time of 2 units the system has a probability of 

survival of 34.6% and a probability of failure of 65.3% with a fixed 𝑀𝑇𝑇𝐹 of 2.605.  

The results for the example of BA with Weibull prior distribution are presented in the summary 

Table 10. 

Table 10. Summary Table for BA with Weibull Prior and random data set using Matlab. 

Data 

Set 
Number of Iterations  T Expected Lifetime 

𝒏 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍𝒊 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable 𝛼,  

𝛽 and 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

100 1x104 1x104 1x104 

1 0.0730 0.9227 0.2173 

2 0.0383 0.9617 0.2131 

3 0.0150 0.9850 0.1988 

4 0.0082 0.9918 0.2066 

5 0.0038 0.9962 0.2212 

Several observations can be drawn from the comparison of results on Tables 9 and 10. First, 

the number of iterations for prior and likelihood influence the 𝑅(𝑡) and 𝐹(𝑡) values as the 

sample is randomly generated. Therefore, the larger 𝑛𝑝𝑟𝑖𝑜𝑟 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 and 𝑛𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 the 

more accurate will 𝑅(𝑡) and 𝐹(𝑡) will be. These are fixed to 1x104 iterations for this trial. 

Second, 𝑅(𝑡) and 𝐹(𝑡) tend to decrease for as time increases. Third, the influence of predictive 
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prior on the 𝑀𝑇𝑇𝐹, which now is around 0.21 years instead of 2.60 as shown in table 9. Fourth, 

𝑀𝑇𝑇𝐹 values in 𝐵𝐴 for each case are not identical as they are in 𝑀𝐿𝐸. Nevertheless, all five 

values are close enough to each other, so an estimation is feasible.  

Figure 18 presents the estimation of  𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹 when 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5. 

 

Figure 18. BA with Weibull Prior, random data set for tsurvival=5 

 

Lognormal Distribution 

The results of the example for 𝑀𝐿𝐸 of Lognormal distribution are presented in the summary 

Table 11. 

Table 11. Summary Table for MLE of Lognormal random data set using Matlab  

Data Parameters Confidence Intervals T Expected Lifetime 

𝒏 𝝁 𝝈 
𝑴𝒖𝒉𝒂𝒕  
𝝁̂              𝝈̂ 

𝒅𝒆𝒈  
% 

𝑴𝒖𝒄𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Variable 𝑡 and 𝑑𝑒𝑔, fixed 𝑛, 𝛼, 𝛽   

100 

1.0 0.7 

2.856 0.933 

5 
[2.669, 

3.042] 

[0.823, 

1.089] 
1 0.998 0.001 

4.415 

0.7 0.4 10 
[2.700, 

3.011] 

[0.841, 

1.063] 
2 0.989 0.010 

0.2 0.7 15 
[2.719, 

2.992] 

[0.852, 

1.0469] 
3 0.970 0.029 

0.6 2.8 20 
[2.735, 

2.977] 

[0.861, 

1.034] 
4 0.942 0.057 

1.5 0.2 25 
[2.747, 

2.964] 

[0.869, 

1.024] 
5 0.909 0.090 

 

Table 11, 𝑛 is the number of observations for each case of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙. 𝑀𝑢 (𝜇) 𝑎𝑛𝑑 𝑆𝑖𝑔𝑚𝑎 (𝜎) 

are the parameters to be estimated. The median and standard deviation for the Lognormal 𝑃𝐷𝐹 
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are the initial values of the estimates 𝜇̂ and 𝜎̂, respectively. 𝑀𝑢𝑐𝑖 are the confidence intervals 

with the upper and lower bounds for the estimated parameters. 𝑑𝑒𝑔 (α) is the % of freedom for 

the confidence intervals. 𝑅(𝑡) represents the reliability or survival function and 𝐹(𝑡) the 

unreliability  given a time value 𝑡. 

Table 11 illustrate the variation of boundaries for the confidence intervals of the parameters as 

the % of freedom decreases, The higher the % of freedom, the more accurate the estimated 

parameters 𝜇̂ and 𝜎̂. Moreover, Table 11 also shows that 𝑅(𝑡) and 𝐹(𝑡) complement each other 

to the total value of 1. Therefore, whilst one decreases the other increase in the exact proportion. 

Finally, table 11 also shows the fixed value for 𝑀𝑇𝑇𝐹 regardless of the selected 𝑡s and 

estimated parameter.  

To interpret the results of Table 11 let us take row four as an example. The number of elements 

from the historical data sample is 100. The initial random value generated by the program for 

the parameters 𝜇 and 𝜎 are 0.64 and 2.85 respectively. The estimated values by the program for 

these parameters are 2.856 and 0.933 with an 80% of confidence that real values will be within 

[2.735, 2.977] and [0.861, 1.034] accordingly. For a selected time of two units the system has 

a probability of survival of 34.6% and a probability of failure of 65.3% with a fixed 𝑀𝑇𝑇𝐹 of 

2.605.  

The results for the example of BA with Lognormal prior distribution are presented in the 

summary Table 12. 

Table 12. Summary Table for BA with Lognormal Prior and random data set using Matlab. 

Data Number of Iterations  T Expected Lifetime 

𝒏 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕e 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

100 1x104 1x104 1x104 

1 0.4591 0.5409 1.3265 

2 0.2722 0.7278 1.3199 

3 0.1526 0.8474 1.3394 

4 0.0748 0.9252 1.3327 

5 0.0320 0.9680 1.3192 

By comparing the results obtained in Tables 11 and 12, one can draw the following conclusions, 

first, 𝑅(𝑡) values for 𝐵𝐴 are lower to its corresponding 𝑀𝐿𝐸 pair.  Second, the tendency of 

𝑅(𝑡) to decrease as time increases is more visible for 𝐵𝐴, for example the 3rd row for time 3 
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years 𝑅(𝑡) is 0.1526. Therefore, the number of iterations for prior and likelihood influence the 

𝑅(𝑡) and 𝐹(𝑡) values as the sample is randomly generated. Hence, the larger 𝑛𝑝𝑟𝑖𝑜𝑟 

𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 and 𝑛𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 the more accurate will 𝑅(𝑡) and 𝐹(𝑡) will be. These are fixed to 

1x104 iterations for this trial. Third, the influence of predictive prior on the 𝑀𝑇𝑇𝐹, which now 

is around 1.32 years instead of 4.41 as shown in Table 9. Fourth, 𝑀𝑇𝑇𝐹 values in 𝐵𝐴 for each 

case are not identical as they are in 𝑀𝐿𝐸. Nevertheless, all five values are close enough to each 

other, so an estimation is feasible. 

See Figure 19 for estimation of  𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹 when 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5. 

 

Figure 19. BA with Lognormal Prior, random data set for tsurvival=5 

Gamma Distribution 

The results for the example for 𝑀𝐿𝐸 of Gamma distribution are presented in the summary 

Table 13. Where 𝑛 represents the observations for each case of the gamma random distributed 

data set. 𝐴𝑙𝑝ℎ𝑎 (𝛼) 𝑎𝑛𝑑 𝑏𝑒𝑡𝑎 (𝛽) are the initial values of the estimates. The scale and shape 

for the gamma 𝑃𝐷𝐹 are the estimated parameters 𝛼̂ and 𝛽̂. 𝑀𝑢𝑐𝑖 are the confidence intervals 

with the upper and lower bounds for the estimated parameters. 𝑑𝑒𝑔 (α) is the % of freedom for 

the confidence intervals. 𝑅 is the survival function 𝑅(𝑡) for a time value 𝑡. 

To interpret the results of Table 13 let us take row 5 for example. The number of elements from 

the historical data sample is the same as previous cases (100). The initial random value 

generated by the program for the parameters 𝛼 and 𝛽 are 1.40 and 0.49 respectively.  
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Table 13. Summary Table for MLE of Gamma random data set using Matlab 

Data Parameters  Confidence Intervals T Expected Lifetime 

𝒏 𝜶 𝜷 
𝑴𝒖𝒉𝒂𝒕  

𝜶̂             𝜷̂ 

𝒅𝒆𝒈  

% 
𝑴𝒖𝒄𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Variable 𝑡 and 𝑑𝑒𝑔, fixed 𝑛, 𝛼, 𝛽   

100 

1.2

1 

0.3

3 

3.446 0.905 

5 
[2,641, 

4,4982] 

[0.679, 

1.206] 
1 0.203 0.796 

3.122 

1.8

5 

0.8

9 
10 

[2.204, 

5.389] 

[0.559, 

1.465] 
2 0.109 0.890 

1.7

0 

0.2

5 
15 

[2.239, 

5.305] 

[0.569, 

1.440] 
3 0 1 

0.5

7 

0.7

7 
20 

[2.265, 

5.244] 

[0.576, 

1.422] 
4 0 1 

1.4

0 

0.4

9 
25 

[2.286, 

5.197] 

[0.582, 

1.408] 
5 0 1 

Table 13 shows the variation of boundaries for confidence interval of the parameters as the % 

decreases, which means that to be more confidence of the estimated parameters 𝛼̂ and 𝛽̂, scale 

and shape for the Weibull distribution, the interval must enhance. In addition, Table 13 also 

shows that 𝑅(𝑡) and 𝐹(𝑡) complement each other to the total value of 1. Therefore, whilst one 

decreases the other increase in the exact proportion. Finally, Table 13 displays the fixed value 

of  𝑀𝑇𝑇𝐹 independently of the selected 𝑡s and estimated parameter.  

The estimated parameters 𝛼̂ and 𝛽̂ by the program are 3.446 and 0.905, respectively, with a 

75% of confidence that real values will be within [2.286, 5.197 ] and [0.582, 1.408], 

accordingly. For a selected time of 2 units the system has a probability of survival of 

approximately 11% and a probability of failure of 89% with a fixed 𝑀𝑇𝑇𝐹 of 3.122.  

The results for the example of BA with Gamma prior distribution are presented in the Table 14.  

Table 14. Summary Table for BA with Gamma Prior and random data set using Matlab 

Data Number of Iterations  T Expected Lifetime 

𝒏 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

100 1x104 1x104 1x104 

1 0.3323 0.6677 1.3774 

2 0.2722 0.7278 1.3535 

3 0.2005 0.7995 1.3680 

4 0.1367 0.8633 1.3242 

5 0.0880 0.9120 1.3405 
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By comparing the results in Tables 13 and 14, one can draw the following conclusions. 

First, 𝑅(𝑡) values for 𝐵𝐴 are lower to its corresponding 𝑀𝐿𝐸 pair. Second, the tendency of 

𝑅(𝑡) to decrease as time increases is more visible for 𝐵𝐴, for example the 5th row for a 

𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 of 5 years 𝑅(𝑡) is equal to 0.0888. Which means that this system has an extremely 

low possibility to survive five years. Third, the influence of predictive prior on the 𝑀𝑇𝑇𝐹, 

which now is around 1.35 years instead of 3.12 as shown in Table 13. Fourth, 𝑀𝑇𝑇𝐹 values in 

𝐵𝐴 for each case are not identical as they are in 𝑀𝐿𝐸. Nevertheless, all five values are close 

enough to each other, so an estimation is feasible. 

Figure 20 shows the results for estimation of  𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹 when 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5. 

Further discussions about the pros and cons of both estimation methods will be presented in 

following sections of this thesis. 

 

Figure 20. BA with Gamma Prior, random data set for tsurvival=5 

3.1.2 Censored data set 

In this study which includes reliability modelling and expected lifetime estimation the data sets 

can be considered censored. Definitions for each type of censored data set are discussed in the 

succeeding paragraphs. In addition, an illustrative example is presented. 

Censored data partially contains the value of observation (Renyan, 2015). There are three types 

of censored data: left censored, right censored and interval censored (Renyan, 2015), 

considering the exact time at failure 𝑡𝑓 and the time to inspection 𝑡𝑖. 

● Left censored data occurs when failures are not obvious and can only be detected by 

inspections. Hence, 0 < 𝑡𝑓 < 𝑡1 
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● Right censored data takes place when the observation process stops before the failure  

occurs. Hence, 𝑡1 < 𝑡𝑓 < ∞ 

● Interval censored data occurs when observational times are planned at some specific 

time during inspections. Hence, 𝑡1 < 𝑡𝑓 < 𝑡2 

The following is an illustrative example of a data set from a standard system with the different 

types of censoring, according to different times of inspection 𝑡𝑖 in years and number of failures 

𝑛𝑖.  

Table 15. Illustrative example of dataset with different types of censoring 

Year 1 2 3 4 5 6 7 8 9 10 

Occurred 

Failures 
0 0 0 0 0 𝑛1 0 0 𝑛2 𝑛3 

Observed 

Failures 1st 

Case 

0 0 0 0 0 𝑛1 − 1 0 0 𝑛2 𝑛3 

Observed 

Failures 2nd 

Case 

0 0 0 0 0 𝑛1 0 0 𝑛2 − 

Observed 

Failures 3rd 

Case 

− − − − − − − 0 𝑛2 − 

From Table 15 the 1st case represents a left censored data set with a total number of observed 

failures equal to 𝑛1 − 1 + 𝑛2 + 𝑛3 and observation period from year 1 to 10. The 2nd case 

represents a right censored data set with a total of observed failures equal to 𝑛1 + 𝑛2 and 

observation period from year 1 to 9. Finally, the 3rd case shows an interval censored data set 

with a total number of observed failures equal to 𝑛2 and observation period of two years, the 

8th and 9th year. The influence of censoring in the data set can be measured, given random 

values of the number of failures 𝑛1, 𝑛2 and 𝑛3 and assigning an 𝑃𝐷𝐹 to determine the expected 

lifetime of such system. See appendix A1. 

From the appendix Table A1 it is evident that different failure rates will be provide the 

censoring of the data set. In this case the interval censoring from the 3rd Case has the lowest 

estimated parameter ɸ̂
3𝑟𝑑

.  

In the 𝑀𝐿𝐸 and 𝐵𝐴 codes, censoring is expressed by the 2nd type, i.e., right censoring from a 

given 𝑡𝑖 according to the theoretical example and study case.  
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Table 16 presents the failure times of a component in hours. It will also be used to test the 

program for 𝑀𝐿𝐸 and 𝐵𝐴. The outcomes will be the estimated 𝑃𝐷𝐹′𝑠 parameters, expected 

lifetime, reliability, probability of failure at any given time, 𝑀𝑇𝑇𝐹, and the histogram of the 

failures occurred (Meeker, 1998).  

Table 16. Integrated Circuit Failure Times in Hours 

Failure times 𝒕 per unit tested 

0.10 0.10 0.15 0.60 0.80 0.80 

1.20 2.50 3.00 4.00 4.00 6.00 

10.00 10.00 12.50 20.00 20.00 43.00 

43.00 48.00 48.00 54.00 74.00 84.00 

94.00 168.00 263.00 593.00 - - 

The test ended at 1370 hours, there were 4128 non-failed units. 

𝑀𝐿𝐸 and 𝐵𝐴 results are presented to compare them based on the method of estimation and the 

selected prior distribution. The number of iterations for predictive prior, likelihood and 

posterior are fixed to 1x106.  

Table 17. 𝑀𝐿𝐸 and 𝐵𝐴 results for Censored data set 

Method Number of Iterations  T Expected Lifetime 

𝑴𝑳𝑬 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable and 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

Gamma 1x106 1x106 1x106 1 0.0430 0.9561 0.1573 

𝑩𝑨 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Exponential 

1x106 1x106 1x106 1 

0.0780 0.9219 0.9609 

Weibull 0 1 0.1986 

Lognormal 0.1492 0.8508 1.9593 

Gamma 0.1276 0.8723 2.2904 

 

The Gamma 𝑃𝐷𝐹 has the best goodness of fit. Therefore, it was chosen as the likelihood 

distribution used for all the 𝐵𝐴 cases. In addition, 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 is expressed in years. Hence, the 

data values were converted from hours to years. (Figure 21), the 𝑀𝑇𝑇𝐹 is estimated to be 1 

month, 26 days and 15 hours to first failure. In the other hand, for 𝐵𝐴, the 𝑀𝑇𝑇𝐹 is estimated 

to be 2 years, 3 moths, 14 days and 13 hours, (Figure 22). 

Reliability values for both estimations also vary. The most optimistic case takes place with the 

Gamma distribution with and 𝑅(𝑡) of 14.92%. Whilst the worst case is the product of Weibull 
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distribution, where 𝑅(𝑡) has such a small value that is considered zero. In other words, the 

integrated circuit units will not survive a year of operations.  

 

 

Figure 21. 𝑀𝐿𝐸 results for 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 1 year of censored dataset. 

The difference between both 𝑀𝑇𝑇𝐹 is based on the influence of the predictive prior 

distribution, as it will modify the scale and shape parameters of the Gamma  𝑃𝐷𝐹 in this 

example. Moreover, the likelihood distribution and parameters are the same for both 

estimations. Another factor that influences the estimation of expected lifetime is the number of 

elements in the censored data. For this example, 4128 from a total of 4156 failures are right 

censored. This represents a source of uncertainty for the obtained results because most values 

are censored. Hence, the sample data is not completely representative of the component’s 

behaviour.  

 

Figure 22. 𝐵𝐴 results for 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 1 year of censored dataset. 
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3.2 Highly Reliable Systems 

A highly reliable systems is a critical system which retain its reliability for prolonged periods 

of time as it evolves without incurring in prohibitive costs (Hinchey, 2010). 

When discussing highly reliable systems, it is necessary to define several related terms. First 

and most important, what is reliability? When do we consider a system reliable? What are the 

requirements needed to consider a system highly reliable? And what are the most common 

probability distributions to predict the expected lifetime of a system? 

These are the questions intended to be answered so the reader can have a clear picture with 

regards to highly reliable systems and the methodology used to determine the expected lifetime 

of such systems in the domain of this thesis.  

First, the term reliability has several definitions depending on the author and context in which 

is referred to. One of the most standard definitions is the following: “The ability of an item to 

perform a required function under given environmental and operating conditions and for a 

stated period of time” (Hamada, 2008). A similar definition about the cycles of operations 

states, “The ability of an item (a product or a system) to operate under designated operating 

conditions for a designed period of time or number of cycles” (Modarres, 2010). 

Second, to quantitatively measure the reliability of an item given a random variable 𝑇 

mathematically the reliability function 𝑅(𝑡) of a component or systems is defined by formula 

11 (Hamada, 2008).  

In general, highly reliable systems are those which do not require neither maintenance nor 

replacement over a long period of time (Pham, 2001). However, certain criteria for types of 

systems can help limit the scope of highly reliable systems: 

1. Those in which configurations of its components are such that more than one level of 

redundancy is present 

2. Those in which the specification of its components is oversized to the average 

requirements 

3. Those designed to avoid bottlenecks   

4. Those which have layers of protection against extreme external elements 

5. Those designed to outlast the expected time for operations by a considerable amount of 

time 

https://en.wikipedia.org/wiki/Reliability_engineering
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6. Those which allow follow up in a practical and quick way to detect needed maintenance 

Consider a theoretical example of a manufacturing process that requires to produce 200 units 

per hour with two alternative systems 𝐴 and 𝐵. System 𝐴 has 4 identical components with 

capacity of 100 units per hour disposed in parallel and a monitoring equipment 𝑀. Meanwhile 

system 𝐵 has two units of  50 and 150 units per hour. Given the previous criteria System 𝐴 is 

considered to be the highly reliable one as it has two back up components, all its components 

are identical, it has a monitoring system and the configuration of components allows 

redundancy, (Figure 23). 

 

 

 

 

 

 

Figure 23. Theoretical example of Highly reliable systems for Manufacturing process 

3.2.1 Risk and Uncertainty in Highly Reliable Systems 

All processes and systems have a certain degree of risk and uncertainty in terms of their 

performance. The possibility of failure is ever present. Therefore, it becomes a key aspect when 

assessing the reliability of such systems. Furthermore, failure probability must be determined 

accounting for expert knowledge about the systems, its characteristics, strengths and 

weaknesses (Aven T. , Risk Analysis, 2012). Nevertheless, in most cases historical data is also 

necessary to complete a reliability assessment (Tobias, 2012).  

When to consider a system robust? How likely is that a failure occurs at a specific time? What 

consequences derive when the system has a failure? What measures should be taken to prevent 

the occurrence of a failure? These among other questions are relevant to perform a reliability 

assessment. This thesis focuses on the 2nd, as the goal is to produce and verify a methodology 

for statistical inference of expected lifetime of highly reliable systems. For that purpose, the 

following assumptions need to be made.  
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● All types and magnitudes of failures from historical data are equal. Hence, partial or 

total failures that prevent the system from performing its purposes have the same value 

and are equally included in the analysis.  

● The negative consequences of a failure are not considered for the analysis. Only the 

times in which they occur if observed, or the censored time if not.  

● Maintenance times are not included in the analysis, for mainly the expected time to 

failure is of relevance for the study.  

● Maintenance is assumed to be perfect. Therefore, the system is considered “as good as 

new ”. 

● The degree of uncertainty in the elicited expert knowledge is proportional to the overall 

uncertainty of the results. Therefore, a high level of accuracy is necessary.  

● The risk of an unpredicted failure in a highly reliable system is influenced by the 

amount of failure and censored data available when assessing its reliability.  

● The occurrence of events that can lead to a failure but given some specific 

circumstances did not, are not included in the reliability assessment. In other words, 

“near misses” are not accounted for. 

The relevance for the estimation of expected lifetime of highly reliable systems from the risk 

perspective is based on the potential negative consequences once a failure has occurred and the 

complexity of restoring the system’s functionality back to normal (Aven T. , Risk Analysis, 

2012). Therefore, the more accurate methodology for assess the reliability of such systems the 

better. In addition, analysts can account for uncertainty to some extent by taking a conservative 

approach when eliciting prior knowledge about key factors (Albert, 2012). Among them, the 

parameters of the prior’s 𝑃𝐷𝐹 (Albert, 2012). Furthermore, by providing confidence and 

credibility intervals for 𝑀𝐿𝐸 and 𝐵𝐴. These allows the analyst and decision makers to have 

additional information about the provided values for the system’s reliability so they can take a 

better-informed decision.  

3.2.2 Uncertainty when Estimating Expected Lifetime 

There are several issues to account when estimating the expected lifetime of highly reliable 

systems. Particularly when historical data is available. Otherwise, the uncertainty embedded in 

the estimation can be too large (Aven T. , Risk Analysis, 2012). The first issue is related to 

highly reliable systems with extensive lifetime. In years or decades. For those, the conditions 

through their lifetime are not the same. Factors such as human training, technological 
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modifications, safety measures, quality of materials and more are very likely to have changed 

over time. Thus, to assume that the historical data shows exactly the previous behaviour of the 

same system is a bold assumption.  

The second issue with regards of estimation of expected lifetime for highly reliable systems 

refers to biases in the elicitation of expert knowledge. Different biases can influence the 

outcome of the expert knowledge for the prior distribution, such as: 

● Personal preferences due to extensive experience on the phenomenon.  

● Economic reasons to favour unnecessary replacements at shorter times.  

● Misleading reports of previous failures. Specifically, over reporting or under reporting. 

● Hidden assumptions from experts regarding conditions of operations and degradation.   

● Tendency to use the expected outcome approach without considering unexpected 

events.  

In relation to the latter, unexpected sudden events are frequently dismissed as their probability 

of occurrence is believed to be extremely low. In the next lines a brief description of these 

events referred to as “black swans” is presented.  

A black swan is a surprising event with extreme consequences that is not believed to occur due 

to its low probabilities (Taleb, 2010). A black swan can disrupt the performance of highly 

reliable systems regardless of their resilience. It is convenient to take a conservative approach 

when estimating expected lifetime of such systems. In 𝐵𝐴 this can be done through selection 

of parameters and prior distributions (Aven T. , Risk Analysis, 2012).   

 

As mentioned in section 3.1, no replacement is considered for estimation of expected lifetime. 

Therefore, the uncertainty is focused on the estimation methods, their strengths and 

weaknesses. 𝐵𝐴 has an advantage as a tool to provide decision support, given the input of prior 

distributions into the assessment. The latter constitutes the main reason to perform 𝐵𝐴 to the 

study case presented in the next chapter and at the same time compare the results with a 𝑀𝐿𝐸 of 

the same case. 

Different factors contribute to uncertainty for the estimation of expected lifetime. These can be 

divided according to their origin (Taleb, 2010). Furthermore, they are present in most risk 

assessments and reliability studies. To identify which factors, contribute to uncertainty for the 

scope of this thesis see Figure 24. 
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   Figure 24. Contributing factors to uncertainty in estimation of expected lifetime with BA 

Relevance of likelihood data has special importance among all other factors, because features 

like the availability, presence and type of censorship, size of sample and its degree of 

randomness. An estimation of expected lifetime with the wrong data set or no data at all means 

a higher degree of uncertainty in the results of 𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹, regardless of how good 

the elicitation of prior knowledge and 𝐵𝐴 themselves may be. 

This has a relevant significance when it comes to take decisions based on such results. Hence 

the need to reduce as much as possible all sources of uncertainties present in the analysis. 

Furthermore, whenever possible, uncertainty in all results must be recognized (Lindley, 2014). 

3.2.3 Modelling using MatlabR2018 

The software application used to analyse the data was Matlab version R2018. There are several 

reasons for selecting this program, among them are the following: 

1. Easy to obtain, install and operate, compared to similar programs. 

2. Author’s previous experience with the program. 

3. Availability to customize the results for better understanding and illustrative purposes 

of sensitivity analysis.  

4. Simplicity for importing and exporting data sets to other applications such as Microsoft 

excel and Power BI. 

The study cases to be modelled are systems considered highly reliable, as the time frame of 

performance is at least 5 years. The aim of modelling them is to represent in the most accurate 

way possible the behaviour of such systems, so an analyst can predict future outcomes with a 

high degree of credibility. For the latter, the used methodology was based on two methods to 

estimate the expected lifetime,  𝑀𝐿𝐸 and 𝐵𝐴.  
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The list of initial assumptions which define the scope of the four codes for 𝑀𝐿𝐸 of each type 

of statistical distribution are:  

● Initial data set is generated randomly with initial predefined values for parameters and 

number of elements, every time the code is run. 

● Only right censoring of the data was considered. Therefore, data sets with censored data 

after a specific time are possible to compute. The time for censor is set by the user. 

● The degree of confidence (𝑑𝑒𝑔) for the interval of the estimated parameter is set by the 

user in scalar number, not in terms of %. For example, to define a 95% of confidence 

interval the user must input a value of 0.05. See formula 35. 

● The time for probability of survival is defined by the user, it must be a value that meets 

the condition 0 < 𝑡 < 100. 

● The results are presented in a histogram and plots for 𝑃𝐷𝐹 and 𝑅(𝑡) with fixed time 

scale of x axis. 

The following, the list of initial assumptions which define the scope of the code for 𝐵𝐴 of all 

statistical distributions: 

● Initial data for Prior is generated randomly based on the type of distribution selected by 

the user, with initial values for parameters every time the code is run.  

● The number of elements (size) of the prior distribution can be randomly selected by the 

user, Nevertheless, it is recommended that it is equal to the number of the data set 

imported if possible. Hence, 𝑛𝑝𝑟𝑖𝑜𝑟 should be equal to 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑. 

● Prior parameters and data set are generated according to the predefined initial values 

for the parameter of the corresponding distribution. 

● The preliminary result of prior predictive is presented as a histogram and plot with fixed 

time scale. 

● For posterior distribution a real data set can be obtained from a specific file in excel 

which has to be called “sample.xlsx”, “samplecensored.xlsx” or 

“samplestudycase1.xlsx” according to the data set being analysed so the software will 

search in the “documents/MATLAB” folder and read it (Chapman, 2004).  

● To obtain the posterior the real data set is combined with the prior predictive in a 

rejection sampling routine, where all the time values of the data set are given a random 

value of probability with a predefined maximum which is draw from a uniform 

distribution between 0 and 1. 
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● The outcomes of prior predictive, rejection sampling and posterior predictive are 

presented in independent plots for illustrative purposes.  

● The time for probability of survival given the posterior distribution is defined by the 

user, it must be a value that meets the condition 0 < 𝑡 < 100. 

● Sensitivity analysis of the outcomes can be done by changing the values of initial 

parameter of the Prior predictive, time for probability of survival (𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙), or the 

number of elements randomly generated in the predictive prior (𝑛𝑝𝑟𝑖𝑜𝑟), likelihood, 

(𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)and predictive posterior (𝑛𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟).   

Furthermore, for both methods of estimation  the 𝑀𝑇𝑇𝐹 values are shown in two formats based 

on a year: The scalar format and the date format. The scalar format indicates a fraction of a 

year(s). For example, an 𝑀𝑇𝑇𝐹 = 0.5 represent half a year until the failure occurs. Whilst the 

date format indicates how many years, months, days, and hours are remaining for the 

occurrence of a failure from the exact moment the analysis is done. For example:  𝑀𝑇𝑇𝐹 =

0.5 represents 0 years, 6 months, 15 days and 12 hours for the failure to take place.  

In addition, all samples data randomly generated and obtained from the study cases are assumed 

to be reporting only failure and censored times. The type and magnitude of failure is not part 

of the scope, i.e. all the input values are treated equally, if they represent a failure that will 

prevent the system itself to operate. The latter indicates that for the software, there is no 

hierarchy of failure according to their origin, type or consequence.  

Another relevant issue when modelling with Matlab is the acceptance-rejection prebuilt 

function. This has a numerical value which allow the user to adjust the criteria to accept or 

reject every sample value randomly generated. For all the codes this value is fixed at two. In 

other words, for an ith iteration to produce an accepted value for the predictive posterior, it has 

to be equal or larger than twice the reference value of the sample distribution.  
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CHAPTER 4 

4.1 Server-database for Commercial Use Study Case 

By presenting a brief background of the company which provided the data, one can understand 

its nature and the reason for the reliability assessment, moreover the scope for estimation of 

expected lifetime of its main equipment.  

AKRA Investments c.a. is a logistics company which supplies over 300 clients in 20 different 

states in Venezuela. The main target is retail companies of high consumption products. It 

provides a platform for inventory, transport, budgeting, ordering and customer service through 

an online system which is the study case of concern. 

The study case refers to a combination of a main server which handles all cloud, storage and 

service operations. The unit works in a semi restricted environment where only authorised users 

can access it and the database to perform different actions such as maintenance, update, repairs 

and modifications.  

The server has several features that allow administrators and users to perform daily operations 

for the company. Among them are the following: 

• Maintain backup of all inputs and modifications to the main database 

• Channel all incoming and outgoing files to cloud platforms and apps such as    

e-mails, data transfer between user, transfer of data between company 

employees and customers 

• Frame remote access to the company’s computers and terminals 

• Prevent unauthorised access from external and malicious entities 

 

These are critical operations that require a reliable server-database for the company. 

Furthermore, the ability to estimate failure time is critical to avoid negative consequences.  

A log for all events occurred is available in the database’s backup files. This allows to filter the 

data and elicit failure events from all others. Different types of failures were encountered. 

Nevertheless, from the reliability assessment they are all going to be treated as common failure. 

Where the time of occurrence is the main concern for this study case. These types of failure 

and their corresponding code and possible causes are listed in Table 18, based on the log data 

and company’s criteria. 
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Table 18. Types of failure events for Server-Database study case 

Type of Failure Code Criticality Possible Causes 

Partial loss of data 𝑃𝐿𝐷 4 

Virus or Bug 

Electrical 

Other 

Total loss of data 𝑇𝐿𝐷 5 
Virus or Bug 

Electrical 

Virus or Bug  𝑉𝐵𝐹 4 
Unauthorised access 

Firewall down 

Electrical 𝐸𝐿𝐹 3 
Power grid blackout 

Extreme voltage fluctuations 

Update 𝑈𝑃𝐷 2 
Firewall down 

No Internet connection 

Other 𝑂𝑇𝐻 2 

Human error 

No internet connection 

Physical damage to server 

Table 18, shows that, one failure can be the cause of others. The criteria for the criticality of 

failure is based on a subjective scale from 1 to 5, where 5 represents the most critical type of 

failure in terms of its consequences for the company.   

In principle a failure can be ranked for its derived consequences. In other words, on how it 

impacts the organization when this type of event occurs (Aven T. , Foundations of Risk 

Analysis, 2012). For AKRA Investments c.a. there are four main variables to rank types of 

failure events. 

1. Amount of lost data 

2. Server’s down time 

3. Delayed time for supplying customers 

4. Difficulty and resources needed to repair the failure  

4.1.1 Modelling with MLE 

There are two main actions required for the estimation of expected lifetime of the Server-

database  with 𝑀𝐿𝐸. The first one is to filter the entire data base by some criterion that allows 

to retrieve only failure events. The criterion is based on failure events described on Table 18. 

Second, once the filtered data is available, one must convert its entries from date format and 

create an .XLSX file which represent the likelihood data for 𝑀𝐿𝐸. 
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The historical record for daily operations and failure events was provided by the company in a 

. 𝐵𝐴𝐾 file. Therefore, to perform both 𝑀𝐿𝐸 and 𝐵𝐴 in Matlab R2018, it was modified to a 

.XLSX format which is the one supported by the written codes. Figure 25 presents AKRA 

Investments Server-database failure entries in .XLSX format. 

As previously mentioned, all recorded events have a standard date format (dd/mm/yyyy) 

including hours, minutes and seconds of occurrence. Hence, all failure times where obtained 

by converting those values to a decimal format. This allows to interpret the data and results in 

terms of years instead of more large values such as hours. Take rows 1 and 2 of Figure 25 for 

example, it shows that the 38th failure occurred on the January the 8th of 2019 at 18 hours, 12 

minutes and 00 sec. Then 0.2708 years or 2.372 hours after failure 39th took place.  

Table 19 shows the modified log for failure times from the original XLSX format.  

Table 19. Modified log with failure times of Server-database study case 

𝒕 time values in years 

0.1322 0.4771 0.4797 0.9233 1.0744 1.7699 1.9969 2.6798 3.3370 

3.6158 4.0630 4.1664 4.2030 4.2949 4.5668 4.7171 4.9087 5.2217 

5.4426 5.7553 6.3116 6.4590 6.8103 6.8500 7.0774 7.5751 7.6908 

7.9202 8.1342 8.4548 9.0708 9.3316 9.7728 10.2183 10.5120 10.9838 

11.2546 - - - - - - - - 

The Server-database’s log is ongoing at the time this report was finished. 

In order to reduce the uncertainty of the results of 𝑀𝐿𝐸 from Table 19, the time values in years 

are included with four decimals, the variable 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 is fixed at 1x106, the confidence 

intervals for estimated parameters is fixed to 95% and both histograms and Plots are displayed 

to compare with numerical values.     
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Figure 25. AKRA Investments Server-database failure entries in .XLSX format. 

Report date: 31/05/2019

HP Pavilion 570-p038 PC Initial record: 07/01/2009

1 OTH 16/01/2008 10:16:20 1158 0.1322

2 UPD 04/03/2008 16:18:32 3021 0.3449

3 ELF 08/07/2008 13:20:53 23 0.0026

4 UPD 09/07/2008 13:01:02 3886 0.4436

5 VBF 18/12/2008 11:24:17 1324 0.1511

6 PLD 11/02/2009 16:03:04 6092 0.6954

7 ELF 23/10/2009 12:18:22 1989 0.2271

8 OTH 14/01/2010 09:32:06 5982 0.6829

9 PLD 20/09/2010 16:03:04 1579 0.1803

10 OTH 25/11/2010 11:52:10 4178 0.4769

11 ELF 18/05/2011 14:04:05 2442 0.2788

12 VBF 28/08/2011 09:03:39 3918 0.4473

13 VBF 07/02/2012 15:18:22 906 0.1034

14 PLD 16/03/2012 10:11:09 320 0.0365

15 OTH 29/03/2012 18:29:13 805 0.0919

16 VBF 02/05/2012 08:02:07 2382 0.2719

17 OTH 09/08/2012 14:14:12 1317 0.1503

18 ELF 03/10/2012 11:52:50 1678 0.1916

19 OTH 14/12/2012 10:29:43 2742 0.3130

20 TLD 05/04/2013 17:05:32 1935 0.2209

21 PLD 25/06/2013 08:47:00 2739 0.3127

22 VBF 17/10/2013 12:04:10 4874 0.5564

23 OTH 08/05/2014 14:45:59 1291 0.1474

24 OTH 01/07/2014 10:23:37 3077 0.3513

25 ELF 06/11/2014 16:02:20 348 0.0397

26 OTH 21/11/2014 04:23:02 1992 0.2274

27 UPD 12/02/2015 17:16:58 4360 0.4977

28 PLD 13/08/2015 09:45:40 1013 0.1156

29 OTH 24/09/2015 14:51:03 2010 0.2295

30 OTH 17/12/2015 09:04:53 1875 0.2140

31 VBF 04/03/2016 13:02:04 2808 0.3205

32 PLD 29/06/2016 13:10:11 5396 0.6160

33 OTH 09/02/2017 10:07:56 2285 0.2608

34 ELF 15/05/2017 15:25:02 3865 0.4412

35 VBF 23/10/2017 16:49:04 3902 0.4454

36 UPD 04/04/2017 07:03:17 2573 0.2937

37 PLD 20/07/2018 13:01:19 4133 0.4718

38 VBF 08/01/2019 18:12:00 2372 0.2708

39 ELF 17/04/2019 15:03:18 * *

Failure Date 

(dd/mm/yyyy)

Failure Time 

(hh:mm:ss)

Failure 

Event
#

Company:

Equipment:

RECORD OF FAILURE EVENTS FOR SERVER-DATABASE

Hours Between 

Failure

Years Between 

Failure

AKRA Investments c.a.
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The best fitted 𝑃𝐷𝐹 to the likelihood data from Table 19 according to Kolmogorov-Smirnov 

ranking is Weibull. Therefore, the estimated 𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹 are based on 𝛼̂ and 𝛽̂ the 

corresponding scale and shape parameters. These estimations represent the default values for 

comparison between 𝑀𝐿𝐸 and 𝐵𝐴. In other words, how does the estimated values are 

influenced by the weight of likelihood data in comparison to prior expert knowledge. 𝑀𝐿𝐸 

results are presented on Table 20. 

Table 20. Summary Table for MLE of Weibull random data set using Matlab. 
Data Parameters & 

Estimators 

Confidence Intervals T Expected Lifetime 

𝒏 𝜶 𝜷 𝑴𝒖𝒉𝒂𝒕  

𝜶̂             𝜷̂ 

𝒅𝒆𝒈  

% 

𝑴𝒖𝒄𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Variable 𝑡, 𝛼  and 𝛽 and fixed 𝑑𝑒𝑔 and 𝑛 

38 

1.3 0.7 

6.136 1.661 5 

 

[4.307, 

8.741] 

 

[1.028, 

2.683] 

1 0.952 0.047 

5.484 

0.2 1.1 2 0.856 0.143 

0.9 0.2 3 0.737 0.262 

1.1 1.4 4 0.611 0.388 

0.8 0.7 5 0.490 0.509 

 

Table 20 shows an estimated 𝑀𝑇𝑇𝐹 of 5.484 years given 𝛼̂ and 𝛽̂ equal to 6.136 and 1.661 

respectively for survival times from one to five years. Moreover, based on the likelihood data 𝑅(𝑡) and 

𝐹(𝑡) values are decreasing as 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 increase. For example, the reliability of the system is 

approximately 95% at after one year and 50% after five years of operations.  

The histograms for each 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 are presented in Figure 26, 27, 28, 29 and 30. It is visible 

that all of them have a typical Weibull form with small variations between each time bid. 

Moreover, the maximum number of events is around 3.700 and the extreme values from the 

tail of the distribution are not beyond 20 years. This is a consequence of the randomly generated 

time values for iterations of likelihood distribution. 
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Figure 26. MLE Histogram for tsurvival of 1 year of AKRA Investments Server-database 

 

Figure 27. MLE Histogram for tsurvival of 2 years of AKRA Investments Server-database 
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Figure 28. MLE Histogram for tsurvival of 3 years of AKRA Investments Server-database 

 

Figure 29. MLE Histogram for tsurvival of 4 years of AKRA Investments Server-database 
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Figure 30. MLE Histogram for tsurvival of 5 years of AKRA Investments Server-database 

Notice that all 5 histograms of 𝑀𝐿𝐸 are very similar in shape and scale, both x and y axis are 

the same in most cases except for figure which has a max value of event for the 𝑦 axis is equal 

to 3.500 instead of 4.000 as the previous histograms. Furthermore, the only real difference 

between these five histograms is the edges from bid to bid, which vary slightly near the mean 

values and the tail of the distributions. As mentioned before, the reason for this is the randomly 

generated time values for iterations of likelihood distribution. Hence, it seems logical to assume 

that the larger 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 is, the smoother these difference between time bid would be.   

The plot for the 𝑃𝐷𝐹 based on the 𝑀𝐿𝐸 given the likelihood data of the study case is presented 

in Figure 31.  
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Figure 31. PDF based on MLE given the likelihood data of the study case 

The plot for 𝑅(𝑡) based on the 𝑀𝐿𝐸 given the likelihood data of the study case is presented in 

Figure 32.  

 

Figure 32. Reliability based on MLE given the likelihood data of the study case 

Figure 32 confirms the results of Table 20 for reliability for different values of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 from 

1 to 5 years. For example, at the 1st year 𝑅(𝑡) is close to 95% and at the 5th year 𝑅(𝑡) is 

approximately 50%. As mentioned before these results are based only on the estimated 

parameter of a Weibull distribution given the likelihood data of the study case. For further 

assessments 𝐵𝐴 is presented in the next section. 
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4.1.2 Modelling with BA 

In addition to the likelihood data of failures times provided in Table 19, all four 𝑃𝐷𝐹s will be 

used as predictive prior distributions for 𝐵𝐴, based on the same prior parameters used for 

estimations performed according to Table 5 for the random and censored data sets. A sensitivity 

analysis for the most suitable result is presented with three variations of these parameters to 

account for the three most common approaches: cautionary, average and risky.  

The parameters for each approach are obtained by simulating disagreement among experts on 

common prior parameters with different weight for each one. Following the procedure shown 

on appendix A6.  

For an exponential predictive prior distribution, the results of 𝐵𝐴 are presented for  

𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 and 5 years in Table 21. Furthermore, Figures 33 and 34 show the 

predictive posterior 𝑃𝐷𝐹 and 𝑅(𝑡) plots respectively. In addition, Figures 35 and 36 present 

the 𝐵𝐴 results for both values of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 as seen in Matlab’s command window. 

Table 21 confirms that reliability values decrease for larger times. It also shows that  

𝑀𝑇𝑇𝐹 values are equal to 5.484 years for all trials of 𝑀𝐿𝐸. Furthermore, for all trials of 𝐵𝐴 it 

is approximately 0.94 years. There is a very small difference between the two 𝐵𝐴 trials. In 

addition, 𝑅(𝑡) is considerable smaller for any trial of 𝐵𝐴 compared with its corresponding 𝑀𝐿𝐸 

trial. Take 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 year for example, the 𝑅(𝑡) for 𝑀𝐿𝐸 is 95%, whilst for 𝐵𝐴 is 

20%. This is equivalent to less than a quarter. The opposite occurs with 𝐹(𝑡) as it is a 

complementary function.  

Table 21. Results of 𝑀𝐿𝐸 and 𝐵𝐴 with Exponential prior predictive for study case 

Method of Estimation Number of Iterations  T Expected Lifetime 

𝑴𝑳𝑬 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable and 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

Prior Likelihood 
1x106 1x106 1x106 

1 0.952 0.047 5.484 

None Weibull 5 0.490 0.509 5.484 

𝑩𝑨 𝒏𝒑𝒓𝒊𝒐 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Prior Likelihood 
1x106 1x106 1x106 

1 0.2061 0.7938 0.9409 

Exponential Weibull 5 0.0707 0.9292 0.9360 

Figure 33 shows the predictive posterior 𝑃𝐷𝐹 in a fixed time scale of 20 years. Notice the 

period from 0 to 2 years where the maximum probability of failure value is aproximately 0.028 

to occur in half a year of operations.  
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Figure 33. 𝑃𝐷𝐹 based on 𝐵𝐴 given an Exponential predictive prior and the likelihood data 

of the study case 

Figure 34 shows 𝑅(𝑡) of a 𝐵𝐴 for the study case assuming an Exponential prior with the default 

failure rate. In addition, it confirms the results obtained in Tabe 21, Figures 35 and 36. 

Moreover, 𝑅(𝑡) after 1 and 5 years of operations is equal to 20% and 7% respectively.  

Figure 35 and 36 confirm that 𝑀𝑇𝑇𝐹 for the study case assuming an Exponential prior with the 

default failure rate is between 11 months 8 days and 18 hours and 11 months 6 days and 23 

hours. This slight difference is a consequence of the difference between 0.9409 and 0.9360 

years. 
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Figure 34. Reliability based on 𝐵𝐴 given an Exponential predictive prior and the likelihood 

data of the study case 

 

Figure 35. 𝐵𝐴 results for Exponential predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 1 𝑦𝑒𝑎𝑟 as seen in 

Matlab’s command window 
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Figure 36. 𝐵𝐴 results for Exponential predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5 𝑦𝑒𝑎𝑟𝑠 as seen in 

Matlab’s command window 

For a Weibull predictive prior distribution, the results of 𝐵𝐴 are presented for  

𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 and 5 years in Table 22. Furthermore, Figures 37 and 38 show the 

predictive posterior 𝑃𝐷𝐹 and 𝑅(𝑡) plots respectively. In addition, Figures 39 and 40 present 

the 𝐵𝐴 results for both values of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 as seen in Matlab’s command window. 

Table 22. Results of 𝑀𝐿𝐸 and 𝐵𝐴 with Weibull prior predictive for study case 

Method of Estimation Number of Iterations  T Expected Lifetime 

𝑴𝑳𝑬 𝒏𝒑𝒓𝒊 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable and 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

Prior Likelihood 
1x106 1x106 1x106 

1 0.952 0.047 5.484 

None Weibull 5 0.490 0.509 5.484 

𝑩𝑨 𝒏𝒑𝒓𝒊 𝒏𝒍𝒊𝒌𝒆𝒍 𝒏𝒑𝒐𝒔𝒕𝒆 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Prior Likelihood 
1x106 1x106 1x106 

1 0.0529 0.9471 0.2174 

Weibull Weibull 5 0.0142 0.9857 0.2175 

Table 22 confirms that reliability values decrease for larger times and shows that  

𝑀𝑇𝑇𝐹 values are equal to 5.484 years for all trials of 𝑀𝐿𝐸. While for 𝐵𝐴 it is approximately  

0.21 years. There is a very small difference between the two 𝐵𝐴 trials. Also,  

𝑅(𝑡) is considerable smaller for any trial of 𝐵𝐴 compared with its corresponding 𝑀𝐿𝐸 trial. 

Take 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 year for example, the 𝑅(𝑡) for 𝑀𝐿𝐸 is 95%, whilst for 𝐵𝐴 is 5%. 

Here the influence of prior parameters is notorious. The opposite occurs with 𝐹(𝑡) values as it 

is a complementary function.  
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Figure 37 shows the predictive posterior 𝑃𝐷𝐹 in a fixed time scale of 1 year. This is due to the 

extremely low time for to reach the maximum probability value. Notice the period from 0 to 

0.1 years where the maximum probability of failure value is aproximately 0.042 to occur in 

half a year of operations.  

 

Figure 37. 𝑃𝐷𝐹 based on 𝐵𝐴 given a Weibull predictive prior and the likelihood data of the 

study case 

 

 

Figure 38. Reliability based on 𝐵𝐴 given a Weibull predictive prior and the likelihood data 

of the study case 
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Figure 38 shows 𝑅(𝑡) of a 𝐵𝐴 for the study case assuming an Weibull prior with the default 

failure rate. In addition, it confirms the results obtained in Table 22, Figures 39 and 40. 

Moreover, 𝑅(𝑡) after 1 and 5 years of operations is equal to 5% and 1,5 % respectively.  

Figures 39 and 40 confirm that 𝑀𝑇𝑇𝐹 for the study case assuming a Weibull prior with the 

default failure rate is between 2 months 18 days and 4 hours and 2 months 18 days and 7 hours. 

This slight difference is a consequence of the difference between 0.2172 and 0.2175 years. 

 

Figure 39. 𝐵𝐴 results for Weibull predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 1 𝑦𝑒𝑎𝑟 as seen in 

Matlab’s command window 

 

Figure 40. 𝐵𝐴 results for Weibull predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5 𝑦𝑒𝑎𝑟𝑠 as seen in 

Matlab’s command window 

For a Lognormal predictive prior distribution, the results of 𝐵𝐴 are also presented for  

𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 and 5 years in Table 23. Furthermore, Figures 41 and 42 show the 



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

76 
 

corresponding predictive posterior 𝑃𝐷𝐹 and 𝑅(𝑡) plots. In addition, Figures 43 and 44 present 

the results of 𝐵𝐴  for both values of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 as seen in Matlab’s command window. 

Table 23. Results of 𝑀𝐿𝐸 and 𝐵𝐴 with Lognormal prior predictive for study case 

Method of Estimation Number of Iterations  T Expected Lifetime 

𝑴𝑳𝑬 𝒏𝒑𝒓𝒊𝒐𝒓 𝒏𝒍𝒊𝒌𝒆𝒍𝒊 𝒏𝒑𝒐𝒔𝒕𝒆𝒓𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable and 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

Prior Likelihood 
1x106 1x106 1x106 

1 0.952 0.047 5.484 

None Weibull 5 0.490 0.509 5.484 

𝑩𝑨 𝒏𝒑𝒓𝒊𝒐𝒓 𝒏𝒍𝒊𝒌𝒆𝒍𝒊 𝒏𝒑𝒐𝒔𝒕𝒆𝒓𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Prior Likelihood 
1x106 1x106 1x106 

1 0.3907 0.6092 1.802 

Lognormal Weibull 5 0.1374 0.8625 1.797 

Table 23 also confirms that reliability values decrease for larger times and unreliability values 

increase. Moreover, it  shows that 𝑀𝑇𝑇𝐹 values are equal to 5.484 years for all trials of 𝑀𝐿𝐸, 

and approximately 1.8 years for 𝐵𝐴. There is a very small difference between the two 𝐵𝐴 trials. 

In addition, 𝑅(𝑡) is smaller for any trial of 𝐵𝐴 compared with its corresponding 𝑀𝐿𝐸 value. 

For 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 year, the 𝑅(𝑡) for 𝑀𝐿𝐸 is 95%, whilst for 𝐵𝐴 is 39%. Here the 

influence of prior parameters is notorious. The opposite occurs with 𝐹(𝑡) values as it is a 

complementary function.  

Figure 41 shows the predictive posterior 𝑃𝐷𝐹 in a fixed time scale of 1 year. This is due to the 

extremely low time for to reach the maximum probability value. Notice the period from 0 to 

0.1 years where the maximum probability of failure value is aproximately 0.025 to occur in 

less than half a year of operations.  
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Figure 41. 𝑃𝐷𝐹 based on 𝐵𝐴 given a Lognormal predictive prior and the likelihood data of 

the study case 

 

Figure 42. Reliability based on 𝐵𝐴 given a Lognormal predictive prior and the likelihood 

data of the study case 

Figure 42 shows 𝑅(𝑡) of a 𝐵𝐴 for the study case assuming an Lognormal prior with the default 

failure rate. In addition, it confirms the results obtained in Table 23. Figures 43 and 44. 

Moreover, 𝑅(𝑡) after 1 and 5 years of operations is equal to 39% and 13 % respectively.  



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

78 
 

 

Figure 43. 𝐵𝐴 results for Lognormal predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 1 𝑦𝑒𝑎𝑟 as seen in 

Matlab’s command window 

Figure 43 and 44 confirm that 𝑀𝑇𝑇𝐹 for the study case assuming a Lognormal prior with the 

default failure rate is between 1 year 9 months 18 days and 17 hours and 1 year 9 months 16 

days and 23 hours. This slight difference is a consequence of the difference between 1.802 and 

1.797 years. 

 

Figure 44. 𝐵𝐴 results for Lognormal predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5 𝑦𝑒𝑎𝑟𝑠 as seen in 

Matlab’s command window 

Finally, for a Gamma predictive prior distribution, the results of 𝐵𝐴 are presented for  

𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 and 5 years in Table 24. Furthermore, Figures 45 and 46 show the 

corresponding predictive posterior 𝑃𝐷𝐹 and 𝑅(𝑡) plots. In addition, Figures 47 and 48 display 

the results of 𝐵𝐴 for both values of 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 as seen in Matlab’s command window. 
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Table 24. Results of 𝑀𝐿𝐸 and 𝐵𝐴 with Gamma prior predictive for study case 

Method of Estimation Number of Iterations  T Expected Lifetime 

𝑴𝑳𝑬 𝒏𝒑𝒓𝒊𝒐𝒓 𝒏𝒍𝒊𝒌𝒆𝒍𝒊 𝒏𝒑𝒐𝒔𝒕𝒆𝒓𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Fixed 𝑛, 𝑛𝑝𝑟𝑖𝑜𝑟, 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 vs. variable and 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

Prior Likelihood 
1x106 1x106 1x106 

1 0.952 0.047 5.484 

None Weibull 5 0.490 0.509 5.484 

𝑩𝑨 𝒏𝒑𝒓𝒊𝒐𝒓 𝒏𝒍𝒊𝒌𝒆𝒍𝒊 𝒏𝒑𝒐𝒔𝒕𝒆𝒓𝒊 𝒕𝒔𝒖𝒓 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

Prior Likelihood 
1x106 1x106 1x106 

1 0.2361 0.7638 2.2048 

Gamma Weibull 5 0.2102 0.7897 2.2054 

Table 24 confirms the decrease of reliability values for larger times. Moreover, it  shows that 

𝑀𝑇𝑇𝐹 values are equal to 5.484 years for all trials of 𝑀𝐿𝐸. It is approximately  2.205 years 

for 𝐵𝐴. There is a very small difference between the two 𝐵𝐴 trials.  

In addition, 𝑅(𝑡) is smaller for any trial of 𝐵𝐴 compared with its corresponding 𝑀𝐿𝐸 value. 

Take 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 equal to 1 year for example,  the 𝑅(𝑡) for 𝑀𝐿𝐸 is 95%, whilst for 𝐵𝐴 is 23 %. 

Here the influence of prior parameters is notorious. The opposite occurs with 𝐹(𝑡) values as it 

is a complementary function.  

 

Figure 45.  𝑃𝐷𝐹 based on 𝐵𝐴 given a Gamma predictive prior and the likelihood data of the 

study case 

 

 



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

80 
 

 

Figure 46. Reliability based on 𝐵𝐴 given a Gamma predictive prior and the likelihood data 

of the study case 

 

 

Figure 47. 𝐵𝐴 results for Gamma predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 1 𝑦𝑒𝑎𝑟 as seen in 

Matlab’s command window 

Figure 43 and 44 confirm that 𝑀𝑇𝑇𝐹 for the study case assuming a Gamma prior with the 

default failure rate is between 2 years 2 months 13 days and 17 hours and 2 years 2 months 13 

days and 17 hours. This slight difference is a consequence of the difference between 2.2048 

and 2.2054 years. 
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Figure 48. 𝐵𝐴 results for Gamma predictive prior and  𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 5 𝑦𝑒𝑎𝑟𝑠 as seen in 

Matlab’s command window 

Once the four 𝑃𝐷𝐹s have been evaluated as predictive priors for the same likelihood data, the 

most suitable is the Gamma predictive prior. According to the values of 𝑀𝑇𝑇𝐹, 𝑅(𝑡) and 𝐹(𝑡), 

the predictive posterior for a Gamma predictive prior and the likelihood data has the larger 

values. Hence, the highest reliability among all others.  

4.2 Sensitivity Analysis 

Three different initial parameters for Gamma predictive prior are used to account for the three 

most common approaches: cautionary, average and risky. The idea is to have an overview of 

the influence that the elicited initial parameters of predictive priors have on the predictive 

posterior distribution. In other words, how do they affect the values of 𝑀𝑇𝑇𝐹, 𝑅(𝑡) and 𝐹(𝑡) 

for the Server-database study case in combination with the likelihood data.   

The elicitation of initial parameters is done for a conservative and risky perspective, and the 

default initial parameters and used on the previous result are going to be taken as the average 

perspective. Table 25 shows the expected lifetime for the Server-database study case according 

to different approaches for initial parameters of the Gamma predictive prior for sensitivity 

analysis.  
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Table 25. Expected lifetime of Server-database according to different approaches for initial 

parameters of the Gamma predictive prior  

Approach 

Method of 

Estimation 𝑩𝑨 

Initial Parameters of 

Predictive Prior 𝜶 and 

𝜷 

Expected Lifetime 

Prior Likeli. 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

To generate nprior times  ɸ̂
𝑃𝑟𝑖𝑜𝑟

  estimator=gamrnd(alpha,beta,1,2); 

Cautionary 

Gamma Weibull 

alpha=rand()*2; 

beta=rand()*1; 
0.0211 0.9788 0.2165 

Average 
alpha=rand()*4; 

beta=rand()*2; 
0.2106 0.7893 2.2089 

Risky 
alpha=rand()*6; 

beta=rand()*4; 
0.5031 0.4968 5.4351 

Table 25 has a fixed number of 1x106 iterations, 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑜𝑓 5 𝑦𝑒𝑎𝑟𝑠 and procedure to 

generate ɸ̂
𝑃𝑟𝑖𝑜𝑟

. Under these conditions the three approaches show very different results for 

the three indicators of expected lifetime such as 𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹. For example, the 

cautionary approach has a probability of surviving 5 years of 2% and a mean time to failure of 

0.21 years, or 2 months, 18 days and 1 hour. Whilst the risky approach has a probability of 

surviving 5 years of 50% and its mean time to failure is 5 years, 3 months, 3 days and 10 hours. 

The results for cautionary and average approach as seen in Matlab’s command window are 

available on appendix A9 and A10 respectively. 

The latter indicates the influence of initial parameters of prior predictive distributions on the 

predictive posterior even in presence of likelihood data, which is the case for the Server-

database study case. Furthermore, it seems logical to assume that this influence will be even 

greater when there is no likelihood data available as all the weight of the estimation of expected 

lifetime relies on the elicited expert knowledge. This scenario is presented next. 

A scenario to perform sensitivity analysis for the Server-database study case with no likelihood 

data is convenient to determine the influence of such historical data on the predictive posterior 

and the deviation of the results from each approach of the elicited expert knowledge regarding 

the initial parameter of the predictive prior.  

Table 26 shows the expected lifetime for the Server-database study case according to different 

approaches for initial parameters of the Gamma predictive prior for sensitivity analysis, for the 

case when there is no likelihood data available.  
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Table 26. Expected lifetime of Server-database according to different approaches for initial 

parameters of the Gamma predictive prior with no likelihood data 

Approach 

Method of 

Estimation 𝑩𝑨 

Initial Parameters of 

Predictive Prior 𝜶 and 

𝜷 

Expected Lifetime 

Prior Likeli. 𝑹(𝒕) 𝑭(𝒕) 𝑴𝑻𝑻𝑭 

To generate nprior times  ɸ̂
𝑃𝑟𝑖𝑜𝑟

  estimator=gamrnd(alpha,beta,1,2); 

Cautionary 

Gamma None 

alpha=rand()*2; 

beta=rand()*1; 
0.0182 0.9817 0.4428 

Average 
alpha=rand()*4; 

beta=rand()*2; 
0.2857 0.7174 7.1328 

Risky 
alpha=rand()*6; 

beta=rand()*4; 
0.6007 0.3992 63.988 

Table 26 has also a fixed number of 1x106 iterations, 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 𝑜𝑓 5 𝑦𝑒𝑎𝑟𝑠 and procedure to 

generate ɸ̂
𝑃𝑟𝑖𝑜𝑟

. With 𝐵𝐴 done based only on predictive prior distribution, the three approaches 

show completely different results for the three indicators of expected lifetime such as 𝑅(𝑡), 

𝐹(𝑡) and 𝑀𝑇𝑇𝐹. For example, the cautionary approach has a probability of surviving 5 years 

of 1.8% and a mean time to failure of 0.44 years or 5 months,  9 days and  9 hours. The Average 

approach has a probability of surviving the 5th year of 28% a mean time to failure of 7.1328 

years which is equivalent to 7 years, 1 month, 17 days and 19 hours. 

The risky approach has a probability of surviving 5 years of 60% and its mean time to failure 

is an unrealistic 63.988 or 63 years, 11 months, 25 days and 17 hours. The results as seen in 

Matlab’s command window are available on appendix A10, A11 and A12 respectively. 

 

  



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

84 
 

CHAPTER 5 

5.1 Discussion of Bayesian Analysis Results 

As a basis for the discussion, it is important to mention the reasons why the Server-database 

study case was selected in chapter 4. 

1. The size of the historical data is relatively small, specifically thirty-nine  failure times. 

Therefore, it has some influence into the predictive posterior but not enough to override 

the predictive prior influence. 

2.  The historical data contains only failure times of one system. Hence, the frequency of 

different types of failure occurred in such system does not have to be accounted for. In 

other words, they are treated as the same type. 

3. The system has been operating for nearly 11 years, without major modifications or 

replacement. Thus, it can be considered highly reliable.   

4. There are several factors to be considered when eliciting expert knowledge about the 

prior distribution.  

5. Since the Server-database it is composed of electronic equipment, the selected 𝑃𝐷𝐹’s 

for this report are suitable to some extent to model the lifetime according to its 

characteristics. 

6. The results can be considerable useful to the company for establishing an improved 

maintenance program. Moreover, decision support for future upgrading or replacement.  

The discussion is based on two main perspectives: the reliability perspective and risk and 

uncertainty perspective. 

5.1.1 From the Reliability Perspective 

An empirical way of estimating the expected time of failure based on historical data is to 

calculate the average of such data, then assume that the system will behave exactly in the future 

as it did in the past. However, easy and quick it is to implement this measure does not reflect 

entirely the “reality” of the system and its surrounding environment. Nevertheless, it can be 
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used a reference to compare estimation of expected lifetime with more advanced methods, 

especially when it comes to highly reliable systems.  

The average of the study case data presented on Figure 25 for years between failure is 5.555 

years. At the same time the estimated 𝑀𝑇𝑇𝐹 according to the 𝑀𝐿𝐸 method is 5.484 years. The 

difference is considerably small; 0.071 years which is the equivalent to 0 years, 0 months, 25 

days and 13 hours as presented to Figure 49. 

 

Figure 49. Difference between Average time to failure and 𝑀𝐿𝐸’s 𝑀𝑇𝑇𝐹 

Based on 𝐵𝐴 results of Table 25, the 𝑀𝑇𝑇𝐹 has three values according to the approach of 

elicited prior knowledge and likelihood data. These are 0.2165 years, 2.2089 years and 5.4351 

years  for the corresponding cautionary, average and risky approach. Notice that the closest 

result to the 𝑀𝐿𝐸’s 𝑀𝑇𝑇𝐹 and the average failure time is the 𝑀𝑇𝑇𝐹 of the risky approach. The 

difference between these two is only 0.049 years according to the displayed result of figure 50. 

 
Figure 50. Difference between Average time to failure and risky approach for 𝐵𝐴’s 𝑀𝑇𝑇𝐹 

 

The previous indicates that both estimation methods produced very similar results for the 

Server-database study case, when considering a risk approach when eliciting expert knowledge 

regarding the initial parameter of predictive prior.  
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Whit regards to the reliability and unreliability results, 𝐵𝐴 method is sensitive to relatively 

small changes in the initial parameters of predictive prior and to the availability of relevant 

likelihood data. This is evident after observing the differences of 𝑅(𝑡) and 𝐹(𝑡) between 𝑀𝐿𝐸 

and 𝐵𝐴 estimates. For example, when comparing their values presented in the average 

approach of Tables 25 and 26 for a fixed 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 of 5 years. 𝑅(𝑡) varies from 21% to 28.5%, 

𝐹(𝑡) varies from 78.9% to 71.7% and even the 𝑀𝑇𝑇𝐹 varies from 2.2 years to 7.13 years.  

 

The previous results appear to be a direct consequence of the variation of the initial parameters 

for the Weibull predictive prior 𝛼 and 𝛽. Furthermore, a consequence of likelihood data 

availability for the Server-database study case.  

Another factor to consider when an analyst needs to interpret 𝑀𝐿𝐸 and 𝐵𝐴 results from the 

reliability perspective is the censorship of the data. For the study case, the company provided 

the full set of data. Therefore, no censorship was considered. Nevertheless,  the results for the 

censored data set of presented on Table 17 indicate a significant difference between 𝑀𝐿𝐸 and 

𝐵𝐴 according to the code for each estimation of expected lifetime. That case produced a 𝑀𝐿𝐸’s 

𝑅(𝑡) equal to 4.3% and  𝐵𝐴’s 𝑅(𝑡) equal to 12.7% for the Gamma distribution, which was the 

one that best fitted the censored data set of Integrated Circuit Failure Times. 

Furthermore, the censored data set presents a difference between the 𝑀𝐿𝐸’s 𝑀𝑇𝑇𝐹 equal to 

0.1573 years and the 𝐵𝐴’s 𝑀𝑇𝑇𝐹 equal to 2.2904 for a Gamma predictive prior. This is 

equivalent to 2.1331 years or 2 years, 1 month, 17 days and 22 hours (Figure 51). 

 
Figure 51. Difference between MLE’s MTTF and BA’s MTTF for Gamma predictive prior of 

censored data set  

 

The final issue to consider from the reliability perspective is the nature of the predictive 

posterior as it is not a fixed known distribution. Predictive posteriors are the result of a 

combination between the attributes of predictive prior and predictive likelihoods. Therefore, 
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according to the nature of the latter, predictive posterior can take different forms as known 

statistical distributions or completely different ones. This is accounted with rejection sampling 

in this report. Otherwise the statistical and computational complexity would had been 

considerable, as there would had been a unique distribution for every combination of priors 

and likelihood.  

Through acceptance and rejection sampling the codes generate randomly a predefined number 

of values to create a representative sample of the predictive posterior values, which meet the 

acceptance conditions. As mentioned in chapter 3,  This sample is based on a 𝑛𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 

number of iterations.  

5.1.2 From the Risk and Uncertainty Perspective 

From the risk and uncertainty perspective, there are several factors to be aware of when 

estimating expected lifetime using Bayesian analysis. Moreover, when is done with a software 

such as Matlab for this report. These are classified according to their context. 

For prior distributions 

There is uncertainty on the elicited initial parameters, since s they may not represent completely 

the true nature on the systems behaviour. Taking the sensitivity analysis of section 3.2.3 it is 

normal that variations in these parameters affect considerably the results. Furthermore, they 

can be misleading if not elicited properly.  

In addition, uncertainty is present when performing acceptance-rejection sampling, as it does 

not provide 100% accurate results every time it is performed. The latter is especially true if 

𝑛𝑝𝑟𝑖𝑜𝑟 is relatively small or the time range from which random values are generated is too 

wide.  

Based on results presented on Table 24, it is visible that 𝑀𝑇𝑇𝐹 values are not identical, for 

𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 of 1 year is equal to 2.2048 and for 𝑡𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 of 5 years is 2.2054, but they are 

very similar. That small deviation from value to the other is a consequence of the acceptance-

rejection sampling criteria and the size of 𝑛𝑝𝑟𝑖𝑜𝑟, which in the study case is fixed to 1x106 

iterations. For demanding maintenance programs larger difference can represent a large source 

of uncertainty.   



Estimation of Expected Lifetime of Highly Reliably Systems using Bayesian Analysis 

 

88 
 

For prior and likelihood distributions 

A source of risk and uncertainty can be the method used to test the goodness of fitness for the 

𝐶𝐷𝐹 to the likelihood data. For the study cases the probability value of the selected fitting the 

data is  0.7423. In other words, approximately 74% of the data fits the scale and shape of a 

Weibull  𝐶𝐷𝐹. 

As shown in Figure 52 the rank probability values for goodness of fit  as seen in Matlab’s 

command window, vary for each 𝐶𝐷𝐹, from 0.0308 for an Exponential, 0.0720 for a 

Lognormal and 0.3127 for a Gamma. Therefore, the higher value of the variable “rank” is  

selected. The lower the probability for goodness of fit is, the higher the risk of using and 

inappropriate 𝐶𝐷𝐹. 

 

Figure 52. Rank probability values for goodness of fit as seem in the Matlab’s command 

window 

A different source of risk and uncertainty is the probability of  an extreme event to occur. Most 

of the time this factor is not reflected into the predictive likelihood data. Moreover, for 

predictive likelihood with a small size of historical data. The estimated parameters may not be 

entirely representative of the systems previous behaviour. The reason is that a small historical 

may not record a sudden event as it is unlikely to occur in a frequent basis. Nevertheless, a 

large 𝑛𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 will increase the confidence in the intervals for such estimated parameters 

and to some extent compensate for the implied uncertainty.  

The results present for the study case had a 95% of confidence in the estimated likelihood 

parameters. Compare to the results present on Tables 7, 9, 11 and 13 where the confidence 

interval changed from 95% to 75%, precisely to demonstrate the variation of such intervals for 

the estimated parameters.  
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Finally, it is necessary to clarify how to interpret the results in a risk context to avoid 

uncertainty. All 𝑅(𝑡) and 𝐹(𝑡) results are probability values, and they are interpreted as 

conditional probabilities according to the knowledge behind them. Based on the results 

presented in Table 24, it is understood that the Server-database system has a 23.61% of 

surviving the 1st year given the previous knowledge of the system and that it has already 

survived. The same applies for the probability of failure before the 1st year. 

If an analyst interprets these results differently, for example, by taking a frequentist 

interpretation, it may be misleading when presented to the decision makers. See appendix A14. 

5.2 Usefulness of Estimation of Expected Lifetime with Bayesian Analysis 

To estimate the expected lifetime and other reliability indicators is considerable relevant. Given 

the results for the different examples of data sets and the study case presented in this report,  an 

analyst may be able to assess the system behaviour with a higher degree of confidence. 

Moreover, it represents a powerful tool for statistical inference, particularly for cases where 

non relevant historical data is available, cases where the degree of uncertainty on the available 

historical data is extremely significant or for cases where strong expert knowledge is available. 

Referring to the Server-database study case, results such as the ones presented in Tables 21, 

22, 23 and 24 constitute a useful way to estimate critical indicators of  system considered to be 

highly reliable. Especially, when the consequences can be severe in terms of economic losses, 

human safety, technological performance  and environmental damage. For those situations it 

is necessary to estimate with a high degree of accuracy the expected lifetime, probability of 

surviving and probability of failure at any given time. 𝐵𝐴 provides such required estimations. 

According to Table 18 most of the failures represent critical events for AKRA Investments c.a. 

Hence, their necessity for an updated maintenance and replacement program. With highly 

accurate estimates of 𝑀𝑇𝑇𝐹, 𝑅(𝑡) and 𝐹(𝑡). An unpredicted failure in the Server-database can 

create considerable economical losses, logistical problems, reduction or interruption of daily 

operations, unnecessary risks to personnel and loss of data among others.  Finally, 𝑀𝐿𝐸 and 

𝐵𝐴 codes are suitable to estimate the expected lifetime of different types of systems besides 

highly reliable and the results valid if some predefine conditions are met.   
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CHAPTER 6 

6.1 Conclusions 

Several conclusions can be made after carrying out 𝑀𝐿𝐸 and 𝐵𝐴 for the examples and study 

case presented in this report. They are listed as follows: 

1. 𝐵𝐴 becomes relevant to estimate expected lifetime when there is no likelihood data, or 

the available historical data of a system’s performance is limited.  

2. 𝐵𝐴 represents a powerful method to estimate the expected lifetime of highly reliable 

systems with a higher degree of accuracy in comparison to 𝑀𝐿𝐸 and other estimation 

methods. 

3. The acceptance-rejection sampling constitutes a valid method to create predictive 

posterior based on large samples of randomly generated data for 𝐵𝐴. 

4. To obtain more accurate estimations, extensive and strong expert knowledge is required 

to elicit the parameters for prior distributions. 

5. In 𝐵𝐴 through  𝑀𝐶 methods, the number of iterations for sampling data of predictive 

prior, likelihood and posterior must be large enough, at least 1x106, to have accurate 

estimates.  

6. 𝐵𝐴 estimates of 𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹 provide decision support in a risk and 

operational context, to perform the required maintenance or replacement when needed. 

7. There are more than one sources of uncertainty in 𝐵𝐴 estimates. These can influence 

negatively the relevance of such estimates. The most critical are the lack of historical 

failure data, extensive censorship in the historical failure data and the occurrence of a 

black swan in the future.  

6.2 Recommendations for Future Estimations 

This section provides some recommendations to improve the estimations of expected lifetime 

and other performance indicators of highly reliable systems presented in this study.  
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• Include additional prebuilt function from the software to account for different initial 

parameters of predictive prior distributions following the methodology presented in the 

elicitation principles section. Specifically, by implementing formula 45. 

• Edit the software to present the results of 𝑅(𝑡), 𝐹(𝑡) and 𝑀𝑇𝑇𝐹 in a % format instead 

of decimals. For example, instead of 𝑅(𝑡) = 0.2857 the result should be displayed as 

𝑅(𝑡) = 28.57% In that way it will be more practical to interpret for decision makers. 

• Increase the number of 𝑃𝐷𝐹s available for prior and likelihood distributions with the 

following: Normal, Beta, Inverse Gaussian and Birnbaum-Sanders distributions.  

• Asses the feasibility to incorporate replacement into the 𝐵𝐴, so the estimates can be 

produced including that option, which is common in other types of systems than highly 

reliable. 

• Incorporate the option of estimating the time for a specific 𝑅(𝑡) and  𝐹(𝑡) predefined 

value, required by a decision maker. For example, to estimate the expected time 𝑡 for 

the system to have a given value or 𝑅(𝑡). This can be particularly useful for entities 

with predefined maintenance and replacement politics. In which given that the system 

has a 𝑅(𝑡) equal or lower than certain value, the system will be replaced regardless its 

condition. 

• Compare the estimations of reliability indicators of different study cases with other 

computational codes if available. In addition, a sensitivity analysis is recommended in 

such codes as well. 

• Perform a cost-benefit analysis of estimating the expected lifetime of highly reliable 

systems with the code for 𝐵𝐴 used in this thesis. Moreover, it should be focused on the 

code’s accuracy, simplicity to implement and relevance of results in terms of 

maintenance and reliability policies. 
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APPENDIX 

Appendix A1 

Example of ɸ̂𝑀𝐿𝐸 estimators from theoretical censored data set.  

From Table 15, assuming random values to the number of failures 𝑛1 = 4, 𝑛2 = 6 and 𝑛3 =

2 and an exponential 𝑃𝐷𝐹. The maximum likelihood estimator ɸ̂𝑀𝐿𝐸 for each case is 

presented in Table 15. According to the formula.  

ɸ̂𝑀𝐿𝐸  = 𝜆̂ =
∑ 𝑡𝑖
𝑛
1

𝑛
 

Table A1. Example of MLE estimators from different types of censored data 

Censored Data Set Estimator 

Observed Failures 1st Case 
ɸ̂1𝑠𝑡 = 𝜆̂1𝑠𝑡 =

𝑛1 − 1+ 𝑛2 + 𝑛3
𝑛1 + 𝑛2 + 𝑛3

=
11

12
= 0,9166 

 

Observed Failures 2nd Case 
ɸ̂
2𝑛𝑑

= 𝜆̂
2𝑛𝑑

=
𝑛1 + 𝑛2

𝑛1 + 𝑛2 + 𝑛3
=
10

12
= 0,8333 

 

Observed Failures 3rd Case 
ɸ̂
3𝑟𝑑

= 𝜆̂
3𝑟𝑑

=
𝑛2

𝑛1 + 𝑛2 + 𝑛3
=
6

12
= 0,50 

 

 

ɸ̂3𝑟𝑑 < ɸ̂2𝑛𝑑 < ɸ̂1𝑠𝑡  

Appendix A2 

Code for 𝑀𝐿𝐸 of an Exponential random data set in Matlab R2018.   

%UNIVERSITY OF STAVANGER 

%RISK MANAGEMENT 

%MLE OF EXPECTED LIFETIME FOR EXPONENTIAL DATA SET 

%ANATOLY KURMAN RIVERO 

clear 

clc 

disp('MLE for Exponential Data')  

%Random Data set Exponentially distributed 

disp('Press any key to adquire the data set    ') 

pause 

data=xlsread('sample.xlsx') 

%Parameter Estimate 

disp('Press any key for parameter estimates') 

pause  

lambda=rand()*3; 

y=exppdf(data,lambda); 

phat=mle(data,'pdf',@(data,lambda)exppdf(data,lambda),'start',[lambda]); 

mleexp=phat 

%Confidence Intervals 

disp('Confidence intervals 100(1-alpha)%') 
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degree=input('Set the degree in % for the 100(1-degree) Confidence 

Intervals    ') 

if degree < 0   

    disp('The degree for Confidence interval must be a positive integer') 

    degree=input('Set the % for the 100(1-degree) Confidence Intervals   ') 

end 

degree_value=degree/100; 

[muhat,muci]=expfit(data,degree_value); 

muci 

%New Exponential Distribution 

t=rand(1000,1)*2; 

mleexpdata = mleexp.*exp(-mleexp.*t); 

%Probability of Survival P(T>tsurvival) and Failure P(T<=tsurvival) at any 

given time tsurvival 

disp('Reliability at a given time tsurvival') 

tsurvival=input('Set the time tsurvival for Reliability psurvival     ') 

T = mleexpdata>mleexpdata(tsurvival); 

survival=mleexpdata(T); 

length(survival); 

pfailure = 1-exp(-mleexp.*tsurvival); 

disp('Probability of Survival at a given tsurvival'); 

psurvival=1-pfailure; 

disp('Mean time to failure of MLE Predictive Distribution    '); 

mttfexp=1/mleexp; 

disp('Press any key to see the table of results'); 

pause 

results = table(lambda,mleexp,tsurvival,psurvival,pfailure,mttfexp) 

filename = 'MLEExponentialEstimation.xlsx'; 

writetable(results,filename,'Sheet',1,'Range','A1') 

reliability = exp(-mleexp.*t); 

unreliability = 1-exp(-mleexp.*t); 

%Plotting the distributions and Histogram 

plot(t,unreliability,'b*'); 

title('Unreliability p(t<=tsurvival) Distribution') 

ylabel('Probability') 

xlabel('Time') 

pause 

clf 

plot(t,reliability,'b*'); 

title('Reliability p(t>tsurvival) Distribution') 

ylabel('Probability') 

xlabel('Time') 

pause 

hist(mleexpdata,10); 

title('New Exponential Histogram Distribution') 

ylabel('Number of Events') 

xlabel('Time') 

disp('End of script') 

 

Appendix A3 

Code for 𝑀𝐿𝐸 of a Weibull random data set in Matlab R2018. 

%UNIVERSITY OF STAVANGER 

%RISK MANAGEMENT 

%MLE OF EXPECTED LIFETIME FOR WEIBULL DATA SET 

%ANATOLY KURMAN RIVERO 

clear 

clc 

disp('MLE for Weibull Data')  
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%Random Data set Weibull distributed 

disp('Press any key to adquire the data set    ') 

pause 

data=xlsread('samplestudycase1.xlsx') 

%Parameter Estimate 

disp('Press any key for parameter estimates') 

pause  

alpha=rand()*2; 

beta=rand()*2; 

y=wblpdf(data,alpha,beta); 

phat = mle(data,'distribution','weibull') 

mlewbl1=phat(1,1); 

mlewbl2=phat(1,2); 

%Confidence Intervals 

disp('Confidence intervals 100(1-alpha)%') 

degree=input('Set the degree in % for the 100(1-degree) Confidence 

Intervals    ') 

if degree < 0   

    disp('The degree for Confidence interval must be a positive integer') 

    degree=input('Set the % for the 100(1-degree) Confidence Intervals    

') 

end 

degree_value=degree/100; 

[muhat,muci]=wblfit(data,degree_value); 

muci 

%New Weibull Distribution 

t=rand(100000,1); 

mlewbldata = ((phat(1,2).*t.^(phat(1,2)-1))./(phat(1,1).^phat(1,2))).*exp(-

(t./phat(1,1)).^phat(1,2)); 

mlewblplot = wblrnd(phat(1,1),phat(1,2),100000,1); 

%Probability of Survival P(T>tsurvival) and Failure P(T<=tsurvival) at any 

given time tsurvival 

disp('Reliability at a given time tsurvival') 

tsurvival=input('Set the time tsurvival for Reliability psurvival     ') 

T = mlewbldata>mlewbldata(tsurvival); 

survival=mlewbldata(T); 

length(survival); 

pfailure = 1-exp(-(tsurvival./phat(1,1)).^phat(1,2)); 

disp('Probability of Survival at a given tsurvival'); 

psurvival=1-pfailure; 

disp('Mean time to failure of MLE Predictive Distribution    '); 

mttfwbl=phat(1,1).*gamma((1+phat(1,2))./phat(1,2)); 

disp('Press any key to see the table of results'); 

pause 

results = 

table(alpha,beta,mlewbl1,mlewbl2,tsurvival,psurvival,pfailure,mttfwbl) 

filename = 'MLEExponentialEstimation.xlsx'; 

writetable(results,filename,'Sheet',1,'Range','A1') 

reliability = exp(-(t./phat(1,1)).^phat(1,2)); 

unreliability = 1-exp(-(t./phat(1,1)).^phat(1,2)); 

%Plotting the distributions and Histogram 

plot(t*1000,unreliability,'b*'); 

title('Unreliability p(t<=tsurvival) Distribution') 

ylabel('Probability') 

xlabel('Time') 

pause 

clf 

plot(t*10,mlewbldata,'b*'); 

title('Reliability p(t>tsurvival) Distribution') 

ylabel('Probability') 

xlabel('Time') 
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pause 

hist(mlewblplot,100); 

title('New Weibull Histogram Distribution') 

ylabel('Number of Events') 

xlabel('Time') 

disp('End of script') 

  

Appendix A4 

Code for 𝑀𝐿𝐸 of a Lognormal random data set in Matlab R2018. 

%UNIVERSITY OF STAVANGER 

%RISK MANAGEMENT 

%MLE OF EXPECTED LIFETIME FOR LOGNORMAL DATA SET 

%ANATOLY KURMAN RIVERO 

clear 

clf 

clc 

disp('MLE for Lognormal Data')  

%Random Data set lognormally distributed 

disp('Press any key to adquire the data set    ') 

pause 

data=xlsread('sample.xlsx') 

%Parameter Estimate 

disp('Press any key for parameter estimates') 

pause  

mu=round(rand()*5); 

sigma=round(rand()*5); 

phat=mle(data,'pdf',@(data,mu,sigma)lognpdf(data,mu,sigma),'start',[mu,sigm

a]); 

mlelogn=phat 

%Confidence Intervals 

disp('Confidence intervals 100(1-alpha)%') 

degree=input('Set the % for the 100(1-degree) Confidence Intervals    ') 

if degree < 0   

    disp('The degree for Confidence interval must be a positive integer') 

    degree=input('Set the % for the 100(1-degree) Confidence Intervals    

') 

    end 

degree_value=degree/100; 

[muhat,muci]=lognfit(data,degree_value); 

muci 

%New Lognormal Distribution 

t=rand(1000000,1)*20; 

mlelogndata=((1./(mlelogn(1,2).*t.*sqrt(2*pi))).*exp((-

1/(2.*mlelogn(1,2).^2)).*log((t-mlelogn(1,1)).^2))); 

%Probability of Survival P(T>tsurvival) and Failure P(T<=tsurvival) at any 

given time tsurvival 

disp('Reliability at a given time tsurvival') 

tsurvival=input('Set the time for Reliability p(T>tsurvival)    ') 

T = mlelogndata>tsurvival; 

survival=mlelogndata(T); 

length(survival); 

psurvival=length(survival)/length(mlelogndata) 

pause 

disp('Probability of Failure at a given tsurvival') 

pfailure=1-psurvival 

pause 

disp('Mean time to failure of MLE Predictive Distribution    ') 

mttflogn=mlelogn(1,1)*exp((mlelogn(1,2)^2)/2) 
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disp('Histogram of Lognormal Distribution') 

pause 

%Ploting the histogram 

hist(mlelogndata,50) 

title('New Lognormal Histogram Distribution') 

ylabel('Events') 

xlabel('time') 

pause 

plot(t,mlelogndata,'b*') 

title('New Lognormal Plot Distribution') 

ylabel('Probability') 

xlabel('time') 

disp('End of script') 

  

Appendix A4 

Code for 𝑀𝐿𝐸 of a Gamma random data set in Matlab R2018. 

%UNIVERSITY OF STAVANGER 

%RISK MANAGEMENT 

%MLE OF EXPECTED LIFETIME FOR GAMMA DATA SET 

%ANATOLY KURMAN RIVERO 

clear 

clf 

clc 

disp('MLE for Gamma Data')  

%Random Data set Gamma distributed 

disp('Press any key to adquire the data set    ') 

pause 

data=xlsread('sample1.xlsx') 

%Parameter Estimate 

disp('Press any key for parameter estimates') 

pause  

alpha=round(rand()*5); 

beta=round(rand()*5); 

[phat,pci] = gamfit(data,0.05); 

mlegam=phat 

%Confidence Intervals 

disp('Confidence intervals 100(1-alpha)%') 

degree = input('Set the % for the 100(1-degree) Confidence Intervals    ') 

if degree < 0   

    disp('The degree for Confidence interval must be a positive integer') 

    degree=input('Set the % for the 100(1-degree) Confidence Intervals    

') 

    end 

degree_value=degree/100; 

[muhat,muci]=gamfit(data,degree_value); 

muci 

%New Gamma Distribution 

t=rand(10000,1)*5; 

mlegamdata=(1./(mlegam(1,2).^mlegam(1,1)).*gamma(mlegam(1,1))).*(t).^(mlega

m(1,1)-1).*exp(-(t./mlegam(1,2))); 

%Probability of Survival P(T>tsurvival) and Failure P(T<=tsurvival) at any 

given time tsurvival 

disp('Reliability at a given time tsurvival') 

tsurvival=input('Set the time for Reliability p(T>tsurvival)    ') 

T = mlegamdata>tsurvival; 

survival=mlegamdata(T); 

length(survival); 

psurvival=length(survival)/length(mlegamdata) 
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pause 

disp('Probability of Failure at a given tsurvival') 

pfailure=1-psurvival 

pause 

disp('Mean time to failure of MLE Predictive Distribution    ') 

mttf=mlegam(1,1)*mlegam(1,2)/(365) 

disp('Histogram of Weibull Distribution') 

pause 

%Ploting the histogram 

hist(mlegamdata,50) 

title('New Gamma Histogram Distribution') 

ylabel('Events') 

xlabel('time') 

pause 

plot(t,mlegamdata,'b*') 

title('New Gamma Plot Distribution') 

ylabel('Probability') 

xlabel('time') 

years=fix(mttf); 

months=fix((mttf-fix(mttf))*12); 

days=fix((((mttf-fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30); 

hours=((((mttf-fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30-fix((((mttf-

fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30))*24; 

mttfresults=table(mttf,years,months,days,hours) 

disp('MTTF is estimated from todays date') 

today=datetime('today') 

disp('End of script') 

 

Appendix A6  

Example of elicited Example of ɸ̂𝑝𝑟𝑖𝑜𝑟 estimators from different expert opinions. 

Table A2 contains the 1st scenario has three different elicited expert opinions for the parameter 

of the same exponential 𝑃𝐷𝐹. To estimate ɸ̂𝑝𝑟𝑖𝑜𝑟by using formula #. 

Table A2. 1st scenario with three different elicited expert opinions for prior parameters 

Expert Expert’s opinion 

weight 𝒂𝒊 
Expert’s 

Estimator 
|𝝀̂𝑷𝒓𝒊𝒐𝒓 − ɸ̂

𝒊
| 

1st 0.5 2 0.6 

2nd 0.3 3 0.4 

3rd 0.2 3.5 0.9 

 

ɸ̂
𝑃𝑟𝑖𝑜𝑟

=∑𝑎𝑖 ∗ ɸ̂𝑖

3

𝑖=1

 

𝜆̂𝑃𝑟𝑖𝑜𝑟 = 𝑎1 ∗ 𝜆̂1 + 𝑎2 ∗ 𝜆̂2 + 𝑎3 ∗ 𝜆̂3 

𝜆̂𝑃𝑟𝑖𝑜𝑟 = 0.5 ∗ 2 + 0.3 ∗ 3 + 0.2 ∗ 3.5 

ɸ̂
𝑃𝑟𝑖𝑜𝑟

= 2.6 
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Table contains the 2nd scenario has also different expert opinions for the parameter of the 

same exponential 𝑃𝐷𝐹. To estimate ɸ̂𝑝𝑟𝑖𝑜𝑟by using formula #. 

Table A3. 2nd scenario with three different elicited expert opinions for prior parameters 

Expert 
Expert’s opinion 

weight 𝒂𝒊 
Expert’s 

Estimator 
|𝝀̂𝑷𝒓𝒊𝒐𝒓 − ɸ̂

𝒊
| 

1st 0.4 5 0.24 

2nd 0.3 4.2 0.56 

3rd  0.3 4.6 0.16 

𝜆̂𝑃𝑟𝑖𝑜𝑟 = 0.4 ∗ 5 + 0.3 ∗ 4.4 + 0.3 ∗ 4.6 

ɸ̂
𝑃𝑟𝑖𝑜𝑟

=4.76 

Notice that the values of  𝜆̂𝑃𝑟𝑖𝑜𝑟 − ɸ̂
𝑖
 is smaller as the weights of the expert’s opinions and the 

elicited prior parameters are closer to each other.  

Appendix A7  

Code for Bayesian Analysis of predictive posterior in Matlab R2018. 

%UNIVERSITY OF STAVANGER 

%RISK MANAGEMENT 

%ESTIMATION OF EXPECTED LIFETIME OF HIGHLY RELIABLE SYSTEMS USING BAYESIAN 

ANALYSIS 

%ANATOLY KURMAN RIVERO 

clear 

clc 

%AVAILABILITY OF DATA  

%If There is data available press 1 for YES 

%If there is no data available press 0 for NO 

disp('ESTIMATION OF EXPECTED LIFETIME OF HIGHLY RELIABLE SYSTEMS WITH 

BAYESIAN ANALYSIS'); 

disp('Is there any likelihood data available    '); 

decision=input('1 Yes  0 No    '); 

if decision == 0 

disp('There is NO likelihood data only PRIOR');     

%PRIOR DISTRIBUTION 

disp('Select the prior PDF acccording to Expert Knowledge') 

prior=input('1 Exponential  2 Weibull  3 Lognormal  4 Gamma    '); 

switch prior 

    case 1 

    %Exponential Prior 

    Prior={'Exponential'}; 

    disp('Prior PDF is Exponential'); 

    % Assume that prior is Exponential with lambda a random number between 

0-2 

    % Assume that the data is exponential 

    nprior=input('Number of iterations for prior Parameters    ');   

    for i=1:nprior 

    lambda=rand()*5; 

    estimator=exprnd(lambda,1,1); 

    t(i)=exprnd(estimator,1,1); 
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    end 

    case 2  

    %Weibull Prior 

    Prior={'Weibull'}; 

    disp('Prior PDF is Weibull');     

    % Assume that prior is Weibull with alpha and beta random numbers 

between 0-2 

    % Assume that the data is Weibull 

    nprior=input('Number of iterations for prior Parameters    '); 

    for i=1:nprior 

    alpha=normrnd(1,0.05); 

    beta=normrnd(2,0.05); 

    estimator=wblrnd(alpha,beta,1,2); 

    t(i)=wblpdf(estimator(1,1),estimator(1,2)); 

    end 

    case 3 

    %Lognormal Prior 

    Prior={'Lognormal'}; 

    disp('Prior PDF is Lognormal'); 

    % Assume that prior is Lognormal with mu and sigma random numbers 

between 0-2 

    % Assume that the data is Lognormal 

    nprior=input('Number of iterations for prior Parameters    '); 

    for i=1:nprior 

    mu=0; 

    sigma=0.25; 

    estimator=lognrnd(mu,sigma,1,2); 

    t(i)=lognrnd(estimator(1,1),estimator(1,2),1,1); 

    end 

    otherwise 4  

    %Gamma Prior 

    Prior={'Gamma'}; 

    disp('Prior PDF is Gamma'); 

    % Assume that prior is Gamma with alpha and beta random numbers between 

0-2 

    % Assume that the data is Gamma 

    nprior=input('Number of iterations for prior Parameters    '); 

    for i=1:nprior 

    alpha=rand()*4; 

    beta=rand()*2; 

    estimator=gamrnd(alpha,beta,1,2); 

    t(i)=gamrnd(estimator(1,1),estimator(1,2),1,1); 

    end 

end     

%Probability of Survival P(T>tsurvival) and Failure P(T<=tsurvival) at any 

given time tsurvival 

disp('Reliability at a given time tsurvival') 

tsurvival = input('set the time for evaluate the reliability p(T>tsurvival)    

') 

T = t > tsurvival; 

survival=t(T); 

length(survival); 

psurvival=length(survival)/length(t); 

disp('Probability of Failure at a given tsurvival'); 

pfailure=1-psurvival; 

disp('Mean time to failure of Bayesian Predictive Distribution    '); 

mttf=mean(t); 

disp('Press any key to display the Histogram, PDF, Reliability and 

Unreliability funtions') 

pause 

histogram(t,100) 
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title('Bayesian Prior Predictive Histogram') 

ylabel('Number of Events') 

xlabel('Data') 

%RESULTS BAYESIAN PRIOR PREDICTIVE 

nposterior=0; 

%%  

Likelihood={'None'}; 

Posterior={'Bayesian'}; 

typeresults=table(Prior,Likelihood,Posterior) 

valueresults=table(nprior,nposterior,tsurvival,psurvival,pfailure,mttf) 

years=fix(mttf); 

months=fix((mttf-fix(mttf))*12); 

days=fix((((mttf-fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30); 

hours=((((mttf-fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30-fix((((mttf-

fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30))*24; 

mttfresults=table(mttf,years,months,days,hours) 

disp('MTTF is estimated from todays date') 

today=datetime('today') 

end 

%LIKELIHOOD PRIOR AND POSTERIOR DISTRIBUTIONS ***************************** 

if decision == 1 

disp('There is likelihood data and PRIOR');     

%POSTERIOR DISTRIBUTION 

%Imput of Data sets         

disp('Press any key to adquire data set'); 

pause 

data=xlsread('samplestudycase1.xlsx') 

values=data(:,1); 

disp('Press any key to evaluate the goodness of fit of each PDF for the 

data sample') 

pause 

cd1=fitdist(data,'exponential'); 

[h1,fitexp] = kstest(values,'CDF',cd1,'alpha',0.01) 

cd2=fitdist(data,'weibull'); 

[h2,fitwbl] = kstest(values,'CDF',cd2,'alpha',0.01) 

cd3=fitdist(data,'lognormal'); 

[h3,fitlogn] = kstest(values,'CDF',cd3,'alpha',0.01) 

cd4=fitdist(data,'gamma'); 

[h4,fitgam] = kstest(values,'CDF',cd4,'alpha',0.01) 

rank=[fitexp,fitwbl,fitlogn,fitgam] 

likelihood=max(rank) 

nlikelihood=input('Number of iterations for likelihood Parameters    '); 

nposterior=input('Set in the number of iterations for Posterior Parameters    

'); 

switch likelihood 

    

%**************************************************************************

For Exponential Likelihood 

    case rank(1,1); 

    disp('The selected PDF for the likelihood data is Exponential');  

    Likelihood={'Exponential'};   

    disp('Select the prior PDF acccording to Expert Knowledge') 

    prior=input('1 Exponential  2 Weibull  3 Lognormal  4 Gamma    '); 

    nprior=input('Number of iterations for prior Parameters    ');     

        switch prior 

        case 1 

        Prior={'Exponential'};    

        for i=1:nprior 

        lambda=rand()*5; 

        estimator=exprnd(lambda,1,1); 

        t(i)=exprnd(estimator,1,1); 
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        end 

        phat = mle(data,'distribution','exponential'); 

        for i=1:nlikelihood 

        x(i)=exprnd(phat,1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 2    

        Prior={'Weibull'}; 

        for i=1:nprior 

        alpha=normrnd(1,0.05); 

        beta=normrnd(2,0.05); 

        estimator=wblrnd(alpha,beta,1,2); 

        t(i)=wblpdf(estimator(1,1),estimator(1,2)); 

        end 

        phat = mle(data,'distribution','exponential'); 

        for i=1:nlikelihood 

        x(i)=exprnd(phat,1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 3 

        Prior={'Lognormal'}; 

        for i=1:nprior 

        mu=0; 

        sigma=0.25; 

        estimator=lognrnd(mu,sigma,1,2); 

        t(i)=lognrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','exponential'); 

        for i=1:nlikelihood 

        x(i)=exprnd(phat,1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        otherwise 4  

        Prior={'Gamma'};       

        for i=1:nprior 

        alpha=rand()*4; 

        beta=rand()*2; 

        estimator=gamrnd(alpha,beta,1,2); 

        t(i)=gamrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','exponential'); 

        for i=1:nlikelihood 

        x(i)=exprnd(phat,1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        end 

    

%**************************************************************************

For Weibull data         

    case rank(1,2); 

    disp('The selected PDF for the likelihood data is Weibull') ; 

    Likelihood={'Weibull'}; 

    disp('Select the prior PDF acccording to Expert Knowledge') 
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    prior=input('1 Exponential  2 Weibull  3 Lognormal  4 Gamma    '); 

    nprior=input('Number of iterations for prior Parameters    '); 

     switch prior 

        case 1 

        Prior={'Exponential'};  

        for i=1:nprior 

        lambda=rand()*5; 

        estimator=exprnd(lambda,1,1); 

        t(i)=exprnd(estimator,1,1); 

        end 

        phat = mle(data,'distribution','weibull'); 

        for i=1:nlikelihood 

        x(i)=wblrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 2 

        Prior={'Weibull'};     

        for i=1:nprior 

        alpha=normrnd(1,0.05); 

        beta=normrnd(2,0.05); 

        estimator=wblrnd(alpha,beta,1,2); 

        t(i)=wblpdf(estimator(1,1),estimator(1,2)); 

        end 

        phat = mle(data,'distribution','weibull'); 

        for i=1:nlikelihood 

        x(i)=wblrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 3 

        Prior={'Lognormal'}; 

        for i=1:nprior 

        mu=0; 

        sigma=0.25; 

        estimator=lognrnd(mu,sigma,1,2); 

        t(i)=lognrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','weibull'); 

        for i=1:nlikelihood 

        x(i)=wblrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        otherwise 4  

        Prior={'Gamma'};       

        for i=1:nprior 

        alpha=rand()*4; 

        beta=rand()*2; 

        estimator=gamrnd(alpha,beta,1,2); 

        t(i)=gamrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','weibull'); 

        for i=1:nlikelihood 

        x(i)=gamrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 
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        B = acceptance(t,x,2,1,nposterior); 

     end 

    

%**************************************************************************

For Lognormal data      

    case rank(1,3); 

    disp('The selected PDF for the likelihood data is Lognormal');   

    Likelihood={'Lognormal'};   

    disp('Select the prior PDF acccording to Expert Knowledge') 

    prior=input('1 Exponential  2 Weibull  3 Lognormal  4 Gamma    '); 

    nprior=input('Number of iterations for prior Parameters    '); 

     switch prior 

        case 1 

        Prior={'Exponential'};  

        for i=1:nprior 

        lambda=rand()*5; 

        estimator=exprnd(lambda,1,1); 

        t(i)=exprnd(estimator,1,1); 

        end 

        phat = mle(data,'distribution','lognormal'); 

        for i=1:nlikelihood 

        x(i)=lognrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 2 

        Prior={'Weibull'};     

        for i=1:nprior 

        alpha=normrnd(1,0.05); 

        beta=normrnd(2,0.05); 

        estimator=wblrnd(alpha,beta,1,2); 

        t(i)=wblpdf(estimator(1,1),estimator(1,2)); 

        end 

        phat = mle(data,'distribution','lognormal'); 

        for i=1:nlikelihood 

        x(i)=wblrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 3 

        Prior={'Lognormal'}; 

        for i=1:nprior 

        mu=0; 

        sigma=0.25; 

        estimator=lognrnd(mu,sigma,1,2); 

        t(i)=lognrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','lognormal'); 

        for i=1:nlikelihood 

        x(i)=lognrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        otherwise 4  

        Prior={'Gamma'};       

        for i=1:nprior 

        alpha=rand()*4; 

        beta=rand()*2; 
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        estimator=gamrnd(alpha,beta,1,2); 

        t(i)=gamrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','lognormal'); 

        for i=1:nlikelihood 

        x(i)=gamrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

     end 

    

%**************************************************************************

For Gamma data 

    otherwise rank(1,4); 

    disp('The selected PDF for the likelihood data is Gamma') ;     

    Likelihood={'Gamma'}; 

    disp('Select the prior PDF acccording to Expert Knowledge') 

    prior=input('1 Exponential  2 Weibull  3 Lognormal  4 Gamma    '); 

    nprior=input('Number of iterations for prior Parameters    '); 

     switch prior 

        case 1 

        Prior={'Exponential'};  

        for i=1:nprior 

        lambda=rand()*5; 

        estimator=exprnd(lambda,1,1); 

        t(i)=exprnd(estimator,1,1); 

        end 

        phat = mle(data,'distribution','gamma'); 

        for i=1:nlikelihood 

        x(i)=gamrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 2 

        Prior={'Weibull'};     

        for i=1:nprior 

        alpha=normrnd(1,0.05); 

        beta=normrnd(2,0.05); 

        estimator=wblrnd(alpha,beta,1,2); 

        t(i)=wblpdf(estimator(1,1),estimator(1,2)); 

        end 

        phat = mle(data,'distribution','gamma'); 

        for i=1:nlikelihood 

        x(i)=wblrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        case 3 

        Prior={'Lognormal'}; 

        for i=1:nprior 

        mu=0; 

        sigma=0.25; 

        estimator=lognrnd(mu,sigma,1,2); 

        t(i)=lognrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','gamma'); 

        for i=1:nlikelihood 

        x(i)=gamrnd(phat(1,1),phat(1,2),1,1);       
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        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

        otherwise 4 

        Prior={'Gamma'};       

        for i=1:nprior 

        alpha=rand()*4; 

        beta=rand()*2; 

        estimator=gamrnd(alpha,beta,1,2); 

        t(i)=gamrnd(estimator(1,1),estimator(1,2),1,1); 

        end 

        phat = mle(data,'distribution','gamma'); 

        for i=1:nlikelihood 

        x(i)=gamrnd(phat(1,1),phat(1,2),1,1);       

        end 

        f=@(t)t; 

        g=@(x)x; 

        B = acceptance(t,x,2,1,nposterior); 

     end 

end 

 %Probability of Survival P(T>tsurvival) and Failure P(T<=tsurvival) at any 

given time tsurvival 

    disp('Reliability at a given time tsurvival'); 

    tsurvival=input('set the time for evaluate the reliability 

p(T>tsurvival)    '); 

    T =  B > tsurvival; 

    survival=B(T); 

    length(survival); 

    psurvival=length(survival)/length(B); 

    pfailure=1-psurvival; 

    mttf=mean(B); 

    disp('Press any key to display the Histogram, PDF, Reliability and 

Unreliability funtions') 

    pause 

    histogram(B,100) 

    title('Bayesian Posterior Predictive Histogram') 

    ylabel('Number of events') 

    xlabel('Time') 

    

%RESULTS BAYESIAN POSTERIOR PREDICTIVE 

Posterior={'Bayesian'};    

typeresults=table(Prior,Likelihood,Posterior) 

valueresults=table(nprior,nlikelihood,nposterior,tsurvival,psurvival,pfailu

re,mttf) 

years=fix(mttf); 

months=fix((mttf-fix(mttf))*12); 

days=fix((((mttf-fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30); 

hours=((((mttf-fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30-fix((((mttf-

fix(mttf))*12)-fix((mttf-fix(mttf))*12))*30))*24; 

mttfresults=table(mttf,years,months,days,hours) 

disp('MTTF is estimated from todays date') 

today=datetime('today') 

end 

disp('End of Script') 
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Appendix A8  

Acceptance rejection sampling function in Matlab R2018. Where 𝑐 is the variable to adjust the 

acceptance or rejection limit.  

function B = acceptance(t,x,c,m,n) 

 B = zeros(m,n); % Preallocate memory       

 for i=1:m*n 

     accept = false; 

     u=rand(); 

     if x(i)*u*c <= t(i) 

        B(i)=x(i); 

     accept = true; 

     end 

 end 

mttf=mean(B)      

 

Appendix A9 

Figure A1 presents the results as seen on Matlab’s command window for estimation of 

expected lifetime of Server-database study case with a cautionary approach to elicit expert 

knowledge about the initial parameters of predictive prior. 

 

Figure A1. Results as seen on Matlab’s command window for estimation of expected lifetime 

of Server-database study case with a cautionary approach to elicit expert knowledge about 

the initial parameters of predictive prior with likelihood data 

Appendix A10 

Figure A2 presents the results as seen on Matlab’s command window for estimation of 

expected lifetime of Server-database study case with an average approach to elicit expert 

knowledge about the initial parameters of predictive prior. 
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Figure A2. Results as seen on Matlab’s command window for estimation of expected lifetime 

of Server-database study case with an average approach to elicit expert knowledge about the 

initial parameters of predictive prior with Weibull likelihood data 

 

Appendix A11 

Figure A3 presents the results as seen on Matlab’s command window for estimation of 

expected lifetime of Server-database study case with a average approach to elicit expert 

knowledge about the initial parameters of predictive prior and no likelihood data available. 

 

Figure A3. Results as seen on Matlab’s command window for estimation of expected lifetime 

of Server-database study case with an average approach to elicit expert knowledge about the 

initial parameters of predictive prior 
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Appendix A12 

Results as seen on Matlab’s command window for estimation of expected lifetime of Server-

database study case with a risky approach to elicit expert knowledge about the initial 

parameters of predictive prior and no likelihood data available. 

 

 

Figure A4. Results as seen on Matlab’s command window for estimation of expected lifetime 

of Server-database study case with a risky approach to elicit expert knowledge about the 

initial parameters of predictive prior 

Appendix A13 

A frequentist probability of an event A is denoted 𝑃𝑓𝐴 and it is defined as the fraction of times 

an event A occurs if the trail is repeated hypothetically an infinite number of times (Aven T. 

R., 2013). 𝑃𝑓𝐴 is equal to the limit of the ratio between the number of times the event 𝐴 occurs 

𝑛. divided by the total amount of times the trial is performed under similar conditions. It is 

assumed that the output is a good estimate of the true probability of the event to occur.  

Given that an infinite number of trials under similar conditions is impossible to conduct, the 

frequentist interpretation for probabilities is thus a mind constructed quantity. 

 

 

 


