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ABSTRACT 

Carbon dioxide emissions present a threat on a global level, driving governments and the 

scientific society to search for sustainable solutions to ease the effects of climate change. 

Carbon utilization offers a potentially effective and environmentally friendly way to lower 

emissions by recycling carbon dioxide to produce valuable chemicals and fuels. Among these, 

methanol rises as an important component in the fuel sector as well as in the chemical industry. 

This creates a large potential for industrial utilization of CO2 hydrogenation to methanol.  

Catalytic hydrogenation of carbon dioxide to methanol is performed using a heterogeneous 

catalytic system. The commercial Cu/ZnO/Al2O3 catalyst used for methanol synthesis from 

syngas has been extensively studied due to its relatively high performance and low cost 

compared to other catalytic systems. However, this catalyst requires improvements to reach the 

desired efficient industrial standard for CO2 hydrogenation to methanol. Hydrotalcite-derived 

Cu/Zn/Al2O3 catalyst has showed promising performance compared to the conventional 

Cu/ZnO/Al2O3 catalyst for methanol synthesis from CO2. Furthermore, it has been 

demonstrated that promotors (e.g. ZrO2, Ga2O3) can further improve the catalytic performance. 

Recently, the use of indium oxide has been proposed as a potential material for CO2 

hydrogenation to methanol. 

In this study, a series of Cu/ZnO/Al2O3 (CuZnAl) catalysts were prepared via hydrotalcite-like 

precursors. Different Cu/Zn ratios were implemented using co-precipitation (low saturation) 

preparation method. Indium (In) promoted catalysts were prepared with the best performing 

Cu/Zn ratio. The catalysts were characterized by x-ray diffraction, H2 temperature programed 

reduction, and N2 adsorption-desorption. Hydrotalcite structure was successfully achieved with 

the formation of CuO and ZnO particles after the calcination process. The addition of In 

improved CuO dispersion, the reducibility, and textural properties of the catalysts. 

Catalytic performance was examined in a fixed-bed reactor at 250oC, 30 bars, and H2/CO2/N2 

ratio of 3/1/1.  A Cu/Zn ratio of 1 resulted in the highest methanol selectivity of 32.3%. The In 

promotion resulted in lower CO2 conversion but with a significant improvement in methanol 

selectivity. The highest methanol selectivity of 52.6% was obtained over the CuZnAl catalyst 

with an In content of 5 mol%.   The superior performance of the In-promoted catalyst was 

further demonstrated at temperatures of 230°C to 260 °C. Furthermore, long term tests showed 

that In promotion significantly improved the stability of the catalyst. 
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1 Introduction 

 Background 

Carbon dioxide (CO2) discharge is one of the main drivers of the enhanced greenhouse effect 

which relates to the global climate change epidemic faced today. The international community 

and local governments are working on implementing strict environmental laws and 

international treaties, trying to decrease the global CO2 emission levels. It is predicted that CO2 

emissions have to be reduced by a minimum of 50% by the year 2050 to limit global 

temperature increase to an average of  2oC [1]. CO2 is emitted in almost every industry whether 

from direct emissions or energy usage. In 2018, global CO2 emissions were estimated to be 

37.1 Gt, a 2.7% increase from 2017 [2]. Various methods can contribute significantly in 

reducing the amount of CO2 in the atmosphere such as carbon capture and storage (CCS). CCS 

can be applied to capture CO2 from commercial and industrial plants, which is then transported 

and finally injected into a safe underground storage, where depleted oil and natural gas fields 

are usually used as storage sites [3]. CCS faces specific limitations such as high implementation 

costs, transport methods, and scarcity in suitable geological locations for storage [4]. Thus, 

CO2 utilization technologies rise as a possible solution to further reduce CO2 emissions. This 

can have a positive economic impact on the cost of reducing the emissions. 

 In 2005, George A. Olah introduced a model named “The Methanol Economy” [5]. This model 

was proposed as an alternative to the hydrogen economy and was centered around green 

methanol synthesis and utilization. Methanol (CH3OH) is one of the several liquid fuels that 

can be synthesized from CO2, which serves as a suitable energy storage medium and a 

feedstock for several industries. In addition, it can contribute to the transition from fossil fuels 

to renewable energy due to its high efficiency when it comes to energy production [6]. 

Methanol is recognized as an efficient manner of energy storage, since it has high energy 

density by volume and weight. Besides, it does not require high pressure to store at room 

temperature, which makes it safer to handle [7]. Methanol is also applicable in internal 

combustion engines (ICE) as it has excellent combustion characteristics. It possesses a higher-

octane rate, and only half of the energy density of gasoline. Gasoline cars can be easily 

modified to run on methanol, or a methanol – gasoline mixture at low cost. For instance, 80% 

of the cars manufactured in Brazil today are so-called “Flexible Fuel Vehicles”, meaning that 

they are able to run on any mixture of gasoline and ethanol (ethanol because of the abundance 

of sugar canes at low cost) [8]. Furthermore, in 2012 the Chinese government ran a pilot test 
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initiative to verify methanol’s efficiency as an alternative fuel. The results showed positive 

prospects of methanol engines (M100) and industrial guidelines concerning safety, 

management, and construction of methanol fuelling stations were established. On 19 March 

2019, Chinese ministries and key government agencies endorsed a methanol vehicle policy to 

be implemented on a national level. In the five years coming, it is expected that 50,000 M100 

vehicles (buses, trucks, and cars) will be in use, with a methanol consumption exceeding 

500,000 million metric tons per annum [9].    As demonstrated in  Figure 1.1, global methanol 

industry demand  is increasing because of its use in fuel blends and as an industrial feedstock. 

Thus, developing more efficient synthesis technologies and methods as well as alternative 

routes to produce methanol is highly attractive.   

 

Figure 1.1. Global methanol industry demand in different geographical areas [10] 

Methanol synthesis can be done by different processes and different carbon sources. However 

CO2 is considered as beneficial on multiple levels [11]. Thus, a significant interest has been 

shown towards catalytic hydrogenation of CO2, which can yield a range of different products, 

such as methane, formaldehyde, formic acid, carbon monoxide, and methanol [12, 13].  

Heterogeneous catalytic systems for hydrogenation of CO2 to methanol have been under 

extensive investigation over the past decade. It is widely acknowledged that copper (Cu) is 

highly active for CO2 hydrogenation to methanol [14]. Studies show that Cu-based catalysts 

perform better with the incorporation of different supports/promoters to achieve better catalytic 

performance, since copper by itself is inefficient [15]. The common industrial catalyst used for 
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syngas conversion to methanol is Cu/ZnO/Al2O3. This catalytic system is widely studied for 

CO2 hydrogenation to methanol, but it  suffers from moderate catalytic performance and 

deactivates quickly due to water induced sintering [16]. This has given rise to the search for 

new catalytic systems that achieve better activity, methanol selectivity, and stability. 

Hydrotalcite-like components obtained from hydrotalcite precursors show promising  

properties compared to  conventional material such as high stability, H2 yield, and low CO 

production [17]. Different promoters have been examined for Cu/ZnO based catalysts over the 

last decades. Indium oxide-based catalyst has shown promising stability and high methanol 

selectivity even at high temperatures [18-21]. Therefore, In rises as a promising metal to 

enhance methanol selectivity and catalytic stability of the commercial Cu/ZnO/Al2O3 catalyst. 

 Scope of study  

In this study, a series of Cu/ZnO/Al2O3 (CuZnAl) catalysts with different Cu/Zn ratios (Cu/Zn 

= 0.5, 1.0 and 1.5) were prepared through a hydrotalcite-like precursor. In addition, In-

promoted catalysts were prepared with a fixed Cu/Zn ratio of 1. The catalysts were 

characterized by XRD, H2-TPR, and N2 adsorption-desorption. The catalytic performance for 

CO2 hydrogenation to methanol was also investigated. In addition, temperature effect tests and 

long-term tests were conducted on the best performing promoted catalyst to further investigate 

the stability and the performance of the catalyst. 
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2 CO2 hydrogenation to methanol 

 Thermodynamics of methanol synthesis  

CO2 is a thermodynamically stable, highly oxidized compound having a low reactivity and 

therefore, it is necessary to overpass a thermodynamic barrier in order to activate CO2 [22]. 

Thus, conversion of CO2 requires effective reaction conditions, high energy input, and suitable 

active catalysts.  

Thermochemical methanol synthesis in a catalytic reactor is composed of two main 

hydrogenation reactions and one side reaction, which is the reverse water gas shift reaction 

(RWGS) [23]. The reactions are expressed below: 

CO2 + 3H2 ↔ CH3OH + H2O  ∆H298= -41.17 KJmole-1 (1) 

CO + 2H2 ↔ CH3OH   ∆H298= -90.64 KJmole-1 (2) 

CO2 + H2 ↔ CO + H2O    ∆H298= 49.47 KJmole-1 (3) 

  

Reactions (1) and (2) are exothermic while reaction (3) is an endothermic reaction. In addition, 

methanol synthesis results in a decrease in mole number. Consequently, according to Le 

Chatelier’s principle, the maximum conversion of CO2 is obtained at high pressure and low 

temperature as indicated in Figure 2.1 [24]. 

 

Figure 2.1. Carbon oxide conversion as a function of temperature. A: 100 bars, B: 75 bars, C: 

50 bars [24] 

The increase in reaction temperature improves significantly the kinetics of methanol synthesis 

(activation of CO2 is promoted), while it also results in reduction of methanol selectivity, since 
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the endothermic RWGS reaction becomes more prominent [25]. Figure 2.2 shows the CO2 

conversion and methanol selectivity at different pressures and temperatures taking into account 

an H2/CO2 feed of 3/1 stoichiometric molar ratio [26].  As can be seen, pressure and 

temperature contribute significantly in the equilibrium conversion of CO2. The implementation 

of highly selective catalyst is crucial for methanol production process, since other products 

such as higher alcohols and hydrocarbons are also thermodynamically favorable at these 

conditions. 

 

 

Figure 2.2. Effect of pressure and temperature on (a) CO2 conversion and (b) methanol 

selectivity at phase and chemical equilibrium. Dashed lines represent the chemical 

equilibrium predicted by gas-phase thermodynamics [26] 

 Methanol synthesis catalysts 

2.2.1 Copper-based catalyst 

During the past decade, CO2 hydrogenation was under extensive theoretical and experimental 

investigation [27]. Methanol synthesis from CO2 requires a catalytic system that can offer high 

selectivity towards methanol, high activity, and limits the production of bi-products. Currently, 

the commercial catalyst used in methanol synthesis from syngas is comprised of copper, zinc 

oxide, and aluminum oxide (Cu/ZnO/Al2O3). This catalytic system has also been extensively 

studied for CO2 hydrogenation to methanol, but it requires improvements in methanol 

selectivity, activity, and stability to meet industrial requirements [28].  
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2.2.1.1 Reaction mechanism on Cu (111)  

The reaction mechanism on Cu has been determined by various studies and the “Density 

Functional Theory” (DFT). Figure 2.3 demonstrates two major routes which have been 

proposed to methanol synthesis over a clean Cu (111) based catalyst. 

 

Figure 2.3. Reaction mechanism of methanol synthesis over Cu (111)[29] 

The pathway to the right shows the formation of intermediate formate (HCOO) with a surface 

H atom. Afterwards HCOO is hydrogenated to dioxymethylene (HCOOH), followed by 

hydrogenation to form H2COOH, which disassociates into formaldehyde (H2CO) and hydroxyl 

(OH). The H2CO is hydrogenated into H3CO (methoxy) or H2COH (methylenoxy), and the 

final product is methanol.  
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The second path shows the formation of trans-carboxyl group (COOH). Adsorbed COOH can 

exist in two isomer structures; cis and trans-COOH, which have the H atom points upwards 

from the surface in cis and towards the surface in trans [29]. Trans-COOH is hydrogenated to 

form t,t-COHOH, the isomer of adsorbed dihydrocarbene. This path is slightly exothermic 

having an activation barrier of 0.43 eV. During this path three inter-conventional pathways are 

formed t,t-COHO→t,c-COHOH→c,c-COHOH. Afterwards, c,c-COHOH is decomposed to 

form COH and OH. Then HCO is formed through hydrogenation of CO. Further hydrogenation 

will lead to the formation of HCOH which is an exothermic reaction [14].  

Similarly, in the cis-COOH path it is decomposed into CO + OH. Then HCO is formed by 

hydrogenation of CO. Further hydrogenation will lead to the formation of HCOH, an 

endothermic reaction, which will re-unite the path with the trans-COOH path. It is noted that 

the exothermic formation of HCOH is more favoured kinetically since it has a lower energy 

barrier of 0.44 eV compared to the endothermic path of energy barrier 1.06 eV. Then, two 

reaction paths are recognized for the formation of H2COH formation. H2COH can be produced 

by the hydrogenation of HCOH in a Langmuir-Hinshelwood (LH) mechanism, or by Eley-

Rideal (ER) mechanism. Then H2COH is hydrogenated to form methanol, which is a highly 

exothermic reaction, with an energy barrier of 0.62 eV. Compared to the H3CO hydrogenation 

with a barrier of 0.9 eV, the H2COH pathway is more favourable. But since the dominant 

HCOO is a mechanistic dead end, because of the unstable nature of HCOO and its high 

tendency to form unwanted bi-products, thus the catalyst can be deactivated due to HCOO 

poisoning [29]. 

Furthermore, the presence of water can lead to sintering of the Cu and ZnO phases, which 

deactivates the catalyst [30, 31]. In addition, Zhao et al. [29] conducted a DFT study to examine 

the role of H2O in methanol synthesis. The presence of water on the catalytic surface may 

poison the active sites and decrease the methanol formation rate. However, it was found that 

the presence of water promotes trans-COOH formation which is a main intermediate in the 

formation of COOH in the hydrocarboxyl mechanism. Moreover, the presence of H2O on the 

catalyst’s surface contributes in the formate mechanism by hindering further decomposition or 

hydrogenation of HCOO to methanol [29]. 

2.2.1.2 Metal oxides supports 

Modification and tuning of catalysts can be controlled by introducing a proper support, where 

the stabilization of active phases, formation of active phases, and the interactions between main 

catalytic components can be enhanced. Focus of current research is being done on Cu/ZnO and 
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various other modified catalysts in industrial and theoretical research applications [32]. ZnO 

has been an attractive support, given the fact that it enhances the lattice oxygen vacant sites, 

the stability, and dispersion of Cu, and carries an active electron pair towards methanol 

synthesis [33]. The Cu/ZnO relatively high performance proposed several theories regarding 

the mechanism between Cu and ZnO. Rhodes and Bell [34], and Fisher and Bell [35] suggested 

a widely accepted double-site mechanism where Cu sites were suggested to be responsible for 

hydrogen adsorption and disassociation, while the adsorption of CO2 occurs on the ZnO site. 

Thus, the hydrogen atoms migrate from the Cu surface to the ZnO to gradually hydrogenate 

CO2 into methanol.  

In order to increase efficiency of Cu/ZnO catalysts, more modifications can be done by adding 

a variety of stabilizers and promoters. Toyir et al. [36], examined the effect of gallium oxide 

(Ga2O3) where the small particle size favoured the creation of an intermediate phase of Cu 

between Cu0, Cu2+, and to some extent Cu+. Li et al.[37], suggested that the addition of Ga3+ 

to the Cu/ZnO catalyst’s precursor fastened the reduction of ZnO to Zn0 through the formation 

of an “electronic heterojunction of ZnO-MGa ( M= Cu or Zn)”, where CuZn is formed by the 

interaction between reduced Zn0 and Cu nanoparticles. Thus, the activity and selectivity to 

methanol is enhanced by the formation of a CuZn bi-metallic active phase on the catalyst’s 

interface. In addition, Martin et al. [38] discovered the effect of introducing little amounts of 

noble metals which contributed in increasing stability of interaction between Cu and Zn and 

stimulated electronic stability of Cu0.  

Aluminium oxide (Al2O3) has frequently been regarded as a structural promoter to increase 

activity and stability of Cu/ZnO [14, 39]. Kuhl et al.[40], demonstrated a hydrotalcite (HT) 

derived Cu/ZnO/Al2O3 catalyst which was more active than the conventional catalyst. 

Furthermore, the addition of fluorine ions was suggested by Gao et al. [41-43]. Fluorine 

enhanced the adsorption of CO2, and the basicity of Cu/ZnO/Al2O3 that resulted in increased 

methanol selectivity. In addition, a study also by Gao et al.[44] showed that appropriate 

amounts of yttrium (Y) could improve the catalyst performance by increasing dispersion and 

surface area of Cu, however weaken ZnO and Cu interaction. Furthermore, the addition of 

small amounts of both Zr and Y could enhance  methanol yield [45].  

On the other hand, zirconia (ZrO2) has been recognized as a superior promoter or support for 

methanol synthesis catalyst since the addition of ZrO2 can increase Cu dispersion, and surface 

area. The performance of Cu/ZrO2 catalyst can also be affected  by the ZrO2 crystal structure 

[14] . Samson et al. [46] investigated a Cu/ZrO2 catalyst and found that oxygen vacancy sites 
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in t-ZrO2 (t = tetrahedral) enhance methanol selectivity and yield by promoting Cu particles 

into the ZrO2 lattice phase with the development of stable Cu0. Ro et al. [47], conducted 

methanol synthesis from CO2 hydrogenation over catalysts prepared by the controlled surface 

reactions method (CSR) and atomic layer deposition approaches. The formation of interfacial 

sites of Cu-ZrO2 increased the turnover frequency factor in methanol synthesis. Measurement 

of x-ray adsorption near edge structures (XANES) verified that Cu0 and Zr4+ are the primary 

oxidation states of Cu and Zr. However, it was suggested that some of the Cu atoms diffused 

into the ZrO2 structure to create a Cu-ZrOx interface, where the valence state of Cu and Zr was 

Cu+ and Zra+ (a < 4). Rungtaweevoranit et al. [48] conducted a study on a Cu@UiO-66 catalyst 

where UiO-66 is a Zr constructed metal organic frameworks (MOF) as shown in Figure 2.4. 

Characterization results proved a strong interaction between the ZrO in the secondary 

structured unit of UiO-66 and Cu particles, thus more active sites were formed leading to better 

catalytic performance towards methanol compared to the conventional Cu/ZnO/Al2O3 catalyst. 

In addition, another study of methanol synthesis using MOFs have been done by An et al.[49]. 

Building units of Zr6(μ3-O)4(μ3-OH)4 sites were pre-assembled on a UiO-bipyridine (bpy)  

MOF, in order to fix Cu/ZnOx nanoparticles (Figure 2.5). Cu/ZnOx@UiO-bpy catalyst 

demonstrated high selectivity to methanol and space time yield compared to the conventional 

Cu/ZnO/Al2O3 catalyst (Figure 2.6). 

 

Figure 2.4. Crystal structure of UiO-66 having  Zr secondary building units bind with BDC 

(1,4-benzenedicarboxylate) to form an array [48] 
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Figure 2.5. Chemical synthesis of UiO-bpy via insitu reduction [49] 

 

Figure 2.6. a) Space time yield (STY) of methanol vs reaction time on stream (100 h) b) 

Selectivity of product vs reaction time reaction time [49]. 
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The activity and stability of Cu/ZrO2 can be improved by modifying preparation methods or 

by introducing specific additives. Gallium (Ga) was examined in the form of Ga2O3 

implemented as a promoter for a catalyst with ZrO2 support. As a result, the catalyst became 5 

times more active to methanol production due to an enhancement in methanol selectivity [50]. 

Furthermore, the vapor chemical deposition of zirconium tert-butoxide (Zr(O-tBu)4) on Cu was 

found to enhance catalytic synergy between Cu and the ZrOxHy over-layer found in the sub-

monolayer structure which increased CO2 selectivity that contributed in H2O activation over 

the ZrOxHy structure [51]. 

High activity catalysts were produced by deposition of cerium oxide (CeOx) and ZnO 

nanoparticles over Cu (111) [52, 53]. In these studies, CeOx/Cu (111) had less activation energy 

for CO2 conversion to methanol than ZnO/Cu (111). This can be attributed to the formation of 

stable carboxyl intermediates on the interface of Cu and CeOx, which indicates that the 

oxide/metal structure could decrease the reaction barriers. 

Titanium oxide (TiO) has also been demonstrated to achieve relatively high catalytic 

performance in CO2 hydrogenation to methanol. A Cu/TiO catalyst developed by Bao et al. 

[54] indicated that Ti3+ could enhance CO2 activation/adsorption thus leading to larger Cu 

crystals and small surface area. Chen et al.[55] implemented lanthanum oxide (LaOx) to study 

the effect of  Cu-LaOx interface. Notably, the catalyst synthesis was done over a La-modified 

SBA-15 mesoporous structure to enhance and maximize Cu-LaOx interface. The catalyst 

showed significant improvement in activity and methanol selectivity compared to the 

commercial Cu/ZnO/Al2O3 catalyst.  

2.2.1.3 Other Cu-based catalysts 

Other materials have been used as metal supports which have showed great potential for 

improving the performance of Cu-based catalysts in CO2 hydrogenation to methanol. Vidal et 

al.[56] studied the efficiency of titanium carbide (TiC(100)) where Cu particles were placed 

over a TiC(100) surface. This created charge polarization of Cu which promoted the activity 

of CO2 and methanol synthesis. The binding energy of CO2 was much larger than Cu (111), 

suggesting that metal carbides can act as efficient support for methanol synthesis. A study by 

Kunkel et al.[57] presented transition metal carbides (TMC) (TM = Zr, Ti, Nb, Hf, Ta, Mo) for 

CO2 capturing and activation, which showed high potential of CO2 activated adsorption. 

Kunkel’s work inspired Posada-Perez et al.[58], to use TMCs as a support on Cu in methanol 

synthesis.  Their work was focused on molybdenum (Mo), and the results showed that methanol 

synthesis followed a different reaction pathway than on conventional Cu/ZnO catalysts. This 
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new pathway indicated that Cu/MoC worked as a bifunctional catalytic system, where Cu 

clusters decomposed CO2 into CO and O, while MoC and Cu supported clusters contributed in 

the methanol formation by promoting hydrogenation. 

Branco et al. [59] suggested that f-block bimetallic oxide elements could be an effective 

addition to the Cu-based catalyst. The catalyst demonstrated higher activity by 2-9 times with 

comparison to the commercial Cu/ZnO/Al2O3 catalyst, with a high methanol selectivity 

(>90%). The use of carbon nanotubes (CNTs) was studied by Wang et al.[60] and Sun et al. 

[61]. They concluded that the presence of nitrogen containing groups can boost the dispersion 

of copper oxides (CuO) where Cu particle size decreased, and CO2 and H2 adsorption on 

surface was enhanced. A graphene supported Cu-ZnO catalyst was studied by Deerattrakul et 

al. [62]. The catalyst showed that Cu and Zn species oxidation state was close to Cu0 and Zn2+, 

however the catalytic performance was highly dependent on the preparation method of the 

reduced graphene aerogel (rGOae). A selection of Cu-based catalysts is listed in Table 2.1 

showing their different performance from literature. 

Table 2.1. Selected results of Cu-based catalysts 

Catalysts Temperature 

(Co) 

Pressure 

(Bar) 

H2/CO2 

molar 

ratio 

CO2 

conversion 

(%) 

CH3OH 

selectivity 

(%) 

Ref. 

Cu/ZnO 250 30 3/1 ∼11.0 – [63] 

Cu/ZrO2 260 80 3/1 15 86 [47] 

CuO/ZnO 250 20 3/1 8.6 45 [64] 

Cu/ZnO/Al2O3 270 50 3/1 23.7 43.7 [42] 

Cu/ZnO/Al2O3/ZrO2 190 50 3/1 10.7 81.8 [65] 

Cu/ZnO/Al2O3/Y2O3 230 90 3/1 29.9 89.7 [44] 

Cu/ZnO/ZrO2/Al2O3/SiO2 250 50 2.8/1 – 99.72 [36] 

Cu/ZnO/Ga2O3 240 45 2.8/1 27 50 [37] 

Cu/TiO2 260 30 3/1 – 64.7 [54] 

Cu/LaOx-SBA 240 30 3/1 6 80 [55] 

Cu/ZrO2/CNTs 260 30 – 16.3 43.5 [60] 

CnZnO@UiO-bpy 250 40 3/1 3.3 100 [49] 

CuZnO/rGOae 250 15 3/1 – – [62] 
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2.2.2 Zinc oxide-based catalysts 

ZnO was first used by Waugh et al. [66] in 1923 under a pressure of 200 Bar and temperature 

of 400oC. Liu et al. [67] studied methanol synthesis using  ZnGa2O4 combined with a molecular 

sieve SAPO-34 (zeolites) in order to obtain direct conversion from CO2 to low olefins. A 

ZnO/Cr2O3 catalyst was studied by Song et al. [68] where the catalyst showed high activity 

towards methanol synthesis, however this catalyst was mainly studied in methanol synthesis 

using CO rather than CO2 hydrogenation. Recently, a ZnO-ZrO2 solid solution was suggested 

by Wang et al.[69], where it showed a high resistance to sulfur poising compared to other 

metallic supported catalysts. The catalyst demonstrated high selectivity towards methanol 

between 86%-91% and a CO2 conversion over than 10%.  

2.2.3 Indium oxide-based catalysts 

In2O3 nanoparticles were produced which showed a 100% selectivity to methanol although 

conducted at high temperatures (300oC) [70]. This high selectivity and stability was attributed 

to the mechanism proposed by Ye et al. [71] occurring on oxygen defecting sites on In2O3 

surface, which could stabilize  the reaction intermediates in the HCOO pathway as 

demonstrated in Figure 2.7. Gao et al. [72, 73] constructed a bi-functional catalytic system 

using In2O3 combined with ZSM-5 (zeolites) and SAPO-34, where high methanol selectivity 

(80%) and low CO selectivity (<50%) from direct CO2 hydrogenation path. In2O3 rises as a 

highly effective catalyst for the synthesis of methanol through direct CO2 hydrogenation [18]. 

This suggests that In could be a good promoter for several catalytic systems for CO2 

hydrogenation to methanol.  
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Figure 2.7. Mechanism of active oxygen sites on In2O3(110) surface [71] 

The work of Ye et al. [21] demonstrated the improved catalytic performance after addition of 

Pd to obtain Pd4/In2O3 catalyst, since H2 breakdown adsorption sites were improved by the 

presence of Pd. In addition, Pd/In2O3 was introduced by Rui et al. [20], where the preparation 

method consisted of mixing the In2O3 (powder) with a Pd peptide composition as demonstrated 

in Figure 2.8. Results exhibit high methanol selectivity over 70% and activity of 20%.  

 

Figure 2.8. Preparation method of Pd/In2O3 catalyst using Pd peptide composition and In2O3 

powder [20] 
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 Other catalytic systems for CO2 hydrogenation to methanol 

The use of palladium (Pd) was demonstrated by several studies. CO2 hydrogenation on  Pd/ZnO 

catalysts was conducted in comparison between different catalyst preparation methods [74]. 

The catalyst showed a decrease in CO production through RWGS reaction. In addition to that, 

a high active surface area of Pd-Zn alloy was found which was responsible for the increased 

methanol selectivity. Bahruji et al. [75] conducted a study on a Pd/Zn catalyst supported with 

TiO to further improve catalyst performance. Another study found that the use of carbon 

nanofibers (CNFs) as support for Pd/ZnO catalysts improved the performance compared to the 

conventional Pd/ZnO catalyst. This was attributed to the small particle size (60.8 nm) of CNF 

supported Pd/ZnO that enhanced methanol selectivity [76]. A further study suggested that a 

trimetallic catalyst of PdCuZn/SiC (SiC = silica carbide) could be a viable methanol synthesis 

catalysts, as CO formation was inhibited [77].  

Hartadi et al. [78] examined CO2 hydrogenation to methanol over an Au/ZnO catalyst. They 

found that the catalyst showed comparable metal mass-normalized activity but was more 

selective for methanol than Cu/ZnO/Al2O3. In contrast to the beneficial effect of CO on 

methanol synthesis on Cu/ZnO/Al2O3, it was found that the addition of CO decreased the 

methanol formation rate on the Au/ZnO catalyst. Therefore, it was proposed that the 

hydrogenation of CO2 and CO to methanol proceeded via different, independent pathways.  

A study on a Ga2O3 supported Pd catalyst found that the Pd-Ga interface formed an active site 

for methanol formation. The high activity of the catalyst was attributed to high metal dispersion 

and strong electron transfer between Pd and Ga, which was proposed to facilitate the activation 

and hydrogenation of reaction intermediate [79].  

Methanol synthesis from H2/CO2 over different metals supported on Mo6S8 (M= K, Co, Ti, Rh, 

Ni, and Cu) was reported by Liu and Liu [80]. Methanol was produced using a modified model 

Mo6S8 catalyst concluded from the DFT calculations. The outcome of this report showed that 

Mo6S8 behavior changed significantly due to different modifiers used, where potassium (K) 

was the most promising for methanol synthesis. Chen et al. conducted experiments on Cu and 

Pd supported on Mo2C. They found that methanol production was enhanced compared to Mo2C 

and that the catalyst showed promising stability [81].  

Sharafutdinov et al.[82] presented an intermetallic Ni-Ga catalyst, which showed that the 

intermediate phase of Ni5Ga3 was a good inhibitor for methane generation and promoted 
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methanol selectivity. Studt et al.[83] also conducted a similar study, where successful CO2 

hydrogenation was done on Ni2Ga3 active sites, which exhibited high methanol selectivity. 

The use of In has been reported to have higher stability and selectivity compared to the 

benchmark Cu/ZnO/Al2O3 catalyst for methanol synthesis from CO2. A low pressure methanol 

synthesis catalyst comprised of NiaInbAl/SiO2 (a=0-8.3, b=0-9.1) was developed, which 

showed high activity compared to the commercial catalyst at atmospheric pressure [84]. A 

bimetallic Pd-In catalyst was proposed by Garcia-Trenco et al. [85], where the most optimum 

Pd/In catalyst consisted of 8 nm nanoparticles covering an In enriched surface in a Pd/In 

intermetallic phase, of which it achieved a methanol selectivity higher than 80%. Table 2.2 

summarizes the catalysts mentioned in section  2.3 . 

Table 2.2. Summary of selected catalysts 

Catalysts Temperature 

(Co) 

Pressure 

(Bar) 

H2/CO2 

molar 

ratio 

CO2 

conversion 

(%) 

CH3OH 

selectivity 

(%) 

Ref. 

Pd/ZnO 250 20 3/1 11.1 59.0 [74] 

PdZnO/TiO2 250 20 3/1 10.1 40.0 [75] 

PdZnO/CNFs 275 10 9/1 3.29 12.1 [76] 

PdCuZnO/SiC 200 10 9/1 – 80.9 [77] 

Au/ZnO 240 50 3/1 0.4 49.0 [78] 

Au/ZnO 240 50 3/1 1.0 70.0 [78] 

Pd/plate Ga2O3 250 50 3/1 17.3 51.6 [79] 

Pd/Mo2C 135 – 3/1 – 95.0 [81] 

NiGa/SiO2 250 10 3/1 – 98.3 [82] 

Ni3.5In5.3Al/SiO2 260 10 3/1 30.8 2.3 [84] 

Pd/In 190 50 3/1 – 94.0 [85] 
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 Catalyst synthesis 

Different techniques of HT synthesis are present such as precipitation at constant pH, 

deposition/precipitation reactions, hydrothermal synthesis etc., however  it has been shown that 

precipitation at constant pH, also known as coprecipitation, is a promising method for preparing 

highly active and stable catalysts [86]. Various parameters are taken into consideration to 

produce pure HTs, where the total cationic concentration is determined to be 0.5 M to ensure 

the formation of an HT structure.  

2.4.1 Catalyst synthesis by co-precipitation 

2.4.1.1 Hydrotalcite or layered double hydroxides 

The primary active sites for methanol synthesis on a commercial catalyst are widely recognized 

as copper [87]. Through literature studies the best performing catalytic systems were the ones 

having the best dispersion between the metallic copper and the Zn or/and Al2O3 [88]. An easy 

manner to obtain such high dispersion is using precursors containing Cu, Zn, Al with a HT 

structure [89]. HT-like materials, which are also referred to as lamellar double hydroxides 

(LDH), are an example of the lamellar solids which have lamellae consisting of positive 

charges where they are balanced with interchangeable anions present in the interlayer region 

[17]. 

LDH structure has an approximate composition of Mg6Fe2(OH)16CO3.H2O where Mg’s 

octahedral structure forms infinite sheets of which they are stacked on top of each other and 

connected through hydrogen bonds [90]. Mg and Fe can be changed with a compound having 

the same ionic charge where 2+ and 3+ are for Mg and Fe respectively. Mg can be replaced by 

components such as Cu2+, Ni2+, Zn2+, etc. while Fe can be replaced by Al3+, In3+, etc. 

According to Zhang et al. HT-like components have a general formula of  [M2+
1-xM

3+
x(OH)-

2]
x+(An-)x/n.mH2O, where  M2+ and M3+ present the divalent and trivalent metal cation 

respectively [91]. Usually, the charge composition is achieved by the interaction between the 

brucitic layers as shown in Figure 2.9 [40]. In the brucitic layer, water molecules are found in 

the inner layers of which they settle into the vacant sites and bond the hydroxyl groups of the 

brucitic layers via hydrogen bonds [40].  Through a controlled thermal decomposition of HT 

compounds the mentioned oxides can be obtained [92]. Many studies concluded that having a 

high Cu dispersion with the right amount and strength of adsorption favor the hydrogenation 

of CO2 [93-95]. In addition to that, it was proven that HT components have a high resistance 

against stability, homogenous dispersion of M2+
 and M3+, larger surface area, and better basic 

properties which presents HTs as a promising area for development [96-98].  
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Figure 2.9. Schematic illustration of layered double hydroxide structure and chemical 

components [99]. 

The nature of M2+ and M3+ can be altered to fit in the pores of the packed pattern of the hydroxyl 

groups in the brucitic layer. In this study, Cu and Zn bimetallic alloys were introduced as the 

basis for the methanol synthesis catalyst. The variant behavior of the Cu2+ ion was attributed 

to the actual nature of the Cu itself which forms compounds interpreted by the Jahn-Teller 

effect where the distortion in the octahedral structure provides an energy gain [39]. Various 

studies have shown that Cu and Zn can be applied as a substitute for the Mg due to the close 

ionic radius of Mg (0.072 nm) as shown in Table 2.3 [90].  In addition, the radius of In  was 

added to show the large ionic radius it has compared to Al which demonstrates a detectible 

s performance’change in the catalyst . 

Table 2.3. Ionic radia of cations [90] 

Radius (nm) 3+M Radius (nm) 2+M 

0.05 Al 0.069 Cu 

0.081 In 0.074 Zn 

 

2.4.1.2 Coprecipitation method 

Considering different preparation methods and procedures the main applied method is co-

precipitation. The different molecular ratios and work conditions can affect the catalyst’s 

performance [100]. The synthesis of HT components can be summed up by the nucleation and 

growth of the metal hydroxide layer due to the mixing of an aqueous solution where two 

metallic salts are used to obtain a base and an anion [101]. The usage of this synthesis technique 

is accompanied by restricting condition where the preferred interlayer anion is held as toughly 
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as the counterion in the metal salts. Thus, metal nitrates and metal chlorides are extensively 

used [102]. 

The method of synthesis in this report is co-precipitation at low supersaturation. This method 

is carried out at low constant temperature between pH 7 and pH 10 to insure the formation of 

HT structures [103].  Afterwards aging is applied, and then drying at a temperature of 

maximum 120oC. 

2.4.2 Aging 

Aging is a post preparation process of which the aqueous mixture is preserved at either standard 

temperature or under constant heat where stirring is applied in the ongoing process. This 

process contributes in the formation of crystallites of a large size by enhancing the LDH 

structure [104]. It is of great importance to mention that the temperature of aging affects the 

crystalline growth that alters the catalyst’s efficiency later in its practical application. When 

the aging process is done at temperatures till 90oC, improved hexagonal structure will be 

formed due to eased ion diffusion which will result in larger size crystals with more stable 

energetic structure [105]. 

2.4.3 Calcination 

Calcination is the thermo-chemical treatment of aged precursors where they are heated in the 

presence of oxygen or synthetic air at a constant temperature. Calcination will change the 

composition from hydroxide to mixed oxides. The temperature of the calcination must be taken 

into consideration, since it must be high enough to ease the formation of metal oxides, however 

low enough to avoid sintering phenomena that will decrease surface area of the catalyst. 

2.4.4 Reduction 

Reduction is considered as an activation phase for catalytic reactions. Catalysts are activated 

using a reducing agent (most commonly hydrogen) which transforms metal oxides to active 

metal species. The main parameter in the reduction process is the temperature applied, which 

can affect metal surface area and dispersion.  

 Catalyst characterization 

2.5.1 X-ray diffraction (XRD) 

X-ray diffraction method gives insights concerning the crystalline materials. Intensities of 

different peaks, which are later compared and evaluated to an existing database of materials, 

are used to identify the structure and content of the tested sample, to determine the nature of 

the existing phases [106]. The characterization process is done by directing x-ray to the atom, 
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which creates a reflection of different waves depending on the structures available in the 

sample. Bragg’s law equation (eq.2.1) explains the relationship between the wavelength λ, the 

spacing between crystal lattice planes of atoms d, and angle of occurrence θ [107]. 

𝜆 = 2 × 𝑑 × 𝑠𝑖𝑛𝜃                                                                                                            (2.1)     

At the same time, d can be calculated by the Scherrer equation (eq. 2.2) [108]. 

𝑑 =
𝐾 𝜆

𝐵 𝑐𝑜𝑠 Ө
                                                                                                                             (2.2)      

Where B presents the total width at XRD’s half maximum peak (radians) and K is a numerical 

factor denoted to the crystallite-shape factor. 

The x-rays in this process are formed by a cathode ray tube with a beam of electron radiating 

toward a metallic object. The intensity of the diffraction as a function of angle is documented. 

Three main diffraction techniques exist and the powder technique (PXRD) is the most common 

one which uses a stable wavelength. All the diffraction of the lattice can be acquired due to the 

random placement by analyzing the sample through a 2Ө angles. 

There are various gains and applications of PXRD including study of polymorph, different 

temperature and phase transition, etc. [109]. Using PXRD, the location of the diffraction 

patterns provides insights concerning the size and shape of the composition, while on the other 

hand the intensities are used to observe the atom’s position of the sample. By comparing the 

XRD peak positions with a database, the sample’s composition can be defined. Geometry of 

the lattice is indicated by the peaks considering dimensions and internal symmetry.  

In addition to that, atom’s arrangement and crystalline size can be observed by considering the 

intensities of the beams. Various elements can affect the intensity, for instance the adding of 

atoms, the quantity of crystal oriented in the Bragg’s angle, and the affinity to atom’s order 

[107].  

2.5.2 Temperature programmed reduction  

Temperature Programmed Reduction (TPR) is a manner by which metal oxides, mixed metal 

oxides, and metal oxides distributed on a support are identified. A TPR outline offers a 

qualitative description of the oxidation state of reducible species such as quantity of reducible 

species, and the temperature at which the reduction is taking place. Throughout TPR, a 

reducing gas mixture (mainly formed of hydrogen) is introduced over the mixed oxide (MO) 

while the temperature is increasing linearly with time. The reaction between reducing gas and 
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MO will lead to the formation of a metal (M) and water, whereas concentration of hydrogen 

decreases. [101].  

M + H2 → M + H2O 

The thermal conductivity (TC) is measured by a thermal conductivity detector, which shows a 

decrease in TC of the gas flow. Nitrogen or argon are typically chosen as carrier gases. In 

addition, the concentration of hydrogen must range between 1-10% in order to maintain a high 

detector measurement, since the variation of TC is proportional to the mole fraction at a low 

concentration of reactant gas in the carrier gas mixture. In addition, TPR can also study the 

coke deposition on catalysts [110].  

The results obtained from TPR can differ depending on the heat rate, concentration of hydrogen 

in the carrier gas, and the flow rate of the carrier gas. The criteria of analysis were suggested 

as the following: So(V×Co) = 55-14 (s) and β×So/(V×Co) < 2. The heating rate is β (oC/min), 

the amount of reducible species initially is So (μmol), whereas total flowrate is represented by 

V (cm3/min), and the initial concentration of reducing gas is Co (μmol/cm3) [111]. 

2.5.3 Nitrogen adsorption-desorption  

Gas adsorption-desorption measures the surface area and characterizes the pore size of porous 

material. Two types of adsorption are available: physisorption and chemisorption which 

differentiate according to the power of interaction. The most appropriate one is physical 

adsorption since it is conducted at low heat of adsorption that doesn’t affect or disturbs the 

structure of the surface during measurement, whereas in chemical adsorption multiple layers 

of adsorbate cover the surface during measurement. Furthermore, there is no activation energy, 

thus the equilibrium will be reached rapidly. Adsorption and desorption harnessed data 

contribute in characterizing pore volume, pore size, and pore distribution [112]. 

The commonly applied theory to conclude surface area of porous material is the Brunauer- 

Emmett- Teller (BET). This theory considered the multi-layer adsorption which resulted with 

the following BET equation (eq. 2.3). 

1

𝑊(
𝑃
𝑃0

− 1)
=

1

𝑊𝑚𝐶
+

𝐶 − 1

𝑊𝑚𝐶
(

𝑃

𝑃0
)                                                                                                   (2.3) 

Where P and P0 are the equilibrium and the saturation pressure of adsorbates at the adsorption 

temperature, C represents BET constant affiliated to the adsorbate and adsorbent interactions. 

Wm can be determined through the collection and plot of a graph of 1/ [W× (P/P0 – 1)] versus 
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P/P0, using the measurement data of the accumulated gas quantity adsorbed versus gas pressure 

at a specific temperature. The International Union of Pure and Applied Chemistry (IUPAC) 

classifies sorption isotherms into six types from I till VI which are demonstrated in Figure 2.10 

[113].  

 

Figure 2.10. (a) Types of physisorption isotherms (b) Types of hysteresis loops [113]      

The BET theory is perceived as simple and can be affiliated with the isotherm types. The BET 

theory also shares with the experimental isotherms a common approach to the relative pressure 

near the completed monolayer, thus making the BET theory the best method to measure surface 

area.  

The pore volume and pore size distribution are measured using the Barrett-Joyner-Halenda 

(BJH) method. During measurement, the data is computed using the gas desorption isotherm 

and adjusted Kelvin equation. Eventually the correlation between the volume of capillary 

condensate and relative pressure is defined by a relation between capillary radius and vapor 

pressure depression [114]. 

2.5.4 Gas chromatography 

Gas Chromatography (GC) is a widely used measurement method to separate and determine 

the composition of volatile compounds. GC measurement method is fast, simple, and capable 
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of measuring a variety of organic and inorganic compounds. Throughout the process, the 

sample is initially vaporized and carried by a fluidized gas (carrier gas) to the chromatographic 

column. The vapor pressure of each component is relative to the column’s temperature and the 

component’s affinity with the stationary phase. The components keep on shifting from mobile 

gas phase to the stationary phase due to the difference in vapor pressure. Once the component 

is in the mobile gas phase, it is instantly carried to the detector [115]. Full isolation (leak free) 

of the system is crucial to prevent any characterization failure, this can be achieved by using a 

metal or glass tube as a column.  

The data is analytically quantified based on the chromatogram readings, peaks are measured, 

and calculations are performed relative in the desired units. Quantitative analysis is divided 

into five different methods which are area normalization, area normalization with response 

factors, standard addition, internal standard, and external standard [116]. The most common 

method used for gas analysis is external standard. 

 Kinetics of methanol synthesis 

Carbon dioxide hydrogenation reaction is by far the most preferred reaction, which happens in 

parallel with the reverse water shift reaction [117]. Various kinetic models were proposed in 

literature, each considering different thermodynamic and kinetic parameters, different feed 

composition and catalytic systems used. Some of these models studied the synthesis of 

methanol from CO2 and some considered synthesis from an H2/CO feed. Different kinetic laws 

were derived, and they were based on the rate determining step concluded from the reaction’s 

mechanism.  

2.6.1 Kinetic models 

A kinetic model was established by Van den Bussche and Froment [118] which took into 

consideration only the carbon dioxide hydrogenation  and the water shift (WGS) reaction .In 

this model they assumed CO2, from WGS, is the main carbon source in this reaction. The rate 

determining step was the dissociative adsorption of CO2 and H2.  

Park et al. suggested a kinetic model which was based on the Langmuir-Hinshelwood-Hougen-

Watson (LHHW) mechanism that considers all the three reactions [(1) (2) (3)][119].  

Another kinetic model based on the Power Law was established by Askgaard et al.[120] and 

Kobel et al. [121]. Power Law model considers that the thermodynamic equilibrium is obtained 

by 16 elementary steps. This model considers the comparison between experimental data, and 
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the modeled data. Through the Power Law, different parameters can be adjusted in order to 

narrow down the difference between experimental and modeled data.  

Various microkinetic studies have been performed of which only two main studies will be 

mentioned in this section. Grabow and Mavrikakis [122] suggested a micro kinetic model over 

the commercial catalyst Cu/ZnO/Al2O3 based on 49 elementary steps which demonstrated 

different reaction intermediates involved in methanol synthesis. The results from this model 

showed that almost 75% of the methanol was obtained from CO2 hydrogenation.  

Another study by Kunkes et al. [123] tackled a very important question towards the reaction’s 

mechanism which whether methanol synthesis and RWGS have a parallel pathway, or have 

some intermediates in common, or methanol synthesis precedes RWGS and CO hydrogenation. 

Tests performed on Cu/MgO, Cu/SiO2, and Pd/SiO2 showed that the 2 reactions have no 

common intermediates. On the other hand, tests performed on Cu/ZnO/Al2O3 showed that CO2 

hydrogenation doesn’t go through either RWGS or CO hydrogenation. Thus given the fact that 

RWGS reaction and methanol synthesis have separate pathways, Cu/ZnO/Al2O3 rises as a 

promising catalyst for further development and modification [123]. 

Various studies concerning macrokinetics were performed by Graaf et al. [124-126] where they 

established a kinetic model based on the LHHW mechanism that considered all the 3 reactions 

[(1) (2) (3)] conducted over a Cu/ZnO/Al2O3 Haldor Topsoe catalyst. These studies considered 

the rate determining steps according to the dual site LH mechanism. These studies were 

considered as the basis for recent kinetic models’ construction. 

2.6.2 Power Law model  

The Power Law model is considered as a simple model and can be used in any kinetic reaction 

analysis since kinetic analysis can be done even though little knowledge about the reaction’s 

mechanism is available [127]. Several models has been suggested by different studies [128, 

129] with no defined mechanism of which they can only be used within a specified range of 

temperatures, conversion, and partial pressures.  

The Power Law model works by executing theoretical and experimental analysis of the 

chemical reaction and comparing the data together. Eventually this serves the purpose of 

narrowing down the divergence between theoretical and experimental analysis. This model is 

used to anticipate certain changes in mechanism that might occur during the reaction, and 

gather quantitative data about reaction rates, which will help in the advancement of the catalytic 

process.  
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Power Law model is implemented using a series of equations that cover thermodynamics, 

activation energy, and catalytic activity. This model was based on several assumptions where 

two reactions were considered: (i) CO2 hydrogenation to methanol (j= methanol); (ii) reverse 

water gas shift reaction (j= CO). Equations and formulas mentioned are extracted from the 

work of Kobl et al. [121] and the quantitative interpretation of Graaf et al. [124-126] with 

certain modifications performed to suite an H2/CO2 feed . As mentioned, this model was 

divided into two sections: Theoretical and experimental. The following equations give a 

representation of this model: 

Theoretical Approach: 

The thermodynamic equilibrium is referred to as βj where j is the reaction index. The 

equilibrium was added to the kinetic equations to consider the reverse reactions occurring. βj 

representation was the following: 

𝛽𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 =
𝑃(𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙,𝑜𝑢𝑡) × 𝑃(𝐻2𝑂,𝑜𝑢𝑡) 

𝐾𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 × 𝑃(𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙,𝑜𝑢𝑡)
3 × 𝑃(𝐶𝑂2,𝑜𝑢𝑡)

                                                               (2.4) 

  

𝛽𝐶𝑂 =
𝑃(𝐶𝑂,𝑜𝑢𝑡) × 𝑃(𝐻2𝑂,𝑜𝑢𝑡) 

𝐾𝐶𝑂 × 𝑃(𝐻2,𝑜𝑢𝑡) × 𝑃(𝐶𝑂2,𝑜𝑢𝑡)
                                                                                                 (2.5) 

Where Kj
 represents the equilibrium constant.  

On the other hand, Kj was presented based on the following interpretation from Graaf et al.’s 

work [125], it should be noted that their work was based on a H2/CO feed but modifications 

were performed to suite the H2/CO2 feed: 

𝐾𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 = (𝐾𝜑𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 × 𝐾𝑃𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙  ) ∗ 𝐾𝐶𝑂                                                                          (2.6) 

𝐾𝐶𝑂 = 𝐾𝜑𝐶𝑂 × 𝐾𝑃𝐶𝑂                                                                                                                            (2.7)                         

Where Kp and Kφ present the partial pressure coefficient and the fugacity coefficient 

respectively. They represent as the following: 

𝐾𝑃𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 =
𝑌𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝑌𝐶𝑂 .𝑌𝐻2
2                                                                                                             (2.8) 

𝐾𝑃𝐶𝑂 =
𝑌𝐻2𝑂 𝑌𝐶𝑂

𝑌𝐶𝑂2
.𝑌𝐻2

                                                                                                                 (2.9) 
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Where Y is the mole fraction of components. And since the chemical reaction in this study was 

occurring in non-ideal gas conditions where the reaction is occurring at 30 bars, hence the 

fugacity correlation is relatively small and might be neglected [130]. Thus, Kφmethanol = KφCO 

≈ 1. 

This model is temperature sensitive, thus the use of activation energy factor Ea and a pre-

exponential factor k is essential to cover this matter. Furthermore, based on Hu et al. [131] any 

appearance of dew point temperatures is not anticipated since the reaction’s pressure is not 

exceeding 100 bar. Thus, based on these assumptions turnover frequency (TOF) equations were 

formed into a power law expression as the following: 

𝑇𝑂𝐹𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙 =  𝑘𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙  𝑒𝑥𝑝(
−𝐸𝑎𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙

𝑅𝑇
) 𝑃𝐻2

𝑛𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙𝑃𝐶𝑂2

𝑚𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙  (1 − 𝛽𝑚𝑒𝑡ℎ𝑎𝑛𝑜𝑙)   (2.10) 

𝑇𝑂𝐹𝐶𝑂 =  𝑘𝐶𝑂  𝑒𝑥𝑝(
−𝐸𝑎𝐶𝑂

𝑅𝑇
) 𝑃𝐻2

𝑛𝐶𝑂𝑃𝐶𝐶𝑂2

𝑚𝐶𝑂  (1 − 𝛽𝐶𝑂)                                                                  (2.11) 

Where nj and mj are calculated with respect to the inlet pressure of H2 and CO2 respectively.  

Experimental approach: 

The experimental approach is based on the following with the same index factors used in the 

theoretical approach: 

𝑛𝑗 = ∫ 𝐹𝑗 𝑑𝑡
𝑡𝑅

0

                                                                                                                                (2.12) 

Where nj is the amount of component consumed over the entire experimental period, Fj is the 

molar flow rate, and tR is the duration of the experiment. 

Conversion of substances should be averaged over the experimental period and the selectivity 

can be determined based on the product’s carbon-content. They are covered by the following 

equations: 

𝑋𝐶𝑂2
=

𝑛𝐶𝐻3𝑂𝐻 + 𝑛𝐶𝑂

𝑛𝐶𝑂2 ,𝑖𝑛
 𝑥 100                                                                                                        (2.13) 

𝑋𝐻2
=

2𝑛𝐶𝐻3𝑂𝐻 + 𝑛𝐻2𝑂

𝑛𝐻2,𝑖𝑛
 𝑥 100                                                                                                      (2.14) 

𝑆𝐶𝐻3𝑂𝐻 =
𝑛𝐶𝐻3𝑂𝐻

𝑛𝐶𝐻3𝑂𝐻 + 𝑛𝐶𝑂
 𝑥 100                                                                                                   (2.15) 



  

27 

 

𝑆𝐶𝑂 =  1 −  𝑆𝐶𝐻3𝑂𝐻                                                                                                                         (2.16)    

The TOF values are calculated considering an equally active total surface area and both 

reactions happening on the Cu surface. TOF equations express as the following: 

𝑇𝑂𝐹𝐶𝐻3𝑂𝐻 =
𝑛𝐶𝐻3𝑂𝐻×𝑁𝐴

𝑚𝑐𝑎𝑡 𝑥 𝑆𝑐𝑢 𝑥 𝑁𝑠 𝑥 𝑡
                                                                                                      (2.17)       

𝑇𝑂𝐹𝐶𝑂 =
𝑛𝐶𝑂×𝑁𝐴

𝑚𝑐𝑎𝑡 𝑥 𝑆𝑐𝑢 𝑥 𝑁𝑠 𝑥 𝑡
                                                                                                             (2.18)                                                               

Where n is the number of moles of methanol, mcat is the mass of the catalyst, SCu is the specific 

copper area, NA is Avogadro’s number, NS is the number of surface copper atoms per unite 

surface area and t is the reaction time. In literature, the common used NS value is 1.46  x  119 

m-2 since planes of  (100), (110), and (111) are assumed equal when exposed at Cu’s surface 

[132].  

Eventually, the theoretical TOF values are plotted versus the experimental TOF values to give 

a similar representation as the one in Figure 2.11. These plots are called parity plots where the 

quantitative comparison between theoretical and experimental data is performed. This 

comparison is essential to establish an understanding concerning how the mechanism works, 

and the validity of considered assumptions. 

 

Figure 2.11. Example of parity plot representation of methanol synthesis (a) and Reverse 

Water Gas Shift Reaction (b) [121] 
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3 Experimental  

 Materials and equipment  

No further purification or modification was performed on the chemicals used throughout this 

report. A detailed summary of the chemicals used for catalyst preparation and gases for 

catalytic testing are summarized in Table 3.1.  

Table 3.1. List of used chemicals for catalyst preparation and gases for activity tests. 

No. Materials Chemical 

Formula 

Manufacturer Molecular 

Weight (g/mol) 

Purity 

1 Copper (II) Nitrate 

Trihydrate 

Cu 

(NO3)2·3H2O 

ACROS 

ORGANICS 

241.59 ≥ 99% 

2 Zinc Nitrate 

hexahydrate 

Zn (NO3)2•6H2O Alfa Aesar 297.49 ≥ 99% 

3 Indium (III) 

Nitrate Hydrate 

In (NO3)3•xH2O EMSURE 318.83 ≥ 99% 

4 Aluminum Nitrate 

Nonahydrate 

Al (NO₃)₃·9H₂O EMSURE 375.13 ≥ 98.5% 

5 Sodium Hydroxide NaOH EMSURE 40.0 ≥ 99.2% 

6 Sodium Carbonate Na₂CO₃ EMSURE 105.99 ≥ 99.9% 

7 Silcon Carbide SiC Alfa Aesar 40.1 ≥98.8% 

8 Carbon dioxide CO2 Yara Praxair 44 99.999% 

9 Hydrogen H2 Yara Praxair 2 99.999% 

1 Nitrogen N2 Yara Praxair 28 99.999% 

 

 Catalyst synthesis 

Throughout this study, the catalysts were synthesized using the conventional co-precipitation 

method. The precursors containing Cu, Zn, and Al are labeled as X-CuZnAl where X is the 

molar ratio of Cu and Zn in the reduced catalysts. Meanwhile the catalysts containing In was 

denoted as X-CuZnAl-Y-In where Y represents the weight percent of In in the catalyst. In this 

study, different molar ratios of the Cu-based catalyst were synthesized and tested, of which the 

best molar ratio was chosen to be synthesized with the addition of the different fractions of the 

In promoter. Table 3.2 below demonstrates all the catalysts synthesized with their 

compositions. 
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Table 3.2. Labels and characteristics of the prepared catalysts 

Catalyst Cu/Zn molar ratio Catalyst composition (wt%) 

1.5-CuZnAl 1.5 45 Cu – 3 Zn – 25 Al 

1-CuZnAl 1 37.5 Cu – 37.5 Zn – 25 Al 

0.5-CuZnAl 0.5 25 Cu – 5 Zn – 25 Al 

1-CuZnAl-2.5-In 1 37.5 Cu – 37.5 Zn – 22.5 Al – 2.5 In 

1-CuZnAl-5-In 1 37.5 Cu – 37.5 Zn – 20 Al – 5 In 

1-CuZnAl-7.5-In 1 37.5 Cu –37.5 Zn – 17.5 Al – 7.5 In 

 

The HT synthesis method was concluded from a patent modified by Bhattacharyya et al. [103]. 

In this method co-precipitation at low super-saturation was adopted to produce catalysts from 

HT-like precursors. A specific stoichiometric amount of Cu(NO3)2·3H2O, Zn(NO3)2•6H2O, 

Al(NO₃)₃·9H₂O, and In(NO3)3•xH2O (for the promoted catalysts) were dissolved in an 

apparatus of deionized water (400 ml) to obtain a cation solution with a concentration of 0.5 

M. Whereas, NaOH and Na₂CO₃ were used to form the anion solution by dissolving adequate 

amounts into  deionized water (400 ml). Using a graduated funnel, the cation solution was 

added dropwise to the anion solution, while stirring was applied at 700 RPM for almost 2 hours 

(1 drop/second) at room temperature.  Afterwards, the pH of the mixture was adjusted to 

become closer to pH 9 using some droplets of nitric acid. The pH adjustment is of great 

importance, since according to  Xiao et al. catalysts prepared at pH 9 have resulted in better 

HT structures and performed best [65]. The mixture was heated up to 85oC while stirring was 

applied (650 RPM) and a continuous flow of nitrogen was carried out for 18 hours. Then, 

vacuum filtering was applied, where the slurry mixture was washed several times with 

deionized water to obtain a neutral pH. The filter cake was dried in a 90oC oven overnight. The 

catalyst was then calcined using a quartz reactor unit at 500oC with a temperature increase rate 

of 5oC/min, for a duration of 5 hours. 

 Characterization of catalysts 

3.3.1 X-ray diffraction (XRD) 

XRD studies of catalysts were performed for the fresh and calcined HT-like precursors 

catalysts using a Bruker-AXS Microdiffractometer D8 Advance which uses a CuKα radiation 

source. These signal configurations were recorded with a 2Ө range of 10o-90o, with 1o/min step 
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increment. The structural properties were obtained by the Bragg’s law equation (eq.2.1) and 

the Scherrer equation (eq.2.2) mention in section 2.5.1. 

3.3.2 Temperature programmed reduction (TPR) 

TPR measurements were conducted using a Micromeritics Autochem II ASAP 2920 analyzer 

with a thermal conductivity detector (TCD). The calcined samples of about 70 mg were 

degassed at 200oC in He flows for a time of 20 minutes to eliminate any adsorbed H2O and 

CO2. After cooling to 50oC, the reducing gas mixture (10 vol% H2 in argon) was passed over 

the samples with flow rate of 50 mL/min. The temperature was ramped up to 550oC at a rate 

of 10oC/min and held for 30 minutes. 

3.3.3 Nitrogen adsorption – desorption 

Nitrogen adsorption-desorption measurements were obtained by using a Micromeritics TriStar 

3000 instrument at -196oC with liquid nitrogen. Preceding the analysis, samples were degassed 

at 180oC under vacuum overnight. 

 Catalytic Activity Tests 

The unit used in this study was a fixed-bed tubular reactor as shown in Figure 3.1. The reactor 

is composed of a temperature resisting metal. The reactor was supplied with a gas feed of N2, 

H2, and CO2 which were controlled by a mass flow control unit (Bronkhorst). The pressure 

regulator was set on 5 bars for each gas feed line. A pressure gauge and a back-pressure 

controller were placed to monitor and control the pressure inside the reactor. The reactor was 

heated up using an electrical oven regulated by a temperature regulator (Eurotherm 328). A 

thermocouple of type K was used within the reactor and placed below the catalytic bed.    

Figure 3.1 shows a schematic representation of the experimental unit used in the catalyst 

activity tests and Table 3.3 shows the dimensions of the reactor. Prior to the activity tests, the 

catalysts went through a reduction procedure under a flow rate of 50 mL/min with 50 vol% 

H2/N2 in a fixed bed tubular reactor at 350oC for 2 hours. The temperature was built up by a 

rate of 5oC/min to reach 350oC. After reduction the bed was flooded with N2 for 30 minutes 

and the reactor was cooled to below 60oC. Subsequently, a H2/CO2/N2 flow of 3/1/1 of 50 

mL/min was used to purge the reactor for 15 min. Finally, the pressure inside the reactor was 

increased to 30 bars and then the temperature was increased to the desired reaction temperature. 

The CO2 conversion and CH3OH selectivity were calculated according to the following 

formulas, where N2 was used as internal standard to calculate the flowrates of each species. 

The CO2 conversion and CH3OH selectivity was calculated by the following equations: 
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𝑋𝐶𝑂2
=  

𝑛𝐶𝑂2

𝑖𝑛 −  𝑛𝐶𝑂2

𝑜𝑢𝑡

𝑛𝐶𝑂2

𝑖𝑛 × 100%                                                                                                        (3.1) 

𝑋𝐶𝐻3𝑂𝐻 =  
𝑛𝐶𝐻3𝑂𝐻

𝑜𝑢𝑡

𝑛𝐶𝑂
𝑜𝑢𝑡 + 𝑛𝐶𝐻3𝑂𝐻

𝑜𝑢𝑡  × 100%                                                                                              (3.2) 

Where 𝑛𝑖
𝑖𝑛 and 𝑛𝑖

𝑜𝑢𝑡 represent the number of moles of each gas in the inlet and outlet of the 

reactor. 

 

Figure 3.1. Schematic representation of the experimental set up 

 

1: Pressure regulator with two pressure gauges, the one on the right gives the amount of gas in 

the gas bottle (bars), while the one on the left gives the regulated pressure value of the system. 

2: Mass flow meter. 

3: Reactor bed; detailed specs mentioned in Table 3.3. 
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4: Electric oven resistor’s distribution within the reactor bed. 

5: Back-pressure regulator. 

6: Temperature controller. 

7: Gas chromatography unit. 

8: Pressure gauge indicating the pressure inside the reactor bed. 

9: Gas exit vent. 

Table 3.3. Specs of the reactor bed 

Inner Diameter of Bed 6 cm 

Outer Diameter of Reactor 14 cm 

Vertical Length of Reactor 35 cm 
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4 Results and discussion  

 Characterization of catalysts 

4.1.1 XRD analysis of un-promoted catalysts 

 

Figure 4.1. XRD patterns of un-promoted as-prepared catalysts, (▲) ZnO and (●) CuO 

XRD patterns of the as-prepared, un-promoted catalyst precursors are presented in Figure 4.1. 

As expected, the diffractograms of the catalyst display typical HT-like structure as the major 

phase. The peaks at 2θ of 11.78°, 23.7°, 34.7°, 39.4°, 47.1°, 60.2°, and 61.6° which refer to 

peaks (003), (006), (112), (015), (018), (110), and (113) were characteristics of 

Cu3Zn3Al2(OH)16CO3×H2O (JCPDS 37-629). It is likely that lattice strains were introduced by 

the existence of a Jahn-Teller one-sided Cu-centered octahedral structure in the HT layers 

[133]. These lattice strains could cause a decrease in peak intensity as observed for the 1.5-

CuZnAl catalyst. Moreover, the crystallinity of the HT phases can be affected due to the 

generation of amorphous precipitates which are hydroxides in this case [93].  In addition, peaks 

with relatively weak intensity corresponding to metal oxide phases could also be detected for 

the catalysts. These species were most likely formed through the oxidation reaction due to the 

high aging temperature and pH. The peaks at 2θ of 31.8°, 36.3°, 56.7°, 63.0°, and 68.1° can be 

attributed to ZnO (JCPDS 75-576), while the signal corresponding to CuO (JCPDS 89-5899)   

can be observed at 32.5°, 35.5°, 38.8° and 48.7°. The ZnO peaks had the highest intensity for 
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the 0.5-CuZnAl catalyst, which can be clearly seen from the peaks at 31.8° and 36.3°. However, 

the intensity of the ZnO peaks were very small for the 1-CuZnAl catalyst, indicating low degree 

of crystallization or high dispersion. Furthermore, the decrease in ZnO signal was accompanied 

by an increase in peak intensity of HT. It can also be observed that the intensity of the CuO 

peak at 38.8° increases with Cu loading, which was probably due to an increase in CuO 

crystallite size.  

Structural properties of un-promoted catalysts are summarized in Table 4.1. The lattice 

parameter a (a = 2×d110) is a function of the average radius of the metal cations found in the 

layers while lattice parameter c (c = 3×d003) measures the HT’s layer thickness [44, 93]. The 

d-spacing (d110 and d003) was calculated by Braggs equation (eq.2.1). The crystallite size of 

ZnO (dZnO) and CuO (dCuO) was calculated by the Scherrer equation (eq.2.2). Cu content has 

clearly affected the structural parameters of different molar ratio catalysts. Parameter a was 

increasing due to the decrease in Cu content. The differences were small due to the similar 

ionic radia between Zn2+ and Cu2+ [134]. In addition, parameter c was increasing with 

increasing Cu content, due to the lower electrostatic interaction between the layers [100].  

Table 4.1. Structural parameters of un-promoted as-prepared catalysts and calculated 

crystallite size 

Catalyst a (Å) c (Å) dZnO (nm) dCuO (nm) 

1.5-CuZnAl 3.541 22.47 45 15 

1-CuZnAl 3.545 22.62 – 13 

0.5-CuZnAl 3.548 22.71 49 9 

 

XRD patterns of the calcined un-promoted catalysts are shown in Figure 4.2 after thermal 

treatment at 500oC for 5 hours. It is clear that the HT structure was completely decomposed 

[135], ending up with a composition of mixed oxides of ZnO and CuO. No peaks of Al 

containing species were detected, which indicates that the Al exists as an amorphous phase. 

The crystallite size of ZnO and CuO was estimated by the Scherrer equation from the (100) 

and (111), respectively, and the values are listed in Table 4-1. As it can be seen, the crystallite 

size of ZnO was very large for the 0.5-CuZnAl and 1.5-CuZnAl catalysts, while the crystallite 

size could not be calculated for the 1-CuZnAl catalyst. It can also be seen that the CuO 

crystallite size increased with Cu loading in the range of 9-15 nm.  
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Figure 4.2. XRD patterns of un-promoted calcined catalysts, (▲) ZnO and (●) CuO 

4.1.2 XRD analysis of promoted catalysts 

XRD patterns of the promoted catalyst precursors are presented in Figure 4.3. The patterns of 

In-promoted catalysts show the same HT pattern as the un-promoted catalyst, but with the 

addition of an In(OH)3 structure (JCPDS 85-1338). The peaks at 2θ of 22.7o and 32o are 

characteristics of In(OH)3, and the peak intensity increased with In loading. The crystallinity 

of the promoted samples decreased with increasing In3+, since Al3+ (ionic radius = 0.05 nm) 

was being substituted by In3+ (ionic radius = 0.081 nm) which has a larger ionic radius.  
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Figure 4.3. XRD patterns of promoted as-prepared catalysts, (*) In (OH)3. 

Structural properties of promoted catalysts are summarized in Table 4.2. Parameter a increased 

with the addition of In, which indicates that In was incorporated into the HT structure [91]. 

Parameter c of the promoted catalyst was found to be slightly larger than the un-promoted 

catalyst. This could be due to an increase in the M2+/M3+ ratio of the HT layers causing the 

positive ionic charge density between the layers to decrease, thus increasing the M2+-M3+-O 

octahedron structure [136].  

Table 4.2. Structural parameters of promoted as-prepared catalysts and calculated crystallite 

size 

Catalyst a (Å) c (Å) dCuO (nm) 

1-CuZnAl-0-In 3.545 22.62 13 

1-CuZnAl-2.5-In 3.549 22.65 11 

1-CuZnAl-5-In 3.550 22.63 10 

1-CuZnAl-7.5-In 3.551 22.63 10 
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XRD patterns of the calcined promoted catalysts are shown in Figure 4.4. It can be seen that 

the HT structure was completely decomposed after calcination, and that of the In(OH)3 

component has also disappeared. The crystalline size of Cu decreased with increasing In 

content, which indicates that In addition increased the Cu dispersion. In addition, according to 

Gao et al. [44] Cu nanoparticles are physically spaced by ZnO particles which helps in the 

dispersion of the Cu phase.  

 

Figure 4.4. XRD patterns of promoted calcined catalysts, (▲) ZnO and (●) CuO 

4.1.3 TPR analysis 

The reduction behavior of the calcined catalysts was studied using H2-TPR and the results are 

presented in Figure 4.5. For the un-promoted catalysts, the high temperature peak represents 

the reduction of bulk CuO or Cu in mixed oxide phase, while the peak at low temperatures can 

be linked to the reduction of highly dispersed CuO [133]. Therefore, it appears that a larger 

fraction of CuO was present as highly dispersed species for the 1.5-CuZnAl catalyst.  As 

expected, the peak intensity increased with the Cu loading due to the higher amount of 

reducible CuO. This was also confirmed by the calculation of H2-consumption during TPR 

measurements, which is given in Table 4.3. 
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Figure 4.5. TPR profiles of calcined catalysts 

It was observed that the reduction profile of In-promoted catalyst shifted towards lower 

temperatures compared to the un-promoted catalyst. This can be attributed to a higher amount 

of well-dispersed CuO [92]. The claim of the high amount of well-dispersed CuO can be 

supported by the XRD data of the promoted catalysts, which showed that the crystallite size of 

CuO was smaller and decreased with increasing In loading. However, the reducibility was 

better for the 1-CuZnAl-5-In catalyst and a higher temperature was required to reduce the 1-

CuZnAl-7.5-In catalyst. From Table 4.3, it can be seen that the amount of reducible CuO 

species was not notably affected by the addition of In.  
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4.1.4 N2 adsorption-desorption 

 

Figure 4.6. N2 adsorption-desorption isotherms of calcined catalysts 

The N2 adsorption-desorption isotherms are shown in Figure 4.6. According to the IUPAC 

manual, the isotherm was of type IV with a hysteresis loop of type H3 [137], which indicates 

that the pores of catalysts were of mesoporous structure. The pore size distribution is presented 

in Figure 4.7, and the catalysts exhibit similar pore size distributions. Table 4.3 summarizes all 

the textural properties of the catalysts. The 0.5-CuZnAl showed the highest surface area (64 

m2/g) among the un-promoted catalyst. Increasing the Cu/Zn ratio resulted in a decrease in 

surface area, where the 1-CuZnAl and 1.5-CuZnAl showed similar surface area of 38 m2/g and 

39 m2/g, respectively. The pore volume was also comparable for the un-promoted catalysts in 

the range of 7-11 cm3/g. On the other hand, the In-promoted catalysts showed a significant 

increase in surface area and pore volume compared to the un-promoted catalysts. The In-

promoted catalysts had comparable surface area of 112-117 m2/g. The pore volume of 1-

CuZnAl-2.5-In and 1-CuZnAl-5-In was 0.17 cm3/g and 0.18 cm3/g respectively. A slight 

decrease in pore volume was observed for the 1-CuZnAl-7.5-In (0.13 cm3/g). 
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Figure 4.7. Pore size distribution of calcined catalysts 

Table 4.3. Textual properties of calcined catalysts 

Catalyst BET Surface 

Area (m2/g) 

BJH Pore 

Volume (cm3/g) 

Pore size 

(nm) 

H2 consumption 

(mmol/g) 

1.5-CuZnAl 38 0.9 4.2 5.5 

1-CuZnAl 39 0.7 5.1 4.4 

0.5-CuZnAl 64 0.11 4.0 2.7 

1-CuZnAl-2.5-In 112 0.17 4.5 4.5 

1-CuZnAl-5-In 116 0.18 4.5 4.6 

1-CuZnAl-7.5-In 117 0.13 4.2 4.5 
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 Methanol synthesis activity tests 

4.2.1 Activity and selectivity of un-promoted catalysts 

Methanol synthesis reactions for un-promoted catalysts were performed under a pressure of 30 

bars, and a temperature of 250 °C for a 24 h time period, with a 50 mL/min gas flow having a 

H2/CO2/N2 ratio of 3/1/1.  The fluctuations in the CO2 conversion and methanol selectivity can 

be attributed to a sum of measurements and reaction condition errors, which become more 

prominent at low CO2 conversion. The CO2 conversion and methanol selectivity over the un-

promoted CuZnAl catalysts are presented in Figure 4.8 and the average results are summarized 

in Table 4.4. It can be observed that the CO2 conversion increased with Cu loading, which can 

be attributed to a higher Cu surface area. The activity of the 0.5-CuZnAl and 1-CuZnAl was 

comparable at 12.9% and 11.5%, respectively. This might be due to the significantly higher 

surface area as well as the improvement in Cu dispersion of the 0.5-CuZnAl catalyst, which 

probably has resulted in a similar Cu surface area. A slight drop in CO2 conversion was 

observed for the 0.5-CuZnAl and 1-CuZnAl catalyst in the first 3 hours, while the CO2 

conversion increase mildly for the 1.5-CuZnAl catalyst.  

 

Figure 4.8. CO2 conversion and CH3OH selectivity of CuZnAl catalysts 
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Table 4.4. Summary of average CO2 conversion and CH3OH selectivity of un-promoted 

catalysts 

Catalyst CO2 conversion (%) CH3OH selectivity (%) 

0.5-CuZnAl 12.9 26.7 

1-CuZnAl 11.5 32.3 

1.5-CuZnAl 17.8 24.8 

 

The methanol selectivity is usually controlled by the competition between the two reactions of 

CO2 hydrogenation to methanol (1) and the RWGS reaction (3) [138]. Hydrocarbons and other 

oxygenates could also be formed during CO2 hydrogenation, but these species were not 

detected over the catalysts tested in this work (detection limit 0.1%). Therefore, since methanol 

and CO were the products that formed, only the methanol selectivity will be presented. It was 

found that the 1-CuZnAl catalyst achieved the highest methanol selectivity of 32.3%. The 0.5-

CuZnAl and 1.5-CuZnAl exhibited comparable selectivity of 26.7% and 24.8%, respectively. 

The methanol selectivity dropped slightly during the first hours and then stabilized. Several 

studies have shown the importance of the Cu/ZnO interface to achieve high methanol 

selectivity [63, 139]. The 0.5-CuZnAl and 1.5-CuZnAl catalysts showed very large ZnO 

crystallite size, which might result in similar Cu/ZnO interaction. On the other hand, XRD 

indicated high dispersion or poor crystallization of ZnO for the 1-CuZnAl catalyst. This has 

probably resulted in a higher Cu/ZnO interfacial area, which increased the methanol selectivity.  

4.2.2 Activity and selectivity of promoted catalysts 

After the initial testing of the CuZnAl catalysts, the 1-CuZnAl catalyst was chosen for In 

promotion. This was due to the higher dispersion of ZnO phase obtained for this catalyst, and 

the better catalytic performance. The promoted catalysts were tested under the exact conditions 

mentioned in section 4.2.1. The CO2 conversion and methanol selectivity over 24 h is shown 

in Figure 4.9 and the averaged results are summarized in Table 4.5. The CO2 conversion 

decreased with increasing In loading. In addition, it can be observed that the CO2 conversion 

was rather stable for all catalysts. The methanol selectivity was found to improve with 

increasing In loading. The highest methanol selectivity was obtained over the 1-CuZnAl-5-In 

catalysts at 52.6%, while the 1-CuZnAl-2.5-In and 1-CuZnAl-7.5-In achieved a selectivity of 

36.1% and 48.5%, respectively. This shows that a suitable amount of In can improve the 
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methanol selectivity of CuZnAl catalysts. The improvement in methanol selectivity can be 

ascribed to better Cu and ZnO dispersion, leading to enhanced Cu/ZnO interaction, and an 

improvement in CuO reducibility. The methanol selectivity remained relatively stable for all 

catalysts after an initial slight decrease. 

 

Figure 4.9. CO2 conversion and CH3OH selectivity of promoted CuZnAl catalysts 

Table 4.5. Summary of average CO2 conversion and CH3OH selectivity of promoted catalysts 

Catalyst CO2 conversion (%) CH3OH selectivity (%) 

1-CuZnAl- In 11.5 32.3 

1-CuZnAl-2.5 In 11.4 36.1 

1-CuZnAl-5 In 7.3 52.6 

1-CuZnAl-7.5 In 3.9 48.5 

 

4.2.3 Temperature effect on the 1-CuZnAl-5-In and 1-CuZnAl-0-In catalysts 

The effect of temperature was investigated over the 1-CuZnAl-5-In and 1-CuZnAl-0-In 

catalysts by changing the temperature from 230°C to 260°C stepwise at 10 °C per step. Each 
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temperature was maintained for approximately 6 h. The CO2 conversion and methanol 

selectivity at different temperatures are presented in Figure 4.10. The CO2 conversion 

increased more strongly with temperature for the 1-CuZnAl-0-In catalyst. The CO2 conversion 

obtained over the 1-CuZNAl-0-In catalyst was 5.8% at 230 °C and increased to 14.7% at 260 

°C. For 1-CuZnAl-5-In, the CO2 conversion increased from 5.1% at 230 °C and to 9.5% at 

260°C. The difference in CO2 conversion between the catalysts could be related to the active 

sites, where the active sites for the RWGS reaction has been suppressed by the addition of In. 

 

Figure 4.10. Effect of temperature on CO2 conversion and CH3OH selectivity on 1-CuZnAl-5-

In and 1-CuZnAl-0-In catalysts 

The methanol selectivity decreased with temperature over both catalysts due to the RWGS 

reaction, which becomes more favorable at higher temperatures. The methanol selectivity 

decreased from 54.3% at 230 °C to 21.1% at 260 °C over the 1-CuZnAl-0-In catalyst. In 

contrast, the methanol selectivity remained higher throughout the temperature range for 1-

CuZnAl-5-In, where the selectivity dropped from 67.9% at 230°C and to 44.3% at 260°C.  The 

decrease in methanol selectivity for the In-promoted catalyst was significantly smaller than for 

the un-promoted catalyst. This could be due to the improvement in dispersion of species and a 

higher Cu/ZnO interfacial area. In addition, the In species might also have contributed as it has 
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been showed that In based catalysts can maintain a higher methanol selectivity even at 

temperatures up to 300 °C [18, 19]. 

4.2.4 Long run reactions  

Long term stability is essential for a catalyst to be viable in industrial applications. Based on 

the experimental results, the 1-CuZnAl-5-In catalyst was chosen for the stability test and 1-

CuZnAl-0-In was also tested for comparison. These tests were carried out at the same reaction 

conditions as described in sections 4.2.1 but the reaction period was increased from 24 h to 72 

h. The CO2 conversion and methanol selectivity over 72 h time on stream are presented in 

Figure 4.11. For 1-CuZnAl-0-In catalyst, the CO2 conversion increased steadily over the 

reaction period. Initially, the CO2 conversion was 11.9% and it increased to 14.1% after 72 h. 

On the other hand, the methanol selectivity decreased by 10.6% where it started at 35.1% and 

reached 24.5% at the end of the reaction period. These results suggest that the deactivation 

could be related to a reduction in Cu/ZnOx interfacial area, which has been shown to be linked 

to the methanol selectivity [44]. The reduction of Cu/ZnOx interfacial area might be due to 

particle sintering. The CO2 conversion of 1-CuZnAl-5-In was initially 8.6% and it decreased 

in the beginning before it stabilized at approximately 5.9% after around 32 h. In contrast, the 

methanol selectivity improved slightly before it stabilized at approximately 53.5%. It can be 

seen that In promotion of HT-derived CuZnAl catalysts can significantly improve the stability 

of the catalyst in CO2 hydrogenation to methanol. The exact reason for the higher stability of 

the In containing catalyst is not known at the present. It could be related to the improvement in 

dispersion and In having a stabilizing effect on the catalytic structure. 
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Figure 4.11. CO2 conversion and methanol selectivity over the 1-CuZnAl-5-In catalyst for 72 

h TOS. The black lines indicate the average CO2 conversion and methanol selectivity of the 

last 1 hour. 
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5 Conclusions and future work 

  Conclusions 

In this study, catalytic hydrogenation of CO2 to methanol was investigated using 

Cu/ZnO/Al2O3 catalysts synthesized from hydrotalcite (HT) precursors. The focus of this study 

was to examine the effect of different molar ratios Cu/Zn (0.5, 1.0, 1.5) on the catalytic 

performance and investigate the effect of In promotion.  The In-promoted catalysts had a fixed 

Cu/Zn ratio of 1 and an In content of 2.5, 5.0, 7.5 mol%.  

Structural and textural characterization were conducted by XRD, TPR, and N2 adsorption-

desorption and demonstrated the following: 

• The un-promoted and promoted catalysts exhibited a typical hydrotalcite structure 

with the presence of In(OH)3 phase in the promoted catalysts. 

• The lattice parameters of the un-promoted hydrotalcite precursors increased with 

decreasing Cu content. 

• An increase in lattice parameters for the promoted catalysts indicated that parts of 

the In was incorporated into the HT structure.  

• Crystallite size of CuO in the un-promoted calcined catalyst increased with Cu 

loading 

• The introduction of In to 1-Cu/ZnO/Al2O3 decreased the crystallite size of CuO.  

• In promotion significantly increased surface area and pore volume of the catalyst.  

• In promotion improved the reducibility and shifted the reduction of CuO towards 

lower temperatures 

Activity and methanol selectivity of the catalysts were examined at 250oC and 30 bars for a 24 

h period. It was observed that the CO2 conversion increased for high Cu content. The 1-

Cu/ZnO/Al2O3 catalyst achieved the highest methanol selectivity of 32.3% at 11.5% CO2 

conversion of the un-promoted catalysts. Therefore, a Cu/Zn ratio of 1 was chosen for 

synthesizing the In-promoted catalysts. The CO2 conversion decreased with increasing In 

loading, while the methanol selectivity was significantly improved. The highest methanol 

selectivity was obtained over the 1-CuZnAl-5-In catalyst at 52.6% with a CO2 conversion of 

7.3%. The effect of temperature was investigated over the 1-CuZnAl-5-In and the 1-CuZnAl-

0-In catalysts by changing the temperature from 230°C to 260 °C stepwise at 10 °C per step. 

The 1-CuZnAl-5-In catalyst achieved a higher methanol selectivity that remained high even at 

260 °C. In contrast, the methanol selectivity of 1-CuZNAl-0-In decreased significantly with 
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increasing temperature. Furthermore, long term tests of 1-CuZnAl-0-In and 1-CuZnAl-5-In 

demonstrated that the catalytic stability was also significantly improved by In promotion.  

 Recommendations for future work 

Additional work must be done to consider the use of In as a promoter to the Cu/ZnO/Al2O3 

catalyst. Although the use of 5 mol% In resulted in relatively high catalytic performance in 

terms of methanol selectivity and stability, different amounts of In between 2.5 mol% and 5 

mol% should be examined to determine the optimum In loading. 

The effect of In on the reaction mechanism should also be investigated. This could be done by 

a detailed kinetic study combined with in-situ characterization of surface species during 

methanol synthesis. In addition, DFT calculations can be used to gain information on the 

intermolecular interactions between components and the reaction’s mechanism. This 

information could then be used to design improved catalysts by adjusting the interaction 

between species through the tuning of preparation methods. The focus should be to further 

improve the methanol selectivity while at the same time maintaining or enhancing the activity 

of the catalyst. Furthermore, the stability of the improved catalyst should be investigated over 

a longer reaction period to determine the applicability for industrial methanol synthesis from 

CO2.  
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APPENDIX A: CALCULATIONS OF CATALYSTS 

SYNTHESIS 

Un-Promoted Catalysts 

Hydrotalcite catalyst has the following formula [M2+
1-xM

3+
x(OH)2]

x+(An-)x/n.mH2O. The 

catalyst must contain Cu/ZnO/Al2O3-In2O3 after calcination and reduction.  The compositions 

are calculated as follows. Define a = mol of Cu2+, b = mol of Zn2+, c = mol of Al3+. 

𝑀2+

𝑀3+
=  

𝑎 + 𝑏

𝑐
= 3   

Thus, the trivalent ionic ration x was chosen to be 0.25, which aligns perfectly between 0.2 and 

0.4 to guaranty the formation of a hydrotalcite structure. The following is obtained: 

x = c = 0.25 

1 – x = a + b = 0.75 

Molar ratio of Cu2+/Zn2+ was taken as 1.5, 1, 0.5. Stochiometric coefficients are listed in Table 

A 1 below: 

Table A 1. Stochiometric coefficients of CuZnAl catalysts 

Sample Cu2+ Zn2+ Al3+ OH - CO3 
2- 

1.5-CuZnAl 0.09 0.06 0.05 0.4 0.025 

1-CuZnAl 0.075 0.075 0.05 0.4 0.025 

0.5-CuZnAl 0.05 0.1 0.05 0.4 0.025 

In co-precipitation conventional synthesis method, the total metal concentration of 400-mL 

metal nitrate solution was 0.5 M. The amount of Na2CO3 was doubled to insure pillaring. Mass 

of reactants are listed in Table A 2 below: 

Table A 2. Mass of salts used 

 Samples Cu(NO3)2x3H2O Zn(NO3)2x6H2O Al(NO3)3.9H2O NaOH Na2CO3 Needed 

Na2CO3 

1.5-CuZnAl 26.1927 11.8176 18.7565 16 2.64975 5.2995 

1-CuZnAl 21.82725 14.772 18.7565 16 2.64975 5.2995 

0.5-CuZnAl 14.5515 19.696 18.7565 16 2.64975 5.2995 
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Promoted Catalysts 

Similarly, define a = mol of Cu2+, b = mol of Zn2+, c = mol of Al3+, and d = mol of In3+. 

𝑀2+

𝑀3+
=  

𝑎 + 𝑏

𝑐 + 𝑑
= 3   

Thus, the trivalent ionic ration x was chosen to be 0.25, which aligns perfectly between 0.2 and 

0.4 to guaranty the formation of a hydrotalcite structure. The following is obtained: 

x = c + d = 0.25 

1 – x = a + b = 0.75 

Molar ratio of Cu2+/Zn2+ was taken as 1. Stochiometric coefficients are listed in Table A 3 

below: 

Table A 3. Stochiometric coefficients of CuZnAl-In catalysts 

Sample Cu2+ Zn2+ Al3+ In3+ OH - CO3 
2- 

1-CuZnAl-0-In 0.075 0.075 0.05 0 0.4 0.025 

1-CuZnAl-2.5-In 0.075 0.075 0.045 0.005 0.4 0.025 

1-CuZnAl-5-In 0.075 0.075 0.04 0.01 0.4 0.025 

1-CuZNAl-7.5-In 0.075 0.075 0.035 0.015 0.4 0.025 

 

In co-precipitation conventional synthesis method, the total metal concentration of 400-mL 

metal nitrate solution was 0.5 M. The amount of Na2CO3 was doubled to insure pillaring. Mass 

of reactants are listed in Table A 4 below: 

Table A 4. Mass of salts used 

 Samples Cu(NO3)2x3H2O Zn(NO3)2x6H2O Al(NO3)3.9H2O In(NO3) NaOH Na2CO3 Needed 

Na2CO3 

1-CuZnAl-0-In 21.82725 14.772 18.7565 0 16 2.64975 5.2995 

1-CuZnAl-2.5-In 21.82725 14.772 16.88085 1.59425 16 2.64975 5.2995 

1-CuZnAl-5-In 21.82725 14.772 15.0052 3.1885 16 2.64975 5.2995 

2CuZNAl-7.5-In 21.82725 14.772 13.12955 4.78275 16 2.64975 5.2995 
3 


