

Declaration of Authorship

We, Christer Aanestad Lende and Joachim Nising Lundal, declare that this project

with title ”Automatic Detection of Features from Atlantic Salmon by Classical Image

Processing” and the work presented is entirely our own. We can confirm that:

� The work presented is done partially or completely within candidacy for a research

degree at this university.

� If any part of this project has been previously presented for or in another degree,

this is clearly stated.

� Where were have cited others work, the citation is always presented. With excep-

tion to these citations, the project is entirely our own.

� In any part of the project where we worked with others, it is clearly stated what

was done by others and what we contributed with.

Signed:

Signed:

Date:

i

“The problem in this business isn’t to keep people from stealing your ideas: it’s making

them steal your ideas!”

Howard Alken

UNIVERSITY OF STAVANGER

Abstract

Faculty of Science and Technology

Department of Computer Science and Electronics

Project in Robot Technology and Signal Processing with Industrial Economics

Christer Aanestad Lende Joachim Nising Lundal

The methods created for this project aim to locate the salmon in the image and extract

features from it. The aim of the features are to recognize individual salmon from each

other. Individual identification, done by RFID today, is important in the Norwegian

aquaculture industry, mostly for scientific purposes. If this could be implemented by

machine vision instead, it could be expanded to commercial purposes and tracking of

larger masses, which could be economically beneficial for the industry.

Based on reasonable assumptions, some economic scenarios were computed to estimate

potential savings that could be achieved by successful implementation of such a system.

Based on the assumptions, it is reasonable to believe that this could save roughly 5,04

MNOK every year per offshore fish cage applied to. The potential costs are however

somewhat uncertain.

K-means clustering was used to extract the salmon from the image. This was successful

for all images. It should be noted that the data-set was cleaned of images which did not

meet certain requirements.

A method was developed to detect the nose and tail tips of the salmon mainly to estimate

its orientation. It worked on all images largely due to the successful cropping done by

the k-means clustering.

Another method was created to detect the pectoral fin on the salmon, using segmentation

by thresholding, as well as structural measures and area-thresholds. It achieved a best

success rate at 99.2% on 537 images from one data-set(main set) and at worst a success

rate of 93.5% on 246 images from another data-set(second set).

http://www.uis.no
Faculty Web Site URL Here (include http://)
http://www.uis.no/fakulteter-institutter-og-sentre/det-teknisk-naturvitenskapelige-fakultet/institutt-for-data-og-elektroteknikk/

It was important to detect the gill-opening on the salmon, which would lead to extract

a ROI around the head. The method for locating the gill-opening therefore had an

important task in detecting the back of the gills, towards the body, such that the area of

the head was not cropped too small. The method had an average of detecting 5.32 pixels

away from the gill-opening towards the body, which served the purpose of capturing the

head well.

Salmon have spots on their heads, which could serve as matching points for individual

specimen. Two methods were tested to detect these spots, one of them created specif-

ically for this project. The methods were merged together and achieved a success rate

of 49.02% correctly detected spot with 0.6% false detections on the main with strict

parameters. With more tolerable parameters it got a success rate of 87.4% correctly

detected. Of all possible detections, it also incorrectly detected 52.01% spots. The same

method was tried on the second data-set with success rates at 45.67% correctly and

4.32% false detections with strict parameters and 97.58% correct detections with 50%

false detections with tolerable parameters.

An individual recognition method was created, which used feature vectors of each image

to recognize if it was the same salmon in two images. The feature vectors contained up

to 19 features. There were images of 178 salmon to recognize, and all but 16 had two

images of the same specimen. Out of 178 salmon, it recognized 65 of them, a success

rate of 36.47%, incorrectly classifying 28.8%. 34.7% of the salmon were not recognized.

In other words, out of 340 possible correct classifications, 124 were correctly classified,

98 incorrectly classified and 118 salmon not classified at all.

Acknowledgement

Huge thanks go out to Ivar Austvoll for his contribution in this project. His insight

and sage advice in image processing has guided us through many obstacles we struggled

with. Your weekly input made this all possible.

Another thanks goes out to Johar Lundal, who made the project possible through RFID

Solutions and also for his valuable contacts within the business.

MOWI, and especially Janne Kristin Engdal Øvretveit, did a great effort in helping us

get a working data-set of images of salmon. Their team was professional, determined to

help and efficient. Thank you all.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgement v

Figures ix

Tables xiv

Abbreviation xvii

Symbols xviii

1 Introduction 1

1.1 Related work . 4

1.1.1 Tracking of fish . 4

1.1.2 Related Machine Vision work . 5

1.1.3 Facial Recognition . 6

1.2 Environmental and genetic impact on a Salmon’s appearance 8

1.3 Methods . 11

1.3.1 Classical image processing VS Machine learning 11

2 Theory 14

2.1 Optics . 14

2.2 Segmentation . 16

2.2.1 Segmentation by Thresholding . 16

2.2.2 Segmentation by Clustering . 21

2.3 Edge Detection . 24

2.4 Detection of spot-like structures . 26

2.4.1 Blob detection methods . 26

2.4.2 Blob features . 29

3 Methods 31

3.1 Presentation of data . 32

vi

Contents vii

3.2 Image Capturing of Atlantic Salmon . 36

3.3 Extraction of the fish in the image . 39

3.4 Nose and Tail Tips detection . 44

3.5 Pectoral Fin Detection . 47

3.6 Locating the gills . 50

3.6.1 Method 1: Global Gill Detection 52

3.6.2 Method: Local Gill Detection . 54

3.7 Detecting Gill Spots . 57

3.7.1 Simple Blob Detection Method . 57

3.7.2 Dark Spot Detection method . 59

3.8 Individual Recognition . 63

3.8.1 Feature and Score System . 68

4 Experiments and Results 74

4.1 Fin Detection Results . 74

4.1.1 Results on Data-set 1, MOWI . 75

4.1.2 Results on Data-set 2, IMR . 77

4.1.2.1 Potential Improvements 78

4.2 Local Gill Detection Results . 78

4.3 Spot detection - Experiments and results 81

4.3.1 Spot detection by Simple Blob Detection on data-set 1 84

4.3.2 Spot detection by Dark Point Detection - Experiments and Results 94

4.3.3 Combining Blob Detection and Dark Point Detection 101

4.3.4 Testing on data-set 2 . 103

4.3.4.1 Testing Simple Blob Detection on data-set 2 103

4.3.4.2 Testing Custom detection on data-set 2 104

4.3.4.3 Combining blob detection and custom detection on data-
set 2 . 106

4.3.5 Summary and Discussion of blob detection results 108

4.3.5.1 Simple Blob Detection Method 108

4.3.5.2 Dark Spot Detection Method 109

4.3.5.3 Future work . 110

4.4 Individual Recognition Results . 110

4.4.1 Potential Improvements . 113

5 Economy 114

5.1 Global issues and aquaculture . 114

5.2 Aquaculture and the potential of tracking fish individually 116

6 Discussion 124

6.1 Data-sets and image capturing . 124

6.2 Feature extraction methods . 125

6.3 Individual recognition . 127

7 Conclusion 128

Contents viii

A Dataset Information 129

B Biology of Atlantic Salmon 133

B.0.1 Life Cycle of Atlantic Salmon . 133

C Rough IFarm initialization costs with RFID Technology 138

D Code 140

D.1 Extract Fish in image . 140

D.2 Code: Find nose and Tail Tips . 145

D.3 Code: Fin Detection . 149

D.4 Code: Get Length and Find Gill Edge . 158

D.5 Code: Simple Blob Detector Implementation 162

D.6 Blob Detection: Dark Spot Detector . 163

D.7 Code: Manual Spot Detection, Manual Gill Detection 165

D.8 Spot Coordinates Comparison . 167

D.9 Code: create Feature vectors . 177

D.10 Code: Individual Recognition . 186

Bibliography 199

List of Figures

1.1 A 12 month old Atlantic Salmon Smolt, breed by IMR 8

1.2 A 16 month old Atlantic Salmon Smolt, breed by MOWI 9

1.3 The same Atlantic Salmon at 12 and 22 months. The fish has grown
and changed its physical appearance. Still, It is possible to recognize the
similarities in the spot pattern. The spots that were present at 12 months,
are the most distinct at 22 months, and more spots have appeared. 10

1.4 An adult, bred Atlantic Salmon, ready for slaughter. This fish has a
significant amount of spots. 10

1.5 Another bred Atlantic Salmon from the same sea cage as the one in fig.
1.4. This one seems to have no spots at all. 11

2.1 An illustration of perfect diffuse reflection off a surface. The blue arrow
is an example of the opposite, where the reflection is not diffused at all.
This is what is wanted from a mirror. Image from: Wikimedia Commons. 15

2.2 An example of a practical diffusion solution, and its result. Here, a matte,
white umbrella is used as a medium to spread the sunlight. Notice the
difference in sharp shadow edges from the image to the left compared to
the right. Also, the lighting on the frog itself is more even in the diffused
image. Image from: Wikimedia Commons. 15

2.3 A salmon segmented into different sections. The body of the fish is clear. 16

2.4 The histogram of an image with a bright object and a dark background,
giving two peaks. t0, depicts the threshold that separate the image into
black and white. 17

2.5 The histogram of a random salmon on an originally blue background.
The grey-level values of the background merge with the gray-levels of the
salmon, except for the bright parts of the fish. 17

2.6 The same histogram as before, but this time with two thresholds to better
extract the object of the image. This is called hysteresis thresholding. . . 18

2.7 An image with stark contrasts from dark to bright of various tables on
white paper. 20

2.8 The leftmost image is fig. 2.7 thresholded with a fixed value of 50. Infor-
mation in the right lower corner is lost due to the dark shadow. The two
following images are of adaptive thresholding, middle image with weighted
average and rightmost with Gaussian weighted average, both with a 5x5
window and C = 10 and C = 7 respectively. The sharp shadow is gone
and more information is available from that section. Both images are
overall better as well, especially when looking at longer lines in all three
images. 20

2.9 The figure illustrates the steps in the K-means clustering algorithm. . . . 22

ix

List of Figures x

2.10 A 3x3 mask which is used for both minimum smoothing and edge detec-
tion. In a cascaded manner, this applies first a 3x1 smoothing mask and
then a 1x3 differentiation mask, or the other way around. In general, a
2D 3x3 mask will have this form. 24

2.11 If K = 2, fig. 2.10 becomes the sobel masks. 25

2.12 A sobel mask was run over a salmon to detect vertical edges in the image.
The image is of the gills of a salmon. 25

2.13 A 3D and 2D representation of a circular Laplacian distribution. Image
from: www.uio.no . 27

2.14 . 28

2.15 . 28

2.16 Grey-level blob detection. 28

2.17 A Grey-level tree with blobs as ”leaves”. 29

2.18 Blob shape features. 29

2.19 The inertia measures how elongated an area. 30

2.20 The difference between a convex and a concave blob. 30

3.1 The process each image is put through to detect features, which are in
turn used to create a feature vector for each fish in an image. Once this
has been done for all images, the salmon are tried to be recognized from
one image to another. 32

3.2 An example image from the main dataset. These images display an At-
lantic Salmon smolt, surrounded by a blue background. 33

3.3 An example image from the secondary data-set. These images displays
Atlantic Salmon smolts, bred by IMR. The fish are immediately sur-
rounded by a blue cloth-like background, which contains variation due
to curves of the fabric. 34

3.4 The design of the fish-photobox prototype. This is a vertical cut. The
dark grey color represents the normal white printing-paper. The camera,
shown as purple, was attached in a hole from above with Field Of View
pointing down. Yellow, represents the LED lists, attached 17cm above
the ground plate, pointing inwards. Also, the figure shows how the fish is
placed relative to camera, on a blue background. 37

3.5 Left: An above viewing of the photobox, with no lid. The LED-lists are
attached around the box, so that there will be light from all angles. The
test object at the center receives lighting from every angles, which causes
little shadow and even distribution of the light on the object itself. This
was before the blue background as shown in fig. 3.4 was inserted. Right:
Setup of the image capturing system in the smolt-factory. 38

3.6 One of the resulting images from the capturing setup. 39

3.7 . 40

3.8 Display of the image in LAB color space. 41

3.9 Display showing only the A, or the red-green component of the image. A
white background represents a strong green component. 41

3.10 Display showing only the B, or the blue-yellow component of the image.
A black background represents a strong blu component. 41

3.11 Binarized image, partitioned into two segments. 42

3.12 This image shows the labelling is in this case inverted. It is preferred that
the fish gets the label ”1”. 42

List of Figures xi

3.13 Only the largest contour, which should be the fish. 43

3.14 Only the largest contour, where holes are filled. 43

3.15 The fish has successfully been extracted from the image, and this is the
image to be used for further experimentation. 43

3.16 Contour image of the fish. It is clearly visible and the shape is intact. . . 44

3.17 Same image as before, but now only the contour line is shown. 45

3.18 The leftmost graph computes the distance from the center of the fish to
the outline points. The rightmost graph is the same, but shifted to the
local minimum. 45

3.19 The mean distance is computed to reduce noise. 45

3.20 An binarized image inverted, such that the dark parts of the fish is high-
lighted. 46

3.21 The nose, top and bottom tail fin tips are localized. The turquoise dot
represents the centroid of the whole fish, while the yellow dot is the cen-
troid of only the largest dark area of the fish. The purple dot is the
closest point to the yellow dot which is also placed on the outline of the
fish contour. It is only by coincidence that it is placed on the red line
in this example. The distance from this point is used to define the other
points. The top tail fin should be at the nearest point, the bottom tail
fin should be at the second nearest point, and the nose should be at the
point furthest away. 46

3.22 The location of the pectoral fin on a salmon. The fin is generally in the
same spot on each fish. 47

3.23 The flowchart describing the algorithm created to locate the pectoral fin. 48

3.24 After segmentation, the idea was that: the background and part of the
salmon’s stomach will be the largest area, its back and caudal fin the
second largest and generally the pectoral fin will be the third largest area 49

3.25 Misclassified images where the pectoral fin was not detected. Mostly,
other fins were detected. 50

3.26 The gill cover. The image shows how the gills are seen from the side of
the fish. 51

3.27 . 52

3.28 . 52

3.29 . 52

3.30 A sobel edge detector has been run over the image. 52

3.34 The 10 largest objects in both images combined into one image. 53

3.35 The remaining gill candidates. 53

3.36 The remaining candidate for the gill. 53

3.37 The location of the gill on the salmon, found with the Global Gill Detec-
tion method, . 53

3.38 . 54

3.39 . 55

3.40 . 55

3.41 . 56

3.42 . 57

3.43 . 59

3.44 . 59

3.45 . 60

List of Figures xii

3.46 . 61

3.47 . 61

3.48 . 62

3.49 The pixels in the image that are the local minima in their 3x3 neighbor-
hood. These are possible spot centers. In this example, p = 1.20 62

3.50 . 63

3.51 This is the distribution of lengths of the fish and the distance from the
nose to the pectoral fin in the MOWI data-set 64

3.52 The distribution plots for the distance from the end of the pectoral fin to
the middle between the tail tips and the length of the head of the fish. . . 65

3.53 The angle to a spot, θspot(marked with green line), is calculated by sub-
tracting θfish(blue line) from θbaseline(red line). 65

3.54 Stage 1, step 1 of the algorithm goes through every label fish and tests it
against every test fish to see if the score gets high enough for a potential
match. Using the feature vectors previously created, it find the errors be-
tween the label and test fish’s features. The score scales with the amount
of features used. The x in the score rectangles is a varying parameter
that is higher the closer the features of the two fish’s are to each other. . . 66

3.55 Stage 1, step 2 of the algorithm shows almost exclusively the testing of
the spots on a fish. If a spot on the test fish is accepted as the same spot
on the label fish, it cannot be chosen again. The more similar the spots,
the higher the score(shown here as x and z variables. If the final score
is the equal to or more than the used features, the filenames of both fish
are written to a text file together with their corresponding score. 67

3.56 The text file containing filenames for the label and test fish and the cor-
responding score is read line by line. Once the algorithm reaches the last
entry for one label fish, the two largest scores in the scorevectorareextracted. 71

3.57 The entries for the current label fish are run through once more to locate
which test fish held the highest scores. There are three images of each
fish(almost), hence the two largest scores are extracted to find the two
images of the same salmon. When the max score is equal to the score
between the label fish and a test fish, they are classified as the same spec-
imen. If the three first digits of the filename is the same, it was a correct
classification, and incorrect if not. Same procedure for the second largest
score. Finally, the scorevectorisresetandthenextscoreinlineappended.n iissettothecurrenti. 72

4.1 The three images who were either misclassified or no pectoral fin could
be detected. 75

4.2 Nine random correctly classified images of 537 76

4.3 Four images out of thirteen faulty images. The other wrongly classified
images were similar instances like these 77

4.4 Histogram of the distances between automatically detected gill cover end-
ing, to the manually picked out. The distances are only measured in
columns, as it is assumed the fish is horizontally positioned. It can be
seen that in most cases, the gill cover end is detected slightly to the right
of where it actually is. This was intended, and is suitable for this project. 79

List of Figures xiii

4.5 Manual detection of spots. The green dot means that the spot has been
labelled as Distinct. This spot is large, dark and separable from its sur-
roundings. The purple dot represents a Complex spot. This spot is small
and slightly blurry. It is also connected to the vertical line to its right,
which makes it harder to separate from the surroundings. The spot just
below the complex spot, marked red, represents a Uncertain spot. If this
is a spot, it is only the size of a few pixels. This even makes the form
change between different images of the fish. 82

4.6 . 92

4.7 . 93

4.8 All the cases where some spots were not detected by Tolerant Dark Point
Detection. 99

4.9 . 100

4.10 . 100

5.1 The figure shows the development of emission from a couple of sources.
We can see that the top three contributors are from meat sources, and that
cattle meat causes most emission. Especially as we approach today’s date
further to the right on the graph. The descending trends are probably
due to technical development. The figure is fetched from IPCC’s ”AR5
Climate Change 2014: Mitigation of Climate Change”. 115

5.2 . 121

5.3 . 122

B.1 The Life Cycle of an Atlantic Salmon. Image from: Wikimedia Commons. 134

B.2 A newly hatched Salmon Alevin. Image from: Wikimedia Commons. . . . 135

B.3 Several Atlantic Salmon Fry, that have emerged from the gravel. Image
from: Wikimedia Commons. 135

B.4 Atlantic Salmon Parr. Image from: Wikimedia Commons. 136

B.5 A breed Atlantic Salmon smolt, ready for seawater. Image: Specifically
for this work. 136

B.6 An adult breed Atlantic Salmon, ready for slaugther. Image: Obtained
from IMR. 137

List of Tables

3.1 Comparison between the two data-sets. These comparisons are relative
to each other, and is done in order to highlight the advantages of each
data-set. As can be seen, each data set has it’s own advantages. These
are highlighted with broad text. Eventually, the advantages of data-set
1 were considered as favourable for developing methods. *Consistency
means how persistent the images are in similarity, like fish-placement,
focus and same background between images. 35

3.2 All entries in the feature vector and a brief explanation of each. For
clarification, the head of the fish is from the nose to the end of the gills.
The maximum number of spots possible were 8, hence i = [1− 8]. 64

4.1 The results for testing the fin detection algorithm on both data-sets. The
algorithm performs better on dataset 1, but this was the set the algorithm
was developed on. It performs well on the IMR data-set as well. 74

4.2 This table shows the comparison of Local Gill Detection VS a statistical
guess. The Local Gill Detector seems to perform better than a statistical
guess. 79

4.3 The three spot categories and the total number of cases in all images used
in data-set 1. 81

4.4 A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot
Detection. The last column, Tolerant+, is the result of only Dark Spot
Detection. 82

4.5 A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot
Detection. The last column, Tolerant+, is the result of only Simple Blob
Detection. 82

4.6 These are the standard parameters set for the blob detection algorithm.
While one parameter changes for experimentation, the remaining ones are
locked to these values. 84

4.7 Varying maximum allowed euclidean pixel distance from observed to de-
tected spot centroid. It can be seen here that increasing the allowed
distance lead to more spots being defined as detected. It is clear that 1
pixel would be too little, while increasing could cause misclassifications.
Also, an inaccurate detected spot would cause worse performance in ac-
tual individual recognition. By these alternatives, it would therefore be
reasonable to use 3 or 5 as the preferred distance. 85

xiv

List of Tables xv

4.8 Results of blob detection when varying only the threshold parameters. It
is evident that there are a significant amount of spots that have brightness
between 10-100. When the interval is extended, the number of both True
and False detections increase. 86

4.9 Stricter conditions regarding the circularity of the spots will make less
spots be detected. Values like 0.5 and 0.7 allows for a decent amount of
detections, while still limiting the number of False detections. The results
shows that the spots in these images are generally somewhat circular, but
not completely, as most spots fails to be detected when the parameter is
0.9. 87

4.10 The results are very similar to the above until 0.9 is reached. This shows
that the spots of an Atlantic salmon are mostly convex to some degree. . 88

4.11 Results while varying minimum inertia. The results are similar from
0.01-0.20, meaning that most spots are not similar to lines, but instead
resemble circular shapes. 89

4.12 The most spots are successfully detected at a threshold of 10, although,
there are many false detections. The failure percentage decreases as the
area parameter is increased, because then smaller possible spots or spot-
like patterns are discriminated against. However, this has a negative
impact on the detection of complex spots, as they are trickier to detect
and often smaller than the distinct ones. 90

4.13 This table shows the parameter values for 6 different combinations that
were tried. The bottom row gives a short comment on the function’s
purpose, where ”strict” means that the purpose is to have few false de-
tections, and ”tolerant” means that it wants to detect as many spots as
possible. 91

4.14 Results of the combinations shown in table 4.13. Combination 1 has the
fewest false detections, but not relatively few True detections compared
to the other combinations. Combination 3 has the best detection rate,
but many False detections. Combination 6 performs almost as good as
2, but has way less false detections. It is evident that combination 4 and
5 are outperformed compared to the others, especially since Uncertain
spots are not considered. 91

4.15 The parameter values used in experiment 1 95

4.16 At an allowed pixel distance of 1, few spots are defined as detected. It in-
creases significantly when raised to 2 and 3, and stabilizes at 5. Increasing
from 5 to 8 has no effect on the number of True detections. 95

4.17 Combination 1 is a single attempt with a kernel size as small as 3. In
experiments 2-7, the threshold factor, p, was incrementally increased from
strict to tolerant. 96

4.18 Combination 1, with kernel size 3, fails to detect only 9 spots. However,
many False detections also occur. Combination 7 scores almost as good
as combination 1, but has nearly half the amount of False detections.
Combinations 2 - 7 shows how gradually more spots are detected when
the threshold factor, p, is increased. 96

4.19 In combinations 1 to 4, σ is decreased while other parameters are held
constant. Combinations 5 and 6 tests for more tolerant p-values without
decreasing σ. 97

List of Tables xvi

4.20 In combinations 1-4, σ is decreased. This leads to many True detections,
but even more False detections. Combinations 5 and 6 shows that there
is little change when the p-value is increased to very tolerant values. . . . 97

4.21 The σ value is increased in every attempt, while the other inputs are held
constant. 98

4.22 Combination 1 has the highest number of True detections of all the ex-
periments by Dark Point Detection on data-set 1. When σ is gradually
increased, the number of both True and False detections decrease. 98

4.23 Few True detections are lost when applying Strict/Tolerant, or Strict/Bal-
anced combinations. When the combination is Strict/Strict a significant
amount of True detections are lost, but it also result in only 3 False de-
tections. 101

4.24 Few True detections are lost using a Balanced/Tolerant combination. Bal-
anced/Balanced causes some loss, while Balanced/Strict loses a significant
amount. Meanwhile, many False detections are removed. 102

4.25 The Tolerant/Tolerant combination causes few True detections losses,
while eliminating many False Detections. The Tolerant/Balanced and
Tolerant/Strict combinations also gets rid of many False detections, but
the results are not peculiar compared to the other combinations. 102

4.26 This table shows the parameter values for 6 different combinations that
were tried. The bottom row gives a short comment on the function’s
purpose, where ”strict” means that the purpose is to have few false de-
tections, and ”tolerant” means that it wants to detect as many spots as
possible. 103

4.27 The poor results in combinations 1, 5 and 6 indicate that many spots
in data-set 2 are somewhat bright, and therefore sensitive to the strict
maximum threshold values of these combinations. With more tolerant
thresholds, as in 2, 3 and 4, almost all spots are detected. Combination
2 even has the lowest False rate, while still having a high percentage of
detected spots. 104

4.28 Input combinations with different kernel sizes and σ 104

4.29 Results for Dark Spot Detection on data-set 2. 105

4.30 Strict blob detection, combined with custom detection. 106

4.31 Balanced blob detection, combined with custom detection. 106

4.32 Tolerant blob detection, combined with custom detection. 106

4.33 A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot
Detection. The last column, Tolerant+, is the result of only Dark Spot
Detection. 108

4.34 A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot
Detection. The last column, Tolerant+, is the result of only Simple Blob
Detection. 108

4.35 The result after running the individual recognition algorithm on the salmon,
showing how many salmon were classified, either correctly or incorrectly,
with how many features. 111

4.36 It is clear that with more features come more accuracy. From having less
correctly classified salmon to either 50/50 or more is a clear improvement. 112

Abbreviation

ROI Region Of Interest

HOG Histogram of Orienteed Gradients

ML Machine Learning

DL Deep Learning

SVM Support Vector Machine

IMR Institute of Marine Research

CNN Convolutional Neural Network

PCA Principal Component Analysis

SPP Spacial Pyramid Pooling

RFID Radio Frequency IDentification

GHG Green House Gasses

xvii

Symbols

σB Interclass variance No denomination

xviii

Dedicated to the University of Stavanger

xix

Chapter 1

Introduction

In the last centuries humankind has grown exponentially both in industry and popula-

tion. This has given birth to countless inventions to better the lives of humanity, but

it has also taken its toll on us. A growing population demands an increased amount

of nourishment, and one solution to this problem may lie in aquaculture. Fish is the

largest resource the ocean has to offer and can contribute to meet the growing demand.

The aquaculture produces less pollution, whereas agriculture is the leading cause of in-

creased greenhouse gasses through deforestation and livestock. Especially in Norway,

aquaculture is an important industry.

Individual tracking of small fish populations is important for various purposes, but is

too expensive for large populations. Recently, the industry has taken an interest in using

computer vision to track fish, as a cheap and less brutal alternative to today’s methods.

This could enable even more opportunities, like individual tracking of every fish’s health

in a fish farm.

This project implements the use of classical image processing methods to extract struc-

tural features from bred Atlantic Salmon, such as distances and angles between points

of interest. This project focuses especially on detecting the spots on the gill cover of the

fish, which could be used matching fish with each other in later stages. Points were also

extracted from the position of the nose, two back fins, pectoral fin and gill opening, as

well as the contour of the fish. The long term goal is that these could later be used for

individual recognition.

1

C. A. Lende J. N. Lundal 2

Specification of the Purpose

The aim of this section, is to better describe the purpose of the work in this report.

The long term goal is that extracted features from Atlantic Salmon could be used for

individual recognition. This requires the feature detection to be accurate and robust.

This is due to the potentially large size of salmon populations and the similarity between

individuals.

The specific goal of this project is to:

• Explore Machine Vision methods for automatic extraction of features

from Atlantic Salmon.

– The ulterior motive of these features is individual tracking. This needs to be

taken into account when developing the feature extraction methods.

– Experiment with recognition using the features to get an idea of how the

extracted features could be used for individual recognition.

To specify: The long term goal is to track fish individually. The goal of this project;

extract features, is preparatory work for achieving the long term goal. To better explain

the possibilities of the long term goal, follows three examples:

Long term goals

1. Individual tracking in a ”large” population of salmon. This would require extreme

accuracy and is probably not achievable in the immediate near future. This could

for example be discriminating between breed salmon in Norway, which is over 400

Million individuals. This degree of accuracy could be a fair substitute to tracking

by RFID (See 1.1.1, Tracking of fish). It would probably still have chances for

missclassifications, but it would be economically possible to track more fish. The

need for such accuracy is questionable. It could be useful for knowing who to hold

responsible for fleeing bred salmon, but the amount of fled salmon has decreased

in the past years. This would also require the ability to determine whether a given

fish is in the database at all, which is a tough task.

2. Individual tracking in a ”medium” population, like a fish cage. Salmon cages in

Norway typically hold around 200 000 fish[1]. This lowers the demand for accu-

racy considerably compared to the point above. This could be useful for tracking

C. A. Lende J. N. Lundal 3

individual fish health in the population, which is presumed to be potentially rev-

olutionary for the industry. Such a concept is currently being developed, as is

described in 1.1.1 Biosort’s IFarm - Tracking fish by machine vision, page 4.

3. Individual tracking of a small proportion in a ”medium” population. This could

be used to track the general biomass growth, and health, in a cage. It still requires

good accuracy, as the recognised fish should not be confused with other individuals.

Important note on time difference between updating data

Another factor which affects the difficulty of the task at hand, is the time difference

between each recognition. How old can the previous images be, so that recognition is

still possible? Atlantic salmon grows and changes during their life, making recognition

of individuals harder, especially if the frequency of updating images is too low. For the

example in point 1, it should be expected that it is unknown when the individual was

last updated in the database. For a controlled environment like in point 2 and 3, it is

possible to capture images more often, and this is therefore more realistic because the

fish will not have changed significantly since the last.

This Project’s Contribution

As previously stated, the objective of this work is to start preparatory work that could

be helpful towards the long term goal. Beneath is a detailed description of the plan of

contributing to the long term goal, consisting of the following four points:

1. Collect and prepare images of bred Atlantic Salmon. For simplicity, the data-sets

should meet a standard as described below:

• Similar age of the fish.

• One fish per image.

• Similar scene in each image, as in similar background, camera placement and

angle, lighting, fish placement and direction.

2. Automatically extract the fish in the image, and extract features from it. The fea-

tures should be detected with an accuracy as good as possible. Practical problems

such as posture of the fish, should be taken into account. The most important

extracted features were:

• Spots on the gill cover

C. A. Lende J. N. Lundal 4

• Front fin

• Length

• Nose

• Gill opening

3. Exploratory work and comparing of the extracted features.

4. Discuss ideas and methods that could be useful for future work.

1.1 Related work

1.1.1 Tracking of fish

Today, tracking of large fish populations is mainly done by RFID glass-tags, or so-called

pit tags. Every pit tag has a unique code. The system is 100% accurate as long as the

tag functions and the fish does not loose it. Only in Norway, hundreds of thousands of

salmon are tagged every year. The tagging process is time consuming and expensive,

and may also be harmful. The high cost associated with tagging is the core reason that

not all salmon are already tagged today. There has been proposed political demands

that all breed fish should be tagged, but this has been turned down, to prioritize growth

in the industry.

Today, pit tags are mainly used for scientific work on ”smaller” populations of fish. It

is suggested that recognition by computer vision could replace the use for pit tags and

apply tracking on a larger scale. The implementation of this technology could not only

help save capital, but could even accelerate possibilities in the industry even further.

Biosort’s IFarm - Tracking fish by machine vision

Biosort is a entrepreneur company from Norway. They are currently working on some-

thing they refer to as the ”IFarm”. The IFarm concept is of large interest to large fish

farming companies. The basic idea is that a health journal is kept for each individual

in every fish farm, where the individuals are tracked by machine vision. This is done

in order to give every fish the best possible treatment, in opposite as of today, where

the population of a fish cage is treated as a single unit. This is inefficient economically,

and also stressful for most of the fish who are actually healthy. Typically, only 5-20% of

the fish actually need treatment. Harald Takle, head researcher of Cermaq, states that

individual records for each fish will be a revolution in the industry. Geir Stang Hauge,

founder of Biosort, estimates that the mortality could be cut by 50-75%.[2]

C. A. Lende J. N. Lundal 5

1.1.2 Related Machine Vision work

The work performed by [3] studied more than 20,000 images that were captured in a

harsh real-world coastal scenario at the OBSEA-EMSO testing-site in hopes of being

able to track swimming individual fish with computer vision(not separating between

species). The team created a 10-fold Cross-Validation framework classifier with an

average accuracy of 92%. When the fish classifier was used on a live camera it still

performed with acceptable accuracy, but fell easy victim to varying illumination, bio-

fouling(accumulation of microorganisms algae, pants or animals on wet surfaces or in

aquatic environments) and water turbidity(unclear, murky water).

[4] studied a coral reef in southern Taiwan with cameras, trying to detect fish in the

image and classify them into different species. The fish detection discriminates between

fish and other moving objects, such as sea anemones, drifting water plants and such.

[4] proposes a maximum probability, partial ranking method, which is based on sparse

representation-based classification. To get the features of each species of fish, eigenfaces

and fisherfaces were used. Feature space dimension and partial ranking value are used

to optimize the solutions. Respectively, the recognition and identification rate could

achieve 81.1% and 96%. Experimental results showed that this approach was robust and

highly accurate in use of fish recognition and identification in a real-world underwater

observational video.

[5] extracted fish from images with sparse and low-rank matrix decomposition. The

CNN(convolutional neural network) needed features to analyse, which were gathered

with a deep architecture consisting of a principal component analysis(PCA) in two layers,

followed by a binary hashing in a non-linear layer. Block-wise histograms were used to

pool features together. Spatial pyramid pooling(SPP) was used to extract information

invariant to large poses, before a linear SVM(support vector machine) classifier was used

to classify the fish in the image. [5] managed a 98.64% accuracy on detection the various

fish in the images of varying background and on different species.

[6] used shape matching for fish recognition. They tried several different shape descrip-

tors, such as Fourier descriptors, polygon approximation and line segments. In tests

with four distinct species, their software correctly determined the species with greater

than 90% accuracy.

[7] used texture and color to locate fish in video files. To Track fish once they had been

detected, a combination of two algorithms were put in use: matching of blob features

and histogram matching. 20 different underwater sequences were tested, sampled to

320x240 with a 24-bit RGB camera and a frame rate of 5fps. Each video consisted of

300 frames, summing up to about a minute. The method performed as well as 89.5%

C. A. Lende J. N. Lundal 6

and down to 80%. The method was then tried on 20 movies(about 800 frames). It

counted all the fish present in the video and achieved a success rate of 85.72%.

[3], [6] and [4] deal with tracking fish in an image. While [5] also aim to accomplish this,

they also separate between species. [7] also located fish in videos and tracked them.

Though this project also deals with locating fish, differentiation between species and

individual recognition on one species are two different tasks. Most other articles sur-

rounding fish tracking and recognition deal with locating the fish, tracking and counting

it, and separating between different species of fish. The method created for the purpose

in this project aims to, or build foundation for, recognition of individual fish within the

same species. The articles above prove helpful in locating the fish, but offers little on

the further tasks. Methods used in human facial recognition might prove more helpful.

1.1.3 Facial Recognition

[8] discusses some techniques for facial recognition, such as PCA, LDA(linear discrim-

inant analysis), BPN(back progapation network) and structural matching methods,

where distances between eyes, width of the head, distance from eyes to mouth etc.

were used to separate individuals. A structure based method of matching features is

preferred when wanting to recognize salmon individuals. [9] also mentions feature-based

facial recognition, using geometric relationships between facial features, such as eyes

and mouth. Using euclidean distance measurements, a peak performance of 75% was

achieved on a database of 20 different people with two images of each person(one for

reference and one for testing). This was performed by Kanade[10] in 1973.

Bruntelli and Poggio[11] built on Kanade’s method and computed a vector of 35 features

from a database of 47 people, which had four images per person. They achieved a

recognition rate of 90%. With a feature based approach, a certain tolerance must be

given to the vectors, since they can never fit perfectly on the structures in an image. The

tolerance cannot be too high, as that will destroy the precision required for individual

recognition.

Cox et al. [12] got a recognition performance of 95% on a database of 685 images using

a 30-dimensional feature vector derived from 35 facial features. It should be noted that

these facial features were manually extracted and it is reasonable to assume that the

recognition would be lower if an automated approach for feature extraction was used.

[8] mentions three stages to facial recognition: a): face detection, b): feature extraction,

and c): facial image classification. In similarity with face recognition on humans, by

C. A. Lende J. N. Lundal 7

gathering features on each salmon, structural feature-based methods can be applied to

classify the individuals.

C. A. Lende J. N. Lundal 8

1.2 Environmental and genetic impact on a Salmon’s ap-

pearance

When it comes to using Computer Vision on Atlantic Salmon, It is important to have an

idea of how the fish’s appearance can rapidly change, especially when one is considering

recognition over time. Recent study have shown that the environment plays an important

role when it comes to the appearance of Atlantic Salmon.

Brightness, Color and growth rate

Both Fig. 1.1 and 1.2 shows Atlantic Salmon smolts (see appendix B for life cycle of

Atlantic Salmon). There is a significant difference in the appearance brightness and

color. Both salmon were taken from larger populations where the average length of

the bright ones were around 21cm, and the darker fish’s average length were 19cm.

Interestingly, the longer fishes were about 12 months old, while the smaller about 16

months old. B Biology of Atlantic Salmon explains how it is normal that populations

in different enviroments grow at a different rate. Further observations to illustrate this

is presented below.

Figure 1.1: A 12 month old Atlantic Salmon Smolt, breed by IMR

Ole Folkedal, a biologist from IMR (Institute of Marine Research) explained that the

brighter population had been raised in a white tub and illuminated by strong lamp light.

This caused their skin to turn brighter. In an experiment, he once forgot to on how the

salmon reacted to a strong strobe light, he forgot to turn the light off. After an hour

of exposure, the fish had curled up at the bottom of the tub and its skin was all dark.

C. A. Lende J. N. Lundal 9

Figure 1.2: A 16 month old Atlantic Salmon Smolt, breed by MOWI

When the light was turned off, the salmon rapidly returned to its normal color and

behaviour.

The growth rate of Salmons are especially important when considering recognition over

longer periods, to estimate how structural features from the fish, may have changed.

Rapid change in skin brightness is important to consider when working with machine

vision, especially with methods involving color and lightness matching. Also, the meth-

ods may work differently on salmon of different color. Machine vision methods might

have to be adjusted for working well on both images of the types in fig. 1.1 and 1.2.

Spots in the skin

Atlantic Salmon have so called melanophore spots in the skin, which will only be referred

to as spots in this report. Their main purpose is to protect the skin from UV damage.

Recent evidence also suggests that spottier fish often are more fit and dominant. What

causes the distribution and density of these spot patterns are somewhat unknown. It is

known that color-changes in the skin is connected with the pigment concentration and

the distribution of chromatophores. Yet, in recent studies by IMR, they found that the

environment is the main determinant of the spot-pattern development among Atlantic

Salmon. For example, Salmon raised in rivers, were shown to develop 1.8 times more

spots than domesticated Salmon.[13]

The coat pattern of a salmon will repeatedly change between life stages, like the tran-

sition from Parr to Smolt(See appendix B). This will make individual recognition over

time difficult. However, concerning the spots, once one has taken shape, it will not

disappear. In contrast, it will grow larger, and more distinct. This means they could be

used for long term recognition [14]. Unfortunately, the appearance of these spots does

not seem to accelerate until the late stage of the smoltification stage (See appendix B).

Fig. ?? and ?? shows sample images from a ”Spot Recognition” study conducted by

IMR. These two images display the same fish at 12 months, and later at 22 months.

C. A. Lende J. N. Lundal 10

It can be seen that the same spots are present at the older stage, and that all existing

spots have grown more distinct. Also, many more spots have appeared, but these are

less dominant. This was the case for all the 246 individuals in this study.[14]

(a) (b)

Figure 1.3: The same Atlantic Salmon at 12 and 22 months. The fish has grown and
changed its physical appearance. Still, It is possible to recognize the similarities in the
spot pattern. The spots that were present at 12 months, are the most distinct at 22

months, and more spots have appeared.

In early 2019, IMR performed a rough analysis on 300 Atlantic Salmon with an average

weight of 3.6kg, that were ready for butchering. The population included four families

from the same sea cage, whereas three of the families had an average of around 11 spots

on the gill cover, and the last one only had an average of about 2.5.(Information from

Ole Folkedal) This shows that also the genes play an important role in spot pattern

forming, as these families were raised in the same environment. Fig. 1.4 and 1.5 shows

two very different fish from this population.

Figure 1.4: An adult, bred Atlantic Salmon, ready for slaughter. This fish has a
significant amount of spots.

Based on earlier studies such as [14], it is evident that spot pattern could be used for

individual recognition, at least to a certain degree.

C. A. Lende J. N. Lundal 11

Figure 1.5: Another bred Atlantic Salmon from the same sea cage as the one in fig.
1.4. This one seems to have no spots at all.

In some contexts, the spot patterns of fish are referred to as ”fingerprints”. This is

a nice description for some of its possible uses, but the description is inaccurate, as a

usable spot pattern is normally not developed until the fish is almost adult, and some

salmon have very few or no spots at all. The pattern changes over time, in the way that

more spots are added as it grows. This does however not mean that the spot pattern

cannot be used for individual recognition. Only that one has to be aware of its uncertain

nature.

1.3 Methods

In object detection today, two ways of approaching problems are classical image pro-

cessing methods and machine learning methods. Each of them has their strengths and

weaknesses within computer vision and can be valuable assets in object detection and

feature extraction.

Classical methods in image processing offers various tools to both extract objects and

features within an image. This chapter will bring forth some of these methods that can

prove helpful.

1.3.1 Classical image processing VS Machine learning

The use of machine learning(ML) algorithms in object detection and feature extraction

is growing with great expanse. Many applications today use different ML algorithms,

such as Deep Learning(DL), Haar cascade classifiers, neural networks and so on.

Even though these tools are strong, they are built on classical image processing prin-

ciples, such as the Haaar Cascade Classifiers is built upon using the haar transform.

C. A. Lende J. N. Lundal 12

There are of course more things going on, but classical methods should be sufficient

in detecting the salmon and various features on the fish, or could perhaps outperform

the ML algorithms. Article [15] defends classical methods compared with deep neural

networks. It is argued that DL algorithms are attractive because they require minimal

human design because of their nature with using collected data, but a downside is the

finite computing power. GPUs(which DL and other ML methods run on) are power hun-

gry. Hence, using a GPU for each module to run is restricting. To make a proper ML

algorithm requires proper understanding of the problem. Without it, many classifiers

will be sub-optimal network designs[15].

A vital aspect in using ML algorithms will be the data, which is in this case the images

of Atlantic Salmon. The larger the dataset available, the better the ML algorithm will

perform. Of course, this also depends on which type of ML is used. [5] used a Support

Vector Machine(SVM), a type of ML, with a convolutional neural network(CNN) to-

gether with a sparse and low-rank matrix decomposition to detect and recognition. To

train the classifier, 27,370 images of fish were used. The algorithm in [16] uses HOG

combined with an SVM to detect vehicles. To make the classifiers, 8792 images of differ-

ent vehicles were used. The face detection classifier made by Paul Viola and Michael J.

Jones used 4916 positive images to create the haar cascade classifier[17]. The best suited

dataset of salmon that is available for use is 604 images of salmon of 202 individuals.

This is generally not enough data to use in ML algorithms and the created classifier

would be too weak(meaning falsely classifying too many images) for use.

This project therefore utilizes classical image processing methods to detect the salmon

and gather features from it.

Further chapters

The following chapters contain:

• Chapter 2: Theory about relevant themes for methods used for object detection

and feature extraction.

• Chapter 3: Implementation of methods to gather different features from salmon.

• Chapter 4: Experimentation and results using methods presented in the previous

chapter.

• Chapter 5: Economy: A stand alone chapter, which addresses drivers in the Norwe-

gian and world-wide aquaculture industry. Assumptions are made, and simulations

C. A. Lende J. N. Lundal 13

are conducted in order to determine the actual economical impact individual fish

recognition could have for the Norwegian industry.

• Chapter 6: Discussion about the results gathered in the project.

• Chapter 7: The conclusion of the project.

Chapter 2

Theory

How an image is taken is important in regards to image processing. Avoided sharp shad-

ows and getting clear images with a good setup is important. Theory for optics is first

presented. Segmentation follows next; how to divide an image into different regions and

extract valuable information is crucial when detecting features of an image. The theory

for segmenting an image using thresholding and k-means clustering is presented, followed

by edge detection. Finally, theory on how to detect spot-like features is presented.

2.1 Optics

In physics, Optics is the area that focuses on the behaviour of lighting and ways to

detect it. In Machine Vision, thorough ground work on the optics is often vital for later

stages of applications. Unfavourable lighting conditions can cause several problems in

images. Especially uneven illumination and sharp shadows are considered troublesome

when concerning feature extraction from objects.

A way to minimise both these problems is to have light come from several angles, by

several light sources, and to have the light spread by diffuse reflection[18]. This would

be especially important when using light sources that emit direct light, such as LED.

Diffuse reflection is when light-waves are spread by hitting a reflective surface or passing

through a medium. Any material that diffuses the light, is called a diffuser. There are

several specific methods that are used to diffuse light, but a cheap and effective one is to

use a matte white surface or medium, because this absorbs little light. The theoretical

perfect diffuser reflects 100% of the light it receives and spreads the waves equally in all

directions, so that it will appear equally bright from all angles[19]. Fig. 2.1 illustrates a

case of perfect diffuse reflection.

14

C. A. Lende J. N. Lundal 15

Figure 2.1: An illustration of perfect diffuse reflection off a surface. The blue arrow
is an example of the opposite, where the reflection is not diffused at all. This is what

is wanted from a mirror. Image from: Wikimedia Commons.

https://commons.wikimedia.org/

Fig. 2.2 shows a practical example, where a white umbrella is used as a medium, to

diffuse sunlight. As a result, sharp shadows on the frog are removed, and colors become

more monotone.

Figure 2.2: An example of a practical diffusion solution, and its result. Here, a matte,
white umbrella is used as a medium to spread the sunlight. Notice the difference in
sharp shadow edges from the image to the left compared to the right. Also, the lighting
on the frog itself is more even in the diffused image. Image from: Wikimedia Commons.

https://upload.wikimedia.org/

https://commons.wikimedia.org/
https://upload.wikimedia.org/

C. A. Lende J. N. Lundal 16

2.2 Segmentation

The purpose of segmentation is to extract information from an image such that the

output image holds only a fraction of the amount of information of the original, but

leaving the little information in the original much more relevant and valuable for an

automatic vision system.

Image segmentation is to divide parts of an image into regions by their outlines. That

is to separate the image into areas made up of pixels that have something in common,

whether it be similar color or brightness that suggests they belong to the same object

or part of an object[20]. Fig. 2.3 is a segmented image of a salmon.

Figure 2.3: A salmon segmented into different sections. The body of the fish is clear.

Fig. 2.3 shows the different areas in uniform color. The shape of its body is clear,

because pixel in that region had something in common.

2.2.1 Segmentation by Thresholding

One of the simplest ways of performing image segmentation is with the use of thresh-

olding. If the number of pixels with a specific gray value is plotted against that value, a

histogram of the image is created. If the histogram is properly normalized, it essentially

functions as the probability density function of the gray values of the image.

Assume there is a bright object in an image surrounded by a dark background, and the

object is to be extracted. For this image, the histogram will have two peaks, one for all

gray values in the dark background and one for all the gray values in the bright object.

This is illustrated in fig. 2.4.

In fig. 2.4 there is a valley between the two peaks. If the threshold value is chosen to

be the one corresponding to the gray-level in the valley, indicated by t0, and label all

intensities greater than t0 as the object and those lower than t0 as the background, the

object can be extracted from the image.

What is meant by ”extracting” an object from an image, is to identify the pixels making

up the object. To express this information, an array is created with the same size as the

C. A. Lende J. N. Lundal 17

Figure 2.4: The histogram of an image with a bright object and a dark background,
giving two peaks. t0, depicts the threshold that separate the image into black and

white.

[20]

original image, where each pixel is granted a label. All pixels that make up the object of

the image are given the same label, and the pixels for the background another label[20],

thereby segmenting the image.

Fig. 2.5 shows a histogram of an image of a random salmon on an originally blue

background. The image is bimodal[21], meaning that is has two peaks, also as in fig.

2.4.

Figure 2.5: The histogram of a random salmon on an originally blue background. The
grey-level values of the background merge with the gray-levels of the salmon, except

for the bright parts of the fish.

A salmon vary in intensity. It has both very dark and bright areas. The dark areas of

the fish blend in with the background, since there is no distinct valley for the darker

C. A. Lende J. N. Lundal 18

values in the histogram. But there is a spike at around 250 in the histogram, those

values being the bright values of the fish.

If there is no distinct valley between the object and the background, hysteresis thresh-

olding can be applied. Hysteresis thresholding is often used when many of pixels of the

background have the same values as the object and vice versa. This is particularly a

problem near the boundaries of the object, which could be fuzzy and not sharply de-

fined(as is the case with a salmon gray values merging with the background). Hysteresis

thresholding uses two threshold values instead of one, t1 and t2. The highest threshold

is used to define the ”hard core” of the object. The lowest of the two thresholds is used

in conjunction with spatial proximity of the pixels: if a pixel has intensity value lower

than the greatest threshold, but higher than the low threshold, it is labelled as an object

pixel only if it is adjacent to a pixel labelled as a core object pixel[20]. A histogram with

hysteresis thresholds is illustrated in fig. 2.6

Figure 2.6: The same histogram as before, but this time with two thresholds to better
extract the object of the image. This is called hysteresis thresholding.

[20]

Otsu’s Threshold

Otsu’s method is a method developed directly in the discrete domain, and aims to find

the threshold that maximises the distinctiveness of the two populations to which it splits

the image into. Eq. 2.1 is used to compute the distinctiveness, which is the interclass

variance.

σ2
B =

[µ(t)− µθ(t)]2

θ(t)[1− θ(t)
(2.1)

C. A. Lende J. N. Lundal 19

Where µ(t) ≡
t∑

x=1
xpx, θ(t) ≡ limitstx=1px, and in turn where p(x) are the values of

the image histogram, µ is the mean gray value of the image and t is the hypothesised

threshold. The idea is to start from the beginning of the histogram and test each gray

value t for the possibility it is the threshold that maximises eq. 2.1, by computing the

values of θ(t) and µ(t), and substituting them into σ2
B. Like this, the t that maximises

eq. 2.1 is identified. The method assumes that σ2
B is well behaved, meaning that it it

only has one maximum[20].

It general, otsu’s method places the threshold in between two peaks if the image is

bimodal[21].

There are some drawback when using otsu’s method:

1. The probability density functions p0(x) and pb(x) are described, by the method,

only by using their means and variances. This means that it tacitly assumes these

two statistics are sufficient to represent them, even though it may not be true.

2. When the two populations are very different from each other in size, σ2
B may have

two maxima and the correct maximum is not necessarily the global maximum.

3. The method assumes that the histogram of the images are bimodal, meaning it only

contains two classes. If there are more than two classes in the image, the method

must be expanded so that multiple thresholds are defined, which maximises the

interclass variance and minimises the intraclass variance.

4. The method will divide the image into two classes, regardless of the division making

sense. It should not be applied directly is under variable illumination.[20]

Adaptive Gaussian Thresholding

While most threshold methods set a fixed threshold for the whole image, adaptive thresh-

olding sets a threshold for each pixel based on the neighboring pixels. To calculate this

threshold, T (x, y), the following steps are performed:

1. An NxN region around the pixel location is chosen.

2. The weighted average of the NxN region is calculated, either with using the average

of all the pixel location that lie within the NxN area, or by using the Gaussian

weighted average. The Gaussian weighted average will weight pixels closer to the

center of the NxN region heavier, meaning they get more of a say in the choosing

of the threshold, denoted by WA(x, y).

C. A. Lende J. N. Lundal 20

3. Calculate T (x, y) by T (x, y) = WA(x, y) − C, where C is a constant subtracted

from the weighted average, such that the threshold can be scaled as wanted for

different results.

Fig. 2.7 shows an image with clear dark and bright contrast of tables on white paper.

However, notice how at the right lower corner there is a sharp shadow. The image

is thresholded first with a fixed threshold, then with adaptive thresholding with both

weighted average and Gaussian weighted average, shown in fig. 2.8.[22]

Figure 2.7: An image with stark contrasts from dark to bright of various tables on
white paper.

[22]

Figure 2.8: The leftmost image is fig. 2.7 thresholded with a fixed value of 50.
Information in the right lower corner is lost due to the dark shadow. The two following
images are of adaptive thresholding, middle image with weighted average and rightmost
with Gaussian weighted average, both with a 5x5 window and C = 10 and C = 7
respectively. The sharp shadow is gone and more information is available from that
section. Both images are overall better as well, especially when looking at longer lines

in all three images.

[22]

The leftmost image in fig. 2.8 is fig. 2.7 thresholded with a fixed value at 50. Much of

the information is kept, except for in the lower right corner, where the shadow was. The

two following images in fig. 2.8 are of the same image, but adaptive thresholding has

been used, first weighted average and then Gaussian weighted average. The convolution

C. A. Lende J. N. Lundal 21

windows is set to 5x5 for both instances and C = 10 and C = 7 respectively. In both

these images the sharp shadow is gone and replaced by white. More information is

available, though there are still some resemblance to the shadow(in clear white). The

set threshold value could have been changed to try to reduce the shadow, but adaptive

thresholding might work better in this instances where the illumination is uneven across

the image[22].

Whichever method is used to threshold the image, the new image will have two or more

classes. Mostly, the values below the threshold are reduced to 0 and those above to

255. The image is then segmented by whether the pixel has value 0 or 255. All pixels

adjacent to another pixel with the same value are given the same label. This is how the

image is segmented by thresholding.

2.2.2 Segmentation by Clustering

Clustering is the most common type of unsupervised learning within machine learn-

ing. Unsupervised learning can be useful when working with data-sets that include

unknown(or unlabelled) data. In a labelled dataset, machine learning will try to predict

which label new data should be classified in, but unsupervised learning means that one

tries to learn from data without already set labels. A clustering algorithm finds similar-

ities between the unknown data points and groups them together. Thus, it is useful for

finding hidden patterns in data-sets.[23]

Clustering in images with the K-Means method

K-means is a commonly used method, mostly because of its simplicity and effectiveness

in practise.[24] Images could be defined as a dataset of somewhat unknown data. A large

image can contain several million pixels. It would then be strenuous and unpractical to

define classes and classify each pixel manually. Using clustering, a computer can both

create reasonable class borders and assign pixels to the defined classes.

In image processing, segmentation by clustering can be useful for both finding single

or similar objects, but also to compress the image. It can be used to assign pixels

with similar color tones and/or lightness together to the same class. This enables the

possibility to segment objects or regions in the image by color, or simply to compress

the image into fewer distinct colors. This is different to reducing the number of colors

linearly, because a clustering algorithm tries to divide the image into colors so that the

totality of color change is as little as possible for all the pixels combined. This is typically

measured by euclidean distance.

C. A. Lende J. N. Lundal 22

The name K-means originates from the idea to divide n number of observations, into

a given k number of clusters. By iteration, the cluster centers are chosen as the mean

value of all the objects currently assigned to the cluster, and the objects are reassigned

to the cluster with the nearest cluster center. This is repeated for another given number

of iterations, or until an acceptable result, given by a threshold, is reached.[24]

The steps are described below and fig. 2.9 illustrates said steps.

1. The cluster centers are chosen as the colored circles. This is done either by random,

custom or by chosen methods.

2. All objects (squares in fig. 2.9) are assigned to their nearest cluster center by

euclidean distance.

3. The cluster centers are moved to the mean value(or position) of the assigned

objects. Notice how the red class only have one object, and the cluster center

therefore is moved exactly to the location of that object.

4. Repeat Step 2 and 3 until a given criteria or maximum number of iterations is

met.

Figure 2.9 shows an example of the first steps of a simple K-means clustering example.

Figure 2.9: The figure illustrates the steps in the K-means clustering algorithm.

https://commons.wikimedia.org/

The idea of the standard algorithm for the K-means method goes back to 1957[25] and

has since then been frequently used. The method is described as relatively effective and

efficient, compared to methods of similar purpose. It is therefore especially useful on

large data-sets, such as images, which can contain several million pixels and therefore

several millions of observations for the algorithm to consider. Nevertheless, the standard

K-means method has a pitfall regarding initialization of the cluster means. If these are

chosen randomly, it may lead to a poor choice of initial cluster centers, which can make

https://commons.wikimedia.org/

C. A. Lende J. N. Lundal 23

the process take longer and/or lead to a poor result. This has led to the development

of several initialization methods over the years.[26]

K-means and clustering by colors, using LAB color space

Clustering in images can be useful when one wants to segment the image by color.

Considering color is more complex than only considering lightness. The lightness of

pixels can be thought of as a linear ”problem”. It is harder to segment a picture based

on the degree of several individual color values, like RGB. It leads to more possible

combinations, and it is more complex to choose a reasonable threshold. In RGB color

space, the lightness of the pixels influences all three dimensions. For example, light green

and dark green would be located far away in RGB color space, and would be segmented

into different classes using clustering.

LAB is an alternative color space, that is commonly used when clustering by colors.

LAB also has 3 dimensions, where the L represents the lightness, and the A and B

represents the red-green and blue-yellow components of the pixel[20]. This way, it is

possible to disregard the lightness and only consider color when segmenting(though,

low lighting can conceal the color intensity of an object). This way, different shades

of for example green, would be segmented together, regardless of brightness. LAB is

therefore a favourable color space to use, when facing problems such as shadows and

uneven illumination in images.

To consider, when using the K-means algorithm

The K-means methods, like most method, has its pitfalls. Or at least things to be aware

of. Some of these pitfalls are explained in regards to image processing:

1. Colors that take up a lot of area in the image will often affect colors of smaller

areas. If there is a lot of blue in the image, and only a tiny bit of green, the green

pixels may be assigned to a blue cluster center. The green pixels will of course

move the blue cluster center towards green, but since blue is the dominant color,

this won’t be enough to matter. This could create an illusion of an existing pattern

which is not present. The green and blue could be classified as the same color,

when they are not.

2. Using clustering to label objects will cause random labelling every time. For

example if identifying a fish in an image, it is not expected that the fish will be

placed in the same cluster index every time. Actually, the exact opposite should

C. A. Lende J. N. Lundal 24

be expected. Therefore it is necessary to know at least something about the object

of interest. For example: its approximate color, where the object is expected to

be placed in the image, or the approximate size of the object.

2.3 Edge Detection

Edges can be detected by running a smaller window over the image to calculate certain

statistics. To explain this, the smallest possible window is chosen: two adjacent pixels.

If the difference in intensity between the two pixels is high, the window is running over

an edge. This is an estimate of the first derivative of the intensity function, first in

one direction of the image and then in the second direction. Eq. 2.2 shows the first

derivative in the x-direction of the image and eq. 2.3 in the y-direction.

δfx(i, j) ≡ f(i+ 1, j)− f(i, j) (2.2)

δfy(i, j) ≡ f(i, j + 1)− f(i, j) (2.3)

Many images might contain noise, which would cause every small and irrelevant fluc-

tuation in the intensity value to be greatly amplified when differentiating the image.

Generally, an image should be smoothed before finding the local differences. To both

achieve smoothing and differentiation in one go, a minimum 3x3 mask is used. This is

shown in fig. 2.10.

Figure 2.10: A 3x3 mask which is used for both minimum smoothing and edge
detection. In a cascaded manner, this applies first a 3x1 smoothing mask and then a
1x3 differentiation mask, or the other way around. In general, a 2D 3x3 mask will have

this form.

[20]

If the K in fig. 2.10 is replaced with 2, it will become the Sobel masks, which is often

used to differentiate an image along two directions. These are shown in fig. 2.11

It must still somehow be decided whether a pixel is part of an edge or not. Edges are

positions where the image function changes drastically, compared to a uniform surface

or background. As the image is a 2D function, the gradient is calculated to find these

C. A. Lende J. N. Lundal 25

Figure 2.11: If K = 2, fig. 2.10 becomes the sobel masks.

[20]

positions, ∇f(x, y). The gradient of a 2D function is a 2D vector. If, for example, the

sobel masks are moved across the image, it will create a gradient vector associated with

each pixel. Edges in the image will be places where the magnitude of the gradient vector

is a local maximum along the direction of the gradient vector. The local value of the

gradient magnitude has to be compared to the values of the gradient calculated along this

direction and at unit distance on either side away from the pixel. In most cases, these

gradient values will not be known, because they are at positions ”in between” the pixels.

Then, either a local surface is placed upon the image and used to estimate the gradient

magnitude at all interpixel positions where it is required, or the value of the gradient

magnitude is computed by interpolating the values of the gradient magnitudes at the

integer positions that are already known. This is known as non-maxima suppression, and

after it has taken place the values of the gradient vectors are tested against a threshold.

Only pixels with gradient values above the threshold are counted as an edge[20].

Fig. 2.12 is an image where a sobel mask has been convoluted across the image to detect

vertical edges.

Figure 2.12: A sobel mask was run over a salmon to detect vertical edges in the
image. The image is of the gills of a salmon.

C. A. Lende J. N. Lundal 26

2.4 Detection of spot-like structures

A Spot-like structure in an image, is a type of blob. A blob is defined as a point or

region in image space, that has a higher or lower intensity value than the surrounding

region. Every blob should therefore contain at least one local extrema[27].

By definition, blob detection can be regarded as a type of interest point detection[28].

Interest points are used in image matching, to find corresponding points in images of

the same object. Historically, interest point detection started with corner detection to

extract robust features from images, in order to track moving objects in video. Interest

points could however also be used to match and identify objects over longer time, and

in different scenes.

Quoting T. Lindeberg in [28]: Interest points should:

1. have a clear, preferably mathematically well-founded, definition,

2. have a well-defined position in image space

3. have local image structures around the interest point that are rich in information

content such that the interest points carry important information to later stages,

4. be stable under local and global deformations of the image domain, including per-

spective image deformations and illumination variations such that the interest

points can be reliably computed with a high degree of repeatability

5. be sufficiently distinct, such that interest points corresponding to physically differ-

ent points can be kept separate

Blob detection has not allways been regarded within the class of interest point detection,

but it has gradually been realized that there is no solid reason to exclude it, especially

because most blobs has a ”well-founded” position in the image space, often defined by

a local extrema or centroid.[28].

2.4.1 Blob detection methods

There are several approaches to blob detection. Some common approaches is the use of

Laplacian of Gaussian, Grey-level trees, difference of Gaussians (DoG) and the determi-

nant of the Hessian.

In this project, especially the ideas of the LoG and Grey-level trees are used. The

spesific methods are however not directly implemented, but the methods that are used,

are based on the same ideas.

C. A. Lende J. N. Lundal 27

The method developed in 3.7.2 Dark Spot Detection method shares the same basic

principle of LoG, by applying a Gaussian blur for enhancing blob-like structures, and

the method in 3.7.1 Simple Blob Detection Method shares the same approach of using

multiple gray values to define blob regions, such as Grey-level trees.

LoG

The LoG, is one of the oldest and most common approaches for blob detection[29]. A

Gaussian kernel is applied to an image to enhance blobs, and the local extrema in every

blob is detected by the Laplacian. This becomes the interest point of that blob. If the

kernel shape and size fits the blob, and the blob is dark or light, a local extrema will be

located towards the center of the blob[29].

Fig. 2.13 shows an example of a Laplacian distribution. This distribution is circular,

and would therefore perform best when applied to circular structures of the same size.

Figure 2.13: A 3D and 2D representation of a circular Laplacian distribution. Image
from: www.uio.no

Hence, a basic problem of using a Gaussian kernel in LoG and similar methods, is

choosing a fitting kernel size. The best results occur when the kernel size fits the size

of the object that is being detected. If the goal is to detect blobs of different and/or

unknown sizes, a multi-scale approach is preferred[30].

Fig. 2.14 and fig. 2.15 illustrates the enhancement of spot-like objects when a Gaussian

blur is applied.

Comparing the graphs in fig. 2.15 to the ones in fig. 2.14 it is evident that the amount

of local extremas are reduced. This makes the remaining extrema enhanced. By filtering

only the dark extrema of these images, features such as the dark spots of the fish can

be extracted as interest points. However, a too strong/large blur could wipe out small

extrema and fuse nearby blobs together. This is why scale variations are important.

C. A. Lende J. N. Lundal 28

(a) Original Image (b) 3D plot of values plot (c) Contour plot

Figure 2.14

(a) Applied Gaussian blur (b) 3D plot of values (c) Contour plot

Figure 2.15

Grey-Level blobs and Grey-level trees

The ideas of Grey-level blobs is similar to the LoG; that every blob is a region that

should be associated with at least one local extrema. In addition, the extension of the

blob’s area is decided by the gray-level around it. The blob are allowed to grow until

merging with another blob[27]. Fig. 2.16 illustrates how these regions are defined.

Figure 2.16: Grey-level blob detection.

[27]

Grey-level trees are constructed by Grey-level blobs as its ”leaves”. When the gray-level

threshold is reduced or increased, the blobs are fused together, as illustrated in 2.17.[27]

C. A. Lende J. N. Lundal 29

Figure 2.17: A Grey-level tree with blobs as ”leaves”.

[27]

2.4.2 Blob features

When blob regions are defined, for example by combining many layers of blobs, the

detected blobs in each region can be combined to return suitable blob features, such as

an interest point and shape descriptions. By using the shape features, different spots

could be filtered or categorized by features such as area, gray value, circularity, inertia

and convexity. All these parameters are used when filtering blobs in 3.7.1 Simple Blob

Detection Method. They are also thoroughly experimented with in 4.3.1 Spot detection

by Simple Blob Detection on data-set 1.

Fig. 2.18 shows an overview that intuitively explains the blob features. The features

are further described below.

Figure 2.18: Blob shape features.

[31]

The area could be used to only consider blobs of particular sizes. [31][32]

C. A. Lende J. N. Lundal 30

The threshold parameter can be used to detect blobs of certain gray value.

Circularity measures how close to a circle a blob is, for example a hexagon is closer to a

circle than a square. Circularity is defined as eq. 2.4. A perfect circle has value 1, while

a square would be 0.785.

c =
4πA

(perimeter)2
(2.4)

Inertia ratio measures how elongated a blob is. A circle has the value 1, an ellipse

somewhere between 1 and 0, while a line has the value 0. Increasing the inertia ratio

will discriminate against blobs that are elliptic. This is illustrated in fig. 2.19.

Figure 2.19: The inertia measures how elongated an area.

[31]

Convexity is defined as shown in eq. 2.5.

Area of blob

Area of convex hull
(2.5)

A shape’s convex hull is the tightest convex shape that completely encapsulates the blob.

This is illustrated in fig. 2.20. A value close to 1 will discriminate against blobs that

have concave shapes or concave section in the body of the blob.

Figure 2.20: The difference between a convex and a concave blob.

[31]

Chapter 3

Methods

This chapter presents methods for locating the salmon in the image, extracting the

head and tail, locating the pectoral fin, finding the gill opening, spot detection and a

method for individual recognition. First is a presentation and information about the

data, followed by the methods mentioned above.

This is shown in the flowcharts below:

31

C. A. Lende J. N. Lundal 32

Figure 3.1: The process each image is put through to detect features, which are in
turn used to create a feature vector for each fish in an image. Once this has been done

for all images, the salmon are tried to be recognized from one image to another.

3.1 Presentation of data

Two different data-sets of bred Atlantic Salmon, are used in this project. One was

chosen as the main data-set, that was used for developing methods and thorough exper-

imentation. The other set was only used for testing the versatility of the most important

methods. The data-sets are further referred to as:

1. Data-set 1: The main data set.

C. A. Lende J. N. Lundal 33

2. Data-set 2: The secondary data set.

On the following pages, the two data-sets are presented and compared.

Main data-set - 16 months old smolts - bred by MOWI

On the 12th of March 2019, 203 MOWI smolts were photographed specifically for this

project. Three images were taken for each fish. A Point Grey FL3-U3-13S2C-CS camera

was used. The images were captured and saved in TIF format, and the camera color

processing algorithm was set to ”Weighted Directional Filter”. The dataset was cleaned,

and 534 images of 195 fish were defined as favourable to use for this project. Appendix

A contains list of every image that was not included, and arguments why. Generally, it

was because the fish was not immediately surrounded by a blue background, or that the

fish was in fast motion (blurry) or in an unfavourable angle, as the preferred angle was

somewhat horizontal, with the nose facing to the left.

Figure 3.2: An example image from the main dataset. These images display an
Atlantic Salmon smolt, surrounded by a blue background.

The images of this data-set displays relatively good quality and consistency of the scene.

Also, the whole fish was displayed in all of the images. These are the main reasons

that this was picked as the main data-set. The approach for capturing these images is

described in 3.2 Image Capturing of Atlantic Salmon, page 36. An example image is

shown in fig. 3.6.

Secondary data-set - 12 months old smolts - bred by IMR

This dataset was acquired from IMR’s biologist Ole Folkedal. The images were originally

captured in context with their project on visually recognising salmon by their spots on

C. A. Lende J. N. Lundal 34

Figure 3.3: An example image from the secondary data-set. These images displays
Atlantic Salmon smolts, bred by IMR. The fish are immediately surrounded by a blue

cloth-like background, which contains variation due to curves of the fabric.

the gill cover over time [14]. The images were not intended to be used for computer

vision, only for manual comparison. Fig. 3.3 shows an example image.

The data-set contains 246 images of 246 fish. The images were taken in similar fashion

as fig. 3.3, but the images does often not include the whole fish. The camera used was

a Canon EOS 550D. The camera, nor the fish, was not completely static in all images,

and thus, the scene varies a bit, and the fish is a bit blurry in many images.

Discussion and Comparison of Data-set 1 and 2

Table 3.1 shows a comparison of important traits of the two data-sets. This serves as an

overall overview of the data-sets, and not a description of each individual image. The

images vary within the set, but this serves as a general distinction.

C. A. Lende J. N. Lundal 35

Comparison of the data-sets

Data-set 1 2

Skin color tone Darker on top Overall light

Separability from background Easily Harder

Parts displayed Whole fish Misses tail fin

Static camera position Yes Nearly

Consistency* Good OK

Contrast Not favourable Better

Pixel resolution 1280x960 3456x2304

Avg. No. of spots on gill cover 1.90 2.34

Avg. size of fish 192+-14mm 209+-12mm[14]

No. of fish 203 246

Images per fish 3 1

Table 3.1: Comparison between the two data-sets. These comparisons are relative to
each other, and is done in order to highlight the advantages of each data-set. As can
be seen, each data set has it’s own advantages. These are highlighted with broad text.
Eventually, the advantages of data-set 1 were considered as favourable for developing
methods. *Consistency means how persistent the images are in similarity, like fish-

placement, focus and same background between images.

As can be seen in table 3.1, both data-sets has their advantages. Data-set 2 has advan-

tages that could cause better results, such as lighter skin color of the fish which then

would lead to better extractions of features from spots, eyes and fins. The images are

also taken with a better camera with high resolution. However, these advantages were

considered as less desirable than the advantages of data-set 1. In practice, one should

not expect that the fish has such brightness. Salmon in general look more like the ones

in data-set 1. Also, large resolution is good, but often prove unfavourable due to longer

processing time. It would be more realistic to challenge the methods by applying them

to images of lower resolution. In machine vision, images are often resized to save time.

The fact that the images in data-set 1 proved to be consistent and the whole fish is

displayed in every image, resulted in the choice of using data-set 1 as the main data-set

for developing methods. Since 3 images was taken of each fish, this better enables the

opportunity to experiment with recognition/matching between images in later stages.

Data-set 2 is used to test the versatility of the methods.

Conclusion

Due to the favorable advantages of data-set 1, it was chosen as the main data-set for

developing and testing methods. Data-set 2 has other advantages and was kept as a

C. A. Lende J. N. Lundal 36

testing data-set.

3.2 Image Capturing of Atlantic Salmon

Images of Atlantic Salmon were captured when the fish was anesthetized and taken out

of water. In addition to standard capturing problems, capturing images of Salmon had

a couple of specific difficulties.

Requirements / Problems

1. Capturing needs to be done fast, as the fish should not stay too long out of water.

Workers at MOWI suggested as a rule of thumb that 1.5 minutes should be the

absolute limit, and that under 30 seconds was preferable. Also, the images needs

to be captured before the anesthetic ends, as a conscious fish is quite wriggly.

2. The scales of the fish are very reflecting. Therefore, diffused light is preferable to

obtain even lighting and avoid sharp shadows (See 2.1 Optics).

3. The fish is generally very dark on the top, and light on the bottom. This can

make it hard for the camera to adjust it’s gain value. This may cause a dark

image, or blinded regions in the image, where all pixel values are maxed out, and

one therefore will miss contrasts that are actually there.

4. Generally, fish factories are tight in space, and there is a lot of water flowing

around. The ”studio” therefore needed to be small and able to withstand water.

5. All the equipment was transported in a car, a little boat, and then carried inside

the factory. Therefore it was designed to be robust and easily portable.

Construction of the ”studio”

With limited funds, a photo-box was built by prototyping in order to fulfill the require-

ments.

A cut of the model is illustrated in Fig. 3.4, while fig. 3.5 shows the inside of the box

(before the blue background was installed) and the setup at the factory. The reasons of

the implementation is explained in the following points:

1. Normal white printing paper was attached to the insides of the box, in order to

achieve diffused light reflection.(See 2.1 Optics))

C. A. Lende J. N. Lundal 37

2. White paper were also placed in front of the LED lists as a medium to spread the

direct LED light.

3. LED lists were attached about 17cm above the ground plate, so that the lightning

would get some angle towards the ground. They were not placed any closer,

because this seemed to cause lower lighting for the upside of the fish.

4. In the end, it was chosen to use a blue background for easier extracting of colorless

objects like an Atlantic Salmon. This causes worse diffuse reflection from the

ground, and it could be discussed whether white should be used instead. The

dark-ish blue background may have made it difficult for the camera to capture all

the contrasts, which can be seen in the resulting image in fig. 3.6.

Figure 3.4: The design of the fish-photobox prototype. This is a vertical cut. The
dark grey color represents the normal white printing-paper. The camera, shown as
purple, was attached in a hole from above with Field Of View pointing down. Yellow,
represents the LED lists, attached 17cm above the ground plate, pointing inwards.
Also, the figure shows how the fish is placed relative to camera, on a blue background.

A result example can be seen in Fig. 3.6. As wanted, there are no sharp shadows around

the fish. It also seems relatively even illuminated, and there are little direct reflection

from the scales of the fish. A problem is that the camera seems to be unable to detect

C. A. Lende J. N. Lundal 38

Figure 3.5: Left: An above viewing of the photobox, with no lid. The LED-lists are
attached around the box, so that there will be light from all angles. The test object
at the center receives lighting from every angles, which causes little shadow and even
distribution of the light on the object itself. This was before the blue background as
shown in fig. 3.4 was inserted. Right: Setup of the image capturing system in the

smolt-factory.

the contrasts on the downside? of the fish because of blinding. Simultaneously, it seems

to have a hard time in capturing details of the dark upside, as we can barely see the eye.

These are opportunities for future work.

C. A. Lende J. N. Lundal 39

Figure 3.6: One of the resulting images from the capturing setup.

Improvents / Future work

The main problem seem to be the lack of contrast details. Three suggestions are listed

below as possible solutions to fix this. A combination is probably good.

1. Experiment with a lighter background, for example white. This would prevent the

later use of simple color segmenting methods, but there are other ways to segment

an image.

2. Steinar Laudal from Mestec suggested to increase the lighting that hits the dark

side of the fish, For example by three times the intensity. This was not done in

this instance, because it was originally planned to rotate the fish.

3. Use a better camera, which better captures the contrasts.

3.3 Extraction of the fish in the image

This and the next sections shows how the images are processed in order to extract

information.

C. A. Lende J. N. Lundal 40

First, the foreground object, or the object of interest in the image, has to be detected

and extracted from the image. In this case; the fish. The background should be removed,

such that only the salmon is present.

Second, features from the fish itself are extracted. These are locations and areas of

nose and back fins, front fin, gill opening and spots. The features should be as exact

as possible, since a higher accuracy is needed for potential individual recognition than

other tasks, such as differentiating between species.

Step one is to extract the foreground object of the image, the fish. Methods for achieving

this depends on the image. Different methods has to be developed for different types of

images. The methods can be general and usable on almost any kind of image, or they

can be specific, where it is demanded that the images are captured in a certain way.

Since the latter is less complex, and because it is assumed the setup of image capturing

can be specified also in the future, the method developed was not general, meaning it

cannot extract fish from all images. Instead the method was tailored to fit the setup of

the images acquired for this report.

The method that extracts the fish in the image, is presented in steps below. The method

works for both data-set 1 and data-set 2, with a slight modification. This is explained in

point 6. The code for this method can be found in appendix D.1 Extract Fish in image

on page 140.

Fig. 3.7 shows the input image.

Figure 3.7

1. Convert image to LAB color space(See 2.2.2 K-means and clustering by colors,

using LAB color space). Fig. 3.9 and fig. 3.10, shows that the color components

of the fish is quite different to the background. The background contains high

levels of both blue and green, while the fish is more neutral.

2. Create a 2D Array of the A(red-green) and B(blue-yellow) components of the

image.

C. A. Lende J. N. Lundal 41

Figure 3.8: Display of the image in LAB color space.

Figure 3.9: Display showing only the A, or the red-green component of the image. A
white background represents a strong green component.

Figure 3.10: Display showing only the B, or the blue-yellow component of the image.
A black background represents a strong blu component.

3. Create initialization vector for the K-means method. This can and should be done

because the locations of the cluster centers are approximately known. This makes

the implementation faster and more robust (See 2.2.2 To consider, when using the

K-means algorithm). The initializing vector is: [[128, 116], [150, 69]].

4. Run K-means algorithm to find two cluster centers. The method finds two distinct

colors.

5. Assign all pixels to their nearest cluster center. Since only two cluster centers are

chosen, the image is binarized, as shown in fig. 3.11

C. A. Lende J. N. Lundal 42

Figure 3.11: Binarized image, partitioned into two segments.

6. This point is different for data-set 1 and data-set 2. Data-set 1 is processed as in

(a), and data-set 2 as in (b).

(a) If there are more white pixels (with value 1), invert the image, assuming the

background takes up most of the area. This is to ensure that the fish contour

is white. See fig. 3.12

(b) If the centre pixel of the image is black (with value 0), invert the image,

assuming the fish contour covers this pixel. This is also to enure that the fish

contour is white.

Figure 3.12: This image shows the labelling is in this case inverted. It is preferred
that the fish gets the label ”1”.

7. Find all the external contours of the binarized image and keep only the largest,

assuming this is the fish. See fig. 3.13

8. Fill holes in the contour. See fig. 3.14

9. Output new image, showing only the fish. See fig. 3.15

C. A. Lende J. N. Lundal 43

Figure 3.13: Only the largest contour, which should be the fish.

Figure 3.14: Only the largest contour, where holes are filled.

Figure 3.15: The fish has successfully been extracted from the image, and this is the
image to be used for further experimentation.

Results

The method successfully extracted all 534 fish from data-set 1. This was expected, as the

data-set was cleaned for blurry images, and images where the fish was not immediately

surrounded by blue background. The methods would not perform as good on such

images. ”Success” here, means that the fish has been extracted at a subjectively high

standard, as the results were measured visually.

To evaluate this method in a more neutral and statistical manner, an algorithm could

be used, that compares the actual contour of the fish, with the detected contour. Then,

the number of excess pixels, and missing pixels, could be used to evaluate the method

and compare it to other methods. It would however be time consuming to manually

mark the contour of every fish. This is considered as future work.

C. A. Lende J. N. Lundal 44

3.4 Nose and Tail Tips detection

A method which successfully locates the nose and two tips of the tail fin is desired for

the following reasons:

1. Determining the orientation of the fish in the image. Like which way the nose is

pointing, and which part of the fish is up or down.

2. The placement of nose tip and back fin tips can be used as reference points for

other methods.

3. Estimate the length of the fish.

4. Ability to check how much the fish is bent, which could contribute to better length

estimation when the fish is bent.

In this project, the nose point is especially interesting, because it could be used as

reference to the extract a ROI around the head of the fish, to further detect the spots

on the gill cover of the fish. Also, if it is precise enough, it could be used as a reference

point to spots, and the front fin, to extract structural features.

The nose and tip of back fins are located on the outline of the fish. The idea is that

these can then be extracted by examining the distance from the center of the salmon,

to every point on its outline. The code for this method is found in appendix D.2 Code:

Find nose and Tail Tips on page 145. It was implemented as shown in the following

points below:

1. Input image is the contour of fish like seen in fig. 3.16

Figure 3.16: Contour image of the fish. It is clearly visible and the shape is intact.

C. A. Lende J. N. Lundal 45

Figure 3.17: Same image as before, but now only the contour line is shown.

2. Create outline contour of fish. See fig. 3.17

3. Find all distances from the centroid of the fish to outlined points. A plot of the

distances is shown in fig. 3.18 as the leftmost graph. The vector is shifted to the

global minimum(rightmost graph).

Figure 3.18: The leftmost graph computes the distance from the center of the fish to
the outline points. The rightmost graph is the same, but shifted to the local minimum.

4. Calculate mean distances over 7 points, to get less noise. Shown in fig. 3.19

Figure 3.19: The mean distance is computed to reduce noise.

C. A. Lende J. N. Lundal 46

5. Find all local maximas in the distance vector.

6. Keep only the three largest local maximas. This should be points close to the nose

and two back fin tips, though it is still unknown which points represent what.

7. It is preferred to know what each point represents. First, the original image of the

fish is grayscaled and binarized to find the dark parts of the fish, which is on the

top side. See fig. 3.20.

Figure 3.20: An binarized image inverted, such that the dark parts of the fish is
highlighted.

8. Find the centroid of the dark parts of the fish. Yellow dot in fig 3.21.

9. On the outline of the fish, find the closest point to this centroid. Purple dot in fig.

3.21

10. In the end, the labels are defined by their distance to the outline point(Purple

dot), as shown in figure 3.21. A more detailed explanation is given in the image

text.

Figure 3.21: The nose, top and bottom tail fin tips are localized. The turquoise dot
represents the centroid of the whole fish, while the yellow dot is the centroid of only
the largest dark area of the fish. The purple dot is the closest point to the yellow dot
which is also placed on the outline of the fish contour. It is only by coincidence that
it is placed on the red line in this example. The distance from this point is used to
define the other points. The top tail fin should be at the nearest point, the bottom tail
fin should be at the second nearest point, and the nose should be at the point furthest

away.

C. A. Lende J. N. Lundal 47

Results

Considering the 534 remaining in the dataset, the results were 100% accurate for the two

tail fins. The nose were in some cases mistaken for the chin. However the orientation of

the fish is found. The method could be adjusted to perform better on the nose tip, but

as the method has served its main purpose, it is left like this.

Future work would be to better detect the nose instead of the chin. A suggestion could

be to test which of the two points have darker neighbouring pixels, as the nose tip is

generally darker than the chin.

Reasons of Failure

Even tough these experiments shows 100% accuracy for the image set used, it is not

certain that the top and bottom fin would have been successfully identified in cases

where the fish is more bent. If the bottom fin tip somehow get closer to the contour

point, this would be identified as the top back fin. The method could be developed to

be more robust in this area.

3.5 Pectoral Fin Detection

The pectoral fin is the fin located around where the head meets the body. For each

specimen, the fin will look different and have different placement on each individual,

and can therefore serve as a key component in individual recognition. Fig. 3.22 shows

the location of the pectoral fin on a fish.

Figure 3.22: The location of the pectoral fin on a salmon. The fin is generally in the
same spot on each fish.

Before the fin can be used as a tool for recognition, it must first be located automatically

on each fish. The method developed is shown in fig. 3.23 and the code can be found

in D.3 Code: Fin Detection, page 149. One assumption is made: the background is

uniform, no other objects than the fish of varying intensity.

C. A. Lende J. N. Lundal 48

Figure 3.23: The flowchart describing the algorithm created to locate the pectoral
fin.

C. A. Lende J. N. Lundal 49

The algorithm(named: Fin Detection) uses several measurements to ensure correct lo-

cation of the pectoral fin. Segmentation by thresholding is used and the method tried to

binarize each individual image after it was grayscaled was otsu’s method. Otsu’s method

was primarily used because it would place the threshold between those two peaks, as

discussed in Otsu’s Threshold page 18. It singled out the pectoral fin in most cases.

Hysteresis thresholding was also considered, but in most cases the pixels around the

pectoral fin has very different values than the fin itself. In other words: it is distinct

and not generally not fuzzy around the edges.

After binarization, the images were segmented. In most cases, the pectoral fin would be

the third largest area. This is visualized in fig. 3.24.

Figure 3.24: After segmentation, the idea was that: the background and part of the
salmon’s stomach will be the largest area, its back and caudal fin the second largest

and generally the pectoral fin will be the third largest area

Gathering the third largest area when thresholding with Otsu’s method caused misclas-

sifications on images where the fin wasn’t singled out. Some of these images are shown

in fig. 3.25.

Issues arose because of two different factors: the threshold did not single out the pectoral

fin and/or the pectoral fin was not the third largest area. To tackle this, the nose point

detected by the method detecting the nose and tail tips was used. The algorithm would

gather the third, fourth and fifth largest areas. Using the distance from the nose point it

would chose the one of the three areas closest to the nose of the salmon. This eliminated

classifying the anal fin as the pectoral fin. In a few cases, small areas(smaller than the

pectoral fin) on the gill and head were closer than the pectoral fin and cause misclassifi-

cations. This was dealt with with a threshold for the three areas: the correctly classified

images were used to make a vector containing the sizes of all correct pectoral fins, to

get a measurement of their general size. A threshold of 800 pixels were implemented,

discriminating against all located areas below the threshold.

If all three areas consisted of more than 800 pixels, their distances were computed and

the one closest to the nose was chosen. Same procedure if two areas were larger than

800 pixels. If only one was, it was chosen as the pectoral fin.

C. A. Lende J. N. Lundal 50

Figure 3.25: Misclassified images where the pectoral fin was not detected. Mostly,
other fins were detected.

Should no areas meet the 800 pixel threshold, the image would be binarized again, but

with a new threshold of 100(instead of otsu’s threshold). Intensities at or below 100

would be raised to 255 and those above 100 were reduced to 0. The algorithm then

segmented and gathered the three largest areas and ran the same process as before. If

still none of the third, fourth or fifth area met the 800 pixel threshold, the image was

binarized one last time at 170. The same procedure was performed again. If no pectoral

fin could be located, the algorithm would print ”No pectoral fin detected” on the image.

3.6 Locating the gills

Locating the gills could be an important step in recognizing fish. It could help with

applications like:

C. A. Lende J. N. Lundal 51

1. Finding the orientation of the fish

2. Set Region of Interest(ROI), for example around the ”head”. More specifically:

from the gills to tip of nose. This is useful for further examination of the spots on

the gill cover.

3. Draw features from the gills(for example, the length of the ”head”).

If the gills could be defined visually, then they could be separated from the surrounding

area on the fish. A suggestion on how to visually define the gills follows below. Fig.

3.26, shows an image containing a gill opening.

Figure 3.26: The gill cover. The image shows how the gills are seen from the side of
the fish.

Looking at fig. 3.26, the gill opening is dark, vertical and arc-like. On this particular

fish, one of the spots is ”connected” with the gill. This often happens, and should be

accounted for in the implementation of finding the gills. The dark area of the gill ending,

is usually narrow, but sometimes a fish will have a gill opening that is much wider, or

almost invisible from the side. The algorithm then has the following features of an object

to work with:

1. Is darker then surrounding region

2. Vertical-like shape, compared to fish orientation

3. Narrow, but may vary somewhat it width.

Two different methods were developed for detecting the gill opening. These are from here

referred to as Global Gill Detection, and Local Gill Detection. Global Gill Detection tries

C. A. Lende J. N. Lundal 52

to detect the gill opening while considering the whole fish, while Local Gill Detection

only consideres a ROI, estimated by the nose point and the estimated length of the fish.

Local Gill Detection had the best results, but both methods are presented as they have

somewhat different approaches.

3.6.1 Method 1: Global Gill Detection

1. Input image: See fig. 3.27

Figure 3.27

2. Convert to grayscale. See fig. 3.28

Figure 3.28

3. Apply median blur with kernel size 7. See fig. 3.29

Figure 3.29

4. Apply sobel edge detector, considering only vertical edges. See fig. 3.30

Figure 3.30: A sobel edge detector has been run over the image.

C. A. Lende J. N. Lundal 53

5. Remove extreme values (55 and 200).Theseareprobablytheoutlineofthefish.Seefig.??Createtwothresholdimages, showing”dark”and”light”edges, asseenafterapplyingsobeledgedetector.F ig.??and??

6.6. Label each ”object” in the binary images.

7. Keep only the top 10 largest objects in each image. Fig. 3.34

Figure 3.34: The 10 largest objects in both images combined into one image.

8. Compare every ”dark” edge region, with every ”light” edge region. The dark edge should

be located to the left of the light edge and the light edge should be not too far away

from the dark edge. Also the centroids of the two objects should not be too far apart

vertically. Applying these conditions, should leave fewer gill candidates. Shown in fig.

3.35

Figure 3.35: The remaining gill candidates.

9. Choose the object that is tallest, and define this as the gill opening. The result is

illustrated by fig. 3.36 and 3.42

Figure 3.36: The remaining candidate for the gill.

Figure 3.37: The location of the gill on the salmon, found with the Global Gill
Detection method,

C. A. Lende J. N. Lundal 54

Results and discussion - Global Gill Detection

Off all images, there was a 73.5% hit rate on the gill opening. The failures usually occurs

due to issues like vertical spot patterns or marks on the fish, or if the fish’s orientation

is too skewed. Sometimes, the algorithm detected the eye of the fish instead. Ofen the

gill is also nearly invisible. As the results were considered as promising, but not good

enough, no further evaluation of the method were done. For future work, it should be

considered to allow the method some form for placement guiding.

3.6.2 Method: Local Gill Detection

The code for this method is found in appendix D.4 Code: Get Length and Find Gill

Edge on page 158.

1. Input Data: point of nose and the two back fin tips.

2. Input images: Both the extracted fish and the contour of the extracted fish. fig.

3.38.

(a) Input image 1. Extracted fish. (b) Input image 2. Contour of extracted fish.

Figure 3.38

3. Estimate the length of the fish using the euclidean distance from the nose point

to the point between top and bottom fin tips.

4. Estimate the ROI by the following steps(Fig. 3.39 (a) shows the process):

(a) Of the 100% length of the fish, examine the region between 13%-19% of the

length from the front. This area has proven to include the gills in all images.

Crop out the ROI from this area.

(b) Convert to grayscale, and apply a median blur with kernel size 3.

C. A. Lende J. N. Lundal 55

(a) The estimated
region of interest,
concerning the gill
opening.

(b) (a), converted to
grayscale, and ap-
plied a median blur.

Figure 3.39

5. Create a binarized image, representing horizontal edges of the fish, by the following

steps: Fig. 3.40

(a) Apply a vertical blur. Here a 5x3 mask is used, with values: [1, 2, 1] in every

row, except in the middle row, which is [0, 0, 0]. This is done in order to

accentuate vertical lines. Fig. 3.40 (a)

(b) Apply a horizontal edge enhancing. Kernel: [1, 0, -1]]. Fig. 3.40 (b)

(c) Create a threshold for ”light” edges. Here, the threshold value was chosen

as the median multiplied by 1.03. This was to obtain only the light edges,

which are expected to be on the right side of the gill opening.

(a) Vertical blur (b) horizontal edge
enhancing

(c) Binarization

Figure 3.40

C. A. Lende J. N. Lundal 56

6. Create another binarized image by adaptive thresholding. Fig. 3.41

(a) Input the vertical blurred image.

(b) Apply the openCV function ”ADAPTIVE THRESH GAUSSIAN C” to the

blurred image, creating an adaptive threshold of the blurred image[22]. Here

using neighbourhood size 15x15, and C=4 (See 2.2.1 Adaptive Gaussian

Thresholding).

(a) (b)

Figure 3.41

7. Use the two binarized images to find what is most likely the gill opening: Fig. 3.42

(a) Blend the two images together

(b) Keep only the brightest pixels

(c) Label the different objects in the image, and choose the tallest one to be the

gill opening.

(d) Illustrated result

8. Find the rightmost pixel that is part of the gill opening. This point will later be

used to define the head region of the fish.

9. Output data: column distance from nose to ending of gill opening.

• If the nose is at [x1, y1] and gill ending is at [x2, y2], the column distance will

simply be ‖x2− x1‖, not considering the y-values.

The results of this implementation is presented and discussed in 4.2 Local Gill Detection

Results, starting on page 78.

C. A. Lende J. N. Lundal 57

(a) (b) (c)

(d)

Figure 3.42

3.7 Detecting Gill Spots

Assuming that the spots on the gill cover of Atlantic Salmon are local regions that are

darker than their surroundings, they can be defined as blobs. They should then be

considered as important candidates for robust interest points when matching different

Salmon (See 2.4 Detection of spot-like structures). The spots are also a favourable

choice, considering long term reconition[14].

Two methods were applied and experimented with. The methods will from here on be

reffered to as:

1. Simple Blob Detection (Existing method)

2. Dark Point Detection (Custom made for this project)

3.7.1 Simple Blob Detection Method

The Simple Blob Detection method is the method ”SimpleBlobDetector”, in the OpenCV

library (https://docs.opencv.org/). It has an approach similar to the use of Grey-

level trees (See 2.4.1 Grey-Level blobs and Grey-level trees, page 28). The details of the

https://docs.opencv.org/

C. A. Lende J. N. Lundal 58

algorithm is exclusive, but detailed experiments are presented in 4.3.1 Spot detection by

Simple Blob Detection on data-set 1 to further understand its behaviour.

The method uses the nose point and gill-cover ending from methods Nose and Tail Tips

detection and Method: Local Gill Detection to extract the input ROI (See fig. 3.43

(a)).for the methods presented here.

The code for this implementation is found in appendix D.5 Code: Simple Blob Detector

Implementation on page D.5. The method works as follows:

1. A blob detector is created with the following parameters:

• minimum Threshold

• maximum Threshold

• Circularity

• Convexity

• Inertia Ratio

• minimum Area

– This parameter also scales the max area size, which is exclusive to the

user. Reducing minimum area size could therefore in some cases result

in fewer spot detections.

2. The image is binarized multiple times at increasing threshold values. This results

in several images with different binary objects. The incremeent value is fixed and

defined inside the function. Therefore it is not possible to adjust.

3. Between the several binary images, nearby blobs are grouped together by their

center coordinates, to create the output blobs.

4. Finally, shape features such as area, perimeter and radius, are used to filter out

unwanted blob shapes. This is decided by the input parameters. The result is seen

in fig. 3.43 (b).

C. A. Lende J. N. Lundal 59

(a) Input image: ROI around the head. Au-
tomatically extracted by the nose and gill
cover opening.

(b) Result of blob detection.

Figure 3.43

3.7.2 Dark Spot Detection method

The idea of the Dark Point Detector is similar to the Laplacian of Gaussian blob detector

(See chapter 2.4.1 LoG, page 27), but it does not use the Laplacian to find the local

extrema. Instead it uses a neighborhood approach. Also, it is combined with some

thresholding, so that only dark spots in relatively light areas are detected. Hence, why

it is called Dark Spot Detector. The code for this method is found in appendix ?? ??

on page ??. The method functions as follows:

1. Import input images and convert to grayscale as shown in fig. 3.44.

(a) Input ROI: The head of the
fish.Locating the gills

(b) (a) converted to grayscale (c) The contour of the head of the
fish

Figure 3.44

2. Define parameter values. The parameters are:

• Kernel size for gaussian blur: k

• Sigma for gaussian blur: σ

C. A. Lende J. N. Lundal 60

• Scaling factor for max allowed value of spot center candidate: p

3. Calculate median value of the gray image, which will later be used for thresholding.

4. To find the possible spot areas, start by creating a binarized image by steps illus-

trated by fig. 3.45:

(a) Apply a gaussian blur with kernel size k and σ to the gray image.

(b) Apply adaptive thresholding. function : cv2.adaptiveThreshold. (See 2.2.1

Adaptive Gaussian Thresholding)

i. Data-set 1: A 21x21 Neighborhood is considered, and C=14.

ii. Data-set 2: A 81x81 Neighborhood is considered, and C = 31.

(a) Strong blur. Here, k = 9, and
σ = 3.

(b) (a) is binarized by adaptive
thresholding

Figure 3.45

C. A. Lende J. N. Lundal 61

5. To narrow down the possible spot areas, another binary image is created by normal

thresholding, as shown in fig. 3.46:

(a) Apply a weak gaussian blur with kernel size 3 and sigma 3 to the gray image.

(b) Apply normal/global thresholding. The threshold is set by: threshold =

median ∗ q.

(a) Weak blur by kernel size and
σ equal to 3

(b) (a) is binarized by normal/-
global threshold. In this example,
q = 1.00

Figure 3.46

6. Find the possible spot areas, as illustrated in fig. 3.47, by steps:

(a) Blending the binarized images from fig. 3.45 and 3.46.

(b) Keep only the brightest pixels as the potential spot areas.

(a) Blended image (b) Only the brightest pixels are
kept, as possible spot areas

Figure 3.47

7. Remove the contour edges of the head from possible spot areas. This process is

explained by points a-d, shown in fig. 3.48:

(a) Invert the contour image

(b) Apply adaptive thresholding. function : cv2.adaptiveThreshold. 31x31 Neigh-

borhood is considered, and C = 5, for both data-set 1 and 2.(See 2.2.1 Adap-

tive Gaussian Thresholding)

C. A. Lende J. N. Lundal 62

(c) Blend with fig. 3.47 (b).

(d) Keep only the brightest pixels.

(a) Inverted contour
image

(b) (a) is applied an
adaptive threshold

(c) (b) is blended with
fig. 3.47 (b)

(d) Only the brightest
pixels are kept

Figure 3.48

8. Find all local minimas in the first blurred image. This is done by iterating through

every pixel in the image, and finding every pixel that has lower or equal value than

all of the pixels in it’s 3x3 neighbourhood. The maximum value of these pixels are

described as media ∗ p. See fig. 3.49.

Figure 3.49: The pixels in the image that are the local minima in their 3x3 neigh-
borhood. These are possible spot centers. In this example, p = 1.20

9. By combining the spot area image and the local minima images, the spot centers

are picked, as shown in fig. 3.50:

(a) Blend image fig. 3.48 (d) and 3.49.

(b) Keep only the brightest pixels. The center of each distinct object here, is

defined as a spot center. To prevent the eye from being detected, only areas

in the image past column number 50 could qualify as spot centers.

(c) Illustrated result. In this example, all the spots were somewhat detected, but

excess spots were detected on the pectoral fin.

C. A. Lende J. N. Lundal 63

(a) Fig. 3.48 (d) and 3.49 are
blended.

(b) Only the brightest values are
kept

(c) Illustrated result. In this im-
age, the method has detected all
spots, though there are some false
detection on the pectoral fin.

Figure 3.50

Experiments for this method is conducted in 4.3.2 Spot detection by Dark Point Detec-

tion - Experiments and Results, starting on page 94. The results are discussed after-

wards.

3.8 Individual Recognition

To recognize individual salmon could be achieved with machine learning algorithms, but

to do so requires data. The data-set used only has three images of each salmon and

is scarce from a machine learning standpoint. As mentioned in Individual Recognition,

page 63, the amount of images used to recognize objects are often in the thousands.

1.1.3 Facial Recognition, page 6 mentioned how a structural based method to separate

individuals might work better, especially with the lack of enough data. Having three

images of each specimen is alike the situation to both [10] and [11], who all used structural

based methods.

A method like this doesn’t necessarily recognize an individual salmon, but rather dis-

criminate against all salmon who are not similar enough to a set of values. Is it possible

to discriminate against all salmon except the correct one? To do so, a feature vector

was made for each individual fish. The more similar two feature vectors are, the more

likely they are the same salmon. The feature vectors contain 19 features, and the corre-

sponding filename, making it 20 columns long. The entries in a feature vector is shown

in table 3.2.

C. A. Lende J. N. Lundal 64

Filename The filename is used to evaluate correct or incorrect classification

nosetoPec The distance between the nose and the attachment point of the pectoral fin

Length The length from the nose to the point between the two tail tips

Head length The length from the nose slightly behind the gills

pectoTail Distance from end of pectoral fin to the point between the two tail tips

nose spot(i) Distance from nose to a spot on the head

angle(i) The angle corresponding to nose spot(i)

totSpots The total number of spots on a fish

Table 3.2: All entries in the feature vector and a brief explanation of each. For
clarification, the head of the fish is from the nose to the end of the gills. The maximum

number of spots possible were 8, hence i = [1− 8].

The spots on the fish were manually extracted, to lower the probability that feature

vectors of the same salmon had more of less spots. The spots were also classified as

distinct or complex(which is of no importance for recognition; a spot is a spot), with

the maximum number of distinct spots equal to three, while the maximum number of

complex spots were five. Hence, eight potential spots altogether.

Fig. 3.51 and fig 3.52 shows four distribution plots of the length of the fish, the head-

length and the distances from the nose to pectoral fin attachment and from the end of

the pectoral fin to the tail.

Figure 3.51: This is the distribution of lengths of the fish and the distance from the
nose to the pectoral fin in the MOWI data-set

Unlike the angle, these features are distance-based. The angle for each spot is calculated

with respect to the fish’s orientation. A salmon can move from image to image, which

would render the angle features useless. Fig. 3.53 illustrates how this is calculated

together with equations 3.1

To get the angle between two points, eq. 3.1 was used.

C. A. Lende J. N. Lundal 65

Figure 3.52: The distribution plots for the distance from the end of the pectoral fin
to the middle between the tail tips and the length of the head of the fish.

Figure 3.53: The angle to a spot, θspot(marked with green line), is calculated by
subtracting θfish(blue line) from θbaseline(red line).

θ = arctan(
y2 − x2

y1 − x1
) (3.1)

Where one point is described by (x1, y1) and the other by (x2, y2. Once the angles are

found, the spot’s angle is calculated by θfish = θbaseline − θfish.

Once all features vectors are computed for each specimen, it is put through the algo-

rithm presented in fig. 3.54, fig. 3.55, fig 3.56 and fig. 3.57. The code for how the

feature vectors were created can be found in D.9 Code: create Feature vectors page 177.

The code corresponding to the flowcharts in this section can be found in D.10 Code:

Individual Recognition page 186.

The algorithm goes through two major stages, the first shown in fig. 3.54 and fig. 3.55.

Stage 1 creates a text file containing all so-far-accepted matches for all salmons with

corresponding score. The format of the file is first the label fish’s filename, the matched

test fish’s filename and the corresponding score those two fish got. The test fish is the

fish tested against a label fish to see if it is a possible match.

C. A. Lende J. N. Lundal 66

Figure 3.54: Stage 1, step 1 of the algorithm goes through every label fish and tests
it against every test fish to see if the score gets high enough for a potential match.
Using the feature vectors previously created, it find the errors between the label and
test fish’s features. The score scales with the amount of features used. The x in the
score rectangles is a varying parameter that is higher the closer the features of the two

fish’s are to each other.

C. A. Lende J. N. Lundal 67

Figure 3.55: Stage 1, step 2 of the algorithm shows almost exclusively the testing of
the spots on a fish. If a spot on the test fish is accepted as the same spot on the label
fish, it cannot be chosen again. The more similar the spots, the higher the score(shown
here as x and z variables. If the final score is the equal to or more than the used features,
the filenames of both fish are written to a text file together with their corresponding

score.

The algorithm subtracts a fish’s feature vector from another fish’s feature vector. The

lower the result, the more likely they images of the same fish. Since some salmons have

more spots than others, the amount of available features for each salmon increases its

potential to be correctly classified. Fig. 3.54 shows that if the label fish contains no

spots, there are only four features available features to attempt to correctly classify the

fish. Because of this, the threshold are about 3-4 times as strict. This is to minimize

the amount of misclassifications if there only are four features to use. If the label fish

C. A. Lende J. N. Lundal 68

has a spot or more, the threshold for the four first parameters are slacker.

The angle threshold is calculated for each label fish for each spot. It is calculated as

shown in eq. 3.2.

θthresh = arctan
Sthresh
Dnp

(3.2)

where θ[threh is the threshold and angle has to be below, Sthresh is the distance threshold

for the spot and Dnp is the distance from the nose to the spot. This means that the

further away a spot is from the nose, the lower(stricter) the threshold will be. With

a Sthresh = 12, the spots placement can more around 12 pixels and still be classified

as a potential spot. A spot that is closer to the nose will yield a much greater change

of angle than spots further away moving the same distance. This ensures that the

threshold scales to the distance to the spot, allowing spots closer to the nose to have a

larger Angel-Error, but still make it through.

3.8.1 Feature and Score System

If all feature vectors had the same amount of features, then if the score of two fish got

to, or over, a set amount for all fish, it could be classified as a potential match. But

since the amount of available features vary depending on the label fish, the score system

has to be scaled on how many features were used.

For each feature used, the feature used -variable is incremented by 1. The feature used -

variable is always incremented to at least 4 for each individual, since all fish have the

four first features(nose to fin-, length-, fin to tail- and head length-distance), but not all

have spots. If the test fish successfully get through the thresholds, the score-variable is

incremented by 1 + x. The x-variable is higher if two specimens are more similar. How

this is done is shown the example below:

Say the label fish has one spot. The algorithm gathers all spots on whichever test fish

it is currently testing. If the distance from the nose to the spot of the label fish is 80,

then all distances from the nose to spots on the test fish are subtracted, one by one,

from that distance. For simplicity, let’s say two spots on the test fish came through the

error-threshold with the distances 79 and 68, respectively. The error for each spot is:

Spot 1 error = 80− 79 = 1 and: Spot 2 error = 80− 68 = 12. Spot 1 on the test fish is

closer to the same placement of the spot on the label fish than spot 2.

C. A. Lende J. N. Lundal 69

Since there was a spot to test against, the feature used -variable is incremented by 1, but

no score is added to the score-variable yet. This is to ensure that the fish is discriminated

against should the angle difference for the spots be too great.

Both spot errors are divided by 100, reducing them to: Spot 1 error = 0.01 and Spot 1 error =

0.12. If the difference in angles of both spots are below the angle-threshold, the value

added to the score-variable is shown in eq. 3.3.

score = score + 2 + (0.12− spotxerror) (3.3)

where x is 1 and 2(for the two spots). If the existing score was 4, the new score for both

spots would be: score1 = 4+2+(0.12−0.01) = 6.11 and score2 = 4+2+(0.12−0.12) = 6.

The score for the closest spot will have a higher score than the one further away, but

both are eligible as correct matches. The same method is used to yield a higher score

to angles that are closer too, as well as all distance based features.

If a spot is accepted, the score is always incremented by at least 2. This is because two

features were used: the distance and the angle. Two features are still used if the distance-

error is lower than the threshold and the algorithm has to test the angles. Should no

angle suffice, a feature was still used and the feature used -variable is incremented by 1,

but no score is awarded, making sure that specimen is out of the question. The same

spot cannot be used again if the label fish had another spot that also was close to the

already used spot on the test fish.

If a test fish has many spots, but the label fish only has one, there is a chance that at

least one of the many spots will be around the same position as the one spot on the

label fish. To combat this, the first rectangle fig. 3.55 will calculate the difference in

spots. If the difference is either 1 or 0, the score-variable is incremented by 1 + y. The

difference is divided by 10 and y = 0.3 − (Spot Difference
10). This gives fish with either an

equal amount or a one spot difference a significantly higher score, making it less likely

that a salmon with many spots gets a lucky hit on a salmon with only one spot. If

the label salmon has no spots, it doesn’t matter, because then the algorithm skips that

whole segment.

Fig. 3.55 has several rectangles where a ”flag” is mentioned. Either they are reset, which

means the variable is set to 0, or they are raised; set to 1. This is to make such that if

many spots on a test salmon qualifies as a potential spot, the feature used -variable is not

incremented too many times, but can only be incremented once for each spot checked

on the label fish.

C. A. Lende J. N. Lundal 70

Stage 2 of the algorithm handles the text file created at the bottom of fig. 3.55 and

uses the scores to determine which potential so-far-classified specimen is which, and is

illustrated in the flowchart in fig. 3.56 and fig. 3.57.

C. A. Lende J. N. Lundal 71

Figure 3.56: The text file containing filenames for the label and test fish and the
corresponding score is read line by line. Once the algorithm reaches the last entry for

one label fish, the two largest scores in the scorevectorareextracted.

C. A. Lende J. N. Lundal 72

Figure 3.57: The entries for the current label fish are run through once more to locate
which test fish held the highest scores. There are three images of each fish(almost),
hence the two largest scores are extracted to find the two images of the same salmon.
When the max score is equal to the score between the label fish and a test fish, they are
classified as the same specimen. If the three first digits of the filename is the same, it was
a correct classification, and incorrect if not. Same procedure for the second largest score.
Finally, the scorevectorisresetandthenextscoreinlineappended.n iissettothecurrenti.

The text file contains all possible matches for a given label fish, each with the corre-

sponding score. An example is: ”0022”,”0023”,”14.23”, where the first number is the

label image, the second the test image and lastly; the score. The algorithm will go

trough every line in the file and increment i respectively. When the algorithm has gone

through all entries for one label fish(for example ”0022”), it needs to stop and extract

the two largest scores in the max vector, which is a vector containing all the scores for

a particular label fish. This is done by checking if the filename of the label fish at entry

i(for example ”0031”) is the same as in entry i − 1(”0022”). It it is not, it stops going

through the document and instead works with the scores in the max vector so far. The

reason the two largest scores are extracted is because there are two correct matches for

each label fish, except for 16 of the label fish, which only got one correct match.

The algorithm runs through the scores for all test fish for the particular label fish and

locates which one held the same score as either the largest score or second largest score.

The test fish belonging to those two scores are set as the match for the label fish. Then

C. A. Lende J. N. Lundal 73

the algorithm checks if it made a correct or incorrect match. If the three first digits in

the filename are the same, it is the same specimen in both images. This is done in fig

3.57, in the rectangles with the line if label fish file[-1]..., where the last characters in

the filename is removed.

After a test fish has been either correctly or incorrectly classified, the max vector is

reset. Since i already holds the value for the next label fish, the corresponding score is

appended into the vector. The n i -variable is set to i. This is done so that when all test

fish’s scores for a certain label fish has been added to the max vector and the largest

and second largest scores have bee found, the algorithm will only search through the

scores of the test images for that label fish, in case another test fish has the same score

anywhere else in the file.

Chapter 4

Experiments and Results

This chapter presents experiments and results of Fin Detection, Local Gill Detection,

Simple Blob Detection, Dark Spot Detection and Individual Recognition. It should be

noted that the experiments on the Simple Blob Detector and Dark Spot Detector are

comprehensive and extensive compared to the other experiments and results.

The results of the Fish extraction method and Global Gill Detection were only evaluated

subjectively, and is not presented here.

4.1 Fin Detection Results

The fin detection algorithm was tested on the two data-sets and the results are presented

in table 4.1.

Data-set 1(MOWI) 2(IMR)

Images in data-set 537 246

Success rate 99.2% 93.5%

Classified with threshold: Otsu 519 232

Threshold: 100 11 8

Threshold: 170 4 1

No pectoral fin detected 2 5

Misclassifications 1 8

Sum of faults 3 13

Table 4.1: The results for testing the fin detection algorithm on both data-sets. The
algorithm performs better on dataset 1, but this was the set the algorithm was developed

on. It performs well on the IMR data-set as well.

74

C. A. Lende J. N. Lundal 75

It is clear for table 4.1 that segmenting the images with thresholding using otsu’s method

was a good choice. It distinguished the pectoral fin in over 90%(close to 95%) of the

cases. The hard thresholding of 100 and 170 picked up some of the few images otsu’s

method couldn’t solve and bettered the success rate in both instances.

The method was developed to detect the pectoral fin on data-set 1, but was tested

on data-set 2 after finalization. Data-set 2 has a more crude set of images, where the

background fluctuates with patterns and other aforementioned disadvantages in table

3.1.

It should be noted that table. 4.1 is not as truthful as it may appear. The results in

the ”Threshold”-rows are not completely accurate. The misclassification row are images

where the algorithm thought it found the pectoral fin, but other parts of the fish were ac-

tually detected. Whether the algorithm classified them wrongly with the otsu-threshold

or any of the hard ones, is unknown, but since the otsu-threshold classified many times

more images than the hard thresholds, it can be assumed that the misclassifications

belong there. Truer values may therefore be: 518 and 224 in row 4.

A detailed explanation of the results is found below for both data-sets.

4.1.1 Results on Data-set 1, MOWI

This algorithm achieved a success rate of 99.2% on 537 images, either misclassifying or

not detecting a pectoral fin on three images. In two images, no pectoral fin could be

located and one was wrongly classified. The three images are presented in fig. 4.1.

Figure 4.1: The three images who were either misclassified or no pectoral fin could
be detected.

Fig. 4.2 shows nine images who were correctly classified with both their nose, tail tips

and pectoral fin.

C. A. Lende J. N. Lundal 76

Figure 4.2: Nine random correctly classified images of 537

C. A. Lende J. N. Lundal 77

4.1.2 Results on Data-set 2, IMR

It should be experimented how the developed method worked on a data-set it wasn’t

specifically built for. Since it is tailored to data-set 1 from MOWI, its robustness should

be tested on images with poorer quality for this project, as mentioned in table. 3.1 with

data-set 2 from IMR.

The method was modified slightly to fit these images. These images were larger than the

data-set 1 images, and thresholds had to be adjusted. In data-set 1 the size-threshold

for the pectoral fin was 800, but in data-set 2 most pectoral fins occupied over 20 000

pixels. It led to areas much smaller than the fins being detected, such as the iris of the

eye and random areas closer than the fin to the nose.

The method also works together with the previous algorithm which locates the nose and

tail tips. For this data-set however, the tail was not in the image. In most cases, it

was simply left out and in a few images a human hand held the salmon still. Instead of

modifying the method, the nose point was located manually on each image and fed into

the fin detection method. Since locating the nose and tail tips wasn’t the objective, this

was a good substitute.

Even on cruder images, the method performed with a 93.5% success rate. There was a

total sum of 13 faults, either misclassifications or no fin was detected, in the data-set.

Fig. 4.3 shows four instances where the algorithm either misclassified images or detected

no pectoral fin at all.

Figure 4.3: Four images out of thirteen faulty images. The other wrongly classified
images were similar instances like these

The images in fig. 4.3 often have clear possible reasons for why they were misclassified.

The fish in the leftmost images are greener compared to most other salmons. The

pectoral fin is a darker green, but still green. Compared to the fish in data-set 1, where

the pectoral fin is distinct(dark to light skin), the fin is harder to separate when it has

a green hue similar to its skin. The rightmost images’ fish has either a small pectoral

C. A. Lende J. N. Lundal 78

fin or one of normal size, but they are both very light in intensity, much like the skin of

the rest of the fish. This makes it harder to separate it from the body.

4.1.2.1 Potential Improvements

To make the method more efficient on images it wasn’t constructed to work on, instead

of only having a lower threshold for the fin size, and upper could be added. Then large

areas like the rightmost images in fig. 4.3 would be eliminated. With an accurate bracket

for the pectoral fin, an adaptive threshold method could be added. The method could

try out different thresholds(with increments of, for example, 10) until a suitable area is

found close enough to the nose.

4.2 Local Gill Detection Results

The results are evaluated by the criteria that it has somewhat managed to localize

the gill opening of the fish. In 522/534 images (97.8%), the gill opening was roughly

detected, meaning significant parts were included in the result, but often not a 100%.

In many cases, other dark patterns close to the gill opening was included in the result.

Hence, the result of 97.8% is discretionary, and this evaluation is based on whether it is

assumed that the result is favourable or not.

To examine the ”successful” results further, a custom program was made. The user is

asked to manually detect the gill cover ending by a mouse click. This manually collected

data was then used to evaluate the algorithm for finding the gill cover ending. The

python code for this program is found in Appendix D.7 Code: Manual Spot Detection,

Manual Gill Detection.

To get an understanding of how good or bad these results are, they are compared against

a statistical guess of the placement of the gill opening. By the manual detection, it was

found that the gill cover ends at approximately 17,26% of the full length of the fish. This

was used to calculate the estimated gill cover end of every fish. The Local Gill Detection

method could then be compared to a statistical guess. This comparing is shown in table

4.2.

C. A. Lende J. N. Lundal 79

Local Gill Detection VS Statistical guess

Type Local Gill Detection Statistical guess

Absolute avg. distance 5.32/1.27mm 5.50p/1.32mm

Std. variance 5.34p/1.28mm 6.86p/1.64mm

Table 4.2: This table shows the comparison of Local Gill Detection VS a statistical
guess. The Local Gill Detector seems to perform better than a statistical guess.

What is not concerned in the table, however, is that a statistical guess would not take

into account the need to be conservative in terms of rather placing the gill opening

further away from the nose, than closer. This is desired because when creating a ROI to

detect the spots on the gill cover, as a too large ROI is much preferred over a too small

ROI. Also, the variance is smaller using the algorithm, meaning more precise. This is

important if the feature would be used for individual recognition. It would not matter

that the detection was a bit too much to the right, as this would be the case for most

images.

The results of the automatically detected gill cover end, are shown in the histogram of

fig. 4.4.

Figure 4.4: Histogram of the distances between automatically detected gill cover
ending, to the manually picked out. The distances are only measured in columns, as it
is assumed the fish is horizontally positioned. It can be seen that in most cases, the gill
cover end is detected slightly to the right of where it actually is. This was intended,

and is suitable for this project.

C. A. Lende J. N. Lundal 80

Based on these results and discussions, the method could be defined as a success. It

performs significantly better than a statistical guess.

C. A. Lende J. N. Lundal 81

4.3 Spot detection - Experiments and results

In order to experiment and obtain results for spot detection methods, all spot centers

in all of the images were manually detected. The code that was used to register the

spots, is found in appendix D.7 Code: Manual Spot Detection, Manual Gill Detection

on page 165. The code that was used to compare the automatically detected spots to

the manually detected spots is found in appendix D.8 Spot Coordinates Comparison on

page 167.

The spots were assigned into three different categories shown in table 4.3 along with

the number of manual detections for each. Further description of the spots is given in

the bullet points below the table. Fig. 4.5 shows an example image where spots are

partitioned into the three different spot categories.

Spot Categories

Distinct spots Should be easy to detect 474 cases

Complex spots Could be harder to detect 542 cases

Uncertain Does not need to be detected 314 cases

Table 4.3: The three spot categories and the total number of cases in all images used
in data-set 1.

1. Distinct spots: Large, dark, distinct and easily separable from its surroundings.

These should be easy to detect.

2. Complex spots: Small/blurry/light and/or hardly separable from its surroundings.

3. Uncertain spots: Very small, non distinct spots that may not even be a spot. They

could also be a lighter tone in the skin, or simply noise. These are included as

they should be distinguished from False detections.

A spot that is detected close to either a Distinct or Complex spot, is counted as a True

detection. By adding together the amount of Distinct and Complex spots(see table 4.3),

there are a potential of 1016 True detections. When the spot detection percentage later

is presented, it is in comparison to this number. If a detection occurs too far away from

any manually detected spot, it will be counted as a False detection. Detections in the

Uncertain category is counted as neither True nor False.

Experiments were conducted for both Simple Blob Detection (existing method; See 3.7.1

Simple Blob Detection Method on page 57) and Dark Point Detection (Custom made

for this project; See 3.7.2 Dark Spot Detection method on page 59).

C. A. Lende J. N. Lundal 82

(a) (b)

Figure 4.5: Manual detection of spots. The green dot means that the spot has been
labelled as Distinct. This spot is large, dark and separable from its surroundings. The
purple dot represents a Complex spot. This spot is small and slightly blurry. It is
also connected to the vertical line to its right, which makes it harder to separate from
the surroundings. The spot just below the complex spot, marked red, represents a
Uncertain spot. If this is a spot, it is only the size of a few pixels. This even makes the

form change between different images of the fish.

A highlight of the results is shown in fig. 4.33 and fig. 4.34.

Highlighted Results on data-set 1

Result type Strict Balanced Tolerant Tolerant+ Of Total

Distinct spots 367 419 451 474 474

Complex spots 131 293 437 534 542

Spot Detection% 49.02% 70.08% 87.40% 99.21% 1016

False Detections% 0.60% 4.24% 52.01% 91.32%

Table 4.4: A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot Detection. The

last column, Tolerant+, is the result of only Dark Spot Detection.

Highlighted Results on data-set 2

Result type Strict Balanced Tolerant Tolerant+ Of Total

Distinct spots 66 69 71 71 71

Complex spots 198 458 493 501 507

Spot Detection% 45.67% 91.18% 97.58% 98.96% 578

False Detections% 4.32% 20.62% 50.00% 80.39%

Table 4.5: A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot Detection. The

last column, Tolerant+, is the result of only Simple Blob Detection.

C. A. Lende J. N. Lundal 83

Detailed experiments were conducted by both Simple Blob Detection and Dark Point

Detection data-set 1, to explore the behavior of the methods, but also the features of

the spots. Afterwards, the two methods were combined to return better results. For

comparison, some similar experiments on data-set 2 were also performed. The results are

commented along the way, and a summarizing discussion can be found in 4.3.5 Summary

and Discussion of blob detection results on page 108.

C. A. Lende J. N. Lundal 84

4.3.1 Spot detection by Simple Blob Detection on data-set 1

The experiments in this section explores gill spot detection by Simple Blob Detection,

with varying parameters. The following list describes the experiments that are presented:

1. Varying and determining the maximum distance deviation allowed for a spot to

classify as a True detection

2. Varying minimum and maximum threshold value

3. Varying Circularity ratio

4. Varying Convexity ratio

5. Varying Inertia ratio

6. Varying minimum Area size

7. Varying several parameters, based on the previous results.

The standard values of the parameters are shown in table 4.6. These parameters are

changed in turn, while all other parameters remain constant. In experiment 7 however,

several parameters are varied in each attempt.

Standard Blob Detector parameters

minArea 25

maxThreshold 150

minThreshold 10

minCircularity 0.5

minConvexity 0.5

minIntertiaRatio 0.01

Table 4.6: These are the standard parameters set for the blob detection algorithm.
While one parameter changes for experimentation, the remaining ones are locked to

these values.

C. A. Lende J. N. Lundal 85

Experiment/Result 1 - Euclidean distance to define a True detection

To define what a True detection is, experiments were conducted where the maximum

allowed distance was varied as shown in table 4.7.

This experiment is not for evaluating the blob detection algorithm, but rather for esti-

mating where the threshold for ”success” should be put. An eventual False detection

can also occur because of inaccurate picking of the manual detected spot centroids.

Therefore, a certain tolerance is necessary.

Results when varying maximum allowed pixel distance

Max pixel distance 1 2 3 5 8 Of total

Distinct spots 274 425 446 450 450 474

Complex spots 186 332 376 382 386 542

Uncertain 22 42 50 52 52 314

False 826 509 436 424 420

Spots detected(%) 45.28% 74.51% 80.91% 81.89% 82.28% 1016

False(%) 63.15% 38.91% 33.33% 32.42% 32.11%

Table 4.7: Varying maximum allowed euclidean pixel distance from observed to de-
tected spot centroid. It can be seen here that increasing the allowed distance lead to
more spots being defined as detected. It is clear that 1 pixel would be too little, while in-
creasing could cause misclassifications. Also, an inaccurate detected spot would cause
worse performance in actual individual recognition. By these alternatives, it would

therefore be reasonable to use 3 or 5 as the preferred distance.

The results in table 4.7 shows that an allowed pixel distance of 1 or 2 is such strict

that it has significant influence on the results. and it is evident that the amount of spot

detections increases considerably from max pixel distance 1 to 3. From pixel distance 3

to 8 however, there are little change in the amount of spots detected. This means that

blob detector usually detects the spot centroid at a distance less or equal to 3 pixels from

the manually detected spot centroid. Therefore, 3 is used as the maximum allowed pixel

distance, in the following experiments. In these images, 1 pixel equals approximately

0.24 mm.

When the distance allowed is raised as high as 8, it is possible that some of the ”True”

detections actually are detections near a spot, and not in the spot itself. Besides, larger

deviation is unfavourable considering the quality of spots used as interest points for

object matching (See 2.4 Detection of spot-like structures on page 26). The fact that

few more spots are detected when the pixel distance is raised high, indicates that there

seldom are False detections close to actual spots.

C. A. Lende J. N. Lundal 86

Experiment/Result 2 - Varying threshold parameters

This experiment was conducted in order to determine which thresholds to set. This

also explores in which intensity value intervals most spots are included. The results are

shown in table 4.8.

Result when varying minimum and maximum threshold

Threshold min-max 10-50 10-100 10-150 0-150 5-150 10-200 10-255 Of total

Distinct spots 194 443 446 446 445 448 448 474

Complex spots 27 283 376 376 366 399 402 542

Uncertain 1 23 50 50 47 64 76 314

False 186 330 436 436 442 585 803 1330

Spots detected(%) 21.75% 71.46% 80.91% 80.91% 79.82% 83.37% 83.66% 1016

False(%) 45.59% 30.58% 33.33% 33.33% 34.00% 39.10% 46.44%

Table 4.8: Results of blob detection when varying only the threshold parameters. It
is evident that there are a significant amount of spots that have brightness between
10-100. When the interval is extended, the number of both True and False detections

increase.

The results in table 4.8 shows that a large proportion of the spots has an intensity value

below 100, especially the Distinct ones. However, an additional 83 Complex spots are

detected when increasing to 150, and another 33 when increasing to 200. After this,

further extension mainly leads to more False detections. The results indicate that a

threshold between 10-150 or 10-200 could be favourable.

What is interesting is that the results from using 5-150 is worse than using 10-150, which

gets the same results as 0-150. This could be explained by the detector’s incrementing

behaviour (See 3.7.1 Simple Blob Detection Method on page 57). If each increment is

for example 10, 0-150 and 10-150 could give the same result, as they do, while 5-150

could get different results.

C. A. Lende J. N. Lundal 87

Experiment/Result 3 - Varying Circularity parameter

Table 4.9 shows the results when the circularity parameter is increased from 0.3 to 0.9.

Result when varying Circularity parameter

Circularity 0.3 0.5 0.7 0.9 Of total

Distinct spots 453 446 420 37 474

Complex spots 381 376 300 11 542

Uncertain 53 50 35 1

False 872 436 143 0

Spots detected(%) 82.09% 80.91% 70.87% 4.72% 1016

False(%) 54.61% 33.33% 15.92% 0%

Table 4.9: Stricter conditions regarding the circularity of the spots will make less
spots be detected. Values like 0.5 and 0.7 allows for a decent amount of detections,
while still limiting the number of False detections. The results shows that the spots in
these images are generally somewhat circular, but not completely, as most spots fails

to be detected when the parameter is 0.9.

Table 4.9 shows that increasing the circularity parameter from 0.3 to 0.5 results in almost

the same amount of True detections, while decreasing the number of False detections

considerably. Further increasing to 0.7 leads to even fewer False detections, but also

has an impact on the amount of True detections. Parameter value 0.9 leads to no False

detections at all, but also very few True detections. It is obvious that the Circularity

parameter has an important role when filtering out excess detections.

C. A. Lende J. N. Lundal 88

Experiment/Result 4 - Varying Convexity parameter

Table 4.10 shows the results for experiments where the Convexity parameter is increased

from 0.3 to 0.9.

Result when varying Convexity parameter

Convexity 0.3 0.5 0.7 0.9 Of total

Distinct spots 446 446 446 434 474

Complex spots 376 376 376 335 542

Uncertain 50 50 50 41 314

False 436 436 436 211

Spots detected(%) 80.91% 80.91% 80.91% 75.7%

False(%) 33.33% 33.33% 33.33% 20.66%

Table 4.10: The results are very similar to the above until 0.9 is reached. This shows
that the spots of an Atlantic salmon are mostly convex to some degree.

The results changes nothing at all, when the Convexity parameter is increased from

0.3 to 0.7. Changes occur first When the ratio is set as high as 0.9. The number of

False detections are more than halved, but it also has an impact on the detection of

both Distinct and Complex spots. From this experiment, it is evident that the spots of

Atlantic Salmon generally are convex.

C. A. Lende J. N. Lundal 89

Experiment/Result 5 - Varying Inertia parameter

Table 4.11 shows the results for experiments where the inertia ratio parameter is in-

creased from 0.01 to 0.3.

Result when varying Inertia parameter

Inertia ratio 0.01 0.10 0.20 0.30 Of total

Distinct spots 446 446 446 440 474

Complex spots 376 376 370 336 542

Uncertain 50 50 47 43 314

False 436 425 352 281

Spots detected(%) 80.9% 80.9% 80.31 76.4%

False(%) 33.33% 32.77% 28.97% 25.55%

Table 4.11: Results while varying minimum inertia. The results are similar from 0.01-
0.20, meaning that most spots are not similar to lines, but instead resemble circular

shapes.

When the inertia ratio is increased from 0.01 to 0.1, no True detections are lost, but

9 False detections. Further increasing to 0.2 leads to the rejection of another 73 False

detections in exchange with the loss of 6 Complex spot detections. When the parameter

is set as 0.3, another 71 False detections are lost, but also 40 True detections. Thus,

somewhere around 0.20 seems like a reasonable inertia ratio for these images.

C. A. Lende J. N. Lundal 90

Experiment/Result 6 - Varying Area parameter

Table 4.12 shows the results for the experiments where the minimum area size parameter

was increased from 3 to 50.

Results when varying minimum area size

min Area 3 10 15 25 50 Of total

Distinct spots 411 448 449 436 430 474

Complex spots 393 429 423 376 205 542

Uncertain 144 105 79 50 12 314

False 7684 2188 1089 436 183

Spots detected(%) 79.13% 86.32% 85.83% 79.92% 62.50% 1016

False(%) 89.02% 69.02% 53.38% 33.33% 22.05%

Table 4.12: The most spots are successfully detected at a threshold of 10, although,
there are many false detections. The failure percentage decreases as the area parameter
is increased, because then smaller possible spots or spot-like patterns are discriminated
against. However, this has a negative impact on the detection of complex spots, as they

are trickier to detect and often smaller than the distinct ones.

When the minimum allowed area is raised from 3 to 10, the number of True detection

actually increases. This must be because the blob detector uses increments? Except

from this, the number of True detections decreases when the minimum area allowed

is increased. There are most True detections when the minimum area is set to 10.

But again, it can be seen that 1 more Distinct spot is detected when the parameter is

raised to 15. When the parameter is raised further, it especially has a negative effect on

Complex spots, as these in general are smaller. Generally, it can be seen that increasing

the minimum area parameter reduces the number of False detections significantly.

From min Area size 3 to 10, it can be seen seen that actually more spots are detected

when the min area size is raised. This is because the minimum area parameter also will

scale the max area parameter (See 3.7.1 Simple Blob Detection Method).

C. A. Lende J. N. Lundal 91

Result/Experiment7 - Combining parameters

In this last experiment, some different combinations were tested in order to examine the

behaviour of the detector further, for example to test if it is possible to detect all the

spots, or if it is possible to detect a decent amount of spots while having none False

detections. The combinations are represented in table 4.13, and the results are shown

in table 4.14.

Various combinations

Combination no. 1 2 3 4 5 6

Circularity 0.7 0.7 0.3 0.1 0.8 0.7

Convexity 0.9 0.9 0.5 0.1 0.9 0.9

Area 25 10 10 10 10 15

Threshold 10-150 10-200 10-200 10-250 10-130 10-170

Min inertia 0.2 0.2 0.01 0.01 0.2 0.2

Comment Strict Balanced Tolerant Very tolerant Balanced Balanced

Table 4.13: This table shows the parameter values for 6 different combinations that
were tried. The bottom row gives a short comment on the function’s purpose, where
”strict” means that the purpose is to have few false detections, and ”tolerant” means

that it wants to detect as many spots as possible.

Results of various combinations

Combination no. 1 2 3 4 5 6 Of total

Distinct spots 420 425 452 453 376 423 474

Complex spots 296 385 446 436 228 363 542

Uncertain 34 111 152 182 26 73 314

False 138 1375 4407 7027 319 336

Spots detected% 70.47 79.72 88.39 87.50 59.49 77.36 1016

False% 15.54 59.89 80.76 86.77 33.61 28.12

Table 4.14: Results of the combinations shown in table 4.13. Combination 1 has the
fewest false detections, but not relatively few True detections compared to the other
combinations. Combination 3 has the best detection rate, but many False detections.
Combination 6 performs almost as good as 2, but has way less false detections. It is
evident that combination 4 and 5 are outperformed compared to the others, especially

since Uncertain spots are not considered.

The experiments shows that the blob detector fails to detect all spots in data-set 1 in

one attempt, even when all the parameters are set to tolerant values. This does however

not confirm that all the spots could not be detected with multiple attempts with varying

C. A. Lende J. N. Lundal 92

parameters. This is especially regarding the minimum area parameter, where large spots

might be left out when the parameter is low.

The results are generally decent concerning detection of the distinct spots. It is the

complex spots that are harder to detect without many False detections.

From table 4.14, it could be suggested that combination 1, 3 and 6 could be favourable

for different types of results. For the rest of this section, combination 1 will be regarded

as Strict detection, combination 6 as Balanced detection and combination 3 as Tolerant

detection. Fig. 4.6 and 4.7 shows two typical examples for the results using these

combinations.

(a) Combination 1: Strict detec-
tion.

(b) Combination 6: Balanced de-
tection.

(c) Combination 3: Tolerant de-
tection.

Figure 4.6

The detector seems to have a harder time detecting correct spots in darker images, which

can be seen in fig. 4.6. Especially when the spot is in contact with darker parts of the

fish like the gill opening or upper part of the fish. This is shown in both combination 1

and 6.

What is curious is that while combination 3 is supposed to be more tolerant than the

other 2, it fails to detect the large spot just right from the eye, where the stricter

combinations succeed. The combinations here had minimum area size respectively 25,

15 and 10. This is an example of how the reduction of minimum area could result in

worse results for larger spots.

Fig. 4.7 is significantly brighter than fig. 4.6. This causes different challenges. Large

and dark spots are more distinct in these brighter images. For example, the eye is usually

detected in these types of images. Regarding the strict combinations which had only 138

False detections, many of these are caused by the eye. Even though the image is bright

and with good contrasts, the strict detection fails to detect the more complex spot in

the middle of the image. Combination 6 seems to function well on these types of images,

as all spots are detected, with no more false detections than the Strict combination.

C. A. Lende J. N. Lundal 93

(a) Combination 1: Strict detec-
tion.

(b) Combination 6: Balanced de-
tection.

(c) Combination 3: Tolerant de-
tection.

Figure 4.7

These examples show that the combinations may have different advantages on different

types of images and spots. Brighter images leads to better results.

None of the blob detector combinations could be used alone, but combining them in a

larger algorithm, might give a more complete result. Also, other restrictions could be

made. The eye can easily be disregarded as a spot because of its position, and this would

make the stricter algorithm cause fewer false detections.

C. A. Lende J. N. Lundal 94

4.3.2 Spot detection by Dark Point Detection - Experiments and Re-

sults

As with the experiments with Blob Detection, some parameter values are chosen to be

varied, as listed below.

• Kernel size

• σ

• p-factor

The use of these parameters are explained in the pseudocode found in 3.7.2. Briefly sum-

marized, the kernel size is the size of the kernel used when applying gaussian blur, and

σ determines its distribution. The p-factor is a threshold factor that is multiplied with

the median of the image, to set a threshold value that decides if a local extrema(pixel)

is dark enough to be considered as part of a spot.

In these experiments, it would make little sense to vary one parameter at the time,

as they strongly influence each others functionalities. For example, a larger kernel size

would require a larger p-factor, as the pixels displaying the spots would become brighter.

It would neither make sense to vary σ on a small sized kernel.

An overview of the experiments is shown below:

1. Varying and determining the maximum euclidean distance deviation allowed for

a spot to classify as a True detection. This is the same experiment that was

conducted in 4.3.1 Experiment/Result 1 - Euclidean distance to define a True

detection.

2. Various combinations with a small kernel size of 3 to 5

3. Various combinations with a medium kernel size of 9

4. Various combinations with a large kernel size of 15

C. A. Lende J. N. Lundal 95

Experiment/Result 1 - Euclidean distance to define True detection

Similarly to what was done regarding blob detection, experiments are conducted using

different values for maximum euclidean distance to define a successful spot detection.

This was done both in order to test the accuracy of the method and to decide which

euclidean distance to use for further experiments.

The parameter values that are used while varying the max allowed euclidean distance,

is shown in table 4.15, and the results in table 4.16.

Parameter values in Experiment 1

Kernel Size 5

σ 3

p-factor 1.2

Table 4.15: The parameter values used in experiment 1

Results when varying maximum allowed pixel distance

Pixel distance 1 2 3 5 8 Of total

Distinct spots 150 394 462 473 473 474

Complex spots 86 388 506 532 532 542

Uncertain 26 103 140 146 177 314

False 9504 8881 8658 8605 8584

Spots detected% 23.23% 76.97% 95.28 98.92% 98.92% 1016

False(%) 97.32% 90.94% 88.65% 88.11% 87.90%

Table 4.16: At an allowed pixel distance of 1, few spots are defined as detected. It
increases significantly when raised to 2 and 3, and stabilizes at 5. Increasing from 5 to

8 has no effect on the number of True detections.

Based on the results in table 4.16, the spot center detections of the Dark Point Detector

is less accurate than the ones of the Blob Detector. It is shown that the results are

significantly affected when the allowed distance is as low as 1. Allowed distance 2 and

3 results more True detections, but it also increases significantly from 3 to 5.

Thus, 5 will be used as the maximum allowed pixel distance to define True detection

using Dark Point Detection.

C. A. Lende J. N. Lundal 96

Experiment/Result 2 - Small kernel size

Table 4.17 shows the input parameters for the attempts in this experiment, which focuses

on small kernels, while the the p-factor is varied.

Input combinations for Experiment 2 - Small kernel

Combination no. 1 2 3 4 5 6 7

Kernel Size 3 5 5 5 5 5 5

p factor 1.0 0.2 0.4 0.6 0.8 1.0 1.2

σ 3 3 3 3 3 3 3

Table 4.17: Combination 1 is a single attempt with a kernel size as small as 3. In
experiments 2-7, the threshold factor, p, was incrementally increased from strict to

tolerant.

Results for Experiment 2 - Small kernel

Combination 1 2 3 4 5 6 7 Of Total

Distinct spots 473 190 455 471 473 473 473 474

Complex spots 534 51 271 460 510 529 532 542

Uncertain 166 6 28 68 101 141 146 314

False 15534 816 3616 6503 7831 8454 8605

Spots detected(%) 99.11% 23.72% 71.46% 91.63% 96.75% 98.62% 98.92% 1016

False(%) 92.98% 76.76% 82.75% 86.68% 87.84% 88.09% 88.11%

Table 4.18: Combination 1, with kernel size 3, fails to detect only 9 spots. However,
many False detections also occur. Combination 7 scores almost as good as combination
1, but has nearly half the amount of False detections. Combinations 2 - 7 shows how

gradually more spots are detected when the threshold factor, p, is increased.

The results shows that a lower p-factor increases the number of both True and False

detections, and that the share of false detections is high also for very low p-value. This

indicates that many excess spots are detected in dark areas, and that a too strict thresh-

old is not favourable as it cuts too many True detections.

Combination 7 performs almost as good as combination 1 in number of True detections,

but has almost half the number of False detections. This indicates that increasing the

kernel size is effective for such small kernels, when cutting False detections.

C. A. Lende J. N. Lundal 97

Experiment 3 - Medium kernel size

Table 4.19 and 4.20 shows input parameters and results for experiments with a medium

kernel size. Here, the focus is mainly on varying the σ.

Input combinations for Experiment 3 - Medium kernel

Combination no. 1 2 3 4 5 6

Kernel Size 9 9 9 9 9 9

p factor 0.8 0.8 0.8 0.8 1.4 1.8

σ 3 2 1 0.5 3 3

Table 4.19: In combinations 1 to 4, σ is decreased while other parameters are held
constant. Combinations 5 and 6 tests for more tolerant p-values without decreasing σ.

Results for Experiment 3 - Medium kernel

Combination 1 2 3 4 5 6 Of Total

Distinct spots 467 471 474 474 470 470 474

Complex spots 430 485 522 532 479 479 542

Uncertain 55 78 138 158 101 101 314

False 2986 4372 11420 25232 3375 3379

Spots detected(%) 88.29% 94.09% 98.03% 99.02% 93.41% 93.41% 1016

False(%) 82.07% 80.87% 90.97% 95.59% 76.27% 76.29%

Table 4.20: In combinations 1-4, σ is decreased. This leads to many True detections,
but even more False detections. Combinations 5 and 6 shows that there is little change

when the p-value is increased to very tolerant values.

The results show that reducing σ leads to more detections, both true and false. Combi-

nation 5 and 6 also shows how a large kernel size compared with a not so small σ will

cause less spots to be detected, and that increasing the threshold factor p is useless in

this case.

C. A. Lende J. N. Lundal 98

Experiment 4 - Large kernel size

Table 4.21 and 4.22 shows input parameters and results for experiments with a large

kernel size. The size was set to 15, as this is a typical size of the larger spots in the data

set. Here, the σ value is further experimented with.

Combinations for Experiment 4 - Large kernel

Combination 1 2 3 4 5 6

Kernel Size 15 15 15 15 15 15

p factor 1.0 1.0 1.0 1.0 1.0 1.0

σ 1 1.5 2 3 5 9

Table 4.21: The σ value is increased in every attempt, while the other inputs are held
constant.

Results for Experiment 4 - Large kernel

Combination 1 2 3 4 5 6 Of Total

Distinct spots 474 470 469 458 403 325 474

Complex spots 534 526 505 365 175 91 542

Uncertain 167 137 95 43 4 2 314

False 12359 7049 4137 1913 819 511

Spots detected(%) 99.21% 98.03% 95.87% 81.00% 56.89% 40.94% 1016

False(%) 91.32% 86.15% 79.47% 68.84% 58.46% 55.01%

Table 4.22: Combination 1 has the highest number of True detections of all the
experiments by Dark Point Detection on data-set 1. When σ is gradually increased,

the number of both True and False detections decrease.

The results implies that varying the σ has similar effects as to varying the kernel size,

while holding other factors constant. It is therefore possible to use a large kernel to

detect both many, and few spots, by varying the σ value.

Missed Spots

In these experiments, it is shown that Dark Spot Detector is able detect close to 100%

of the spots. For example, Combination 7 of table 4.18 managed to detect 98.92% of

the spots, while still having a false detection share of 88.11%. Only 11 spots were not

detected. Fig. 4.8 shows and explains the case of each missed spot. The figure only

shows 6 images, as the rest of the failures was caused by the same spot, in the other

C. A. Lende J. N. Lundal 99

images of that specific fish. It should also be noted that some of these failures did not

occur on the other images of the same fish, such as the case of the distinct spot in (a).

(a) Distinct spot missed (b) Complex, blurry spot missed (c) Very tiny complex spot
missed. This should probably
have been marked as Uncertain
instead.

(d) Complex spot missed (e) Complex spot missed (f) Complex spot with strange
form, missed

Figure 4.8: All the cases where some spots were not detected by Tolerant Dark Point
Detection.

Example Results of Dark Point detection on data-set 1

Result wise, the Dark Point Detector is able to detect as almost every spot with tolerant

parameters. The Simple Blob Detector on the other hand, is more accurate and has

fewer False detections.

In similarity to what was done with Simple Blob Detector in 4.3.1 Result/Experiment7

- Combining parameters, three different types of combinations are chosen to present the

variety of results for the Dark Spot Detector. Combination 7 in Experiment/Result 2

- Small kernel size is chosen as the ”Tolerant” example, Combination 5 in Experiment

3 - Medium kernel size is chosen as ”Balanced”, and Combination 5 in Experiment 4 -

Large kernel size is chosen as ”Strict”.

Fig.4.9 and 4.10 shows examples of how the method performs with some varying param-

eters, on the same images that were used as examples for Simple Blob Detection.

C. A. Lende J. N. Lundal 100

(a) Strict detection (b) Balanced detection (c) Tolerant detection

Figure 4.9

(a) Strict detection (b) Balanced detection (c) Tolerant detection

Figure 4.10

The strict detections, (a), in both figures illustrates that the method has difficulties in

detecting smaller/blurry spots, which are close to other dark areas. It also has difficulties

in disqualifying non existent spots, such as the pectoral fin in fig. 4.9 (a), and the corner

of the eye in fig. 4.10 (a). However it can be seen that when the parameters are stricter,

many points are correctly disqualified, especially in areas of high frequency, such as the

scales in the top right corner.

C. A. Lende J. N. Lundal 101

4.3.3 Combining Blob Detection and Dark Point Detection

The results of Blob Detection and Dark Point Detection were combined together to test

for the possibility to improve results. It was done in the following way: For every spot

detected in blob detection, check if custom detection has detected at least one spot

nearby. Nearby is here defined as 9x9 neighbourhood. The code for this, is found in D.8

Spot Coordinates Comparison on page 167.

The results from Simple Blob Detection was chosen to be the final result, because these

were the most accurate per spot detected.

These results describe how the two methods may be used together to disqualify False

detections, and to strengthen the credibility of spots that are detected by both algo-

rithms.

In this section, it is referred to Strict, Balanced, and Tolerant - Simple Blob Detection

and Dark Point Detection. These are the same example combinations that were pre-

sented in Result/Experiment7 - Combining parameters, page 91, and Example Results

of Dark Point detection on data-set 1, page 99.

The results are presented and compared to the previous outcome of using only Simple

Blob Detection. The goal was to keep the number of True detections, while eliminating

as many False detections as possible.

Table 4.23 shows that the majority of the False detections by Strict Blob Detection can be

removed by combining with Dark Spot detection, while loosing few True detections. As

earlier suspected, a large proportion of the False detections regarding Strict Simple Blob

Detecition, is caused by the eye of the fish. The Dark Spot Detector tries to eliminate

the eye as a spot candidate. This may be one of the reasons that the combination of

these seem to have favourable results.

Combining Strict Blob Detection with Dark Point Detection

Dark Point Detection Tolerant Balanced Strict Before

Distinct 419 420 367 420

Complex 293 283 131 296

Uncertain 34 30 1 34

False 33 27 3 138

Spot Detection% 70.08% 69.19% 49.02% 70.47%

False Detections% 4.24% 3.55% 0.60% 15.54%

Table 4.23: Few True detections are lost when applying Strict/Tolerant, or Stric-
t/Balanced combinations. When the combination is Strict/Strict a significant amount

of True detections are lost, but it also result in only 3 False detections.

C. A. Lende J. N. Lundal 102

Table 4.24 shows that again, combining causes less False detections. Still, some True

detections are also cut, especially in the Balanced/Balanced and Balanced/Strict com-

binations.

Combining Balanced Blob Detection with Dark Point Detection

Dark Point Detection Tolerant Balanced Strict Before

Distinct 422 423 367 423

Complex 353 329 134 363

Uncertain 67 52 2 73

False 126 89 16 336

Spot Detection% 76.28% 74.02% 49.31% 77.36%

False Detections% 13.02% 9.97% 3.08% 28.12%

Table 4.24: Few True detections are lost using a Balanced/Tolerant combination.
Balanced/Balanced causes some loss, while Balanced/Strict loses a significant amount.

Meanwhile, many False detections are removed.

Table 4.25 shows that a Tolerant/Tolerant combination is able to keep a high amount of

True detections, while eliminating many False detections. Still, about half of the total

detections are False detections, but the improvement is significant. The two other com-

binations also show that many False detections are cut, but also some True detections.

Combining Tolerant Blob Detection with Dark Point Detection

Dark Point Detection Tolerant Balanced Strict Before

Distinct 451 450 387 452

Complex 437 400 173 446

Uncertain 103 74 3 152

False 1074 550 94 4407

Spot Detection% 87.40% 83.66% 55.12% 88.39%

False Detections% 52.01% 37.31% 14.31% 80.76%

Table 4.25: The Tolerant/Tolerant combination causes few True detections losses,
while eliminating many False Detections. The Tolerant/Balanced and Tolerant/Strict
combinations also gets rid of many False detections, but the results are not peculiar

compared to the other combinations.

C. A. Lende J. N. Lundal 103

4.3.4 Testing on data-set 2

Some experiments was also conducted on data-set 2. These were performed in order

to evaluate whether the methods are applicable on different kinds of images. The fish

in these were brighter, a bit more developed, and the images had larger resolution.

Therefore a few scale changes had to be applied.

4.3.4.1 Testing Simple Blob Detection on data-set 2

Six similar combinations to the ones that was used on data-set 1 (See 4.3.1 Result/Ex-

periment7 - Combining parameters, 91), were also used here, only the area parameter

was changed to four times the size. The input variables for the six combinations are

shown in 4.26, and the results are shown in 4.27.

Input combinations for Simple Blob Detection on data-set 2

Combination no. 1 2 3 4 5 6

Circularity 0.7 0.7 0.3 0.1 0.8 0.7

Convexity 0.9 0.9 0.5 0.1 0.9 0.9

Area 100 40 40 40 40 60

Threshold 10-150 10-200 10-200 10-250 10-130 10-170

Min inertia 0.2 0.2 0.01 0.01 0.2 0.2

Comment Strict Balanced Tolerant Very tolerant Balanced Balanced

Table 4.26: This table shows the parameter values for 6 different combinations that
were tried. The bottom row gives a short comment on the function’s purpose, where
”strict” means that the purpose is to have few false detections, and ”tolerant” means

that it wants to detect as many spots as possible.

C. A. Lende J. N. Lundal 104

Results for Simple Blob Detection on data-set 2

Combination 1 2 3 4 5 6 Of Total

Distinct 65 69 71 71 54 68 71

Complex 216 461 485 501 140 349 507

Uncertain 5 42 64 146 2 12 191

False 300 430 1751 2943 233 352

Spot Detection% 48.62% 91.70% 96.19% 98.96% 33.56% 72.15%

False Detections% 51.19% 42.91% 73.85% 80.39% 54.31% 45.07%

Table 4.27: The poor results in combinations 1, 5 and 6 indicate that many spots in
data-set 2 are somewhat bright, and therefore sensitive to the strict maximum threshold
values of these combinations. With more tolerant thresholds, as in 2, 3 and 4, almost
all spots are detected. Combination 2 even has the lowest False rate, while still having

a high percentage of detected spots.

The results shows that almost all spots can be detected in data-set 2. By comparing

combination 2 to combinations 1, 5 and 6, it is evident that here, it is favourable to

conduct tolerant thresholding, while having strict values for Circularity, Convexity and

Inertia.

4.3.4.2 Testing Custom detection on data-set 2

Then input combinations for the Dark Spot Detections performed on data-set 2, are

shown in fig. 4.28 and the results are shown in 4.29.

Inputs for Dark Spot Detection on data-set 2

Combination 1 Tolerant 2 Balanced 3 Strict

Kernel Size 11 59 59

p factor 1.0 1.0 1.0

σ 3 5 7

Table 4.28: Input combinations with different kernel sizes and σ

C. A. Lende J. N. Lundal 105

Results for custom detection on data-set 2

Combination 1 2 3 Of Total

Distinct 71 71 68 71

Complex 499 386 207 507

Uncertain 73 13 3 191

False 4619 724 294

Spot Detection% 98.62% 79.07% 47.58%

False Detections% 87.78% 60.64% 51.40%

Table 4.29: Results for Dark Spot Detection on data-set 2.

The results show that Dark Spot Detection is able to detect almost all spots also on

data-set 2, when the parameters are tolerant. Still, many False Detections ocurr.

C. A. Lende J. N. Lundal 106

4.3.4.3 Combining blob detection and custom detection on data-set 2

As was done also with data-set 1, Simple Blob Detection and Dark Spot Detection were

combined. Also here, 9 combinations og Tolerant, Balanced and Strict were used. The

results are shown in tables 4.30, 4.31 and 4.32.

Combining Strict blob detection with custom detection

Custom detection Tolerant Balanced Strict Before

Distinct 65 65 63 65

Complex 216 213 165 216

Uncertain 5 3 1 5

False 62 36 9 300

Spot Detection% 48.62% 48.10% 39.45% 48.62%

False Detections% 17.82% 11.36% 3.78% 51.19%

Table 4.30: Strict blob detection, combined with custom detection.

Combining Balanced blob detection with custom detection

Custom detection Tolerant Balanced Strict Before

Distinct spots 69 69 66 69

Complex spots 458 369 198 461

Uncertain 35 10 2 42

False 146 77 12 430

Spot Detection% 91.18% 75.78% 45.67% 91.70%

False Detections% 20.62% 14.67% 4.32% 42.91%

Table 4.31: Balanced blob detection, combined with custom detection.

Combining Tolerant Simple Blob Detection with Dark Spot Detection

Custom detection Tolerant Balanced Strict Before

Distinct 71 71 68 71

Complex 493 386 207 501

Uncertain 73 13 3 146

False 637 297 89 2943

Spot Detection% 97.58% 79.07% 47.58% 98.96%

False Detections% 50.00% 38.72% 24.25% 80.39%

Table 4.32: Tolerant blob detection, combined with custom detection.

C. A. Lende J. N. Lundal 107

The results seem slightly better for data-set 2, than dataset 1. Especially when con-

sidering the Balanced—Tolerant combination in 4.31, where 91.18% of the spots were

detected, with only 20.62% False detections. This is partly because of the worse perfor-

mance of Simple Blob Detection on data-set 1, as it was unable to detect a significant

amount of the spots. The Dark Spot Detector performs more eqaully on both data-sets,

and manages to detect almost all spots in both, with tolerant parameters.

C. A. Lende J. N. Lundal 108

4.3.5 Summary and Discussion of blob detection results

To summarize, table 4.33 and 4.34 shows some highlighted results of blob detection on

the two data-sets. The first three result columns display results where combinations of

Simple Blob Detector and Dark Spot Detector have been combined to produce favourable

results. The ”Tolerant” column shows the absolute highest result, when only prioritizing

the amount spots detected.

Highlighted Results on data-set 1

Result type Strict Balanced Tolerant Tolerant+ Of Total

Distinct spots 367 419 451 474 474

Complex spots 131 293 437 534 542

Spot Detection% 49.02% 70.08% 87.40% 99.21% 1016

False Detections% 0.60% 4.24% 52.01% 91.32%

Table 4.33: A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot Detection. The

last column, Tolerant+, is the result of only Dark Spot Detection.

Highlighted Results on data-set 2

Result type Strict Balanced Tolerant Tolerant+ Of Total

Distinct spots 66 69 71 71 71

Complex spots 198 458 493 501 507

Spot Detection% 45.67% 91.18% 97.58% 98.96% 578

False Detections% 4.32% 20.62% 50.00% 80.39%

Table 4.34: A variety of results from spot detection on data-set 1. The first three
columns are results from combinations of Simple Blob and Dark Spot Detection. The

last column, Tolerant+, is the result of only Simple Blob Detection.

4.3.5.1 Simple Blob Detection Method

The experiments indicate that it is favourable to input strict values for circularity, con-

vexity and inertia, while holding tolerant values for area and thresholding. This enables

most spots to be detected, as they vary in size and grey-level intensity.

The experiments on the blob detector does mainly focus on single parameter modifica-

tion. Therefore, the results displayed may be somewhat correlated. For example, larger

blobs are more likely to have a larger circularity ratio, especially in data-set 1 where the

pixel resolution is low. A strict circularity ratio would therefore probably filter out many

C. A. Lende J. N. Lundal 109

small objects, and is therefore correlated with the area parameter. More experiments

while varying several combinations could be conducted to explore this further.

It was shown that different types of blobs could be detected when varying the threshold

parameters and minimum area parameters. This could be a reason why the method is

unable to detect all the spots in data-set 1 in a single attempt. Especially considering

the area parameters, it might be that the sizes of the spots in this data-set vary such that

the method is unable to detect all of them without multiple changes to this parameter.

4.3.5.2 Dark Spot Detection Method

In Dark Spot Detection, increasing the kernel size and/or decreasing the σ-value, causes

both fewer True and False detections. Therefore, reducing or increasing one of the two,

have similar effects.

Increasing the p-factor makes the method more tolerant, while decreasing makes it

stricter. Especially from the experiments with small kernel size, it is confirmed that

the distinct spots are darkest, and that the threshold has to be quite strict in order to

disqualify them as spots.

It seems that a lot of the spots classified as ”distinct”, are robust to the size and σ of

the kernel. This is because they are generally larger. The resuts show that the method

detects very many false spots, compared to the Simple Blob Detector. This is however

somewhat ”unfair”, as this algorithm may detect several local extrema within a single

spot. Then only one of these extremas will be regarded as a True detections, while

the others will be regarded as False. This makes the result look worse. Improving the

”result-extracting” method would present the actual performance better. This could

be done by merging nearby spot centers together, which is a common approach in blob

detection (see 2.4.1 Grey-Level blobs and Grey-level trees) and is also done by Simple

Blob Detection.

With tolerant parameters, Dark Spot Detector is able to detect nearly all spots. This

makes it a favourable initial method to use when choosing candidate coordinates that

could be spot centers, before combining with other methods. However, it was shown

that the method is less accurate than blob detection, regarding placement of the spot

centroids.

C. A. Lende J. N. Lundal 110

4.3.5.3 Future work

In these experiments, it is not explored whether different spots are detected when the

parameters are changed in each attempt. Here, only numbers have been considered.

For example if two different experiments has detected exactly 50 spots, this does not

mean that these are the same 50 spots. In the most extreme case, the two experiments

combined could have detected a total of 100 different spots. Therefore, it can not be

alleged that the Simple Blob Detector is not able to detect all the spots in data-set 1.

Combining several different input parameter combinations and/or a multi-scale approach

as recommended by Lindeberg [27](See 2.4 Detection of spot-like structures) for blobs

of varying size should be considered as important future work.

4.4 Individual Recognition Results

The algorithm was tested on 178 images of different fish; the label fish. Except for 16 of

these salmon, there were two images of the same specimen, giving 340 possible correct

classifications. Some images were removed due to the image not being desirable for

image processing, or in some cases other methods couldn’t find the desired feature(like

the Fin detection-method not finding the pectorla fin), leading to 16 of the label fish

only having one match.

The algorithm correctly classified 124 salmon and incorrectly classified 98 salmon, to-

taling 222 classifications. 118 salmon could not be classified as any other salmon in the

set. Table 4.35 shows how many specimens were classified with how many features.

C. A. Lende J. N. Lundal 111

Correctly classified Incorrectly classified

4 features used 4 8

5 features used 2 3

6 features used 0 0

7 features used 45 45

8 features used 0 3

9 features used 47 12

10 features used 3 12

11 features used 16 9

12 features used 0 3

13 features used 4 2

14 features used 1 0

15 features used 0 0

16 features used 2 1

Table 4.35: The result after running the individual recognition algorithm on the
salmon, showing how many salmon were classified, either correctly or incorrectly, with

how many features.

The method correctly classified 36.47% of the salmon and incorrectly classify 28.8%,

leaving 34.7% unclassified. The error-parameters were tested at stricter and more toler-

able levels, but it led to the number correct classification being reduced faster than the

incorrect classifications(stricter) or incorrect classifications growing at a greater speed

than the correct classifications(more tolerable). In other words; trying to get more

salmon classified by looser error-thresholds, led to more incorrect classifications.

If a fish is classified with four features, whether it be correct or incorrect, the fish had

no spots. Even if those four error-thresholds were stricter, it proves difficult to correctly

classify fish with this amount. The number of incorrect classifications is twice as high

as the correct classifications.

The amount of features six, eight, 10, 12 and 14 are meant to help the method discrim-

inate against images of different salmon. If the salmon had seven features, it means it

had the five first features accepted: length, head-length, nose to fin, fin to tail and spot-

difference. Two features are used for each spot, the length and the angle, meaning that

if the method used seven features, the salmon had one spot. Nine features-two spots,

and so on. If a fish used eight features, it means the length threshold was accepted,

but not the angle. The reason there are still classifications are best explained by a

short example: image number 2021 was correctly classified with 2022 with five features.

The salmon was marked with one complex spot in image 2021, but not in 2022(both

C. A. Lende J. N. Lundal 112

images are of the same fish). Then the first five features are used(the distance features

all salmon had) and the method searches for the one spot from image 2021 in image

2022. Because all spot values in 2022 are 0(it doesn’t have a spot), no more features are

used and the variable used is not incremented. It would be pointless to search for a spot

that clearly isn’t there, and then punish the test image if the fish in that image has no

spot. That is how five features were used. It is the same scenario with image correctly

or incorrectly classified with six, eight, 10, 12, 14 or 16 features, and those rows are

therefore not that interesting. The interesting numbers are those where seven, nine, 11

and 13, because those are cases where the salmon had one or more spots on both or all

three images.

Table 4.36 shows the correct and incorrect classifications when using the first five fea-

tures, and with one, two, three or four spots. There were so few salmon with five spots

or more that they are not mentioned.

Correctly classified Incorrectly classified Percent correct and incorrect

No spots(4 features) 4 8 33%/67%

1 spot(7 features) 45 45 50%/50%

2 spot(9 features) 47 12 80%/20%

3 spot(11 features) 16 9 64%/36%

4 spot(13 features) 4 2 67%/33%

Table 4.36: It is clear that with more features come more accuracy. From having less
correctly classified salmon to either 50/50 or more is a clear improvement.

Table 4.36 shows how much better the accuracy gets once more features are added. It

is best at nine features, or 2 spots. The reason one spot gives such a high incorrectly

classified number is because the number of salmon with either one or two spots on the

head outnumber the number of salmon with three or more. If there is only one spot

in difference between two images, the match gets through the spot-difference-threshold.

When trying to match one spot with another, the chance of finding a match increases if

there are two spots to chose from, instead of just one. Also, if there is at least one spot

on the label fish, the error-thresholds for the five previous features are slacked(length,

head-length, nose to fin, fin to tail and spot-difference), letting through almost any

salmon slightly resembling the label salmon, many of which has two spots.

The score is best with nine features, using two spots. The percentage drops at using 11

features(three spots). A reason for this can be that the head of the salmon is not large,

and the space where the spots emerge is even smaller. There is not much room and once

the number of spots is above two, the space where the spots can position themselves do

not vary much in angle or distance.

C. A. Lende J. N. Lundal 113

4.4.1 Potential Improvements

The slacker parameters when the salmon has one spot is a reason for the misclassification.

Too many potential matches are made possible and the chance that other salmon with

one or two spots gets a greater score rises. The features of the salmon could be counted

on beforehand and the more features available, the stricter the thresholds. Now, the

method has the same slack parameters whether the salmon has 7 features(1 spot) or 13

features(4 spots).

More features could also have been added to make the individual recognition even better,

like the circumference of the fish, the size of the spots, range to anal fin, size of the eye,

location of the eye relative to other locations. Since the features of the fish are not

as distinct as wanted, but rather have a resemblance to a Gaussian distribution, it is

debatable how much these added features would help, but they could surely better the

improvement.

Another reason for some incorrect classifications lie in the method for finding the nose

and tail tips. On some occasions, though rarely, the nose point is moved from one image

to another from the nose of the fish to its chin, despite being the same salmon. This

affects both the distance to the spot and the angle, making it unrecognizable. This

method was originally made to find the orientation of the fish, whereas it wasn’t crucial

to hit the nose point exact. A solution to this could be to implement a pattern method

if the salmon has three of more spots, then use the pattern made from the spots for

recognition, avoiding the nose point entirely.

Regarding the spots, the spot in itself could be used for individual recognition. Their

sizes, convexity, circularity and other parameters could be added to the feature vectors.

Then not only the distance and angles to the spots mattered, but the spot’s appearance

too.

If this method were to be utilized over time, the parameters would have to be accustomed

to growth over time. An addition to the distance feature would have to be added, to

deal with this uncertain change for each fish. They grow at uncertain rates, lengthening

the overall length, circumference, head-length and distance to fins, most likely lowering

the success-rate of the method. How much the addition to each feature in the feature

vector should be, should be calculated with statistical measures.

Chapter 5

Economy

This is a stand alone chapter which addresses driving factors in the Norwegian and world-

wide aquaculture industry. like nourishment demand and GHG emission in section 5.1

Global issues and aquaculture and economy in section 5.2 Potential of realizing IFarm.

It is not necessary to read this chapter in order to understand this report, although

it is recommended. Assumptions are made, and simulations are conducted in order to

determine the actual economical impact individual fish recognition could have for the

Norwegian aquaculture industry.

5.1 Global issues and aquaculture

Growing food demand

The population is increasing and with a larger population comes a larger need for food.

This is not only caused by the population growth itself, but people are also consuming

more as poverty decreases. UN’s agriculture production index for the entire world, was

100 in 2005, and then 127 in 2018. This means an increase of 27% over 13 years. Over the

same time period, the population grew from 6,542 billion to 7,633 Billion, which is just

less than 17%[33]. This indicates larger consuming per individual. The food demand

per person increases most in developing countries. IPPC states that the energy/kcal

consumption per capita in Asia has increased by 32% from 1970 to 2010,[34](page 822)

which has been an area of development in the past decades. Experts estimate the food

production has to double within 2050, and aquaculture probably will play an important

role[35].

114

C. A. Lende J. N. Lundal 115

Not only is the demand for food increasing, but also the demand for nutritious food,

especially from health conscious consumers is on the rise. This is also a contributor to

the growth of aquaculture[36].

GHG emission from agriculture compared to aquaculture

Increasing food demand raises another critical question in context with today’s society;

What about the environment? It is known that commercial agriculture stands respon-

sible for a considerable amount of the world’s emission of Greenhouse Gases(GHG).

24% of the total annual GHG emission comes from agriculture, forestry and other Land

Use(AFOLU). IPCC does this grouping because there is a deep connection between

them. For example increased agriculture is a key contributor to deforestation, which

again causes GHG-emission.

Another number comes from United States Environmental Protection Agency(EPA).

They claim that 9% of total GHG emissions in the US in 2016, came from Agriculture.

Almost half of this comes directly from enteric fermentation(30%) and manure manage-

ment(15%), and the rest comes mainly from soil management(50%). These numbers are

only for the US, and should not be applied globally.[37] For example does developing

countries usually have a much higher percentage of GHG emission from AFOLU.

According to MOWI, the carbon footprint is 5.9 for pigs, 30 for bovines and only 2.9 for

fish. Fig. 5.1 shows emission development from agriculture. As we can see, cattle meat

has been and still is responsible for a significant share of the emission. MOWI suggests

that aquaculture can be a solution to this problem and implies that it is wrong that

only 2% of the worlds food comes from the ocean, which covers most of the world. Their

CEO, Alf-Helge Aarskog, looks to the future and predicts ”The Blue Revolution”.[38]

Figure 5.1: The figure shows the development of emission from a couple of sources.
We can see that the top three contributors are from meat sources, and that cattle meat
causes most emission. Especially as we approach today’s date further to the right on the
graph. The descending trends are probably due to technical development. The figure
is fetched from IPCC’s ”AR5 Climate Change 2014: Mitigation of Climate Change”.

https://www.ipcc.ch/report/ar5/wg3/

https://www.ipcc.ch/report/ar5/wg3/

C. A. Lende J. N. Lundal 116

On the other hand, especially considering Norwegian aquaculture, large amounts of

emission is caused through export transportation by flight. Exporting salmon from

Norway to Japan would triple the total GHG emission of the product. This could

be solved by increasing local land-based fish farming, which would pose a threat to

production in Norway. Another way is to transport the products in more sustainable

ways.[36]

5.2 Aquaculture and the potential of tracking fish individ-

ually

Aquaculture can be defined as the farming of seafood and water plants. It is an old

practise, but has recently seen fast growth, as high as 8.3% on average every year since

the mid 1970’s to 2008. It was assumed that 47% of all fish consumed in 2009 came

from aquaculture, and this amount is expected to grow.[34] By 2030, the World Bank

estimates that this percentage will have increased to 62%.[35]

Compared to traditional wildlife fishing, aquaculture makes it easier to avoid depleting

the ocean life-stocks by over-fishing. Recent history has seen several fish-species almost

been fished to extinction, but stricter policies have caused significant improvement.

Traditional fishing is also a source of pollution, mainly by old fishing nets, which are

regarded as one of the worst sources of ocean pollution.[35].

This is avoided when turning to aquaculture. But aquaculture is not immaculate itself.

Not all fish species cope good with small spaces, and this can easily lead to the spread-

ing of disease and sea lice in the sea cage[35][1]. Faulty offshore cages combined with

stormy seas, may cause infected fish to flee, which may result in them infecting wildlife

population.[35] This has received attention in Norway the last couple of years, but the

problem seems to have decreased considerably[39].

In the past, Norwegian politicians have proposed regulations in the Norwegian Aquacul-

ture industry. As late as 9th of April 2019, ”Miljøpartiet De Grønne”, suggested several

actions, including tracking escaped fish. This was voted down, because it is expected

that such regulations would slow down the industry growth[40].

In Norway, over 20% of the bred salmon in the sea cages died in 2017, and the worst

companies report more than 40% casualties. Harald Takle, head researcher of Cermaq,

states that using individual health records for each fish will be a revolution in the

industry. Geir Stang Hauge, founder of Biosort, estimates that the mortality could be

cut by 50-75%.

C. A. Lende J. N. Lundal 117

Machine Vision is seen as a part of a possible solution for both these problems. For

example identifying escaped salmon to find who is responsible, and to keep a health

journal for every fish in a sea cage to detect early signs of disease and lice spread. This

last concept is currently under development, and is called ”IFarm”. (See 1.1.1 Biosort’s

IFarm - Tracking fish by machine vision, 4.

Tracking fish by RFID technology

Today, tracking of large fish populations is mainly done by RFID glass-tags, or so-called

pit tags. Every pit tag has a unique code. The system is 100% accurate as long as the

reader system functions, and the pit tag is not lost. The fish is anaesthetized before

tagging, and a significant amount of fish dies during the process. It is also assumed that

the process is stressful for the fish, but the impact is unknown. Only in Norway, hundreds

of thousands of salmon are tagged every year. The tagging process is time consuming and

expensive. Should political demands for tagging be enacted, the industry would have to

spend an increased amount of money. Such demands have been proposed several times

in the past, but has been shut down for the benefit of industrial growth. Today, Pit tags

are mainly used for scientific work on ”smaller” populations of fish. It is suggested that

recognition by computer vision could replace the use for pit tags and apply tracking on

a larger scale. The implementation of this technology could not only help save capital

and contribute to more humane treatment of fish, but could accelerate possibilities in

the industry even further.

Potential of realizing IFarm

The Norwegian aquaculture industry has grown in recent years. Especially since 2015,

both the price of salmon and volume has increased notably.[36]

To get an understanding of how individual tracking could affect the economy of Nor-

wegian salmon breeding, this section presents possible outcomes and important factors.

Most numbers are estimated roughly but reasonable, because the outcomes have signif-

icant uncertainties, and finding exact values would be superfluous. The IFarm concept

is the background for these estimations. This is because the IFarm is the current most

relevant concept that plans on using individual recognition on a large scale.

First, the potential income of realizing IFarm is estimated. Secondly, the potential

annual costs of realizing IFarm with RFID technology is estimated. At last, a simulation

is carried out and the results are discussed.

C. A. Lende J. N. Lundal 118

Potential Income

The goal here is to make an estimate of how much income could be achieved by realizing

IFarm. Costs are not considered here. The points below shows the approach for choosing

reasonable inputs for the simulations of this chapter:

• The price of salmon was about 40 NOK from 2014-2016. Then it went up to about

60 NOK. Because of continually growing demand, it is expected that the demand

will continue to grow, along with the production. Thus, it is expected that the

price will stay the same, or rather rise slightly than fall[36]. Thus, simulations will

use a triangular distribution, where 50 NOK is the lowest, 60 NOK is the most

likely, and 70 NOK is the highest possible sales price.

• It is further assumed that the average weight at accidental death is 4,2kg. This

information was extracted from articles[39]. The number is also reasonable be-

cause it fits with the assertion that bred salmon are between 3-6kg in the cages.

Still, there is uncertainty related to the actual average weight at death, because

different time of the season may cause different average weight. Simulations will

be performed with a triangular distribution varying from 3.9-4.2-4.5kg.

• It is assumed that a cage holds 200 000 bred salmon. Further it is assumed that

currently, 20% of these die on average.[1].

• 50%-75% of fish deaths in cages can be expected to be prevented.[2] These esti-

mates are however not be fully trusted, as they were stated in a interview. There-

fore, there will be used a uniform distribution, ranging from as low as 5% up to

75%. The 5% possibility is used to demonstrate what the results may be, in case

the scientists have misjudged the situation, or their intentions are biased. This is

the most unpredictable input factor associated with the income estimation.

Simulations were made in Excel with the inputs as shown in the bullet points below.

• Price: 40-60-80 NOK/kg

• Average weight at death: 3.9-4.2-4.5kg

• Current average cage death: 40 000 (20% of 200 000)

• Percentage of fish that could be saved: 5%-75%

C. A. Lende J. N. Lundal 119

The income function per cage is:

Price ∗AverageWeight ∗ CurrentDeath ∗ SavePercentage

Scenarios and simulations are presented in the following sections.

Result: Income approximations

With the given inputs, worst, most likely and best case scenarios are calculated:

• Worst case scenario: 400 000 NOK / fish cage

• Most Likely scenario: 5 040 000 NOK / fish cage

• Best case scenario: 8 820 000 NOK / fish cage

These are the possible extra income for one single cage containing 200 000 salmon, after

implementation of a concept like IFarm.

Potential costs using RFID to tag every fish in a cage

The potential costs of realizing the IFarm concept with an RFID system, starts with

tagging all the fish. The cost of this is estimated to get a rough idea how expensive it

would be, in order to understand the potential of tracking by machine vision. If mass

tagging would actually be initiated, the process would be developed more efficiently.

Therefore it is not possible to make an exact estimation of the probable cost using

today’s prices for tagging. For the estimations, the following assumptions are made,

loosely based on established routines:

1. The fish spend 12-18 months in the sea cage. Assuming 200 000 fish in a cage, an

average of spending 15 months in the cage, would require implanting of 160 000

pit tags every year.

2. At one of MOWI’s hatcheries in 2018, about 75 000 smolts were tagged in one week,

by about 10 workers. The work included anaesthetizing, tagging, fin clipping and

logistics. Here, it is assumed that 6 workers would be required only for tagging, as

three people do the tagging, while the other three does anaesthetizing and logistics.

3. assuming 37.5 work hours per worker for one week. This leads to 10.8 seconds of

work per fish tagged, which seems reasonable.

C. A. Lende J. N. Lundal 120

4. The costs of pit tag would probably decrease as production increases, and becomes

more efficient. At the same time the demand for pit tags would increase signifi-

cantly. Today, ordering large (hundreds of thousands) quantities of pit tags results

in a price between 5-6 NOK each. It is hard to determine what would happen if

the demand increased to 100 million. The question is then how much further it is

possible to make the production of pit tags cheaper. 5 NOK is used as the highest

and most likely price, which is unlikely to be any higher. 4 NOK is used as a

minimum price.

5. More specific costs will not be assumed. Instead this will be called an unknown

cost, which will be varied in order to experiment with how much money could be

used to develop and run the system.

Here, it will be focused mainly on the cost associated with tagging the fish, as these are

seen as the most vital. The factors that are especially important to consider are listed

below:

• Pit tag price

• Quantity of fish tagged per work hour

• Salary

Result: implementation by RFID cost approximation

• Worst: -768 400 NOK

• Most likely: 4 038 400 NOK

• Best: 8 228 000 NOK

To get a grasp of understanding of how the outcome result distribution could be, 10 000

simulations were done with the following variations on the input values:

• Prevented Salmon Mortality, %: 5-75% (uniform distribution)

• Price per kg: 50-60-70 NOK. (Triangular distribution with 60 NOK as most likely)

• Average weight at death: 3.9-4.2-4.5 kg. (Triangular distribution with 4.2 kg as

most likely)

• Workers needed: 5-6-8. (Triangular distribution with 6 workers as most likely)

C. A. Lende J. N. Lundal 121

• pit tag cost: 5-3 NOK. (Linear distribution from 5 to 3).

Palisades ”@RISK” version 7.6 was used to do the 10 000 simulations. The results are

presented in fig. 5.2 and 5.3. As can be seen from fig. 5.2, the results are mainly

positive.

Figure 5.2

What is more interesting is the tornado graph in fig. 5.3. This graph displays the impact

each input variable has on the output value. It is clear that the fish death prevention

percentage is the main variable which determines the income. This basically means that

the other input variables are not that important.

To look more closely at this variable, the other input values are held at their most likely

value, while the fish death prevention percentage is varied.

Impact of fish death prevention

Only the prevented mortality rate is used as a variable, in order to check out its impact

on the ending result.

C. A. Lende J. N. Lundal 122

Figure 5.3

First, Microsoft excel’s solver is used to find the fish death prevention at the breakeven

point (0 NOK annual result). The result shows that 9.60% death prevention, would

cancel out the estimated costs. A 1% increase, the fish death prevention would result in

0,1M higher incomes. If the death prevention ratio would actually be between 50-75%,

as was alleged, the annual result would be between 4,072,000 and 6,592,000 NOK per

sea cage with 200 000 salmons and a former death ratio of 20%. This corresponds to a

overwhelming gross margin of 421 - 681%.

Discussion and further work

In these estimations, only the possible annual incomes and annual costs of tracking fish

by RFID are presented. In reality, if IFarm were to be realized, there would also be

initializing costs related to construction and systems. An RFID system is needed to

read the pit tags, and a machine vision system to detect sea lice and illnesses. It may

seem that an implementation solely by machine vision would have many similar costs

as when implementing with RFID technology, except for the annual tagging expenses.

Thus, if possible, it is understandable that the IFarm developers are looking to Machine

Vision for identification instead of RFID Technology. Anyhow, these systems would

need regular service, and there would still be possibilities for errors. To make a decision

whether the investment would be worth it or not, the initializing costs and life time

estimates needs to be included in a life cycle analysis. Finally, the specific company’s

desired interest rate will decide if the investment is favourable or not. It would also be

up to the companies themselves, to determine factors like wages, number of workers,

logistics and so on.

C. A. Lende J. N. Lundal 123

Except for the death prevention ratio in this chapter, the numbers used are somewhat

reliable. The uncertainty lies mainly in how prices would be affected by the implemen-

tation of such a system. For example, larger orders of pit tags would probably make

the price cheaper. It is quite clear that the death prevention potential is both the most

decisive and unpredictable factor. This key factor needs be investigated further, before

jumping to any conclusions.

Some rough startup expense estimations are given in Appendix C.

Conlusion

There are uncertainties on the estimation of the net economic benefit of the technology,

because we do not have exact knowledge of all the income and cost drivers. However, it

is clear that there is a large potential to save money, using a concept like IFarm. The

decisive factor is the actual death prevention ratio after realisation. This needs to be

researched further. If it is as high as 50-75%, prospects seems positive.

Chapter 6

Discussion

In this report discussion has been ongoing through chapters. This chapter therefore

contains both summarizing and new discussion.

6.1 Data-sets and image capturing

The data-sets used in this project, were usable for their purpose. Data-set 1 was suc-

cessfully used to develop working feature extraction methods, while data-set 2 could

confirm that some of these methods also worked on an alternative data-set. However,

the Nose and Tail Tips detection and Method: Local Gill Detection methods could not

be tested against data-set 2, as the back fins were not placed in the image, which was

required for both methods. Acquisition of other data-sets could therefore be considered,

in order to further test these methods.

Image quality

Even though data-set 1 proved usable, it was evident that the contrasts displayed in the

images, were not optimal. This may be one of the reasons that Simple Blob Detection

Method was unable to detect a significant proportion of the spots on the gill for this data-

set. Even though many of the images in data-set 2 were somewhat blurry, it performed

better, because of good contrasts.

In general, it is evident that machine vision methods can not be fairly and completely

evaluated by a single data-set, as shown in the example above. It is therefore obvious

that further work on the optics and image capturing procedure could be favourable for

better results.

124

C. A. Lende J. N. Lundal 125

In future attempts, it should be considered to increase the lighting on the dark side of

the fish(See 3.2 Image Capturing of Atlantic Salmon). A better camera should also be

considered.

The state of the used fish

The fish in the data-sets are in the late smoltification stage (See appendix B Biology

of Atlantic Salmon). This means that they will likely not have evolved many spots on

the gill cover yet(See 1.2 Spots in the skin). Both spot detection methods proved well

on distinct spots. Since the spots of a salmon becomes more distinct over time, it is

reasonable that the methods could perform even better on more adult salmon. Adult

salmon also have more spots, which could be favourable for individual recognition. The

fish in the fish cages are are all adult, which would be the case for IFarm (See 1.1.1

Biosort’s IFarm - Tracking fish by machine vision). The study [14] by IMR, suggested

that the growth of the fish were unfavourable when testing for long term recognition,

as they had not necessarily developed enough spots. Future work should include testing

the methods on older fish.

6.2 Feature extraction methods

Contour extraction method

The Extraction of the fish in the image method fits its purpose when the fish is immedi-

ately surrounded by a blue background. Since this was one of the demands when data-set

1 was cleaned (See appendix A), it performed well on all of the remaining images. It

was important to be able to extract the fish accurately to get an accurate contour of

the fish. Since this contour indirectly affected the results of the other methods, it would

be unfair to the other methods if their results was heavily influenced by the extraction

method. Thus, for future work, it will also be important to develop extraction methods

that are accurate. It would probably require a more complex method if the images were

acquired from a live camera in a river, due to varying background and illumination.

Nose and back fin tips detection

The Nose and Tail Tips detection method partly fulfilled its purpose, which was to

determine the orientation of the fish and find the nose point. Sometimes, the method

C. A. Lende J. N. Lundal 126

misinterprets the cheek as the nose, which is particularly unfavourable for later recog-

nition stages that uses the nose point. It was however not of importance to the ROI

extraction of the head, and the length estimation. The nose point could be better ex-

tracted by considering the intensity values in the area, which is normally darker on the

nose.

The length estimation is inaccurate when the fish is bent, as it is measured from the

nose point, to the point between the back fin tips. A method that follows the through

the center of the fish to measure it, should be developed for accurate measures.

Gill cover end detection

The Method: Local Gill Detection proves usable in extracting a ROI around the head

of the fish, that is later used for spot detection on the gill cover. It is however a bit

imprecise, with a standard variance of 5.50 pixels / 1.32 mm. Better preciseness here,

could result in better individual recognition possibilities. More experiments could be

conducted using different parameters, to get more optimal results.

Pectoral fin detection

It was wise to use otsu’s method to find a threshold for segmenting the pectoral fin. The

method did its task well on both data-sets. How well it would do in other environments

is debatable. If a camera was submerged into a river with varying illumination, otsu’s

method would probably not do as well as it did for these data-sets(2.2.1 Otsu’s Threshold

page 18) and the method would have to be modified for this.

Gill Cover spot detection

The two methods used for detecting the spots on the gill cover are promising, but not

optimal, as many False detections ocurred when it was attempted to detect all the

spots. The relatively best attempt was perhaps the one that resulted in 91.18% of spots

detected, with only 20.62% percent of total detections being false. It is evident that the

methods should be developed further and/or be implemented in a more thorough way;

it should be conducted experiments using several input combinations and/or multi-scale

approaches, as recommended by T. Lindeberg in [27] (See 2.4 Detection of spot-like

structures). Especially regarding the Dark Spot Detector, the use of multiple variations

of Gaussian kernels, could also help detect various spot shapes and sizes.

C. A. Lende J. N. Lundal 127

As for blob detection, there are several alternative approaches to the ones used in this

project, as mentioned in 2.4 Detection of spot-like structures on page 26. These should

also be implemented for gill spot detection, and eventually combined with the methods

developed here.

6.3 Individual recognition

The method for individual recognition correctly classified 36.47%of the salmon. This

include whether it recognized the same specimen for both images, but it recognized

roughly 65 out of 178 salmon. If this method was instead tried on a fish tank with more

than 200 000 individuals, the correct-classification rate would surely drop even further.

The method would have to be stricter and scale the thresholds with the amount of

features used.

Whether it comes down to the quality of the images or the robustness of the methods is

hard to determine, and there are room for improvements in both fields. The methods’

possible improvements are discussed earlier and would lead to better results, especially

when combined with better imagery.

Chapter 7

Conclusion

The methods for extracting the fish, locating the nose, tail tips, pectoral fin and gills

work well on images of salmon as long as the input image displays the fish, immediately

surrounded by a blue background. Under different circumstances the methods might

need to be adapted to achieve the wanted result. For these data-sets, the methods per-

formed acceptably. The detection of the nose point should should however be improved,

as the cheek sometimes is detected instead.

The Dark Spot Detection method is able to detect almost every spot in both data-sets,

although it causes many excess detections. The Simple Blob detector performed best

on data-set 2, while struggling to detect spots in data-set 1. The methods should be

implemented with several parameters and multi-scale approach for improved results.

Regarding individual recognition, the method does not perform well enough to be a

suitable alternative to recognize individual salmon compared to using pit tags, with

only recognizing 65 of 178 salmon(36.47% success rate). The uncertainty is too great.

With more features, better optics and a good way of solving a salmon’s growth, it could

perhaps become a suitable solution to track an individual fish over a period of time. For

now, the individual recognition method does not serve well as a standalone method for

recognizing individual salmon.

128

Appendix A

Dataset Information

General:

• starts at fish no. 1,

• ends at fish no. 203.

• images of fish no. ’mnk’ is labelled as mnk1, mnk2 and 4 mnk3. As an example,

the 3 images of fish no. 14 is labelled as 0141, 0142 and 0143.

Fish that have other than 3 no. of images:

• 12. only has 2 images

• 85. has 4 images

• 93. has 4 images

• 101. has 0 images

A complete dataset with handpicked images were gathered from the main dataset(from

MOWI). This filtered dataset was then the set of images used for salmon recognition.

Images with either of the unwanted cases below were removed from the selection. The

images removed because it fulfilled one of the criteria are noted with their filename:

1. The fish in not immediately surrounded by the blue background, in other words:

a part of the fish is touching another object that is not blue.

• 0073

• 0122

129

C. A. Lende J. N. Lundal 130

• 0131

• 0132

• 0133

• 0151

• 0152

• 0153

• 0132

• 0133

• 0453

• 0632

• 0633

• 0673

2. The fish is oriented more vertically, than horizontal

• 0011

• 0012

• 0013

• 0021

• 0702

• 0703

• 0792

• 0793

• 0992

• 0993

• 1181

• 1182

• 1183

3. The fish is or has blurry regions

• 0712

• 0821

• 0953

• 1211

C. A. Lende J. N. Lundal 131

• 1253

• 0532

• 0832

4. The fish is placed far from the image center.

• 0701

• 0713

• 0853

• 0852

• 0842

• 0843

• 0851

• 0854

• 0893

• 0923

• 0991

• 1002

• 1003

• 1021

• 1022

• 1023

• 1051

• 1052

• 1053

• 1081

• 1082

• 1083

• 1092

• 1093

• 1122

• 1123

• 1131

• 1132

C. A. Lende J. N. Lundal 132

• 1133

• 1151

• 1152

• 1173

• 1191

• 1192

• 1193

• 1201

The dataset contains 534 images of acceptable fish that was used.

Appendix B

Biology of Atlantic Salmon

There are several types of salmon. The type that lives in Norway and the Atlantic Ocean,

is called Atlantic Salmon, or in latin, Salmo Salar. The males reach a maximum size

of around 1.50 meters and 40kg, and they typically live from 2-8 years. Wild Atlantic

salmons are born in the rivers connected to the Atlantic Ocean, all the way from Spain

to Russia, to Canada, to southern US. They spawn in the rivers, and do not turn to the

ocean before they become adults.[41]

The appearance of Atlantic Salmon changes several times through its lifeline, and is

affected by both genes and environment[14][13]. Considering use of Machine Vision, it is

important to understand how the appearance of Atlantic Salmon may vary. Therefore,

this chapter includes a brief presentation of:

1. The life cycle of Atlantic Salmon

2. The impact of genes and environment on the appearance of Atlantic Salmon.

B.0.1 Life Cycle of Atlantic Salmon

The salmon has a unique life cycle, which phases are roughly described by fig. B.1.

These phases are explained in more detail in the following sections.

Hatching - Alevin phase

Atlantic Salmon eggs spawn between October and January. During spawning, the female

chooses a fitting area with good current and coarse gravel to cover the eggs. The eggs

lie in the river gravel until they hatch in the spring. The first 5-6 weeks of their lives,

133

C. A. Lende J. N. Lundal 134

Figure B.1: The Life Cycle of an Atlantic Salmon. Image from: Wikimedia Commons.

the salmon is called an alevin. This can be describes as a larvae, or baby fish. In this

period, it gets its nourishment from a yolc sac attached to it.[41] A newly hatched Alevin

is shown in fig. B.2.

Fry phase

In the next phase, they are called Fry. As Fry, they emerge from the gravel and are now

able to navigate around in the river(with their eight fins). They now feed on microscopic

animals. Because most Fry are eaten by predators, they gradually develop camouflage.

Fig. B.3 shows a couple of frys.

Parr phase

After further evolving, it is then called a Parr. Camouflage like stripes and spots are

developed, like shown in fig. B.4. They now feed on insects. As a Parr, they will live

C. A. Lende J. N. Lundal 135

Figure B.2: A newly hatched Salmon Alevin. Image from: Wikimedia Commons.

Figure B.3: Several Atlantic Salmon Fry, that have emerged from the gravel. Image
from: Wikimedia Commons.

in freshwater rivers for at least one year, but this time period varies with circumstances

like temperature and feeding quality. For example, the Parr in the cold glacier rivers of

Sogn og Fjordane in Norway, can stay in the rivers for up to five years.[41]

Smoltification

The next phase happens when the salmon is preparing to enter seawater. This is called

the smoltification process and involves a change of appearance from brown/green to

more silvery looking. The process usually starts when the Parr is around 11-12 cm [4],

C. A. Lende J. N. Lundal 136

Figure B.4: Atlantic Salmon Parr. Image from: Wikimedia Commons.

and the Salmon could grow to as large as 25cm during the smoltification[5]. In the

breeding industry, it usually takes 8-18 months to breed farmed smolts at about 100g,

whom are ready to enter seawater cages. When the smoltification is done, the Salmon

is called Smolt?[41] Fig. B.5 shows an example of a smolt, ready to enter seawater.

Figure B.5: A breed Atlantic Salmon smolt, ready for seawater. Image: Specifically
for this work.

Adult

After entering sea water, the Atlantic Salmon has an enormous growth. It becomes

mature and ready to mate earliest one year after entering seawater. It will eventually

return to the freshwater rivers to spawn. Some return after one year, as ”small salmon”

at around 1.5-3kg. Others stay in the ocean for longer time, and are then medium or

large-sized when they return to the river.[41]

The spawning migration takes place during late spring, to the autumn. The spawning

itself happens late in the autumn. In Norway, most salmon spawns the same year they

have travelled up the rivers, but in some other places, parts of the salmons does the

migration the year before. The salmon mostly turn back to the same rivers as they

spawned themselves, and even to the same part of the river. This Phenomenon is known

as ”homing”, which is still not understood, although there are recent research in the

C. A. Lende J. N. Lundal 137

field, involving theories that the fish interprets complex signals from various stimuli on

its travels, to later use these to find the way back home.[41]

Many of the adults become exhausted after the spawning, and die shortly after. But

some of them actually return to the ocean and continues the process a couple of times.

This is unique for the Atlantic Salmon. None of the other salmon species does this.

In breeding it usually takes 12-18 months of adult life for the fish to be ready for slaughter

at about 3-6kg. It is also desirable that the fish has not reached maturity, as this has

some negative effects both on quality and economy [6]. Fig. B.6 shows an adult breed

Atlantic Salmon.

Figure B.6: An adult breed Atlantic Salmon, ready for slaugther. Image: Obtained
from IMR.

Appendix C

Rough IFarm initialization costs

with RFID Technology

W/RFID Total: 590,000 NOK Annual costs: 1M NOK (pit tags, work hours, service)

• 3 cameras a 10,000 NOK

• PC/Server system a 100,000 NOK

• Construction costs a 200,000 NOK

• RFID reader system w/ 2 antennas a 80,000 NOK

• 3 semi-automatic pit tag machines a 60,000 NOK

W/Machine Vision Total: 350,000 NOK Annual Costs: 30 000 NOK (only service

needed)

• 3 cameras a 10,000 NOK

• PC/Server system a 100,000 NOK

• Construction costs a 200,000 NOK

camera: https://www.ptgrey.com/blackfly-50-mp-color-usb3-vision-sharp-rj32s4aa0dt

5MP camera from pt-grey: 10 000 NOK x3 Fast computer: 50 000. Total of: 80 000

NOK

Since one probably could use a super computer for several cages, it is hard to estimate

what the exact cost would be here. This is a rough estimate.

138

C. A. Lende J. N. Lundal 139

We will not go into detail here, about the potential cost of rebuilding the cages to fit

these specific applications. For simplicity, we assume the costs would be similar.

Appendix D

Code

This part contains all relevant code made for this project.

D.1 Extract Fish in image

def find_largest_foreground_with_kmeans_noCrop(self , image , filename , background=’arbitrary ’):

print(’attempting to extract only the fish in the image’)

import cv2

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

Using K-means clustering to get "exact" position of the fish in the image.

Requires:

Distinct and monotone background color. Different from foreground object.

Relatively big object.

The wanted object HAS to be the largest in the scene

params:

image: input image to be clustered.

image = image.astype(’uint8 ’)

CONVERT TO LAB COLOR SPACE

print(’converting image from BGR to LAB color space’)

image = cv2.cvtColor(image , cv2.COLOR_BGR2RGB)

LAB = cv2.cvtColor(image , cv2.COLOR_RGB2LAB)

CREATE INPPUT ND -ARRAY FROM COLOR VECTORS A&B.

print(’creating input array for the k-means algorithm ’)

A = LAB[:, :, 1]

B = LAB[:, :, 2]

A_array = A.ravel()

B_array = B.ravel()

X = np.zeros([len(A_array), 2])

140

C. A. Lende J. N. Lundal 141

X[:, 0] = A_array

X[:, 1] = B_array

##CREATE INITIALIZATION VECTOR , SINCE WE ROUGHLY KNOW THE COLORS (based on the images from 20190312)

init_ndarray = np.array ([[128 , 116], [150, 69]])

RUN K-MEANS ALGORITHM AND PREDICT CLUSTER CENTERS

print(’running k-means algorithm ’)

if background == ’blue’:

kmeans = KMeans(n_clusters =2, init=init_ndarray , n_init=1, max_iter=5, random_state =0). fit(X)

else:

kmeans = KMeans(n_clusters =2, init=’k-means++’, n_init=1, max_iter =30, random_state =0). fit(X)

clustered_array = kmeans.predict(X)

RESHAPE OUTPUT ARRAY TO ND -ARRAY (MATRIX)

print(’reshaping output array to matrix ’)

rows = image.shape [0]

cols = image.shape [1]

clustered_img = np.reshape(clustered_array , [rows , cols])

INVERT BINARY IMAGE IF MOST AREA IS WHITE. ASSUMING FISH DOES NOT COVER MORE THAN HALF OF IMAGE

M, N = clustered_img.shape

img_size = M * N

nWhitePixels = np.sum(clustered_img)

if nWhitePixels >= 0.5 * img_size:

clustered_img = (clustered_img - 1)

clustered_img = np.multiply(clustered_img , -1)

clustered_img = np.uint8(clustered_img)

##LABEL THE CLUSTERED BW IMAGE

ret , labels , stats , centroids = cv2.connectedComponentsWithStats(image=clustered_img , connectivity =8)

FIND INDEX/LABEL OF LARGEST OBJECT (0th object is the background)

largest_object_label = stats[1:, 4]. argmax () + 1

IF HEIGHT OF OBJECT IS LARGER THAN 900, ASSUME THAT THE SECOND LARGEST OBJECT IS THE FISH

h = stats[largest_object_label , cv2.CC_STAT_HEIGHT]

if h > 900:

FIND SIZE OF SECOND LARGEST OBJECT

stats2 = stats.copy()

stats2[largest_object_label , 4] = 0

second_largest_object_label = stats2 [1:, 4]. argmax () + 1

if stats2[second_largest_object_label , cv2.CC_STAT_AREA] > 10000:

largest_object_label = second_largest_object_label

CREATE BOUNDING BOX AROUND LARGEST OBJECT

MAKE SLIGHTLY LARGER

#t = stats[largest_object_label , cv2. CC_STAT_TOP] - 3

#l = stats[largest_object_label , cv2. CC_STAT_LEFT] - 3

#h = stats[largest_object_label , cv2. CC_STAT_HEIGHT] + 3

#w = stats[largest_object_label , cv2. CC_STAT_WIDTH] + 3

C. A. Lende J. N. Lundal 142

cropped_largest = labels[t:t + h, l:l + w]

REMOVE ALL PIXELS THAT ARE NOT LABELLED AS THE LARGEST OBJECT

onlyLargest = labels.copy()

onlyLargest[onlyLargest != largest_object_label] = 0

onlyLargest = np.uint8(onlyLargest / onlyLargest.max ())

onlyLargest , contours , hierarchy = cv2.findContours(onlyLargest , cv2.RETR_CCOMP ,

cv2.CHAIN_APPROX_SIMPLE)

WE WANT ONLY THE EXTERNAL CONTOUR OF THE LARGEST OBJECT

Draw External Contours

Set up empty array

external_contours = np.zeros(onlyLargest.shape)

For every entry in contours

for i in range(len(contours)):

last column in the array is -1 if an external contour (no contours inside of it)

if hierarchy [0][i][3] == -1:

We can now draw the external contours from the list of contours

cv2.drawContours(onlyLargest , contours , i, 255, -1)

onlyLargest = np.uint8(onlyLargest / onlyLargest.max ())

CREATE THE OUTPUT IMAGE , CONTAINGING ONLY THE LARGEST OBJECT / FISH

THE OUTPUT IMAGE IS MADE SLIGHTLY LARGER , BECAUSE METHODS LIKE EDGE DETECTION ARE GOING TO BE USED

output_img = image.copy()

output_img [:, :, 0] = np.multiply(output_img [:, :, 0], onlyLargest)

output_img [:, :, 1] = np.multiply(output_img [:, :, 1], onlyLargest)

output_img [:, :, 2] = np.multiply(output_img [:, :, 2], onlyLargest)

writingfilename_onlyLargest = ’D:/ Master/AlleBilder/fraPycharm/filt/onlyContour/’ + str(filename)

WE ALSO WANT IMAGE WITH ONLY CONTOUR TO FIND SHAPE FEATURES

onlyContour = onlyLargest *255

cv2.imwrite(writingfilename_onlyLargest ,onlyContour)

##MAKE BACKGROUND WHITE

output_img[output_img [:, :, 0] == 0] = 255

output_img[output_img [:, :, 1] == 1] = 255

output_img[output_img [:, :, 2] == 2] = 255

WRITE IMAGE

writingfilename = ’D:/ Master/AlleBilder/fraPycharm/filt/onlyFish/’ + str(filename)

#print(’writing image as: ’ + str(writingfilename))

#cv2.imwrite(filename=writingfilename , img= output_img)

#print(’finished written to file ’)

return output_img , onlyContour

def find_center_foreground_with_kmeans_noCrop_IMR(self , image , filename , background=’arbitrary ’):

C. A. Lende J. N. Lundal 143

print(’attempting to extract only the fish in the image’)

import cv2

import numpy as np

import matplotlib.pyplot as plt

from sklearn.cluster import KMeans

Using K-means clustering to get "exact" position of the fish in the image.

Requires:

Distinct and monotone background color. Different from foreground object.

Relatively big object.

The wanted object HAS to be the largest in the scene

params:

image: input image to be clustered.

image = image.astype(’uint8 ’)

CONVERT TO LAB COLOR SPACE

print(’converting image from BGR to LAB color space’)

image = cv2.cvtColor(image , cv2.COLOR_BGR2RGB)

LAB = cv2.cvtColor(image , cv2.COLOR_RGB2LAB)

CREATE INPPUT ND -ARRAY FROM COLOR VECTORS A&B.

print(’creating input array for the k-means algorithm ’)

A = LAB[:, :, 1]

B = LAB[:, :, 2]

A_array = A.ravel()

B_array = B.ravel()

X = np.zeros([len(A_array), 2])

X[:, 0] = A_array

X[:, 1] = B_array

##CREATE INITIALIZATION VECTOR , SINCE WE ROUGHLY KNOW THE COLORS (based on the images from 20190312)

init_ndarray = np.array ([[128 , 116], [150, 69]])

RUN K-MEANS ALGORITHM AND PREDICT CLUSTER CENTERS

print(’running k-means algorithm ’)

if background == ’blue’:

kmeans = KMeans(n_clusters =2, init=init_ndarray , n_init=1, max_iter=5, random_state =0). fit(X)

else:

kmeans = KMeans(n_clusters =2, init=’k-means++’, n_init=1, max_iter =30, random_state =0). fit(X)

clustered_array = kmeans.predict(X)

RESHAPE OUTPUT ARRAY TO ND -ARRAY (MATRIX)

print(’reshaping output array to matrix ’)

rows = image.shape [0]

cols = image.shape [1]

clustered_img = np.reshape(clustered_array , [rows , cols])

INVERT BINARY IMAGE IF MOST AREA IS WHITE. ASSUMING FISH DOES NOT COVER MORE THAN HALF OF IMAGE

M, N = clustered_img.shape

img_size = M * N

nWhitePixels = np.sum(clustered_img)

#if nWhitePixels >= 0.5 * img_size:

C. A. Lende J. N. Lundal 144

centerPixel = int(clustered_img[int(M/2),int(N/2)])

print(clustered_img[int(M-1),int(N-1)])

if (centerPixel == 0):

clustered_img = (clustered_img - 1)

clustered_img = np.multiply(clustered_img , -1)

clustered_img = np.uint8(clustered_img)

##LABEL THE CLUSTERED BW IMAGE

ret , labels , stats , centroids = cv2.connectedComponentsWithStats(image=clustered_img , connectivity =8)

FIND INDEX/LABEL OF LARGEST OBJECT (0th object is the background)

largest_object_label = stats[1:, 4]. argmax () + 1

Or center:

largest_object_label = int(labels[int(M/2),int(N/2)])

IF HEIGHT OF OBJECT IS LARGER THAN 900, ASSUME THAT THE SECOND LARGEST OBJECT IS THE FISH

h = stats[largest_object_label , cv2.CC_STAT_HEIGHT]

if h > N-1:

print(’jdfuhiushfuihsduifhuihsduihfuihsduihfuihsduihfuihsduihfihsduihfuisdhufhsuidhfiuhsduhfiu ’)

FIND SIZE OF SECOND LARGEST OBJECT

stats2 = stats.copy()

stats2[largest_object_label , 4] = 0

second_largest_object_label = stats2 [1:, 4]. argmax () + 1

if stats2[second_largest_object_label , cv2.CC_STAT_AREA] > 100000:

largest_object_label = second_largest_object_label

CREATE BOUNDING BOX AROUND LARGEST OBJECT

MAKE SLIGHTLY LARGER

#t = stats[largest_object_label , cv2. CC_STAT_TOP] - 3

#l = stats[largest_object_label , cv2. CC_STAT_LEFT] - 3

#h = stats[largest_object_label , cv2. CC_STAT_HEIGHT] + 3

#w = stats[largest_object_label , cv2. CC_STAT_WIDTH] + 3

cropped_largest = labels[t:t + h, l:l + w]

REMOVE ALL PIXELS THAT ARE NOT LABELLED AS THE LARGEST OBJECT

onlyLargest = labels.copy()

onlyLargest[onlyLargest != largest_object_label] = 0

onlyLargest = np.uint8(onlyLargest / onlyLargest.max ())

onlyLargest , contours , hierarchy = cv2.findContours(onlyLargest , cv2.RETR_CCOMP ,

cv2.CHAIN_APPROX_SIMPLE)

WE WANT ONLY THE EXTERNAL CONTOUR OF THE LARGEST OBJECT

Draw External Contours

Set up empty array

external_contours = np.zeros(onlyLargest.shape)

For every entry in contours

for i in range(len(contours)):

last column in the array is -1 if an external contour (no contours inside of it)

if hierarchy [0][i][3] == -1:

C. A. Lende J. N. Lundal 145

We can now draw the external contours from the list of contours

cv2.drawContours(onlyLargest , contours , i, 255, -1)

onlyLargest = np.uint8(onlyLargest / onlyLargest.max ())

CREATE THE OUTPUT IMAGE , CONTAINGING ONLY THE LARGEST OBJECT / FISH

THE OUTPUT IMAGE IS MADE SLIGHTLY LARGER , BECAUSE METHODS LIKE EDGE DETECTION ARE GOING TO BE USED

output_img = image.copy()

output_img [:, :, 0] = np.multiply(output_img [:, :, 0], onlyLargest)

output_img [:, :, 1] = np.multiply(output_img [:, :, 1], onlyLargest)

output_img [:, :, 2] = np.multiply(output_img [:, :, 2], onlyLargest)

writingfilename_onlyLargest = ’D:/ Master/AlleBilder/fraPycharm/prikkFisk/onlyContour2/’ + str(filename)

WE ALSO WANT IMAGE WITH ONLY CONTOUR TO FIND SHAPE FEATURES

onlyContour = onlyLargest *255

cv2.imwrite(writingfilename_onlyLargest ,onlyContour)

##MAKE BACKGROUND WHITE

output_img[output_img [:, :, 0] == 0] = 255

output_img[output_img [:, :, 1] == 1] = 255

output_img[output_img [:, :, 2] == 2] = 255

WRITE IMAGE

writingfilename = ’D:/ Master/AlleBilder/fraPycharm/prikkFisk/onlyFish2/’ + str(filename)

#cv2.circle(output_img ,(int(N / 2), int(M / 2)) ,21 ,(0 ,0 ,255) , -1)

#print(’writing image as: ’ + str(writingfilename))

cv2.imwrite(filename=writingfilename , img=output_img)

#print(’finished written to file ’)

return output_img , onlyContour

Listing D.1: Python example

D.2 Code: Find nose and Tail Tips

def find_nose_and_backfintips(self , cnt_image , image , filename):

Import library stuff

import cv2

import numpy as np

import matplotlib.pyplot as plt

from PIL import Image

img = cnt_image

img = np.uint8(img)

binary = np.uint8(img / img.max())

print(’teat’)

C. A. Lende J. N. Lundal 146

print(binary.shape)

GET CONTOUR OF FISH

binary , contours , hierarchy = cv2.findContours(binary , cv2.RETR_CCOMP , cv2.CHAIN_APPROX_SIMPLE)

cnt = contours [0]

GET MOMENTS OF CONTOUR AND FIND CENTROID

M = cv2.moments(cnt)

cx = int(M[’m10’] / M[’m00’])

cy = int(M[’m01’] / M[’m00’])

centroid = [cx, cy]

##CREATE OUTLINE TO FIND CONTOUR POINTS

black_img = np.zeros(img.shape)

cv2.drawContours(black_img , [cnt], 0, 1)

cntPoints = cnt.copy()

SINCE THERE IS ONLY 1 CONTOUR IN INPUT IMAGE

cntPoints[cnt == 1]

len(cntPoints)

cntPoints = cnt.copy()

cntPoints[cnt == 1]

FINDING ALL DISTANCES FROM THE CENTROID OF THE FISH

dists_from_centroid = []

i = 0

for points in cntPoints:

dist_vector = points - centroid

dists_from_centroid.append(dist_vector)

distances = np.round(np.sqrt(np.sum(np.square(dists_from_centroid), -1)), 8)

distances = np.asarray(distances)

SHIFT THE ARRAYS , SO THAT A POTENTIAL MAXIMA IS NOT LOST IN THE ENDPOINTS

shift_amount = np.where(distances == distances.min ())[0]

distances = np.roll(distances , -shift_amount)

x2 BECAUASE IS DOUBLE THE LENGTH

cntPoints = np.roll(cntPoints , -(shift_amount * 2))

##FIND MEAN DISTANCES BECAUSE OF S T Y

meanDistances = []

for i in range(0, len(distances) - 3):

meanDist = (distances[i - 3] + distances[i - 2] + distances[i - 1] + distances[i] + distances[i + 1] +

distances[i + 2] + distances[i + 3]) / 7

meanDistances.append(meanDist)

meanDistances = np.asarray(meanDistances)

##FIND LOCAL MAXIMA:

local_maxima_idx = []

for i in range(0, len(meanDistances) - 1):

##LOCAL MAXIMA IF:

if (meanDistances[i] > meanDistances[i - 1]) & (meanDistances[i] > meanDistances[i + 1]):

C. A. Lende J. N. Lundal 147

local_maxima_idx.append(i)

local_maximas = meanDistances[local_maxima_idx]

local_maximas .sort ()

local_maximas3 = []

local_maximas3_idx = []

for idx1 in local_maxima_idx:

for idx2 in local_maxima_idx:

INDEXES THAT ARE TOO CLOSE , ARE ALSO CLOSE ON THE ACTUAL FISH. ONLY THE LARGEST OF THESE SHOULD BE

CONSIDERED

if (np.abs(idx1 - idx2) < 30) & (idx1 != idx2):

print(idx1 - idx2)

KEEP ONLY THE LARGES MAXIMA

if meanDistances[idx1] >= meanDistances[idx2]:

local_maximas[local_maximas == meanDistances[idx2]] = 0

local_maximas = local_maximas[local_maximas != 0]

KEEP ONLY TOP 3 LOCAL MAXIMAS. THIS SHOULD BE THE NOSE AND THE TWO TIPS ON THE BACK FIN

for i in range(0, 3):

local_maximas3.append(local_maximas.max())

local_maximas[np.argmax(local_maximas)] = 0

idx = np.where(meanDistances == local_maximas3[i])[0]

local_maximas3_idx.append(idx)

cntPoints [local_maximas3_idx [: ,0]]

local_maximas3_idx = np.asarray(local_maximas3_idx)

local_maximas3_idx = local_maximas3_idx.ravel()

print(local_maximas3_idx)

keyPoints = cntPoints[local_maximas3_idx]

RGB = image

THE FOLLOWING IS USED TO LABEL THE POINTS

gray = cv2.cvtColor(RGB , cv2.COLOR_RGB2GRAY)

ret , binary = cv2.threshold(gray , 100, 255, cv2.THRESH_BINARY_INV)

binary = np.asarray(binary)

binary , contours , hierarchy = cv2.findContours(binary , cv2.RETR_CCOMP , cv2.CHAIN_APPROX_SIMPLE)

FIND LARGEST CONTOUR

c = max(contours , key=cv2.contourArea)

GET MOMENTS OF CONTOUR AND FIND CENTROID

c_M = cv2.moments(c)

c_cx = int(c_M[’m10’] / c_M[’m00’])

c_cy = int(c_M[’m01’] / c_M[’m00’])

c_centroid = [c_cx , c_cy]

##Find the distances from the centroid of the dark parts of the fish. This should be closer to the top fin ,

than the bottom

FINDING POINT ON THE OUTLINE

dists_from_c_centroid = []

C. A. Lende J. N. Lundal 148

for points in cntPoints:

dist_c_vector = points - c_centroid

dists_from_c_centroid.append(dist_c_vector)

c_distances = np.round(np.sqrt(np.sum(np.square(dists_from_c_centroid), -1)), 8)

c_distances = np.asarray(c_distances)

outLinePoint = cntPoints[c_distances.argmin ()]

cv2.circle(RGB , (outLinePoint [0][0] , outLinePoint [0][1]) , 10, (255, 0, 255), -1)

diff = np.zeros (3)

for i in range(0, 3):

a = np.abs(keyPoints[i] - outLinePoint)

a = np.square(a)

a = np.sqrt(np.sum(a))

diff[i] = a

for i in range(0, 3):

if diff[i] == min(diff):

topBackfinPoint = keyPoints[i]

elif diff[i] == max(diff):

nosePoint = keyPoints[i]

else:

botBackfinPoint = keyPoints[i]

cv2.circle(RGB , (botBackfinPoint [0][0] , botBackfinPoint [0][1]) , 10, (0, 0, 255), -1)

cv2.putText(RGB , ’Bot’, (botBackfinPoint [0][0] , botBackfinPoint [0][1]) , cv2.FONT_HERSHEY_SIMPLEX , 2,

(0, 0, 255), 2, cv2.LINE_AA)

cv2.circle(RGB , (topBackfinPoint [0][0] , topBackfinPoint [0][1]) , 10, (0, 255, 0), -1)

cv2.putText(RGB , ’Top’, (topBackfinPoint [0][0] , topBackfinPoint [0][1]) , cv2.FONT_HERSHEY_SIMPLEX , 2,

(0, 255, 0), 2, cv2.LINE_AA)

cv2.circle(RGB , (nosePoint [0][0] , nosePoint [0][1]) , 10, (255, 0, 0), -1)

cv2.putText(RGB , ’Nose’, (nosePoint [0][0] - 50, nosePoint [0][1] - 20), cv2.FONT_HERSHEY_SIMPLEX , 2, (255, 0, 0),

2, cv2.LINE_AA)

cv2.circle(RGB , (c_centroid [0], c_centroid [1]), 10, (255, 255, 0), -1)

cv2.circle(RGB , (centroid [0], centroid [1]), 10, (0, 255, 255), -1)

cv2.drawContours(RGB , [keyPoints], 0, 255, 2)

writingfilename = ’D:/ Master/ AlleBilder / fraPycharm /filt/ noseAndBackFin / v1_20190329 /’ + str(filename)

#print(writingfilename)

RGB = cv2.cvtColor(RGB , cv2.COLOR_RGB2BGR)

output_w_drawing = RGB

FOR SIMPLICITY

nosePoint = [nosePoint [0][0] , nosePoint [0][1]]

topBackfinPoint = [topBackfinPoint [0][0] , topBackfinPoint [0][1]]

botBackfinPoint = [botBackfinPoint [0][0] , botBackfinPoint [0][1]]

C. A. Lende J. N. Lundal 149

return output_w_drawing , nosePoint , topBackfinPoint , botBackfinPoint

Listing D.2: Python example

D.3 Code: Fin Detection

def threshold_fin(image , nosepoint , image_w_features):

global o

global b

global w

global b170

gray = cv2.cvtColor(image , cv2.COLOR_BGR2GRAY)

ret , thresh = cv2.threshold(gray , 0, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

#display(thresh)

ret , labels , stats , centroids = cv2.connectedComponentsWithStats(thresh\

, connectivity = 8)

area = sorted(stats[:,4], reverse = True)

area_3_largest = np.where(stats [:,4] == area [2])

area_4_largest = np.where(stats [:,4] == area [3])

area_5_largest = np.where(stats [:,4] == area [4])

area_3_largest = np.asarray(area_3_largest)

area_4_largest = np.asarray(area_4_largest)

area_5_largest = np.asarray(area_5_largest)

area_3_largest = area_3_largest.ravel()

area_4_largest = area_4_largest.ravel()

area_5_largest = area_5_largest.ravel()

three_areas = [area[2], area[3], area [4]]

centroid_3_area = centroids[area_3_largest]

centroid_4_area = centroids[area_4_largest]

centroid_5_area = centroids[area_5_largest]

vector3 = centroid_3_area -nosepoint

vector4 = centroid_4_area -nosepoint

vector5 = centroid_5_area -nosepoint

distance3 = math.sqrt(vector3 [0 ,0]**2+ vector3 [0 ,1]**2)

distance4 = math.sqrt(vector4 [0 ,0]**2+ vector4 [0 ,1]**2)

distance5 = math.sqrt(vector5 [0 ,0]**2+ vector5 [0 ,1]**2)

if (three_areas [0] & three_areas [1] & three_areas [2]) >800:

if (distance3 < distance4) & (distance3 < distance5):

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP],\

stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT],\

C. A. Lende J. N. Lundal 150

stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]+ stats[area_3_largest ,\

cv2.CC_STAT_HEIGHT],stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]+stats\

[area_3_largest ,cv2.CC_STAT_WIDTH],\

stats[area_3_largest ,cv2.CC_STAT_LEFT]+stats\

[area_3_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , (left , top),\

(right , bot),(0,0,255),3)

o = o+1

elif (distance4 < distance3) & (distance4 <distance5):

top = min(stats[area_4_largest ,cv2.CC_STAT_TOP],\

stats[area_4_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , (left , top)\

, (right , bot),(0,0,255),3)

o = o+1

elif (distance5 < distance3) & (distance5 < distance4):

top = min(stats[area_5_largest ,cv2.CC_STAT_TOP]\

,stats[area_5_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_5_largest ,cv2.CC_STAT_LEFT]\

,stats[area_5_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_5_largest ,cv2.CC_STAT_TOP]\

+stats[area_5_largest ,\

cv2.CC_STAT_HEIGHT],stats[area_5_largest ,cv2.CC_STAT_TOP]+\

stats[area_5_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_5_largest ,cv2.CC_STAT_LEFT]\

+stats[area_5_largest ,cv2.CC_STAT_WIDTH],\

stats[area_5_largest ,cv2.CC_STAT_LEFT]\

+stats[area_5_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , \

(left , top), (right , bot),(0,0,255),3)

o = o+1

elif (three_areas [0] & three_areas [1]) >800:

if (distance3 < distance4):

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

C. A. Lende J. N. Lundal 151

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT],\

stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH],\

stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , \

(left , top), (right , bot),(0,0,255),3)

o = o+1

elif (distance4 < distance3):

top = min(stats[area_4_largest ,cv2.CC_STAT_TOP]\

,stats[area_4_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT],\

stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH],\

stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

o = o+1

elif three_areas [0] >800:

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT],\

stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH],\

stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , \

(left , top), (right , bot),(0,0,255),3)

o = o+1

else:

ret , thresh = cv2.threshold(gray , 100, 255\

, cv2.THRESH_BINARY_INV)

C. A. Lende J. N. Lundal 152

ret , labels , stats , centroids = \

cv2.connectedComponentsWithStats(thresh , \

connectivity = 8)

area = sorted(stats [:,4], reverse = True)

area_3_largest = np.where(stats [:,4] == area [2])

area_4_largest = np.where(stats [:,4] == area [3])

area_5_largest = np.where(stats [:,4] == area [4])

three_areas = [area[2], area[3], area [4]]

area_3_largest = np.asarray(area_3_largest)

area_4_largest = np.asarray(area_4_largest)

area_5_largest = np.asarray(area_5_largest)

area_3_largest = area_3_largest.ravel()

area_4_largest = area_4_largest.ravel()

area_5_largest = area_5_largest.ravel()

centroid_3_area = centroids[area_3_largest]

centroid_4_area = centroids[area_4_largest]

centroid_5_area = centroids[area_5_largest]

vector3 = centroid_3_area -nosepoint

vector4 = centroid_4_area -nosepoint

vector5 = centroid_5_area -nosepoint

distance3 = math.sqrt(vector3 [0 ,0]**2+ vector3 [0 ,1]**2)

distance4 = math.sqrt(vector4 [0 ,0]**2+ vector4 [0 ,1]**2)

distance5 = math.sqrt(vector5 [0 ,0]**2+ vector5 [0 ,1]**2)

second_three_areas = [area[2], area[3], area [4]]

if (three_areas [0] & three_areas [1] & three_areas [2]) >800:

if (distance3 < distance4) & (distance3 < distance5):

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,\

cv2.CC_STAT_HEIGHT],stats[area_3_largest ,cv2.CC_STAT_TOP]+\

stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

print(’Distance 3 is smallest and I"m in here now’)

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b = b+1

C. A. Lende J. N. Lundal 153

elif (distance4 < distance3) & (distance4 <distance5):

top = min(stats[area_4_largest ,cv2.CC_STAT_TOP]\

,stats[area_4_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b = b+1

elif (distance5 < distance3) & (distance5 < distance4):

top = min(stats[area_5_largest ,cv2.CC_STAT_TOP]\

,stats[area_5_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_5_largest ,cv2.CC_STAT_LEFT]\

,stats[area_5_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_5_largest ,cv2.CC_STAT_TOP]\

+stats[area_5_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_5_largest ,cv2.CC_STAT_TOP]\

+stats[area_5_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_5_largest ,cv2.CC_STAT_LEFT]\

+stats[area_5_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_5_largest ,cv2.CC_STAT_LEFT]\

+stats[area_5_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , \

(left , top), (right , bot),(0,0,255),3)

b = b+1

elif (three_areas [0] & three_areas [1]) >800:

if (distance3 < distance4):

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

C. A. Lende J. N. Lundal 154

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b = b+1

elif (distance4 < distance3):

top = min(stats[area_4_largest ,cv2.CC_STAT_TOP]\

,stats[area_4_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_4_largest ,cv2.CC_STAT_LEFT\

]+stats[area_4_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b = b+1

elif three_areas [0] >800:

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b = b+1

else:

ret , thresh = cv2.threshold(gray , 170, 255,\

cv2.THRESH_BINARY_INV)

ret , labels , stats , centroids = \

cv2.connectedComponentsWithStats(thresh , connectivity = 8)

area = sorted(stats [:,4], reverse = True)

area_3_largest = np.where(stats [:,4] == area [2]) # Usually the pectoral fin

area_4_largest = np.where(stats [:,4] == area [3]) # Hopefully anal fin

C. A. Lende J. N. Lundal 155

area_5_largest = np.where(stats [:,4] == area [4])

three_areas = [area[2], area[3], area [4]]

area_3_largest = np.asarray(area_3_largest)

area_4_largest = np.asarray(area_4_largest)

area_5_largest = np.asarray(area_5_largest)

area_3_largest = area_3_largest.ravel()

area_4_largest = area_4_largest.ravel()

area_5_largest = area_5_largest.ravel()

centroid_3_area = centroids[area_3_largest]

centroid_4_area = centroids[area_4_largest]

centroid_5_area = centroids[area_5_largest]

vector3 = centroid_3_area -nosepoint

vector4 = centroid_4_area -nosepoint

vector5 = centroid_5_area -nosepoint

distance3 = math.sqrt(vector3 [0 ,0]**2+ vector3 [0 ,1]**2)

distance4 = math.sqrt(vector4 [0 ,0]**2+ vector4 [0 ,1]**2)

distance5 = math.sqrt(vector5 [0 ,0]**2+ vector5 [0 ,1]**2)

second_three_areas = [area[2], area[3], area [4]]

if (three_areas [0] & three_areas [1] & three_areas [2]) >800:

if (distance3 < distance4) & (distance3 < distance5):

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b170 = b170+1

elif (distance4 < distance3) &\

(distance4 <distance5):

top = min(stats[area_4_largest ,cv2.CC_STAT_TOP]\

,stats[area_4_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_4_largest ,cv2.CC_STAT_TOP]\

C. A. Lende J. N. Lundal 156

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b170 = b170+1

elif (distance5 < distance3) & (distance5 < distance4):

top = min(stats[area_5_largest ,cv2.CC_STAT_TOP]\

,stats[area_5_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_5_largest ,cv2.CC_STAT_LEFT]\

,stats[area_5_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_5_largest ,cv2.CC_STAT_TOP]\

+stats[area_5_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_5_largest ,cv2.CC_STAT_TOP]\

+stats[area_5_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_5_largest ,cv2.CC_STAT_LEFT]\

+stats[area_5_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_5_largest ,cv2.CC_STAT_LEFT]\

+stats[area_5_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b170 = b170+1

elif (three_areas [0] & three_areas [1]) >800:

if (distance3 < distance4):

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features ,\

(left , top), (right , bot),(0,0,255),3)

b170 = b170+1

elif (distance4 < distance3):

top = min(stats[area_4_largest ,cv2.CC_STAT_TOP]\

C. A. Lende J. N. Lundal 157

,stats[area_4_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_4_largest ,cv2.CC_STAT_TOP]\

+stats[area_4_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_4_largest ,cv2.CC_STAT_LEFT]\

+stats[area_4_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , \

(left , top), (right , bot),(0,0,255),3)

b170 = b170+1

elif three_areas [0] >800:

top = min(stats[area_3_largest ,cv2.CC_STAT_TOP]\

,stats[area_3_largest ,cv2.CC_STAT_TOP])

left = min(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT])

bot = max(stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT]\

,stats[area_3_largest ,cv2.CC_STAT_TOP]\

+stats[area_3_largest ,cv2.CC_STAT_HEIGHT])

right = max(stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH]\

,stats[area_3_largest ,cv2.CC_STAT_LEFT]\

+stats[area_3_largest ,cv2.CC_STAT_WIDTH])

boundingrect = cv2.rectangle(image_w_features , \

(left , top), (right , bot),(0,0,255),3)

b170 = b170+1

else:

font = cv2.FONT_HERSHEY_SIMPLEX

cv2.putText(image_w_features ,’No pectoral Fin detected ’\

,(10,700), font , 2,(0,0,255),2,cv2.LINE_AA)

w = w+1

cv2.imwrite(r’C:\Users\ablec\Documents\MASTER\FIshFolder\IMR_results/’\

+str(i)+’.jpg’, image_w_features)

image_list = []

print(’getting filenames ’)

for filename in glob.glob(r’C:\Users\ablec\Documents\MASTER\FIshFolder\

C. A. Lende J. N. Lundal 158

IMR_dataset /*.JPG’): #assuming jpg

im=Image.open(filename)

image_list.append(im)

b170 = 0 #Binary 170 used

b = 0 # Binary 100 used

o = 0 # Otsus Threshold used

w = 0 # No fin found

i = 1

for image in image_list:

path = image.filename

filename = os.path.basename(path)

image = np.asarray(image)

output_img , onlyContour = find_largest_foreground_with_kmeans_noCrop(image)

nosePoint , topBackfinPoint , botBackfinPoint ,\

output_image_w_features = find_nose_and_backfintips(onlyContour ,output_img)

threshold_fin(output_img , nosePoint , output_image_w_features)

print(str(i) + " images done out of "+str(len(image_list)))

print(str((i/len(image_list)*100))+ "% done")

i = i+1

print("Classified images using otsu’s threshold: " + str(o))

print("Classified images using binary 100 threshold: " + str(b))

print("Classified images using binary 170 threshold: " + str(b170))

print("Did not find pectoral fin: " + str(w))

Listing D.3: Python example

D.4 Code: Get Length and Find Gill Edge

def getLength(self ,nose , top , bot):

import numpy as np

#FIND POINT BETWEEN BACK TIPS.

middle = [(top [0]+ bot [0])/2 ,(top [1]+ bot [1])/2]

a, b = np.subtract(nose , middle)

length = np.sqrt(np.square(a) + np.square(b))

print(length)

return length

def findGillCoverEdge_v3_2(self , image , cnt_image , nose , filename , gillColumn , length):

Import library stuff

import cv2

import numpy as np

import matplotlib.pyplot as plt

from scipy import stats

version = ’v3_2_20190506/test_vert_blur/test_vert_blur_andWidth_Tallness_V4/’

cnt = cnt_image

BGR = image

RGB = cv2.cvtColor(BGR , cv2.COLOR_BGR2RGB)

C. A. Lende J. N. Lundal 159

CURRENT WAY TO ESTIMATE THE ROI. MIGHT DO IT DIFFERENT LATER. FOR EXAMPLE BY USING THE

TOTAL LENGTH OF FISH AND ESTIMATE FROM THERE

start = int(np.round(length * 0.13))

est = int(np.round(length * 0.19))

verticalRoi = cnt[:, nose [0] + start:nose [0] + est]

highest

height = np.sum(verticalRoi [100])

height , width = verticalRoi.shape

shortest_idx = np.sum(verticalRoi , axis =0). argmin ()

Finds first value of 255?

upper = verticalRoi [:, shortest_idx]. argmax ()

#upper = nose [1] - 30

Find last value of 255

lower = height - verticalRoi [:, shortest_idx][:: -1]. argmax ()

#lower = nose [1] + 30

roi = RGB[upper:lower , nose [0] + start:nose [0] + est]

gray = cv2.cvtColor(roi , cv2.COLOR_RGB2GRAY)

blur = cv2.medianBlur(gray , 3)

blur = np.float32(blur)

VERTICAL BLUR

kernel = np.zeros((5, 3), np.float32)

kernel [0] = [1, 2, 1]

kernel [1] = [1, 2, 1]

kernel [2] = [0, 0, 0]

kernel [3] = [1, 2, 1]

kernel [4] = [1, 2, 1]

dst = cv2.filter2D(blur/16, -1, kernel)

dst = dst - dst.min()

dst = (dst / dst.max ()) * 255

blur = dst

blur = np.uint8(blur)

blurMedian = np.median(blur)

ret , th1 = cv2.threshold(blur , blurMedian , 255, cv2.THRESH_BINARY_INV)

th4 = cv2.adaptiveThreshold(blur , 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C ,\

cv2.THRESH_BINARY_INV , 15, 4)

##MAKE OWN EDGE DETECTOR

M, N = gray.shape

C. A. Lende J. N. Lundal 160

gray_w_frame = np.zeros((M + 2, N + 2))

gray_w_frame [1:M + 1, 1:N + 1] = gray

blur_w_frame = np.zeros((M + 2, N + 2))

blur_w_frame [1:M + 1, 1:N + 1] = blur

MAKE BLACK FRAME FOR COMPATABILITY

##

vertical_edge = np.zeros(gray.shape)

for m in range(0, M):

for n in range(0, N):

vertical_edge[m, n] = np.sum(blur_w_frame[m:m + 3, n + 2]\

- blur_w_frame[m:m + 3, n]) + blur_w_frame[m + 1, n + 2] - 2 * gray_w_frame[m + 1, n]

vertical_edge2 = vertical_edge [0:M, 1:N - 1]

vertical_edge3 = vertical_edge2.copy()

MEDIAN

median = np.median(vertical_edge2)

median3 = np.median(vertical_edge3)

ret , veth3 = cv2.threshold(vertical_edge3 , median3 * 1.03,\

vertical_edge3.max(), cv2.THRESH_BINARY)

blended_copy = blended.copy ()

#M, N = blended.shape

blended_copy = blended_copy [:, 1:(N - 1)]

#th1_copy = th1.copy ()

#M, N = th1.shape

#th1_copy = th1_copy [:, 1:(N - 1)]

th4_copy = th4.copy()

M, N = th4.shape

th4_copy = th4_copy[:, 1:(N - 1)]

veth3 = np.uint8(veth3)

blended43=cv2.addWeighted(src1=th4_copy ,alpha =0.5, src2=veth3 ,beta =0.5, gamma =0)

combined43 = blended43.copy()

combined43[combined43 != combined43.max()] = 0

MAKE OBJECTS

ret , labels43 , stats , centroids = cv2.connectedComponentsWithStats(image=combined43 , connectivity =8)

display(labels)

areas = stats[:, cv2.CC_STAT_AREA]

areas = np.sort(areas)

area = areas[len(areas) - 2]

index of largest edge area

idx = np.where(stats[:, cv2.CC_STAT_AREA] == area)

C. A. Lende J. N. Lundal 161

##Using tallest instead:

tallness = stats[:, cv2.CC_STAT_HEIGHT]

tallness = np.sort(tallness)

tallest = tallness[len(tallness) - 2]

index of largest/tallest edge area

idx = np.where(stats[:, cv2.CC_STAT_HEIGHT] == tallest)

##DISPLAY ONLY LARGEST/TALLEST EDGE

edge43 = labels43.copy()

edge43[edge43 != idx] = 0

edge43[edge43 == idx] = 1

display(edge)

labels[labels !=6] = 0

display(labels)

stats

prev = 0

heights = np.sum(edge43 , axis =0)

highest = heights.max()

print(heights)

gillEnd = len(heights)

for i in range(0, len(heights) - 1):

IF THIS IS VERY MUCH SHORTER THAN THE HIGHEST

if (heights[i + 1] == 0) & (heights[i] != 0):

print(i)

gillEnd = i

break

safetyMargin = 0

gillAt = nose [0] + start + gillEnd + safetyMargin

##CREATE NEW EDGE IMAGE THAT FITS THE ROI IN THE BEGINNING

M, N = gray.shape

edge43_resized = np.zeros(gray.shape)

edge43_resized [0:M, 1:N - 1] = edge43

edge43_resized = np.abs(edge43_resized - 1)

roi_copy = roi.copy()

roi_copy[:, :, 0] = np.multiply(roi_copy[:, :, 0], edge43_resized)

roi_copy[roi_copy[:, :, 0] == 0] = (0, 0, 255)

roi_copy2 = roi_copy.copy()

roi_copy = roi.copy()

np.multiply(roi_copy2 ,edge)

RGB_copy = RGB.copy()

RGB_copy[upper:lower , nose [0] + start:nose [0] + est] = roi_copy2

C. A. Lende J. N. Lundal 162

output_w_drawing = RGB_copy

return gillAt , upper , lower , output_w_drawing

Listing D.4: Python example

D.5 Code: Simple Blob Detector Implementation

def findBlobSpotsV1(self ,input_image , cnt_image , nose , gillPositionX , upper , lower , filename):

import numpy as np

import cv2

image = input_image.copy()

head = image[upper:lower , nose [0]: gillPositionX]

cnt_head = cnt_image[upper:lower , nose [0]: gillPositionX]

blank = np.zeros((1, 1))

Setup SimpleBlobDetector parameters .

params = cv2.SimpleBlobDetector_Params ()

Change thresholds

params.minThreshold = 10;

params.maxThreshold = 170;

Filter by Area.

params.filterByArea = True

params.minArea = 15

Filter by Circularity

params.filterByCircularity = True

params.minCircularity = 0.7

Filter by Convexity

params.filterByConvexity = True

params.minConvexity = 0.9

Filter by Inertia

params.filterByInertia = True

params.minInertiaRatio = 0.2

Create a detector with the parameters

ver = (cv2.__version__). split(’.’)

if int(ver [0]) < 3:

detector = cv2.SimpleBlobDetector(params)

else:

detector = cv2.SimpleBlobDetector_create(params)

detector = cv2. SimpleBlobDetector_create ()

keypoints = detector.detect(head)

C. A. Lende J. N. Lundal 163

blobs = cv2.drawKeypoints(head , keypoints , blank , (255, 0, 0), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

head = cv2.cvtColor(head , cv2.COLOR_BGR2RGB)

blobs = cv2.cvtColor(blobs , cv2.COLOR_BGR2RGB)

return head , cnt_head , blobs , keypoints

Listing D.5: Python example

D.6 Blob Detection: Dark Spot Detector

def findCustomSpotsV1C(self ,input_image , cnt_head):

import numpy as np

import cv2

METHOD PARAMS:

#kernel size for gaussian blur before adaptive threshold

k = 9

#factor to multiply gaussian blur with:

q = 1.0

#factor to multiply k with , when looking for local minimas.

#This should be increased along with increased kernel size.

p = 0.8

#Sigma for gaussian blur:

sgm = 1

#kernel size for blur2

k2 = 3

#sgm for blur 2

sgm2 = 3

values for adaptive thresh to find possible spot areas:

a = 21

b = 14

1 INIT AND PREPARE IMAGES

gbr = input_image

cnt = cnt_head

2 CONVERT TO GRAYSCALE

gray = cv2.cvtColor(gbr , cv2.COLOR_BGR2GRAY)

3 CREATE MEDIAN FOR FACE OF FISH TO BE USED FOR THRESHOLDING .

median = np.median(gray[cnt != 0])

4 CREATE GAUSSIAN BLUR OF IMAGE TO CREATE ADAPTIVE THRESHOLD

gauss_blur = cv2.GaussianBlur(gray , (k, k), sgm , sgm)

th_a = cv2.adaptiveThreshold(gauss_blur , 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C , cv2.THRESH_BINARY_INV , a, b)

5 CREATE SECOND GAUSSIAN BLUR AND APPLY NORMAL THRESHOLD

gauss_blur2 = cv2.GaussianBlur(gray , (k2, k2), sgm2 , sgm2)

C. A. Lende J. N. Lundal 164

ret , th = cv2.threshold(gauss_blur2 , median*q, 255, cv2.THRESH_BINARY_INV)

6 BLEND THE NORMAL AND ADAPTIVE THRESHOLDS TOGETHER , KEEP ONLY BRIGHTEST

blended = cv2.addWeighted(src1=th_a , alpha =0.3, src2=th, beta =0.7, gamma =0)

img2 = blended.copy()

img2[blended != blended.max()] = 0

7 INVERT THE CNT IMAGE AN APPLY ADAPTIVE THRESHOLD. BLEND TOGETHER AND KEEP BRIGHTEST

cnt2 = cnt.copy()

cnt2[cnt == cnt.min()] = cnt.max()

cnt2[cnt == cnt.max()] = cnt.min()

th_a_cnt = cv2.adaptiveThreshold(cnt2 , 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C , cv2.THRESH_BINARY , 31, 5)

blended2 = cv2.addWeighted(src1=th_a_cnt , alpha =0.3, src2=img2 , beta =0.7, gamma =0)

img3 = blended2.copy()

img3[blended2 != blended2.max()] = 0

8 FIND LOCAL MINIMAS; WHICH WILL BE SPOT CANDIDATES

M, N = gray.shape

g = cv2.cvtColor(gray ,cv2. COLOR_RGB2GRAY)

g = gauss_blur.copy()

g_frame = np.zeros((M + 2, N + 2))

g_frame [1:M + 1, 1:N + 1] = g

g = g_frame

black_img = np.zeros((M, N))

for m in range(0, M):

for n in range(0, N):

print(g[m,n])

if g[m, n] < (median*p):

if (g[m, n] <= g[m - 1, n + 1]) & (g[m, n] <= g[m - 1, n]) & (g[m, n]

<= g[m - 1, n - 1]) & (

g[m, n] <= g[m, n - 1]) & (g[m, n]

<= g[m + 1, n - 1]) & (g[m, n] <= g[m + 1, n]) & (

g[m, n] <= g[m + 1, n + 1]):

print(g[m,n])

black_img[m, n] = 255

black_img = np.uint8(black_img)

blended3 = cv2.addWeighted(src1=black_img , alpha =0.3, src2=img3 , beta =0.7, gamma =0)

result1 = blended3.copy()

result1[blended3 != blended3.max()] = 0

result2 = cv2.addWeighted(src1=gray , alpha =0.3, src2=result1 , beta =0.7, gamma =0)

CREATE OBJECTS

ret , labels , stats , centroids = cv2.connectedComponentsWithStats(result1 , 8)

keypoints = centroids [1:, :]

C. A. Lende J. N. Lundal 165

Remove the typical eye -points

for i in range(0, len(keypoints)):

#print(keypoints[i])

if keypoints[i, 0] < 50:

#print(keypoints[i])

keypoints[i] = [0, 0]

gbr_copy = gbr.copy()

rounded = keypoints.round()

for i in range(0, len(rounded)):

if rounded[i, 0] != 0:

cv2.circle(gbr_copy , (int(rounded[i, 0]), int(rounded[i

, 1])), 2, [0, 0, 255], -1)

print(median*p)

return keypoints , gbr_copy

Listing D.6: Python example

D.7 Code: Manual Spot Detection, Manual Gill Detection

def spotsResultsV1(self ,head_image):

import cv2

img = head_image.copy()

M, N = img.shape [:2]

################

##FUNCTION #######

################

global ixList

global iyList

global nxList

global nyList

global bxList

global byList

gxList = []

gyList = []

nxList = []

nyList = []

bxList = []

byList = []

C. A. Lende J. N. Lundal 166

def draw_circle(event , x, y, flags , param):

global ix, iy

if event == cv2.EVENT_LBUTTONDOWN:

cv2.circle(img , (x, y), 5, (0, 255, 0), -1)

print([x, y])

gxList.append(x)

gyList.append(y)

if event == cv2.EVENT_RBUTTONDOWN:

cv2.circle(img , (x, y), 3, (255, 0, 255), -1)

print([x, y])

nxList.append(x)

nyList.append(y)

if (event == cv2.EVENT_MBUTTONDOWN):

cv2.circle(img , (x, y), 1, (0, 0, 255), -1)

print([x, y])

bxList.append(x)

byList.append(y)

cv2.namedWindow(winname=’my_drawing ’, flags=cv2.WINDOW_NORMAL)

cv2.resizeWindow(’my_drawing ’, N * 9, M * 9)

cv2.setMouseCallback(’my_drawing ’, draw_circle)

while True:

cv2.imshow(’my_drawing ’, img)

if (cv2.waitKey (20)) & (0 xFF == 27):

break

if cv2.waitKey (20) & 0xFF == 27:

break

if event == cv2. EVENT_LBUTTONDBLCLK :

break

print(column_diff)

cv2.destroyAllWindows ()

return gxList , gyList , nxList , nyList , bxList , byList

def gillDiffResultsV3_2(self ,image ,gillPositionX , nose):

TO COMPARE RESULTS: MANUALLY MEASURED AND AUTOMATICALLY .

import cv2

RGB = image

M, N = RGB.shape [:2]

################

##FUNCTION #######

################

column_diff = -1

def draw_circle(event , x, y, flags , param):

global ix, iy

if event == cv2.EVENT_LBUTTONDOWN:

C. A. Lende J. N. Lundal 167

cv2.circle(RGB , (x, y), 3, (0, 255, 0), -1)

ix, iy = x, y

cv2.namedWindow(winname=’my_drawing ’, flags=cv2.WINDOW_NORMAL)

cv2.resizeWindow(’my_drawing ’, N * 2, M * 2)

cv2.setMouseCallback(’my_drawing ’, draw_circle)

#############################

##SHOWING IMAGE WITH OPEN CV##

#############################

while True:

cv2.imshow(’my_drawing ’, RGB)

if (cv2.waitKey (20)) & (0 xFF == 27):

break

if cv2.waitKey (20) & 0xFF == 27:

break

if event == cv2. EVENT_LBUTTONDBLCLK :

break

print(column_diff)

cv2.destroyAllWindows ()

column_diff = gillPositionX - ix

##Manually measur Head Length

headLength_mm = ix - nose [0]

headLength_auto = gillPositionX - nose [0]

print(column_diff)

print(headLength_mm)

print(headLength_auto)

return column_diff , headLength_mm , headLength_auto

Listing D.7: Python example

D.8 Spot Coordinates Comparison

path = ’C:/ Users/joach/Desktop/Master/Pycharm/IMR_manual_spots_center.csv’

custom_path = ’C:/ Users/joach/Desktop/Master/Pycharm/IMR_k59q10p10sgm3_C3.txt’

blob_path = ’C:/Users/joach/Desktop/Master/Pycharm/IMR_auto_spots_center_comb4.txt’

C. A. Lende J. N. Lundal 168

df1 = pd.read_csv(custom_path ,na_values=’[]’,quotechar=’"’)

df2 = pd.read_csv(blob_path ,na_values=’[]’,quotechar=’"’)

df.goodX = df.goodX.str.replace(’ ’,"")

df.goodX = df.goodX.str.replace(’[’,"")

df.goodX = df.goodX.str.replace(’]’,"")

df.goodY = df.goodY.str.replace(’ ’,"")

df.goodY = df.goodY.str.replace(’[’,"")

df.goodY = df.goodY.str.replace(’]’,"")

df.neutralX = df.neutralX.str.replace(’ ’,"")

df.neutralX = df.neutralX.str.replace(’]’,"")

df.neutralX = df.neutralX.str.replace(’[’,"")

df.neutralY = df.neutralY.str.replace(’ ’,"")

df.neutralY = df.neutralY.str.replace(’]’,"")

df.neutralY = df.neutralY.str.replace(’[’,"")

df.badX = df.badX.str.replace(’ ’,"")

df.badX = df.badX.str.replace(’]’,"")

df.badX = df.badX.str.replace(’[’,"")

df.badY = df.badY.str.replace(’ ’,"")

df.badY = df.badY.str.replace(’]’,"")

df.badY = df.badY.str.replace(’[’,"")

df = df.fillna (0)

df.goodX [1]. split(’,’)

df1.X = df1.X.str.replace(’ ’,"")

C. A. Lende J. N. Lundal 169

df1.X = df1.X.str.replace(’[’,"")

df1.X = df1.X.str.replace(’]’,"")

df1.Y = df1.Y.str.replace(’ ’,"")

df1.Y = df1.Y.str.replace(’[’,"")

df1.Y = df1.Y.str.replace(’]’,"")

df1 = df1.fillna (0)

df2.X = df2.X.str.replace(’ ’,"")

df2.X = df2.X.str.replace(’[’,"")

df2.X = df2.X.str.replace(’]’,"")

df2.Y = df2.Y.str.replace(’ ’,"")

df2.Y = df2.Y.str.replace(’[’,"")

df2.Y = df2.Y.str.replace(’]’,"")

df2 = df2.fillna (0)

CUSTOM:

LENGTH OF VECTOR MADE

t1 = 180

Ax1 = np.zeros ((len(df1),t1))

Ay1 = np.zeros ((len(df1),t1))

for i in range(0,len(df1)):

if df1.X[i] == 0:

continue

print(i)

C. A. Lende J. N. Lundal 170

arrX = df1.X[i]. split(’,’)

#arrX = float(arrX)

arrY = df1.Y[i]. split(’,’)

#arrY = float(arrY)

print(arrX)

for j in range(0,len(arrX)):

Ax1[i,j] = float(arrX[j])

Ay1[i,j] = float(arrY[j])

BLOB:

LENGTH OF VECTOR MADE

t2 = 40

Ax2 = np.zeros ((len(df2),t2))

Ay2 = np.zeros ((len(df2),t2))

for i in range(0,len(df2)):

if df2.X[i] == 0:

continue

print(i)

arrX = df2.X[i]. split(’,’)

#arrX = float(arrX)

arrY = df2.Y[i]. split(’,’)

#arrY = float(arrY)

print(arrX)

for j in range(0,len(arrX)):

Ax2[i,j] = float(arrX[j])

C. A. Lende J. N. Lundal 171

Ay2[i,j] = float(arrY[j])

Manual Good:

MGx = np.zeros ((len(df2),t))

MGy = np.zeros ((len(df2),t))

for i in range(0,len(df2)):

print(i)

if df.goodX[i] == 0:

continue

arrX = df.goodX[i].split(’,’)

#arrX = float(arrX)

arrY = df.goodY[i].split(’,’)

#arrY = float(arrY)

print(arrX)

for j in range(0,len(arrX)):

MGx[i,j] = float(arrX[j])

MGy[i,j] = float(arrY[j])

Manual Neutral (neutral/hard/complex)

MNx = np.zeros ((len(df2),t))

MNy = np.zeros ((len(df2),t))

for i in range(0,len(df2)):

print(i)

if df.neutralX[i] == 0:

continue

C. A. Lende J. N. Lundal 172

arrX = df.neutralX[i]. split(’,’)

#arrX = float(arrX)

arrY = df.neutralY[i]. split(’,’)

#arrY = float(arrY)

print(arrX)

for j in range(0,len(arrX)):

MNx[i,j] = float(arrX[j])

MNy[i,j] = float(arrY[j])

Manual Bad (Not even sure if they are spots at all)

MBx = np.zeros ((len(df2),t))

MBy = np.zeros ((len(df2),t))

for i in range(0,len(df2)):

print(i)

if df.badX[i] == 0:

continue

arrX = df.badX[i].split(’,’)

#arrX = float(arrX)

arrY = df.badY[i].split(’,’)

#arrY = float(arrY)

print(arrX)

for j in range(0,len(arrX)):

MBx[i,j] = float(arrX[j])

MBy[i,j] = float(arrY[j])

Euclidean distance threshold to define successfull detection.

#In pixels. 5 pixels = ca 1mm. Althoug its mostly closer.

C. A. Lende J. N. Lundal 173

disth = 20

Total_good_detected = 0

Total_neutral_detected = 0

Total_bad_detected = 0

Total_false_detections = 0

Total_good_observed = 0

Total_neutral_observed = 0

Total_bad_observed = 0

GOOD SPOTS DETECTED:

#FAIL LISTS:

distinctFail = []

complexFail = []

excessFail = []

#nAuto = len(Ax[number][Ax[number]!=0])

for k in range(0,len(df)):

print(k)

number=k

##Total number of automatic detected spots for this fish:

C. A. Lende J. N. Lundal 174

nAuto = len(Ax[number][Ax[number]!=0])

good_matches = 0

neutral_matches = 0

bad_matches = 0

for i in range(0,t):

detected = False

XtoMatch = MGx[number ,i]

YtoMatch = MGy[number ,i]

for j in range(0,t):

Xtry = Ax[number ,j]

Ytry = Ay[number ,j]

#print(XtoMatch)

#print(Xtry)

if (Xtry !=0) & (detected ==False):

dist = np.sqrt(np.square(XtoMatch -Xtry)+np.square

(YtoMatch -Ytry))

if dist <disth:

good_matches += 1

detected = True

#print ([Xtry ,Ytry])

print(df.Filename[number])

print(’Distinct spots detected: ’ + str(good_matches) + ’/’ +

str(df.nGood[number]))

if good_matches !=df.nGood[number]:

distinctFail.append(df.Filename[number])

C. A. Lende J. N. Lundal 175

Neutral/Complex SPOTS DETECTED:

neutral_matches = 0

for i in range(0,t):

detected = False

XtoMatch = MNx[number ,i]

YtoMatch = MNy[number ,i]

for j in range(0,t):

Xtry = Ax[number ,j]

Ytry = Ay[number ,j]

#print(XtoMatch)

#print(Xtry)

if (Xtry !=0) & (detected ==False):

dist = np.sqrt(np.square(XtoMatch -Xtry)+np.squar

e(YtoMatch -Ytry))

if dist <disth:

neutral_matches += 1

detected = True

#print ([Xtry ,Ytry])

#print ([XtoMatch ,YtoMatch])

print(’Complex spots detected: ’ + str(neutral_matches) + ’/’

+ str(df.nNeutral[number]))

if neutral_matches !=df.nNeutral[number]:

complexFail.append(df.Filename[number])

BAD SPOTS DETECTED:

C. A. Lende J. N. Lundal 176

bad_matches = 0

for i in range(0,t):

detected = False

XtoMatch = MBx[number ,i]

YtoMatch = MBy[number ,i]

for j in range(0,t):

Xtry = Ax[number ,j]

Ytry = Ay[number ,j]

#print(XtoMatch)

#print(Xtry)

if (Xtry !=0) & (detected ==False):

dist = np.sqrt(np.square(XtoMatch -Xtry)+np.

square(YtoMatch -Ytry))

if dist <disth:

#print(dist)

bad_matches += 1

detected = True

#print ([Xtry ,Ytry])

#print ([XtoMatch ,YtoMatch])

print(’Bad spots detected: ’ + str(bad_matches) + ’/’ + str(df.nBad[number]))

nFalse = nAuto -good_matches -neutral_matches -bad_matches

print(’False/Excess Detections: ’ + str(nFalse))

Total_good_detected += good_matches

Total_neutral_detected += neutral_matches

C. A. Lende J. N. Lundal 177

Total_bad_detected += bad_matches

Total_false_detections += nFalse

Total_detections = Total_good_detected+Total_neutral_

detected+Total_bad_detected+Total_false_detections

Total_good_observed += df.nGood[number]

Total_neutral_observed += df.nNeutral[number]

Total_bad_observed += df.nBad[number]

if nFalse > 0:

excessFail.append(df.Filename[number])

print(’Total automatic spot detections: ’+str(Total_detections -Total_false_detections)

+ ’ on ’ + str(len(df)) + ’ number of images (of fish)’)

print(’Total false detections: ’+ str(Total_false_detections))

print(’% false detections: ’ + str(Total_false_detections/Total_detections))

print(’Total distinct spots detected: ’ + str(Total_good_detected) + ’ / ’ + str(Total_good_observed))

print(’Total complex spots detected: ’ + str(Total_neutral_detected) + ’ / ’ + str(Total_neutral_observed))

print(’Total uncertain spots detected (not important , but should not

classify as a false detection either): ’ + str(Total_bad_detected) + ’ / ’ + str(Total_bad_observed))

Listing D.8: Python example

D.9 Code: create Feature vectors

def make_vector(filename , image , nosepoint , topBackfinPoint ,\

botBackfinPoint , pectoral_fin_left , pectoral_fin_top , pectoral_fin_bot\

, pectoral_fin_right):

feature_vector = []

filename , filetype =filename.split(".")

feature_vector.append(filename)

#Finding the middle of the pectoral fin vertically

C. A. Lende J. N. Lundal 178

lower_pec_fin = [pectoral_fin_left , pectoral_fin_top]

higher_pec_fin = [pectoral_fin_left , pectoral_fin_bot]

lower_pec_fin = np.asarray(lower_pec_fin)

lower_pec_fin = lower_pec_fin.ravel()

higher_pec_fin = np.asarray(higher_pec_fin)

higher_pec_fin = higher_pec_fin.ravel()

pec_fin_middle = (lower_pec_fin+higher_pec_fin)/2

pec_fin_middle = int(pec_fin_middle [1])

#Compyting first feature: nose to pectoral fin

pectoral_fin = [pectoral_fin_left , pec_fin_middle]

pectoral_fin_right_loc = [pectoral_fin_right [0], pec_fin_middle]

pectoral_fin = np.asarray(pectoral_fin)

pectoral_fin = pectoral_fin.ravel()

nosepoint = np.asarray(nosepoint)

nosepoint = nosepoint.ravel ()

nose_to_pectoral_fin_vector = nosepoint -pectoral_fin

nose_to_pectoral_fin_distance = int(math.sqrt\

(nose_to_pectoral_fin_vector [0]**2+ nose_to_pectoral_fin_vector [1]**2))

feature_vector.append(nose_to_pectoral_fin_distance)

cv2.line(image ,(nosepoint [0], nosepoint [1]),\

(pectoral_fin [0], pectoral_fin [1]) ,(0 ,0 ,255) ,5)

#DONE with Nose to fin

#From nose to top_back_fin_point

topBackfinPoint = topBackfinPoint.ravel()

#From nose to bot_back_fin_point

botBackfinPoint = botBackfinPoint.ravel()

middle_tips = (topBackfinPoint+botBackfinPoint)/2

#print(str(middle_tips))

nose_middletips_vector = nosepoint -middle_tips

nose_middletips_distance = int(math.sqrt(nose_middletips_vector [0]\

2+ nose_middletips_vector [1]2))

feature_vector.append(nose_middletips_distance)

cv2.line(image ,(nosepoint [0], nosepoint [1]),\

(int(middle_tips [0]), int(middle_tips [1])) ,(0 ,0 ,255) ,5)

#Right end of pectoral fin to tail middle

pec_fin_right_tail_middle_vector = middle_tips -pectoral_fin_right_loc

pec_fin_right_tail_middle_distance = int(math.sqrt\

(pec_fin_right_tail_middle_vector [0]**2+ pec_fin_right_tail_middle_vector [1]**2))

feature_vector.append(pec_fin_right_tail_middle_distance)

#Adding

df_headlength_file = pd.read_csv\

(r’C:\ Users\ablec\Documents\MASTER\head_length_file.txt’)

df_headlength_nosepoint = pd.read_csv\

C. A. Lende J. N. Lundal 179

(r’C:\ Users\ablec\Documents\MASTER\head_length_nosepoint.txt’)

df_headlength_gillpoint = pd.read_csv\

(r’C:\ Users\ablec\Documents\MASTER\head_length_gillpoint.txt’)

df_headlength_file[’nosepoint ’] = \

df_headlength_nosepoint[’nosepointX ’]. values

df_headlength_file[’gillpoint ’] = \

df_headlength_gillpoint[’gillPointX ’]. values

df_headlength_file[’headlength ’] = \

df_headlength_gillpoint[’gillPointX ’]

df_headlength_file[’headlength ’] = \

df_headlength_file[’gillpoint ’] - df_headlength_file[’nosepoint ’]

df_headlength_file.fil = df_headlength_file.fil.str.replace(’.tif’,"")

for i in range (0,len(df_headlength_file.fil)):

#Searches through the filenames for a match

if df_headlength_file.fil[i] == filename:

feature_vector.append(df_headlength_file.headlength[i])

Get spot - coordinates from excel file and add to roccect fish

df_spots = pd.read_csv\

(r’C:\ Users\ablec\Documents\MASTER\modifiedM_spots_center_rated.txt’)

df_spots = df_spots [[’Filename ’,’goodX’,’goodY’\

,’neutralX ’,’neutralY ’,’nGood’,’nNeutral ’]]

df_spots.Filename = df_spots.Filename.str.replace(’.tif’,"")

df_spots = df_spots.fillna (0)

df_coords = pd.read_csv(r’C:\ Users\ablec\Documents\MASTER\upperLeftCoords.txt’)

df_spots[’orig_coords_x ’] = df_coords[’Filename ’]. values

df_spots[’orig_coords_y ’] = df_coords[’Coords ’]. values

df_spots.orig_coords_x = df_spots.orig_coords_x.str.replace(’[’,"")

df_spots.orig_coords_y = df_spots.orig_coords_y.str.replace(’]’,"")

for i in range (0,len(df_spots.Filename)):

#Searches through the filenames for a match

if df_spots.Filename[i] == filename:

print(’Matched filename found’)

real_coords = [int(df_spots.orig_coords_x\

[i]),int(df_spots.orig_coords_y[i])]

hor_angle = math.atan((-(middle_tips [0]\

-nosepoint [0])/(middle_tips [1]- nosepoint [1])))

if df_spots.nGood[i] == 3:

xspot1_good , xspot2_good , xspot3_good = df_spots.goodX[i].split(’,’)

yspot1_good , yspot2_good , yspot3_good = df_spots.goodY[i].split(’,’)

spot1_good = [int(xspot1_good),int(yspot1_good)]

spot2_good = [int(xspot2_good),int(yspot2_good)]

spot3_good = [int(xspot3_good),int(yspot3_good)]

print(’The fish had 3 distinct spots’)

spot1_good_rp = [real_coords [0]\

+spot1_good [0], real_coords [1]+ spot1_good [1]]

C. A. Lende J. N. Lundal 180

spot2_good_rp = [real_coords [0]\

+spot2_good [0], real_coords [1]+ spot2_good [1]]

spot3_good_rp = [real_coords [0]\

+spot3_good [0], real_coords [1]+ spot3_good [1]]

angle_spot1_good = math.\

atan((-(spot1_good_rp [0]- nosepoint [0])/\

(spot1_good_rp [1]- nosepoint [1])))

real_angle_spot1_good = \

angle_spot1_good -hor_angle

nose_spot1_vector = nosepoint -spot1_good_rp

nose_spot1_distance = \

int(math.sqrt(nose_spot1_vector [0]**2+ nose_spot1_vector [1]**2))

feature_vector.append(nose_spot1_distance)

feature_vector.append(real_angle_spot1_good)

angle_spot2_good = math.atan\

((-(spot2_good_rp [0]- nosepoint [0])/(spot2_good_rp [1]\

-nosepoint [1])))

real_angle_spot2_good = angle_spot2_good -hor_angle

nose_spot2_vector = nosepoint -spot2_good_rp

nose_spot2_distance = int\

(math.sqrt(nose_spot2_vector [0]**2+ nose_spot2_vector [1]**2))

feature_vector.append(nose_spot2_distance)

feature_vector.append(real_angle_spot2_good)

angle_spot3_good = math.atan\

((-(spot3_good_rp [0]- nosepoint [0])/(spot3_good_rp [1]\

-nosepoint [1])))

real_angle_spot3_good = angle_spot3_good -hor_angle

nose_spot3_vector = nosepoint -spot3_good_rp

nose_spot3_distance = int(math.sqrt(nose_spot3_vector [0]\

2+ nose_spot3_vector [1]2))

feature_vector.append(nose_spot3_distance)

feature_vector.append(real_angle_spot3_good)

elif df_spots.nGood[i] == 2:

xspot1_good , xspot2_good = df_spots.goodX[i].split(’,’)

yspot1_good , yspot2_good = df_spots.goodY[i].split(’,’)

spot1_good = [int(xspot1_good),int(yspot1_good)]

spot2_good = [int(xspot2_good),int(yspot2_good)]

print(’The fish had 2 distcint spots’)

spot1_good_rp = [real_coords [0]+ spot1_good [0]\

,real_coords [1]+ spot1_good [1]]

spot2_good_rp = [real_coords [0]+ spot2_good [0]\

,real_coords [1]+ spot2_good [1]]

angle_spot1_good = math.atan\

((-(spot1_good_rp [0]- nosepoint [0])/(spot1_good_rp [1]- nosepoint [1])))

real_angle_spot1_good = angle_spot1_good -hor_angle

nose_spot1_vector = nosepoint -spot1_good_rp

nose_spot1_distance = int\

C. A. Lende J. N. Lundal 181

(math.sqrt(nose_spot1_vector [0]**2+ nose_spot1_vector [1]**2))

feature_vector.append(nose_spot1_distance)

feature_vector.append(real_angle_spot1_good)

angle_spot2_good = math.atan\

((-(spot2_good_rp [0]- nosepoint [0])/(spot2_good_rp [1]- nosepoint [1])))

real_angle_spot2_good = angle_spot2_good -hor_angle

nose_spot2_vector = nosepoint -spot2_good_rp

nose_spot2_distance = int\

(math.sqrt(nose_spot2_vector [0]**2+ nose_spot2_vector [1]**2))

feature_vector.append(nose_spot2_distance)

feature_vector.append(real_angle_spot2_good)

feature_vector.append (0)

feature_vector.append (0)

elif df_spots.nGood[i] == 1:

#xspot1 = df_spots.goodX[i]. split(’,’)

#yspot1 = df_spots.goodY[i]. split(’,’)

spot1_good = [int(df_spots.goodX[i]),int(df_spots.goodY[i])]

print(’The fish had 1 distinct spot’)

spot1_good_rp = [real_coords [0]+ spot1_good [0], real_coords [1]+ spot1_good [1]]

angle_spot1_good = math.atan\

((-(spot1_good_rp [0]- nosepoint [0])/(spot1_good_rp [1]- nosepoint [1])))

real_angle_spot1_good = angle_spot1_good -hor_angle

nose_spot1_vector = nosepoint -spot1_good_rp

nose_spot1_distance = int\

(math.sqrt(nose_spot1_vector [0]**2+ nose_spot1_vector [1]**2))

feature_vector.append(nose_spot1_distance)

feature_vector.append(real_angle_spot1_good)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

else:

print(’No distinct spots’)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

if df_spots.nNeutral[i] == 5:

xspot1_neu , xspot2_neu , xspot3_neu\

, xspot4_neu , xspot5_neu = df_spots.neutralX[i].split(’,’)

yspot1_neu , yspot2_neu , yspot3_neu\

, yspot4_neu , yspot5_neu = df_spots.neutralY[i].split(’,’)

spot1_neu = [int(xspot1_neu),int(yspot1_neu)]

spot2_neu = [int(xspot2_neu),int(yspot2_neu)]

C. A. Lende J. N. Lundal 182

spot3_neu = [int(xspot3_neu),int(yspot3_neu)]

spot4_neu = [int(xspot4_neu),int(yspot4_neu)]

spot5_neu = [int(xspot5_neu),int(yspot5_neu)]

print(’The fish has 5 complex spots’)

spot1_neu_rp = [real_coords [0]+ spot1_neu [0]\

,real_coords [1]+ spot1_neu [1]]

spot2_neu_rp = [real_coords [0]+ spot2_neu [0]\

,real_coords [1]+ spot2_neu [1]]

spot3_neu_rp = [real_coords [0]+ spot3_neu [0]\

,real_coords [1]+ spot3_neu [1]]

spot4_neu_rp = [real_coords [0]+ spot4_neu [0]\

,real_coords [1]+ spot4_neu [1]]

spot5_neu_rp = [real_coords [0]+ spot5_neu [0]\

,real_coords [1]+ spot5_neu [1]]

angle_spot1_neu = math.atan((-(spot1_neu_rp [0]\

-nosepoint [0])/(spot1_neu_rp [1]- nosepoint [1])))

real_angle_spot1_neu = angle_spot1_neu -hor_angle

nose_spot1_vector_neu = nosepoint -spot1_neu_rp

nose_spot1_distance_neu = int(math.sqrt\

(nose_spot1_vector_neu [0]**2+ nose_spot1_vector_neu [1]**2))

feature_vector.append(nose_spot1_distance_neu)

feature_vector.append(real_angle_spot1_neu)

angle_spot2_neu = math.atan((-(spot2_neu_rp [0]\

-nosepoint [0])/(spot2_neu_rp [1]- nosepoint [1])))

real_angle_spot2_neu = angle_spot2_neu -hor_angle

nose_spot2_vector_neu = nosepoint -spot2_neu_rp

nose_spot2_distance_neu = int(math.sqrt\

(nose_spot2_vector_neu [0]**2+ nose_spot2_vector_neu [1]**2))

feature_vector.append(nose_spot2_distance_neu)

feature_vector.append(real_angle_spot2_neu)

angle_spot3_neu = math.atan((-(spot3_neu_rp [0]\

-nosepoint [0])/(spot3_neu_rp [1]- nosepoint [1])))

real_angle_spot3_neu = angle_spot3_neu -hor_angle

nose_spot3_vector_neu = nosepoint -spot3_neu_rp

nose_spot3_distance_neu = int(math.sqrt\

(nose_spot3_vector_neu [0]**2+ nose_spot3_vector_neu [1]**2))

feature_vector.append(nose_spot3_distance_neu)

feature_vector.append(real_angle_spot3_neu)

angle_spot4_neu = math.atan((-(spot4_neu_rp [0]\

-nosepoint [0])/(spot4_neu_rp [1]- nosepoint [1])))

real_angle_spot4_neu = angle_spot4_neu -hor_angle

nose_spot4_vector_neu = nosepoint -spot4_neu_rp

nose_spot4_distance_neu = int(math.sqrt\

(nose_spot4_vector_neu [0]**2+ nose_spot4_vector_neu [1]**2))

feature_vector.append(nose_spot4_distance_neu)

feature_vector.append(real_angle_spot4_neu)

angle_spot5_neu = math.atan((-(spot5_neu_rp [0]\

-nosepoint [0])/(spot5_neu_rp [1]- nosepoint [1])))

real_angle_spot5_neu = angle_spot5_neu -hor_angle

C. A. Lende J. N. Lundal 183

nose_spot5_vector_neu = nosepoint -spot5_neu_rp

nose_spot5_distance_neu = int(math.sqrt\

(nose_spot5_vector_neu [0]**2+ nose_spot5_vector_neu [1]**2))

feature_vector.append(nose_spot5_distance_neu)

feature_vector.append(real_angle_spot5_neu)

elif df_spots.nNeutral[i] == 4:

xspot1_neu , xspot2_neu , xspot3_neu , xspot4_neu \

= df_spots.neutralX[i]. split(’,’)

yspot1_neu , yspot2_neu , yspot3_neu , yspot4_neu\

= df_spots.neutralY[i]. split(’,’)

spot1_neu = [int(xspot1_neu),int(yspot1_neu)]

spot2_neu = [int(xspot2_neu),int(yspot2_neu)]

spot3_neu = [int(xspot3_neu),int(yspot3_neu)]

spot4_neu = [int(xspot4_neu),int(yspot4_neu)]

print(’The fish has 4 complex spots’)

spot1_neu_rp = [real_coords [0]+ spot1_neu [0]\

,real_coords [1]+ spot1_neu [1]]

spot2_neu_rp = [real_coords [0]+ spot2_neu [0]\

,real_coords [1]+ spot2_neu [1]]

spot3_neu_rp = [real_coords [0]+ spot3_neu [0]\

,real_coords [1]+ spot3_neu [1]]

spot4_neu_rp = [real_coords [0]+ spot4_neu [0]\

,real_coords [1]+ spot4_neu [1]]

angle_spot1_neu = math.atan\

((-(spot1_neu_rp [0]- nosepoint [0])/(spot1_neu_rp [1]- nosepoint [1])))

real_angle_spot1_neu = angle_spot1_neu -hor_angle

nose_spot1_vector_neu = nosepoint -spot1_neu_rp

nose_spot1_distance_neu = \

int(math.sqrt(nose_spot1_vector_neu [0]**2+ nose_spot1_vector_neu [1]**2))

feature_vector.append(nose_spot1_distance_neu)

feature_vector.append(real_angle_spot1_neu)

angle_spot2_neu = math.atan((-(spot2_neu_rp [0]\

-nosepoint [0])/(spot2_neu_rp [1]- nosepoint [1])))

real_angle_spot2_neu = angle_spot2_neu -hor_angle

nose_spot2_vector_neu = nosepoint -spot2_neu_rp

nose_spot2_distance_neu = int(math.sqrt\

(nose_spot2_vector_neu [0]**2+ nose_spot2_vector_neu [1]**2))

feature_vector.append(nose_spot2_distance_neu)

feature_vector.append(real_angle_spot2_neu)

angle_spot3_neu = math.atan((-(spot3_neu_rp [0]\

-nosepoint [0])/(spot3_neu_rp [1]- nosepoint [1])))

real_angle_spot3_neu = angle_spot3_neu -hor_angle

nose_spot3_vector_neu = nosepoint -spot3_neu_rp

nose_spot3_distance_neu = int(math.sqrt\

(nose_spot3_vector_neu [0]**2+ nose_spot3_vector_neu [1]**2))

feature_vector.append(nose_spot3_distance_neu)

feature_vector.append(real_angle_spot3_neu)

C. A. Lende J. N. Lundal 184

angle_spot4_neu = math.atan((-(spot4_neu_rp [0]\

-nosepoint [0])/(spot4_neu_rp [1]- nosepoint [1])))

real_angle_spot4_neu = angle_spot4_neu -hor_angle

nose_spot4_vector_neu = nosepoint -spot4_neu_rp

nose_spot4_distance_neu = int(math.sqrt\

(nose_spot4_vector_neu [0]**2+ nose_spot4_vector_neu [1]**2))

feature_vector.append(nose_spot4_distance_neu)

feature_vector.append(real_angle_spot4_neu)

feature_vector.append (0)

feature_vector.append (0)

elif df_spots.nNeutral[i] == 3:

xspot1_neu , xspot2_neu , xspot3_neu = df_spots .\

neutralX[i]. split(’,’)

yspot1_neu , yspot2_neu , yspot3_neu = df_spots .\

neutralY[i]. split(’,’)

spot1_neu = [int(xspot1_neu),int(yspot1_neu)]

spot2_neu = [int(xspot2_neu),int(yspot2_neu)]

spot3_neu = [int(xspot3_neu),int(yspot3_neu)]

print(’The fish has 3 complex spots’)

spot1_neu_rp = [real_coords [0]+ spot1_neu [0],\

real_coords [1]+ spot1_neu [1]]

spot2_neu_rp = [real_coords [0]+ spot2_neu [0],\

real_coords [1]+ spot2_neu [1]]

spot3_neu_rp = [real_coords [0]+ spot3_neu [0],\

real_coords [1]+ spot3_neu [1]]

angle_spot1_neu = math.atan((-(spot1_neu_rp [0]\

-nosepoint [0])/(spot1_neu_rp [1]- nosepoint [1])))

real_angle_spot1_neu = angle_spot1_neu -hor_angle

nose_spot1_vector_neu = nosepoint -spot1_neu_rp

nose_spot1_distance_neu = int(math.sqrt\

(nose_spot1_vector_neu [0]**2+ nose_spot1_vector_neu [1]**2))

feature_vector.append(nose_spot1_distance_neu)

feature_vector.append(real_angle_spot1_neu)

angle_spot2_neu = math.atan((-(spot2_neu_rp [0]\

-nosepoint [0])/(spot2_neu_rp [1]- nosepoint [1])))

real_angle_spot2_neu = angle_spot2_neu -hor_angle

nose_spot2_vector_neu = nosepoint -spot2_neu_rp

nose_spot2_distance_neu = int(math.sqrt\

(nose_spot2_vector_neu [0]**2+ nose_spot2_vector_neu [1]**2))

feature_vector.append(nose_spot2_distance_neu)

feature_vector.append(real_angle_spot2_neu)

angle_spot3_neu = math.atan((-(spot3_neu_rp [0]\

-nosepoint [0])/(spot3_neu_rp [1]- nosepoint [1])))

real_angle_spot3_neu = angle_spot3_neu -hor_angle

nose_spot3_vector_neu = nosepoint -spot3_neu_rp

nose_spot3_distance_neu = int(math.sqrt\

(nose_spot3_vector_neu [0]**2+ nose_spot3_vector_neu [1]**2))

feature_vector.append(nose_spot3_distance_neu)

C. A. Lende J. N. Lundal 185

feature_vector.append(real_angle_spot3_neu)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

elif df_spots.nNeutral[i] == 2:

xspot1_neu , xspot2_neu = df_spots.neutralX[i]. split(’,’)

yspot1_neu , yspot2_neu = df_spots.neutralY[i]. split(’,’)

spot1_neu = [int(xspot1_neu),int(yspot1_neu)]

spot2_neu = [int(xspot2_neu),int(yspot2_neu)]

print(’The fish has 2 complex spots’)

spot1_neu_rp = [real_coords [0]+ spot1_neu [0],\

real_coords [1]+ spot1_neu [1]]

spot2_neu_rp = [real_coords [0]+ spot2_neu [0],\

real_coords [1]+ spot2_neu [1]]

angle_spot1_neu = math.atan((-(spot1_neu_rp [0]\

-nosepoint [0])/(spot1_neu_rp [1]- nosepoint [1])))

real_angle_spot1_neu = angle_spot1_neu -hor_angle

nose_spot1_vector_neu = nosepoint -spot1_neu_rp

nose_spot1_distance_neu = int(math.sqrt\

(nose_spot1_vector_neu [0]**2+ nose_spot1_vector_neu [1]**2))

feature_vector.append(nose_spot1_distance_neu)

feature_vector.append(real_angle_spot1_neu)

angle_spot2_neu = math.atan((-(spot2_neu_rp [0]\

-nosepoint [0])/(spot2_neu_rp [1]- nosepoint [1])))

real_angle_spot2_neu = angle_spot2_neu -hor_angle

nose_spot2_vector_neu = nosepoint -spot2_neu_rp

nose_spot2_distance_neu = int(math.sqrt\

(nose_spot2_vector_neu [0]**2+ nose_spot2_vector_neu [1]**2))

feature_vector.append(nose_spot2_distance_neu)

feature_vector.append(real_angle_spot2_neu)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

elif df_spots.nNeutral[i] == 1:

spot1_neu = [int(df_spots.neutralX[i])\

,int(df_spots.neutralX[i])]

print(’The fish had 1 complex spot’)

spot1_neu_rp = [real_coords [0]+ spot1_neu [0],\

real_coords [1]+ spot1_neu [1]]

angle_spot1_neu = math.atan((-(spot1_neu_rp [0]\

C. A. Lende J. N. Lundal 186

-nosepoint [0])/(spot1_neu_rp [1]- nosepoint [1])))

real_angle_spot1_neu = angle_spot1_neu -hor_angle

nose_spot1_vector_neu = nosepoint -spot1_neu_rp

nose_spot1_distance_neu = int(math.sqrt\

(nose_spot1_vector_neu [0]**2+ nose_spot1_vector_neu [1]**2))

feature_vector.append(nose_spot1_distance_neu)

feature_vector.append(real_angle_spot1_neu)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

else:

print(’No complex spots ’)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

feature_vector.append (0)

outF = open("feature_vectors_labels_whole_dataset.txt", "a")

outF.write(str(feature_vector))

outF.write("\n")

outF.close()

Listing D.9: Python example

D.10 Code: Individual Recognition

df_spots = pd.read_csv(r’C:\ Users\ablec\Documents\MASTER\modifiedM_spots_center_rated.txt’)

df_spots = df_spots [[’Filename ’,’goodX’,’goodY ’,’neutralX ’,’neutralY ’,’nGood’,’nNeutral ’]]

df_spots.Filename = df_spots.Filename.str.replace(’.tif’,"")

df_spots = df_spots.fillna (0)

df_spots[’totSpots ’] = df_spots[’nGood’]+ df_spots[’nNeutral ’]

df_labels = pd.read_csv\

(r’C:\ Users\ablec\Documents\MASTER\feature_vectors_labels_whole_dataset.txt’)

df_train = pd.read_csv(r’C:\ Users\ablec\Documents\MASTER\feature_vectors_whole_dataset.txt’)

df_labels.filename = df_labels.filename.str.replace(’[’,"")

C. A. Lende J. N. Lundal 187

df_train.filename = df_train.filename.str.replace(’[’,"")

df_labels.angle8 = df_labels.angle8.str.replace(’]’,"")

df_train.angle8 = df_train.angle8.str.replace(’]’,"")

df_labels.filename = df_labels.filename.str.replace("’","")

df_train.filename = df_train.filename.str.replace("’","")

df_labels["totSpots"] = ""

df_train["totSpots"] = ""

for i in range(0,len(df_labels.filename)):

for j in range(0,len(df_spots.Filename)):

if df_labels.filename[i] == df_spots.Filename[j]:

df_labels.totSpots[i] = df_spots.totSpots[j]

for i in range(0,len(df_train.filename)):

for j in range(0,len(df_spots.Filename)):

if df_train.filename[i] == df_spots.Filename[j]:

df_train.totSpots[i] = df_spots.totSpots[j]

global correclty_class

global wrongly_class

global length_max_error

global correctly_class_3

global wrongly_class_3

global correctly_class_5

global wrongly_class_5

global correctly_class_7

global wrongly_class_7

global score_vector

global correctly_class_9

global wrongly_class_9

global correctly_class_11

global wrongly_class_11

global correctly_class_13

global wrongly_class_13

global correctly_class_15

global wrongly_class_15

df_spots_length = df_train [[’nose_spot1 ’,’nose_spot2 ’,’nose_spot3 ’\

,’nose_spot4 ’,’nose_spot5 ’,’nose_spot6 ’\

,’nose_spot7 ’,’nose_spot8 ’]]

df_spots_angle = df_train [[’angle1 ’,’angle2 ’,’angle3 ’,’angle4 ’,\

’angle_5 ’,’angle6 ’,’angle7 ’,’angle8 ’]]

score_vector = []

length_max_error = []

correclty_class = 0

wrongly_class = 0

correctly_class_3 = 0

wrongly_class_3 = 0

correctly_class_5 = 0

wrongly_class_5 = 0

correctly_class_7 = 0

C. A. Lende J. N. Lundal 188

wrongly_class_7 = 0

correctly_class_9 = 0

wrongly_class_9 = 0

correctly_class_11 = 0

wrongly_class_11 = 0

correctly_class_13 = 0

wrongly_class_13 = 0

correctly_class_15 = 0

wrongly_class_15 = 0

for i in range (0,len(df_labels.filename)):

score_vector = []

print(’Checking fish nr.: ’+ str(df_labels.filename[i]))

for j in range (0,len(df_train.filename)):

if df_labels.filename[i] != df_train.filename[j]:

score = float (0)

features_used = 0

if (df_labels.nose_spot1[i] == 0):

if (df_labels.nose_spot4[i] == 0):

features_used +=1

n_p_error = abs((df_labels.nosetoPec[i]\

-df_train.nosetoPec[j]))

if n_p_error < 8: # 23

added_score = n_p_error /100

score = score +1+(0.07 - added_score)

features_used +=1

length_error = abs((df_labels.length[i]\

-df_train.length[j]))

if length_error < 9: #36

added_score = length_error /100

score = score +1+(0.08 - added_score)

features_used +=1

p_t_error = abs((df_labels.pectoTail[i]\

-df_train.pectoTail[j]))

if p_t_error < 8: # 19

added_score = p_t_error /100

score = score +1+(0.07 - added_score)

features_used +=1

headlength_error = abs((df_labels.headlength[i]\

-df_train.headlength[j]))

if headlength_error < 4: # 19

added_score = headlength_error /100

score = score +1+(0.03 - added_score)

else:

features_used +=1

n_p_error = abs((df_labels.nosetoPec[i]\

-df_train.nosetoPec[j]))

if n_p_error < 23: # 23

C. A. Lende J. N. Lundal 189

added_score = n_p_error /100

score = score +1+(0.22 - added_score)

features_used +=1

length_error = abs((df_labels.length[i]\

-df_train.length[j]))

if length_error < 36:#36

added_score = length_error /100

score = score +1+(0.35 - added_score)

features_used +=1

p_t_error = abs((df_labels.pectoTail[i]\

-df_train.pectoTail[j]))

if p_t_error < 19: # 19

added_score = p_t_error /100

score = score +1+(0.18 - added_score)

features_used +=1

headlength_error = abs((df_labels.headlength[i]\

-df_train.headlength[j]))

if headlength_error < 11: # 19

added_score = headlength_error /100

score = score +1+(0.010 - added_score)

features_used +=1

spot_diff = abs(df_labels.totSpots[i]\

-df_train.totSpots[j])

#if spot_diff > 1:

if spot_diff < 7:

added_score = spot_diff /1000

score = score +1+(0.007 - added_score)

if spot_diff < 2:

added_score = spot_diff /10

score = score +1+(0.3 - added_score)

Beginning to check against spots

if df_labels.nose_spot1[i] != 0:

angle_threshold = math.atan (12/ df_labels.nose_spot1[i])

row_length = df_spots_length.iloc[j]

row_angle = df_spots_angle.iloc[j]

f = 0

a = 0

l = -1

for k in row_length:

l += 1

if (k != 0):

if f == 0:

features_used += 1

f = 1

spot1_error = abs(df_labels.nose_spot1[i]-k)

C. A. Lende J. N. Lundal 190

if spot1_error < 13:

added_score = spot1_error /100

spot1_error_angle = abs(df_labels.angle1\

[i]-float(row_angle[l]))

if a == 0:

features_used +=1

a = 1

if spot1_error_angle < angle_threshold:

added_score = added_score +\

(spot1_error_angle /10)

score = score +2+\

((0.12+(angle_threshold /10))- added_score)

spot_used = k

else:

spot_used = 0

if df_labels.nose_spot2[i] != 0:

angle_threshold = math.atan\

(12/ df_labels.nose_spot2[i])

a = 0

f = 0

l = -1

for k in row_length:

l += 1

if (k != 0) & (k != spot_used):

if f == 0:

features_used += 1

f =1

spot2_error = abs(df_labels.nose_spot2[i]-k)

if spot2_error < 13:

added_score = spot2_error /100

spot2_error_angle = abs(df_labels.angle2\

[i]-float(row_angle[l]))

if a == 0:

features_used +=1

a = 1

if spot2_error_angle < angle_threshold:

added_score = added_score + \

(spot2_error_angle /10)

score = score +2+(0.12+(angle_\

threshold /10)- added_score)

spot_used2 = k

else:

spot_used2 = 0

if df_labels.nose_spot3[i] != 0:

angle_threshold = math.atan (12/\

df_labels.nose_spot3[i])

a = 0

f = 0

l = -1

for k in row_length:

l += 1

if (k != 0) & (k != spot_used) & (k != spot_used2):

if f == 0:

C. A. Lende J. N. Lundal 191

features_used +=1

f = 1

spot3_error = abs(df_labels.nose_spot3[i]-k)

if spot3_error < 13:

added_score = spot3_error /100

spot3_error_angle = abs\

(df_labels.angle3[i]-float(row_angle[l]))

if a == 0:

features_used +=1

a = 1

if spot3_error_angle < \

angle_threshold:

added_score = added_\

score+(spot3_error_angle /10)

score = score +2+(0.12+\

(angle_threshold /10)- added_score)

spot_used3 = k

else:

spot_used3 = 0

else:

spot_used = 0

spot_used2 = 0

spot_used3 = 0

if df_labels.nose_spot4[i] != 0:

angle_threshold = math.atan (12/\

df_labels.nose_spot4[i])

row_length = df_spots_length.iloc[j]

row_angle = df_spots_angle.iloc[j]

f = 0

a = 0

l = -1

for k in row_length:

l += 1

if (k != 0) & (k!= spot_used) & \

(k!= spot_used2) & (k!= spot_used3):

if f==0:

features_used +=1

f = 1

spot4_error = abs(df_labels.nose_spot4[i]-k)

if spot4_error < 13:

added_score = spot4_error /100

spot4_error_angle = abs(df_labels .\

angle4[i]-float(row_angle[l]))

if a == 0:

features_used +=1

a = 1

if spot4_error_angle < angle_threshold:

added_score = added_score +(spot4_error_angle /10)

score = score +2+(0.12+\

(angle_threshold /10)- added_score)

spot_used4 = k

C. A. Lende J. N. Lundal 192

else:

spot_used4 = 0

if df_labels.nose_spot5[i] != 0:

angle_threshold = math.atan (12/ df_labels.nose_spot5[i])

a = 0

f = 0

l = -1

for k in row_length:

l += 1

if (k != 0) & (k!= spot_used) & \

(k!= spot_used2) & (k!= spot_used3) & (k != spot_used4):

if f == 0:

features_used +=1

f = 1

spot5_error = abs(df_labels.nose_spot5[i]-k)

if spot5_error < 13:

added_score = spot5_error /100

spot5_error_angle = abs\

(df_labels.angle_5[i]-float(row_angle[l]))

if a == 0:

features_used +=1

a = 1

if spot5_error_angle < angle_threshold:

added_score = added_score +\

(spot5_error_angle /10)

score = score +2+(0.12+\

(angle_threshold /10)- added_score)

spot_used5 = k

else:

spot_used5 = 0

if df_labels.nose_spot6[i] != 0:

angle_threshold = math.atan (12/ df_labels.nose_spot6[i])

a = 0

f = 0

l = -1

for k in row_length:

l += 1

if (k != 0) & (k!= spot_used) & \

(k!= spot_used2) & (k!= spot_used3) &\

(k != spot_used4) & (k != spot_used5):

if f == 0:

features_used +=1

f = 1

spot6_error = abs(df_labels.nose_spot6[i]-k)

if spot6_error < 13:

added_score = spot6_error /100

spot6_error_angle = abs\

(df_labels.angle6[i]-float(row_angle[l]))

if a == 0:

features_used +=1

a = 1

if spot6_error_angle < angle_threshold:

added_score = added_score +(spot6_error_angle /10)

C. A. Lende J. N. Lundal 193

score = score +2+(0.12+\

(angle_threshold /10)- added_score)

spot_used6 = k

else:

spot_used6 = 0

if df_labels.nose_spot7[i] != 0:

angle_threshold = math.atan\

(12/ df_labels.nose_spot7[i])

a =0

f = 0

l = -1

for k in row_length:

l += 1

if (k != 0) & (k!= spot_used) & \

(k!= spot_used2) & (k!= spot_used6) & \

(k!= spot_used3) & (k != spot_used4) & (k != spot_used5):

if f == 0:

features_used +=1

f = 1

spot7_error = abs(df_labels.nose_spot7[i]-k)

if spot7_error < 13:

added_score = spot7_error /100

spot7_error_angle = abs\

(df_labels.angle7[i]-float(row_angle[l]))

if a == 0:

features_used +=1

a = 1

if spot7_error_angle < angle_threshold:

added_score = added_score +(spot7_error_angle /10)

score = score +2+\

(0.12+(angle_threshold /10)- added_score)

spot_used7 = k

else:

spot_used7 = 0

if df_labels.nose_spot8[i] != 0:

angle_threshold = math.atan\

(12/ df_labels.nose_spot8[i])

a = 0

f = 0

l = -1

for k in row_length:

l += 1

if (k != 0) & (k!= spot_used) & \

(k!= spot_used7) & (k!= spot_used2) & (k!= spot_used6)\

& (k!= spot_used3) & (k != spot_used4) & (k != spot_used5):

if f == 0:

features_used +=1

f = 1

spot8_error = abs(df_labels.nose_spot8[i]-k)

if spot8_error < 13:

added_score = spot8_error /100

spot8_error_angle = abs\

C. A. Lende J. N. Lundal 194

(float(df_labels.angle8[i])-float(row_angle[l]))

if a==0:

features_used +=1

a = 1

if spot8_error_angle < angle_threshold:

added_score = added_score +(spot8_error_angle /10)

score = score +2+(0.12+\

(angle_threshold /10)- added_score)

if score >= features_used:

score_vector.append(score)

#print(str(score_vector))

label = df_labels.filename[i]

train = df_train.filename[j]

outF = open("Clasification_results.txt", "a")

outF.write("’"+df_labels.filename[i]+"’,"+str(df_train.filename[j])\

+"’,"+str(score)+","+str(features_used))

outF.write("\n")

outF.close()

df_classy = pd.read_csv\

(r’C:\ Users\ablec\Documents/MASTER\Clasification_results.txt’)

df_classy.Orig_fish = df_classy.Orig_fish.str.replace("’","")

df_classy.Suggested_match = df_classy.Suggested_match.str.replace("’","")

correct_feature_vector = []

wrong_feature_vector = []

correctly_class = 0

wrong_class = 0

max_score = 0

max_vector = []

n_i = 0

#one_fish = 0

for i in range(0,len(df_classy.Orig_fish)):

one_fish = 0

for j in range(0,len(one_class_fish)):

if one_class_fish[j] == df_classy.Orig_fish[i]:

one_fish = 1

if i == 0:

max_vector.append(df_classy.score[i])

elif df_classy.Orig_fish[i] == df_classy.Orig_fish[i-1]:

max_vector.append(df_classy.score[i])

elif df_classy.Orig_fish[i] != df_classy.Orig_fish[i-1]:

max_vector_sort = sorted(max_vector , reverse = True)

C. A. Lende J. N. Lundal 195

#print(str(max_vector_sort))

#for j in range (0,len(one_class_fish)):

if df_classy .Orig_fish [i] == one_class_fish [j]:

max_vector_sort = max_vector_sort [0]

for k in range(n_i ,i):

label_fish = df_classy.Suggested_match[k]

if label_fish [-1] != "1":

#print(df_classy. Orig_fish[k])

max_value = max_vector_sort [0]

#print (" Max_vector_sort ="+ str(max_vector_sort))

if len(max_vector_sort)>1:

second_max_value = max_vector_sort [1]

if max_value == df_classy.score[k]:

orig_fish = df_classy.Orig_fish[k]

suggested_fish = df_classy.Suggested_match[k]

if orig_fish [:-1] == suggested_fish [:-1]:

correctly_class += 1

print(orig_fish+’has been correctly classified as ’\

+ suggested_fish)

outF = open("Correctly_classified.txt", "a")

outF.write(’Fish number: ’+orig_fish +\

’had been correctly classified as ’\

+suggested_fish+". Classified with "\

+str(df_classy.features_used[k])+" features.")

outF.write("\n")

outF.close()

correct_feature_vector.append(df_classy.features_used[k])

if orig_fish [:-1] != suggested_fish [:-1]:

wrong_class += 1

print(orig_fish+’has been INNcorrectly classified as ’\

+ suggested_fish)

outF = open("Wrongly_classified.txt", "a")

outF.write(’Fish number: ’+orig_fish+’ \

had been incorrectly classified as ’+suggested_fish +\

". Classified with "+str(df_classy.features_used[k])+" features.")

outF.write("\n")

outF.close()

wrong_feature_vector.append(df_classy.features_used[k])

elif second_max_value == df_classy.score[k]:

orig_fish = df_classy.Orig_fish[k]

suggested_fish = df_classy.Suggested_match[k]

if orig_fish [:-1] == suggested_fish [:-1]:

correctly_class += 1

print(orig_fish+’has been correctly classified as ’+ \

suggested_fish)

outF = open("Correctly_classified.txt", "a")

C. A. Lende J. N. Lundal 196

outF.write(’Fish number: ’+orig_fish+’ had been \

correctly classified as \

’+suggested_fish+". Classified with "+\

str(df_classy.features_used[k])+" features.")

outF.write("\n")

outF.close()

correct_feature_vector.append(df_classy.features_used[k])

if orig_fish [:-1] != suggested_fish [:-1]:

wrong_class += 1

print(orig_fish+’has been INNcorrectly classified as ’+\

suggested_fish)

outF = open("Wrongly_classified.txt", "a")

outF.write(’Fish number: ’+orig_fish+’\

had been incorrectly classified as \

’+suggested_fish+". Classified with "\

+str(df_classy.features_used[k])+" features.")

outF.write("\n")

outF.close()

wrong_feature_vector.append(df_classy.features_used[k])

max_vector = []

max_vector.append(df_classy.score[i])

n_i = i

correct_features_4 = []

correct_features_5 = []

correct_features_6 = []

correct_features_7 = []

correct_features_8 = []

correct_features_9 = []

correct_features_10 = []

correct_features_11 = []

correct_features_12 = []

correct_features_13 = []

correct_features_14 = []

correct_features_15 = []

correct_features_16 = []

for i in correct_feature_vector:

if i == 4:

correct_features_4.append(i)

if i == 5:

correct_features_5.append(i)

if i == 6:

correct_features_6.append(i)

if i == 7:

correct_features_7.append(i)

if i == 8:

correct_features_8.append(i)

if i == 9:

C. A. Lende J. N. Lundal 197

correct_features_9.append(i)

if i == 10:

correct_features_10.append(i)

if i == 11:

correct_features_11.append(i)

if i == 12:

correct_features_12.append(i)

if i == 13:

correct_features_13.append(i)

if i == 14:

correct_features_14.append(i)

if i == 15:

correct_features_15.append(i)

if i == 16:

correct_features_16.append(i)

incorrect_features_4 = []

incorrect_features_5 = []

incorrect_features_6 = []

incorrect_features_7 = []

incorrect_features_8 = []

incorrect_features_9 = []

incorrect_features_10 = []

incorrect_features_11 = []

incorrect_features_12 = []

incorrect_features_13 = []

incorrect_features_14 = []

incorrect_features_15 = []

incorrect_features_16 = []

for i in wrong_feature_vector:

if i == 4:

incorrect_features_4.append(i)

if i == 5:

incorrect_features_5.append(i)

if i == 6:

incorrect_features_6.append(i)

if i == 7:

incorrect_features_7.append(i)

if i == 8:

incorrect_features_8.append(i)

if i == 9:

incorrect_features_9.append(i)

if i == 10:

incorrect_features_10.append(i)

if i == 11:

incorrect_features_11.append(i)

if i == 12:

incorrect_features_12.append(i)

if i == 13:

incorrect_features_13.append(i)

if i == 14:

incorrect_features_14.append(i)

if i == 15:

C. A. Lende J. N. Lundal 198

incorrect_features_15.append(i)

if i == 16:

incorrect_features_16.append(i)

print("Number of correct classifications: "+str(correctly_class))

print("Number of incorrect classifications: "+str(wrong_class))

print("Correct classifications with 4 features: "+str(len(correct_features_4)))

print("Incorrect classifications with 4 features: "+str(len(incorrect_features_4)))

print("Correct classifications with 5 features: "+str(len(correct_features_5)))

print("Incorrect classifications with 5 features: "+str(len(incorrect_features_5)))

print("Correct classifications with 6 features: "+str(len(correct_features_6)))

print("Incorrect classifications with 6 features: "+str(len(incorrect_features_6)))

print("Correct classifications with 7 features: "+str(len(correct_features_7)))

print("Incorrect classifications with 7 features: "+str(len(incorrect_features_7)))

print("Correct classifications with 8 features: "+str(len(correct_features_8)))

print("Incorrect classifications with 8 features: "+str(len(incorrect_features_8)))

print("Correct classifications with 9 features: "+str(len(correct_features_9)))

print("Incorrect classifications with 9 features: "+str(len(incorrect_features_9)))

print("Correct classifications with 10 features: "+str(len(correct_features_10)))

print("Incorrect classifications with 10 features: "+str(len(incorrect_features_10)))

print("Correct classifications with 11 features: "+str(len(correct_features_11)))

print("Incorrect classifications with 11 features: "+str(len(incorrect_features_11)))

print("Correct classifications with 12 features: "+str(len(correct_features_12)))

print("Incorrect classifications with 12 features: "+str(len(incorrect_features_12)))

print("Correct classifications with 13 features: "+str(len(correct_features_13)))

print("Incorrect classifications with 13 features: "+str(len(incorrect_features_13)))

print("Correct classifications with 14 features: "+str(len(correct_features_14)))

print("Incorrect classifications with 14 features: "+str(len(incorrect_features_14)))

print("Correct classifications with 15 features: "+str(len(correct_features_15)))

print("Incorrect classifications with 15 features: "+str(len(incorrect_features_15)))

print("Correct classifications with 16 features: "+str(len(correct_features_16)))

print("Incorrect classifications with 16 features: "+str(len(incorrect_features_16)))

Listing D.10: Python example

Bibliography

[1] NRK. Over 20 prosent av oppdrettslaksen dør i mer-

dene, March 2018. URL https://www.nrk.no/trondelag/

over-20-prosent-av-oppdrettslaksen-dor-i-merdene-1.13952684.

[2] Bloomberg. Over 20 prosent av oppdrettslaksen dør i merdene, Octo-

ber 2018. URL https://www.bloomberg.com/news/features/2018-10-08/

salmon-farmers-are-scanning-fish-faces-to-fight-killer-lice.

[3] Simone Marini Emanuela Fanelli Valerio Sbragaglia Ernesto Azzurro Joaquin

Del Rio Fernandez Jacopo Aguzzi. Tracking fish abundance by underwater image

recognition. Scientific Reportsvolume 8, Article number: 13748 (2018), September

2018.

[4] Yi-Hao Hsiao Chaur-Chin Chen Sun-In Lin Fang-Pang Lin. Real-world under-

water fish recognition and identification, using sparse representation. Ecological

Informatics, 23:13–21, September 2014.

[5] HongweiQin Xiu Li Jian Liang Yigang Peng Changshui Zhang. Deepfish: Ac-

curate underwater live fish recognition with a deep architecture. Neurocomputing,

187, april 2016.

[6] Dah-Jye Lee; Robert B. Schoenberger; Dennis Shiozawa; Xiaoqian Xu; Pengcheng

Zhan. Contour matching for a fish recognition and migration-monitoring system.

Two- and Three-Dimensional Vision Systems for Inspection, Control, and Metrol-

ogy II;, Proceedings 5606, 2004.

[7] Robert B. Fisher Yun-Heh Chen-Burger, Gayathri Nadarajan. Detecting ,tracking

and counting fish in low quality unconstrained underwater videos. 2008.

[8] Sanjeev Kumar Harpreet Kaur. Face recognition techniques: Classification and

comparisons. International Journal of Information Technology and Knowledge

Management, Volume 5(2):361–363, July-December 2012.

[9] Rabia Jafri Hamid R. Arabnia. A survey of face recognition techniques. Journal

of Information Processing Systems, Vol. 5(No. 2), June 2009.

199

https://www.nrk.no/trondelag/over-20-prosent-av-oppdrettslaksen-dor-i-merdene-1.13952684
https://www.nrk.no/trondelag/over-20-prosent-av-oppdrettslaksen-dor-i-merdene-1.13952684
https://www.bloomberg.com/news/features/2018-10-08/salmon-farmers-are-scanning-fish-faces-to-fight-killer-lice
https://www.bloomberg.com/news/features/2018-10-08/salmon-farmers-are-scanning-fish-faces-to-fight-killer-lice

Kilder 200

[10] T. Kanade. Picture processing system by computer complex and recognition of

human faces. Kyoto University, Japan, 1973.

[11] R. Brunelli and T. Poggio. Face recognition: features versus templates. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 15(NO 10), 1993.

[12] J. Ghosn I. J. Cox and P. N. Yianilos. Featurebased face recognition using mixture-

distance. Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition, 1996.

[13] Jørgensen et. al. Judging a salmon by its spots: environmental variation is the

primary determinant of spot patterns in salmo salar. 2018.

[14] Stien et al. Consistent melanophore spot patterns allow long-term individual

recognition of atlantic salmon salmo salar. Journal of Fish Biology, 2017. URL

https://www.ncbi.nlm.nih.gov/pubmed/29094766.

[15] Jason Ku Ali Harakeh Steven L. Waslander. In defense of classical image pro-

cessing: Fast depth completion on the cpu. arXiv:1802.00036v1, january 2018.

Mechanical and Mechatronics Engineering Department.

[16] Mithi. Vehicle detection with hog and linear svm, 2017. URL https://medium.

com/@mithi/vehicles-tracking-with-hog-and-linear-svm-c9f27eaf521a.

[17] Paul Viola Michael Jones. Robust real-time face detection. International Journal

of Computer Vision 57(2), 137–154, 2004, July 2003.

[18] S.M. Juds. Photoelectric Sensors and Controls. Mechanical Engineering (Book 63).

Marcel Dekker, Inc, 1988.

[19] Koppal S.J. Lambertian reflectance. Computer Vision, 2014. URL https://link.

springer.com/referenceworkentry/10.1007%2F978-0-387-31439-6_534.

[20] Maria Petrou Costas Petrou. IMAGE PROCESSING The Fundamentals. John

Wiley Sons LTD, 2nd edition, 2010.

[21] doxygen. Image thresholding. URL https://docs.opencv.org/3.4/d7/d4d/

tutorial_py_thresholding.html.

[22] Bikramjot Singh Hanzra. Adaptive thresholding. January 2015. URL http://

hanzratech.in/2015/01/21/adaptive-thresholding.html.

[23] Rajeev Raizada T. Florian Jaeger Dave F. Kleinschmidt. Supervised and unsuper-

vised learning in phonetic adaptation. Department of Brain and Cognitive Sciences,

Department of Computer Science, and Department of Linguistics, 07 2015.

https://www.ncbi.nlm.nih.gov/pubmed/29094766
https://medium.com/@mithi/vehicles-tracking-with-hog-and-linear-svm-c9f27eaf521a
https://medium.com/@mithi/vehicles-tracking-with-hog-and-linear-svm-c9f27eaf521a
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-31439-6_534
https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-31439-6_534
https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
http://hanzratech.in/2015/01/21/adaptive-thresholding.html
http://hanzratech.in/2015/01/21/adaptive-thresholding.html

Kilder 201

[24] David Arthur Sergei Vassilvitskii. k-means++: The advantages of careful seeding.

SODA ’07 Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 1027–1035, 2007.

[25] E. Forgy. Cluster analysis of multivariate data: Efficiency versus interpretability of

classification. Biometrics, 21(3):768–769, 1965.

[26] Lihong Wang Jinglei Liu Jianpeng Qi, Yanwei Yu. K*-means: An effective and ef-

ficient k-means clustering algorithm. 2016 IEEE International Conferences on Big

Data and Cloud Computing (BDCloud), Social Computing and Networking (So-

cialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-

SocialCom-SustainCom), pages 242–249, 2016.

[27] T. Lindeberg. Detecting salient blob-like image structures and their scales with a

scale-space primal sketch: A method for focus-of-attention. International Journal

of Computer Vision, Volume 11, no. 3, page 283-318, 1993.

[28] T. Lindeberg. Image matching using generalized scale-space interest points. Journal

of Mathematical Imaging and Vision, Volume 52, number 1, 2015.

[29] H. Kong et. al. A generalized laplacian of gaussian filter for blob detection and

its applications. IEEE Transactions on Cybernetics, Volume 43, page 1719-1733,

2013.

[30] T. Lindeberg. Feature tracking with automatic selection of spatial scales. Computer

Vision and Image Understanding, Volume 71, page 385-392, 1998.

[31] SATYA MALLICK. Blob detection using opencv (python, c++), 2015. URL

https://www.learnopencv.com/blob-detection-using-opencv-python-c/.

[32] doxygen. cv::simpleblobdetector class reference, 2018. URL https://docs.

opencv.org/3.4.2/d0/d7a/classcv_1_1SimpleBlobDetector.html.

[33] UN. Undata. URL http://data.un.org/.

[34] IPPC. Ar5 climate change 2014: Mitigation of climate change, 2014. URL https:

//www.ipcc.ch/report/ar5/wg3/.

[35] National Geographics. Can the ocean feed a growing world?, August

2018. URL https://www.nationalgeographic.com/environment/2018/08/

news-fisheries-aquaculture-food-security/.

[36] EY Norway. The norwegian aquaculture analysis 2018. 2018.

[37] EPA. Global greenhouse gas emissions data. URL https://www.epa.gov/

ghgemissions/global-greenhouse-gas-emissions-data.

https://www.learnopencv.com/blob-detection-using-opencv-python-c/
https://docs.opencv.org/3.4.2/d0/d7a/classcv_1_1SimpleBlobDetector.html
https://docs.opencv.org/3.4.2/d0/d7a/classcv_1_1SimpleBlobDetector.html
http://data.un.org/
https://www.ipcc.ch/report/ar5/wg3/
https://www.ipcc.ch/report/ar5/wg3/
https://www.nationalgeographic.com/environment/2018/08/news-fisheries-aquaculture-food-security/
https://www.nationalgeographic.com/environment/2018/08/news-fisheries-aquaculture-food-security/
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data

Kilder 202

[38] MOWI. Home page. URL https://www.mowi.com/.

[39] Statistisk Sentral Byraa. Akvakultur. URL https://www.ssb.no/

jord-skog-jakt-og-fiskeri/statistikker/fiskeoppdrett/aar.

[40] Oppdrettsnæringen er en tikkende bombe, April 2019. URL https:

//www.dagbladet.no/kultur/oppdrettsnaeringen-er-en-tikkende-bombe/

70961082.

[41] IMR. Tema: Laks, 2019. URL https://www.hi.no/hi/temasider/arter/laks.

https://www.mowi.com/
https://www.ssb.no/jord-skog-jakt-og-fiskeri/statistikker/fiskeoppdrett/aar
https://www.ssb.no/jord-skog-jakt-og-fiskeri/statistikker/fiskeoppdrett/aar
https://www.dagbladet.no/kultur/oppdrettsnaeringen-er-en-tikkende-bombe/70961082
https://www.dagbladet.no/kultur/oppdrettsnaeringen-er-en-tikkende-bombe/70961082
https://www.dagbladet.no/kultur/oppdrettsnaeringen-er-en-tikkende-bombe/70961082
https://www.hi.no/hi/temasider/arter/laks

	Declaration of Authorship
	Abstract
	Acknowledgement
	Figures
	Tables
	Abbreviation
	Symbols
	1 Introduction
	1.1 Related work
	1.1.1 Tracking of fish
	1.1.2 Related Machine Vision work
	1.1.3 Facial Recognition

	1.2 Environmental and genetic impact on a Salmon's appearance
	1.3 Methods
	1.3.1 Classical image processing VS Machine learning

	2 Theory
	2.1 Optics
	2.2 Segmentation
	2.2.1 Segmentation by Thresholding
	2.2.2 Segmentation by Clustering

	2.3 Edge Detection
	2.4 Detection of spot-like structures
	2.4.1 Blob detection methods
	2.4.2 Blob features

	3 Methods
	3.1 Presentation of data
	3.2 Image Capturing of Atlantic Salmon
	3.3 Extraction of the fish in the image
	3.4 Nose and Tail Tips detection
	3.5 Pectoral Fin Detection
	3.6 Locating the gills
	3.6.1 Method 1: Global Gill Detection
	3.6.2 Method: Local Gill Detection

	3.7 Detecting Gill Spots
	3.7.1 Simple Blob Detection Method
	3.7.2 Dark Spot Detection method

	3.8 Individual Recognition
	3.8.1 Feature and Score System

	4 Experiments and Results
	4.1 Fin Detection Results
	4.1.1 Results on Data-set 1, MOWI
	4.1.2 Results on Data-set 2, IMR
	4.1.2.1 Potential Improvements

	4.2 Local Gill Detection Results
	4.3 Spot detection - Experiments and results
	4.3.1 Spot detection by Simple Blob Detection on data-set 1
	4.3.2 Spot detection by Dark Point Detection - Experiments and Results
	4.3.3 Combining Blob Detection and Dark Point Detection
	4.3.4 Testing on data-set 2
	4.3.4.1 Testing Simple Blob Detection on data-set 2
	4.3.4.2 Testing Custom detection on data-set 2
	4.3.4.3 Combining blob detection and custom detection on data-set 2

	4.3.5 Summary and Discussion of blob detection results
	4.3.5.1 Simple Blob Detection Method
	4.3.5.2 Dark Spot Detection Method
	4.3.5.3 Future work

	4.4 Individual Recognition Results
	4.4.1 Potential Improvements

	5 Economy
	5.1 Global issues and aquaculture
	5.2 Aquaculture and the potential of tracking fish individually

	6 Discussion
	6.1 Data-sets and image capturing
	6.2 Feature extraction methods
	6.3 Individual recognition

	7 Conclusion
	A Dataset Information
	B Biology of Atlantic Salmon
	B.0.1 Life Cycle of Atlantic Salmon

	C Rough IFarm initialization costs with RFID Technology
	D Code
	D.1 Extract Fish in image
	D.2 Code: Find nose and Tail Tips
	D.3 Code: Fin Detection
	D.4 Code: Get Length and Find Gill Edge
	D.5 Code: Simple Blob Detector Implementation
	D.6 Blob Detection: Dark Spot Detector
	D.7 Code: Manual Spot Detection, Manual Gill Detection
	D.8 Spot Coordinates Comparison
	D.9 Code: create Feature vectors
	D.10 Code: Individual Recognition

	Bibliography

