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ABSTRACT 

 
 
Predicting downhole circulating temperature is essential for successful drilling operations as 

bottom hole temperature variations are a major cause of changing effective mud density and 

mud volume. So, the effort is needed for the development of dynamic modeling capability to 

simulate the complex downhole temperature environment as Thermal conductivity and 

specific heat capacity of drilling fluid are an important component in temperature modeling. 

Despite their importance, very limited data in the literature is available on these parameters. 

Mostly the values of thermal conductivity and specific heat are estimated using generic 

models. 

 

An experimental study is performed to measure the thermal conductivity and specific heat 

capacity of the samples of oil-based mud and water-based mud in the laboratory using the C-

Therm TCi thermal conductivity analyzer. Based on the measured values models are 

generated for thermal conductivity and specific heat capacity of drilling fluid which are then 

implemented in a simulator on two different wells. The results from these models show the 

difference of 2.5°C to 5°C to in the bottom hole temperature from the generic model for 

shallow horizontal well and vertical well respectively. 
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                                    CHAPTER 1 

       INTRODUCTION 

 

 

1.1 Background 

 

Mud weight is of absolute importance during the drilling operations as it acts as a primary 

well control barrier and influence other drilling parameters. In offshore, the temperature of 

the mud pits varies and goes down from zero degree to negative 10°C, and the temperature in 

the subsurface varies from 60 to 120°C depending on the geothermal gradient. Due to the 

difference between the external wellbore temperature and fluid temperature, heat transfer 

occurs. During the process of drilling fluid circulation, the bottom of the well is being cooled 

and drilling fluid at the bottom is being heated up which causes heat transfer to the upper part 

of the well [16].  

 

The higher temperature in the wellbore can cause mud weight reduction, so we must consider 

the temperature variations along the drilling fluid path. There is a significant temperature 

difference from top to bottom along a wellbore, which can cause localized variations in mud 

densities. Therefore, it is mandatory that drilling fluid should have appropriate fluid 

characteristics and heat transfer to have a safe operation especially in cases where the 

difference between pore pressure and fracture pressure is relatively small [15]. 

Thermophysical properties like thermal conductivity and specific heat capacity of the drilling 

fluid affect the heat transfer and play an essential role in the temperature profile of fluids 

moving in the wellbore. Heat transfer model and many drilling simulators which are being 

used in the industry incorporate thermal conductivity and specific heat capacity, which are 

highly dependent on the fluid composition.  

 

Preferable are fluids with high thermal conductivity and high specific heat capacity as they 

can contribute to lower bottom-hole circulating temperatures which allows the temperature to 

be equalized faster and hence quicker well stabilization when the well is left static. Also, such 

fluids are less prone to density reduction at higher bottom hole temperatures [1]. 
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1.2 Purpose 

 

The purpose of the thesis is to review the current knowledge about the estimated values of 

thermal conductivity and specific heat capacity from different models being used in the heat 

transfer calculation and then to make a comparison with experimentally measured values and 

thus based on the difference modify the models. Apply the new values in the simulator 

‘Drilling Calculator’ and do the comparison with the model already being used in the 

simulator 

 

1.3 Approach 

 

The objectives of the thesis are achieved by: 

• Reviewing the literature about temperature model and the models used for calculation 

of thermal conductivity and specific heat of drilling fluid 

• Experimenting in the laboratory to measure the thermal conductivity and specific heat 

capacity of water-based mud (WBM) and oil-based mud (OBM) 

• Input the measured values of the thermal conductivity and specific heat capacity into 

the drilling calculator and compare it with the model already being used in the 

simulator 

 

1.4 Structure of the thesis 

From this point forward dissertation is organized in the following way: 

• In Chapter 2, the current knowledge on thermal conductivity and specific heat 

capacity and how they are calculated using current models is given 

• In Chapter 3, a brief overview of the experimental methodology to measure thermal 

conductivity and specific heat capacity is given 

• In Chapter 4, the results of the experiments as discussed in chapter 3 are presented 

and analyzed to have a better understanding of thermal properties of the oil-based 

mud, water-based mud, and their components 

• In Chapter 5, simulations are performed on two wells in the drilling calculator and 

based on the results some conclusions are drawn and recommendations for further 

work are provided 
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CHAPTER 2 

LITERATURE REVIEW 

 

Moving along the wellbore drilling fluid loses or gains heat to or from its surroundings. 

However, from the formation to the mud, there is a net transfer of heat as it goes down the 

well. Mud is still cooler at the bit than the surrounding formation, and it continues to heat up 

while moving in the annulus towards the surface until it reaches a depth where its 

temperature equalizes with the formation temperature. After that point, it starts cooling down 

on its way to surface. Thermal equilibrium can only be achieved under constant circulating 

conditions [2]. Thermophysical parameters are the properties of the material which affect the 

heat transfer through that material, and they vary with the temperature, pressure, and 

composition. These properties include diffusivity, effusivity, heat capacity, thermal 

conductivity, thermal expansion, etc. The level of influence of these properties on heat 

exchange depends on different circumstances. In this chapter, 

 

• A brief overview of thermal conductivity is provided in section 2.1 

• Specific heat capacity description is presented in section 2.2 

• Current models to calculate thermal conductivity and specific heat capacity are 

given in section 2.3 

2.1 Thermal conductivity 

 

Thermal conductivity is an inherent ability of a material to transfer or conduct heat, and it 

depends on certain properties of a material, specifically its structure and temperature. There is 

a transfer of heat from an area of high temperature and high molecular energy to an area with 

a lower temperature and lower molecular energy until thermal equilibrium is reached [3]. 

 

Thermal conduction is a result of a direct energy transfer between particles and has nothing to 

do with macroscopic displacements in the body as in convection. In contrast to heat transfer 

by radiation, there is no thermal conduction in a vacuum. The phenomenon of thermal 

conductivity occurs through molecular agitation and contact. Because molecular movement is 

the basis of thermal conductance, thermal conductivity is primarily influenced by the 

temperature of a material. Rate of heat transfer at elevated temperatures is higher because of 
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the quicker movement of molecules. Hence, with the increase or decrease in temperature 

thermal conductivity of the same sample changes significantly [17].  

 

“Thermal conductivity is defined as the quantity of heat (Q) transmitted through a unit 

thickness (L) in a direction normal to a surface of unit area (A) due to a unit temperature 

gradient (ΔT) under steady state conditions and when the heat transfer is dependent only on 

the temperature gradient” [4]. It can be calculated using the following equation: 

 

                                                             𝑘 =
𝑄∗𝐿

𝐴(∆𝑇)
 [W/mK]                                                  (2.1)                                                                 

 

Thermal conductivity of solids and especially metals are higher, but it depends on the 

conductivity of the material. Thermal conductivity of liquids comes after and under normal 

conditions is much lower than that of metals and ranges from 0.1 to 0.6 W/mK. The lowest 

thermal conductivity can be observed in gases, which range from 0.006 to 0.1 W/mK [12].  

Table_2.1  

Values of the coefficient of thermal conductivity for various substances at atmospheric pressure and moderate temperatures 

[13] 

 

 

Thermal conductivity of generic water-based mud is around 0.575 𝑊 𝑚. 𝑘⁄  [5] and that of 

generic oil-based mud is around 0.275 𝑊 𝑚. 𝑘⁄  [6]. Use of certain type of drilling fluid in 

the drilling operation is determined by its thermal conductivity. For example, in high pressure 

and high temperature wells where the heat transfer demands on the drilling fluid is much 

greater, we need a mud which is thermally stable and have high thermal conductivity. [7] 
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2.2 Specific heat capacity 

 
 

Specific heat is an intensive property which describes how much heat must be added to a unit 

of mass of a given substance to raise its temperature by 1°C. It is commonly measured in 

J/(kg*K). Heat capacity is referred to as an extensive property that describes how much heat 

energy it will take to raise the temperature of the whole system. But to measure the heat 

capacity of each unit of matter is inconvenient so we need a measurement of an intensive 

property that depends only on the type and phase of a substance and can’t change with the 

size of system or amount of material present in the body. This quantity is termed as the 

specific heat capacity, which is the heat capacity per unit mass of material. [8] 

 

The amount of heat needed for a temperature change depends on the mass of the system, 

phase of substance, and the magnitude of temperature change. As the kinetic energy of an 

atom is directly proportional to the absolute temperature and the internal energy of a system 

is proportional to the absolute temperature and the number of atoms and since the transferred 

heat is equal to the change in the internal energy, the heat is proportional to the mass of the 

substance and the temperature change. The amount of heat transferred also depends on the 

type of substance as heat required to raise the temperature by 1 degree for alcohol is less than 

for water. It also depends on the phase (gas, liquid, or solid). The quantitative relationship 

between heat transfer and temperature change contains all three factors [19]: 

 

                                                                   𝑄 = 𝑚𝑐∆𝑇                                                         (2.2) 

 

where, 

𝑄 = symbol for heat transfer 

𝑚 = mass of a substance 

𝑐 = symbol for specific heat capacity and depends on material and phase  

∆𝑇= temperature change 

 

Specific heat also depends on temperature. For liquids and solids, the volume and 

temperature dependence of the specific heat capacity is weak, but this is not true for gases. 

The specific heat of water-based mud is generally higher than that of oil-based mud, which 

means that it takes more heat to raise the temperature of water-based mud then that of oil-
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based mud. Thus, specific heat capacity is also one of the important factors in the designing 

of drilling fluid [18].  

2.3 Heat transfer model 

 

To predict the transient thermal behavior of the well during drilling, the knowledge about the 

temperature distribution of the circulating drilling fluids, the wellbore, and the surrounding 

formation is required. Many variables are changing, so it is difficult to determine the transient 

temperature. To do accurate modeling, extensive knowledge of the thermal and transport 

properties of all the materials and especially drilling fluid is required. Generally, the 

formation and drill string properties are well characterized. However, the variation with 

temperature or composition of the transport and thermophysical properties of drilling fluids 

and cement is less known. The function of drilling fluid circulation is to cool and lubricate 

the bit, to transport the cuttings to the surface, and to control subsurface pressures, among 

other, fluid circulation also produces a cooling effect of the surrounding formation and thus 

acts as a tool for predicting wellbore temperatures [20].  

 

Several models have been developed to study the heat transfer during circulation. Holmes and 

Swift obtained a steady state solution to the wellbore heat transfer equations which can not be 

applied to transiet behavior [22]. Raymond develop a method of predicting temperatutre 

distributions for transient as well as pseudo steady state conditions [23]. Marshall and 

Bentsen in 1982 provides a computer based model based on the Raymond model of wellbore 

transient heat transfer which is more accurate and efficient. Fluid temperature is dependent 

upon different thermal processes. Fluid with known temperature enters the drillpipe and its 

change in temperature is determined by rate of vertical thermal convection, radial rate of 

convective heat transfer between the fluid, the pipe wall and annulus, vertical and radial heat 

conduction. Just like heat generated due to frictional forces and rotational energy of drill 

string and the drill bit, time of circulation has also an important effect on temperature of fluid 

because of transient heat transfer [24]. The final form of energy conservation as a result of 

heat transfer can be written as: 

 

                   
𝜕

𝜕𝑡
[𝜌𝑚(𝑡, 𝑠)𝐻(𝑡, 𝑠)] − ∇[𝑄𝑓(𝑡, 𝑠) + 𝑄𝑐(𝑡, 𝑠)] − 𝑄𝑠(𝑡, 𝑠) = 0                          (2.3) 
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where H is the enthalpy per unit mass, 𝑄𝑓 is the convective term, 𝑄𝑐 is conductive term and 

𝑄𝑠 is mechanically generated heat. 

 

The forced convective term can be expressed as  

 

                                                        𝑄𝑓 = 𝜌𝑚(𝑡, 𝑠)𝐻(𝑡, 𝑠)𝑣𝑚(𝑡, 𝑠)                                       (2.4) 

 

The conductive and natural convective term does not have a general expression. In case of 

purely isotropic material, we can use: 

 

                                                        𝑄𝑐 = 𝑘(𝑡, 𝑠)∇𝑇(𝑡, 𝑠)                                                     (2.5) 

 

where k is the thermal conductivity and T is the temperature. [9] 

 

 

2.3.1 Thermal conductivity calculation 

 

Thermal conductivity calculation for the drilling fluid is not popular, and very little work is 

done for estimating the thermal conductivity of liquid mixtures and minimal data is available 

in the literature. 

 

Tsederberg method 

The primary and simple method is given by Tsederberg to calculate the thermal conductivity 

of the liquid mixture and is shown by the equation below [25]:  

 

                                                        𝑘𝑚 = 𝑘𝑐1𝑚1 + 𝑘𝑐2𝑚2                                                  (2.6) 

 

For n number of components, it can be written as:  

 

                                                     𝑘𝑚 = ∑ 𝑘𝑐𝑖
𝑛
𝑖=1 𝑚𝑖      [W/mK]                                          (2.7) 

 

where, 

𝑘𝑚 = thermal conductivity of the mixture 

𝑘𝑐1, 𝑘𝑐2= thermal conductivity of components 
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𝑚1, 𝑚2= mass fractions of components 

 

Jamieson et al. Correlation 

For binary mixtures in 1975, Jamieson et al. suggested the following relation which has been 

extensively tested on many types of mixtures to calculate thermal conductivity [26]:  

 

                𝑘𝑚 = 𝑘𝑐1𝑚1 + 𝑘𝑐2𝑚2 − 𝛼(𝑘𝑐2 − 𝑘𝑐1)[1 − 𝑚2

1
2]𝑚2     [W/mK]                         (2.8) 

 

Where components are so selected that 𝑘𝑐2 > 𝑘𝑐1 and 𝛼 is an adjustable parameter that is set 

equal to unity if mixture data is available for regression purpose. 

 

Maxwell model 

Maxwell in 1872 described the solution to calculate the effective thermal conductivity of 

suspension of the homogeneous solid-liquid mixture with an assumption that solid particles 

are spherical in shape and their concentration in the mixture is small. Maxwell’s expression is 

as follows [26]:  

 

                                                           
𝑘𝑚

𝑘𝑐
=

𝑘𝑑
𝑘𝑐

⁄ +2−2𝑉𝑑(1−
𝑘𝑑

𝑘𝑐
⁄ )

𝑘𝑑
𝑘𝑐

⁄ +2+𝑉𝑑(1−
𝑘𝑑

𝑘𝑐
⁄ )

)                                      (2.9) 

 

where, 

𝑘𝑑 = thermal conductivity of discontinuous phase (solid particles) 

𝑘𝑐 = thermal conductivity of continuous phase 

 𝑉𝑑 = The volume fraction of discontinuous phase  

 

Rayleigh model 

Generally, in the drilling fluid, the particles are not uniform; also the concentration of 

particles is quite a lot. Rayleigh modified the Maxwell model for a higher concentration of 

particles, which is expressed by the equation below [13]:  

 

                                                
𝑘𝑚

𝑘𝑐
= 1 −

3𝑉𝑑

(
2+ 

𝑘𝑑
𝑘𝑐

⁄

1−
𝑘𝑑

𝑘𝑐
⁄

 )+𝑉𝑑−( 
1−

𝑘𝑑
𝑘𝑐

⁄

4
3

+
𝑘𝑑

𝑘𝑐
⁄

 )∗𝑎𝑉𝑑

10
3

                              (2.10) 
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where, 

a = 1.31 for simple cubic array 

a = .129 for body centered cubic 

a = .0752 for face centered cubic  

 

Churchill model 

The variance between Maxwell 's result and Rayleigh's result become more significant with 

increasing 𝑉𝑑. At 𝑉𝑑 = 0.5236, the spherical particles in the cubic lattice are in point contact, 

and for 
𝑘𝑑

𝑘𝑐
⁄ → ∞ the 𝑘𝑚 should approach ∞ at 𝑉𝑑  = 0.5236 but these conditions are not 

met by Rayleigh's expression. Therefore, by considering higher order terms in the series 

expansion for the potential in the continuous phase. Rayleigh's result is being modified by 

Meredith and Tobias, 1960, which provides an analytical expression which agrees with the 

data in a critical range near 𝑉𝑑  = 0.5236. The final expression of the effective thermal 

conductivity of the drilling mud is given as [21]:  

 

 

𝑘𝑚  = 𝑘𝑐

2+
𝑘𝑑

𝑘𝑐
⁄

1−
𝑘𝑑

𝑘𝑐
⁄

−2𝑉𝑑+0.409
6+3

𝑘𝑑
𝑘𝑐

⁄

4+3
𝑘𝑑

𝑘𝑐
⁄

𝑉𝑑

7
3−2.133

3−3
𝑘𝑑

𝑘𝑐
⁄

4+3
𝑘𝑑

𝑘𝑐
⁄

𝑉𝑑

10
3

2+
𝑘𝑑

𝑘𝑐
⁄

1−
𝑘𝑑

𝑘𝑐
⁄

+𝑉𝑑+0.409
6+3

𝑘𝑑
𝑘𝑐

⁄

4+3
𝑘𝑑

𝑘𝑐
⁄

𝑉𝑑

7
3−0.906

3−3
𝑘𝑑

𝑘𝑐
⁄

4+3
𝑘𝑑

𝑘𝑐
⁄

𝑉𝑑

10
3

 [W/mK] 

 

(2.11) 

And 

 

                                                      𝑘𝑐 = ∑ 𝑚𝑖

𝑖∈Θ

𝑘𝑐𝑖                                                                           (2.12) 

 

where Θ is set of indices for liquid components and 𝑚𝑖 is the mass fraction of 𝑖𝑡ℎ component 

relative to the mass of liquid mix and 𝑘𝑐𝑖 is the thermal conductivity of the 𝑖𝑡ℎ component of 

liquid. 

 

The liquid phase, which is the background continuous medium, can be a solution of different 

fluids having different thermal conductivity values. Churchill formula takes one component 

at a time and uses the resulting thermal conductivity as the a thermal conductivity of the 

background medium when adding the next component. [9]  
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2.3.2 Specific heat capacity calculation 

 

Specific heat capacity of each component in a multicomponent system is calculated 

theoretically by the weighted averages in terms of mass fraction and is given as [9]: 

 

 
𝐶𝑝𝑚

 = ∑ 𝑚𝑖

𝑖∈Ω

𝐶𝑝𝑖
, 𝑤𝑖𝑡ℎ ∀𝑖 ∈ Ω, 𝑚𝑖 =

𝑓𝑖𝜌𝑖

𝜌𝑚
 

(2.13) 

 

where, 

𝐶𝑝𝑚
= specific heat of drilling mud 

𝑚𝑖, 𝑖 ∈  Ω = are the mass fractions of the components 

𝐶𝑝𝑖
, 𝑖 ∈  Ω  = are specific heat capacities of each component 

Ω = set of indices representing each component 

 

Here the mass fractions can be derived from the volume fractions as we know the density of 

the components. Whereas, the specific heat capacity of each component is not known, which 

results in big uncertainty in the estimated specific heat capacity value of the mix. So, a better 

approach is to measure the specific heat capacity values in the lab to verify the estimation.  
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CHAPTER 3 

METHODOLOGY 

 

Thermal conductivity of the drilling fluid and the base components is measured 

experimentally using C-Therm’s TCi thermal conductivity analyzer and Tenney Junior Test 

Chamber. Specific heat capacity is calculated by measuring the density of the components 

experimentally using Anton Paar density meter. The detailed experimental procedure and 

description of the equipment will be discussed in this chapter.  

3.1 Thermal conductivity measurement 

 

Thermal conductivity and thermal effusivity are calculated directly using the C-Therm TCi 

thermal conductivity analyzer by comparing the sensor response to the factory calibration.  

There is no need for special sample preparation, and the analyzer has been factory calibrated 

for various material groups. Usually, the system measures thermal conductivity in Watts per 

meter-kelvin (W/mK) but unit systems can be changed in the system if desired. The system 

has testing capability across a temperature range of -50 to 200°C and the pressure range up to 

120 psi. Testing time is usually less than a minute. The instrument is susceptible, so stable 

environmental conditions need to be provided to optimize the performance. The material 

testing summary showing the required power level, temperature range, and required 

minimum thickness of the sample as provided by the manual of the equipment is shown in the 

table given below: 

 

Table_3.1 Material testing summary 
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3.1.1 Experimental setup 

 

The equipment, as shown in the figure below consists of a controller with the sensor, thermal 

chamber, a laptop with the C-Therm TCi software installed, and cables.  

 

 

Figure_3.1 Setup showing laptop, C-Therm controller in the center and Tenney thermal chamber  

The description of each of them as per the manual is given below: 

C-Therm TCi controller with sensor 

The pre-calibrated sensor is attached with the controller and placed inside the thermal 

chamber to avoid environmental fluctuations where calibrations are stored in the database and 

the sensor chip. The thermal conductivity of the samples is measured by the C-Therm TCi 

thermal conductivity analyzer using the patent of Modified Transient Plane Source (MTPS) 

method. This method involves a one-sided heat reflecting sensor embedded with a heating 

element and is encircled by a guard ring. The heat generated is transferred in one directional 

plane to the sample when the current is being applied to the sensor and the guard ring 

instantaneously. Voltage drop is attuned to the temperature change. Thermal conductivity is 

inversely proportional to the rate of increase in temperature, as seen in the graph. Thus, if the 

sample is a poor conductor or in other words have very low thermal conductivity, then the 

slope of the temperature rise will be steep as compared to the sample with high thermal 

conductivity. During the initial 0.3 seconds when the sample is establishing contact the graph 
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shows a non-linear curve, and after that, until 0.8 seconds a linear curve is obtained because 

the heat has now been transferred into the sample. 

 

Figure_3.2 Graph of voltage versus time showing how the change in temperature affects the conductivity of the TCi sensor 

[19] 

Laptop with the C-Therm TCi software 

A computer system with installed specific C-Therm TCi software interface is also provided.  

The software package has a relational database with the ability to import and export data and 

can help in calculating other thermophysical properties such as density, specific heat 

capacity, diffusivity, depth of penetration, etc. indirectly with some additional inputs of data. 

The software also acts as a source of communication between the thermal chamber and the 

TCi thermal controller when experiments are performed at elevated temperature or when the 

control method is applied.  

Tenney thermal chamber 

The thermal chamber used is Tenney Jr. thermal chamber with Watlow F4 controller. It is 

required when the experiment needs to be performed at a temperature other than the room 

temperature or pressure, also when the automatic control method needs to be applied. The 
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temperature in the chamber is controlled by the circulation of air which is produced by a 

propeller type fan driven by an externally mounted motor. To increase the temperature, the 

chamber air is recirculated through low-mass, open-air nichrome wire heater elements in the 

conditioning plenum. To prevent direct radiation of heat, the plenum is placed in the ceiling 

of the chamber and is secluded from the workspace. In the same way, to decrease the 

temperature, chamber air is recirculated through a refrigerated cooling coil in the 

conditioning plenum. 

Please note that while performing tests in a  thermal chamber there is a chance of electrical 

leakage to pass from thermal chamber floor to the sensor which can impact the results of the 

test and also can damage the sensor at some point so it is necessary to put a silicon mat 

between the sensor base plate and the floor of the thermal chamber. Since silicon rubber is 

electrically insulative material, it will prevent electrical leakage. Also, while applying the 

control method, keep in mind that the sensor should not be heated or cooled at a rate of more 

than 5 degrees per minute to prevent the sensor from damaging. Generally to get better 

results, it is recommended to give 1-hour of ramp time (to increase the temperature to 10 

degrees) and then half an hour of soak time. The control method used is shown in the figure 

below. 

 

Figure_3.3 Control method 
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3.1.2 Experimental procedure   

 

In our case, we are going to measure the thermal conductivity of the liquid mixtures and 

powders. It is recommended to do a reference test with distilled water or any other reference 

material before beginning the test the desired material. 

 

Testing of powders 

To perform the test on the small volume test kit, the following steps are to be followed: 

 

Step 1 Cleaning the sensor 

Before starting the experiment, make sure that the sensor surface is clean and dry. If not, then 

clean the sensor surface with “thermal material remover” and “thermal surface purifier” and 

then dry it with soft tissue or cloth. 

 

Step 2  Preparing the sample 

The next step is taking the sample for measurement. The amount of the sample to be taken is 

very critical. If the sample amount is more, there will be more compaction when weight is 

applied as compared to the less amount of sample. So, it is crucial to define a specific amount 

of sample to be used in all experiments to have consistent results. The following procedure 

should be followed:  

• Fill the 1/8 tsp (0.63 mL) of the powder to be tested scrap off the excess powder with 

a spatula and transfer it into the weighing dish 

• Repeat the above process three times for total volume of specimen  

• Carefully pour the sample into the test cell ensuring there are no trapped air bubbles 

near the surface of the sensor 

• Place weight onto the sample so that it seats on the rim of the test cell 

• Set the silicone pad and baseplate inside the thermal chamber  

• Place the TCi sensor on the base plate as shown in the figure below 
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Figure_3.4 Small volume test kit with weight on top placed inside the thermal chamber 

Step 3  Setting up control 

For a test to run automatically at different temperatures, control method needs to be specified. 

Control method defines the ramp and soak time at certain temperature, and it depends on the 

type of sample. For good conductors, ramp time should be less as compared to the bad 

conductors. Also moving from 20 to 30°C requires less ramp and soak time than moving 

from 70 to 80°C because of thermal stability at lower temperatures.   

 

Step 4  Starting the test 

The last step is starting the test. For that first, select a new test button from the toolbar on the 

computer and then select the project or name the project just to have a proper record of the set 

of tests performed. After that, we need to define the test method. In the test method, 

depending upon the project and the sample, we need to choose the calibration method. 

Calibration methods are usually provided by the manufacturer, and for powders and liquids 

we have to select “Liquids and Powders HR.” We can also use some other parameters like 

defining the number of measurements and delay before taking the first measurement etc. If 

there are no certain requirements, we just go with the default settings. The test method is 

shown in a figure below: 
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Figure_3.5 Test method 

After that, specify the material group and name of the material to be tested and click next. It 

will take us to the window where we can see the number of the TCi instrument and the name 

of the sensor to perform the test which is H404. Finally, click the start button to run the test. 

 

Step 5  Data analysis 

After the completion of the test, data present on the software can be copied to Excel by 

copying to the clipboard or exporting to a CSV file that can be then imported to Excel to do 

analysis. For highly homogeneous powders the relative standard deviation of thermal 

conductivity measurements of several consecutive specimens of the same material should 

typically be less than 1 %. The test report can also be generated and is of the following form: 

 

 

Figure_3.6 Test report 
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Testing of liquids 

The testing procedure of liquids is almost the same except the amount of sample. Following 

steps are to be followed: 

 

Step 1  Cleaning the sensor 

Clean the sensor surface with “thermal material remover” and “thermal surface purifier” and 

dry it. 

 

Step 2  Preparing the sample 

• Fill the 1/4 tsp (1.25 mL) of the total liquid volume of specimen 

• Transfer this volume directly to the test cell 

• Place weight onto the sample so that it seats on the rim of the test cell 

• Place the test kit in the thermal chamber to avoid external environmental factors and 

to equalize the temperature 

Step 3  Setting up control 

Specify the control method and define the ramp and soak time at certain temperature 

depending on the type of sample.  

 

Step 4  Starting the test 

• Click new test button from the toolbar on the computer 

• Select the project or name the project just to have a proper record of the set of tests 

performed   

• Specify the test method and control for the thermal chamber  

• Specify the material group and name of the material 

• Select the TCi instrument 

•  Identify the sensor H404 

• Click the start button to run the test 

Step 5  Data analysis 

At the end of the test, copy data to Excel and do analysis. The relative standard deviation of 

thermal conductivity measurements of several consecutive specimens of the same material 

should be less than 1 %. 
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3.2 Specific heat capacity calculation 

 

The specific heat capacity of the mixtures can be calculated indirectly by C-Therm TCi from 

the measured effusivity and thermal conductivity and input density value. The formula is 

given below: 

 

                𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =  
 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦(𝑒)2

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑘)∗𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜌)
 [

𝐽

𝑘𝑔∗𝐾
]                 (3.1) 

 

The density must be entered to calculate this value, which is measured using the Anton Paar 

density meter, which employs the oscillating U-tube principle. U-shaped tube is mounted on a 

counter mass measures the inertial mass of a known volume. The procedure is quite simple. 

We took the known volume of sample in a syringe and filled the U-tube of the density meter 

with it from the inlet. The desired temperature is set from the digital screen, and then the test 

is started. Inside the apparatus, U-tube is excited and starts to oscillate. The characteristic 

frequency of the U-tube differs depending on the filled in the sample. Density is determined 

by measuring the change in frequency. The low density is related to high frequency and vice 

versa. Before taking the next measurement with different sample the cleaning of U-tube 

should be done by filling in acetone and white spirit and then blowing the air.  
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CHAPTER 4 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

The results of the experiments to measure thermophysical properties of the water-based mud 

and oil-based mud and their components are discussed in this chapter. The temperature 

dependency of these properties is vital for heat transfer calculations. Experiment on each 

component is performed thrice, and the average values of the test results are being presented 

here.  

4.1 Base components and mixtures 

 

Thermal conductivity tests are performed separately on some of the base components and 

their solutions with water. Base components are in the powder form, and it is seen that 

because of the presence of interstitial air in powders the thermal conductivity is reduced to a 

greater extent as compared to the solid form of the same material. Following are the 

components being tested: 

 

Distilled water   

Distilled water is the reference material, and the following table shows the thermal 

conductivity value of distilled water from 20 to 80°C. 

Table_4.1 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

20 0.608 

30 0.620 

40 0.630 

50 0.634 

60 0.638 

70 0.642 

80 0.647 
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The plot in figure 4.1 shows that the thermal conductivity of distilled water increases with 

temperature increase. The forecast is also shown in the plot, and the following equation can 

be used to calculate the thermal conductivity of distilled water.  

 

                                            𝑘 = 0.0272 ln(𝑇) + 0.5274    [𝑊/𝑚𝐾]                                  (4.1) 

 

The variation in the value of thermal conductivity can be calculated as: 

 

                       𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛(%) =
 𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛

𝑘𝑚𝑖𝑛
∗ (100)                          (4.2) 

 

where, 

𝑘𝑚𝑎𝑥 = maximum thermal conductivity of the sample in the given data 

𝑘𝑚𝑖𝑛 = minimum thermal conductivity of the sample in the given data 

 

For distilled water it is calculated as: (
0.647−0.608

0.608
)(100) = 6.4 %. 

 

 

 

Figure_4.1 Measured thermal conductivity of distilled water 

Potassium chloride 

It is one of the base components used in the water-based mud. Thermal conductivity values of 

potassium chloride are showed in the table below. 

Table_4.2 

Temperature T (oC) Thermal Conductivity k, (W/mK) 
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30 0.125 

40 0.123 

50 0.120 

60 0.119 

70 0.117 

80 0.115 

 

Thermal conductivity of potassium chloride decreases with the increase in temperature, and 

the following linear equation can be used to describe the relation. Variation in thermal 

conductivity is 9.56 percent. 

 

                                            𝑘 = −0.0002(T) + 0.1302     [𝑊/𝑚𝐾]                                  (4.3) 

 

 

 

Figure_4.2 Measured thermal conductivity of potassium chloride 

 

Calcium chloride 

The important base component used in the oil-based mud is calcium chloride. Its value 

increases a bit until 40°C after which it changes its phase and turns to solid form, which 

results in a dramatic increase of its thermal conductivity to 0.431 as shown in the table below.  

Table_4.3 

Temperature T (oC) Thermal Conductivity k, (W/mK) 
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25 0.107 

30 0.106 

40 0.112 

50 0.431 

60 0.444 

70 0.448 

80 0.453 

 

The plot in figure 4.3 shows the strange trend of thermal conductivity of calcium chloride 

with temperature increase. Following equations are used to determine the thermal 

conductivity of calcium chloride: 

 

              𝑘 =
0.0004(𝑇) + 0.0966                            𝑇 ≤ 40

  0.0007(𝑇) + 0.3985                             𝑇 ≥ 43      
                                          (4.4) 

 

 

 

Figure_4.3 Measured thermal conductivity of calcium chloride 

Barite 

Barite is the weighing material used in both oil-based mud and water-based mud to increases 

the hydrostatic pressure of the drilling mud, allowing it to compensate for high-pressure 

zones experienced during drilling. It also acts as a lubricant because of its softness. It’s 

thermal conductivity values at different temperatures are shown in a table below. 

 

R² = 0.7788 R² = 0.9211

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120

TH
ER

M
A

L 
C

O
N

D
U

C
TI

V
IT

Y 
(W

/m
K

)

TEMPERATURE (CELSIUS)

Calcium Chloride



24 
 

Table_4.4 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

25 0.0949 

30 0.0948 

40 0.0939 

50 0.0929 

60 0.0920 

70 0.0908 

80 0.0901 

 

The figure below shows the decreasing trend of thermal conductivity of barite with 

temperature increase. A linear equation is used to determine the relation which is given below 

in equation 4.5. The variation in the thermal conductivity of barite is 5.32 percent. 

  

                                    𝑘 = −9𝐸 − 05(𝑇) + 0.0974     [𝑊/𝑚𝐾]                                        (4.5) 

 

 

Figure_4.4 Measured thermal conductivity of barite 

Bentone 128 

Bentone 128 is added in oil-based mud to enhance stability and dispersibility. It is a fast 

yielding viscosifier which yields effectively at reduced shear. Thermal conductivity values of 

Bentone 128 are given in Table 4.5.  
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Table_4.5 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

20 0.0782 

30 0.0788 

40 0.0919 

50 0.1038 

60 0.1042 

 

Thermal conductivity of Bentone 128 increases slightly with the increase in temperature, and 

the following equation can be used to calculate the thermal conductivity of Bentone 128. The 

variation in the value of thermal conductivity of Bentone 128 is 33.24%. 

 

                                            𝑘 = −0.0002(T) + 0.1302     [𝑊/𝑚𝐾]                                  (4.6) 

 

 

Figure_4.5 Measured thermal conductivity of Bentone 128 

 

Base Oil  

It is an important component of oil-based mud, and its thermal conductivity values from 

room temperature to 80°C are given in the table below. 
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Table_4.6 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

22 0.1321 

30 0.1309 

40 0.1294 

50 0.1278 

60 0.1262 

70 0.1244 

80 0.1225 

 

The figure below shows the decreasing trend of thermal conductivity of base oil with 

temperature increase. A linear equation is used to determine the thermal conductivity of base 

oil, which is given below. Standard deviation is 7.83 percent. 

  

                                    𝑘 = −0.0002(𝑇) + 0.1359     [𝑊/𝑚𝐾]                                          (4.7) 

 

 

 

Figure_4.6 Measured thermal conductivity of base oil 
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Sand from the cuttings generated during drilling mixed in the drilling mud and it impacts the 
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particle size less than 45 micrometers. Thermal conductivity of sand at different temperatures 

is shown in the table below. 

Table_4.7 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

21 0.1098 

30 0.1095 

40 0.1092 

50 0.1090 

60 0.1088 

70 0.1086 

80 0.1084 

 

The figure below shows the decreasing trend of thermal conductivity of sand with 

temperature increase. The linear equation used to describe this relationship is given below. 

The variation in the thermal conductivity values for sand is only 1.01 percent. 

  

                                    𝑘 =  − 2𝐸 − 05(𝑇) + 0.1102     [𝑊/𝑚𝐾]                                      (4.8) 

 

 

Figure_4.7 Measured thermal conductivity of sand 
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Calcium chloride and water mixture  

The test is performed to measure the thermal conductivity of the mixture of calcium chloride 

with water. The mixture contains 22 percent calcium chloride and 78 percent water. The 

values are given in the table below. 

Table_4.8 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

23 0.4611 

30 0.4529 

40 0.4132 

50 0.3942 

60 0.3765 

70 0.4037 

80 0.2922 

 

Figure 4.8 shows the trend lines of thermal conductivity of calcium chloride and water 

mixture with the increase in temperature. A mixture of calcium chloride and water also has 

less value of thermal conductivity than that of water. The variation of the thermal 

conductivity values for calcium chloride and water solution is 57.80 %. The forecast is also 

shown in the plot, and the equation to describe this trend is given below:  

  

                                     𝑘 = −0.0024(𝑇) + 0.5186     [𝑊/𝑚𝐾]                                         (4.9) 

 

 

Figure_4.8 Measured thermal conductivity of calcium chloride and water solution 

R² = 0.7809

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

TH
ER

M
A

L 
C

O
N

D
U

C
TI

V
IT

Y 
(W

/m
K

)

TEMPERATURE (CELSIUS)

CaCl2+H2O



29 
 

Potassium chloride and water mixture  

A mixture of potassium chloride and water gives less value of thermal conductivity than that 

of water when the test is performed. The mixture contains 14 percent potassium chloride and 

86 percent distilled water. The mixture is highly unstable, and it is difficult to judge its 

thermal conductivity value at a higher temperature. Following table shows the value of 

thermal conductivity from room temperature to 40°C.  

Table_4.9 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

22 0.5221 

25 0.5269 

30 0.5279 

35 0.5292 

40 0.5373 

 

 

The trend line along with forecast of experimental values of thermal conductivity of 

potassium chloride and water mixture with the increase in temperature is given in figure 4.9. 

Variation in thermal conductivity values is 2.9 percent. The equation to describe our 

experimental trend is linear and is given as:  

  

                                      𝑘 = 0.0007(𝑇) + 0.5072     [𝑊/𝑚𝐾]                                         (4.10) 

 

 

Figure_4.9 Measured thermal conductivity of potassium chloride and water solution 
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Table below shows the sensitivity of thermal conductivity value of each material described 

above with the temperature change. We can see that values of thermal conductivity for 

calcium chloride solution with water and Bentone 128 is the most sensitive to temperature 

and sand is the least sensitive. This means with the increase in temperature the value of 

thermal conductivity of Bentone 128 increases a lot that is from 0.0782 to 0.1042 and for 

sand the change in value is least that is from 0.1098 to 0.1084. 

 
Table_4.10 

Material  Variation in Thermal Conductivity (%) 

Distilled Water 6.4 

KCL + H2O 2.9 

CaCL2 + H2O 57.80 

Barite 5.32 

Bentone 128 33.24 

EDC 99 7.83 

Sand 1.01 

KCL 9.56 

 

From the table above it can be seen that variation in thermal conductivity for KCL is 9.56 

percent and of distilled water is 6.4 percent but if you look at the variation of thermal 

conductivity for potassium chloride and water solution, it is only 2.9 percent. This means that 

trend of thermal conductivity changes when different components are mixed together and you 

can not just estimate the values using general models like Tsederberg method. Our model 

which is based on experimental values at different temperatures consider the reaction kinetics 

and gives the accurate thermal conductivity value of the solution.  

4.2 Unweighted Water-based Mud 

Water-based mud of density 1085 
𝑘𝑔

𝑚3⁄  is prepared with the following components:  
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Table_4.11 

Fresh Water 420.95 grams 

KCL 60 grams 

Soda Ash 0.5 grams 

Duo Tec NS 2 grams 

Troll FL 5 grams 

Glydril MC 15 grams 
 

Specific heat capacity test is performed on unweighted water-based mud, and we can have 

the following values:  

Table_4.12 

Temperature T (oC) Specific heat capacity c, (J/kg*K) 

20 3453.61 

30 3563.88 

40 3628.38 

50 3713.41 

60 3757.11 

 

The following figure shows the trend of specific heat capacity of unweighted water-based 

mud with the forecast. Variation in specific heat capacity is calculated as 8.78 percent, and 

the resulting linear equation is used to describe this experimental trend:  

  

                                       𝐶𝑝 = 7.56534(𝑇) + 3320.7      [
𝐽

𝑘𝑔 ∗ 𝐾⁄ ]                                 (4.10) 

 

 

Figure_4.10 Measured specific heat capacity of unweighted water based mud 
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Thermal conductivity data of the unweighted water-based mud is given in the table below 

 
Table_4.13 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

20 0.4650 

30 0.4955 

40 0.5120 

50 0.5349 

60 0.5594 

 

Thermal conductivity of the unweighted water-based mud increases with the increase in 

temperature, as shown in the figure below with the forecast. Variation in the values of 

thermal conductivity of water-based mud is 20.3 percent and the following linear equation 

used to describe this trend is given as: 

 

                                        𝑘 = 0.0023(𝑇) + 0.4221     [𝑊/𝑚𝐾]                                       (4.11) 

 

The model is developed based on the experimental values of thermal conductivity within the 

temperature range 10°C to 60°C due to the sensor design limit therefore the model is valid 

only in that temperature range.  Out of such range, the extrapolation might lead to big errors 

on specific heat and thermal conductivity. 

 

 

 

Figure_4.11 Measured thermal conductivity of unweighted water based mud 
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Now we will compare our experimental result with Tsederberg method and Churchill 

method. The values of thermal conductivity calculated by these three methods are shown in a 

table below: 

Table_4.14 

Temperature T (oC) 
Experimental 

Equation (4.11) 

Tsederberg Method 

 Equation (2.5) 

Churchill Method 

Equation (2.9) 

20 0.4681 0.5482 0.4590 

30 0.4911 0.5586 0.4667 

40 0.5141 0.5671 0.4727 

50 0.5371 0.5702 0.4742 

60 0.5601 0.5736 0.4765 

 

Following graph shows the trend of thermal conductivity of unweighted water-based mud 

along with a forecast from three different models. If we look at the individual components of 

the water-based mud the major ones are fresh water and potassium chloride. As seen in the 

figure 4.1 fresh water has inreasing trend of thermal conductivity of thermal conductivity 

with rise in temperature and potassium chloride has the opposite trend as per figure 4.2. 

Tsederberg and Churchill model has almost the straight line for unweighted water-based mud 

as shown in figure 4.12 however our experimental model has higher slope and is more 

sensitive to the temperature and gives accurate values.  
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Figure_4.12 Thermal conductivity comparison of Churchill, Tesederberg and experimental model for water based mud 

 

4.3 Unweighted Oil-based Mud 

Oil-based mud of density 935 
𝑘𝑔

𝑚3⁄  has the following composition:  

 

Table_4.15 

Fresh Water 103.6 grams 

EDC 99 254.4 grams 

Lime 10 grams 

OneMul NS 10 grams 

Bentone 128 7.5 grams 

VersaTrol M 3.5 grams 

CaCl2 29.85 grams 
 

 

Oil-based unweighted mud is more stable than the unweighted water-based mud. The specific 

heat capacity values of unweighted oil-based mud are given in the table below.  

Table_4.16 

Temperature T (oC) Specific heat capacity c, (J/kg*K) 
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23 2135.61 

30 2154.88 

40 2172.38 

50 2179.10 

60 2171.73 

70 2165.41 

80 2150.11 

 

The specific heat capacity values of unweighted oil-based mud increase with the increase in 

temperature until 60°C after that it will start decreasing with the increase in temperature as 

shown in the figure below. Following polynomial equation is used to describe this trend.  

  

                              𝐶𝑝 = −0.0426(𝑇2) + 4.5735(𝑇) + 2055     [
𝐽

𝑘𝑔 ∗ 𝐾⁄ ]                     (4.12) 

 

It is noted that the specific heat capacity of oil-based mud is less than that of water-based 

mud. 

 

Figure_4.13 Measured specific heat capacity of oil based mud 
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Table_4.17 

Temperature T (oC) Thermal Conductivity k, (W/mK) 

20 0.1911 

30 0.1908 

40 0.1907 

50 0.1902 

60 0.1895 

70 0.1891 

80 0.1883 

 

Figure 4.13 shows the trend of thermal conductivity of the unweighted oil-based with the 

increase in temperature. Variation in the thermal conductivity values with the increase in 

temperature is only 1.3 percent. A polynomial equation is used to describe this trend, which is 

given as:  

  

                        𝑘 = −6𝐸 − 07(𝑇2) + 2𝐸 − 05(𝑇) + 0.1908     [𝑊/𝑚𝐾]                       (4.13) 

 

 

 

Figure_4.14 Measured thermal conductivity of oil based mud 
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Table_4.18 

Temperature T (oC) 
Experimental 

Equation (4.13) 

Tsederberg Method 

 Equation (2.5) 

Churchill Method 

Equation (2.9) 

20 0.1909 0.2563 0.2367 

30 0.1908 0.2594 0.2390 

40 0.1906 0.2614 0.2419 

50 0.1903 0.2860 0.2963 

60 0.1898 0.2870 0.2979 

70 0.1892 0.2872 0.2982 

80 0.1885 0.2877 0.2989 

 

Figure 4.15 shows the trend of thermal conductivity of unweighted oil-based mud along with 

a forecast from three different models. According to our experimental model, thermal 

conductivity is decreasing slightly with the increase in temperature as explained before, 

however if you see the lines of Tsederberg and Churchill model both show an irregular 

behavior and increasing trend of thermal conductivity values with the increasing temperature 

because of the presence of Calcium chloride in the mud. As calcium chloride shows irregular 

behaviour of thermal conductivity with the increase in temperature (figure 4.3). This means 

that both of these models only consider the individual components and do the estimation of 

the thermal conductivity value of final mixture. Since such models do not consider the 

reaction kinetics of the solution thus they are not reliable especially at a higher temperature 

where the value changes abruptly at around 40 °C as seen from the graph. On the contrary, 

our model which is developed from the experimental results shows consistent value taking 

into account the chemistry of solution. 
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Figure_4.15 Thermal conductivity comparison of Churchill, Tesederberg and experimental model for oil-based mud   
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CHAPTER 5 

  CASE STUDY 

 

Case studies on two wells are presented in this chapter. Simulations were performed in the 

drilling calculator, and the trend of bottom hole temperature was observed. Churchill model 

was used in drilling calculator for the calculation of thermal conductivity value [9]. 

Comparison of the results was made between Churchill model and new models developed for 

calculation of thermal conductivity and specific heat capacity of the oil-based mud and water 

based mud.  

5.1 Drilling calculator 

It is a drilling simulator which is based on different wellbore models that are used to give an 

overview of the current properties of the wellbore and to predict future changes. Simulator 

gets data from the drilling operation and must contain accurate wellbore models. Drilling 

calculator consists of the following set of numerical models [14]: 

 

Hydraulic model  

A transient hydraulic model determines the pressure distribution inside the wellbore by 

solving mass and momentum balance. Dynamic effects like pump accelerations, surge, swab, 

and the presence of various drilling or formation fluids in the well are accounted for by the 

model [14].  

 

Cuttings transport model  

A transient cuttings transport model determines the distribution of the cuttings inside the 

annulus. It also predicts whether the drilled solids are suspended in the drilling fluid or they 

are settling down as a cuttings bed. Simulation of the transport of cuttings by bed erosion is 

also performed [14].  

 

Torque and drag model 

A soft torque and drag model is used to calculate the tension and torque distribution along the 

drill string [14]. 
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Heat transfer model 

This is a concerned model which takes thermal conductivity and specific heat capacity as an 

input value and computes the temperature evolution inside the wellbore and in the near 

formation. Conductive and convective heat transfer are also accounted for by the simulations. 

 

All the models mentioned above are integrated. The hydraulic model uses the temperature 

profile, which is generated by the heat transfer to estimate pressures, densities and velocities. 

Resultant values are then used by the torque and drag model for buoyancy considerations and 

by the cuttings transport model for estimation of the transport capabilities [14]. 

 

Figure_5.1 Simulator modules and their interaction [14] 

 

5.2 Simulation of horizontal well 

The well under consideration is a shallow horizontal well with the geothermal gradient of 12 

degrees per 100 meter. Oil-based mud of density 1.15 sg is being used for drilling purpose. 

Currently well is static and bit depth is 2286 meters while the bottom hole is at 2296 meters 

measured depth. Well is cased up to 845 meters measured depth with a 9 5/8- inches casing 

and further drilled up with 8 ½- inches bit. 

 

5.2.1 Scenario 1 

Three models were used for flow rate analysis. These were the models; Churchilll model, oil-

based mud and water-based mud model. Well was circulated at flow rate of 1500 liters per 

minute until the temperature stabilized. The summary of simulations performed is given in 

the table below.  
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Table_5.1 

Simulation Changing Parameter Value of Changed Parameter 

1 Model Churchill Model 

2 Model OBM Model 

3 Model WBM Model 

 

Annulus temperature profiles for all the three models from casing shoe to the bottom hole are 

given in figure 5.2. Temperature is plotted against the measured depth at different times. 

Dotted line indicates the time t1 which represents the beginning of circulation, dash-dot line 

indicates the time t3 which represents the time at the end of circulation process and dashed 

line which indicates t2 is the time in the middle of circulation process. 

 

 

Figure_5.2 Annulus temperature profile during circulation 

It can be observed from the figure that all the models follow almost the same trend of 

temperature variation. At t1 the temperature of annulus is higher and for all the three models 

it is even higher than the formation temperature. However, due to circulation it starts 

decreasing. It can be seen that annulus temperature is maximum for the oil-based mud model 

and minimum for the water-based mud model and for Churchill model it is somewhere in 
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between. The value of thermal conductivity and specific heat capacity is least for the OBM  

model and maximum for WBM model. Bottom hole temperature for OBM model at the 

beginning of circulation is 41.67°C and at the end of circulation it decreases 2.46°C. For 

Churchill model it is 40.09 at the beginning of circulation and at the end of circulation it 

decreases to 38.05°C. For WBM model the temperature decrease is from 37.54°C to 35.94°C. 

 

5.2.2 Scenario 2 

In the second scenario we will do the analysis of different flow rates for the oil based mud 

model. Well is circulated for more than 1 hour. The summary of simulations performed is 

given in the table below.  

Table_5.2 

Simulation Changing Parameter Value of Changed Parameter 

1 Flow rate 200 lpm 

2 Flow rate 1500 lpm 

3 Flow rate 2000 lpm 

 

Bottom hole temperature profiles for all the three flowrates are given in figure 5.3. 

Temperature is plotted against the simulation time.  

 

 

Figure_5.3 Bottom hole temperature profile during circulation at different flow rates 
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It can be observed from the figure that bottom hole temperature is maximum for the highest 

flow rate and minimum for the lowest flow rate. At 2000 liter per minute, the bottom hole 

temperature first increase quickly from 38.91°C to 41.43°C and then it starts to decrease and 

becomes stable after some time at 40.18°C. Almost similar trend is being seen for the flow 

rate of 1500 liters per minute where bottom hole temperature increases quickly from 37.01°C 

to 39.54°C and then starts to decrease and become stable at 36.17°C. For 200 liters per 

minute, bottom hole temperature increases gradually from 35.69°C to 37.6°C and then 

decreases slowly to 34.73°C by the end of simulation. Thus we can say that flow rate is 

important factor for cslculation of the bottom hole temperature. 

 

5.2.3 Scenario 3 

For the third scenario we will do the analysis of flow rate by varying the inlet temperature for 

the oil-based mud model. Well is circulated at the rate of 2000 liter per minute for more than 

one hour. The summary of simulations performed is given in the table below.  

Table_5.3 

Simulation Changing Parameter Value of Changed Parameter 

1 Inlet temperature 20 °C  

2 Inlet temperature 40 °C  

 

Bottom hole temperature profiles for different inlet temperature is given in figure 5.4. 

Temperature is plotted against the simulation time. When the inlet temperature is high that is 

40°C the bottom hole temperatutre starts to increase suddenly with the circulation however 

for lower inlet temperature it can be observed from the figure that there is very slight increase 

in the bottom hole temperature that is from 38.91°C to 40.18°C. However, for inlet 

temperature 40°C after the circulation  bottom hole temperature takes more time to stablise 

and increases from 39.01°C to 44.73°C. Thus, inlet temperature is also a crucial factor for 

determining the bottom hole temperature profile. 
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Figure_5.4 Bottom hole temperature profile during circulation at different inlet temperatures 

 

5.2.4 Scenario 4 

Lastly, we will do the analysis for different rate of penetration for all the three models. For 

the simulation purpose, well is drilled for 20 meters. The summary of simulations performed 

is given in the table below.  

Table_5.4 

Simulation Changing Parameter Value of Changed Parameter 

1 Rate of Penetration 43.2 meters per hour  

2 Rate of Penetration 21.6 meters per hour 

3 Rate of Penetration 7.2 meters per hour 

4 Model OBM model 

5 Model WBM model 

 

Annulus temperature profile at the casing shoe and at bottom hole are given in figure 5.5. It 

can be observed from the figure that all the models follow a similar trend of temperature 

variation with different rate of penetrations at different depths. 
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Figure_5.5 Annulus temperature profile at bottom hole and at casing shoe at different ROP 
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become stable. After stabilization, it can be observed that at bottom hole for lower ROP that 

is 7.2 meters per hour the temperatrure is lower during the drilling process and the 

temperature is almost same for 21.6 meters per hour and 43.2 meters per hour however at 

casing shoe the annulus temperature for all different ROP is almost same.  

 

If we compare the different models we can observe that the annulus temperature is maximum 

for the oil-based mud model and minimum for the water-based mud model because of the 

higher thermal conductivity and specific heat capacity value of water-based mud than that of 

oil based mud. At casing shoe, the annulus temperature for OBM based model at the end of 

drilling process is 30.76°C, for Churchill model it is 30.2°C and for WBM based model the 

temperature is 29.2°C. The difference in annulus temperature for different ROP values at 

bottom hole is maximum for OBM based model and minimum for WBM based model. 

5.3 Simulation of vertical well 

We will now consider the vertical well. Water-based mud of density 1.63 sg with an inlet 

temperature of 40°C is being used for drilling purpose. Currently well is static and bit depth 

is 2490 meters while the bottom hole is at 2500 meters. Last casing of 9 5/8- inches is 

suspended from a depth of 1955 meters and has a casing shoe at 2200 meters. 

 

5.3.1 Scenario 1 

First scenario is related to flow rate analysis for the three models that is Churchilll model, oil-

based mud and water-based mud model. Well was circulated at flow rate of 2500 liters per 

minute until the temperature stabilized. The summary of simulations performed is given in 

the table below. 

Table_5.5 

Simulation Changing Parameter Value of Changed Parameter 

1 Model Churchill Model 

2 Model OBM Model 

3 Model WBM Model 

 

Annulus temperature profiles for all the three models are given in figure 5.6. Temperature is 

plotted against the measured depth at different times. Dotted line indicates the time t1 which 
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represents the beginning of circulation while the solid line indicates the time t2 which 

represents the time at the end of circulation process.  

 

 

Figure_5.6 Annulus temperature profile during circulation 

It can be observed from the figure that all the models follows almost the same trend of 

temperature variation. At t1 the temperature of annulus is higher and for all the three models 

it is even higher then the formation temperature but due to circulation the bottom hole 

temperature starts decreasing. It can be seen that annulus temperature is maximum for 

Churchill model and minimum for the water-based mud model. Bottom hole temperature for 

OBM model at the at the end of circulation is 54.36°C. For Churchil model it is 55.86°C and 

for WBM model the bottom hole temperature is 51.49°C. 

 

5.3.2 Scenario 2 

Now will do the analysis for rate of penetration for all the three models. For the simulation 

purpose, well is being drilled at the rate of 28.6 meters per hour. The summary of simulations 

performed is given in the table below.  
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Simulation Changing Parameter Value of Changed Parameter 
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1 Model OBM model 

2 Model WBM model 

3 Model Churchill model 

 

Bottom hole temperature profile is given below. It can be observed from the figure that all the 

models follows almost the similar trend of temperature variation while drilling. 

 

 
 

Figure_5.7 Annulus temperature profile at bottom hole during drilling 

With the start of drilling operation the temperature in the annulus starts to decrease. There is 

not much difference in the bottom hole temperature for different models. Bottom hole  

temperature is maximum for the Churchill model and minimum for the water-based mud 

model. Bottom hole temperature for OBM model at the at the end of drilling operation is 

55.16°C. For Churchil model it is 56.71°C and for WBM model the bottom hole temperature 

is 52.17°C. 

 

0

10

20

30

40

50

60

70

80

300 600 900 1200 1500 1800

Te
m

p
er

at
u

re
 (

C
el

si
u

s)

Simulation Time (Seconds)

Bottom Hole Temperature Profile

OBM Model

WBM Model

Churchill Model



49 
 

5.4 Conclusion 

Results in the chapter 4 proves that our models based on experimental values are more robust 

and accurate than the models that are being used previously to calculate thermal conductivity 

and specific heat capacity of the drilling fluid because they consider the chemical change of 

properties and reaction kinetics of the mixtures as well. Simulation study performed in 

section 5.2 and 5.3 shows that change in the value of thermal conductivity and specific heat 

capacity of the drilling fluid affects the temperature distribution along the wellbore. The 

magnitude of change is an important factor in order to consider the new model. We have 

considered different scenarios of circulation and drilling for two wells. In horizontal well 

case, the difference of bottomhole temperature for three models is negligible. During drilling 

operation the difference in bottom hole temperature between OBM model and Churchill 

model is 2.65°C while during circulation the difference is 2.55°C. For vertical well case, 

there is considerable difference of bottomhole temperature for WBM model and the Churchill 

model. During drilling operation the difference is 5°C while during circulation the difference 

is 4.5°C. Here, one thing is noted that the magnitude of the change in temperature depends 

upon the geometry of the wellbore and the simulation time of the drilling or circulation 

process. Greater is the time of simulation for drilling or circulation process greater difference 

we have in the temperature profile using our models and the base model.  

5.5 Further work recommendations 

 

Simulations of all of the scenarios are performed for a shorter period, it will be interesting to 

see the trend of temperature evolution while drilling a full section and then circulation. 

 

The instrument used has a limitation for the temperature range when measuring the thermal 

conductivity of water-based mud. Use of another instrument for experimental purpose can 

provide further data and also validate the results of our model. 

  

Models presented here are based on unweighted drilling fluid, use of different proportions of 

sand and weighing material in the drilling mud for experimentation purpose can further 

improve the model. 
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APPENDIX 

 

Density measurement is required in order to calculate the specific heat capacity of water-

based mud and oil based mud. Density is calculated using Anton Paar density meter and the 

values are given below: 

 

Temperature OBM WBM 

20 0.93190 1.08515 

30 0.92520 1.08102  

40 0.91842 1.07524 

50 0.91141 1.06884 

 

 

 
 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 

 
 

 
 


