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Abstract

A blowout represent one of the major concerns associated with drilling, comple-

tion, maintenance and production of an oil field. Calculation of blowout rate is

commonly one of the first steps in an Environmental Risk Analysis, as well as

being a measure of the environmental and economic damage caused by a blowout.

An increasing focus on preserving and protecting the environment, enlarges the

requirement for improved numerical simulators within well control assessment.

BlowFlow is an example of a software tool applied for oil-spill calculations. The

engine combines flow modelling with uncertainty modelling to produce statisti-

cal distributions of blowout rates, volumes and duration. A simulation example

performed in Oliasoft Blowout Simulator is presented in this thesis to illustrate a

possible approach of performing oil-spill calculations.

A numerical simulator based on the black oil model, multiphase flow model,

simple friction model and inflow model, has been developed with the purpose of

estimating blowout rates. The starting point was a steady two-phase flow model

developed by Gomes (2016). This code has been tested and documented, resulting

in a number of modifications. The major improvement made to this point, is that

the program is extended to include an inflow model for both single-phase and

multiphase inflow conditions. Because the modified model is based on an initial

guess of the BHP, while utilizing a shooting technique from the bottom of the

well and up, made it possible to determine the actual oil inflow rate of a blowing

well directly from the simulation.

This study provides an overview of two modelling approaches available for simu-

lating blowout rates. Both methods presents reasonable result depending on the

conditions in the reservoir. The case studies shows that the approach varying
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the liquid rates at surface conditions, and finding a solution at the intersection

point between the IPR and TPR curves, is less efficient than implementing an

inflow directly in the simulator. This is the case as long as the model is based on

a technique of numerical calculation from bottom to top.
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1. Introduction

Management of well control is considered to be of high importance during all

stages of a well. A blowout is a severe event that may occur if the well contain-

ment is not sufficient, and is typically a result of series of events that can be

traced back to equipment failure or human error (Schubert, 1995; Schubert et al.,

2004). Uncontrolled release of hydrocarbons to surface or seabed, can lead to

large oil spills, causing negative impact on the environment. Although statistics

show that blowouts are a rare phenomena, the possible consequences of such an

event is of too high magnitude to simply ignore (SINTEF, 2017). By studying the

Macondo accident in the Gulf of Mexico April 2010, one clearly see the importance

of preventing and estimating blowouts. Loss in well control resulted in over 4.9

million barrels of oil spilled through a surface blowout, causing 11 casualties and

enormous damages on the environment. It took the operator several months to

stop the leak and regain control of the situation (National Commision, 2011).

With an increasing focus on both safety and preserving the environment, in

combination with the petroleum industry facing more and bigger challenges as

the industry moves into more harsh environment, contributes to making blowout

prevention and estimation of possible spills a top priority in the petroleum indus-

try. Hence, numerical simulators have become important tools in the industry.

Environmental Risk Analysis (ERA) is an example of risk analysis operators

on the Norwegian continental shelf (NCS) have to conduct, by law, in order to

quantify and predict the risk of petroleum activities (Karlsen and Ford, 2014b).

Environmental Risk Assessment of Exploration Drilling in Nordland VI (DNV,

2010), is an example of such a risk analysis. Blowouts represents one of the major

threats associated with the oil and gas industry. Hence, calculation of potential

1



1.1. STUDY OBJECTIVE 2

blowout rates, volumes and durations are needed as input in ERAs, to dimension

the appropriate oil spill emergency preparedness (Nilsen, 2014).

There are generally two types of numerical simulation softwares available re-

lated to blowout modelling. One focuses on killing a blowout and how this should

be done hydraulically, while the other type of simulator focuses on estimating the

rate, volume and duration of a blowout, hence studying the oil spill (Arild et al.,

2008; Karlsen and Ford, 2014b). Various softwares have been developed over the

last couple of years, due to the increasing demand for improved tools within well

control assessment. BlowFlow, developed by NORCE, is an example of such a

software tool. The software, currently being commercialized by Oliasoft, combines

flow modelling with uncertainty modelling to produce statistical distributions for

the flow rates, duration and discharged volumes. Unlike other simulators on

the market, this model apply a stochastic modelling approach, where probability

distributions for a certain number of inputs are used instead of fixed numbers.

This approach is applied to model the uncertainty related to the consequences of

a blowout (Ford, 2012).

Multiphase flow models, like the steady state flow model, are widely used in

the petroleum industry, and one of the various application of such a model is to

simulate blowout flow rate.

1.1 Study Objective

One of the purposes of this thesis is to describe the BlowFlow model in more

detail, and in collaboration with Oliasoft, present a simulation example using

Oliasoft Blowout Simulator. The objective of this simulation example is to show

one alternative approach of performing blowout modelling.

Furthermore, this thesis aims to check and document the developed model by

Gomes (2016), as well as extending the original code to being valid both for

annular geometry and tubular configuration.
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The main objective of this thesis is to develop a blowout flow model based on

Gomes (2016), with an integrated inflow model valid for both multiphase and

single-phase inflow. A shooting technique will be employed, guessing for the

bottomhole pressure (BHP) and iterating until the outlet boundary condition has

been met at surface. The fact that the shooting is performed from bottom to top,

makes it possible to include an inflow model directly in the flow model. If an inflow

model is successfully implemented in the steady state flow model, it would be

possible to determine the solution point flow rate of a blowing well directly from

the simulation rather than needing to find the solution from the intersection point

between the Inflow Performance Relationship (IPR) and Tubular Performance

Relationship (TPR) curves. This approach differs from the approach used by

Gomes (2016), where various inlet rates are used to calculate the corresponding

BHP. These two modelling approaches available for modelling the blowout rates

will be tested, where the main focus will be on studying the benefits of including

an inflow model directly in the program, when the shooting technique is applied

from the bottom of the well and up.

1.2 Structure of the Thesis

The thesis is divided into eight chapters. Chapter 2 gives a theoretical review of

blowout, and blowout calculations use in oil spill preparedness planning. Chapter 3

describes the BlowFlow engine, while a simulation example using Oliasoft Blowout

Simulator is presented in chapter 4. Chapter 5 presents the mathematical model

forming the base for the simulation. The calculation approach and the structure

of the steady state flow model developed on basis of Gomes (2016) are covered

in chapter 6. Chapter 7 gives a review of inflow models, and how they may

be included in the flow model. This chapter also presents three case studies of

blowout modelling, discussion of results, and future recommendations. Finally,

chapter 8 presents a conclusion of the work conducted.



2. Well Containment

During the lifetime of a well, the management of well control is considered to

be of high importance. It is crucial to maintain and control the well pressures,

and ensure no unwanted influx of formation fluids into the wellbore at all time

(Schubert, 1995). The oil and gas industry is today facing more and bigger

challenges as the industry is moving into more harsh environments, in combination

with an increasing focus on both safety and preserving the environment. These

issues contributes to making well control a top priority in the petroleum industry

(Liu et al., 2015; Arild et al., 2008).

2.1 Well Barriers

The importance of well control cannot be underestimated. To ensure well control,

at least two independent well barriers have to be present in each well at all time.

A well barrier consist of one or several well barrier elements, which prevents fluids

from flowing uncontrolled from the formation. One single barrier element is not

sufficient to act as a barrier alone, which is why several barrier elements are

needed to close the envelope, and restore well control. The main objectives of

these envelopes of barriers are to avoid a catastrophic event, and have the ability

to regain well control (NORSOK D010, 2013). Figure 2.1 shows a typical well

barrier envelope for a drilling operation.

Norway has regulations relating to design and outfitting in the petroleum in-

dustry, called The Facilities Regulations. According to this regulation, section

48: ”The well barriers shall be designed such that well integrity is ensured, and

the barrier functions are safeguarded during the well‘s lifetime” (PSA, 2019c).

In addition, the NORSOK Standard D-010 is heavily used as guideline for well

4
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integrity during different petroleum activities on the NCS.

In terms of well barriers, it is common to distinguish between primary and sec-

ondary barriers. The primary barrier is the first protection against unwanted

influx of reservoir fluid to the wellbore. It is in most cases the operation of main-

taining the hydrostatic pressure in the well. The well pressure has to be greater

than the pore pressure, but lower than the fracture pressure. This is controlled

by monitoring the mud column, outlined in blue in figure 2.1 (Petrowiki, 2015b).

Figure 2.1: Well barrier schematics during drilling operation (NORSOK D010,
2013).
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Failure in the primary well barrier may result in a kick, defined as flow of for-

mation fluids into the wellbore during drilling operations. When a kick occur,

the drilling mud is displaced from the well by less dense reservoir fluid (Willson,

2012). This will affect the pressure by reducing the bottomhole pressure to lower

than the formation pressure, which is the condition for a kick to develop. Due

to a failure in the primary well barriers, the further operation is relayed on the

secondary barriers to work and restore control of the well (NORSOK D010, 2013).

The main intention of secondary well barrier is to stop the inflow of formation

fluids from reaching the surface, hence loosing the control of the kick (NORSOK

D010, 2013). In most cases, the well is installed with a blowout preventer (BOP)

on top of the wellhead, acting as a secondary barrier. A BOP consist of a set

of valves and shear rams, which can seal off the annulus or cut the drillstring,

and shut in the well in case of a kick (NORSOK D010, 2013). Other secondary

barriers include wellhead, cement and surface casing (Vandenbussche et al., 2012).

The BOP located on top of the wellhead, as well as other possible secondary

barriers, are outlined in red in the figure 2.1.

2.2 Blowout

A blowout occur when a kick cannot be controlled, the drilling fluid is fully

displaced from the well, and there is an emission of formation fluids from the well

either at the sea-floor or at surface. The discharge point may be used to classify

the different types of blowout (Willson, 2012);

� Seabed blowout

� Surface blowout

� Underground blowout

An example of a surface blowout, the Macondo Deepwater Horizon Rig in the

Gulf of Mexico, April 2010, is shown in figure 2.2.
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Figure 2.2: Surface Blowout at the Macondo Deepwater Horizon Rig in the
Gulf of Mexico, April 2010 (Herbst, 2017).

The release point will depend upon the integrity of the well and possible riser

installation. If a riser is part of the well design, or has not yet been disconnected,

the blowout will occur at surface. For seabed blowouts, the flow typically exits

the well at sea-floor, directly into the sea. The well pressure during a kick is

affected by the hydrostatic pressure, choke pressure and friction pressure. If this

well pressure is greater than the fracture pressure in the borehole, it is possible

to get an underground blowout (Willson, 2012). During an underground blowout,

the formation fluids will flow from one formation zone to another (Schubert et al.,

2004).

The discharge point has a great impact on the flow rate and the possible oil-

spill. According to Liu et al. (2015), a surface blowout is normally of highest

detrimental. This statement is based on the fact that such a blowout usually

result in a much higher gas fraction, much higher mixture velocity and much

lower pressure at the bottom of the well compared to the reservoir, all in which

causes a more severe discharge rate.
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2.2.1 Kick and Well Kill Methods

As described earlier, failure in the primary well barriers may result in a kick. The

development of a kick can be caused by various of reasons, including (Petrowiki,

2015b; Belayneh, 2018a);

� Insufficient mud weight

� Improper hole fill-up on trips

� Swabbing

� Gas cut mud

� Lost circulation

All these accidents mentioned above causes an imbalance of pressure in the well,

which may lead to an influx of formation fluids to the wellbore. However, this

influx does not necessarily cause a blowout. There are a variety of actions taken

to shut in the well and kill the kick, before the situation gets the opportunity to

developed into a full blowout. The first response is to stop the operation, and

isolate the borehole from the surface by activating the secondary barriers. The

well kill procedure may start after the well is shut in (Fjelde, 2017a).

Killing a well, means to circulate the gas out of the well through a choke, and

replace the original mud with a heavier mud to avoid further influx. Heavy mud,

referred to as kill mud, is circulated down the well to balance the BHP (Petrowiki,

2015b). There are mainly three well kill methods available (Belayneh, 2018a);

� Driller‘s method (Two circulation method): The basic principle is to

keep the BHP constant while killing the well. First, the kick is circulated

out of the well using old mud. The next step is to weight the kill mud up

to required density, and replace the old mud.

� Wait and weight method (One circulation method): The kill mud is

weighted up to the desired density from the start, and circulated down the

drillstring. In the same circulation, kill mud moves up through the annulus,

while the stand pipe pressure is kept constant by proper choke adjustments.

� Bullheading: The well is killed by forcing formation fluids back into the

formation by pumping kill weight fluid down the annulus.
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2.2.2 Reasons for Blowout

The first sign of a possible blowout is usually a kick. If the kick is not properly

controlled, it may lead to a blowout. However, blowouts are typically a result of

series of events traced back to either equipment failure or human error (Schubert

et al., 2004). A blowout only occur if both well barriers fail. This means that

both the primary barrier, represented by the mud-column, and the secondary

barriers represented by the BOP, wellhead, cement or surface casing, have to fail

(Vandenbussche et al., 2012). In the following, some of the situations which may

lead to a blowout will be described.

Undetected kick is a phenomena that may occur when drilling with oil based

mud. If the kick volume is small enough it may go undetected, and dissolve in

the oil based drilling mud. The barriers will then fail to kill the kick, and it will

be transported with the mud to surface. As the kick migrates upwards in the

well, in combination with suitable temperature and pressure, the gas will boil out

at surface (Belayneh, 2018a). Although the initial amount of gas was minimal,

the volume of gas in the mud increases at the top section of the well, which may

cause severe consequences.

During the well kill procedure, while waiting for the pressure build-up to sta-

bilize, a formation fracture may develop at the weakest point in the well. The

weakest point is normally just below the last casing shoe. As a result, a combina-

tion of drilling and formation fluid enters the formation before the pressure at the

bottom of the well is sufficient to stop the uncontrolled flow (Watson et al., 2003).

To deal with such situations, it is necessary to increase the BHP while decreasing

the pressure at fracture point. This may eventually cause the well pressure to

exceed the formation pressure, and thus fracture the well all the way to surface.

If this fracturing process is not controlled, it may cause a blowout to occur (Halle,

2010).

In order to run a large diameter hole opener, one need to disconnect the riser

from the BOP. During the disconnection of riser a blowout may develop. When
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performing this operation it is of high importance to keep the well stable. By

displacing the fluids in the well up to the BOP with a heavy kill mud, an adequate

overbalanced well pressure is kept, which reduces the probability of a blowout

(Holand, 1996).

Failure in BOP or in any of the other secondary barrier elements installed in

the well, may cause a blowout to occur. This can either be failure in the mechan-

ics or restrictions in the pipe, making it impossible for the barriers to completely

seal the well or fully engage. It should be noted that there may also be failure in

the other valves control systems in the well, causing uncontrolled flow of hydro-

carbons (Nilsen, 2014).

The operations of drilling and setting the first casing are conducted in shal-

low zones. In some cases, these areas may contain gas. Because these shallow gas

zones are penetrated before the installation of surface casing and BOP, there are

no barriers available to prevent uncontrolled flow of formation fluid to surface.

The uppermost layers in a formation are too thin and weak to handle a shut-in

pressure, making the BOP useless. This is why the BOP is not in general installed

before after the surface casing has been set and cemented. Due to the lack of well

control equipment installed when drilling in shallow gas zones, a blowout may

occur (Holand, 1996).

Poor cementing job or a failure in the casing, may cause a blowout to develop

outside the casing. In such cases, the uncontrolled flow of formation fluid will

flow outside the casing wall towards surface. Because other constituents of the

secondary barrier have failed, the BOP will fail to kill the blowout (Holand, 1996).

Moreover, it is necessary to mention that sometimes a blowout may be caused

by external causes, including storms, military activities, ship collisions, fire and

earthquake (Holand, 2017; SINTEF, 2017).
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Table 2.1 presents the primary and secondary barrier failure causes for deep-

water blowouts in the US GoM and regulated areas, among others Norway, UK,

Australia, Canada, Brazil and US Pacific, from 2000 to 2015 (Holand, 2017).

Table 2.1: Barriers failures causing blowouts from 2000 to 2015 (Holand, 2017).

Primary barrier failure Secondary barrier failure
Total

blowouts

Too low mud weight
Casing head

failed
1

Gas cut mud Poor cement 1

Improper fill up,

annular losses,

packer leakage

Wellhead failed 1

Disconnected riser Failed to close BOP 1

Unexpected high

well pressure

Formation breakdown,

poor cement,

casing leakage

5

Reservoir depth uncertainty
String safety valves

failed, inner casing failed
2

While cement setting
BOP failed after closure,

BOP not in place, wellhead failed
4

Casing plug failure
Failed to close BOP,

only one barrier present
2

As seen from the figure above, most of the blowouts occurred due to unexpected

high well pressure or while cement setting. The two incidents with casing plug

failure as source for loss of the primary barrier, are the Deepwater Horizon blowout

in 2010 and the Montara blowout in 2009. Although the severity of those two

blowouts differs, they are both considered extreme blowouts. The Montara well in

Australia spilled a total of 29 600 bbl, which is 140 times less than the Macondo

incident in the Gulf of Mexico. The Montara blowout occurred because the well

only had one barrier present, while the Macondo accident originated from several

human and equipment errors, causing failure in closing the BOP (Holand, 2017;

National Commision, 2011).
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2.2.3 Techniques for Killing a Blowout

The blowout duration depends on how long it takes to kill the blowing well. There

are various intervention methods available to kill a blowout and regain control

of the well. These methods are often referred to as kill mechanisms, and can be

categorized depending on the intervention location, like surface intervention and

relief well intervention (Oskarsen et al., 2016). According to The Activities Regu-

lation section 86, published by The Petroleum Safety Authority Norway (PSA),

it should always be possible to regain well control by intervening directly or by

drilling one relief well (PSA, 2019b).

Surface intervention is always the first action taken to kill a blowout. The ob-

jective of this type of intervention is to control the blowout by direct access to

the discharge point or the wellhead of the blowing well (Lage et al., 2006). On

occasion, surface intervention is impractical or cannot be used to establish control

over the well (Schubert et al., 2004). This is typical for deep water scenarios, such

as the Macondo incident. Such situations often require an alternative approach in

order to kill the blowing well. This can be accomplished by drilling a relief well,

and thus utilize this additional well to regain control of the target well (Oskarsen

et al., 2016).

Furthermore, blowout intervention can be classified depending on the intervention

method. Some of the available intervention methods are (Schubert et al., 2004);

� Capping: This kill method is part of the surface intervention, and com-

prises of mechanically killing the blowout by closing-in the flow path release

point at surface (Schubert et al., 2004). This makes it impossible for the

uncontrolled flow of hydrocarbons to escape to surface, as it will be stopped

by a barrier. There are numerous elements which may act as mechanical

barriers, among others, special capping stacks, shear rams, ball valves or

diverters. It should be mentioned that capping may include closing one or

several valves in the well barrier system, such as the x-mas tree valves, BOP

valves, ect. (Nilsen, 2014).
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� Bullheading: This operation is also part of the surface intervention. Water,

mud or brine are then circulated down the drillstring with a greater mo-

mentum than the unwanted flow of reservoir fluids coming up the borehole,

forcing the formation fluids back into the formation (Schubert et al., 2004).

This procedure aims to balance the reservoir pressure, and kill the well

statically (Nilsen, 2014). According to (Schubert, 1995) this kill technique

is simple and requires no or little planning.

� Natural depletion: This is a passive kill technique, that may occur due

to changes in borehole conditions caused by a blowout. These changes to

conditions like pressure and flow, may naturally result in the uncontrolled

flow of hydrocarbons to cease completely, and thus cause the blowout to

natural deplete (Nilsen, 2014).

� Cement: Fast-reacting cement can be injected into the well as a plug in

order to kill the blowout, and thus provide full well control (Nilsen, 2014).

This kill technique may be used as part of both surface and relief well

intervention. An alternative approach would be to set a gunk plug, a mix

of diesel and gel, into the borehole (Schubert et al., 2004).

� Bridging: This is a passive technique for killing a blowout. When a blowout

occur, the downhole conditions may experience some changes. As a result,

the formation around the wellbore may collapse, there may be obstruction

of the flow through the well due to the accumulation of material, or there

can be a caving-in of the borehole. Consequently, all these situations will

seal off the flow path, causing a reduction of the blowout rate or a killing

of the blowout (Schubert et al., 2004; Vandenbussche et al., 2012).

� Relief well: As mentioned before, this procedure is only conducted when

surface intervention is impossible or impractical. This is mainly because this

method is time-consuming and a costly operation. This kill technique com-

prises of drilling a relief well towards the bottom of the blowing well, which

directly intersect with the blowing well well, deplete the target reservoir,

and thus kill the blowout. If communication can be established between

these two wells, well control can be regained with the use of dynamic kill

or cementing techniques (Nilsen, 2014; Schubert et al., 2004). An example
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of planned well paths for two relief wells to the target well, obtained from

an Activity program - Drilling conducted by Equinor, can be seen in figure

2.3. According to Rinde et al. (2016) well-kill operations through a relief

well is considered to be the most reliable and optimal method for killing a

blowout.

Figure 2.3: Example of planned well paths for two relief wells to the target well
(Statoil, 2010).

� Dynamic kill: This intervention method is part of the relief well interven-

tion. Kill mud is circulated into the blowing well at high pump rates, gener-

ating a high annular friction pressure (Schubert, 1995). This additional fric-

tion pressure loss makes a substantial contribution to the counter-pressure

against the reservoir, which may kill the uncontrolled flow of reservoir fluids.

As soon as the influx has been controlled, a weighted mud is circulated to

statically control the well (Nilsen, 2014).
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2.2.4 Oil Spill Preparedness Systems

In case of a blowout, it is crucial to manage the oil spill immediately to minimize

the treat and possible damage to both humans and the environment (EPA, 1999).

It is essential that an environmental analysis is conducted as soon as possible,

no later than 48 hours after the pollution has been observed. The aim of such a

survey is to identify and describe the possible damage to the surrounding envi-

ronment (PSA, 2019b).

”Under the Pollution Control Act, operators are required to maintain a level of

preparedness and response which is dimensioned to deal with acute pollution from

their activities” (Regjeringen, 2016). This law states that essential measures to

prevent and limit the damages and disadvantages of acute pollution have to be

conducted by the responsible parties (LOVDATA, 1981). The oil spill contingency

plan is an important part of this oil spill preparedness, and shall as a minimum

include (IPIECA, 2015);

� Identification of possible damage

� Vulnerability analysis

� Risk assessment

� Response action

The contingency plan has to be in compliance with local regulations and frame-

work. By having a well-planned, efficient and effective plan available, it is possible

to reduce the impact of an oil spill on people and the environment significantly

(PSA, 2019b; LOVDATA, 1981). Although, the action taken in case of a blowout

varies depending on various circumstances, there are certain basic principles that

applies for any kind of spill scenario. In simplicity, these principles can be de-

scribed as the following (IPIECA, 2015);

� Safeguarding the safety and health of people

� Stopping the source of the spill as quickly as possible

� Minimizing environmental impact

� Minimizing the risk of oil reaching the shore in offshore scenarios
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� Minimizing the risk of oil entering watercourses or groundwater in onshore

scenarios

The initial step in oil spill preparedness is to identify the potential situations

that may arise for a specific facility or operation. By using these situations, the

operators have to define appropriate spill planning scenarios (IPIECA, 2015).

Simulators can be utilized to determine and predict the behaviour of a potential

oil spill caused by a blowout. The Oscar simulator and BlowFlow are two exam-

ples of tools used for spill calculations. These models will be described in section

2.3. The oil spill modelling form the basis for the emergency response analysis

(Norsk Olje og Gass, 2013). Once different spill scenarios have been established,

it is necessary to develop the optimum response strategy for each of the cases by

employing different oil spill recovery techniques (IPIECA, 2015).

Although the contingency plan plays a vital role in the preparedness, it is impor-

tant to ensure proper training of personnel and have access to suitable equipment

for oil spill recovery. This is essential to ensure optimum oil spill response (IP-

IECA, 2015).

Oil Spill Recovery Techniques

After an oil spill has occurred, it is of high importance to implement actions to

minimize the possible damage to the environment, and remove the oil in a safe

and efficient way. Traditionally, there are four techniques available for dealing

with oil spills, including mechanical recovery, chemical dispersion, biological de-

composition and in-situ burning (SINTEF, 2010).

Depending on factors such as temperature, weather, type of oil, location and

amount of oil spilled, the best recovery technique should be applied, or a combina-

tion of them. Although there has not been a major leap in the development of new

spill containment equipments, the conventional techniques have been significantly

improved. These techniques play a vital role in the oil spill recovery, removal and

dispersal (EPA, 1999).
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In general, the mechanical oil spill recovery consist of employing booms and

skimmers. As seen in figure 2.4, the boom is a containment equipment used to

capture the oil. This equipment control the spread of oil, and thus reduce the

damage on the surrounding environment. Moreover, the boom concentrate oil in

thicker layers, making the recovery process easier (EPA, 1999). After the oil has

been contained, both skimmers and sorbents can be used to remove the oil from

the surface. The latter being a material that soak up the oil either by absorption

or adsorption, or a combination of both (EPA, 1999). A skimmer is a device put

into the sea to separate oil from the waters surface, and then pump the oil into

vessels for transportation (ITOPF, 2018). The approach of combining booms and

skimmers is widely applied all over the world, but this specific recovery technique

becomes less effective in case of bad weather and high waves (EPA, 1999).

Figure 2.4: Boom deployed in an U configuration between two vessels to
capture oil (ITOPF, 2018).

Another technique used for dealing with an oil spill is chemical dispersion. This

method use different chemicals to break oil into small droplets, making it possible

for the oil to dissolve into water. As the oil is dispersed into water, natural

processes like wind, waves and currents, may help to break the oil droplets further

down. Because of the great negative affect on the environment, this oil spill

recovery technique is not in general the first action taken by operators (EPA,

1999). It should be noted that the latest regulations from PSA allows the use of

chemical agents during oil spill response operations (SINTEF, 2010).

The biological degradation is a slow, natural recovery process, where micro-organisms
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breaks down the oil. This process is typically too slow to provide adequate envi-

ronmental recovery. To speed up the process of degradation, there are different

nutrients, enzymes or micro-organisms that can be used (SINTEF, 2010).

In-situ burning is a recovery technique applied to reduce the negative affect

of oil spreading to the environment. With this technique, the oil is ignited and

burned under controlled circumstances, usually close to the spill point (IPIECA,

2015).

It should be mentioned, that if the oil spill has reached beaches and shorelines,

physical methods can be applied to clean up these areas. Physical methods include

techniques like wiping with absorbent material, pressure washing and bulldozing

(EPA, 1999).

2.2.5 Blowout Control

Blowout Contingency plan

According to Norwegian Pollution Control Act of 1981, §41: ”The pollution con-

trol authority may by regulations or individual decision lay down that contingency

plans shall be submitted for approval for any activity that may result in acute

pollution. The plan shall provide guidelines for the action to be taken in the event

of acute pollution and shall be updated as necessary.” (LOVDATA, 1981).

To ensure sufficient blowout control, a predetermined blowout contingency plan

should be in place for each installation and field. As a minimum, the plan has to

address the following (NORSOK D010, 2013);

� Field layout

� Well design

� Primary kill strategy in a blowout case

� A description of, or reference to, the emergency response organization

It is necessary to perform a blowout and kill rate simulation study for each spe-

cific operation. In such a study it is essential to consider all possible blowout
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scenarios that may occur during an operation (Yuan et al., 2014). In order for

operators to apply for a drilling permit, they are required to calculate Worst Case

Discharge (WCD) scenarios, describing in detail surface intervention methods

to kill the flow, and demonstrate the ability to regain control of a blowing well.

Such a WCD scenario should be based on discharge point at seabed with a hy-

drostatic water column, or at surface with atmospheric pressure. This leads to

the risk of underestimating a blowout being reduced significantly (Liu et al., 2015).

According to Yuan et al. (2014), there are numerous simulators available with

the purpose of studying blowout and kill rate. Some of these simulators will be

described in section 2.3. Utilizing simulators in the planning stage of the well, is

important for many reasons, including (Nilsen, 2014; Schubert et al., 2004);

� Minimize the risk of an unwanted situation

� Analysis of different well control events

� Estimate the most effective killing mechanism

� Study the hydraulics aspects associated with the killing operation

� Evaluating procedures

Therefore, advanced well control simulators, like the OLGA computer software,

have become important tools in the petroleum industry (Lage et al., 2006).

As mentioned earlier, the operators are required to develop a contingency plan,

including a primary kill strategy. The kill strategy should as a minimum include a

plan for both drilling a relief well and for capping (Yuan et al., 2014). According

to (NORSOK D010, 2013), the plan for drilling a relief well shall comprise of

number of relief wells needed, clear description of the killing method, simplified

relief well path, etc. During a blowout kill operation through a relief well, de-

pending on the technique, there are limitations that needs to be accounted for,

to successfully kill a blowout. The mobile offshore rig used for drilling a relief

well may have limits when it comes to pumping rates, available horsepower and

storage capacity for kill mud (Rinde et al., 2016; Lage et al., 2006). In addition,

it is important to optimize the kill mud density. In order to maintain the static

balance in the blowing well, the kill mud density must be high enough. During a
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kill operation with high pump rates, the friction pressure may be very high due

to the frictional pressure loss in the relief well annulus and in the kill lines. With

such high friction pressure, the pump capacity may be exceeded. In such cases,

one of the following actions should be conducted (Yuan et al., 2014);

� Pumping down drillstring and annulus simultaneously

� Repositioning drillstring

� Considering different bottomhole assembly (BHA) and drill pipe configura-

tions

Another approach would be to install a Relief-Well Injection Spool (RWIS) on

the relief-well wellhead beneath the BOP. This device will provide additional

flow connections into the wellbore, making it possible to deliver increased pump

capacity. This may ensure a potential blowout to be killed by only one relief

well, which is why RWIS is an important tool in blowout contingency planning

(Oskarsen et al., 2016).

It is vital to wait with the intersection process between the target well and

the relief well, until all the mud pumps and kill fluids are lined up and ready for

the killing operation. In order to successfully control the blowout, it is impor-

tant that the pump capacity and formation fracture pressure are not exceeded.

Therefore, it is important to stage down the pump rate as the pump pressure is

approaching the limit (Yuan et al., 2014). In addition, it is important to evaluate

the mobilizing time for a relief well rig in the contingency plan, as the relief well

drilling should start no later than 12 days after the decision of drilling a relief

well was taken. In a similar manner, a plan for capping and containment of a

blowing well should also be conducted (NORSOK D010, 2013).

Blowout control equipment

There are different well control equipment installed in a well to prevent and control

a blowout. During the drilling operation, these include (Belayneh, 2018a);

� Changes in pit level is an indication of influx of formation fluids

� The BOP seals of the well in case of a kick
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� The choke is used to control the well pressure

� The chokeline can be used to transport well fluids out of the well if the BOP

is closed

� A separator is used to separate the gas from the mud

An illustration of the blowout control equipment usually installed in a well is

shown in figure 2.5.

Figure 2.5: Well control equipment (Fjelde, 2016).

As mentioned earlier, the BOP is installed in a well with the purpose of acting

as a secondary barrier. The BOP stack may comprise of two types of preventers,

namely the ram BOP and the annular BOP (Belayneh, 2018b). The annular BOP

is often closed first, and is more flexible on which pipe size it can close around. As

shown in figure 2.6, the annular BOP is mounted at top of the BOP stack. The

rams usually work as a backup in case of a failure in the annular BOP. There are

various types of rams available, including pipe rams that close on a fixed pipe size,

and the shear/blind rams that can close the hole without pipe as well as shear

the string. The main difference between these two types of preventers, is that the
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ram mechanically moves towards the center of the wellbore in order to restrict

flow, while the annular type close around the drill string (Belayneh, 2018b).

Figure 2.6: A schematic of a BOP (Belayneh, 2018b).

The PSA has specific regulations operators have to follow regarding well control

equipment during a drilling operation. The Facilities Regulations section 49,

states that well control equipment should be designed and capable of activation

such that it ensures both barrier integrity and well control (PSA, 2019c). It is

also stated in the same regulation, that the operators should have a contingency

plan in place to divert uncontrolled flow of hydrocarbons away from the facility,

if a BOP is not already installed in the well (PSA, 2019c). In order to fulfil the

Norwegian barrier requirements, it is important to follow NORSOK D010 (2013)

as a guide when planning a well. This is vital to ensure that all the necessary

blowout control equipment are included in the installation. In general, operators

in Norway, UK and US GoM, are focusing on the two-barrier principle, meaning

that is should always be at lest two well barriers active in a well (Holand, 2017).

2.2.6 Blowout Spill Consequences

Due to the severity of a blowout and its corresponding negative effects, blowout

prevention has become a top priority in the oil and gas industry. This catastrophic

event, can lead to large oil spills, causing severe damages to the environment,
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give great financial loss, and even personnel injuries and casualties (Liu et al.,

2015). The financial loss is associated with loss of valuable hydrocarbon reserves,

unexpected cost related to the cleaning up process, and damages to equipments.

As a consequence of a blowout, the credibility of an operator or the personnel

may be harmed, as well as a potential time-delay for drilling operations in near

area (Arild et al., 2008).

Environmental Risk Analysis, Oil Spill Response Analysis (OSRA), and Total

Risk Analysis (TRA), are all examples of risk analysis operators on the NCS have

to conduct, by law, in order to quantify and predict the risk of any petroleum

activity (Karlsen and Ford, 2014b). According to Karlsen and Ford (2014b), a

basic ERA consist of a combination of probabilities for oil spill scenario and corre-

sponding blowout rates and duration, as well as potential environmental damages.

The operators utilize such an analysis with the intention of determining if an ac-

tivity is acceptable or not, by evaluating the potential environmental risk against

their own acceptance criteria for risk (Nilsen, 2014). As mentioned earlier, the

petroleum industry is regulated by laws. In Norway, these laws and regulations

are controlled and supervised by PSA (PSA, 2019a).

An increasing focus on preserving and protecting the environment, in combi-

nation with the industry performing drilling operations in more challenging areas,

reduces the margins within well control. A blowout represent one of the major

treats associated with drilling, completion, maintenance and production of an

oil field (Liu et al., 2015; Arild et al., 2008). Because of the many hazards this

incident may cause, blowout represents a substantial component in an ERA to

dimension the appropriate oil spill emergency preparedness (Nilsen, 2014). Cal-

culations of potential blowout rates, volumes and duration are needed as input

in such analysis. In fact, blowout calculations form the basis for oil spill drift

forecast, giving reasonable indications of the amount of oil that will be present in

the environment and the recovery time (Arild et al., 2008). Figure 2.7 shows a

typical blowout risk analysis chain employed in the various risk analysis.
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Figure 2.7: Blowout risk analysis (Arild et al., 2008).

According to Arild et al. (2008), the blowout risk related to petroleum activity

can in simplicity be described as the following;

� Blowout probability

� Blowout rate uncertainty distribution, including differentiation of sea bottom

and topside releases

� Blowout duration uncertainty distribution

Although blowouts have become a rare phenomenon due to advancement in drilling

and well intervention technology, the consequences of a potential blowout are of

too high magnitude to simply ignore. By looking at the BP‘s Macondo accident

in the Gulf of Mexixo April 2010, one clearly see the importance of preventing a

blowout. In that specific case, a well control situation resulted in a surface blowout

with 11 casualties and enormous damages to the environment. These consequences

were a result of over 4.9 million barrels of oil spilled to the surroundings. It took

BP several months to kill the blowing well, and regain control of the situation

(National Commision, 2011). Similar consequences can be found from other

accidents, which shows why it is of uppermost importance for all operators to

prevent and minimize the risk of having an uncontrolled release of formation fluids

to the surroundings.

2.2.7 Blowout Statistics

According to a report published by the UNEP Industry and Environment agency

(UNEP, 1997), the probability of shallow gas blowouts in exploration wells were

approximately one in every 200 wells. This statistic was based on data collected

from USA, Gulf of Mexico and the North Sea (Oudeman, 2007), and demonstrate

how rare phenomena a blowout is. In addition, SINTEF has created a database
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recording blowouts from the US Gulf of Mexico and the North Sea, which is

presented in figure 2.8.

Figure 2.8: Amount of blowouts experienced during different petroleum
activities (SINTEF, 2017).

The figure above presents an overview of blowouts occurrence by operational phase,

and shows a total of 292 blowouts from 1 January 1980 to 31 December 2014

(SINTEF, 2017). From figure 2.8, one notice that blowouts are most frequent

during drilling, and especially during exploration drilling. Although the statistics

above shows that blowouts do not occur frequently, the possible consequences

of such an event is of too high magnitude to simply ignore. This is the main

reason for blowout modelling being such an important topic in the oil and gas

industry. Hence, there is an increasing focus in the industry to develop tools with

the purpose of simulating blowout scenarios.

2.3 Blowout Modelling

In oil production it is essential that the formation fluids flow vertically through

the tubing. These fluids are initially present in a high pressure and porous reser-

voir. When the hydrocarbons are flowing upwards to the surface, the pressure

decreases. As a result, the light hydrocarbons dissolved in the liquid gets released.

In a high-pressure environment, gas preferentially dissolves in oil rather than in

water. For this reason, the mixture of fluids in the reservoir may only contain

liquid, like connate water and oil with dissolved gas. An oil production well forms
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a complex multiphase flow system which can be predicted by using numerical

simulators (Gomes, 2016).

In light of developing a new steady state flow model, it is necessary to study

already existing simulators. There are generally two types of numerical simula-

tions software available related to blowout modelling. One simulator focuses on

killing a blowout, and how this should be done hydraulically. The second type

of simulator focuses on estimating the rate, volume and duration of a blowout,

hence studying the oil spill. The latter one, provides results that can be used in

an ERA and in oil spill emergency response plan (Arild et al., 2008; Karlsen and

Ford, 2014b).

When conducting blowout calculations, there are several factors to consider, in-

cluding flow rate, release point, flow path and flow medium. All these parameters

are unknown and come with a high degree of uncertainty (Karlsen and Ford,

2014b; Nilsen, 2014). Because of the wide variety of possible combinations of

these parameters, all blowouts are assumed to be different and need to be treated

as such.

A statistical-based model seeks to compare a blowout to one that has occurred in

the past, and thus base blowout modelling on historical data. The quantity of the

flow rate of formation fluids has a direct influence on the total amount released,

and thus also a great impact on the potential damage of the environment (Nilsen,

2014). Conventionally, conservative numbers for uncertain reservoir parameters

have been used for calculating blowout rates, consequently only introducing rates

based on historical data. However, as every blowout scenario is to be consid-

ered unique, this model is not considered to be optimum. Another approach is

to only address one or few conservative worst case scenarios, and calculate the

WCD blowout based on this. These described methods may generate unrealistic

scenarios, thus either overestimate or underestimate the risk of a possible blowout

(Arild et al., 2008). For this reason, numerical simulators based on probability

distributions, have been introduced for modelling potential blowout rates, dura-

tion and volumes (Karlsen and Ford, 2014b).
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There are several other factors affecting the characteristics of a blowout. The

source for the blowout, namely the reservoir, and its size, in combination with

the duration of a blowout, determines the amount of fluids released. Whether

the emission of fluids are oil, gas, condensate, water or a mixture of these, also

has a great impact on the possible damage a blowout may cause (Nilsen, 2014).

Furthermore, the flow path in which the uncontrolled hydrocarbons flow through

from reservoir to discharge point, and restrictions in the flow path, also have an

influence on the characteristic of a blowout.

As mentioned earlier, blowout calculations and simulations plays an important

role in the risk analysis operators conduct before performing any activity offshore.

It is essential to avoid such an catastrophic event, but also minimize consequences

of a blowout if it occurs. This means taking all kinds of blowout scenarios into

considerations (Nilsen, 2014). The blowout rate is a direct measure of the physical,

economic and environmental harm caused by a blowout, as well as a great indica-

tor for the amount of work required to regain control of the situation. This clearly

shows the importance of developing simulators to estimate blowout parameters

and possible consequences of oil spill, and the effort companies lays in this line of

work.

There are currently no relevant international or national standardized method-

ology relevant for ERA in calculation of blowout rate, volume and duration.

Therefore, in order to standardize nomenclature, procedure and documentation

of blowout calculations, the Norwegian Oil and Gas Association (OLF) has estab-

lished guidelines (Karlsen and Ford, 2014b; Nilsen, 2014). According to the OLF

guidelines, the results should be presented in a probabilistic manner. This is vital

in order to reflect the uncertainty in an ERA. Otherwise, the uncertainty will

not be reflected in the final results, and the level of detail will be compromised

(Nilsen, 2014).
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2.3.1 Models for Analysing Blowouts

As of today, there are various software models available to predict the blowout

parameters, calculate blowout kill parameters, and estimate the consequences of

an oil spill. According to Yuan et al. (2014), these include Santos (2001), Lage

et al. (2006), Oudeman (2007), and BlowFlow (Ford, 2012). Such models plays

an essential role in evaluating how blowouts can be controlled or for oil spill

preparedness planning, depending on the objectives behind each model (Liu et al.,

2015). These models have been developed with different intentions, and may be

categorized depending on the purpose, which is presented in figure 2.9.

Figure 2.9: Models for analysing blowout, categorized by their purpose.

Models for calculating blowout probability

Lage et al. (2006)

Lage et al. (2006) developed a methodology to perform analysis of the risk of

blowouts. In order to quantify the probability of having a blowout, the model is

based on an innovative approach that uses relevant empirical data in combination

with expert estimates. This is an extension of the Bayesian approach, which is

widely used in the petroleum industry (Lage et al., 2006). The model comprise

of an extensive Hazard and Operability analysis, including a Quantified Risk
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Assessment (Yuan et al., 2014). In addition, Lage et al. (2006) used the OLGA

software to simulate different flowing conditions with the purpose of analysing

consequences of a blowout (Lage et al., 2006).

Transient models for relief well and blowout kill

Santos (2001)

This is a numerical model created with the purpose of analysing blowouts in ultra

deep waters. The model simulates blowout rate and dynamic kill technique using

a relief well, where the model is dependent of time (Yuan et al., 2014). Santos

(2001) comprises of two mathematical models, the wellbore model and the gas

reservoir model, respectively. These models predicts the well pressures and flow

properties during a gas blowout by implementing a transient model that consider

multiphase flow behaviour in the well (Santos, 2001). As the two models are

linked together, it is possible to calculate the corresponding flow rate for a certain

bottomhole pressure (Yuan et al., 2014). This transient model was implemented

in the FORTRAN software, where simulations were performed to study different

blowout scenarios (Santos, 2001).

Oudeman (2010)

Oudeman first developed a simulator in 1998, based on the nodal analysis for

estimating the blowout rate by matching the inflow performance of the well to

the vertical lift performance (VLP). However, the simulator had lack of accuracy

in the calculated blowout rates (Oudeman, 2007). Therefore, an improved model

was published in 2010, with the focus on considering tubular configuration as the

flow path. In the modified model appropriate values for roughness were used in

stead of default values, making it possible to calculate blowout rates with higher

degree of accuracy (Oudeman, 2010). This blowout simulator has been developed

and validated with field data from the North Sea (Yuan et al., 2014).

OLGA Dynamic Multiphase Flow Simulator

This is a dynamic multiphase flow model utilized for simulating multiphase flow

systems, developed in 1979 by the Institute for Energy Technology in Norway. In

addition to being the first transient model develop for the petroleum industry, it
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has also become an industry standard for modelling multiphase flow (Add Energy,

2018). This model and consequently software serves as a base for a variety of other

software programs used in blowout analysis, and is currently being commercialized

by Schlumberger (Schlumberger, 2019).

Models for oil spill calculations

The OSCAR model

This is a three-dimensional dynamic simulation tool for oil spill contingency and

response, developed by SINTEF. This software presents an overview of hydrocar-

bon transport, oil spill and effects during a blowout, and can simulate the results

of different response strategies (SINTEF, 2014).

BlowFlow

BlowFlow is a software tool and methodology developed by NORCE for risk-based

evaluation of blowout scenarios in order to estimate blowout rates, volumes and

duration. These calculations plays an important role in oil-spill preparedness

planning (Yuan et al., 2014). Unlike the other described simulators, this model

utilizes a stochastic modelling approach, e.i. Monte Carlo Simulations, where

probability distributions for a certain number of inputs are used instead of fixed

values (Karlsen and Ford, 2014a; IRIS, 2015). An illustration of the BlowFlow

model framework is shown in figure 2.10. The output of the model are blowout

rate, duration and volume, presented as statistical distributions. The software

therefore takes into account the high uncertainty related to several reservoir input

parameters (Karlsen and Ford, 2014b). This is one of the major reasons for why

this specific simulator differs from other available models for analysing blowouts.

The model is currently being commercialized by Oliasoft. As this thesis is carried

out in cooperation with Oliasoft, the BlowFlow engine will be described in detail

in chapter 3.
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Figure 2.10: BlowFlow model framework (Karlsen and Ford, 2014a).

Computer programs for blowout modelling

OLGA Well-Kill

This is an upgraded version of the OLGA simulator, which focuses on well control.

The simulator was created with the intention of comparing various kill scenarios

for a blowout that occurred in the North Sea (Rygg et al., 1992). OLGA Well-Kill

is a multiphase flow software designed to simulate dynamic kill operation as well

as well intervention methods. The results from this simulator plays an important

role in contingency planning, as well as in actual blowout situations (Rygg et al.,

1992). OLGA Well-Kill is currently being offered exclusively by Add Energy, and

has been widely used all over the world. The program has been applied on 70 live

blowouts, including both the Macondo and Montara blowouts, and has been used

in over 1200 blowout contingency plans (Add Energy, 2018).

Oliasoft Blowout Simulator

This simulator is built on the BlowFlow engine. The purpose of this program

is to compute potential blowout rates, volumes and durations. As of today, the

computer program represents the only solution capable of performing stochastic

blowout calculations in accordance with the latest guideline from OLF and NOR-

SOK D-010 (Nilsen, 2014). The outcome of such a simulator is vital in oil spill
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preparedness planning as well as in actual blowout situations (Oliasoft, 2019).

The blowout simulator is integrated as a module in the well planning software,

Oliasoft WellDesign. This software include modules for well trajectory, casing

design, tubing design and conductor analysis, which makes it possible for the

operators to have control over every aspect related to the well planning (Oliasoft,

2019).

Drillbench Blowout Control

This blowout control software is also powered by the OLGA Dynamic Multiphase

Flow engine. The simulator may be employed to perform dynamic analysis of

possible blowout scenarios, as well as perform well kill simulations (Schlumberger,

2019). The software was in the past, before being commercialized by Schlum-

berger, referred to as OLGA Advanced Blowout Control (ABC). Yuan et al. (2014)

conducted a study of WCD blowout scenarios in ultra deep waters by using the

software OLGA ABC to simulate the dynamic wellbore temperature and calcu-

late relief well hydraulic parameters. The study evaluated operational parameters

during the kill process in order to optimize the blowout control without exceeding

the operational window (Yuan et al., 2014).

These mentioned software engines are widely employed in the industry, either

directly or as a core for other simulators. One example, is the well-known com-

pany Wild Well, which bases their well control modelling on the OLGA and

Drillbench software engines (Wild Well, 2019). As mentioned above, Add Energy

uses the OLGA Well-Kill software in their analysis and service. This clearly

shows how frequent such simulators are used in the oil and gas industry today.

In order to show how it is possible to use blowout modelling to perform oil spill

calculations, the Oliasoft Blowout Simulator will in this thesis be used to present

a realistic blowout simulation example, which is presented in chapter 4.
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As this thesis is carried out in cooperation with Oliasoft, this chapter will de-

scribe the BlowFlow model in more detail. The idea is to present one approach of

blowout modelling, and show how it is possible to conduct simulations of blowout

rate, volume and duration, for oil spill preparedness planning. The engine will be

used in chapter 4 to present a simulation example.

BlowFlow is a software tool and methodology created by NORCE for risk-based

evaluation of blowout scenarios, to measure blowout rates, durations and dis-

charged volumes. The result from such an evaluation can be used to estimate

the consequences and effects of a blowout, in dimensioning of oil spill prepared-

ness planning as well as in emergency response planning. All in which plays an

important part as input in an ERA (Arild et al., 2008).

Figure 3.1: BlowFlows role in an ERA (Karlsen and Ford, 2014a).

BlowFlow addresses the first two steps in an ERA, shown in figure 3.1. The engine

takes into account the uncertainty of the input parameters, and thus simulates

a probabilistic blowout. As most of the available software engines regarding

blowout analysis only focuses on deterministic simulation, where uncertainties are

not taken into account, the development of BlowFlow has the possibility to make

a great impact on the petroleum industry (Karlsen and Ford, 2014a).

33
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3.1 Design Philosophy

The BlowFlow engine is based on some principles, which were used to guide the

evolvement of the methodology. According to Arild et al. (2008) these principles

include;

� Geological, technical and operational conditions that affect blowout rate and

duration should be reflected in the analysis

� There should be a consistent way of capturing and handling of uncertainties

� There should be a pre-defined list of relevant background information that

will be used in the analysis

� The presentation and communication of results should be simple and in

non-expert format

� The results from the analysis should be transparent and provide guidance

with respect to which factors are most important

The main purpose of the software is to perform oil spill calculations. However,

other important aspects of this methodology include enhancing the communica-

tion between different companies and give decision makers stronger confidence

with respect to how to reduce the consequences of a potential blowout. In fact, the

tool is meant as a cross-disciplinary tool for communication between people from

different disciplines (Ford, 2012). The model aims to help standardize methodol-

ogy, nomenclature and documentation related to blowout modelling (Arild et al.,

2008). For these reasons, the BlowFlow engine meets the recommendations pre-

sented in the OLF report (Nilsen, 2014).

Unlike other described blowout simulators (see section 2.3.1), BlowFlow takes

into account the high uncertainty related to numerous reservoir input parameters

(Karlsen and Ford, 2014b). By utilizing a predictive Bayesian approach, which

employs probability distributions for a certain number of inputs instead of fixed

numbers, it is possible to express the uncertainty when calculating the blowout

rates, volumes and duration (Arild et al., 2008; IRIS, 2015). Hence, the output

of the model is presented as statistical distributions.
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In order to include the relevant parameters regarding blowout analysis, the pres-

sure, volume and temperature (PVT) model, the multiphase flow model, and the

inflow model are implemented in the simulator as correlations (Karlsen and Ford,

2014b). This creates a complex system which needs to be dealt with numerically.

To numerically solve these equations, a Monte Carlo Simulation is integrated in

the framework of the model (Arild et al., 2008). The Monte Carlo simulation

process can be seen in figure 3.2.

A stochastic modelling approach is utilized, and due to the uniqueness of ev-

ery field, well and drilling operation, the majority of input variables are assessed

based on expert judgement rather than historical data from other wells (Karlsen

and Ford, 2014b). According to Karlsen and Ford (2014b), the use of probability

parameters, based on expert assessment, is a unique feature, and has never be-

fore been successfully implemented in a software tool calculating blowout rates,

duration and volumes.

Figure 3.2: The Monte Carlo Simulation process in BlowFlow.
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3.2 Model Structure

The BlowFlow engine is based on steady state conditions, where multiphase

flow is considered. In order to increase the range of application, the engine has

implemented a variety of models (Karlsen and Ford, 2014b). The figure 3.3 shows

the model structure of the BlowFlow software. However, the software comprises

of three main models (Ford, 2012), namely;

� Blowout flow rate model, based on the PVT Model, the inflow model

and the outflow model

� Blowout duration model

� Blowout discharge volume model

Figure 3.3: The BlowFlow model structure (Ford, 2012).
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3.2.1 PVT Model

There are four available PVT models in BlowFlow, depending on different empir-

ical correlations and the fluid type. The software uses a Black Oil PVT model

to calculate the necessary fluid properties of oil. This PVT model is based on

empirical correlations, including Vasquez-Beggs, Standing and De Ghetto (Ford,

2012). The Standing and Vasquez-Beggs correlations are employed for light and

medium oils, while the De Ghetto model is used for heavy and extra heavy oils

(Karlsen and Ford, 2014a). These PVT models contain equations for (Ford, 2012);

� Bubblepoint pressure, Pb

� Solution ratio, Rs

� Oil formation volume factor, Bo

� Oil compressibility, co

The other general oil properties, including oil density and gas-oil interfacial tension,

are equal for all models. Moreover, there is only one PVT model available in the

software to compute the essential fluid properties of gas. The Gas PVT model

calculates the following parameters (Ford, 2012);

� Gas density, ρg

� Gas formation volume factor, Bg

� Gas isothermal compressibility, cg

� Pseudocritical temperature and pressure, Tpc and Ppc

� Pseudoreduced temperature and pressure, Tpr and Ppr

� Pseudoreduced gas density, ρpr

� Gas compressibility factor, Z

� Gas-condensate interfacial tension, σgc

Although the oil and gas viscosity models are actually part of the Black Oil PVT

model and Gas PVT model, respectively, the BlowFlow engine define them as

separate models. This is done with the intention of increasing the flexibility in
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calculating these parameters. There are four available oil viscosity models, in-

cluding Vasquez-Beggs, Standing, De Ghetto and Egbogah, while there are two

available gas viscosity models, namely Lee and Lee Modified (Ford, 2012). The

author refers to Ford (2012) for additional information about these correlations.

Furthermore, a simple temperature model is integrated in the PVT model. This

model converts measured formation temperatures into flowing well temperatures.

It is therefore necessary to define the surface and seabed temperatures, as well as

the geothermal temperature gradient. Because the BlowFlow software is based on

steady state conditions, the model neglects temperature changes over time (Ford,

2012).

3.2.2 Inflow Model

The inflow model is based on a modified method of estimating the productivity

index, presented by Larsen (2001). Stochastic inputs defined by the user of the

software are sampled and processed by the reservoir model in order to produce

the IPR curve for both oil and gas (Karlsen and Ford, 2014a). BlowFlow provide

different expressions for the productivity index depending on the type of model

chosen, including (Ford, 2012);

� Oil-Basic: Basic reservoir model, which is used if the productivity indices

are not available. This model is only valid for oil inflow.

� Oil-Fractured well: Extended version of the Oil-Basic Model which may

be applied for a fractured reservoir.

� Explicit: The simplest inflow model available in BlowFlow. Then the

productivity index for the predefined penetration scenario is set directly as

probability distributions. This inflow model works for both oil and gas.

In addition to the explicit model also working for gas, the software consist of a

reservoir model for gas deliverability (Karlsen and Ford, 2014a). This is a model

for single-phase gas or gas/condensate, based on pseudo pressures. It contains

the same inputs as the Oil-Fractured model (Ford, 2012).
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3.2.3 Outflow Model

The outflow model is a two-phase flow model based on steady state conditions,

which may be applied for both oil and gas. The outflow model uses a nodal

analysis technique to compute the blowout rates. The well is then discritized

into nodes. As the surface pressure and temperature are known, an initial guess

is made for those variables in the next cell. All necessary calculations are then

performed for each of the segments (Ford, 2012; Karlsen and Ford, 2014b). Hence,

the calculations are performed from the top of the well and downwards. Once

performed for all cells throughout the well, and the computed pressure drop

across the cells is equal to the initial guess within some margin, the VLP curve

is established. By using the VLP curve in combination with the IPR curve

produced from the inflow model, the flow rate may be estimated with the help of

the intersection method (Karlsen and Ford, 2014a).

Figure 3.4: A VLP and IPR curve showing the outflow/inflow from annulus to
surface and the intersection point.

There are three available models in BlowFlow for calculating the outflow. The

multiphase flow correlations include Hagedorn-Brown for oil and gas in vertical

wells, Beggs and Brill for oil and gas flow in horizontal or inclined wells, and Gray

for vertical flow in gas-condensate wells (Ford, 2012).
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3.3 The BlowFlow Analysis Process

The BlowFlow analysis process consist of three steps; Assessment of input data,

BlowFlow analysis (model), and conducting a thorough evaluation of the results

(Ford, 2012). These three phases make up the work process used in the tool,

shortly described in figure 3.5.

Figure 3.5: The BlowFlow work process (Arild et al., 2008).

3.3.1 Assessment of Input Data

The BlowFlow software requires input on a large number of variables. The first

step in the BlowFlow analysis, which is also the most time-consuming part of

the process, is to conduct a precise evaluation of the input data (Arild et al.,

2008). Although many of the input parameters required in the simulator can be

obtained from relevant documentation related to the drilling operation, most of

the variables needs to be defined based on historical data or expert judgement,

or a combination of both (Ford, 2012). An overview of the most essential input

categories required in the BlowFlow simulator are presented in table 3.1.
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Table 3.1: Input parameters required in BlowFlow (Arild et al., 2008).

Category Sub-category

Reservoir

Fluid

Temperature gradient

Reservoir zones

PVT models

Multiphase flow models

Well Design

Platform

Achitecture

Drill string

Survey

Duration

Capping

Relief well

Bridging

Natural cessation

Probabilistic scenarios

Blowout flow path

Release point

Penetration depth

Bit location

BOP opening

Input variables comprises of both certain and uncertain parameters, which may

be implemented in the software by the user operating the tool. In general, one

distinguishes between two types of inputs, namely probabilistic and deterministic

parameters (Karlsen and Ford, 2014a). Probabilistic parameters are represented

by single probability values or probability distributions in order to perform an

assessment of uncertain parameters, while the deterministic inputs are parameters

not connected to uncertainty (Ford, 2012). Typically, the deterministic parame-

ters are related to the architectural and geometrical design of the well, and the

formation temperature gradient (Karlsen and Ford, 2014a).
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A large number of the input reservoir parameters are highly uncertain, and may

have a great impact on the results from an analysis. To deal with the uncertainty

related to many of the blowout parameters, a stochastic modelling approach is

implemented in the model. Then, probability distributions for a certain number

of reservoir inputs are used instead of fixed numbers, which increases the accuracy

of the blowout analysis (Karlsen and Ford, 2014b).

Blowout killing mechanism is an important factor in determining the blowout

duration, and thus has to be selected before running the simulation. The pre-

defined duration models covered in BlowFlow are relief well, capping, natural

cessation and bridging. The user may implement the probability of success as

well as duration, for each killing operation (Arild et al., 2008).

When entering data into the model, the user must choose an appropriate dis-

tribution model, that is, the distribution model that best represents the data for

the actual well and the scenario. BlowFlow offers a variety of distributions types,

including;

� Continuous Uniform Distribution

� Dirac Distribution

� Exponential Distribution

� Gaussian Distribution

� Piece Wise Linear Distribution

� Triangle Distribution

� Weibull Distribution

� Trapezium Distribution

� Tailed Triangle Distribution

� General Continuous Distribution
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Figure 3.6: Example of two types of distribution models available in BlowFlow.
The first being a triangle distribution model, while the second is a continuous

uniform distribution model.

The author refers to Adams et al. (2010) and Newendorp and Schuyler (2000),

for additional information regarding the various distributions models.

3.3.2 BlowFlow Analysis

After all the input parameters have been assessed, the next step in the process

is to run the overall analysis, and generate all possible combinations of blowout

rate, duration and volume (Arild et al., 2008). The basis for this analysis is the

Monte Carlo Simulation, which is performed on a pre-defined number of blowout

scenarios. The Monte Carlo process in BlowFlow is shown in figure 3.2. The

result from each case is recorded and presented as a summary (Ford, 2012).

3.3.3 Evaluation of Results

The output of the simulation tool is a summary of each of the blowout scenarios

expressed through probability distributions of rates, volumes and durations (Arild

et al., 2008). The probability distributions are presented as density curves and

cumulative distributions functions, where each value has an associated probability

(Ford, 2012). In addition, the program presents a table of rates and volumes as

mean, max, min, P10, P50 and P50.

� Blowout rate: Deterministic or stochastic values calculated for all defined
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scenarios. This parameter is presented across time for the entire duration

of the blowout.

� Blowout duration: Defined as the time until the blowout is successfully

killed.

� Blowout volume: Estimate of the total volume of oil and gas released,

calculated as the product of flow rate and duration.

Figure 3.7: Example of result from the simulator, expressed through probability
distributions of rates, volumes and durations.

The last phase of the BlowFlow work process consist of evaluating the results

obtained from the BlowFlow analysis. An important part of this evaluation is to

study the effect of risk-reducing measures, and use this study to adjust the input

variables. Such re-analysis provides a basis for ranking and selection of candidate

measures (Ford, 2012). It is these results of the simulation that will be used in

oil spill preparedness planning as well as in actual blowout incidents.



4. Simulation in Oliasoft Blowout

Simulator

This chapter will present a simulation example with the BlowFlow model as

engine by using the Oliasoft Blowout Simulator. The case considers a vertical

exploration well of 4400 m with a water depth of 975 m, under High-Pressure,

High-Temperature (HPHT) conditions. All figures associated with this simulation

example are obtained from the Oliasoft Blowout program.

4.1 Well Input

As described in chapter 3, the Oliasoft Blowout Simulator requires input on

numerous parameters in order to perform the analysis. These properties must be

carefully considered to be able to predict the possible blowout rate, volume and

duration accurately. In order to present a realistic simulation example, the input

data have been determined based on discussion with Kjell K̊are Fjelde, Gomes

et al. (2015), Gabolde and NGUYEN (2006), and the Macondo Blowout in 2010

(Oldenburg et al., 2012).

4.1.1 Topside

The case is considering a subsea exploration well with water depth of 975 m. A

drill floor elevation of 25 m is considered adequate. The wellhead is installed at

the seabed, located 1000 m from the drill floor at the platform. For simplicity,

the well trajectory is assumed to be vertical, mimicking an exploration well. The

well is assumed to be 4400m deep. The figure 4.1 presents a schematic of the

topside and water depth, shown in the program.

45
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Figure 4.1: Schematic representation of the platform and water depth.

4.1.2 Formation

It is assumed that the drill floor temperature is 15 oC, and that the seabed

temperature is 4 oC. These inputs are represented by single values. With a

geothermal temperature gradient of 4.8 oC/100m, one may estimate the formation

temperature for the well in question. This is calculated by the software, and

presented as a graph, shown in figure 4.2.

Figure 4.2: Estimated formation temperature throughout the well.
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As explained earlier, the management of BHP is an important part of the drilling

operation, and thus it is essential to study the pore and fracture pressure in a well.

A plot of the pore pressure (outlined in blue) and the fracture pressure (outlined

in yellow) gradients against depth are presented in figure 4.3. This figure also

include the setting depth for the casings in addition to the mud weight used when

drilling each section, which will be further elaborated in section 4.2.

Figure 4.3: The formation pressure profile, with corresponding casing setting
depths.

By studying the figure above it is reasonable to believe that there may be a

reservoir present at approximately 4250 m. This assumption is based on the

sudden increase in pore and fracture gradient at that depth. At this specific

depth, the graph shows a pore pressure of 1.9 sg. This information can be used

to calculate an estimate of the reservoir pressure, by applying equation 4.1.

P = ρf ∗ g ∗ h = 1.9 ∗ 0.091 ∗ 4250 = 792bar (4.1)

where P is the pressure [bar], ρf is the formation density [sg], g is the gravitational

constant and h is the well depth [m].
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4.1.3 Drill String Data

It is necessary to define the drill string data in the program. For simplicity, one

only consider drill bit and drill collar to be part of the bottomhole assembly. These

components of the BHA and the drill pipe makes up the drill string program.

Dimensions of the drill string components are presented in table 4.1. Although it

is possible to define several properties regarding each drill string component, only

the minimum required inputs will in this case be stated, including type, length,

pipe body outer diameter (OD) and pipe body inner diameter (ID).

Table 4.1: Drill string components and their dimensions.

Type
Length

[m]

Pipe body OD

[in]

Pipe body ID

[in]

Drill Pipe 4100 5 4.276

Drill Collar 99.5 6 3

Drill Bit 0.5 8.5 -

By using the average joint length and the total length of each component, the

software calculates the number of drill string components needed in the well.

However, as these are not required inputs in order to run a simple simulation, the

program assumes one component of each type presented in the table above.

4.1.4 Reservoir Characteristics

The next step is to select a proper inflow model. The case is based on the inflow

model, OilBasic, because there is no knowledge of the productivity index as well

as this being the preferred model for vertical wells (Erichsen, 2019).

With the use of the OilBasic model, one need to define the permeability and

the skin factor (Ford, 2012). These two factors are both crucial with respect to

reservoir productivity. A skin factor of zero corresponds to no damage, and due to

the high uncertainty related to this parameter, the well is considered to have little

damage. Hence, the skin factor is set to 0.03, which is a default value from the

software. In the light of the Macondo well, a permeability of 500 mD is considered
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(Oldenburg et al., 2012). For simplicity, one consider the permeability to be the

same regarding direction, and thus the kV/kH ratio is set to 1. This is also the

value recommended by the Oliasoft Blowout Simulator user manual (Erichsen,

2019). Based on these reservoir input data, the BlowFlow engine calculates the

corresponding productivity index of the reservoir.

The reservoir is assumed to comprise of both oil and gas, hence there will be

multiphase flow in the well. The oil density for the well in question, is 870 kg/m3,

which yields an API grade of 31.14. According to figure 5.2, this is a character-

istic black oil. The gas density, ρgas, is set to 0.919, while the air density, ρair,

is assumed to be 1.225. The gas gravity, γgas, may be determined employing

equation 4.2.

γgas =
ρgas
ρair

=
0.919

1.225
= 0.750 (4.2)

This calculation yields a gas gravity of 0.750. In addition, the Gas Oil Ratio

(GOR) is set to 600. These parameters are taken from the case study by Gomes

et al. (2015). For simplicity, the presence of impurities in the reservoir, such as

CO2, H2S and N2, are assumed to be negligible. It is believed that the presence

of small amounts of such gases will not have any major affect on the flow rate of

uncontrolled fluids.

The reservoir area in this case is assumed to be equal to the BlowFlow default

values, meaning that it is a rectangle-shaped reservoir with reservoir size (length

and width) being set to 1000 m (Erichsen, 2019). In order for the OilBasic model

to be valid, a rectangle-shaped reservoir is required (Ford, 2012). The reservoir

pressure was calculated from equation 4.1 to be 792 bar. There is a high de-

gree of uncertainty related to the reservoir pressure, which is why the pressure

value is presented using a triangle distribution, T(771,792,813) bar. These values

represents the assumed minimum, most likely and maximum reservoir pressure,

respectively. The triangle distribution of the reservoir pressure is shown in figure

4.4.
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Figure 4.4: Triangle distribution of the reservoir pressure.

By studying the pressures throughout the well (see figure 4.3), one may expect

the reservoir to be at a depth of approximately 4250 m. With the use of known

surface temperature and seabed temperature, in combination with a geothermal

gradient of 4.8 oC/100m, the reservoir temperature is estimated to be 167 oC.

Such reservoir temperature, in combination with high reservoir pressure, yields a

HPHT reservoir.

Although the total height of the reservoir zone may be an uncertain property, this

parameter is presented as a dirac distribution. This yields a gross thickness of

65 m. Because the whole reservoir is assumed to contain hydrocarbons with no

layers of shale, the net/gross ratio is set equal to one.

In order to give an overview of the input parameters regarding the reservoir,

figure 4.5 summarize the input reservoir parameters used in this simulation exam-

ple. Although, some of these variables are defined using probability distributions,

such as the reservoir pressure, the most likely value is presented in the figure.
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Figure 4.5: Reservoir zone properties with the use of OilBasic model.

4.2 Casing Design

The casing program chosen for this well is presented in table 4.2. In addition,

the software generates a schematic illustration of the wellbore, shown in figure

4.6. All casings are anchored from the wellhead at seabed, meaning that the top

of each casing is at a depth of 1000 m. Both the conductor casing and the surface

casing are cemented from casing shoe up to wellhead, while the intermediate

casing and the production casing are cemented 200 m up from the casing shoe.

Accurate size, nominal weight and grade of the casings are found using Gabolde

and NGUYEN (2006). After the production casing has been set and cemented,

one consider an open hole section of 200 m.
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Table 4.2: Casing program used as input in the Oliasoft Blowout Simulator.

Hole

section

[in]

Casing
Size

[in]

Setting

depth

[m]

Mud

@ shoe

[sg]

Top of

cement

[m]

Nominal

weight
Grade

36 Conductor 30 1150 1.03 1000 309.7 X-56

26 Surface 18 5/8 1500 1.15 1000 97.7 K-55

17 1/2 Intermediate 13 3/8 2900 1.57 2700 77 C-90

12 1/4 Production 9 5/8 4200 1.83 4000 53.5 C-95

8 1/2 Open hole - 4400 - - - -

A riser with an OD of 24” and a ID of 22.5” is selected. The length of the riser

is set equal to the wellhead depth, meaning that the riser is subjected from the

platform with a length of 1000 m. The riser is attached to the top of the BOP

system at the seabed.

Figure 4.6: Wellbore schematic showing the casing program and open hole
section.
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4.3 Trajectory

As mentioned earlier, a vertical exploration well is considered. Hence, the well

trajectory is vertical with no inclination. The trajectory design with corresponding

casings and riser is shown in figure 4.7.

Figure 4.7: Illustration of the vertical well trajectory.
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4.4 Blowout Simulation

4.4.1 Simulation Settings

As described in chapter 3, one need to specify which kind of empirical correlation

models that should be applied in the simulation. In this specific simulation

example, based on description from Vasques and Beggs (1980) and Erichsen

(2019), the following correlations are considered;

� Vasquez-Beggs PVT model: Because we consider a medium oil with

31.14oAPI. This model is the preferred model for light and medium oil due

to the model being based on results from more than 600 crude oil systems,

and thus is applicable to a wider range of oil properties.

� Hagedorn-Brown multiphase flow model: Because we have a verti-

cal well with both oil and gas flow. This model is the most widely used

multiphase model for calculating VLP in the industry.

� Vasquez-Beggs oil viscosity model: Because we consider a medium oil

with 31.14oAPI, and the Vasquez-Beggs PVT model is being used.

� Lee Modified gas viscosity model: Because this model has better per-

formance for a greater range of gas viscosities.

It is possible to adjust the number of simulations, meaning number of Monte

Carlo iterations performed. This number may be reduced to a low value (<1000),

in order to check if the blowout simulation is valid. However, it should ideally not

be lower than 10 000 when running a full simulation (Erichsen, 2019). Therefore,

the number of iterations are set to 10 000 in this case.

4.4.2 Simulation Scenarios

Type of blowout scenario will vary depending on several factors, including blowout

discharge point, the flow path, penetration depth, BOP opening and well kill

mechanisms. As there is a great uncertainty related to which kind of blowout

scenario that will occur, these parameters are defined as probability distributions

in BlowFlow.
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Blowout exit points and flow path

It is known that the blowout is highly affected by flow path and discharge point.

These quantities are regarded as uncertain and thereby described by probability

distributions.

The default probabilistic distributions related to exit points are set to 50% at

surface and 50% at seabed, with a blowout duration of maximum 100 days. More-

over, both the topside and seabed blowout scenarios will depend on flow path

of the uncontrolled fluids. In Oilasoft Blowout Simulator one may choose three

possible flow paths;

� Blowout through drill string

� Blowout through annulus

� Blowout through an open hole

The default probabilistic distributions related to flow path are set to 11% through

drill pipe, 78% through annulus, and 11% through open hole, regardless of release

point. These default distributions are based on data from the SINTEF Offshore

Blowout Database (SINTEF, 2017), and will therefore not be changed in this

simulation example. The figure 4.8 summarize the flow path and discharge point

probability distributions.

Figure 4.8: Probabilistic scenarios of blowout exit points and flow path.
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Reservoir penetrations and restrictions

The flow rate of a potential blowout is also affected by the BOP opening. Even

though a failure in closing the BOP may appear, a fully open BOP is not likely

to be the scenario. According to OLF guidelines, a 95% closed BOP is considered

reasonable due to the BOP representing a high-reliability system (Nilsen, 2014).

However, as one should always prepare for a WCD scenario, a fully open BOP

is considered as basis in this case study. Hence, the BOP opening probability is

set to 100%. As for the other BOP parameters (see figure 4.9), including BOP

length, maximum through OD and maximum pressure rating, these are set to the

default values recommended by the program.

Figure 4.9: BOP settings used in the case study.

In addition, the flow rate is affected by reservoir penetration depth. Although it

is difficult to predict what penetration depth a potential blowout is most likely

to occur at, Nilsen (2014) has proposed accurate penetration depth distributions;

� Blowout when drilled 5 m into the reservoir: 20%

� Blowout when drilled half way through the reservoir: 40%

� Blowout when drilled through full reservoir-zone: 40%

The software has 55% probability for blowout when penetrating top 5 m of the

reservoir, and 45% probability for blowout when drilled through full reservoir, as

default values for reservoir penetration depth. Unlike the proposed possibility of

a blowout when drilled half way through the reservoir stated in Nilsen (2014), the

software assumes that it is not likely for a blowout to occur at this penetration

depth. This is shown in figure 4.10, and will be the penetration depth distributions

used in this simulation example.
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Figure 4.10: Reservoir penetration depth distributions.

Well Kill Mechanisms

Before running the simulation it is vital to set types of blowout stopping mecha-

nisms, as well as their duration and probability of success. The intention of such

mechanisms is to limit and halt a blowout. Because it is not possible to predict

with certainty which of the well kill mechanisms that will lead to a cessation,

the different well kill mechanisms are set as probabilistic distributions (Erichsen,

2019). In this dissertation the two killing mechanisms capping and relief well are

considered, which is based on these two techniques being the standard in PSA

(2019b).

Capping: The simulation assumes a 50% probability of a successful kill op-

eration by capping subsea within 30 days.

Relief Well: Because there is a high possibility of success in killing a well

with a relief well, the probability of killing a blowing well with a relief well is set

to 100%. The relief well process comprises of several phases, including decision

time, mobilization time, rig move time, drilling time, steer/control time and kill

relief time. Each of these phases and corresponding estimated durations must be

defined before running the simulation. The estimated duration for each of the

phases, are based on Nilsen (2014) and comments from Kjell K̊are Fjelde.

� According to Nilsen (2014), the time it takes to mobilize a rig to the desired

location is typically 14 days. It should be noted that this is the case for

drilling a relief well by mobilizing a new rig. In most cases, it is possible to

drill the relief well with the same rig that drilled the target well, thus the
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mobilization time is set to zero days.

� The rig move time is represented by a triangle distribution, T(2,3,4) days.

This is according to Nilsen (2014) based on well control expert judgement.

� After mobilizing the rig at the accurate position, the drilling of the relief well

may start. According to Nilsen (2014), the time needed to drill a relief well

is highly uncertain, mainly due to the many obstacles that may occur during

this process. Nilsen (2014) also recommend representing this parameter as

a triangle distribution, namely T(20,25,30) days. It is reasonable to believe

that the drilling of a relief well may need even more time. Therefore, after

discussion with Kjell K̊are Fjelde, a triangle distribution of T(20,40,60) days

was set as drilling time.

� After drilling the relief well, one need to steer the relief well into the blowing

well. As mentioned before, it is crucial to hit the target well at the right

location in order to enhance the probability of a successful kill operation.

The time it takes to steer and control the relief well into the blowing well is

set to 1 day (Nilsen, 2014).

� Finally, the time used to kill the blowing well, need to be defined. The time

it takes to stop the uncontrolled flow is set to 1 day.

The time line representing the relief well kill mechanism is shown in figure 4.11.

The figure shows the most likely number of days the different phases requires.

Figure 4.11: The different phases of a relief well process, with corresponding
estimated duration.

For more information about these mentioned killing mechanisms, see section 2.2.3.
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Summary of well input for this simulation example

Table 4.3: Reservoir input data for the simulation.

Parameter Value Unit

Reservoir pressure 771-792-813 bar

Depth of reservoir 4250 m

Oil density 870 kg/m3

API grade 31.1 oAPI

Gas gravity 0.750 -

GOR 600 -

Permeability 500 mD

Skin factor 0.03 -

Gross thickness 65 m

Net/Gross ratio 1 -

Water depth 975 m

Reservoir temperature 167 oC

4.5 Blowout Summary

The output section of the program presents a summary of the results from each

simulated blowout scenario. These results are expressed through probability dis-

tributions of flow rate, duration and volume. The probability distributions are

presented as density curves, where each value has an associated probability. It

should also be mentioned that the simulator presents the results as cumulative

distributions functions. The program presents tables of rate and volume as mean,

max, min, P10, P50 and P90, but our main focus will be on studying the mean

results.

It should be noted that the program presents detailed information of the dif-

ferent parameters used in calculations of blowout rate, volume and duration, as

well as cross-plots of the VLP and IPR curves for each of the flow path scenarios.

However, this will not be further addressed in this thesis.
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4.5.1 Flow Rate

The flow rate is represented both as a probability density curve function and as

a cummulative distribution function. The probability is plotted against flow rate

in m3/day, shown in figure 4.12. The different columns of various height in the

graph represents the probability for each specific flow rate.

Figure 4.12: Probabilistic oil flow rate distribution at day 0.

The different columns in the graph above represent various blowout scenarios. By

analysing the different rates at the various flow path scenarios (see table 4.4 and

4.5), one notice that the different grouping of columns corresponds to different

flow path scenarios. The first group of columns shows the flow rate range for

both surface and seabed blowout through drill pipe, which has a range from 0 to

6250 m3/day. The next grouping of columns represents the potential rates from

a blowout through annulus. This scenario has a rate range from approximately

11 800 to 14 500 m3/day. As there is set a 78% probability of a blowout having

this specific flow path, there is naturally a higher propability distribution of these

columns in figure 4.12. It is believed that the two last grouping of columns

corresponds to potential rates of a blowout to seabed and surface from an open

hole, respectively. As seen from both the figure above and the tables representing

the mean flow rates, there is a relatively low probability of such high blowout rates.
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As mentioned earlier, the software present a table of flow rate results as mean,

min, max, P10, P50 and P90. By studying both potential seabed blowout and

surface blowout at the various flow path scenarios, one see that the oil flow rate

ranges from a minimum of 4844 Sm3/d to a maximum of 35703 Sm3/day, while

the gas flow rate ranges from a minimum of 2.91 SMm3/d to a maximum of 21.4

SMm3/d. The potential flow rate in case of a blowout can be any value within

these ranges, depending on the flow path and release point. It should be noted

that the cumulative distribution function shows a 95% probability of oil flow rate

ranging between 0 to 24 000 m3/day.

Table 4.4 shows flow rate distribution values for oil and gas for potential surface

blowout with different flow paths. This is the mean values of the simulation, which

represents the most likely blowout rate to occur at a potential surface blowout,

depending on the various scenarios. Because the mean flow values are presented

in tables 4.4 and 4.5, they do not necessarily match the distributions values in

graph 4.12. According to table 4.4, the total weighted rates for a surface blowout

are 14 044 Sm3/d oil and 8.427 SMm3/d gas.

Table 4.4: Mean potential surface blowout rate.

Flow path scenario Distribution %
Oil rate

[Sm3/d]

Gas rate

[SMm3/d]

Drill pipe to surface 11 5052 3.031

Annulus to surface 78 13211 7.927

Open hole to surface 11 28943 17.366

Total weighted rates

for surface
100 14044 8.427

Since one consider the possibility of a seabed blowout to occur, various scenarios

have been constructed in order to estimate the flow rates in such cases. Table

4.5 shows the flow rate distribution values for oil and gas, for potential seabed

blowout with different flow paths. These flow rates are also represented by the

mean value from the simulation. The program yields total weighted rates for

seabed of 13 696 Sm3/d oil and 8.218 SMm3/d gas.
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Table 4.5: Mean potential subsea blowout rate.

Flow path scenario Distribution %
Oil rate

[Sm3/d]

Gas rate

[SMm3/d]

Drill pipe to seabed 11 5825 3.495

Annulus to seabed 78 12853 7.712

Open hole to seabed 11 27547 16.528

Total weighted rates

for seabed
100 13696 8.218

From the two tables above one notice highest flow rates in case of an open hole

blowout. This is reasonable because an open hole flow path has no drill pipe

present, e.i. has less friction, resulting in lower BHP, and thus larger inflow from

the reservoir. As expected, blowout through drill pipe result in the lowest blowout

rate. It is believed that the low rate is caused by the large friction inside the drill

pipe, making it more difficult for the hydrocarbons to flow.

In most of the scenarios, surface blowout generates higher rates than seabed

blowout, which is reasonable according to Liu et al. (2015). It should be men-

tioned that this is not always the case. Oliasoft assume that the only difference

between a seabed and surface blowout, is the discharge point. When cross-plotting

VLP and IPR curves, there are many factors that may affect the absolute open

flow, e.i. the intersection point between those two curves. These factors include

various outlet boundary conditions, total depth of the well, pressure and velocity.

Often the surface rates are higher than the seabed rates, with the exception of

cases with very high flow velocity towards the top of the well. This causes the

friction pressure to be significantly higher than the gravity pressure, leading to

a higher rate from a seabed blowout. This is most likely the case for blowout

through drill pipe scenarios, where the rates are higher for a seabed blowout.

The program presents estimated density curves for potential flow rates as a func-

tion of time. Therefore, it is possible to show the potential flow rates for each day

in the graph, within a maximum duration of 100 days. This makes it possible to

notice how the different kill mechanisms affect the flow rates.



63 4. SIMULATION IN OLIASOFT BLOWOUT SIMULATOR

As there is a 50% possibility of the blowout being killed by capping within 30

days, there is a notable change in the rate distribution as one approaches 30 days

on the graph. 32 days after the blowout was first noticed, see figure 4.13, one

observe an increase in the probability of low flow rates, while a decrease in the

probability of higher rates. The lowest flow rates corresponds to approximately

0 Sm3/d. This result is expected, because it is reasonable to believe that the

capping of a blowing well would most likely lead to a reduction of the blowout,

not a complete ceasing. The flow rate distribution after 32 days, i.e. after the

capping mechanism is applied, can be seen in figure 4.13.

Figure 4.13: Probabilistic flow rate distribution at day 32.

Due to the application of a relief well killing technique, it is expected to observe

a steep change in the rate distribution from 30 to 60 days. This expectation is

based on the input from section 4.4.2. As the second kill mechanism is applied,

one observe an increase in the probability of low oil rates, while a decrease in

the distributions of high oil rates. This effect continues, until the relief well

has successfully killed the blowing well after approximately 65 days. Hence, the

probability of zero rate increases, while the probability of other rates decreases,

until the blowing well gets killed. This effect can be observed in the figure below.

This result is reasonable, because the success rate of killing the blowout with a

relief well is set to 100%.



4.5. BLOWOUT SUMMARY 64

Figure 4.14: Probabilistic flow rate distribution at day 45 and 65, respectively.

4.5.2 Volume

The BlowFlow simulator estimates the total volumes of oil and gas that may be

released depending on the various blowout scenarios. This is only an indication

of total volume released until the well is killed after approximately 65 days.

The volume is a function of the probability distribution of both blowout rate

and duration, which is why also this parameter is presented as a density curve

and cumulative distribution function. Figure 4.15 shows the blowout volume

probability distribution for this specific example. From the figure one observe a

maximum volume released during a blowout of 2 319 044 m3, while the minimum

possible volume discharged is 124 077 m3.

Figure 4.15: Probabilistic indication of total blowout volume released until the
well is killed.
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The total volume of released hydrocarbons will, as with the rate, also be affected

by flow path scenario and discharge point. Similar to the flow rate graph, the

various columns in figure 4.15, represent the different blowout scenarios. The first

grouping of columns corresponds to a surface/seabed blowout through the drill

pipe. In such scenarios the total volumes released have a range of approximately

120 000 to 300 000 m3. The next grouping of columns have a range of 300 000

to 900 000 m3, and corresponds to a blowout through annulus. According to the

cumulative distribution function, there is a 92% probability that the total volume

released will lay between 0 and 900 000 m3. The remaining columns correspond

to the potential volume released from a blowout to seabed and surface from an

open hole. The figure clearly shows that blowout through an open hole has the

highest total volume discharged. However, there are a relatively low probability

of such large volumes being released. These results are reasonable, due to the

similar trend shown in the rate graph in figure 4.12.

The simulator presents a summary of the mean, min, max, P10, P50 and P90,

potential volume released in case of a surface and seabed blowout. The mean

potential volume discharged to surface and seabed, are shown in tables 4.6 and

4.7, respectively.

Table 4.6: Potential mean blowout volumes in case of a surface blowout.

Flow path scenario Distribution %
Oil volume

[Sm3]

Gas volume

[SMm3]

Drill pipe to surface 11 229475 137.7

Annulus to surface 78 600108 360.1

Open hole to surface 11 1314877 788.9

Total weighted volume

for surface
100 637963 382.8

From the table above one observe that it is most likely to have a surface blowout

through annulus with a total release of 600 108 Sm3 oil and 360.1 SMm3 gas. In

case of a seabed blowout, the table 4.7 shows that it is most likely to have a

blowout through annulus with a total release of 489 904 Sm3 oil and 293.9 SMm3

gas.
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Table 4.7: Potential mean blowout volumes in case of a seabed blowout.

Flow path scenario Distribution %
Oil volume

[Sm3]

Gas volume

[SMm3]

Drill pipe to seabed 11 222046 133.2

Annulus to seabed 78 489904 293.9

Open hole to seabed 11 1049660 629.8

Total weighted volume

for seabed
100 522013 313.2

As seen from these results, a surface blowout tend to lead to larger volumes being

discharged, and is therefore usually of highest detrimental. According to Liu et al.

(2015), a surface blowout usually result in a much higher gas fraction, much higher

mixture velocity and much lower pressure at the bottom of the well compared

to the reservoir. In case of a seabed blowout, there would be a backpressure for

instance caused by the hydrostatic pressure of water. This backpressure has the

potential to dampen the unloading significantly (Yuan et al., 2017). All these

factors causes a more severe blowout if the release point is at surface. The result

from this simulation example is therefore reasonable due to the statement from

Liu et al. (2015).

4.5.3 Duration

The BlowFlow simulator estimates the duration of a blowout. This is an indica-

tion of how long it is going to take to regain control of, and kill the blowing well.

Similar to the two other parameters, the duration is presented by a density curve

and a cumulative distribution function, where the probability is plotted against

time in days. The duration probability distributions are shown in figure 4.16.

The duration is a function of the different killing mechanisms considered. It

will depend on the time of occurrence and the probability of a killing mechanism

to successfully kill the blowout. In this conducted analysis one assume that the

blowout gets killed by either capping or by drilling a relief well.
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Figure 4.16: Blowout duration probability distribution.

The duration graph in figure 4.16 shows two peaks, namely after approximately

30 and 46 days. This is expected because the various kill mechanisms interfere at

different times. The first peak is associated with the application of capping. Ac-

cording to the cumulative distribution function, there is a 10% chance of successful

killing the blowout within 30 days. After 32 days the application of capping has

taken place, and one notice a 29% probability that the blowout is killed by either

capping or relief well. It should be noted that the application of relief well may

begin before or during the capping mechanism, due to the triangle distribution

for drilling time being set to T(20,40,60). This is why the graph increases slightly

before capping occurs.

If the blowout is not killed by capping, the well will continue to blow with

full or halted rate until it is killed by the relief well. The kill operation by relief

well is set to have a 100% probability of success. The time taken to kill a well

with relief well is set as a continuous distribution, which is why it is difficult to

determine the precise duration of the blowout from figure 4.16. This gives a

continuous distribution of the columns with a range from 26 to 65 days. The

distributions shows a minor peak at approximately 46 days. The longest possible

blowout duration is 65 days, due to the assumption of successfully killing of the

blowing well by a relief well. It should be noted that the columns are widely

spread, which reflect the uncertainty related to the different killing mechanisms.



5. Mathematical Model for Steady

State Flow

Multiphase flow models, like the steady state flow model, are widely used in the

petroleum industry. One possible application of such a model, is to simulate

a blowing well. During numerical modelling of blowout rate it is important to

develop both mathematical and computational models, where the mathematical

model form the base for the simulation. As the steady state flow model comprises

of a complex system of equations, it will be solved numerically.

The purpose of this thesis is to develop a steady state flow model for a blow-

ing well in Matlab, based on the code developed by Gomes (2016). The thesis

aims to improve the model, by making it compatible with an annular geometry

as well as implementing an inflow model. The latter being described in chapter 7.

The following chapter will present the various calculations and models that will

been integrated in the steady state flow model.

5.1 Conservation Laws

With respect to well flow, there are three fundamental laws that applies, namely

conservation of mass, conservation of momentum, and conservation of energy

(Fjelde, 2016). Multiphase flow models based on conservations laws are widely

utilized in the oil and gas industry. Such models have a broad range of applications,

and may be utilized to simulate blowouts, underbalanced drilling operations or flow

assurance. One may categorize the multiphase flow models in two main groups,

mainly transient models and steady state models. In a transient model, the flow

and pressure are dependent of time, while these parameters are independent of

68
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time in a steady state model (Danielson et al., 2000).

5.1.1 Steady State Model

If one consider steady state conditions, the model is independent of time, there

will be no sonic waves propagating in the system, and the mass flow rate of each

phase will be constant, regardless of position in the well (Fjelde, 2016; Danielson

et al., 2000).

In order to apply the conservation laws for a pipe, the pipe has to be divided into

cells, as shown in figure 5.1. The conservation laws then have to be solved for

each of the cells by applying a shooting technique. The discretization process and

the shooting method will be address in sections 6.2.1 and 6.2.2, respectively.

Figure 5.1: Illustration of the conservation of mass in a discretized pipe.

If the temperature gradient in the well is assumed to be constant, the conservation

of energy can be neglected. The transient drift flux model can be used for

modelling two phase flow, e.g. in Fjelde (2016). This transient model can be

simplified for steady state flows. In terms of conservation of mass, one simply

remove the time dependency of the basic conservation law (Fjelde, 2016).

Conservation of liquid mass:

δ

δz
(Aρlαlvl) = 0 (5.1)
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Conservation of gas mass:

δ

δz
(Aρgαgvg) = 0 (5.2)

Furthermore, one may remove the acceleration term in the momentum equation

to make it compatible with steady state conditions.

Conservation of momentum:

δ

δz
p = −((ρlαl + ρgαg)g +

∆pfric
∆z

) = −(ρmixg +
∆pfric

∆z
) (5.3)

Table 5.1: Definition of variables used in the conservation laws.

Variable Unit

A - Area m2

ρl - Liquid density kg/m3

ρg - Gas density kg/m3

vl - Liquid velocity m/s

vg - Gas velocity m/s

p - Pressure Pa

g - Gravity constant 9.81 m/s2

αl - Liquid volume fraction -

αg - Gas volume fraction -

ρmix - Mixture density kg/m3

∆z - Vertical displacement m

∆pfric - Frictional pressure drop Pa

Equations 5.1, 5.2 and 5.3, defines the steady state model for multiphase flow in

a pipe. Because there are usually multiphase conditions in a well, one has to take

into consideration the mixture properties of a flow, meaning a mixture of liquid

and gas flow. Additional closure laws are needed to close the model, including

models for friction, gas slippage and PVT.

The conservation laws presented above only consider liquid and gas flow without
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mass transfer between the phases. In most practical cases, the oil contain dis-

solved gas, and thus the black oil model should be considered (Coats et al., 1998;

Pettersen, 1990). This is a model that in fact employs the conservation laws, but

with another formulation, in combination with taking the mass transfer between

phases into account.

5.2 Black Oil Model

Petroleum reservoirs are often categorized in terms of their fluid type, and thus

the fluids PVT parameters. Figure 5.2 shows some characteristics of the main

petroleum fluids (Petrowiki, 2015c).

Figure 5.2: Petroleum fluids and their characteristics (Petrowiki, 2015c).

There are mainly two models used to specify the mass transfer between liquid

and gas phases, namely the black oil model and the compositional model. The

compositional model is complex due to the large number of components, and its

use is restricted to highly volatile oil systems (Peaceman, 1977). In the black

oil model one disregards the composition of oil, and define it as a phase in the
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system. This system may in addition to oil, contain water and gas (Pettersen,

1990). Hence, the black oil model is compatible with a three phase flow regime if

desired.

The black oil PVT model has wide acceptance in the industry. This model

is associated with oils with API degree lower than 40 and which experiences

relatively small changes in composition within the two phase envelope (Gomes

et al., 2015; Brill and Mukherjee, 1999). For simplicity, these small changes in

composition are neglected, and it is assumed to be no mass exchange between

the water phase and the other phases (Peaceman, 1977). Furthermore, the model

assumes that oil may absorb and release gas, while gas cannot do the same for

liquid (Pettersen, 1990).

The black oil model is generally employed to find various properties of each

of the different phases present in a pipe. The most important parameters defined

in the black oil model are presented in figure 5.3, and will be further explained

in section 5.2.3. Such fluid properties may be measured in a laboratory by con-

ducting PVT analysis or they may be determined by a wide range of empirical

correlations (Singh and Hosein, 2012).

Figure 5.3: Essential variables defined in the black oil model (Gomes, 2016).

The relationship between GOR and Rs are shown in figure 5.4. As the pressure

increases, more gas get dissolved into the liquid phase. For conditions where

p < Pb, the solubility ratio is generally proportional to the pressure, e.i. an
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increasing linear function. Above bubble point, the oil contain no free gas, and

thus the solubility ratio is constant (Pettersen, 1990). In fact, above the bubble

point Rs = GOR.

Figure 5.4: The relationship between Rs and GOR (Pettersen, 1990).

5.2.1 Required Initial Parameters

When using the black oil model there are several input variables that need to be

defined physically in the model in order for it to work. These inputs are presented

in table 5.2. It should be mentioned that the model developed by Gomes (2016)

has here been modified to consider blow in annuli instead of a tubing.

Table 5.2: Initial parameter needed to be defined in the black oil model (Gomes,
2016).

Symbol Parameter Unit

do Outer diameter of annulus m

di Inner diameter of annulus m

e Inner rugosity m

GOR Gas-Oil Ratio scf/STB

γo Oil gravity -

γg Gas gravity -

Mair Air molar mass g/mol

ρair Air density lbm/ft3

µo Oil viscosity cP

µg Gas viscosity cP

ρw Water density lbm/ft3
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Although it is possible to include oil viscosity model and gas viscosity model in the

program to estimate the viscosity of the different phases, they are in this specific

case defined as fixed values. These parameters are in combination with the other

variables presented in the table above, declared inside the code in Matlab. For

simplicity, the model only consider a mixture of gas and oil flow, hence does not

include water flow.

5.2.2 Preliminary Calculations

In addition to the self-defined input variables listed in table 5.2, there are some

preliminary calculations that need to be integrated in the black oil model in

order for the model to determine the various PVT properties. The preliminary

calculations, based on Gomes (2016), are presented in equations 5.4 to 5.10.

An important aspect of the model is that all variables included in the model

should be given at surface conditions and in field units. This is vital because the

black oil model utilizes the known flow rate at surface to calculate fluid properties

at downhole conditions. Therefore, all the parameters will be defined at Standard

Conditions (SC) or Stock Tank Conditions (STC) (Pettersen, 1990), which refers

to temperature of 60oF and pressure of 14.7 psi.

Solubility ratio at bubble point in Scf/STB:

At bubble point all the gas is dissolved in the liquid, hence

Rsb = GOR (5.4)

Oil flow rate at standard conditions:

As water is neglected in the flow, the oil flow rate at standard conditions, Qost,

will be equal to the total liquid flow at surface, Ql. Both are presented in, ft3/s.

Gas flow rate at standard conditions:

Qgst = GOR ∗Ql (5.5)

where Qgst is the gas flow rate at surface in ft3/s
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Relative roughness:

K =
e

do − di
(5.6)

Hence, relative roughness, K, is a dimensionless variable.

Dead oil density in lbm/ft3:

ρdo = γo ∗ ρw (5.7)

Gas density at standard conditions in lbm/ft3:

ρgst = γg ∗ ρair (5.8)

API grade:

γAPI =
141.5

γo
− 131.5 (5.9)

Flow area in in2:

A =
π ∗ (do − di)2

4
(5.10)

5.2.3 Empirical Correlations

According to Yahaya and Gahtani (2010), empirical correlations are defined as

mathematical relations based on experimental data. Correlations for fluid proper-

ties such as solution gas/oil ratio (Rs), bubble point pressure (Pb) and oil volume

formation factor (Bo), are presented as functions of pressure, temperature, gas

gravity and oil gravity (Gomes, 2016).

Over the last decades, numerous empirical correlations have been established

with the purpose of estimating pressure drop and various fluid flow characteristics

during multiphase flow (Brill and Mukherjee, 1999; Yahaya and Gahtani, 2010).

The Standing correlation (Standing, 1947), developed in 1947, is one example of

such an empirical correlation. This correlation comprises of empirical relations

for bubble-point pressures, solubility ratio and oil formation factor. Although

the correlation was developed from limited data, it is one of the best known and
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widely used method for calculating these parameters in the petroleum industry

(Vasques and Beggs, 1980; Standing, 1947). For these reasons, the Standing cor-

relation will be employed in the flow model to calculate the properties of each

phase as well as the mixture properties.

Figure 5.5: Typical response of the important parameters in the black oil model
(Pettersen, 1990).

Figure 5.5 shows typical response of the essential parameters in the black oil

model. The behaviour of the Rs is discussed earlier. The oil formation volume

factor will increase with increasing pressure, because more and more gas gets

dissolved in the oil. At bubblepoint, there is no free gas in the oil, and thus there

will be a small decrease in the function, since the oil will be compressed for higher

pressures. In an opposite way, the gas formation volume factor will decrease due

to the same phenomena. As Bg approaches the bubble point pressure, it will get

closer to zero (Pettersen, 1990).

Bubble point pressure

The Standing correlation can be employed to estimate the bubble pressure in

psi, which is defined as the highest pressure at which the first bubble of free gas

appears in a multiphase system (Beggs, 1987):

Pb = 18

(
Rsb

γg

)0.83

10yg (5.11)
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Here Rsb is the dissolved gas oil ratio at bubble pressure, calculated by equation

5.4 as part of the preliminary calculations. The internal variable, yg, is defined

by equation 5.12.

yg = 0.00091T − 0.0125γAPI (5.12)

where T is the temperature in oF , and γAPI is the API grade calculated from

equation 5.9, in the preliminary calculations.

PVT properties are highly affected by the bubble point pressure. If Pwf < Pb,

then the solubility ratio increases with increasing pressure, whereas if Pwf > Pb,

the solubility ratio is constant. This may be utilized to determine if the flow in

a pipe is multiphase or single-phase. If the pressure is below the bubble point

pressure, then there is a two-phase oil/gas system. If the pressure is above the

bubble point pressure, then there is no free gas, and only unsaturated oil is flowing

in the pipe (Ford, 2012; Pettersen, 1990).

Solubility ratio

The parameter solubility ratio defines the volume of gas at standard conditions

dissolved in a unit volume of stock tank oil for a given pressure and temperature

condition (Brill and Mukherjee, 1999). The solubility ratio can be calculated

from empirical correlations or determined experimentally. By using the Standing

correlation, which is developed on basis of a regression line, the solubility ratio

in Scf/STB can be defined by equation 5.13 (Standing, 1947).

Rs = γg

[
p

(18)(10yg)

] 1
0.83

(5.13)

where p is the pressure at downhole conditions in psi. It should also be mentioned

that for p > Pb, the pressure in the equation 5.13 will be replaced by the bubble

point pressure. As mentioned in the preliminary calculations, the solubility ratio

at bubble point is equal to GOR.
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Oil formation volume factor

The volume of stock-tank oil at standard conditions is generally smaller than the

volume of in situ oil. This difference is mainly caused by the dissolved gas being

released from the oil when oil is transported to surface. The formation factor for

oil is defined as the ratio of the volume of oil plus its dissolved gas at downhole

conditions, Vo, and the volume of oil at standard conditions, Vost (Peaceman,

1977).

Bo =
Vo
Vost

(5.14)

Bo in bbl/STB can be obtained by applying the Standing empirical correlation,

defined in equation 5.15 (Standing, 1947; Sutton and Farshad, 1990).

Bo = 0.972 + 0.000147F 1.175 (5.15)

where F is an internal variable, defined as:

If p < Pb: saturated oil

F = Rs

(
γg
γo

)0.5

+ 1.25T (5.16)

If p > Pb: undersaturated oil

F = Rsb

(
γg
γo

)0.5

+ 1.25T = GOR

(
γg
γo

)0.5

+ 1.25T (5.17)

Here Rsb is calculated by using equation 5.13, setting p = Pb. Hence, above bubble

point Rs = Rsb = GOR. Because the Standing correlation is only compatible for

cases where p < Pb, one need to include the Vasquez-Beggs correlation for cases

above the bubblepoint pressure (Sutton and Farshad, 1990). The Vasquez-Beggs

correlation for Bo is defined by equation 5.18.

Bo = Bobe
−co(p−Pb) (5.18)

where co is the isothermal compressibility factor of oil in psi−1, defined by Vasquez-
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Beggs as (Sutton and Farshad, 1990);

co =
−1433 + (5 ∗Rsb) + (17.2 ∗ T ) + (−1180 ∗ γg) + (12.61 ∗ γo)

p ∗ 105
(5.19)

In order to ensure a smooth transition between saturated and undersaturated flow,

the Standing correlation is integrated inside the Vasquez-Beggs formula, and thus

the formation volume factor for oil at bubble point pressure, Bob, is determined

by applying equations 5.17 and 5.15 (Gomes, 2016).

Gas formation volume factor

The formation factor for free gas can be obtained in a similar manner as for the

oil formation volume factor. Bg is defined as the ratio of the volume of free gas

at downhole conditions, Vg, and the volume of the gas at surface in standard

conditions, Vgsc (Gomes et al., 2015; Petrowiki, 2015a);

Bg =
Vg
Vgsc

(5.20)

If we assume real gas, we get:

Vg
Vgsc

=

ZnRT
p

ZscnRTsc
psc

(5.21)

T is the temperature, Tsc is the temperature at standard conditions, p is the

pressure, psc is the pressure at standard conditions, n is the number of moles

of gas, and R is the universal gas constant. The Z is the gas compressibility

factor. At standard conditions Z=1, assuming an ideal gas. The parameters n

and R cancels out due to them being the same regardless of conditions (Petrowiki,

2015a). Hence, equation 5.21 can be simplified as;

Bg = Z
Tpsc
pTsc

(5.22)

At standard conditions, psc corresponds to 14.7 psia, and Tsc is 520 oR. T can

be expressed as input in oF , thus one need to include a conversion factor in the
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equation in order to get the temperature in rankine. Hence, Bg is expressed in

ft3/scf.

Bg =
14.7

520
Zgas

T + 460

p
(5.23)

In such cases one have to use the calculated Zgas to determine the gas formation

volume factor (Petrowiki, 2015a).

Gas compressibility factor

In order to determine Bg, one first need to calculate the gas compressibility factor.

First the following quantities must be defined (Gomes, 2016);

� The pseudo critical pressure

ppc = 702.5− 50γg (5.24)

� The pseudo critical temperature

Tpc = 167 + 316.67γg (5.25)

� The pseudo reduced pressure

ppr =
p

ppc
(5.26)

� The pseudo reduced temperature

Tpr =
T

Tpc
(5.27)

There are various correlations available for determining the compressibility factor

for gas, Z. In this specific case the implicit, iterative approach Dranchuck, Purvis

and Robinson correlation (Dranchuk et al., 1973), will be considered. The equation

for pseudo reduced gas density is;

ρpr =
0.27ppr
Tpr

(5.28)
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Z1 = 1 +
(
A1+A2

Tpr
+ A3

T 3
pr

)
ρpr +

(
A4+A5

Tpr

)
ρ2pr +

(
A5A6ρ5pr
Tpr

)
+
(
A7ρ2pr
T 2
pr

)
(A8ρ

2
pr)e

(−A8ρ2pr) (5.29)

where A1 = 0.31506237, A2 = -1.0467099, A3 = -0.57832720, A4 = 0.53530771,

A5 = -0.61232032, A6 = -0.10488813, A7 = 0.68157001 and A8 = 0.68446549.

Z =
Z1 + Z

2
(5.30)

Zgas = Z (5.31)

5.2.4 Phase Properties Calculations

The preliminary calculations in combination with the Standing empirical correla-

tions can be applied to compute the different phase properties.

Gas-oil interfacial tension

The gas oil interfacial tension is used in the multiphase flow model to calculate

the liquid holdup, which will be described in section 5.3.1. The equation for

interfacial tension between the phases, σ, in dyn/cm, is according to Baker and

Swerdloff (1956) given by the following expression;

σ = C ∗ σ(T ) (5.32)

where C is a correction factor defined as;

C = 1.0− 0.024p0.045 (5.33)

σ(T ) is the tension between the liquid and gas phase for any temperature in the

range between 68 and 100 oF , given by equation 5.34.

σ(T ) = σ68 −
(T − 68)(σ68 − σ100)

32
(5.34)

One should use the formula for Cσ68 if the temperature is less than 68 oF , and the

formula for Cσ100 if temperatures are higher than 100 oF (Baker and Swerdloff,

1956).

σ68 = 39− 0.2571γo (5.35)
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σ100 = 37.5− 0.2571γo (5.36)

In situ liquid flow rate in ft3/s

The oil flow rate, qo, at downhole conditions is defined as

qo = Qost ∗Bo (5.37)

In situ gas flow rate in ft3/s

The gas flow rate, qg, at downhole conditions is defined as

qg = (Qgst −QostRs)Bg (5.38)

If the gas flow rate is calculated to be less than zero, all free gas is dissolved in

the oil. Hence, if qg is less than zero, this parameter is set equal to zero in the

calculations to prevent an unphysical situation with negative flow.

Liquid superficial velocity, vSL in ft/s

vSL =
qo
A

(5.39)

Gas superficial velocity, vSG in ft/s

vSG =
qg
A

(5.40)

Mixture velocity in ft/s

vmix = vSL + vSG (5.41)

Oil density in situ [lbm/ft3]

ρo =
ρdo +Rsρgst

Bo

(5.42)

Gas density in situ [lbm/ft3]

In situ gas density is defined as the mass of the gas divided by the volume of gas

at downhole conditions. Therefore, ρg can be determined from the real gas law
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(Petrowiki, 2015a);

ρg =
p ∗ γg ∗Mair

Z ∗R ∗ T
(5.43)

5.3 Multiphase Flow Model

When liquid and gas flow simultaneously in a pipe, the gas will flow at a higher

velocity compared to the liquid phase, which leads to the liquid and gas phases

occupying different cross-sectional areas of the tubing. This phenomena occur

because gas has significantly lower density and viscosity than liquid (Economides

et al., 1994). The parameter that define the liquid fraction within a cross-sectional

area is called liquid holdup, HL (Gomes et al., 2015; Gomes, 2016). The liquid

holdup is correlated to the gas slippage, and this parameter play a vital part in

the computation of the total pressure drop for a pipe (Cacho, 2015).

By employing a mechanistic model to solve for the liquid holdup as a function

of various fluid properties, including liquid density, gas density, liquid superficial

velocity, surface tension, oil viscosity, gas viscosity, gas superficial velocity and

diameters, one obtain a closed steady state flow model (Gomes et al., 2015). A

mechanistic model is based on physical principles, and an example is given in

Lage and Time (2000). However, in this case, we will utilize a correlation model

developed based on experimental data and with the use of regression techniques.

The multiphase flow model follows the principles in Gomes (2016) and Economides

et al. (1994), but is modified to apply for an annular geometry.

5.3.1 Calculation of Liquid Holdup

HL = Hagedorn&Brown(di, do, p, ρl, vSL, vSG, σ, µo, vmix)

Because we are not considering different flow regimes in the flow model, the

modified Hagedorn & Brown correlation is included in the model to evaluate HL

(Hagedorn and Brown, 1965). The following procedure of computing the HL is

based on Economides et al. (1994) and Ford (2012).

1. Calculate the liquid holdup without considering the slippage between gas
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and liquid

αg =
vSG
vmix

(5.44)

αl = 1− αg (5.45)

2. Calculate the inherent to the method, LB,

LB = 1.071− 0.2218

(
vmix

2

do − di

)
(5.46)

If αg < LB, then there is a bubble flow, and the Griffith correlation, given

by equation 5.47, is applied to obtain the liquid holdup.

HL = 1− 0.5 ∗

1 +
vmix
vs
−

((
1 +

vmix
vs

)2

− 4 ∗ vSG
vs

)0.5
 (5.47)

vs = 0.8ft/s

If the flow regime in the pipe is not bubble flow, the original Hagedorn

& Brown correlation is used to obtain HL (Hagedorn and Brown, 1965),

described in the following steps (Number 3 to 9).

3. Calculate the dimensionless numbers Nvl, Nvg, Nd and Nl.

Nvl = 4

√
ρl
gσ

(5.48)

where Nvl is the liquid velocity number, and σ is the interfacial tension

calculated from equation 5.34.

Nvg = vSG 4

√
ρl
gσ

(5.49)

where Nvg is the gas velocity number.

Nd = (do − di)
√
ρlg

σ
(5.50)

where Nd is the diameter number.

Nl = µl 4

√
g

ρlσ3
(5.51)
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where Nl is the viscosity liquid number.

4. The viscosity number coefficient, CNL, is determined by using the curve

presented in figure 5.6.

Figure 5.6: The curve used to determine CNL (Economides et al., 1994).

5. Calculate
NvlP

0.1CNL

Nvg
0.575Patm

0.1Nd

(5.52)

where Patm is the atmospheric pressure.

6. The dimensionless number HL

ψ
is determined by using the plot presented in

figure 5.7.

Figure 5.7: The plot used to determine HL

ψ
(Economides et al., 1994).
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7. Calculate
NvgNl

0.38

Nd
2.14 (5.53)

8. Determine ψ by using the curve shown in figure 5.8

Figure 5.8: The graph used to determine ψ (Economides et al., 1994).

9. The final step is to calculate the liquid holdup, HL, by using the following

expression:

HL =
HL

ψ
∗ ψ (5.54)

After determining the liquid holdup, the gas holdup can be found easily from

equation 5.55.

HG = 1−HL (5.55)

After determining the phase properties and the liquid and gas holdups, it is

possible to compute the remaining mixture parameters of the flow. This is done

by applying equations 5.56 and 5.57.

� Mixture density:

ρmix = ρl ∗HL + ρg ∗HG (5.56)

� Mixture viscosity:

µmix = µl
HL ∗ µgHG (5.57)
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The mixture properties may be used to determine the Reynolds number, friction

factor, as well as the frictional component of the total pressure drop. It should

also be noted that the phase velocities now can be found by applying the liquid

and gas holdups in combination with the superficial velocities.

5.3.2 Pressure Drop

At this stage, the fluid properties and flow parameters have been determined.

The next step is to include a model for the pressure drop. When performing

blowout calculations, it is of high importance to distinguish between laminar and

turbulent flow regime, as different flow patterns yields different computation of

the friction factor (Fjelde, 2016).

To distinguish between these two flow patterns, one may use the Reynolds number,

Re, defined in equation 5.58.

Re =
ρmixvmix(do − di)

µmix
(5.58)

For Reynolds number larger than 3000, one consider turbulent flow, and if Re is less

than 2000 the flow is considered to be laminar (Fjelde, 2016). After determining

the Reynolds number, there are various available friction factor formulas that

may be applied to calculate the friction factor. If the flow regime is laminar, then

the fanning friction factor in an annulus is defined as (Fjelde, 2016);

f =
24

Re
(5.59)

However, if the flow regime is turbulent, the friction factor can be determined from

among others, the Chen equation (Chen, 1979), the Blasius equation (Blasius,

1913) or the Colebrook function (Colebrook and White, 1937). One thing these

formulas have in common is that they consider a rough pipe, which strongly affect

the frictional pressure loss in a pipe. The Colebrook formula is expressed as

(Colebrook and White, 1937);

1√
f

= −2.0 ∗ log
(
K

3.7
+

2.51

Re ∗
√
f

)
(5.60)
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Because this implicit function can be solved for friction factor in the transitional

zone, as well as for turbulent flow, the formula is recommended to use. In fact,

this is the formula used to describe the friction factor for turbulent flow in the

BlowFlow model (Ford, 2012). However, the Colebrook function must be solved

by iteration. This can be eliminated by employing explicit functions, like Chen

or Blasius. The Blasius equation is defined as (Blasius, 1913);

f = 0.052 ∗Re−0.19 (5.61)

The friction factor can also be obtained from the Chen equation (Chen, 1979).

f =

(
1

−4 ∗ [log( K
3.7065

− 5.0452
Re
∗ log(K

1.1098

2.8257
) + (7.149

Re
)0.8981)]

)2

(5.62)

Relative roughness, K, is defined in the preliminary calculations by equation 5.6.

This parameter is included in the Chen equation for friction factor, because we

are not considering a smooth pipe.

Because the Colebrook function must be solved by iteration, the explicit equation

by Chen will be employed in this thesis. This is also the model used in the original

code by Gomes (2016).

Blowout rate calculations are highly sensitive to the friction pressure drop model.

Gomes (2016) does not consider a transition zone between the two flow patterns

in her code. In reality, there will be a transitional zone between laminar and

turbulent flow. It is vital to consider this phenomena, and ensure a smooth transi-

tion between these two flow patterns, where the Reynolds number ranges between

2000 and 3000. This is solved in Matlab by interpolation, shown in Appendix

A.2.6. This is of importance to ensure that the bisection method does not obtain

stability problems, since it is based on having continuous functions. The bisection

method is part of the calculation approach for steady state flow mode, and will

be addressed in section 6.2.3

With known friction factor it is possible to calculate the frictional component
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of the pressure loss by using a simple friction model defined in equation 5.63

(Fjelde, 2016).

∆pfric =
2fρmixvmix

2

do − di
(5.63)

The hydrostatic pressure gradient component of the pressure drop is simply ob-

tained through,

∆phyd = ρmixg (5.64)

Hence, the total pressure drop gradient in a pipe becomes;

∆p = ∆phyd + ∆pfric (5.65)

The momentum equation can be used to compute the pressure drop between two

positions in a well moving upwards, thus:

p2 − p1 = −ρmixg∆z −∆pfric∆z (5.66)

Here the ∆z is the vertical displacement between two points in a well. The

approach for calculating fluid and flow properties as well as pressure drops for all

cells simultaneously, will be elaborated in the next chapter.



6. Calculation Approach for Steady

State Flow Model

The steady state flow model developed for modelling a blowing well, is based on

the calculations and models presented in chapter 5, as well as the original code

from Gomes (2016). After defining all relevant calculations, the model must be

implemented in Matlab and solved numerically. The calculation approach applied

to solve the flow model will be addressed in the following chapter. Modifications

made to the original code will be highlighted in this chapter, as well as in chapter

7. The improved code is presented in Appendix A.2.

6.1 Model Description

The steady state flow model is based on two-phase flow in a pipe, covering oil

and gas. Unlike the code from Gomes (2016), our model does not consider water

flow. The model assumes a vertical well with steady state conditions, no time

variations and constant viscosity. It should also be mentioned, that we in this

case are considering an annular flow path with a drill pipe, rather than a tubing

configuration used in the code developed by Gomes (2016).

The purpose of this model is to compute the correct BHP for certain known

oil flow rate at surface. In this computation it is essential to take both the hydro-

static and friction pressure losses into consideration when calculating the total

pressure drop. The flow model is built on the black oil model for calculations of

PVT properties, a multiphase flow model for calculations of holdups and phase

velocities, and a simple pressure loss model. As we do not have experimental PVT

analysis available, the fluid properties will be determined by empirical correlations.

90
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The Standing correlation will be employed for PVT consideration, while the Hage-

dorn & Brown correlation is used for calculating holdups and phase velocities.

We can look upon the black oil model as a mass conservation principle comparing

surface condition with the specific downhole condition under consideration. The

black oil model correlations replaces the conservation laws for mass discussed in

the previous chapter. Because the black oil model is applied, it is vital that all

parameters used in the model are defined in field units.

6.2 Computational Method

The combination of black oil model correlations and closure equations in a steady

state model result in a set of complex equations that are rather difficult to solve

analytically. Therefore, the flow model is solved numerically and implemented in

a software tool. Matlab will be applied for computational purposes in this thesis,

and the computational approach will be described in the following section.

6.2.1 Discretization Process

As the mathematical method is determined from the previous chapter, the next

step in the development of a steady state flow model for a blowing well, is to

develop a computational procedure that simulates the vertical flow behaviour in a

well. The conservation laws compose a system of non-linear ordinary differential

equations. In order to apply these set of equations in combination with closure

laws, one need to discrete the well into a certain number of cells of equal size. This

is referred to as the discretization process (Fjelde, 2016). An illustration of the

diszretization process of a vertical well with corresponding nodes are presented

in figure 6.1.

The flow parameters in each node are assumed to be constant. To ensure validity

of this assumption, the cells have to be small enough (Gomes et al., 2015). The

discretization process will be more precise with an increased number of cells, which

will make the computed solution more accurate. A more refined discretization

process requires more computing power, and thus also increased computational

time (Fjelde, 2016). Thus, it is important to evaluate and choose an adequate
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number of nodes, to ensure a refined solution with minor computational power

required.

Figure 6.1: The discretization process in a vertical well.

For each segment of the well, there are a number of calculations that needs to be

solved. These calculations have to be done simultaneously for all nodes, which

gives rise to a large set of equations to be solved (Fjelde, 2016). The phase

properties have to be determined by using the black oil model and to take care

of mass conservation principles. In addition, the Hagedorn & Brown can be

used to evaluate the liquid holdup, which again can be used to determine phase

velocities and different mixture properties. At last, one need to calculate the total

pressure drop as part of the multiphase flow model. The computation is complete,

when these calculations have been performed for all the cells in the well and the

boundary condition at surface has been met.

6.2.2 Shooting Method

According to Fjelde (2016), there are various methods available for solving the

conservations laws for all segments after the discretization process. The simple

shooting technique, which is an iterative algorithm, will in this case be employed.

After the well has been discretized into a specified number of boxes, one will start

at the bottom of the well, where the initial flow variables are known, and calculate

cell by cell until the outlet is reached. The outlet act as the last cell, where the

pressure is defined as PN . Hence, numerical integration will be performed from

the bottom of the well until the outlet is reached at surface. This specific shoot-



93 6. CALCULATION APPROACH FOR STEADY STATE FLOW MODEL

ing approach of calculating from the bottom of the well and up differs from the

procedure used in both the BlowFlow engine and in Gomes et al. (2015), where

the numerical calculations starts at surface and are performed cell by cell until

the bottom of the well is reached.

In order for this application of the shooting method to work, it is necessary

to make an initial guess of the bottomhole pressure, Pguess, which is the pressure

in node 1. At the outlet, we know that the real physical pressure is equal to at-

mospheric pressure, Patm. This will act as a boundary condition. Our computed

solution should match this outlet boundary condition if the solution should be

correct (Fjelde, 2016). Hence, one end up solving the following expression;

f(Pguess) = PN − Patm = 0 (6.1)

If a choke is present in the well, the known outlet pressure, and thus the boundary

condition, will be the desired choke pressure, rather than the atmospheric pressure.

It should also be mentioned that if a seabed blowout occur, there may for instance

be a backpressure caused by the hydrostatic pressure of seawater. However, the

computational method utilized is the same regardless of chosen outlet boundary

condition.

If the outlet pressure does not equal the boundary condition within a speci-

fied tolerance, a new initial Pguess has to be guessed for and the calculations have

to be repeated in a similar manner. This process is repeated until the difference

between the computed outlet pressure and the outlet boundary condition is less

than a specified tolerance (Gomes, 2016). In the search for the correct BHP, the

bisection method is applied, which will be described in the next sub section.

6.2.3 The Bisection Method

The bisection method is an important part of the computational approach to

solve the problem. It is a numerical method employed to find a root of a given

function (Gerald and Wheatley, 2004). The method is based on the intermediate

value theorem, and is therefore often referred to as the interval halving method.
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This means that the search interval is divided in two, and the method finds in

which half the root lies. The process is repeated with the endpoints of the smaller

interval. If the function is continuous and changes signs at these two values, there

must be one root present between these values (Gerald and Wheatley, 2004).

To illustrate the bisection process, figure 6.2 is included. The x1 and x2 specify

the search interval, while the black dot represent the root of the corresponding

function. It should be noted that this specific function is only given for illustra-

tion purpose. In this case, we are interested in finding the root in the specified

search interval. We must ensure that the starting points satisfy f(x1)x f(x2) <

0, and make sure that there is only one root in the search interval. After the

root is determined, one proceeds with finding the midpoint, x3 = 1
2
∗ (x1 + x2),

and continues the process with the new interval (x1,x3), where the function still

changes sign. The bisection process is repeated as long as the function changes

sign within the search interval. In this case, the bisection method is employed to

calculate the actual BHP of a well based on an initial guess of the BHP and a

specified search interval.

Figure 6.2: Calculation procedure of the bisection method (Fjelde, 2017b).

The iteration is stopped when the root is found with a certain accuracy |f(x3)| <
ftol, where the parameter ftol is specified prior to running the simulation. The

smaller tolerance, the more accurate the solution.
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6.2.4 Calculation Procedure

Inputs and pre-calculations

As discussed in the previous chapter, it is of high importance to define the

parameters GOR, Rs, Bo, Bg and Pb, as well the oil rate at surface conditions,

in the steady state flow model. This is essential in order for the black oil model

to work properly. In addition to the mentioned variables above, the following

parameters must be defined in the model prior to running the simulation;

� Inner/outer diameter of pipe, flow area and well depth

� Fixed temperature at top and bottom of the well

� Phase densities and viscosities at surface conditions

� Inner rugosity and relative roughness

� Water fraction

Calculation procedure from bottom to top

The calculation procedure from bottom of the well to top in the steady state flow

model utilized to calculate the bottomhole pressure is shown in figure 6.3.

Figure 6.3: Calculation procedure from bottom to top in the steady state flow
model.
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Calculation procedure from node (i) to (i+1)

The calculation procedure in the steady state flow model applied to calculate

BHP from cell (i) to (i+1) is based on the mathematical method presented in

chapter 5. A short summary of this procedure is presented in figure 6.4.

Figure 6.4: Calculation procedure from node (i) to (i+1).

When the pressure is assumed known at a certain point, the black oil correlations

are used to calculate the in situ oil flow rates. In addition, these calculations will

determine whether there is free gas present in the reservoir, or if the gas is fully

dissolved in the liquid phase. The multiphase flow model based on the Hagedorn

& Brown method, is used to determine liquid and gas fraction, while the pressure

drop model accounts for pressure differences in a well caused by both hydrostatic

and friction pressure. The procedure is repeated for cell (i+1) until the outlet is

reached.



97 6. CALCULATION APPROACH FOR STEADY STATE FLOW MODEL

6.3 Code Structure

The simulator comprises of various scripts with different purposes. The core scripts

for the program are main.m, itsolver.m and wellpressure.m, which is shown in

figure 6.5. These scripts run the overall simulation.

Figure 6.5: Base code structure.

In addition to scripts mentioned in the base code structure, the steady state

flow model comprises of a number of other functions used to define important

parameters in the model. These additional functions are associated with the

black oil model, the multiphase flow model and the pressure loss calculations. All

relevant functions are shown in the Matlab code presented in Appendix A.2.

6.3.1 Main.m

The main script run the simulation, provide some of the inputs to the simulation,

and presents the final solution. In this script it is important to specify the vertical

depth of the well, the number of cells the well is discretized into, as well as the

assumed liquid rate at surface conditions. The liquid rate in this case is in fact

the oil rate. Based on these inputs, the script calculates the appropriate length

of each cell and the number of nodes associated with number of boxes. Table 6.1

shows the input parameters for the main script. The main file calls the function

itsolver and returns the correct bottomhole pressure as output in psi.
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Table 6.1: Input parameters for the main program.

Input parameter Definition Unit

welldepth Depth of the well m

nobox

Number of boxes

the well is divided

into.

-

nopoints

Number of nodes

associated with number

of boxes.

-

boxlength

The length of each

of the boxes the well is

divided into.

m

liquidrate Liquid rate at surface ft3/s

6.3.2 Itsolver.m

This script contain the numerical solver of the model, which in fact is the bisection

method described earlier. The solver is included in the program to solve the

expression below.

wellpressure(pbot) = 0 (6.2)

However, as it is not likely to find an exact match for equation 6.2, the itsolver

has included a specified tolerance, ftol. As long as the wellpressure(pbot) is less

than the tolerance, one is satisfied with the answer. It should be noted that a

smaller tolerance provides a more refined solution.

In addition to ftol, one must specify the initial guess of the bottomhole pres-

sure and the search interval, both in which have the unit psi. In general, a good

starting point for the iteration, is to use the hydrostatic pressure of liquid in the

well as an initial guess of BHP. This is not necessarily correct, since there may

be gas or friction effects present in the well. The search interval may also be

adjusted to help the model to find a solution in case the bisection method does

not find a root in the given interval.
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6.3.3 Wellpressure.m

In this script one need to specify the boundary condition of the model, namely the

outlet pressure. In general, there are two options available for choosing boundary

condition. The first option is to set the boundary condition equal to the real

surface pressure, e.i. 1 atm or 14.7 psi. The second option is to set the outlet

pressure to a desired backpressure. If there is a choke present, the outlet pressure

will be equal to the specified choke pressure. In case of a blowout, it is not likely

to be a choke connected to the well at surface. If we have a seabed blowout, there

may be a backpressure for instance caused by the hydrostatic pressure of seawater.

In the original code by Gomes (2016), the depth of the well must be specified in

the wellpressure file. As the welldepth parameter is an input in the main script,

it should be possible to make the wellpressure function extract this parameter

from the main program. In order for the wellpressure function to be a function

of the welldepth, and thus make it easier to run the simulation if changes are

made in the depth of the well, the wellpressure script now after the modification

receive this input variable directly from the main.m rather than needing to adjust

it manually. Hence, the welldepth parameter is added as an output from both

the itsolver and main scripts. It should be noted that this parameter reflect the

true vertical depth (TVD) of the well.

The base code by Gomes (2016) is considering a tubular geometry, and is therefore

only considering the outer diameter in the simulation. The code was therefore

extended to include an annular configuration with a drill string. Hence, both the

inner and outer diameter must be defined as inputs in the wellpressure script.

Moreover, the formulas for relative rugosity, flow area, the Reynolds number, pipe

diameter number, and the pressure loss due to friction, have been modified to

apply for a blowout scenario with flow path through annulus. It is now perfectly

fine to consider a tubular geometry if desired, one only need to define the inner

diameter as zero.

Because the black oil model is implemented in the code, the variables in the
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code must be defined in field units. Gomes (2016) expressed the different input

variables in SI units, and had conversion factors added in the code for making the

end result in field units. This has been changed in this improved code, and the

input variables are now defined in field units directly. Therefore, the conversion

factors are removed from the different equations in the wellpressure function,

making the equations more similar to the formulas described in chapter 5. The

improvements made to the wellpressure function, are shown in Appendix A.2.3.

A summary of the changes made to the input variables units in both main.m and

wellpressure.m are presented in table 6.2. Additional input variables remains

with the same unit as in the original code by Gomes (2016).

Table 6.2: Adjustments made to the units of the input variables.

Variables SI unit (base code) Field unit (new code)

Surface liquid rate, Ql m3/s ft3/s

Outer diameter, do m in

Inner diameter, di m in

Inner roughness, e m in

It is vital to include a temperature model inside the wellpressure function, to model

the temperature changes from the bottom of the well up to the surface. When

checking the original code by Gomes (2016), it was found that the temperature

model implemented in the code was not sufficient. The code was considering a

temperature gradient of 0.03 oF/ft, which is more likely if we are considering a

temperature gradient of 0.03 oC/m. Numerical stability problems were obtained

when trying to make the well deeper. The temperature profile in the well was based

on providing the bottomhole temperature, and using the gradient to calculate

temperature upwards in the well. This caused problems when the well was made

deeper, causing negative temperatures in the well. Therefore, to handle deeper

wells, the temperature model was replaced with an alternative temperature model,

namely;

T (i+ 1) = T (i) + tempgrad (6.3)
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where the temperature gradient, tempgrad, is expressed as;

tempgrad =
T (nopoints)− T (1)

(nopoints− 1)
(6.4)

Here, T(nopoints) refers to the surface temperature and T(1) is the temperature

in the first node, both defined in oF The user of the simulator has to specify

the temperature on top and bottom of the well, and the temperature gradient is

calculated based on that. This can then be used to calculate the fixed temperature

profile in the well, such that each box has a fixed temperature. It is believed that

this specific temperature model makes the simulation result more accurate.

Wellpressure.m calls upon input parameters from the itsolver script, including

guessed BHP, liquid rate, number of points, well depth and box length. In this

script the majority of inputs are declared, which are summarized in table 6.3.

Table 6.3: Input parameters for the wellpressure function.

Input Parameter Definition Unit

di Inner diameter in

do Outer diameter in

e Inner roughness in

GOR Gas-Oil Ratio Scf/STB

fw Water fraction -

γg Gas relative density -

γo Oil relative density -

ρw Water density Lbm/ft3

Mair Air molar mass g/mol

ρair Air density Lbm/ft3

T(1) Bottomhole temperature oF

T(nopoints) Surface temperature oF

µw Water viscosity cP

µo Oil viscosity cP

µg Gas viscosity cP

Psurf Real pressure at surface psi
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Because we are considering only gas and oil flow, fw= 0. In addition to the

input parameters in table 6.3, the function wellpressure performs the necessary

preliminary calculations, and then utilizes the black oil model, the multiphase

flow model including the pressure loss model, to calculate box by box from bottom

of the well to surface. The approach of calculating from the bottom of the well

and up differs from the procedure used in both the BlowFlow engine and Gomes

et al. (2015), where the calculations starts at surface and are performed cell by

cell until the bottom of the well is reached. When shooting from the bottom

it is possible to integrate an inflow model directly in the model. Including an

inflow model directly in the wellpressure function makes it possible to determine

the blowout flow rate without plotting the IPR and TPR curves. The number

of times one need to call upon the wellpressure script will then depend on how

quickly the bisection method converges. Hence, the next chapter will focus on

trying to implement an inflow model directly in the steady state flow model.



7. Blowout Flow Rate Model

Numerical simulators with their broad uses, have become important tools for the

oil and gas industry. Models for performing oil spill calculations represents one of

the numerical simulators available on the marked. The purpose of blowout flow

rate modelling is to determine the initial blowout rate for a defined scenario, e.i.

do oil spill preparedness planning.

With the flow model developed in the previous chapter as a core for the sim-

ulation, there are two alternative approaches to model the inflow from reservoir,

and thus simulate the actual flow rate of a blowing well and its corresponding

downhole pressure. The first alternative approach is based on cross-plotting the

IPR and TPR curves. The simulation is then run with different assumed surface

rates, without making any changes to the code from chapter 6. After running the

simulation for a specified number of rates, the IPR and TPR curves are estimated,

and the correct BHP and surface flow rate are determined. A possible way of

improving the steady state flow model, is to model the inflow from the reservoir

directly, rather than defining the liquid flow rate at surface as a fixed input in

the main script. This inflow model will then depend on the guessed bottomhole

pressure in the bisection method, and the inflow will vary in the iterations being

performed.

These two mentioned procedures of computing the blowout rate, will in this

chapter be presented and tested. The main goal is to develop a program that

provides the actual flow rate and corresponding BHP directly from the simulation,

for both saturated and undersaturated reservoirs. The fact that the shooting

technique is applied from bottom of the well and upwards, can make it possible

to include an inflow model directly in the flow model.

103
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7.1 Inflow Model

The purpose of an inflow model is to estimate the flow rate of fluids from the

reservoir to the wellbore. The inflow performance relationship is given by the

inflow model, and is defined as the relation between the bottomhole flowing

pressure and the production rate at surface conditions (Schubert et al., 2004).

In general one distinguish between two types of inflow model used to simulate

the inflow from reservoir, depending on if there are single-phase or multiphase

conditions present in the reservoir. These include the simple inflow model and

the empirical inflow model.

7.1.1 Simple Inflow Model

According to Fetkovich (1973), the simple inflow model requires production of

ideal homogeneous liquid obeying Darcy’s law. Hence, in order for this model to

be valid, it is essential that the reservoir pressure is higher than the bubble point

pressure. In other words, one assume the reservoir to be located below the bubble

point, and that there is single-phase inflow present (Ford, 2012). For cases where

this condition holds, it is, according to Vogel (1968), expected to obtain a straight

line of the IPR curve. The straight line relationship is given by the productivity

index (PI) equation 7.1 (Ford, 2012).

qo = J(Pres − Pwf ) (7.1)

Here, qo is the inflow from reservoir at standard conditions [STB/day], J is the pro-

ductivity index [STB/day/psi] describing the wells ability to produce (Petrowiki,

2016), Pres is the average reservoir pressure [psi], and Pwf is the bottomhole pres-

sure [psi]. It is crucial that the productivity index is known, or computed prior to

the calculation of the inflow rate. It should be noted that qo is the rate at surface

conditions (Petrowiki, 2016).

Although it is possible to apply this simple inflow model to simulate the inflow of

a reservoir, it is important to notice that this specific model is only valid for cases

where the reservoir pressure is above the bubble point, e.i. only for single-phase
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inflow. As there can be multiphase conditions present at the reservoir, one would

ideally include a model in the code to simulate for such cases.

7.1.2 Empirical Inflow Models

Only empirical correlations are available for modelling the inflow of multiphase

reservoirs. According to Guo et al. (2008), some of these models include Vogel

(1968), Standing (1968) and Fetkovich (1973). Although, there are a number of

various correlations available for use, the Vogel equation for computation of inflow

rates is most widely adopted in the petroleum industry (Guo et al., 2008). This

is why the Vogel (1968) will be applied in this thesis.

Vogel (1968) was the first to present an adequate method for determining pro-

duction rates or in some cases, flow rates of a blowing well. He pointed out that

a straight line relationship between the bottomhole pressure and the flow rates

does not hold in situations where two-phase flow is present in the reservoir (Vogel,

1968). The standard Vogel correlation, defined by equation 7.2, requires the

bubble point to be above the reservoir as well as the BHP being lower than the

bubble point pressure (Vogel, 1968).

qo = qo,max ∗

(
1− 0.2

(
pwf
pres

)
− 0.8

(
pwf
pres

)2
)

(7.2)

Here, the inflow rate has the unit STB/day. For this model to work, it is nec-

essary to have knowledge about the productivity index, the average pressure in

the reservoir, and the BHP of the well (Petrowiki, 2015d). Consequently, it is

important to apply the shooting technique from the bottom to the top. When the

productivity index is known, it is possible to calculate the maximum rate, qo,max,

by utilizing equation 7.3 (Vogel, 1968; Ford, 2012).

qo,max =
J ∗ pres

1.8
(7.3)

The standard Vogel inflow equation is only valid if both the pressure in the

reservoir and the BHP are below the bubble point pressure. Therefore, it is

essential to include another expression to account for other conditions. In cases



7.2. MODELLING PROCEDURES 106

where two-phase flow is present and the reservoir pressure is above the bubble

point pressure, the inflow may be estimated using a combination of the standard

Vogel equation and the straight line relationship described by the simple inflow

model. Hence, the inflow can be expressed by the modified Vogel equation 7.4

(Ford, 2012).

qo = J(Pres − Pb) +
JPb
1.8

(
1− 0.2

Pwf
Pb
− 0.8

(
Pwf
Pb

)2
)

(7.4)

7.2 Modelling Procedures

As discussed earlier, there are two methods available for determining the blowout

flow rate, and thus also the point of intersection between the IPR and TPR curves.

These two approaches will be addressed in this section. There will be conducted

three case studies in this thesis, which considers the two approaches of finding

the correct flow rate of a blowing well and the corresponding BHP.

� Case study #1: Manually calculate inflow rate for various bottomhole

pressures, and compare with assumed surface rates and bottomhole pressures

calculated by the flow model. Hence, find a solution from the intersection

point between the IPR and TPR curves.

� Case study #2: Include a simple inflow model directly in the flow model.

� Case study #3: Extending the code to be valid for both multiphase

and single-phase inflow, by implementing both empirical inflow models and

simple inflow model in the steady state flow model.

These case studies are built on a vertical well with depth of 4000 m, which corre-

sponds to 13 123 ft. The simulations are based on a well experiencing a seabed

blowout with an annular flow path. The blowing well is discretized into 200 boxes,

each with a length of 20 m. A 8.5” casing and a 5.0” drill pipe are selected as

configuration. The model assumes no water fraction, and one only considers oil

flow from the reservoir. A backpressure of 250 psi is assumed applied on top

of the well. Normally, there would be atmospheric pressure at the outlet, but

if the blowout takes place below the sea, there will be a backpressure from the

hydrostatic pressure of water. It should also be mentioned that there have been
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developed technologies to dampen the unloading of risers by applying backpres-

sure on top of the riser. Therefore, the parameter Psurf in this case corresponds

to the pressure at seabed.

A downhole temperature of 302oF and a surface temperature of 100oF are em-

ployed to calculate the corresponding temperature gradient. This will be used to

calculate the fixed temperature profile of the well.

The remaining parameters needed as input in the model, are obtained from

the case study by Gomes (2016). The input parameters for the simulations, which

are identical for all the case studies, are presented in table 7.1. It should be noted

that these variables are defined inside the wellpressure function, see Appendix

A.2.3.

Table 7.1: Input parameters for the case studies.

Input parameter Definition Value Unit

di Inner diameter 8.5 in

do Outer diameter 5.0 in

e Inner roughness 0.000288 in

GOR Gas-Oil Ratio 600 Scf/STB

fw Water fraction 0 -

γg Gas relative density 0.750 -

γo Oil relative density 0.870 -

ρwater Water density 62.4 Lbm/ft3

Mair Air molar mass 29 g/mol

ρair Air density 0.0765 Lbm/ft3

T(1) Bottomhole temperature 302 oF

µw Water viscosity 1 cP

µo Oil viscosity 12 cP

µg Gas viscosity 0.01 cP

Psurf Pressure at seabed 250 psi

Pres Reservoir pressure 5000 psi

J Productivity index 1 STB/day/psi
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7.2.1 Case Study #1

The first alternative approach for finding the blowout flow rate, is to find the

solution manually. This is the approach utilized by Gomes (2016) in her original

code. The main principle is to vary the surface liquid rate in the main script, and

read of the corresponding BHP. By cross-plotting the IPR and TPR curves, the

intersection point may be used to obtain the correct blowout rate. This procedure

is shown in figure 7.1.

Figure 7.1: Plot used to determine the actual flow rate and corresponding BHP.

The TPR curve is obtained by assuming different rates at surface, and based on

these rates, corresponding bottomhole pressures are calculated by the flow model.

The IPR curve is determined by using the estimated BHP in combination with

the inflow model, to determine the amount of hydrocarbons flowing from the

reservoir at surface conditions. A solution is found at the point of intersection

between these two curves. This means that a solution may be determined when

the assumed rate at the surface provide a BHP which corresponds to an inflow

equal to the assumed surface rate. Hence, one end up solving equation 7.5 at

surface conditions (Ford, 2012).

qIPR = qTPR (7.5)
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The intersection point between these curves produce the unique BHP that will

give a match between assumed surface rate in the flow model and the correspond-

ing surface rate calculated by the inflow model.

The simulation is performed for a number of various rates. After extracting

the BHPs from different surface rates, the numerous values of bottomhole pres-

sure may be used to calculate the corresponding inflow rates, qo, applying the

simple inflow model from equation 7.1. Hence, case study #1 assumes single-

phase inflow from the reservoir. It should be mentioned that in this case study

the average reservoir pressure and the productivity index are not declared inside

the simulator. They are only used in the calculations performed in Excel.

The first case study was performed with the approach described above. No

adjustments were made to the code developed in the previous chapter. By using

the parameters in table 7.1, simulations were performed several times, modifying

only the surface liquid rate. The oil rate was varied from 1.5 to 5000 STB/day.

The flowing downhole pressure ranging from 3072 to 4482 psi, extracted from the

program for various surface rates, was then used to generate the TPR curve of the

well. The IPR curve was obtained by using the different BHPs in combination

with the simple inflow model, to calculate the corresponding inflow liquid rates,

qo. These calculations are performed in Excel, shown in Appendix A.1. After

the computation for a desired number of scenarios, the various inflow rates (IPR)

were cross-plotted with the outflow rates (TPR). The curves are plotted against

BHP, as shown in figure 7.2. The point of intersection between the IPR and TPR

curves is then detected, which yields the correct flow rate and BHP of a blowing

well.

By studying the results from the simulation plotted in figure 7.2, the actual

flow for the well in question is approximately 1600 STB/day, at a BHP of 3390

psi. Figure 7.2 shows that the IPR curve is a straight line. According to Vogel

(1968), this is expected for single-phase flow, and is mainly due to the fact that

the productivity index is independent of the rate above the bubble-point pressure

(Guo et al., 2008).
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Figure 7.2: IPR and TPR curves plotted in Excel.

The approach employed in case study #1 is in fact a combination of techniques

used in BlowFlow, Gomes (2016) and Gomes et al. (2015). Even though the liquid

rate at surface is defined in the main program prior to running the simulation,

the steady state flow model uses a shooting technique from the bottom and

up by employing the bisection method to determine the corresponding BHP.

Although this alternative way of finding the blowout flow rate is accurate, it is

time-consuming, and it is believed that the program is not used at it full potential.

A shooting technique from bottom to top makes it possible to implement an inflow

model directly in the steady state flow model. Therefore, the next case studies

will focus on including inflow models directly in the simulator.

7.2.2 Case Study #2

Secondly, an alternative approach of computing the blowout rate was investigated.

The concept of this procedure is to model the inflow from reservoir directly by

including an inflow model inside the wellpressure script, as shown in Appendix

A.2. The procedure then uses a given initial guessed BHP to search for the

matching blowout rate and downhole pressure. With this approach, the program

numerically computes the correct flow rate of a blowing well, making it possible

to extract the solution point flow rate of a blowing well directly from the program,
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without conducting any calculations or plotting of curves manually, like in case

study #1. The fact that we calculate from bottom to top makes it possible to

integrate the inflow model directly in the steady state flow model.

The first step in developing a program that provides the correct flow rate of

a blowing well, is to try implementing a simple inflow model in the base code.

The inflow model used in this case consider single-phase flow, namely oil. The

model integrated in the code is therefore only valid at undersaturated oil reser-

voirs conditions. Case study #2 focuses on testing the simple inflow model for

the same simulation example as in case study #1, and thus comparing the two

different approaches of determining the blowout flow rate.

Modifications made to the original code

This section will provide the modifications made to the original code in order for

the simulation to run with an implemented inflow model.

As described earlier, the main script provide initial parameters to the simula-

tion. These inputs remain the same as for the steady state flow model developed

in chapter 6. As seen in Appendix A.2.1, the variable rate is now included as

an output to the main script, in addition to the variable pbot from the original

code. These output parameters are delivered to the main script from the itsolver

function. It can be mentioned that the input parameter liquidrate will now no

longer be in use as explained below. Hence,

[pbot, error, rate] = itsolver(nopoints, boxlength, welldepth, liquidrate)

It is in the wellpressure function the main adjustments are made. The changes

made to this script, are shown in Appendix A.2.3. The first modification made,

was to include the rate as an output parameter of the wellpressure function,

in addition to the f(Pguess) kept from the original code. In this way, the two

parameters are sent back to the main script. The code structure of the improved

program is presented in figure 7.3. From the figure below, one may notice that

the liquidrate parameter is no longer included in main.m. This is related to this
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parameter no longer being used, e.i. it is a dead parameter, as the rate in the

new modified code is declared inside the wellpressure function.

Figure 7.3: New code structure of the improved model.

The next step in the modification process, was to include a reservoir model,

namely a PI model in the wellpressure script. As this case study is based on

single-phase inflow of undersaturated oil, the simple inflow model is employed,

defined in wellpressure as;

liquidrate = prodinx ∗ (Pres− pbotguess);

Here liquidrate is qo in STB/day, prodinx is the productivity index in STB/-

day/psi, and the reservoir pressure, Pres, and the guessed bottomhole pressure,

pbotguess, are in psi. It should also be mentioned that the PI model operates

with liquid flow rate at surface conditions (Petrowiki, 2016). Hence, if the correct

BHP is guessed for, liquidrate will be the correct surface rate. Both the BHP and

the rate have to be transferred back to the main program.

The inflow model is implemented in Matlab as an if-else statement, meaning

that the model is only valid under specified conditions. If the guessed BHP is less

than the average reservoir pressure, then the simple inflow equation may be used.

Otherwise, the program set liquidrate equal to zero, to prevent an unphysical

situation with negative inflow.
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In order for the modified simulator to work, it is essential that new parame-

ters such as productivity index and average reservoir pressure, are declared inside

the code prior to running the simulation. These additional parameters are defined

inside the wellpressure function.

Because the rate determined from the PI model has the unit STB/day, one

must include a conversion factor to obtain the rate in ft3/s. This is essential for

the simulation to work, because the calculations requires rates in field units, e.i.

ft3/s. Furthermore, in the end of the wellpressure script, one need to specify that

rate = liquidrate. This is vital in order for the wellpressure script to store this

parameter, and transfer the found solution back to the itsolver script, and then

back to the main program.

A list of new parameters in the wellpressure function after the modifications

is presented in table 7.2. It should be noted that the temperature gradient

added in wellpressure does not have any connection to the implementation of an

inflow model. This parameter is added inside the core as part of the additional

improvements made to the code, described in section 6.3.3.

Table 7.2: New parameters declared in wellpressure.m for case study #2.

New parameters declared

inside the code

for case study #2

Unit Description

prodinx STB/day/psi The productivity index

Pres psi The average reservoir pressure

tempgrad F/box Temperature gradient/box

rate ft3/s The final liquid rate returned

In should be noted that if the water fraction is equal to zero, like in this case

study, the final liquid rate will be equal to oil rate.

In addition to the modifications made in the wellpressure function, some ad-

justments were made to the itsolver function. Although, the structure of the
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bisection method is kept the same as in the original code, it was necessary to

include the rate as an output from the itsolver function. Moreover, because the

rate is added as an output of the wellpressure function, one need to include the

rate as an output parameter in all the calls for the wellpressure function inside

the itsolver function. The modifications associated with the itsolver script are

shown in Appendix A.2.2.

The PI model is only valid at undersaturated oil reservoir conditions, and only

when the downhole pressure is lower than the reservoir pressure. For these reasons,

in the modified code, the xguess was adjusted to a lower value in the itsolver

script. In the original code 1000 was used instead of 500, corresponding to a water

filled well. As there is no water fraction in the reservoir, the xguess is adjusted

to fit an oil and gas reservoir. This is not necessarily correct, but it might be a

good starting point for the iteration. Therefore,

xguess = 500 ∗ 9.81 ∗ welldepth ∗ 0.000145038;

It should also be noted that different values of the search interval were tested,

in order to determine an appropriate interval and help the bisection method to

find a solution. However, one ended up using a search interval of 725 psi in this

case study, thus xint = 725. When calculating from bottom to top, one must be

careful with choosing the correct search interval, because this can lead to stability

problems in the simulator. Adjustment to the specified tolerance value in the

itsolver was also made. It is believed that finding a solution giving a result within

1 psi error is accurate. The solution is acceptable if f(Pguess) < 1 psi, hence

ftol = 1

Result from the simulation

After implementing the inflow model in the program, and conducting all necessary

modifications to the original code, a simulation was performed. The program

with a simple inflow model gave a solution point flow rate of 0.1057 ft3/s, cor-

responding to 1626.56 bbl/day. The solution was found at a BHP of 3390.7
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psi. In addition to the correct rate and BHP, the program also presents var-

ious plots of the behaviour of some of the most important parameters in the

code, including pressure drop, Bo, Bg, oil density, gas density and liquid holdup.

These parameters are plotted against depth, and will be presented in the following.

The first parameter to study is the total pressure drop. Figure 7.4 presents

the pressure drop profile in the well. As expected, the pressure at the top of

the well is 250 psi, which represents the backpressure defined in the wellpressure

script. Moreover, an increase in pressure as we move further down the well is also

reasonable. From the figure, one see that the BHP is approximately 3400 psi at

the bottom of the well, which is a reasonable result due to the BHP of 3390,7 psi

corresponding to the solution point blowout flow rate of 1627 STB/day.

From figures 7.4 and 7.5, one observe that the well is not deep enough for

all the gas to be dissolved in the oil. Therefore, it may be small amount of

free gas present at downhole conditions. This is reasonable due to the downhole

pressure only being approximately 3400 psi. Hence, an empirical inflow model

should ideally be applied for such conditions.

Figure 7.4: Pressure drop profile in the well.

The oil formation volume factor profile is provided in figure 7.5. At surface,
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the Bo is approximately 1.003 bbl/STB, and at the bottom of the well it is 1.41

bbl/STB. This is reasonable due to the assumption of black oil conditions (see

figure 5.2), which shows a characteristics response of Bo for black oil ranging

from 1.1 to 1.5 scf/STB. This parameter will increase with depth, since more

gas gets dissolved. As the oil move upwards in the well, more and more gas

boils out from the fluids, because of the decrease in pressure. This phenomena

will cause a decrease in the oil volume as one approaches surface. Therefore, it

is natural to experience an increase in oil formation volume factor with depth.

The oil formation volume factor profile in our case follows a typical response of

such a parameter, compared to expected result in figure 5.5. However, it should

be mentioned that we in this case has not reach the point at which all the gas

is dissolved in the fluid. At that point it would be expected to notice a minor

decrease in Bo. This support our assumption that there is multiphase inflow from

the reservoir.

Figure 7.5: Oil formation volume factor profile.

The gas formation volume factor profile is presented in figure 7.6. The Bg at

surface is 0.06. The figure shows, as expected, that the gas formation volume

factor decreases with depth. This trend is general in an oil well, because the

free gas gets more compressed the longer down in the well we move. This causes

a decrease in the gas volume. From figure 7.6 one notice that the factor gets
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closer to zero as one approaches the bottom of the well. Therefore, at downhole

conditions Bg is approximately 0.006. This result emphasize our assumption that

there is some free gas present at the bottom of the well. Similar to the Bo factor,

the gas formation volume factor profile follows the anticipated trend of such a

parameter, shown in figure 5.5.

Figure 7.6: Gas formation volume factor profile.

Figure 7.7: Oil density profile.
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Figure 7.7 shows the oil density profile for the simulation example. The profile

yields an oil density at surface of approximately 53 lbm/ft3, and an oil density

at downhole conditions of 42.5 lbm/ft3. The result is reasonable, due the den-

sity being affected by, among others, both temperature and pressure. As one

approaches the bottom of the well, both the temperature and pressure increases

significantly. Both the increase temperature and pressure causes dissolution of

gas, which contributes to a reduction in the density with depth. It is therefore

reasonable to observe a decrease in oil density as one move further down the well.

The gas density profile for the simulation example is presented in figure 7.8.

The gas density at surface can be obtained from the figure as approximately 0.90

Lbm/ft3, while the gas density at the bottom of the well is 8.5 lbm/ft3. As

discussed above, the density is affected by an increase in both temperature and

pressure. This causes the gas to get more compressed deeper down in the well.

Therefore, it is reasonable to gain an increase in the gas density with depth.

Figure 7.8: Gas density profile.

The liquid holdup profile is shown in figure 7.9. At the bottom of the well,

the liquid fraction represents approximately 99% of the mixture fluid. This is

expected due to the assumption of an undersaturated oil reservoir at this point,

where almost all the gas is dissolved in the liquid phase. The figure shows the
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presence of small amount of free gas at the bottom of the well, which means that

it is on the verge of being correct to assume single-phase inflow. At surface, the

liquid holdup is 24%, meaning that approximately 76% of the outlet flow will be

gas. This result is reasonable, as it is expected that the gas will boil out of the oil

and expand as one approaches the top of the well. It should also be noticed, that

the liquid rate is equal to the oil rate, due to the assumption of the water fraction

being set to zero. There may be discontinuity in the steady state flow model,

causing the strange behaviour of this parameter at a depth of approximately 1000

m. This error may be caused by the wide use of empirical correlations in the

model, and regarding the calculation of liquid holdup, namely the Hagedorn &

Brown correlation.

Figure 7.9: Liquid holdup profile.

After studying the various plots from the simulation it was found that the inflow

from the reservoir in fact is at multiphase conditions. The different graphs show

an inflow from the reservoir containing small amounts of free gas. It is believed

that the transition between multiphase and single-phase flow occurs at some point

between the reservoir and the wellbore. Therefore, the case should ideally be run

with an implemented empirical correlation valid for multiphase inflow conditions.
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7.2.3 Case Study #3

Finally, an attempt was made to extend the blowout flow rate model to being

valid for multiphase inflow cases, as well as for cases with single-phase inflow. As

described earlier, only empirical correlations are available for modelling the IPR

of multiphase reservoirs. If one successfully include an empirical inflow model,

like Vogel (1968) or Fetkovich (1973), in the steady state flow code, it may be

possible to simulate inflow at multiphase conditions. Adjustments made to the

code in case study #2 are kept unchanged, aside from the simple inflow model

being replaced by an inflow model to account for both undersaturated and satu-

rated conditions. In this case study the focus will be on implementing the Vogel

equations, as these are most widely used in the petroleum industry. Hence, the

goal of this last case study is to include the following conditions and corresponding

inflow models inside the wellpressure script.

Condition 1: Single-phase flow, Pres > Pb and Pwf > Pb

qo = J(Pres − Pwf ) (7.1)

Condition 2: Multiphase flow, Pres < Pb and Pwf < Pb

qo = qo,max ∗

(
1− 0.2

(
pwf
pres

)
− 0.8

(
pwf
pres

)2
)

(7.2)

Condition 3: Multiphase flow, Pres > Pb and Pwf < Pb

qo = J(Pres − Pb) +
JPb
1.8

(
1− 0.2

Pwf
Pb
− 0.8

(
Pwf
Pb

)2
)

(7.4)

The modifications made to the wellpressure script in case study #3 are shown in

Appendix A.2.3. Similar to case study #2, the inflow models are implemented

in Matlab as if-else statements, meaning that the models are only valid under

specified conditions.

As the conditions for multiphase flow are affected by the bubble point pressure,

it was necessary to define the bubble point pressure function before adding the
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inflow models. Therefore, the inflow models were moved to after where the bubble

point pressure function is called upon in the wellpressure script. Since bubble

point pressure calculation is independent of flow rate, this was easily possible.

However, the three parameters, oil, gas and water flow rate at surface, as part of

the preliminary calculations, have to be conducted after the liquid rate has been

defined, and they were therefore moved to after where the inflow models are called

upon in the script. As the standard Vogel equation 7.2 is a function of maximum

inflow rate, this additional parameter is declared inside the wellpressure script.

Similar to case study #2, it is necessary to define the productivity index and

the average reservoir pressure, prior to where the inflow models are called upon.

Parameters declared in wellpressure.m for case study #3 are summarized in table

7.3.

Table 7.3: Parameters declared in wellpressure.m for case study #3.

Parameters declared

inside the code

for case study #3

Unit Description

prodinx STB/day/psi The productivity index

Pres psi The average reservoir pressure

rate ft3/s The final liquid rate returned

qmax STB/day Maximum inflow rate

No changes, aside from the ones made in case study #2 were necessary in the

main script or in the itsolver function. To test the extended code, three simulation

examples were run to check if all the conditions and corresponding inflow models

work sufficiently and provide reasonable results.

Example 1: Condition 3

The first simulation example was conducted with the same inputs as the previous

case studies. Because it was found from case study #2 that there must be small

amounts of free gas present at the bottom of the well, one consider multiphase

inflow from the reservoir. Because the pressure in the reservoir is higher than

the bubble point pressure, as well as the BHP being lower than the bubble point

pressure, an empirical model should ideally be employed. In fact, at condition
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3, the modified Vogel inflow model, express by equation 7.4, may be used. The

parameters in example 1 are presented in table 7.4.

Table 7.4: Parameters in example 1.

Parameter Value Unit

Pres 5000 psi

J 1 STB/day/psi

GOR 600 scf/STB

Pb 3565.8 psi

pwf 3390.7 psi

rate 1622 STB/day

This would, if the model works correctly, give approximately the same results as

in case study #2, because these two studies are based on the same simulation

approach. The simulation was performed, presenting a blowout flow rate of 0.1054

ft3/s, which corresponds to 1622 STB/day. The solution was found at a BHP

of 3391 psi. The result from this example differs by a small value compared to

the results in the other case studies. This minor variation is expected due to case

study #2 assuming single-phase inflow, when it in fact is multiphase flow from the

reservoir. Because of multiphase inflow conditions, the oil rate is slightly lower.

The difference between these cases are however negligible, due to the deviation

being less than 1%. From the simulation one observe that the program in fact

utilizes condition 3 with equation 7.4, e.i. a combination of the simple inflow

model and the standard Vogel equation, to calculate the inflow liquid rate. This

can be seen by implementing a breakpoint in the simulator inside the inflow model

prior to running the simulation.

Example 2: Condition 2

The next test was to see if the modified model is valid for cases where the

bottomhole pressure is lower than the bubble point pressure as well as the reservoir

pressure being lower than the well pressure, e.i. condition 2. In order to match

these conditions, it was necessary to adjust some of the input parameters. Because

the bubble point pressure is a function of relative gas density, temperature, API
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and GOR, these variables need to be adjusted to ensure that Pb > Pres. In this

example, the GOR was increased, causing an increase in bubble point pressure.

For simplicity, the reservoir pressure is kept unchanged, to fit the conditions for

the standard Vogel equation. Parameters applied in example 2 are given in table

7.5.

Table 7.5: Parameters in example 2.

Parameter Value Unit

Pres 5000 psi

J 1 STB/day/psi

GOR 1500 scf/STB

Pb 7611.9 psi

pwf 1780.9 psi

rate 2301 STB/day

The simulation was performed, presenting a blowout flow rate of 0.1495ft3/s,

which corresponds to approximately 2301 STB/day. The correct solution was

found at a BHP of 1781 psi. This result is reasonable for multiphase inflow from

the reservoir, as it is expected to notice a drop in well pressure as there is most

likely more free gas present in the fluid. This pressure drop leads to a larger

pressure difference between the reservoir and the well, causing an increase in the

inflow from the reservoir, compared to example 1. From the simulation one notice

that the blowout flow rate model in fact uses the standard Vogel equation to

calculate the inflow liquid rate. This can be seen by implementing a breakpoint

in the program inside the inflow model prior to running the simulation.

Example 3: Condition 1

The final test was conducted to see if the blowout model is valid for cases with

single-phase inflow from the reservoir, e.i. condition 1. In such cases the well

pressure is higher than the bubble point pressure, while the bubble point pressure

is less than the average reservoir pressure. As learned from example 2, increase

in GOR causes an increase in bubble point pressure. To ensure single-phase flow

it was necessary to run the simulation with a lower GOR value, compared to
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those in example 1 and 2. The reservoir pressure is kept unchanged. Hence, the

parameters employed in example 3 are presented in table 7.6

Table 7.6: Parameters in example 3.

Parameter Value Unit

Pres 5000 psi

J 1 STB/day/psi

GOR 300 scf/STB

Pb 2012.3 psi

pwf 4573.8 psi

rate 432 STB/day

The simulation was performed, which gave a blowout oil rate of 0.0281ft3/s,

corresponding to 432 STB/day. The solution was found at a BHP of 4573.8

psi. By implementing a breakpoint in the simulator inside the inflow model, one

observe that the simulator in fact uses the simple inflow model to compute the

solution. In order to check if the inflow from reservoir is single-phase, one may

extract the liquid holdup profile for this simulation example, presented in figure

7.10. From the figure one notice that the liquid fraction is equal to one at the

bottom of the well, meaning that the reservoir and lower parts of the well are at

undersaturated conditions. Free gas is present in the well at 4000 ft and up.

Figure 7.10: Liquid holdup profile for example 3.
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7.3 Sensitivity Analysis

Various sensitivity studies have been conducted in order to study the effect some

of the input parameters have on the blowout oil flow rate. These studies will be

presented in this section, and will include analysis of the impact of friction model,

GOR, productivity index and the application of backpressure. The sensitivity

analysis are based on the input from table 7.1, and is run with the extended code

developed in case study #3.

7.3.1 Friction Model

A brief sensitivity study was performed with the intention of analysing how the

choice of friction factor model would affect the results. A simulation with input

variables as in case study #3 example 1, was therefore performed with the Blasius

equation (eq. 5.61) for turbulent flow, rather than the Chen equation (eq. 5.62).

Thus, the Chen equation is replaced with the following expression;

f = 0.052 ∗Re−0.19 (5.61)

Adjustments made to the friction pressure loss function are shown in Appendix

A.2.6.

With the purpose of only analysing the impact of friction model, the other pa-

rameters were kept unchanged. A simulation with the Blasius equation provided

a solution point flow rate of 0.1044 ft3/s, which corresponds to 1607 bbl/day.

Unlike the other case studies, the solution was found at a BHP of 3399.5 psi.

Hence, the change of friction model provided a decrease in blowout rate, while

consequently an increase in BHP. However, the differences in results between

these two friction factor models are relatively small for this simulation case. The

author therefore conclude that it is sufficient to employ the Chen expression for

the simulation considered here. However, for other geometries and rates, the

choice of friction factor should be investigated further.
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7.3.2 GOR

As discussed earlier, the bubble point pressure is highly affected by the gas-oil

ratio. It was noticed that an increase in GOR caused an increase in Pb. Because of

the large impact of this specific parameter, it would be interesting to study how the

GOR would influence the oil flow rate of a blowing well. In this sensitivity study,

all the variables are kept as in case study #3 example 1, except for variations in

the GOR parameter. The result from this analysis are shown in figure 7.11. The

figure shows that an increase in GOR value causes an increase in blowout flow

rate of oil. This trend is reasonable because a higher bubble point pressure in

the well will lead to more free gas in the well, reducing the bottomhole pressure,

which consequently leads to more inflow from the reservoir.

Figure 7.11: Sensitivity analysis of the impact of GOR.

7.3.3 Productivity Index

Because both the empirical inflow models and the simple inflow model are de-

pending on knowledge about the productivity index, a sensitivity analysis was

performed to observe how different values of J would affect the oil flow rate of a

blowing well. As for the other sensitivity analysis performed in this thesis, one

only make adjustments in the productivity index parameter when running the

various simulations. Other parameters in the simulation are kept identical to the

ones in case study #3 example 1. Several simulations were performed for different

values of J, and the results from these simulations are presented in figure 7.12.
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Figure 7.12: Sensitivity analysis of the impact of productivity index.

The figure shows that an increase in productivity index causes quite large increase

in blowout rate, meaning that the flow rate is highly affected by this parameter.

This is expected due to the fact that the productivity index describes the wells

ability to produce.

7.3.4 Outlet Pressure - The real pressure at surface

In order for the simulation to work it is essential to state the outlet pressure,

namely the boundary condition. This is the pressure we have to ensure that the

model reaches at surface. As discussed earlier, there are to ways of defining the

boundary condition. The real pressure at surface may be equal to the atmospheric

pressure, e.i. 14.7 psi, or it may be set equal to an applied backpressure. The

latter being used in the previous case studies conducted in this thesis.

In general, there would be atmospheric pressure at the surface, but in case of a

seabed blowout, there would be a backpressure for instance caused by the hydro-

static pressure of seawater. According to Yuan et al. (2017), the application of

backpressure on top of the riser has the potential to dampen the unloading of a

riser significantly. It should be noted, that the technology established for riser

unloading, is more an attempt to prevent the unloading developing into a full

blowout, and thus reduce the discharge rate (Yuan et al., 2017).
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A test was therefore performed to study the effect of having a backpressure

in our simulation examples. If the simulation is run with the assumption that

the well is open to the atmosphere, e.i. Psurf= 14.7 psi, one obtain a flowing rate

of 0.1718 ft3/s at 2130.67 psi, corresponding to 2644 STB/day. Furthermore,

different values of applied backpressure were tested in the simulation, which can

be seen in figure 7.13. Different values of backpressure is caused by variation of

water depths.

Figure 7.13: Sensitivity analysis of the effect of applying a backpressure at
surface.

From the figure above its clear that application of a backpressure has the potential

of reducing the blowout flow rate significantly. The result therefore follows the

trend in the studies conducted by Yuan et al. (2017) and Liu et al. (2015). Hence,

subsea blowouts with an annular flow path will most likely have a lower discharge

rate than surface blowouts.

7.4 Discussion of Results

After conducting the different case studies, their corresponding results were com-

pared for validation of the new improved blowout flow rate model. A summary

of the results from the various case studies are presented in table 7.7. It should

be mentioned that only the result from example 1 in case study #3 is considered

here, due to this example being based on the same input parameters as the two
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other case studies.

Table 7.7: Result from the case studies.

Case study
Rate

[STB/day]

BHP

[psi]

#1 1600 3390

#2 1627 3390.7

#3 1622 3390.7

The simulation example run with the base code developed in the previous chapter,

gave an actual blowout rate of approximately 1600 bbl/day at a BHP of 3390

psi. The approach used in case study #1 is a combination of techniques used in

BlowFlow, Gomes (2016) and Gomes et al. (2015). Although the liquid rate at

surface conditions is defined in the main program, the model runs the simulation

by utilizing a shooting technique from the bottom of the well and up. The solution

is then found at the intersection point between the IPR and TPR curves.

The two other case studies were conducted with an alternative approach, where

inflow models were incorporated directly in the solution algorithm while still uti-

lizing the shooting technique from bottom to top. These studies provided, based

on the same input parameters as case study #1, a solution point flow rate of 1627

STB/day and 1622 STB/day, respectively. The correct rate in both cases was

found at a BHP of 3390.7 psi. Hence, the case studies run with the modified code

provided results with less than 1% deviation. Therefore, the improved models

developed in case studies #2 and #3 are considered compatible for this specific

simulation case. This means that the modified model can estimate actual blowout

flow rate with a high accuracy, provided the conditions taken into consideration in

this specific case. However, it should be mentioned, that in order to increase the

robustness of the simulator and gain validation of the model, the results should

be compared to other similar models or field data.

When conducing the two first case studies, it was found that the inflow from

the reservoir was in fact at multiphase conditions. By analysing the different

figures produced by the program, one notice small amounts of free gas present
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at downhole conditions. Hence, the well is not deep enough for all the gas to

be dissolved in the oil. In these studies the transition between single-phase and

multiphase conditions occur at some point between the reservoir and the wellbore,

causing the model to present reasonable results regardless of inflow model being

used. It should also be mentioned that the bubblepoint pressure of 3565.8 psi in

case studies #1 and #2, was higher than the bottomhole pressure found by the

model. The author would like to emphasize, that the small difference in results

may be caused by the bubble point pressure being so close to the BHP, that

the simple inflow model may give accurate enough result. This strengthen our

assumption of multiphase inflow from the reservoir. An empirical inflow model

should ideally be utilized at such conditions. Therefore, the last case study was

conducted with the aim of making the simulator valid for both single-phase and

multiphase inflow conditions.

In the attempt of extending the code to cover multiphase inflow in case study #3,

the code was initially run with same input as in the other case studies as a test to

see if the modified model gave similar result. Example 1 was therefore conducted

by using the modified Vogel equation. As discussed earlier the deviation in result

was less than 1%. The next step was to see if the improved code worked at

other conditions as well. Therefore, simulations were run with single-phase inflow

conditions (ex. 3), as well as multiphase inflow conditions where the reservoir

pressure is lower than the bubble point pressure (ex.2). The simulation examples

in case study #3 gave the results shown in table 7.8.

Table 7.8: Result from the examples in case study #3.

Example Condition
Rate

[STB/day]

BHP

[psi]

1
Multiphase flow

Pres > Pb
1622 3391

2
Multiphase flow

Pres < Pb
2301 1781

3
Single-phase flow

Pres > Pb
432 4574
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It was found that the extended code works for both multiphase and single-phase

inflow scenarios. It was determined from the simulation that the program em-

ploys correct inflow model depending on the conditions in the well. This was

seen by implementing a breakpoint in the simulation inside the inflow model

prior to running the simulation. It seems reasonable that there will be a lower

well pressure at multiphase conditions because there will be more free gas present

in the well, consequently causing more inflow of both oil and gas from the reservoir.

From the study it was found that both solution strategies of computing the

blowout rate are accurate. They provide similar results for similar simulation

examples. Although the simulations provided reasonable results, it is difficult to

determine if they are accurate or not, due to the lack of comparable studies or

reservoir data. Because the simulations are based on theoretical data resembling

a well by using deterministic inputs, it is difficult to determine if the model illus-

trate the reality. The approach used in case studies #2 and #3, of including an

inflow model inside the code, is undoubtedly the most efficient solution strategy

as it saves computational time. This is the case as long as the model is based on

a procedure of calculating from bottom to top. In addition, it is believed that

the procedure in case studies #2 and #3 is more refined as the model finds the

exact point of intersection between the inflow and outflow curves directly by nu-

merical iterations. The strategy in case study #1 leaves room for human error in

reading the intersection point between the IPR and TPR curves. This error may

be eliminated by extracting this intersection point by performing numerical cal-

culations with cubic spline interpolation, which is the approach used in BlowFlow.

It should also be mentioned that the program experienced problems finding so-

lutions for some of the flow rates tested in case study #1. It is believed that

the problem lays in the bisection method, and that some of the rates may cause

discontinuities in the model, making the program run in an endless loop. This

error may be caused by the wide use of empirical correlations in the simulator.

However, because this was only a problem for a few of the rates, the problem

was easily solved by adjusting the search interval for these specific rates, which

assisted the model in finding a solution. Studies shows that the program, or more
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precisely the bisection method, is highly sensitive to choice of search interval.

Because this thesis presents and tests two possible ways of performing blowout

modelling, namely by using the BlowFlow engine or by using the developed

blowout flow rate model, an attempt was made in comparing the results from the

case studies to a similar simulation example in BlowFlow. It is believed that pos-

sible similarities in the results can improve the validation of the modified model.

In the attempt to produce a similar case in BlowFlow, it was quickly determined

that comparisons between the two different programs would be difficult. The au-

thor would like to emphasize that this conclusion was drawn based on BlowFlow

being more complex and refine, due to a larger set of inputs for the simulation, as

well as this engine simulating probabilistic blowouts. There is reason to believed

that the blowout flow rate model modified in this thesis has a long way to go,

compared to the refined BlowFlow engine with years of testing.

7.5 Additional Improvements

A lot of effort has been put into checking and documenting the original code

presented by Gomes (2016). This resulted in various modifications to the orig-

inal code, most of which have been addressed earlier in this thesis. Additional

improvements made to the code will be further described in this section, and may

be seen in Appendix A.2. It should be mentioned that the biggest improvement

made at this point, is that it is now possible to determine the correct oil flow rate

of a blowing well directly from the program by utilizing various inflow models

depending on the conditions in a well.

The function ffric, is simply removed in the improved code, because there is

no need for this function in the simulation as the function is represented in the

function dpdfric. In addition, the author noticed some confusion in the base code

in the function FVFo, between saturated and undersaturated oil. For clarity,

saturated oil is defined as when Pwf < Pb, and undersaturated oil is present when

Pwf > Pb. This has been changed in the new improved code.
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To summarize the improvements made to the original code by Gomes (2016)

to this point, all changes made are listed below.

� All inputs are defined in field units.

� Inflow models implemented directly in the code to simulate both single-phase

and multiphase inflow from the reservoir.

� The code is valid for both annular and tubular geometry.

� The temperature model was replaced.

� The parameter Welldepth is included as output from main.m and itsolver.m.

� Considers a transitional zone between laminar and turbulent flow.

7.6 Further Work

Although the developed blowout flow rate model run adequately and present

reasonable results, the simulator has room for additional improvements. Due to

lack of similar simulator or available field data, it is difficult to obtain validation

of the result presented by the model. Hence, there may be lack in the accuracy of

the model. There are some points the author would recommend as future work

to increase both the accuracy and robustness of the model. A brief description of

these recommendations are presented below.

� One of the major challenges when performing simulations is to base the

simulation on correct assumption. Factors affecting the blowout rate are

uncertain and often unknown. Therefore, to increase the validation of

the simulator, the author recommended to invest more time in testing the

result with similar cases. This could for example be done by performing

comparison with other simulators or preferably field data for production

wells. Parameters that match real-life conditions, will provide more realistic

results. In addition, more effort should be put into exploring why the

developed model did not present similar result as the BlowFlow engine.

� Include a function for the productivity index, as this parameter is affected

by various factors. Although, in this thesis, the productivity index is set

as a fixed value, it may be defined as a function of effective horizontal
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permeability, pay zone thickness, wellbore radius, and skin factor (Guo

et al., 2008). This is similar to the approach in BlowFlow, if a OilBasic

model is chosen. J is expressed as a function by equation 7.6 (Guo et al.,

2008).

J =
kh

141.2Boµo(In
re
rw
− 3

4
+ S)

(7.6)

� The viscosity of both oil and gas are in the modified code specified as fixed

values in the wellpressure script. In real life the viscosity depend on both

pressure and temperature, and should therefore ideally be presented as a

function in the program, similar to the approach in the BlowFlow engine.

� By utilizing the modified Hagedorn & Brown empirical correlation, the de-

veloped simulator does not take into account different flow regimes. The

pressure and flow rate are highly affected by the flow regime present in the

pipe. Hence, various flow regimes like bubble, slug, churn and annular flow,

should ideally be considered in the model to increase the accuracy of the

output of the model. The author recommend to include other correlation

methods, like Orkiszewski (1967), to calculate the multiphase inflow param-

eters, or use mechanistic models, like for instance Lage and Time (2000) to

perform the calculations. Mechanistic model determine the flow regimes in

each box, e.i. the actual type of slip and friction model will be computed

based on the flow regime in each box.

� The developed model is only valid for vertical wells. It is important that mul-

tiphase models are valid for vertical, inclined and horizontal cases. Therefore

an effort should be put into extending the application of the simulator to

horizontal/inclined wells, where the reservoir is producing along the hori-

zontal part. An alternative way of making this possible is to include a loop

inside the code that calculates the liquid rate in each cell starting from the

bottom of the well. For each new cell, the new liquid rate is computed

based on using a PI model for that cell, in addition to adding the liquid

rate from the previous cell. Inside this loop a PI model for all the cells in

the horizontal part of the well must be implemented. Hence, to account for
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single-phase flow, the following expression may be added in the code.

liquidrate = prodinx(Pres − P (i))

However, for this model to work one need to introduce the inclination as

a parameter for the different nodes. This parameter must be used in the

hydrostatic pressure loss. One should also introduce a parameter TVD of

the well, to account for the depth differences affected by the inclination.

An initial test example could be constructed where 1/3 of the nodes are

vertical, 1/3 are set to 45 degrees, while 1/3 of the segments are placed

horizontally in the reservoir. In the horizontal part, the inflow is expected

to be uneven. The well pressure will be higher at the toe of the well (end of

well) than at the heel (where the well enters the reservoir). This pressure

difference is expected due to more friction acting at the toe compared to

the heel. Hence, there will probably be more inflow at the heel, if all other

reservoir parameters are kept the same.

� The model experience stability problems regarding finding solutions for

some of the rates tested, due to possible discontinuities in the model. These

discontinuities are most likely caused by the bisection method and by the

wide use of empirical correlations. Applications of mechanistic models in

the simulator may eliminate these stability problems, making the model

even more robust.

� By applying the shooting technique from the bottom of the well and up,

the model gets more sensitive to choosing the right search interval for deter-

mining the initial guess of BHP. In addition, the model gets more sensitive

to discontinuities in the wellpressure function. This may be solved by using

the calculation approach used in BlowFlow. Therefore, an interesting future

study would be to study which of the mentioned approaches that are most

cost-effective, especially if there is a need to reduce the computational time

of the simulator.

� A possible improvement would be to implement and run the simulation with

the implicit Colebrook model ( 5.60), which may increase the accuracy of

the solution.
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A simulation example has been performed using the Oliasoft Blowout Simulator.

This engine illustrate a possible approach of simulating blowout rate, volume and

duration, which is essential for oil spill preparedness analysis. The BlowFlow

model is based on varying the outflow rate at surface conditions, and calculate

from top to bottom. This is utilized to numerically calculate the corresponding

BHP. The correct solution is found at the intersection point between the IPR and

TRP curves. With a Monte Carlo Simulation as framework, and by employing

a predictive Bayesian approach, BlowFlow takes into account the uncertainty

related to reservoir input parameters, and thus simulate a probabilistic blowout.

In the second part of the thesis, a numerical simulator based on the black oil

model, multiphase flow model, simple friction model and inflow model, was devel-

oped in Matlab with the purpose of simulating blowout rates. The starting point

was a steady state flow model developed by Gomes (2016).

The studies conducted show that in the extended code it is possible to include

various inflow models, to numerically calculate the blowout oil flow rate at both

multiphase and single-phase inflow conditions. This was possible because the

simulator is based on an initial guess of the BHP, where the shooting technique

starts at the bottom of the well and works upwards until the outlet is reached.

Hence, the method uses iteration to determine the actual BHP. The simulator

employs adequate inflow model depending on the conditions in the well. In case

of single-phase inflow, one observe undersaturated conditions at the reservoir and

at lower parts of the well, in addition to lower inflow rates. It seems reasonable

that at multiphase inflow conditions, there would be more free gas present in the

well, leading to a lower well pressure, consequently causing more inflow of both

136
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oil and gas from the reservoir. Due to lack of similar simulators or preferably field

data, it is difficult to determine if the modified model is accurate or not.

It is possible to determine blowout rate from two different approaches. This

is the case for our simulation examples based on theoretical data resembling a

well by using deterministic inputs, which makes it difficult to determine if the

model illustrates the reality. The first approach is based on assuming various

outflow rates at surface condition, and finding the corresponding bottomhole

pressure by utilizing a shooting technique from the bottom to top. The correct

rate and BHP are found at the intersection point between the IPR and TPR

curves. This can be done either manually, as in case study #1, or by finding it

by numerical means, like in BlowFlow. The second approach is based on guessing

the BHP and calculate upwards, until the calculated outlet pressure at surface

satisfy the physical outlet pressure. In this approach, the inflow rate and correct

downhole pressure are found directly during the calculation process. The method

of integrating an inflow model directly in the program, is without doubt the most

efficient solution strategy as it saves computational time. This is the case as

long as the modified model is based on a procedure of numerical calculation from

bottom to top. The computational time may be even more reduced with the use

of the approach in BlowFlow. What approach is most computational efficient

may be worth a future study.

Much effort has been put into reviewing and documenting the original code

by Gomes (2016), which resulted in various improvements made to the base code.

Taking the hydraulic diameter into consideration in the various functions, make

the program valid for both annular and tubing configuration. Numerical stability

problems were obtained when making the well deeper. As a result the tempera-

ture model was substituted with a model that calculates the fixed temperature

profile in the well based on specified surface and downhole temperature, such that

each box has a fixed temperature. Because the black oil model is included, the

various input parameters are now defined in field units, rather than SI units. The

welldepth parameter is included as output from both main and itsolver scripts,

and the modified model considers a transitional zone between laminar and turbu-
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lent flow. All these modification improve the simulator significantly.

The sensitivity analysis performed show that the blowout rate is highly affected

by various factors. An increase in the GOR value caused an increase in the

blowout flow rate of oil. The reason for this effect is that a higher bubble point

pressure will lead to more free gas in the well, reducing the BHP, causing even

more inflow from the reservoir. As the productivity index describes the wells

deliverability, an increase in this values causes large increase in flow rate. It was

found that the potential release point has a great impact on the flow rate and

thus the oil-spill. A seabed blowout, will most likely cause a lower discharge rate

than surface blowouts. This was also seen in the BlowFlow simulation example.

However, cases with very high flow velocity towards the top of the well may lead

to a higher rate from a seabed blowout.

Regarding the future work, the author would like to emphasize the advantages

of making the model valid for inclined and horizontal wells, where the reservoir

is producing along the horizontal part. To increase the validation of the simula-

tor, an effort should be put into testing and comparing the result with similar

simulators or field data.
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A. Appendix

A.1 Simple Inflow Model Calculations

Simple inflow model calculations performed in case study #1 in order to plot a graph
of both the IPR and the TPR. These calculations are performed in Excel.
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A.2 Modified Code with Implemented Inflow Model

A.2.1 Main.m

%% A BLOWOUT WELL FLOW MODEL

% A program developed for calculating well pressures in a
% well where we have both oil and gas flow. The model assumes that we
% have steady state conditions (constant flowrates at surface) and no time
% variations. The model is based on calculating the correct bottomhole
% pressure for certain gas and oil flow rates and takes into account
% both the hydrostatic pressure and frictional pressures.

% As the black oil model is implemented into the program, all
% calculations are done using field units, thus [psi] for pressure,
% [ft3/s] for rates.

clear;

% Here we specify the vertical depth of the well and
% and the number of boxes we want in our calulations.
% Based on this, the boxlength is found and used in the calculations.

welldepth = 4000; %m
nobox = 200;
nopoints = nobox+1;
boxlength = welldepth/nobox; %m
% nopoints is an j array keeping track of the end point of the boxes.

% Now we will call a function that calculates the pressure along the well
% for a given liquid flowrate. We call this function
% itsolver because it is the zero point solver, meaning that the function
% iterates until it finds the correct pressure. This solver routine again
% calls upon a function "f(Pbottom)" called wellpressure. The rotine
% solver actually finds the correct bottomhole pressure that makes the
% function wellpressure become zero "f(Pbottom) = 0".
% Then we have found the correct pressure profile.

% Rates are given in ft3/s. We assume only liquid flow first.

liquidrate = 0.12347; %liquid rate at surface [ft3/s]

[pbot,error,rate] = itsolver(nopoints,boxlength,welldepth,liquidrate);
%[pbot,error]=itsolver(nopoints,boxlength,welldepth,liquidrate);

A.2.2 Itsolver.m

%% FUNCTION ITSOLVER
function [pbot,error,rate] = itsolver(nopoints,boxlength,welldepth,liquidrate)
%function [pbot,error] = itsolver(nopoints,boxlength,welldepth,liquidrate)

% The numerical solver implementeted here for solving the equation f(x)= 0
% "wellpressure(pbot)= 0" is called the
% Method of Halving the Interval (Bisection Method)

% You will not find exact match for f(x)= 0. By using
% ftol we say that if f(x)<ftol, we are satisfied.

ftol = 1; %Specified tolerance [psi]

% Set number of iterations to zero. This number will tell how many
% iterations are required to find a solution with the specified accuracy.
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noit = 0;

% Here one need to specify the search interval. xguess is the pressure you
% guess for the bottomhole. We here use hydrostic pressure of liquid in the
% well as our initial guess. This is of course not nes. correct since we have
% gas and friction effects in addtion. But it might be a good starting point for
% the iteration.

xguess = 500*9.81*welldepth*0.000145038;%initial guess for BHP, [psi]
% The search interval can be adjusted to help find a solution.
xint = 725.19; %Selected search interval, [psi]
x1 = xguess-xint/2.0;
x2 = xguess+xint/2.0;

[f1,rate] = wellpressure(x1,liquidrate,nopoints,boxlength,welldepth);
[f2,rate] = wellpressure(x2,liquidrate,nopoints,boxlength,welldepth);
% f1 = wellpressure(x1,liquidrate,nopoints,boxlength,welldepth);
% f2 = wellpressure(x2,liquidrate,nopoints,boxlength,welldepth);

% First include a check on whether f1xf2<0. If not you must adjust your
% initial search intervall. If error is 1 and zero pbot, then you must
% adjust the intervall here.

while (f1*f2)≥0
xint= xint+100;
x1 = xguess-xint/2.0;
x2 = xguess+xint/2.0;

[f1,rate] = wellpressure(x1,liquidrate,nopoints,boxlength,welldepth);
[f2,rate] = wellpressure(x2,liquidrate,nopoints,boxlength,welldepth);
%f1 = wellpressure(x1,liquidrate,nopoints,boxlength,welldepth);
%f2 = wellpressure(x2,liquidrate,nopoints,boxlength,welldepth);

error = 1;
%pbot = 0;

end

% start iterating, we are now on the track.
x3 = (x1+x2)/2.0;
[f3,rate] = wellpressure(x3,liquidrate,nopoints,boxlength,welldepth);
%f3 = wellpressure(x3,liquidrate,nopoints,boxlength,welldepth);

while (f3>ftol | f3 < -ftol)
noit = noit +1

if (f3*f1) < 0
x2 = x3;

else
x1 = x3;

end

x3 = (x1+x2)/2.0;
[f3,rate] = wellpressure(x3,liquidrate,nopoints,boxlength,welldepth);
[f1,rate] = wellpressure(x1,liquidrate,nopoints,boxlength,welldepth);
%f3 = wellpressure(x3,liquidrate,nopoints,boxlength,welldepth);
%f1 = wellpressure(x1,liquidrate,nopoints,boxlength,welldepth);

end
error = 0;
pbot = x3
noit

end
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A.2.3 Wellpressure.m

%% FUNCTION WELLPRESSURE
function[f,rate]=wellpressure(pbotguess,liquidrate,nopoints,boxlength,welldepth)
% function [f] = wellpressure(pbotguess,liquidrate,nopoints,boxlength,welldepth)

% At first we need to state the outlet pressure, namly also the physical
% boundary condition, that we have to ensure that our model reaches.
% One may assume the outlet pressure to be equal to the atmoshpheric
% pressure, 14.7 psi. However, if a choke is present, the surface pressure
% will be different. This means that the outlet pressure should be set
% equal to desired choke pressure. It means that if the choke pressure is
% 250 psi, then the variable, prealsurface, should be set to this.

prealsurface = 250; %If there is a back-pressure pressent [psi]
%prealsurface=14.7; %If the outlet pressure is the atmoshpheric pressure

% We now start by the deepest box with the pressure we assume: pbotguess
% and for each box, we calculate the pressure and flowrates. In the end, we
% end up with some surface rates and a surface outlet pressure. The
% calculated outlet surface pressure should equal the physical outlet
% condition. The function will be zero if the correct bottomhole pressure
% is found.

% One assume a annular geometry, and therefore need to set outer/inner
% diameter of annulus. Assume a 8.5" casing, and a 5.0" drillpipe.

%% Defining initial parameters:
do = 8.5; % Other diameter, [in]
di = 5.0; % Inner diameter, [in]
e = 0.000288; %inner rugosity in [ in]
RGL = 600; % = gas-liquid ratio, [scf/STB]
% RGL = GOR, because we assume only oil and gas flow.
%fw=zeros(nopoints, 1);
fw = 0; % water fraction, zero because be assume only gas and oil flow
gamaoil=0.87;% oil relative density
gamagas=0.75;% gas relative density
rowater= 62.4; %water density [lbm/ft3]
Mair = 29; % air molar mass [g/mol]
roair = 0.0765; % air density [lbm/ft3]

%% CASE STUDY #2
% This PI model is used in case study #2 for single-phase flow.

%% The PI model (Simple reservoir inflow model )
% prodinx = 1; %Productitivity index, [STB/day/psi]
% Pres = 5000; % Average reservoir pressure [psi]
%
% if (pbotguess < Pres)
% liquidrate = prodinx*(Pres - pbotguess); %[STB/day]
% else
% liquidrate = 0;
% end
%
% % need to convert the liquidrate from STB/day to ft3/s, hence
% liquidrate = liquidrate * 0.000065; %[ft3/s]

%% Preliminary calculations:
Rsb = RGL / (1 - fw); %solubility ratio at bubble point [scf/STB],
% hence Rsb = RGL = GOR.

%If the simple PI model is used, Qost, Qgst and Qwst needs to be
%activated before running the simulation.
% Qost=(1-fw)*liquidrate; %oil flowrate [ft3/s] at surface
% Qgst=RGL*liquidrate/5.61; % gas flowrate [ft3/s] at surface
% Qwst=fw*liquidrate; % Water rate in [ft3/s] at surface
K=e/(do-di); % relative rugosity
rodeadoil=gamaoil*rowater; %density of dead oil, [Lbm/ft3]



149 APPENDIX A. APPENDIX

rogassc=gamagas*roair; %density of gas at standard conditions, [lbm/ft3]
API= 141.5/gamaoil-131.5; %API grade
flowarea = 3.14/4*(do*do-di*di); % The flow area [in2]

%% Specify viscosities [cP]

viscw = 1; %water viscosity cP
visco= 12; %Oil viscosity, cP
viscg = 0.01;%Gas viscosity, cP

%%
% Now we loop from the bottom to surface and calculate accross all the
% segments until we reach the outlet.

%vls = zeros(nopoints,1);
%vgs = zeros(nopoints,1);
p = zeros(nopoints,1);
T = zeros(nopoints,1);
depth = zeros(nopoints,1);
%PB = zeros(nopoints,1);
Rs = zeros(nopoints,1);
Bo = zeros(nopoints,1);
%Z = zeros(nopoints,1);
%sigma = zeros(nopoints,1);
Bg = zeros(nopoints,1);
%Ql = zeros(nopoints,1);
%vls = zeros(nopoints,1);
%Qg = zeros(nopoints,1);
%vgs = zeros(nopoints,1);
%vmix = zeros(nopoints,1);
roliq = zeros(nopoints,1);
rooil = zeros(nopoints,1);
rogas = zeros(nopoints,1);
%Nvl = zeros(nopoints,1);
%Nvg = zeros(nopoints,1);
%Nd = zeros(nopoints,1);
%Nl = zeros(nopoints,1);
H l = zeros(nopoints,1);
%Hg = zeros(nopoints,1);
%romix = zeros(nopoints,1);
%viscmix = zeros(nopoints,1);
%Re = zeros(nopoints,1);
%dpdlfric = zeros(nopoints-1,1);
%dpdlhid = zeros(nopoints-1,1);

% Before we loop, we define all variables at the inlet of the first
% segment(at bottom). As starting point we use the fact that we know the
% mass rate of the different phases (same as on top of the well)
% Calculations that must be updated in each cell
% (parametres that verie with P and T) :

% Set pressure equal to guessed pressure
p(1) = pbotguess; %Inital guess for pressure in node 1, [psi]
T(1)= 302;% Bottomhole temperature, [F]
depth(1)=welldepth* 3.28084;%welldepth converted from [m] to [ft]

%% Temperature Model
%Include a simple temperature model, in order to determine the
%temperatures in the different nodes.
T(1)=302;
T(nopoints)=100;
tempgrad=(T(nopoints)-T(1))/(nopoints-1); %Temperature gradient [F]

for i=1:nopoints-1
T(i+1)=T(i)+tempgrad;

end
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%% CASE STUDY #3
%% PI Model (Inflow model for both undersaturated and saturated reservoirs)
PB=Pbubble (gamagas, T(1), API, Rsb);% Bubble point pressure, [psi]
prodinx = 1; %Producitivity index [STB/day/psi]
Pres =5000; %Average reservoir pressure [psi]
qmax = (prodinx*Pres)/1.8; %Maximum inflow rate [STB/day]

if pbotguess < Pres
if (Pres > PB) & (pbotguess ≥ PB)

liquidrate = prodinx*(Pres - pbotguess); % [STB/day]
elseif (pbotguess ≤ PB) & (Pres < PB)

%Standard Vogel inflow model [STB/day]
liquidrate = qmax* ( 1 - 0.2*(pbotguess/Pres)- 0.8*(pbotguess/Pres)ˆ2);

else
%Modified Vogel inflow model [STB/day], a combination of both the
%simple inflow model and the standard Vogel equation.
liquidrate = prodinx*(Pres-PB)+ (prodinx*PB/1.8)*(1 - 0.2*(pbotguess/PB)
- 0.8*(pbotguess/PB)ˆ2);

end
else
liquidrate = 0;
end

%need to convert the liquidrate from STB/day to ft3/s, hence
liquidrate = liquidrate * 0.000065; %[ft3/s]

%% Additional preliminary calculations
Qost=(1-fw)*liquidrate; %oil flowrate at surface [ft3/s]
Qgst=RGL*liquidrate/5.61; % gas flowrate at surface [ft3/s]
Qwst=fw*liquidrate; %water flow rate at surface [ft3/s]
%%
% Now we loop across the segments.

for i =1:nopoints-1

% use the inlet values for each segment to calculate hydrostatic
% and friction pressure across each segment.

%if (i==8)
%disp('here')
%end

% If the simple inflow model is used, the bubble point pressure equation
% needs to be activated.
PB=Pbubble (gamagas, T(i), API, Rsb);% Bubble point pressure, [psi]
Rs=Rsolu(gamagas,API,PB, p(i),T(i));% solubility ratio
Bo(i)= FVFo(Rs,API,gamagas,T(i),p(i),PB);% Oil fomration volume factor
CompFactor= zgas(gamagas,p(i),T(i)); %Gas compressibility factor
sigma=tension(p(i),T(i),API); % [dyna/cm]
Bg(i)=FVFg(T(i),CompFactor,p(i));%Gas formation volume factor [ft3/scf]
Ql=Qwst+Qost*Bo(i); %in situ liquid rate, [ft3/s]
vls = Ql/flowarea*144; %liquid superficial velocity, [ft/s]
Qg =(Qgst-Qost*Rs/5.61)*Bg(i);%gas rate in situ, [ft3/s] [1 bbl = 5.61 ft3]

if Qg<0
Qg=0;

end
vgs=Qg/flowarea*144;%gas superficial velocity, [ft/s]
vmix=vls+vgs; %misxture velocity in ft/s

%in situ density of liquid in Lbm/ft3
roliq(i)=(rodeadoil*Qost+ Rs*Qost*rogassc/5.61+rowater*Qwst)/(Bo(i)*Qost+Qwst);
rooil(i)=(rodeadoil+Rs*rogassc/5.61)/Bo(i);%in situ density of oil in Lbm/ft3
%in situ density of gas in Lbm/ft3
rogas(i)=p(i)*gamagas*144*Mair*CompFactor/1545.349/(T(i)+460);

%% Liquid holdup
% now, we apply modified Haggedorn & brown method to find liquid fraction
N vl = Nvl(vls, roliq(i), sigma);%liquid velocity number
N vg = Nvg(vgs, roliq(i), sigma);%gas velocity number
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N d = Nd(do,di, roliq(i), sigma ); %pipe diameter number
N l = Nl(visco, roliq(i), sigma);%liquid viscosity number
H l(i) = Hl(N vl, N vg, N d, N l, vgs, vmix, p(i), do, di); %liquid holdup

%A test to see if there are any errors in the Hagedorn and Brown correlation;
% No slip formula for fraction:
%H l(i)= vls/(vls+vgs);

%With known liquid holdup, the gas holdup can be determined from
Hg=(1-H l(i)); %gas holdup

%the holdups obtained from the Hagedorn & Brown correlation may be used
%to determine the mixture properties of a multiphase flow.

romix= roliq(i)*H l(i)+rogas(i)*Hg;%mixture density , [Lbm/ft3]
viscmix = (viscw*fw+visco*(1-fw))ˆH l(i)*viscgˆHg; %Viscosity mixture,[cP]
Re=124.01 * ((do-di) * vmix * romix) / viscmix; %Reynolds number

%% Pressure drop
dpdlfric = dpfric(Re, K, di, do, vmix, romix); %Pressure loss due friction[psi/ft]
dpdlhid = romix / 144; % hydrostatic pressure loss [psi/ft]

p(i+1)=p(i)-dpdlhid*boxlength*3.28084-dpdlfric*boxlength*3.28084;

% A test to see if there are any problems in the friction model
%p(i+1)=p(i)-dpdlhid*boxlength*3.28084;
depth (i+1)= depth(i)-boxlength*3.28084;

end

%% Results
pout = p(nopoints);
f = pout-prealsurface;
rate = liquidrate;

if f ≤ 1 %psi. This value is the value copied of ftol in itsolver

%% Plotting figures
%Simply remove % to show some of the parameters profile

%Plot of the pressure drop in the well
% plot(depth(1:nopoints-1),p(1:nopoints-1))
% grid on
% title('Pressure drop profile')
% xlabel('Depth(ft)')
% ylabel('Pressure (psi)')

%Plot of the Oil Formation Volume Factor
% plot(depth(1:nopoints-1),Bo(1:nopoints-1))
% grid on
% title('Oil Formation Volume Factor profile')
% xlabel('Depth (ft)')
% ylabel('Bo')

%Plot of the Gas Formation Volume Factor
% plot(depth(1:nopoints-1),Bg(1:nopoints-1))
% grid on
% title('Gas Formation Volume Factor profile')
% xlabel('Depth (ft)')
% ylabel('Bg')

%Plot of the gas density profile
% plot(depth(1:nopoints-1),rogas(1:nopoints-1))
% grid on
% title('Gas Density profile')
% xlabel('Depth(ft)')
% ylabel('Density (Lbm/ft3)')

%Plot of the oil density profile
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% plot(depth(1:nopoints-1),rooil(1:nopoints-1))
% grid on
% title('Oil Density profile')
% xlabel('Depth(ft)')
% ylabel('Density (Lbm/ft3)')

%Plot of the liquid holdup
plot(depth(1:nopoints-1),H l(1:nopoints-1))
grid on
title('Liquid Holdup profile')
xlabel('Depth(ft)')
ylabel('Liquid Holdup')

end
end

A.2.4 Function for solubility ratio

%% SOLUBILITY RATIO
function Rs= Rsolu(gamag, API, PB, P, T)
% Standing correlation is employed to calculate Rs.
%Rsolu = solubility ratio, [scf/STB]
%gamag= gas specific gravity
%API= API (dead oil)
%PB = Bubble point pressure, [psia]
%p: pressure [psia]
%T: temperature [F]
if (P<14.7)

P=14.7;
end

Yg = 0.00091 * T - 0.0125 * API;
if (P < PB)

Rs = gamag * ((P - 14.7) / 18 / 10 ˆ Yg) ˆ (1 / 0.83);
else

Rs = gamag * ((PB - 14.7) / 18 / 10 ˆ Yg) ˆ (1 / 0.83);
end

end

A.2.5 Function for bubble point pressure

%% BUBBLE POINT PRESSUE

function PB = Pbubble (gamag, T, API, Rsb)
% The Standing correlation is employed to calculate the bubble point
% pressure, Pb [psia]
%T = temperature [F]
%gamagas = gas specific gravity
%API = API (of dead oil)
%Rsb = Solubility Ratio at bubble point [scf/STB]

Yg = 0.00091 * T - 0.0125 * API;
PB = 18 * (Rsb / gamag) ˆ 0.83 * 10 ˆ Yg + 14.7; % The factor of 14.7psi
%is added to the formula in order to get the absolute pressure.

end

A.2.6 Function for frictional pressure loss

%% FRICTIONAL PRESSURE LOSS

function friclossgrad = dpfric(Re, K, di,do, v, ro)

%friclossgrad = friccional pressure loss [psi/ft]
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%f = Fanning friction factor
%Re = Reynolds number
%K = relative rugosity
%v = mixture velcocity [ft/s]
%d = diameter [in]
%ro: mixture density [lbm/ft3]

%One need to distinguish between laminar and turbulent flow regime, as
%different flow patterns yields different calculations of the friction
%factor.

if (Re ≤ 2000)
f = 24 / Re;

elseif ((Re≥2000)&(Re≤3000))
xint = (Re-2000)/1000;
f1 = 24 / Re;
A = (-4) * log((K / 3.7065) - (5.0452 / Re) * log(((K ˆ 1.1098)/
2.8257) + ((7.149 / Re) ˆ 0.8981)));

f2 = (1 / A) ˆ 2; %Chens friction factor
%f2 = 0.052*(Re)ˆ(-0.19); %Blasius friction factor
f = xint*f2+(1-xint)*f1;

else
A = (-4) * log((K / 3.7065) - (5.0452 / Re) * log(((K ˆ 1.1098)/
2.8257) + ((7.149 / Re) ˆ 0.8981)));

f = (1 / A) ˆ 2; %Chens friction factor
%f = 0.052*(Re)ˆ(-0.19); %Blasius friction factor

end
friclossgrad = (2 * f * ro * v ˆ 2) / (32.17*( do-di)/12 * 144);

end

A.2.7 Function for oil formation volume factor

%% OIL FORMATION VOLUME FACTOR

function Bo=FVFo(Rs, API, gg, T, p, pb)
%Standing correlation is used to determine this parameter.
%FVFo= oil formation volume factor [bbl/STB]
%Rs= solubility of the gas in the oil [scf/STB]
%gg= gas specific gravity
%API: API (dead oil)
%pb = bubble point pressure [psia]
%p = pressure [psia]
%T = temperature [F]
%co = compressibility factor of oil [1/psi]
%go = oil specific gravity
%Bob = Oil Formation Volume Factor above bubble point [bbl/STB]

if (p < pb) %saturated oil
go = 141.5 / (131.5 + API); % Density relative to water
f = Rs * (gg / go) ˆ 0.5 + 1.25 * T;
Bo = 0.972 + 0.000147 * f ˆ 1.175;

else %undersaturated oil
Yg = 0.00091 * T - 0.0125 * API;
Rsb = gg * ((pb- 14.7) / 18 / 10 ˆ Yg) ˆ (1 / 0.83);
%The value 14.7 psia is added into the equation to get the absolute
%pressure.
go = 141.5 / (131.5 + API);
f = Rsb * (gg / go) ˆ 0.5 + 1.25 * T;
Bob = 0.972 + 0.000147 * f ˆ 1.175;
%because, the standing correlation is only valid for p < pb, one
%need to include the Vasques-Beggs correlation for cases above the
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%pb, hence one need to include the following
co = (5 * Rsb + 17.2 * T - 1180 * gg + 12.61 * API - 1433) / (p * 10 ˆ 5);
Bo = Bob * exp(co * (pb - p));

end
end

A.2.8 Function for gas formation volume factor

%% GAS FORMATION VOLUME FACTOR

function Bg = FVFg(T,Z,P)
%Bg = Gas formation volume factor [scf/scf]
% P = pressure[psia]
% T = Temperature [F]
% Z = Compressibility factor of gas
Bg = (14.7 / 520) * Z * (T + 460) / P;
end

A.2.9 Function for liquid holdup

%% LIQUID HOLDUP

function liquidholdup = Hl(Nvl, Nvg, Nd, Nl, vsupg, vmist, P, do,di)
% The modified Haggedorn & Brown method to find liquid holdup
Lb1 = 1.071 - 0.2218 * (vmist ˆ 2) / (do-di);
%Lb1 = 1.071 - 0.2218 * (vmist ˆ 2) / 2.8;
if (Lb1 < 0.13)
Lb = 0.13;
else
Lb = Lb1;
end

alphag = vsupg / vmist; %alpha g (no slip gas holdup)
%-----------------------------------------------------------------------
if (alphag < Lb)

% then there is a bubble flow, and the Griffth correlation is used to
% obtain the liquid holdup
vs = 0.8; % [ft/s]
liquidholdup = 1 - (1 / 2) * (1 + vmist / vs - ((1 + vmist / vs) ˆ 2 - 4
* vsupg / vs) ˆ (1 / 2));

else
% If the flow regime in the pipe is not bubble flow, the original
% Hagedorn & Brown correlation is used to obtain HL
CNL = -4.2757 * Nl ˆ 5 + 5.0934 * Nl ˆ 4 - 1.9063 * Nl ˆ 3 + 0.1478 * Nlˆ2
+ 0.0505 * Nl + 0.0018;
A = Nvl * P ˆ 0.1 * CNL / (Nvg ˆ 0.575 * 14.7 ˆ 0.1 * Nd);
%-------------------------------------------
if (A ≤ 0.0009)

B = 14.195 * A ˆ 0.4094;
else

B = 7 * 10 ˆ 6 * A ˆ 3 - 80723 * A ˆ 2 + 316.19 * A + 0.5649;
end
%-------------------------------------------
%B = Hl / PSI
c = Nvg * Nl ˆ 0.38 / (Nd ˆ 2.14);
if (c ≤ 0.012)

PSI = 1;
else

PSI = 124923 * c ˆ 4 - 24628 * c ˆ 3 + 1446.7 * c ˆ 2 - 12.246 * c
+ 0.9953;

end
liquidholdup = B * PSI;

end
end
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A.2.10 Function for liquid velocity number

%% THE LIQUID VELOCITY NUMBER

function liqvelnumber= Nvl(vsl, ro l, sigma)
%vsl = Superficial velocity [ft/s]
%ro l = Liquid density [lbm/ft3]
%sigma = Interracial tension [dyna/cm]
gc = 32.2; % [lbm*ft/lbf/s2]
g = 32.174; % gravity constant [ft/s2]
sigma1 = sigma * 6.85 * 10 ˆ (-5); % conv from dyna/cm to lbf/ft
liqvelnumber= vsl * (ro l / gc / g / sigma1) ˆ (1 / 4);
end

A.2.11 Function for gas velocity number

%% THE GAS VELOCITY NUMBER

function Gasvelnum=Nvg(vsg, ro l, sigma)
%vsg = Superficial velocity [ft/s]
%ro l = Liquid density [lbm/ft3]
%sigma = Interracial tension [dyna/cm]
gc = 32.2; % [lbm*ft/lbf/s2]
g = 32.174; % gravity constant [ft/s2]
sigma1 = sigma * 6.85 * 10 ˆ (-5); % [lbf/ft]
Gasvelnum = vsg * (ro l / gc / g / sigma1) ˆ (1 / 4);
end

A.2.12 Function for viscosity liquid number

%% THE VISCOSITY LIQUID NUMBER

function liqvisnum=Nl(viscL, ro l, sigma)
%viscl = Liquid viscosity [cP]
%ro l = Liquid density [lbm/ft3]
%sigma = Interracial tension [dyna/cm]
g = 981; %gravitational constant [cm/s2]
ro l1 = ro l * 0.016; % [g/cm3]
visc1 = viscL / 100; % cP =dyn*s/cm2
liqvisnum = visc1 * (g / ro l1 / (sigma ˆ 3)) ˆ (1 / 4);
end

A.2.13 Function for diameter number

%% THE DIAMETER NUMBER

function dvelnum=Nd(do,di, ro l, sigma)

%Diameter = d [in]
%Liquid density = ro l [lbm/ft3]
%Interracial tension = sigma [dyna/cm]
gc = 32.2; % [lbm*ft/lbf/s2]
g = 32.174; % gravity constant [ft/s2]
sigma1 = sigma * 6.85 * 10 ˆ (-5); % [lbf/ft]
dvelnum = (do-di)/12 * (ro l / gc * g / sigma1) ˆ (1 / 2);
end

A.2.14 Function for tension

%% GAS-OIL INTERFACIAL TENSION
function sig = tension(p,T,API)
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%p = pressure [psia]
%T = Temperature [F]
C = 1 - 0.024 * p ˆ 0.045;
ts68 = 39 - 0.2571 * API;
ts100 = 37.5 - 0.2571 * API;
tsT = ts68 - (T - 68) * (ts68 - ts100) / 32;

if (T ≤ 68)
sig = ts68 * C;

elseif (T ≥ 100)
sig = ts100 * C;

else
sig = tsT * C; % [dyna/cm]

end

end

A.2.15 Function for compressibility factor of gas

%% COMPRESSIBILITY FACTOR OF GAS

function Z=zgas(gg,p,T)
%Real gas equation: Z=(pV)/(nRT)
%gg = gas specific gravity, air=1
%p = pressure [psia]
%T = temperature [F]

if(p<14.7)
p=14.7;

end

A1 = 0.31506237;
A2 = -1.0467099;
A3 = -0.57832729;
A4 = 0.53530771;
A5 = -0.61232032;
A6 = -0.10488813;
A7 = 0.68157001;
A8 = 0.68446549;
ppc = 702.5 - 50 * gg; %pseudo-crtical pressure [psia]
Tpc = 167 + 316.67 * gg; % pseudo-critical temperature [R]
ppr = p / ppc; %pseudo-reduced pressure [psia]
Tpr = (T + 460) / Tpc; %pseudo-reduced temperature
% 460 is included to covert the temperature from Rankine to Farenheit
Z = 1;
error = 999;
while (error > 0.001);

ropr = 0.27 * ppr / Z / Tpr;
Z1 = 1 + (A1 + A2 / Tpr + A3 / Tpr / Tpr / Tpr) * ropr;
Z1 = Z1 + (A4 + A5 / Tpr) * ropr * ropr;
Z1 = Z1 + (A5 * A6 * ropr * ropr * ropr * ropr * ropr) / Tpr;
Z1 = Z1 + (A7 * ropr * ropr / Tpr / Tpr / Tpr) * (1 + A8 * ropr * ropr)
* exp(-A8 * ropr * ropr);

error = 2 * abs((Z - Z1) / (Z + Z1));
Z = (Z1 + Z) / 2;

end

end
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