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Abstract

Flopaams polymers are water-soluble polymers which display a significant degree of sensi-

tivity to salinity changes as they consist of negative charges along their molecular chains.

Electrostatic charges present along the backbone of a polymer molecule causes stretching

(which results from repulsion of electrons) of the polymeric chains in water. The repulsion

of these charges extends the molecular chain and gives it a rigid structure which results in

high viscosities. When these polymers are exposed to a saline environment, the opposite

charged cations present in salts makes the polymers loose their charges and the molecules

loose their rigidity and become flexible. This drastically changes the physical properties

of the solution of which a reduced polymer viscosity is easily noticed.

Small Amplitude Oscillatory Shear (SAOS) material functions such as: Complex Viscosity

Coefficients (alternatively, storage and loss moduli) were measured for four (4) Flopaam

polymers. Sensitivity analysis were carried out to determine how these material functions

depend on the polymer concentration and brine salinity. Comparisons were made with

predictions made by an advanced non-Newtonian fluid model (C-FENE-P).

Results show that the C-FENE-P dumbbell model is capable of understanding the effects

of salinity in Small Amplitude Oscillatory Shear (SAOS) flow . At the same time, it should

be extended to a more realistic Bead-Spring-Chain model variant in order to resolve the

quantitative relations between SAOS flow material functions.

ii
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CHAPTER ONE

Introduction

1.Background of the Study

An oil well undergoes important phases in which different techniques are used to ensure

that crude oil is economically produced at maximum levels. The main goal of these

techniques is to optimally recover as much oil as possible. On the Norwegian continental

shelf (NCS), the recovery factor averages about 47 percent which is high when compared

with the average global figures which are slightly below 40 per cent [NPD, 2018]. Enhanced

oil recovery, used at the third stage significantly improved the recovery efficiency.

2.Polymer Flooding

Polymer flooding is an Enhanced Oil Recovery technique that improves the recovery of

oil by controlling the mobility of aqueous phase of reservoir fluid to that of oil phase.

It is sub-categorized under chemical flooding [Du et al., 2004]. This technique posi-

tively affects both volumetric and displacement sweep efficiencies. Polymers achieve

these effects partly due to the nature of their molecular size and structure, thus, in-

creasing the apparent viscosity of the aqueous phase. Polymers achieve this by trav-

elling far and radially inside the reservoir thereby having contact with an appreciable

surface area [Falode and Afolabi, 2011]. Polymer flooding is considered to be a techni-

cally and commercially viable method of Enhanced Oil Recovery (EOR) method due to

its recent successes in the large scale application in the Daqing field in Northern China

where about 300,000 barrels of incremental oil per day is attributed to polymer flooding

[Wang et al., 2009]. Polymers consist of long chained organic molecules formed from the

joining together of smaller molecules called monomers. Two types of polymers commonly

used for Enhanced oil recovery (EOR) are the Xanthan gums and the Partially Hydrolysed

polyacrylamide (HPAM) [Wever et al., 2011].
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3.Polymeric Fluids

Polymeric liquids consist of macromolecules, made up of more or less identical molecular

smaller structural units which could either be branched or linear sub-units. Polymeric

fluids are classified as non-Newtonian fluids. The relationship between the force per unit

area (shear stress) and the rate at which deformation occurs (shear rates) is not linear.

They are sometimes called viscoelastic fluids because they posses both viscous and elastic

properties [Bird et al., 1987a]. Polymeric fluid viscosity depends on shear rate. Labora-

tory experiments have demonstrated that polymers exhibit shear thinning/pseudo-plastic

behaviours as their viscosities decreases with increasing shear rates [Bird et al., 1987a].

However, studies shows that HPAM polymers [page 44], a common EOR polymer exhibits

pseudo-dilatant (shear thickening) characteristics in porous media as well as in viscome-

ters at relatively high shear rates [Seright et al., 2009].

Polymeric fluids flows have been modelled with models such as the Carrea-Yasuda models

[Page 37] which describes the dependency of viscosity on shear rate. However this mod-

els is very simplistic in nature and do not account for other complex flow phenomena of

polymers such as normal stresses and time dependent flows.

4.Polymeric Fluid behaviours

4.1.Tube Flow

Simple laboratory experiments performed on polymeric fluids as illustrated in the Figure

2. Two fluids, Glycerine which is Newtonian, (N) and the second, a polymeric fluid (P)

are placed in two separate tubes and a plate is used to stop the fluids from flowing out,

downwards in figure (a). The fluids were measured to have the same viscosity at low shear

rates. Once the plate was removed as shown in figure b, and the fluid is allowed to flow

downward by the gravitational forces, it is observed that the polymeric fluid drains out

of the tube faster than the Newtonian fluid. This simple experiment [Bird et al., 1987a],

illustrates the importance of shear thinning effects in polymeric fluids. Shear thinning is

the decrease in viscosity with increasing shear rate, and the fluid is said to be pseudo-
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Figure 1: Symbolic Representations of Linear and Branched Polymer Molecules

[Bird et al., 1987a]

plastic.

4.2.Weissenberg Rod climbing effects

When rotating stirrers are placed in two fluids, one a Newtonian and the second a poly-

meric fluid, in a beaker. The Newtonian fluid forms a vortex as the stirrer is being rotated

as the centrifugal forces in the fluid are greater than the normal forces even at relatively

low speeds. The fluid moves towards the edge of the beaker, away from the stirring rod.

However, for polymeric fluids the fluid moves in a totally opposite direction. The normal

forces in the fluid are so large and significant as they are greater than the centrifugal

forces and the Weissenberg rod climbing effect is observed as shown in the figure 3 and

4 [Bird et al., 1987a]. The polymeric fluid moves towards the center of the beaker and

climbs the stirring rod.
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Figure 2: Tube flow and ”shear thinning.” In each part, the Newtonian behaviour is shown

on the left (N); the behaviour of a polymer on the right (B). (a) A tiny sphere falls at the

same rate through each of the fluids; (b) the Newtonian fluid flows out slower than the

polymer fluid [Bird et al., 1987a]

.

Figure 3: Weissenberg rod climbing effects for a Newtonian fluid (N) and a Polymeric

Fluid (P).[Bird et al., 1987a]
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Figure 4: Weissenberg rod climbing effects for a polymeric Fluid observed in the Labora-

tory (P)

4.3.Extrudate Swell Effects

When Newtonian (N) and polymeric fluids (P) are being extruded from a pipette orifice

as shown in the Figure 5, it is observed that the polymeric fluid expands and increases

in diameter as it fall out of the pipette far more than the Newtonian fluid. This increase

in diameter or expansion is attributed to the presence of significant normal stresses in

polymeric fluids. Extrudate diameters of up to three or four times the tube diameter are

possible with some polymers [Bird et al., 1987a] .

5.Statement of the Problem

Flopaams, which are partially Hydrolyzed Polyacrylamides (HPAM) are one of the most

common polymers used commercially for polymers floods. These water-soluble polymers

display a significant degree of sensitivity to salinity changes as they consist of negative

charges along its molecular chains. From the general theory of polyelectrolyte solutions

[Stokes and Evans, 1997], the presence of electrostatic charges along a polymer backbone

is responsible for prominent stretching (due to electric repulsion) of the polymeric chains

in water. The repulsion of these charges extends the molecular chain and gives it a
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Figure 5: Behaviour of fluids issuing from orifices. Newtonian fluid shows no diameter

increase upon emergence from the capillary tube; an increase in diameter is observed for

polymeric fluid as it flows downward out of the tube [Bird et al., 1987a].

.

rigid structure which results in high viscosities. When these polymers are exposed to

a saline environment, the opposite charged cations present in salts makes the polymers

loose their charges and the molecules loose their rigidity and become flexible. This drasti-

cally changes the physical properties of the solution of which a reduced polymer viscosity

is easily noticed [Borthakur et al., 1995], [Ait-Kadi et al., 1987], [Dupuis et al., 1994]. A

significant amount of literature is available on the effects of salinity on polymer shear

viscosity. However, knowledge of the effect of salinity on Small Amplitude Shear Oscil-

latory (SAOS) material functions such as: Complex Viscosity Coefficients (alternatively,

storage and loss moduli), Complex First Normal Stress components, and First Normal

Stress Displacement Coefficient is relatively unknown.

A deeper understanding of the physics of polymeric fluid flow, coupled with advanced

modelling needs to adopted to fully explain this phenomenon.

6.Aim and Scope of the Study

In this research, the focus is on the small-amplitude oscillatory shearing (SAOS) flow

experiment, which is one of the ways to investigate the behaviour of non-Newtonian fluids
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in time-dependent flows. The polymer sample is subjected to harmonically oscillating

shear rate at different frequencies, while the fluid’s response in terms of shear stress and

normal forces is being measured. This response is then described with various SAOS

material functions: complex viscosity coefficients, storage and loss moduli.

The SAOS material functions for different EOR polymers are measured in a rheometer

and further investigated on how they depend on the polymer concentration and on the

brine salinity. The results would be compared with predictions made by an advanced non-

Newtonian fluid model, the recent C-FENE-P dumbbell model, which takes the salinity

effects into account.
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CHAPTER TWO

Literature Review

7.Basic Concepts and Theories

7.1.Scalar, Vector and Tensor Notations

Physical quantities that are used in the studies of polymeric fluids can be categorized into

scalars, vectors and tensors.

A scalar is any physical quantity that can be expressed by a single element of a number

field like a real number. Examples of Scalars include: temperature, shear rate, energy,

volume, time.

A vector is a geometric object that has both magnitude and direction. Examples include

force, momentum, acceleration and velocity.

A tensor (second order) is a geometric object that is more general than a vector and it

is represented by an array of components that are functions of the coordinates of space.

Examples of tensors encountered in polymeric fluid dynamics include stress, rate of strain

and vorticity tensors.

For the purpose of this thesis, we adopt the following mathematical notations for the

representing and distinguishing scalars, vectors and tensors.

Normal font = Scalar

Bold Latin = Vectors

Bold Greek = Tensors

Specific notations are extended in the use of brackets.
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Quantities inside round brackets (...) = Scalars

Quantities inside square brackets [...] = Vectors

Quantities inside curly brackets {...} = Tensors

7.2.The Navier-Stokes Equation

The fundamental equations used to describe the motion of fluids, Navier-Stokes equation,

is derived from the conservation laws of mass, momentum and energy. Assuming that a

fluid travelling at a velocity v across a surface as shown in Figure (6) dS with the volume

of the surface as V . The volumetric flow rate of fluid through the surface dS is given

by (n · v) dS and the mass flow rate is given by ρ(n · v)dS where n is the unit normal

vector [Bird et al., 1987a].

7.2.1.Conservation of Mass

Carrying out a mass balance; the rate of change of mass inside the volume is equal to the

total mass flow out of the volume

d
dt

∫
V

ρdV = −
∫
S

(n · ρv)dS (7.1)

For the different integrals of area and volume, we apply the Gaussian diversion theorem

to homogenize equation 10.1 in terms of volume integral, we obtain the following

d
dt

∫
V

ρdV = −
∫
V

(∇ · ρv)dV (7.2)

Simplifying further, we use the Leibnitz rule to differentiate the integral, and combining

the terms under a common integral sign, we obtain,∫
V

[
∂ρ

∂t
+∇ · (ρv)

]
dV = 0 (7.3)

The Equation 7.3 is the conservation equation of mass over an arbitrary volume in a

flowing. Setting the integral equal to zero since the limits of the integral are the boundaries
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of the volume V which are arbitrary [Bird et al., 1987a].

∂ρ

∂t
+ (∇ · ρv) = 0 (7.4)

The above equation is the continuity equation and the main idea of the equation is that

mass is conserved. This is true for any volume. For liquids, we assume incompressibility

which implies that ρ is constant. Therefore equation (7.4) becomes

∇ · v = 0 (7.5)

7.2.2.Conservation of Momentum

The laws of conservation of momentum is derived from the Newtons second law of motion.

The law simply says that force applied on a body changes the momentum of the body.

∑
Fi = d(mv)

dt
= 0 (7.6)

The above equation shows that the momentum is conserved. There is no net gain or loss

of momentum in the system, only changes of momentum between different parts of the

system [Morrison et al., 2001]. Total momentum transfer in fluid flow is a sum total of the

momentum contributions by the bulk flow and by molecular motion of the fluid particles.

The law of conservation of momentum states that the total momentum of the fluid within

a volume V , increases because of a net influx of momentum across the bounding surface

and also because of external forces of gravity acting on the fluid [Bird et al., 1987a].

Mathematically,

d
dt

∫
V

ρvdV = −
∫
S

[n · ρvv]dS −
∫
S

[n · π]dS +
∫
V

ρgdV (7.7)

where:

[n · ρvv]dS = Local momentum across S by bulk flow contribution
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Figure 6: Arbitrary ”control volume”, fixed in space, over which mass, momentum and

energy balances are made [Bird et al., 1987a].

[n · π]dS = Local momentum across S due to molecular transport

g = Force per unit mass due to gravity.

Applying the Gaussian diversion theorem;

∫
V

(
∂

∂t
ρv +∇ · ρvv +∇ · π − ρg

)
dV = 0 (7.8)

If V is an arbitrary volume, Then

∂

∂t
ρv + [∇ · ρvv] + [∇ · π]− ρg = 0 (7.9)

Equation 7.9 is an equation of motion

7.3.Stress Tensors

To better describe the Equation 7.9 above, we define the nature of the molecular forces

described by π in the equation. The most important fluid properties are found in ”π”.It

is called the total stress tensor of the fluid. There are two major contributions to the total

stress tensor π: the thermodynamic pressure and a second portion that originates in the

deformation of the fluid (equilibrium and non- equilibrium part). [Morrison et al., 2001].

Mathematically,

π = Pδ + τ (7.10)
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Where:

P = Thermodynamic pressure

δ = Unit Tensor

τ = Anisotropic Stress tensor (τ = 0 at equilibrium conditions).

The thermodynamic pressure P is an isotropic contribution and it has an equal magni-

tude in all directions.it is related to the density ρ and temperature T through the ”ther-

modynamic equations of state” P = P (ρ, T ) [Bird et al., 1987a].This pressure acts only

normally (perpendicularly) to a give surface [Morrison et al., 2001]. The contributions of

pressure can be expressed as a tensor proportional to the unit tensor. Mathematically

Pressure contribution =


P 0 0

0 P 0

0 0 P

 = Pδ (7.11)

As can be seen from figure 7, the stress tensor at a point needs to be defined by nine

components. These component are defined not only by the direction in which it acts upon,

but the orientation of the surface upon which it is acting is taken into consideration.

Stress Tensor, τi,j =


τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

 (7.12)

The first index i defines the orientation of the surface upon which it is acting while The

second subscript j shows the direction in which the stress component acts. Therefore, τi,j is

the force per unit area (stress) acting in the j direction on a surface that is perpendicular to

the i direction [Bird et al., 1987a] .The diagonals of the matrix in equation 7.12 represents

the normal stresses while other components contained in the matrix represents the shear

stresses.

An equation specifying τ is called a constitutive equation. It is an intrinsic property of a

fluid that makes it distinctly different from another fluid because it depends on the nature

of the fluid. τ is equal to zero at equilibrium (when the fluid is at rest). For a parallel

12



Figure 7: Sketch showing the sign convention and the index convention for the component

of the stress tensor π [Bird et al., 1987a].

reference frame velocity, τ is equal to zero.

For Newtonian fluids, τ obeys the following equation:

τ = −µ
{
∇v +∇vT

}
+
(2

3µ− κ
)

(∇ · v)δ (7.13)

Where:

µ = Shear viscosity constant

κ = Bulk (Dilatational) viscosity

This is the most general linear velocity gradient equation that has been experimentally

verified to be correct across a broad range of fluids. In ideal and mono-atomical gasses,

the dilatational viscosity is assumed to be zero, while for incompressible liquids, ∇ · v =

0 [Bird et al., 1987a]. Therefore, for most Newtonian fluid of practical interest,

τ = −µ
{
∇v +∇vT

}
= −µγ̇ (7.14)

where γ̇ = −µ
{
∇v +∇vT

}
, is defined as the rate of strain tensor.

Substituting the above stress tensor equation into the the conservation of momentum
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equation, we obtain the Naiver stokes equation for an incompressible Newtonian fluid as

ρ

[
∂v

∂t
+ v ·∇v

]
+∇p− µ∇2v − ρg = 0 (7.15)

8.Types of Flows and Material Functions

Fluid flow behaviours depends not only on the functions of the fluid, but also on the

medium/material in which they flow through. Material functions are functions of kine-

matic parameters that describe the rheological behaviour of fluids. They are either pre-

dicted or measured directly from laboratory experiments while their form must be pre-

dicted by reliable fluid models. Simple flows enable the characteristics of fluids to be

determined and aids in the testing of models [Shogin, 2019].

Two main types of simple flows that are easy to describe experimentally are the simple

shearing flow and shear free flow. It should be noted however that real flows are typically

neither of these. The experiments performed in this theses is more focused on the simple

shearing flows, hence we would concentrate on this type of flow and we would give a

cursory overview of the shear free flows in the subsections below.

8.1.Shearing flows

In this flow, it is assumed that the fluid layers slide past each other and that they do not

mix. Locally at any at any point in the flow, we have three (3) orthogonal directions, the

flow direction, the direction in which the velocity changes and the neutral direction which

is equal to zero as shown in figure 8 [Shogin, 2019]. The simplest flow of this kind can be

shown by the velocity field.

vx = γyxy; vy = 0; vz = 0 (8.1)

Where the velocity gradient γ̇yx can be a function of time. The absolute value of γ̇yx

is called shear rate [Bird et al., 1987a]. A good analogy of this type of flow is a pack of

poker cards slide on top each other. This flow type can be produced by two parallel plates

and a fluid in between the plates, with the bottom plate static while the top plate moves

at a constant velocity in one direction.
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Figure 8: Simple shear flow [Chegg, 2019]

8.1.1.Stress Tensors for Steady Shear Flows

For shear flows in Newtonian fluids, it is only the shear stress τ yx that is non zero, the

rest components are zero as shown in the equation 8.2.

τxx = −2µ∂vx

∂x
= 0 (8.2)

since Vx = Vx(y).

However in non-Newtonian fluids, the assumption is made that in an unknown case of

a constitutive equation that any flow all the six independent components of the stress

tensor may be non-zero. [Bird et al., 1987a]. The shear stress tensors have always been

assumed to be symmetrical for amorphous liquids (τxy = τyx), However simulation studies

conducted by [Rigelesaiyin et al., 2018] on various material systems demonstrates that

the stress tensor can be asymmetric near dislocation cores, phase boundaries, holes and

even in homogeneous material under a shear loading.

Mathematically, stress tensors for simple shearing flow is

π = pδ + τ =


P + τxx τxy 0

τyx P + τyx 0

0 0 P + τzz

 (8.3)

When we assume that a fluid is incompressible, It is impossible to separate the pressure

and the normal stress contributions in normal force measurements on surfaces by using

simple experiments. Therefore the only quantities that are of experimental interest are

the shear stress and the two normal stress difference. There are just three independent ,

experimentally accessible quantities in simple shear flows [Bird et al., 1987a]. they are

Shear stress: τyx

First Normal stress difference: τxx - τyy
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Second Normal Stress difference: τxx - τyy

It is important to note that Newtonian fluids have no normal stresses and hence, the

stress components of the diagonal in equation 8.3 is equal to zero and only the pressure

components are non-zero [Bird et al., 1987a]. Therefore , Newtonian fluids are being

described alone by viscosity. However this is not the case for non-Newtonian in steady

state shearing flows as they are described by the following material function equations.

τyx = −η(γ̇)γ̇yx (8.4)

τxx − τyy = −ψ1(γ̇)γ̇2
yx (8.5)

τyy − τzz = −ψ2(γ̇)γ̇2
yx (8.6)

The non- Newtonian viscosity η in equation 8.4 which is a function of shear rate, is similar

to the viscosity µ found in Newtonian fluids. ψ1 and ψ2 are called the first and second

normal stress coefficients respectively. η, ψ1, ψ2 are known as the steady shear flow ma-

terial functions [Bird et al., 1987a]. For Newtonian fluids; η(γ̇) = µ = constant, while

ψ1(γ̇) = ψ2(γ̇) = 0 signifying that there is no normal stress.

Plots of viscosity η(γ̇) showed that at low shear rates from Figure 9, the shear stress is

proportional to (γ̇) and viscosity approaches a constant value η0 called the zero-shear rate

viscosity. When we have higher shear rates, the polymer viscosity decreases with corre-

sponding increase in shear rates. this phenomenon, called shear thinning is a predominant

property of polymers solutions and melts [Bird et al., 1987a].

From a plot of log η versus log γ̇ , it was observed that the plotted viscosity against shear

rate curve showed a linear region at relatively high shear rates which could persist for a

broad range of decreasing viscosity. this slope, also called the power law region was deter-

mined experimentally to be between -0.4 to -0.9 for polymeric fluids [Bird et al., 1987a].

The rate at which the ranges of shear rates transits from from η0 to the power law region is

directly proportional to the molecular weight distribution of the polymer. An increase in

the molecular weight of the polymer gives a broader transition region that shifts closer to
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lower shear rates [Graessley, 1974]. At sufficiently high shear rates, the effect of viscosity

becomes insignificant and would approach η∞, called the infinity-shear-rate viscosity as

shown in Figure 9. [Bird et al., 1987a]

8.2.Shear free flows

Shear free flows show more symmetry than simple shear flows and it is unaffected by 180

degrees rotation about the x, y or z axis.shear free flows matrix hence reduces to the form

π = pδ + τ =


P + τxx 0 0

0 P + τyy 0

0 0 P + τzz

 (8.7)

Simple shear free flows can be described by the velocity profile

vx = −1
2 ε̇(1 + b)x (8.8)

vy = −1
2 ε̇(1− b)y (8.9)

vz = +ε̇z (8.10)

where 0 ≤ b ≤ 1. and ε̇ is the elongation rate. Values of b and ε̇vary depending on the

type of shear free flow encountered [Bird et al., 1987a].These flow types include:

Elongation flow: (b = 0, ε̇ > 0)

Biaxial stretching flow: (b = 0, ε̇ < 0)

Planar elongation flow: (b = 1)

For incompressible fluids, there are only two normal stress difference of practical impor-

tance [Bird et al., 1987a].

τzz − τxx (8.11)

τyy − τxx (8.12)

The equations for the material functions in elongational flow is given by

τzz − τxx = −η̂1(ε̇, b)ε̇ (8.13)

τyy − τxx = −η̂2(ε̇, b)ε̇ (8.14)

Note that in the case of steady shear flows, where b = 0, η = η̂1(ε̇) and η̂2(ε̇) = 0.

η̂ is called the Trouton or elongational viscosity [Bird et al., 1987a].
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Figure 9: Linear plot of viscosity against shear rate. showing the zero-shear

rate viscosity region η0, power law region and the infinity-shear-rate viscosity η∞

[Mart́ınez-Vázquez et al., 2010]

.

8.3.Unsteady Shear flow

Unsteady shear flow are flows that depend on time (frequency) as well as shear rates and

there are three stress properties that can be measured. These properties describe the flow

and they include the shear stress and the two normal stress differences [Bird et al., 1987a].

There are various standardized laboratory flow experiments used in rheology that are con-

ducted to evaluate these measurable stress properties, however for the purpose and scope

of this work, the focus is on the Small-Amplitude Oscillatory Shear (SAOS) experiments.

8.3.1.Small Amplitude Oscillatory Shear(SAOS)

Oscillatory shear is used to define viscoelastic fluids. SAOS is a non- destructive test that

is used to investigate changes in the structure of complex fluids at an early stage. This

test requires that that deformation should occur at very small strain amplitudes within

the Linear Viscoelastic Region (LVE). Strain amplitudes used in SAOS are generally very

small in the order of 10−2 to 10−1 [Hyun et al., 2011]. It involves the measurement of of

the unsteady response of a sample that is contained between two parallel plates where

the upper plate undergoes small-amplitude sinusoidal osculations in its own plane with a

frequency ω [Bird et al., 1987a].

In Polymeric fluids, the shear stress that oscillates at a certain frequency ω is not always
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in phase with either the shear rate or shear strain. This is illustrated by the figure 10.

Mathematically,

γyx(0, t) = γ0 sinωt (8.15)

γ̇yx(t) = γ0ω cosωt = γ̇0 cosωt (8.16)

to find the shear stress, the amplitude and and phase angle shift are written as functions

of the frequency.

τyx = −A(ω)γo sin(ωt+ δ) (0 ≤ δ ≤ π

2 ) (8.17)

τyx = −B(ω)γ̇0 cos(ωt− Φδ) (0 ≤ δ ≤ π

2 ) (8.18)

Where Φ = π

2 − δ.

If we write equation 8.17 and 8.18 in terms of the in-phase and out-of-phase parts of shear

stress, we can show the the equivalent sets of viscoelastic material functions G′ and G′′.

τ = −G′(ω)γ̇o sinωt−G′′(ω)γ̇o cosωt (8.19)

τ = −η′(ω)γ̇o sinωt− η′′(ω)γ̇o cosωt (8.20)

Taking the equivalence by combining equations 8.19 and 8.20 with equations 8.17 and

8.18, we find that G′, G′′ are related to A, δ and also, η′ , η′′ are related to B, Φ be the

following relationship

A(ω) =
√
G′2 +G′′2 = |G∗|, tanδ = G′′

G′
(8.21)

B(ω) =
√
η2 + η′′2 = |η∗|, tanΦ = η′′

η′
(8.22)

Where |G∗| and |η∗| are magnitudes for the complex modulus G∗ and complex viscosity

η∗ respectively.

Storage modulus G′ and loss modulus G′′ are called the linear viscoelastic properties and

they are used to determine the behaviour of a material undergoing a small deformation.

They are discussed in details in the subsequent sections
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Figure 10: Oscillatory shear strain,shear rate,shear stress and First normal stress differ-

ence in small-amplitude oscillatory shear flow [Bird et al., 1987a]

8.4.Shear Modulus

The storage modulus G′(ω) is a measure of the deformation energy stored and recov-

ered per cycle, when different systems are compared at the same strain amplitude [Ferry,

1980]. After the load is removed, this energy is completely available and would act as a

driving force to restore the fluid either partially of completely to the previously obtained

deformation structure [Mezger, 2011]. A study of storage modulus G′ as a function of

angular frequency ω of colloid samples by [Okubo et al., 2001] showed that at signifi-

cantly large phase angle φ, the storage modulus G′ was insensitive to frequency ω. At low

sphere concentrations of 0.022 and 0.043 in volume fraction, the phase transition from

“crystal” to “liquid” was observed. While measuring the elongational relaxation modulus

of polystyrene, [Ninomiya and Fujita, 1957] observed that at the end of a terminal zone

where G(ω) approaches zero with decreasing frequency, G′ becomes proportional to ω2

instead of being exponentially dependent on t. They concluded that the proportionality

constant AG = G′/ω2 depends strongly on the molecular weight distribution.
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Loss modulus G′′, is defined as the stress 90o out of phase with the strain divided by

the strain and it is a measure of the deformation energy that is used up or lost as heat

per cycle of sinusoidal deformation, when different systems are compared at the same

strain amplitude. At low frequencies, G′′ for a viscoelastic liquid is directly proportional

to ω, with a slope of 1 on a logarithmic plot [Ferry, 1980]. [Winter and Chambon, 1986]

in analysing the linear viscoelasticity of a cross-linked polymer,showed that both loss and

storage moduli were found to be congruent and proportional to ω0.5 at gel point.

The loss factor or damping factor, is calculated as ratio of the lost and storage moduli. it

gives an idea of the ratio of the viscous and elastic portions of the viscoelastic deformation

behaviour.Mathematically,

tan δ = G′′

G′
(8.23)

Ideally elastic behaviour is shown where δ = 0o or where tan δ = 0. In this scenario,

the storage modulus G′ dominates G′′. Ideally viscous behaviour is shown when δ = 90

or as tan δ = ∞. This scenario depicts that the loss modulus G′′ completely dominates

the storage modulus G′.When the viscous and the elastic characteristics of the fluid are

exactly balanced, i.e G′ = G′′, then tan δ = 1 or δ = 45 [Mezger, 2011].

For dilute solutions, tan δ is usually very high because both solvent and solute contribute

G′′ but only the solute contributes to G′. At low frequencies, tan δ is large for uncross-

linked polymers and it is inversely proportional to the frequency [Ferry, 1980].

8.5.Complex Viscosity

The complex viscosity η∗ is expressed as a complex number having a real and imaginary

part. It is totally different from normal shear viscosity η. They are measured and analysed

from oscillatory tests. The real and imaginary part of the complex viscosity are written

mathematically in terms of sine and cosine functions.

η′ = G′′

ω
= (τA sin δ)

(γAω) (8.24)
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η′′ = G′′

ω
= (τA cos δ)

(γAω) (8.25)

where η′ and η′′ represents the viscous and elastic behaviours respectively and are both

measured in pascals-seconds [Pa.s].

Complex viscosity can be represented as the vector sum of both individual parts by using

the Pythagoras theorem.

|η∗| =
√

(η′)2 + (η′′)2 =

√
(G′)2 + (G′′)2

ω
(8.26)

9.Generalized Newtonian Fluid Models

This class is the most widely used fluid model because it is simple, describes shear depen-

dent viscosity and it works well in steady shear flows. Here, shear stress is a function of

shear rate but it is independent of the history of deformation. The constitutive equation

has the form of the generalized Newtonian fluid.

τ = η(γ̇)γ̇ (9.1)

Where:

µ = Viscosity

τ = Shear stress

γ̇ = Shear rate

This model is however too simplistic as it does not account for complex fluid flows such

as normal stresses and time dependent effects. The only non-Newtonian feature of this

fluid model is the shear dependent viscosity. There are other variants of the Generalized

Newtonian models. The power law model and the Carreau-Yasuda models are briefly

reviewed in the subsequent sections.
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9.1.Power Law Model

Proposed by Ostwald and De Waele in 1929, the power law model, which is a variant of

the generalized Newtonian fluid model, relates the shear stress of a Newtonian fluid to its

shear rate of deformation using the following relationship.

η(γ̇) = Kγ̇n−1 (9.2)

Where:

η(γ̇) = viscosity

K = Constant called consistency constant

γ̇ = Shear rate

n = Power Law index

When n < 1, = shear thinning fluid; n > 1, = shear thickening fluid while for Newtonian

fluids, n= 1. One of the main disadvantage of the power law model is that it is valid only

in simple shear flows and it fails to describe the viscosity non-Newtonian fluids in very

low and very high shear rate regions [Bird et al., 1987a].

9.2.Carreau-Yasuda Model

This is another varriant of the generalized Newtonian fluid model. In this model, the

effective viscosity depends on the shear rate by the following equation.

ηeff (γ̇) = η∞ + (ηo − µ∞)
(
1 + (γ̇λ)2

)n−1
2 (9.3)

Where:

ηeff (γ̇) = viscosity depending on the shear rate

ηo = Viscosity at Zero shear rate (Pa·s)

η∞ = Viscosity at infinity shear rate(Pa·s)
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n = Power Law index

λ = Relaxation time/ on set of shear thinning

The Carreau Yasuda model is quite more successful than the power law due to its flexi-

bility. At low shear rates (γ̇ << 1/λ), the model reduces to the normal Newtonian fluid

model. At intermediate shear rates (γ̇ ≥ 1/λ), it behaves like the power law model while

at relatively high shear rates which is dependent on the power law index n and infinite

shear rate viscosity µ∞ it behaves like a Newtonian fluid again. However the Carreau-

Yasuda model has certain limitations as it fails in its prediction of unsteady flow and it

does not account for normal stresses [Bird et al., 1987a].

10.Physical Non-Newtonian Fluid Models

These models are based on physical theory as various assumptions about the molecular

interactions at the microscopical levels are made and being up scaled. Dilute solution

implies that the individual molecules of the polymer do not interact with each other

however, they interact with the solvent that they are dissolved in. For concentrated

solutions, the polymer molecules interact with each other. In dilute solutions and in

concentrated solutions, different physics works and different phenomena dominates, hence

as of now there is no single model that is valid for all the range concentrations. There are

models which applicable to concentrated while others are applicable to dilute solutions

[Bird et al., 1987b].

Dumbbell models which assumes two beads connected with a chain are the models pre-

dominantly used in the modelling of dilute solutions while Bead Spring Chain models

which assumes several chains with beads at various lengths of the chains, are used for

concentrated solution [Bird et al., 1987b]. These models are realistic because polymer

molecules have the ability to take different orientations in space just like real molecules

and they can deform, expand and contract exactly like real molecules. These properties

of the real molecules are well represented by these models [Shogin, 2019]. A good example

of the bead spring chain model is the Phan-Tier Than model which is discussed in the

subsequent chapters. For the purpose of this study, much emphasis is being placed on the
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diluted solutions.

10.1.Hookean Dumbbell Models

The most simple kinetic theory model for a dilute solution of linear flexible polymers

consists of a Hookean dumbbell, that is two beads connected by a Hookean spring, sus-

pended in an incompressible Newtonian fluid [Bird et al., 1987b]. The beads represent

molecular segments of several monomers and the spring describe the entropic effects to

which the end-to-end vector of the polymer is subject [Herrchen and Öttinger, 1997]. The

beads accounts for the viscous forces while the spring accounts for the elastic forces in the

molecules [Larson, 1999]. The system is approximated as a system of oscillations between

the molecules. This is shown in the Figure 11.

A major pitfall of this model is that It is assumed that the spring obeys Hooks law,

however the Hookean spring force is only realistic for small deformations from equi-

librium and the spring has absolutely no limit to the extent in which it can be ex-

tended [Herrchen and Öttinger, 1997]. This model does not account for shear thinning,

non-linearity and also, elongational viscosity approaches infinity at infinite shear rates.

Hookean dumbbell models predicts shear independent viscosity, first normal stresses co-

efficients.

F = H ·Q (10.1)

Where:

F =Force

Q= Connector vector

10.2.FENE Dumbbell Model

The Finite Elongated Non-Linear Elastic (FENE) model, proposed by [Warner Jr, 1972],

attempts to correct the problems of infinite extension in the Hookean dumbbell model by

introducing a concept of finite extensibility [Bird et al., 1987b] as shown in the equation.
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Figure 11: A Simple dumbbell Model

F = HQ

1− Q2

Q2
o

(10.2)

Where:

F= Warner Force

Q = Three dimensional connector vector of the beads

Qo = Maximum possible spring length

H = Spring Constant

For small values of Q, it reduces to the Hookean model. If the Q grows, it cannot be

extended far more than than QO. This limit corrects the pitfall of the Hookean model.

This model gives a good qualitative prediction of all non-Newtonian flow . The major

disadvantage of this model, owing to the non-linearity of the spring force, is that no closed

constitutive equation for the polymeric stress tensor exists and no simple analytical solu-

tions are possible [Bird et al., 1987b]. Attempts by [Warner Jr, 1972, Armstrong, 1974],

have been made to compute perturbation and numerical solutions for steady shear flows,

steady homogeneous flows and high amplitude oscillatory flows respectively.

10.3.FENE-P Dumbbell Model

The FENE-P model, introduced by Peterlin, is an analytical model that leads to a close

constitutive equation. It is derived by replacing the configuration dependent non-linear
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factor in the FENE spring force by a self consistently averaged term [Bird et al., 1987b].

The constitutive equation is derived as composing of two components: The polymer and

the solvent which dissolves the polymer [Shogin et al., 2017]. It can thus be written as

τ = τs + τp (10.3)

Where τs is assumed to be a Newtonian fluid and τP is written as :

b

3Zτ p + λτ p(1) − λ{τ p − nkTδ}Dt lnZ = −nkTλγ̇ (10.4)

Where

λ = Time constant

nkT = Ideal gas pressure

b = Degree of non-Linearity

τ p(1) = Oldroyd derivative of τ p [Bird et al., 1987b].

Z = Polymer contribution to the stress tensor, given by

Z = 1 + 3
b

(
1− tr(τp)

nkTb

)
(10.5)

The FENE-P model behaves like the FENE Dumbbell due to the self-consistent lineari-

sation, the diffusion equation of the end to end vector of the dumbbell has a Gaussian

solution in any homogeneous flow [Bird et al., 1987b]. This model has been successful

in predicting all complex flow behaviours that is required. However, the quantitative

values of the material functions may not be numerically correct. There are various mod-

ification and variants of the FENE-P dumbbell model such as the FENE-PM model by

[Wedgewood et al., 1991]. [Chilcott and Rallison, 1988] proposed the FENE-CR model

which was used to compute to numerically complex flows . The model is based on Pe-

terlin approximation, however it eliminates the shear rate dependence of the steady state

viscosity in order to describe Boger fluids [Herrchen and Öttinger, 1997] which is out of

the scope of this work.
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10.4.C-FENE-P Dumbbell Model

The C-FENE-P [?], shall model polyelectrolytes solutions and explain the salt sensitivity.

This dumbbell model builds on the success of the FENE-P Model, however it further

attempts to model the effect of charge repulsion between ionization groups in the polymer

[Dunlap and Leal, 1984]. Mathematically, the connector force for this model is given by

the equation

Fc = H ·Q

1−
(
Q

Qo

)2 − Fe (10.6)

Fe is the repulsive force that exist between the charges given by the relation

Fe = − q2

4πεoε

Q

Q3 (10.7)

Where:

εo is the permittivity of the vacuum and

q = Effective charge

ε = Relative permittivity of the solvent to be.

The main constitutive equation is similar with the constitutive equation for the FENE-P

Dumbbell model. The main difference is found in the Z factor which is dependent on the

E. for the C-FENE-P, the Z factor is given as:

Z = (Z0 − 1)F(Z0 − 1, E/b) (10.8)

Where:

E = Non-negative Electric to Elastic ratio.

F= A special function introduced by [Shogin and Amundsen, 2019].

A higher value of E corresponds to a larger electric repulsive force. Also, an increase in

salt concentration gives a corresponding decrease in E. At E = 0, the model reverts back

to the original FENE -P Dumbbell model, while at E →∞, the rigid dumbbell model is

attained [?].
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10.5.Rigid Dumbbell Model

These models are similar to the Hookean models however they work on an assumption

that the connecting rod between the polymer molecules are rigid and not flexible. They

are used mainly in the modelling of stiff bio-polymers such as protein molecules and DNA.

Further references [?, Bird et al., 1987b] gives a detailed discussion of this model.

10.6.Phan Tien -Tanner Model PTT

Unlike the FENE-P model that is being built using the kinetic theory, the Phan Tien

Tanner model is based on the neuron network principles [Thien and Tanner, 1977]. It is a

model that focusses on modelling concentrated polymer solutions and melts. The model

includes material functions that can describe the extensional and shear responses of flow

and it can be solved analytically for its viscometric functions.

the model can be shown as

Z(trτ )τ + λτ (1) = −ηoγ̇ (10.9)

Where: for Linear model (LPTT)

Z = 1− ελtrτ/ηo (10.10)

and for Exponential model (EPTT)

Z = exp[−ελtrτ/ηo] (10.11)

Where:

ηo = Viscosity,

λ= parameter of time

ε = extensional parameter

An interesting feature of the EPTT is the poly-logarithmic shear thinning where the thin-

ning increases with the shear rate and there is no power law region [Thien and Tanner, 1977].
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The three parameters listed above are to be determined from experiments. The linear

model (LPTT) is very much identical to the FENE-P model for simple shear flow scenar-

ios.

11.EOR Polymers

11.1.Partially hydrolyzed polyacrylamide (HPAM)

This is the most popular polymer used for EOR applications and it is a copolymer of Poly-

acrylic acid (PAA) and Polyacrylamide (PAM). It is gotten from the partial hydrolysis of

PAM [Morgan and McCormick, 1990] or by the co-polymerization of sodium acrylate with

acrylamide . The thickening capability of HPAM is largely depends on its high molecular

weight and also in the electrostatic repulsion between polymer coils and between poly-

meric segments in the same coil [Lake, 1989]. HPAM polymers are polyelectrolytes and

when they are dissolved in water that contain electrolytes (salts) a significant reduction

in viscosity is observed [Borthakur et al., 1995], and the specific viscosity of HPAM solu-

tions depends on the amount of salt present [Sukpisan et al., 1998]. HPAM polymers are

preferred in EOR application because they have the capacity to tolerate high mechanical

forces that are present during the flooding process. It is relatively cheap and withstands

bacteria attack [Lake, 1989].

11.1.1.Flopaams

Produced by SNF, these poly acrylamide water soluble flocculants exist in different forms

such as powder, beads, solutions, emulsions and dispersions. Molecular weights could

range from 2 million to 22 million Dalton and ionic charge ranges from 0 to 100 per

cent [SNF, 2004]. Molecular weight also depends on the hydrolysis level while maximum

molecular weight could be achieved at 40 mole. Partially hydrolysed polyacrylamide

is a synthetic straight chain polymer of acrylamide monomers of which some has been

hydrolysed [SNF, 2004]. For the purpose of this experiment, four (4) Flopaam polymers

were studied. They include:
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1. Flopaam 5115 Very High Molecular weight (VHM)

2. Flopaam 5115 Very Low Molecular weight (VLM)

3. Flopaam AN-125 Very High Molecular weight (VHM)

4. Flopaam AN-125 Very Low Molecular weight (VLM)

12.Effects of Salinity

The effects of salts on HPAM polymers and other polymers has been well studied . Studies

by [Ait-Kadi et al., 1987] on the salt on solution viscosity of HPAM polymers showed that

below the critical shear rate, addition of salts (NaCl) reduced the extent of shear thinning,

while above the critical shear rate the amplitude of shear thickening is increased. A study

of the effect of salinity, polymer concentration and sulfonation degree on the viscosity and

solubility effect of the various PAMS copolymers by [Rashidi et al., 2010] showed that

polymer solution viscosity decreases in the presence of NaCl. This decrease rate after a

certain NaCl concentration levels off, a small increase rate due to the increase viscosity

of the solvent was seen up to 20 wt per cent NaCl concentration. It was concluded that

with regards to the salinity effect on the shear rate dependence, PAMS copolymers behave

almost like Newtonian fluids at high NaCl concentration.

[Lee et al., 2009] developed a comprehensive rheological database for floppams EOR poly-

mers .The shear rate viscosity and the dynamic oscillatory viscosity for a number of HPAM

polymers were measured in terms of shear rate/frequency, polymer concentration, salinity,

hardness and temperature and their effects on various parameters in the Carreau model.

They found out that the effects of salinity on the parameters in the Carreau model is

quite different from that for polymer concentration. An increase in the salinity leads to

a corresponding increase in n but decreases other parameters. They further observed

that divalent ions have a similar effect on the Carreau model parameters as compared

salinity, however the magnitude of dependence is much larger that that for NaCl salinity.

They concluded that the effects of polymer concentration and salt concentration on shear

viscosity can be accurately quantified by using the Martins equation and that empirical
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Figure 12: Chemical structure of HPAM [Wever et al., 2011]

correlations developed by fitting the measured data describes the effects of key process

variables polymer shear viscosity accurately and reliably except for very low salinity.

[Tam and Tiu, 1990] studied the effects of salts on the steady shear behaviour of HPAM.

They established that the addition of divalent salts in a solution reduces the viscosity at

the zero-shear-rate limit by about 5 to 6 times more than mono-valent salts. They further

showed that addition of salts shifts the position of the critical shear rate (where the onset

of shear thinning occurs) to a higher value, and causes a reduction in in the slope of the

shear thinning region. After testing various kinds of monovalent and divalent salts, they

concluded that the magnitude of viscosity reduction is affected by the valency of the salt

and not by the species.

[Stavland A., 2013] studied the effects of salinity on polymer viscosity of two EOR ply-

mers , one HPAM and one AMPS. The polymers were dissolved in brines with different

concentrations of NaCl and CaCl2. Results shows that HPAM polymers are generally

slightly more salt sensitive than AMPS polymers . They concluded that for polymers

where the viscosity depends on salinity, the controlling parameter is the effective salinity

and that the intrinsic viscosity decreases as the effective salinity increases. In a different

study although not on polymers, [Jeldres et al., 2018] studied the effect of salinity on the

dynamic moduli of flocculated kaolinite sediments and found out that salinity causes a

non-monotonous effect on the yield stress, which reaches a maximum value at 0.001 M

NaCl.They concluded that it is a consequence of the electrolytes present that on the one

hand, shield the electric charges and on the other cause the winding of the flocculant

chains. However, the phase angle increases monotonically with the salinity of the sys-

tem. They suspected that the gel structure at high salt concentrations may be different

from that at low salt concentrations, and that gels formed by kaolinite particles are more
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solid-like at low salinity and more liquid-like as the salt concentration increases.
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CHAPTER THREE

Methodology

The aim of these experimental research is to study the effects of salinity and concentra-

tion on the Small Amplitude Oscillatory Shear (SAOS) material functions of various En-

hanced Oil Recovery (EOR) polymers in the Small Amplitude Oscillatory Shear (SAOS)

or otherwise known as the linear viscoelastic (LVE) range. Furthermore, compare the

experimental results to predictions made by the C-FENE- P mathematical model. In this

experiment, the effects of temperature/temperature shifts were not considered as experi-

ments were carried out at isothermal temperatures of 20oC. The methodology employed

in this experiment was designed to suit the objectives. The following template was used

to carry out the experiment.

1. A polymer stock standard solution of a specific concentration was prepared with

de-ionized water at Zero Salinity (Base Solution).

2. This Base Solution was further diluted with deionized water to different concentra-

tions and rheometric readings were measured.

3. A second polymer stock standard solution of the same concentration as (1) above

was prepared with brine solution that has a salinity corresponding to the salinity of

sea water (35 grams per litre). This second solution was diluted with sea water to

different polymer concentrations and rheometric readings were measured.

4. Subsequent polymer stock solutions of were prepared with brine concentrations of

10, 20 and 30 g respectively and measurements were recorded.
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13.Method for determining G′ and G′′, and Complex

Viscosity Coefficients

13.1.Amplitude Sweeps

Shear strain amplitude or strain sweeps were conducted at a controlled shear strain. Here,

the period of time for each one of the oscillations cycles of the measuring bob is kept

constant , only the maximum value of the bobs deflection angle (amplitude) is increasing

continuously. [Mezger, 2011]. The screen shot in Figure 13 shows the amplitude sweep

setting on the Anton Paar rheometer. Amplitude sweeps were performed to determine

the Small Amplitude Oscillatorry Shear (SAOS) region for each polymer sample tested.

At low amplitudes, both the G′(γ) and G′′(γ) are constant and display plateau values,

mostly on different levels within the SAOS region [Mezger, 2011].

13.2.Frequency Sweeps

Frequency sweeps , which are oscillatory tests were then performed at variable frequencies,

with a constant amplitude value that falls with the SAOS region [Mezger, 2011]. The

region was estimated from the amplitude sweep tests previously conducted. Values of the

storage G′ and loss G′′ modulus, and complex viscosity η∗ were obtained from this test.

The Anton Paar rheometer settings for this test are shown in the screen of Figure 14.

14.Brine Sample Preparation

Four different brine solutions with concentrations of 10, 20, 30 and 35 grams per litre of

sodium chloride (NaCl) respectively was dissolved each, in 1 litre flask containing distilled

water. The solutions were mixed at a speed of 60 rpm in a magnetic stirrer for 2 hours

to ensure proper mixing and dissolution of the solute in the solution. .

The solutions were filtered in a filter paper membrane set-up of pore diameter 22 µm,

connected to a vacuum pump as shown in Figure 15. This was carried out to remove
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Figure 13: Screen shot of the Amplitude Sweep settings on the Anton Paar Rheometer

Figure 14: Screen shot of the Frequency Sweep settings on the Anton Paar Rheometer
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undissolved (NaCl) solid particles and debris which could alter the rheometer readings.

These solution (10, 20, 30 and 35 g/l) were used to dilute polymer stock solutions into

varying concentrations as required.

15.Polymer Sample Preparation

Polymer samples obtained from the chemical laboratory were weighed on the electronic

weighting balance which was always reset to the zero point whenever a new measurement

was to be made; the required theoretical and practical calculations were made with respect

to Equations (A.1) and (A.2) to prepare the concentrated stock solutions of 10,000 ppm

at 0 g/l and 35 g/l salt concentrations as shown in the Tables 1 and ?? [see Appendix

A] respectively. These stock solutions, prepared in laboratory beakers were put in the

Heidof propeller mixer and mixed for 2 hours. In order to achieve a homogeneous mixed

solutions, the polymer powders were poured on the shoulder of the vortex created by

the Heidof propeller mixer to prevent the formation of fish-eyes which are formed when

polymers powder wetting is not homogeneous .

They were further transferred to the magnetic stirrer where they were stirred for 24 hours

which gave sufficient time for the polymers to hydrate homogeneously, thereby eliminat-

ing air pockets/bubbles which could alter rheometer readings. During this period, various

complex non-Newtonian fluid behaviours such as the Weissenberg rod climbing effects are

easily observed. These solutions were further diluted to obtain concentrations of 200, 500,

1000, 1500 and 2000 ppm solutions of polymers respectively using Equation (A.3), (A.4),

(A.5). To minimize the risk of mechanical shear degradation, the polymers were mixed

at relatively low mixer and magnetic stirrer velocities and a mixing propeller rod blade

having two blades was selected for mixing.

The solutions were put in well-labelled plastic containers and stored in temperature con-

trolled refrigerators.
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Figure 15: Filtration set-up showing the Vacuum Pump(Left) Filter(Middle) and Stock

solution (right)

16.Rheometer

An Anton par Modular Compact Rheometer (MCR) was used for this experiment. It

is a flexible instrument that can be used with all temperature devices and can be in-

terchangeable within different categories of accessories. All geometry dimensions, safety

limitations and safety limitations and calibration constants are saved in a chip called

the ToolmasterT M located in the coupling of every measuring system [Paar, 2011]. The

measuring systems are optimized regarding compliance, thermal expansion, and thermal

conductivity and they are made from different a diverse range of materials, featuring

different surfaces and dimensions.

Some measuring systems include TruGapT M which measures the gap and adjusts precisely

to the desired position independently of temperature and thermal expansion, The T −

ReadyT M which employs the TruGapT M functionality to determine precisely when the

required temperature is reached [Paar, 2011]. The MCR has the possibility of being

connected to a network or PC.
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Figure 16: MCR-302 Anton Paar Rheometer

16.1.Cone-Plate System

A cone plate system accessory is used for this experiment. It consists of a stationary plate

and a low angle inverted cone that rotates at a an angular frequency ω in specific regimes

with the tip of the cone resting on the plate. The polymer that were measured was filled

in the gap between the cone and the plate as shown in the Figure 16. It has several

advantages such as having a constant shear rate within the entire gap due to the cone

shape geometry. This implies that we measure the real material functions. It can handle

small volumes which is easy to fill up and clean and it takes a shorter time for temperature

to equalize. The cone-plate system has equal disadvantages of gap leakages of the fluid

at extremely high shear rates, stability issues due to its fixed gap width, measurement

disruption due to the presence of particles, and sample drying effects [Paar, 2011].
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Figure 17: Schematic diagram showing Cone-Plate system set-up

16.2.Rheometer Parameters

The parameter settings for each test run on the Anton Paar Rheometer were maintained

throughout the entire experiment. Motor adjustments, air check and quality control

procedures were carried out on the Anton paar Rheometer to map the internal friction

of the rheometer, maintain consistency of results and ensure that they operated within

safe limits. Once the rheomenter was switched on, It was initialized and temperature

was set to be constant at 20oC and normal forces was always reset to zero prior to any

experimental run.

The pipette volume was set at 620 ml and extreme care was taken to ensure that the

polymer samples were free of bubbles and placed at the center of the sensor plate. At this

volume, the fluid between the cone-plate was evenly distributed and there was virtually

no need of trimming the edges of the fluid between the rotating cone and the sensor

element. It was however noted that during amplitude sweeps for various polymers at 0

g/l salt concentration, the region on Linear Visco-Elasticity (LVE) was easily demarcated

and there was ”noise” disturbances at frequencies ranging from 10−2 to 100. A strain

amplitude of 10 % was within the LVE limit for all polymers investigated.
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CHAPTER FOUR

Results and Discussions

Graphical plots were made from the data measured from the Anton Paar rheometer.

For situations where the measured data were irregular and not consistent with estab-

lished trends, measurements were repeated. Analysis were made based on the desired

concentration of the polymer solution and not the true concentration. This was done

to establish a common base and make the analysis easy and relative. One major chal-

lenge in rheological experiment is determining the concentrations that would be termed

”dilute, semi-dilute and concentrated” fluids different behaviour is expected at different

concentrations. For the purpose of this work, measurements taken at concentrations of

200 and 500 ppm were termed dilute concentration polymers, semi-dilute concentrations

were taken at 1000 ppm while 1500 and 2000 ppm were termed concentrated solutions.

It is important to point out that measurements taken at dilute concentrations/high salinity

values, showed highly unsteady data which had significant ”noise”. These measurements

were repeated and in situations where these noises persisted, the data were cleaned or

discarded. Due to the large number of figures and charts, a significant majority of the

charts on which the discussion is based on are placed in the appendix section. It is

however advised that the reader of this theses refer to the appropriate charts in the

appendix section as referenced in the text.

16.3.Effect of Concentration on Storage and Loss Modulus (G’

and G”)

Figure 18, shows a plot of storage modulus against frequency at salt concentration of 0 g/l

at different polymer concentrations of 200, 500, 1000, 1500 and 2000 ppm, for the commer-

cial EOR polymer Flopaam 5115 VHM. It is observed that storage modulus, G′ increases

with a corresponding increase in concentration at the same frequency. Also, Storage mod-

ulus increases with increase in frequency of oscillation. It is however noteworthy that all
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Figure 18: Storage Modulus G′, plotted against angular frequency ω, at different polymer

concentrations, and 0 g/l salt concentration for the commercial EOR polymer, Flopaam

5115 VHM.

different concentrations tend to converge at a single value at higher frequency values.

This trend was replicated in Flopaam AN-125 VHM [Figure 40], and Flopaam 5115 VLM

[Figure 65]. This trend is consistent with the C-FENE-P model as shown in Figure 20 (a).

Figure 19 shows the relationship between loss modulus and frequency as a function of

concentration for Flopaam 5115 VLM. It is observed that an increase in concentration

corresponds to an increase in loss modulus G′′. Loss modulus increases with a correspond-

ing increase in the angular frequency. This trend is very similar to the what was obtained

in Flopaam 5115 VHM [Figure 40], Flopaam AN-125 VHM [Figure 51,], and Flopaam

AN-125 VLM [Figure 73] samples tested in this experiment. This trend is consistent with

C-FENE-P Model in Figure 20 (b).
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Figure 19: Loss Modulus G′′, plotted against angular frequency ω, at different polymer

concentrations, and 0g/l salt concentration for the commercial EOR polymer, Flopaam

5115 VLM.

Figure 20: The scaled G′ (a) and G′′ (b) of the C-FENE-P Dumbbell and Rigid Dumbbell

models in SAOS flow, plotted as functions of the experimental dimensionless frequency ω

[Shogin, 2019].
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16.4.Effects of Salinity/Concentration on Storage and Loss Mod-

ulus

Plots were made for five concentrations 200, 500, 1000, 1500 and 2000 ppm all at 10, 20, 30

and 35 g/l salinity. Figure 27, 28, 29, 30, 31 shows the plots for 35g/l salinity for Flopaam

5115 VHM. It is generally observed that Storage and Loss modulus are monotonously

increasing functions of angular frequency with a positive slope. At low angular frequencies,

the viscous components dominates the viscoelatic properties of Flopaam 5115 VHM. This

trend prevailed irrespective of the salinity and polymer concentration.

Figure 21 shows that a progressive increase in salinity corresponds to a progressive de-

crease in storage modulus at the same angular frequency values as we move from 0, 10,

20, 30 and to 35 g/l salt concentration for Flopaam 5115 VHM. At lower ranges of angu-

lar frequency (0.1 to 5 rad/sec), salinity changes tends to be significant, however as the

frequency increases above 10 rad/seconds, there is no much observable changes in the stor-

age modulus as all varying concentrations of salt converge into a straight line with similar

slope values. The two possible explanation for this convergence at high angular frequency

are: Firstly, changes in the flow regime and turbulence and Secondly, the effect of salinity

on storage modulus may be insignificant at very high angular frequencies. Similar plots

for concentrations of 200, 1000, 1500 and 2000 ppm shows that the angular frequency at

which they converge increases with a corresponding increase in polymer concentration as

shown in Figure 36, 37, 38, 39.

As stated, the loss modulus is an increasing function of angular frequency. From Figures

22, 23, 24, 25, and 26 which corresponds to 200, 500, 1000, 1500 and 2000 ppm respec-

tively, for the commercial EOR polymer Flopaam 5115 VHM, It is observed that salt

concentration has a profound effect on the loss modulus G′′. A progressive increase in salt

concentration leads to a progressive decrease in the loss modulus G′′ at a corresponding

angular frequency. This trend is replicated in Flopaam AN-125 VHM polymer, Figures

58, and 59 and it is consistent with the C-FENE-P model at low angular frequency [Figure

20b].

Comparisons were drawn with the C-FENE-P model predictions Figure (34), and labora-

tory experiments Figure (35), to compare the graphical signature. Linear plots of G′ and
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Figure 21: Storage Modulus G′, plotted against angular frequency ω, at 500 ppm poly-

mer concentration, and 0, 10, 20, 30, 35 g/l salt concentration for the commercial EOR

polymer, Flopaam 5115 VHM

G′′ for Flopaam 5115 VHM, plotted as functions of the angular frequency ω for salt con-

centration of 35 g/l as shown in Figure (35) displays a high degree of correlation with the

prediction made by the C-FENE-P model. At high frequency values, the storage modulus,

G′ becomes relatively constant and approaches a plateau value, while the loss modulus,

G′′ tends towards having a negative slope. From the C-FENE-P model, Both storage G′

and loss G′′ start off by having a positive slope before they intersect at relatively low

angular frequencies and hence they diverge. The experimental results was not within the

angular frequency range where the relative constant value (plateau value) of G′ could be

observed as predicted by the C-FENE-P model Figure (34), however it showed the points

where G′′ commenced the negative slope which is consistent with the C-FENE-P model

prediction.

It was challenging to resolve the storage modulus G′ at very low angular frequencies to

determine the relationship G′ ∼ ω2 but plots shows a trend that it starts resembling a

straight line relationship.
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Figure 22: Loss Modulus, G′′ as a function of angular frequency for the commercial EOR

polymer Flopaam 5115 VHM at 20oC, 200 ppm polymer concentration, and different Salt

concentrations.
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Figure 23: Loss Modulus, G′′ as a function of angular frequency for the commercial EOR

polymer Flopaam 5115 VHM at 20oC, 500 ppm polymer concentration, and different Salt

concentrations.
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Figure 24: Loss Modulus, G′′ as a function of angular frequency for the commercial EOR

polymer Flopaam 5115 VHM at 20oC, 1000ppm polymer concentration, and different Salt

concentrations.
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Figure 25: Loss Modulus, G′′ as a function of angular frequency for the commercial EOR

polymer Flopaam 5115 VHM at 20oC, 1500 ppm polymer concentration, and different

Salt concentrations.
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Figure 26: Loss Modulus, G′′ as a function of angular frequency for the commercial EOR

polymer Flopaam 5115 VHM at 20oC, 2000 ppm polymer concentration, and different

Salt concentrations.
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Figure 27: Storage and Loss Modulus against frequency at 200 ppm concentrations, and

35 g/l Salinity for Flopaam 5115 VHM.
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Figure 28: Storage and Loss Modulus against frequency at 500 ppm concentrations, and

35g/l Salinity for Flopaam 5115 VHM.
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Figure 29: Storage and Loss Modulus against frequency at 1000 ppm concentrations, and

35 g/l Salinity for Flopaam 5115 VHM.
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Figure 30: Storage and Loss Modulus against frequency at 1500ppm concentrations, and

35 g/l Salinity for Flopaam 5115 VHM.
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Figure 31: Storage and Loss Modulus against frequency at 2000 ppm concentrations, and

35 g/l Salinity for Flopaam 5115 VHM.
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16.5.Effects of Concentration and salinity on Cross Over Angular

frequency

The value of angular frequency at G′′ = G′ was between the ranges of 1 to 15 rad/sec

for all measured concentrations of Flopaam 5115 VHM at 10, 20, 30, and 35 g/l salinity.

At low concentrations,(200 and 500 ppm) it ranged between 1 to 5 rad/sec irrespective

of the salt concentration while for intermediate to high concentration, it was between 5

to 15 rad/sec for the measured salt concentrations as illustrated in Figures 27, 28, 29, 30,

31 for 35 g/l salt concentration. A similar trend is observed for Flopaam AN-125 VHM

as shown in Figures 53 54, 55, 56, and 57. This range is relatively low and it suggests

that the polymer has a high average molar mass with its molecules being less flexible and

mobile.

The change in angular cross over frequency values occurs horizontally, parallel to the

x-axis. The cross-over angular frequency increases to the right in the presence of salt

irrespective of the salt concentration. It is however important to note that the cross over

angular frequency value decreases with a corresponding increase in concentration for a

polymer solution measured at zero salt concentration. It shifts towards the left of the

curve for Flopaam 5115 VHM Figures 41, 42, 43, 44, 45. Similar trend occurs in Flopaam

AN-125 VHM.

It was observed that the cross over angular frequency for Flopaam 5115 VLM showed

a different trend. It is observed from Figure 67, 68, 69, 70 and 71, that at low and

intermediate polymer concentrations (200, 500, 1000 ppm), the storage and loss modulus

curves do not intersect and hence, there are no cross over angular frequencies. At higher

polymer concentrations (1500 and 2000 ppm), the curves intersected and the cross over

frequency tends to increase to the right with an increase in concentration irrespective of

the salt concentration.

At the cross over frequency (i.e the frequency at which G′′ = G′), the loss modulus

changes and starts having a negative slope while the storage modulus maintains its positive

slope. The experimental range for the angular frequency used in this experiment did not

make it possible to reach the so called G’ plateau value where the storage modulus, G′

becomes relatively constant and flattens out. It could be inferred that Gp (Plateau value)
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would be obtained at sufficiently higher frequencies. These suggests a greater degree of

entanglements among the molecules which invariable indicates that Flopaam 5115 VHM

is made up of longer molecules and has a higher average molar mass [Mezger, 2011].

16.6.Effect of Concentration on Complex Viscosity coefficient

Plots of complex viscosity η∗ against angular frequency ω, for Flopaam AN-125 VHM

[Figure 60] shows that an increase in concentration corresponds to an increase in complex

viscosity. Note that at frequency values of above 10 rad/s, there is an increase in the

complex viscosity value for the fluid at 200 ppm. As concentration increases, the this

increase in complex viscosity shifts to the right of the graph and occurs at a later frequency

for higher concentrations 500, 1000, 1500 and 2000 ppm. This is replicated for Flopaam

5115 VHM. It can be observed that an increase in concentration shifts this transition

phase to the right. This means that the transition occurs at a higher frequency with

corresponding increase in the concentration of the polymer. This trend goes against

conventional trends as complex viscosity does not increase with a increase in frequency.

This increase in viscosity that corresponds to an increase in frequency is as a result of high

turbulence experienced as the transition from laminar to turbulent flow (change in flow

regime) occurs in the fluid sample as it is subjected to large vibrations at higher frequencies

in the rheometer. Since the flow regime changes at this point, the measurements done

beyond this point are affected and are not relevant.

16.7.Effect of Salinity on Complex Viscosity coefficients

The effect of salinity on In-phase and Out-of phase complex viscosity coefficients, η′ and

η′′ were observed for Flopaam AN-125. Linear plots at salt concentrations (0 g/l) [Figure

33] showed that the in-phase and out-of-phase component decreases at a slow rate at high

angular frequency.

While the In-phase complex viscosity η′, in the C-FENE-P model [Figure 32] trends with

laboratory measurements , the Out-of-phase complex viscosity η′′ does not trend as it is

totally in opposite to the measurements in the laboratory at all polymer concentrations
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once salt was introduced into the mixture. It is observed for Flopaam AN-125 VHM, from

Figures 61, 62, 63, 64 that the Out-of-phase complex viscosity coefficient η′′ begins to in-

crease slightly and have a positive slope as angular frequency increases in the presence

of salt, irrespective of the salt concentration. An increase in salt concentration provokes

instabilities or secondary flow and the growing or increase in η′′ is an indication of this

instability. The above trend was consistent with experimental measurements of Flopaam

5115 VHM [Figure 46, 47, 48, 49, and 50] at a salt concentration of 35 g/l, and all other

Flopaam polymers measured. However, this is not consistent with the prediction made

by the C-FENE-P model [Figure 32].

From the FENE -P model, the idea that the point of intersection between η′ and η′′

occurs at the point where η′′ is maximum [Figure 32] is not consistent with laboratory

experiments as shown in the Figures 46, 47, 48, 49 and 50. It is expected because the

dumbbell models undergo complex oscillation in SAOS flows and representing theses flows

as simple oscillations of a dumbbell is an oversimplification [Shogin, 2019]. Also, and the

region of very low angular frequencies is not being resolved in the experiments to monitor

how η′′ increases.

Figure 32: The scaled η′ and η′′ of the C-FENE-P dumbbells in SAOS flow, plotted as

functions of the experimental dimensionless frequency ω [Shogin, 2019].
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Figure 33: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency ω for the commercial EOR polymer Flopaam AN-125 VHM at 20oC,

1000 ppm polymer concentration, and zero Salt concentration.

Figure 34: The scaled G′ and G′′ of the C-FENE-P dumbbells in SAOS flow, plotted as

functions of the experimental dimensionless frequency ω [Shogin, 2019].
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Figure 35: G′ and G′′ for Flopaam 5115 VHM, plotted as functions of the angular fre-

quency ω for Salt concentration of 35 g/l.
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CHAPTER FIVE

Conclusion and Recommendation

17.Summary

This research experiment was proposed to understand the impact of salinity on Small

Amplitude Oscillatory Shear (SAOS) material functions of EOR Flopaam ploymers. The

results were compared with predictions made by an advanced non-Newtonian fluid model

(C-FENE-P Dumbbells). Material functions such as the shear modulus, bulk modulus,

and complex viscosity (In-Phase and Out of phase) were measured for four polymer sam-

ples, Flopaam 5115-VHM, Flopaam 5115-VLM, Flopaam AN-125-VHM, and Flopaam

AN-125-VLM. The experiments were designed to suit the proposed objectives. From the

results obtained from the experiments, and the data analysed in the preceding chapter,

the following conclusions are drawn.

17.1.Conclusions consistent with the C-FENE-P model

1. Indeed, G′ and G′′ increases with concentration at all fixed angular frequency ω

in accordance with the C-FENE-P model. This increase is close to linear at low

concentrations and faster than linear at high concentrations. This is possibly due

to increased interaction between the polymer-polymer molecules.

2. G′ and G′′ increases with corresponding increase in angular frequency within the

range of measured angular frequency .

3. A progressive increase in salinity corresponds to progressive decrease in G′ and G′′

at a fixed frequency. .

4. At high frequencies, Storage modulus G′ tends towards having a constant plateau

value (Gp) and the loss modulus tends towards having a negative slope.

5. At higher frequencies, G′ and G′′ are relatively insensitive to salt concentration.
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6. An increase in salt concentration corresponds to an increase in the slope of G′ at

a fixed angular frequency ω which reaches a constant value that is independent of

salt concentration.

7. The cross-over angular frequency increases in the presence of salt irrespective of the

salt concentration.

8. An increase in salinity moves the cross over frequency towards higher angular fre-

quency values.

17.2.Conclusions not consistent with the C-FENE-P model

1. The In-phase component η′ of the complex viscosity coefficient is well predicted by

the C-FENE-P model at both low and high angular frequency values, However the

model fails to properly predict the behaviour of the Out-of-phase component η′′ of

complex viscosity at high frequency as laboratory experiments.

An increase in Salt concentration changes the flow regime, provokes instability which

occurs in the form of secondary flows and turbulence. The growth/increase in the

Out-of phase complex viscosity coefficient η′′ is an indication of this instability. This

phenomenon is not consistent with the C-FENE-P, and its is also not consistent with

any other model and theoretical prediction as this is an anomaly. By physical rea-

sons, η′′ ought to tend towards zero. This anomaly might be explained by instability

provoked by increased salt concentrations.

2. At higher polymer concentration, it is less likely to have instability and changes in

flow regimes because their is an increased interaction between the polymer molecules.

This interaction stabilize the flow. On the other hand, at low concentrations and

increased salt concentrations the flow breaks down at relatively lower angular fre-

quencies.

3. The C-FENE-P model predicts that the point of intersection where η′ = η′′ occurs

at the point where η′′ is maximum. This is not in agreement with experiments

and it is expected because the dumbbell models undergo complex oscillation in
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SAOS flows and representing theses flows as simple oscillations of a dumbbell is an

oversimplification.

4. In the absence of salt, the cross-over frequency decreases with a corresponding in-

crease in polymer concentration. The plausible explanation to this phenomenon is

the role of polymer-polymer molecule interactions.

17.3.Remarks

At low polymer concentrations, the cross-over angular frequency is not easily noticed

within the range of angular frequencies investigated. However, at higher polymer concen-

trations, irrespective of salt concentration, the cross-over angular frequency for Flopaam

polymers are within the range of 1 to 15 rad/s.

18.Recommendations for further study

1. Regions of lower frequencies should be resolved. Experiments should be conducted

by extending the frequency ranges. The rheometer settings should be adjusted to

special regimes, More time should be allocated to accommodate this.

2. To reduce the effect of instability, changes in flow regimes and turbulence in the

rheometer during measurements at high angular frequencies, the measuring time

allocated to each measurement point should be increased to improve the accuracy

of the results.

3. Cone-Plate measuring elements has its advantages and disadvantages. One of the

disadvantages of the cone-plate measuring element is having a fixed gap width be-

tween the cone plate and the element. This contributes negatively to measurements

at hight angular frequencies by increasing instability. Parallel plate has an ad-

justable gap which can improve stability of the flow at high angular frequency.

Future experiments should be conducted using a parallel plate system to account

for extremely low and high angular frequency measurements.
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4. Future experiments should be conducted with other inorganic salts of Calcium,

Barium and Magnesium to validate the conclusions reached in this work.

5. The effect and role of divalent cations in salts should be studied in-depth.

6. Large Amplitude Oscillatory Shear (LAOS) tests should be investigated in the non-

linear viscoelastic region.

7. The C-FENE-P dumbbell model should be extended to a Bead-Spring-Chain version

in order to make better quantitative predictions (example: G′/G′′ intersection).
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Appendix

A.Formulas for polymer Sample Preparation

The following formulas were employed while preparing the solutions to calculate the re-

quired concentration of dilute and concentrated polymer solutions.

A.1.Preparation of Concentrated Solutions

Theoretical evaluation of the required mass of polymer, g:

Mp = cMs × 10−6

1− c× 10−6

[
g · ppm

ppm

]
(A.1)

Practical calculation of the true concentration of polymer, ppm:

c = Mp

MpMs

× 10−6 (A.2)

Where:

Mp= measured mass of polymer

Ms = measured mass of the solvent.

c = Desired concentration

A.2.Preparation of Dilute Solution

Theoretical mass of the concentrated polymer, g:

Mc =
[
c

c0
m
]

(A.3)

Where:

c = Desired concentration of the diluted solution, ppm

co = True concentration of the polymer solution, ppm

m = Desired total mass of the diluted solution,g
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To evaluate the Total Mass of the diluted solution required, ppm:

m =
[
Mcco

c

]
(A.4)

Where:

co=True concentration of the concentrated solution, ppm

Mc= Mass of the concentrated polymer taken in practice, g

c=The desired concentration of the diluted solution, ppm

While to Evaluate the True Concentration of the diluted solution, ppm

c =
[
Mcco

m

]
(A.5)

Where: Mc=Mass of the concentrated polymer taken in practice, g

co= True concentration of the concentrated solution, ppm

m= Measured mas of the diluted solution, g

61



B.Tables

B.1.Concentrated stock solution Data for Flopaam polymer Solutions at 0 g/l

salt concentration

5115 VHM 5115 VLM AN-125 VHM AN-125 VLM

Desired Concentration [ppm] 10,000 10,000 10,000 10,000

Required Mass of water [ml] 500 500 705.50 200

Required mass of Polymer [g] 5.06 5.06 7.13 2.02

Measured mass of Polymer [g] 5.07 5.05 7.14 2.06

Measured mass of solvent [g] 500.05 498.21 705.59 200.29

True Concentration [ppm] 10,008.50 9,995.59 10,017.80 10,181.40

Table 1: Stock solution data for all Flopaam Polymers at 0g/l Salt Concentration .

B.2.Concentrated stock solution Data for Flopaam polymer Solutions at 35

g/l salt concentration

5115 VHM 5115 VLM AN-125 VHM AN-125 VLM

Desired Concentration [ppm] 10,000 10,000 10,000 10,000

Required Mass of Brine [l] 500 500 400 400

Required mass of Polymer [g] 5.06 5.06 4.04 4.04

Measured mass of Polymer [g] 5.08 5.05 4.04 4.04

Measured mass of solvent [g] 500.60 499.52 400.38 400.21

True Concentration [ppm] 10,045.90 9999.80 9989.61 9993.82

Table 2: Stock solution data for all Flopaam Polymers prepared with 35 g/l Brine.

B.3.Dilute solution Data for Flopaam 5115 VHM polymer Solutions at differ-

ent salt concentration
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Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 1.07 2.49 4.99 7.53 10.05

Total Measured mass of diluted Polymer [g] 53.98 49.90 50.64 50.28 50.35

True Concentration [ppm] 198.39 499.42 1000.45 1498.89 1997.72

Table 3: Dilute solution data for Flopaam 5115 VHM at 0 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.57 1.42 2.53 3.76 4.95

Total Measured mass of diluted Polymer [g] 28.90 28.64 25.86 25.44 25.02

True Concentration [ppm] 197.98 498.215 982.37 1485.22 1987.32

Table 4: Dilute solution data for Flopaam 5115 VHM at 10 g/1000ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.51 1.26 2.48 3.78 5.37

Total Measured mass of diluted Polymer [g] 25.61 25.31 24.99 25.34 26.96

True Concentration [ppm] 196.43 498.09 996.863 1498.43 2000.80

Table 5: Dilute solution data for Flopaam 5115 VHM at 20 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 1.15 2.45 2.67 3.77 4.41

Total Measured mass of diluted Polymer [g] 58.18 51.66 27.33 25.24 25.91

True Concentration [ppm] 198.55 476.39 981.35 1493.87 1981.61

Table 6: Dilute solution data for Flopaam 5115 VHM at 30 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.5 1.27 2.44 3.72 5.05

Total Measured mass of diluted Polymer [g] 25.22 25.57 24.51 25.05 25.36

True Concentration [ppm] 199.15 498.91 1000.40 1491.71 1999.50

Table 7: Dilute solution data for Flopaam 5115 VHM at 35 g/1000 ml Salinity.
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B.4.Dilute solution Data for Flopaam 5115 VLM polymer Solutions at different

salt concentration

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 1.01 2.55 5.02 7.53 10.04

Total Measured mass of diluted Polymer [g] 50.60 50.64 50.32 50.95 50.18

True Concentration [ppm] 199.51 503.33 997.17 1498.14 1999.91

Table 8: Dilute solution data for Flopaam 5115 VLM at 0 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.53 1.25 2.61 3.80 5.05

Total Measured mass of diluted Polymer [g] 26.48 24.99 26.11 25.96 25.44

True Concentration [ppm] 200.14 499.19 999.21 1463.76 1985.02

Table 9: Dilute solution data for Flopaam 5115 VLM at 10 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.54 1.30 2.54 3.77 5.00

Total Measured mass of diluted Polymer [g] 27.01 25.70 25.38 25.11 25.02

True Concentration [ppm] 199.92 505.80 1000.77 1501.36 1997.56

Table 10: Dilute solution data for Flopaam 5115 VLM at 20 g/1000 ml Salinity.
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Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.52 1.26 2.62 3.75 5.01

Total Measured mass of diluted Polymer [g] 25.90 25.14 26.06 25.45 25.03

True Concentration [ppm] 200.76 501.18 1005.35 1473.45 2001.56

Table 11: Dilute solution data for Flopaam 5115 VLM at 30 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.49 1.26 2.56 3.75 5.11

Total Measured mass of diluted Polymer [g] 25.58 25.13 25.55 25.11 25.55

True Concentration [ppm] 191.55 501.58 1001.94 1493.40 1999.96

Table 12: Dilute solution data for Flopaam 5115 VLM at 35 g/1000 ml Salinity.

B.5.Dilute solution Data for Flopaam AN-125 VHM polymer Solutions at

different salt concentration

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.57 1.34 2.43 4.03 5.03

Total Measured mass of diluted Polymer [g] 28.43 27.18 24.27 26.88 25.24

True Concentration [ppm] 200.84 493.88 1003.02 1501.92 1996.42

Table 13: Dilute solution data for Flopaam AN-125 VHM at 0 g/1000 ml Salinity.
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Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.61 1.31 2.47 4.02 5.18

Total Measured mass of diluted Polymer [g] 30.90 26.29 25.74 26.80 26.01

True Concentration [ppm] 197.14 497.58 958.59 1498.44 1989.47

Table 14: Dilute solution data for Flopaam AN-125 VHM at 10 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.54 1.29 2.50 3.80 5.00

Total Measured mass of diluted Polymer [g] 26.98 25.69 24.96 25.41 25.02

True Concentration [ppm] 199.94 501.61 1000.56 1493.33 1994.73

Table 15: Dilute solution data for Flopaam AN-125 VHM at 20 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.53 1.26 2.49 3.78 5.02

Total Measured mass of diluted Polymer [g] 26.41 25.22 24.95 25.17 25.46

True Concentration [ppm] 200.47 499.08 996.95 1500.23 1969.67

Table 16: Dilute solution data for Flopaam AN-125 VHM at 30 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.54 1.25 2.25 3.86 5.00

Total Measured mass of diluted Polymer [g] 26.81 24.97 25.18 25.70 25.59

True Concentration [ppm] 201.20 498.68 983.88 1494.57 1951.10

Table 17: Dilute solution data for Flopaam AN-125 VHM at 35 g/1000 ml Salinity.
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B.6.Dilute solution Data for Flopaam AN-125 VLM polymer Solutions at dif-

ferent salt concentration

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.51 1.22 2.51 3.77 4.95

Total Measured mass of diluted Polymer [g] 26.02 25.01 25.53 25.75 25.45

True Concentration [ppm] 199.55 494.85 1001.34 1490.58 1980.19

Table 18: Dilute solution data for Flopaam AN-125 VLM at 0 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.50 1.28 2.52 3.82 5.02

Total Measured mass of diluted Polymer [g] 25.08 25.59 25.19 25.48 25.66

True Concentration [ppm] 199.23 499.88 999.77 1498.29 1955.14

Table 19: Dilute solution data for Flopaam AN-125 VLM at 10 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.51 1.30 2.50 3.79 5.04

Total Measured mass of diluted Polymer [g] 25.35 25.83 25.05 25.25 25.22

True Concentration [ppm] 201.05 502.98 .997.38 1500.06 1997.18

Table 20: Dilute solution data for Flopaam AN-125 VLM at 20 g/1000 ml Salinity.
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Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.58 1.28 2.54 3.76 5.00

Total Measured mass of diluted Polymer [g] 28.98 25.60 25.32 25.20 25.04

True Concentration [ppm] 200.01 499.69 1002.54 1491.14 1995.57

Table 21: Dilute solution data for Flopaam AN-125 VLM at 30 g/1000 ml Salinity.

Desired Concentration [ppm] 200 500 1000 1500 2000

Actual Measured mass of Stock Polymer [g] 0.50 1.29 2.52 3.82 5.00

Total Measured mass of diluted Polymer [g] 25.00 25.63 25.37 25.57 25.05

True Concentration [ppm] 199.87 503.00 992.68 1493.01 1994.77

Table 22: Dilute solution data for Flopaam AN-125 VLM at 35 g/1000 ml Salinity.
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C.Figures for FLOPAAM 5115 VHM
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Storage Modulus against Frequency at 200ppm, and different salt concentrations

Figure 36: Storage Modulus against angular frequency at different Salt concentrations,

200 ppm for Flopaam 5115 VHM.
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Figure 37: Storage Modulus against angular frequency at different Salt concentrations,

1000 ppm for Flopaam 5115 VHM.
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Figure 38: Storage Modulus against angular frequency at different Salt concentrations,

1500 ppm for Flopaam 5115 VHM.

●
●●●●●●●●●●●●●●●

▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲▲▲▲

●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

▲

▲

▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲▲

●

●
●

●
●

●
●

●
●

●
●●●●

●●

● 0g/l,

▲ 10g/l,

● 20g/l

▲ 30g/l,

● 35g/l,

0.1 0.5 1 5 10 50 100
10-7

10-5

0.001

0.100

10

Frequency, ω [rads -1]

S
to
ra
ge
M
od
ul
us
,
G
'
[P
a
]
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Figure 39: Storage Modulus against angular frequency at different Salt concentrations,

2000 ppm for Flopaam 5115 VHM.
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Loss Modulus against Frequency at different Concentrations for Flopaam 5115 VHM

Figure 40: Loss modulus G” plotted against angular frequency ω at different polymer

concentrations, and zero salt concentration for the commercial EOR polymer,for Flopaam

5115 VHM.
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Plots of Frequency against Storage and Loss modulus for 200 PPM, 0 salinity for Flopaam 5115 VHM

Figure 41: Storage and Loss Modulus against frequency at 200ppm concentrations, and

zero salt concentration for the commercial EOR polymer Flopaam 5115 VHM.
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Figure 42: Storage and Loss Modulus against frequency at 500 ppm concentrations, and

0 g/l salt concentration for the commercial EOR polymer Flopaam 5115 VHM.
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Figure 43: Storage and Loss Modulus against frequency at 1000 ppm concentrations, and

0 g/l salt concentration for the commercial EOR polymer Flopaam 5115 VHM.
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Figure 44: Storage and Loss Modulus against frequency at 1500 ppm concentrations, and

0 g/l salt concentration for the commercial EOR polymer Flopaam 5115 VHM.
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Figure 45: Storage and Loss Modulus against frequency at 2000 ppm concentrations, and

0 g/l salt concentration for the commercial EOR polymer Flopaam 5115 VHM.
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Figure 46: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam 5115 VHM at 20oC, 200

ppm polymer concentration, and 35 g/l Salt concentration.
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Figure 47: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam 5115 VHM at 20oC, 500

ppm polymer concentration, and 35 g/l Salt concentration.

74



●
●

●
●

●
●●

●

●

●

●

▲

▲

▲
▲

▲▲
▲▲▲

▲

▲

● η'

▲ η''

0 2 4 6 8 10
0.000

0.005

0.010

0.015

0.020

Frequency, ω [rads -1]

In
/O
ut
-
of
-
P
ha
se
C
om
pl
ex
vi
sc
os
ity

η
',η
'',

[P
a
]

Component of complex Viscosity η'/η'' against Frequency at 35g/l salt conc, 1000ppm.for Flopaam AN-125 VHM

Figure 48: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam 5115 VHM at 20oC, 1000

ppm polymer concentration, and 35 g/l Salt concentration.
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Figure 49: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam 5115 VHM at 20oC, 1500

ppm polymer concentration, and 35 g/l Salt concentration.
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Figure 50: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam 5115 VHM at 20oC, 2000

ppm polymer concentration, and 35 g/l Salt concentration.
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D.Figures for FLOPAAM AN-125 VHM
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Storage Modulus against Frequency at Different Concentrations for Flopaam AN-125 VHM

Figure 51: Storage Modulus G’ plotted against angular frequency ω at different polymer

concentrations, and 0 g/l salt concentration for the commercial EOR polymer, Flopaam

AN-125 VHM.
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Loss Modulus against Frequency at Different Concentrations for Flopaam AN-125 VHM

Figure 52: Loss modulus G” plotted against angular frequency ω at different polymer

concentrations, and 0 g/l salt concentration for the commercial EOR polymer, Flopaam

AN-125 VHM.

77



●

●

●

●

●

●
●●●●●●●●

●

▲
▲

▲▲
▲

▲
▲

▲▲

▲▲
▲

▲▲▲

● G',

▲ G'',

0.1 0.5 1 5 10 50
10-5

10-4

0.001

0.010

0.100

1

10

Frequency,ω [rads -1]

G
'a
nd
G
'',

[P
a
]

Storage and Loss Modulus against Frequency at 200ppm, 35g/l Salinity

Figure 53: Storage and Loss Modulus against frequency at 200 ppm concentrations, and

35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125 VHM.
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Figure 54: Storage and Loss Modulus against frequency at 500 ppm concentrations, and

35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125 VHM.
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Storage and Loss Modulus against Frequency at 1000ppm, 35g/l Salinity

Figure 55: Storage and Loss Modulus against frequency at 1000 ppm concentrations, and

35 g/l salt concentration for the commercial EOR polymer Flopaam 5115 VHM.
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Storage and Loss Modulus against Frequency at 1500ppm, 35g/l Salinity

Figure 56: Storage and Loss Modulus against frequency at 1500 ppm concentrations, and

35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125 VHM.
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Figure 57: Storage and Loss Modulus against frequency at 2000 ppm concentrations, and

35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125 VHM.

●●●
●●●●●●●●●●●

▲▲▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

●
●●

●
●

●
●

●
●

●
●

●
●

●

▲
▲▲

▲
▲

▲

▲
▲

▲
▲

▲
▲

▲
▲

● 0g/l

▲ 10g/l

● 20g/l

▲ 30g/l

0.5 1 5 10 50 100
10-4

0.001

0.010

0.100

1

10

Angular Frequency, ω[rads -1]

Lo
ss
M
od
ul
us
,
G
''
[P
a
]
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Figure 58: Loss Modulus, G′′ as a function of angular frequency for the commercial EOR

polymer Flopaam AN-125 VHM at 20oC, 1500 ppm polymer concentration, and different

Salt concentrations.
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Figure 59: Loss Modulus, G′′ as a function of angular frequency for the commercial EOR

polymer Flopaam AN-125 VHM at 20oC, 2000 ppm polymer concentration, and different

Salt concentrations.
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Plots of Complex viscosity against frequency for 200, 500, 1000, 1500 and 2000 PPM, 0 salinity for Flopaam AN-125 VHM

Figure 60: Complex Viscosity, η∗ as a function of angular frequency for the commer-

cial EOR polymer Flopaam AN-125 VHM at 20oC, different polymer concentration, and

different zero Salt concentration.
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Figure 61: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam AN-125 VHM at 20oC,

2000 ppm polymer concentration, and 10 g/l Salt concentration.
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Figure 62: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam AN-125 VHM at 20oC, 200

ppm polymer concentration, and 20 g/l Salt concentration.
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Figure 63: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam AN-125 VHM at 20oC, 500

ppm polymer concentration, and 30 g/l Salt concentration.
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Figure 64: Linear plots of η′ and η′′ coefficients of complex viscosity, as a function of

angular frequency for the commercial EOR polymer Flopaam AN-125 VHM at 20oC,

1500 ppm polymer concentration, and 35 g/l Salt concentration.
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E.Figures for FLOPAAM 5115 VLM

●

●

●

●

●
●

●
●

●●●●

▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

●
●

●
●

●
●

●
●

●
●

●
●

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

●
●

●
●

●●●●
●

●
●

●

● 200 ppm,

▲ 500 ppm,

● 1000 ppm,

▲ 1500 ppm,

● 2000 ppm,

1 5 10 50 100
10-7

10-5

0.001

0.100

10

Frequency, ω[rads -1]

S
to
ra
ge
m
od
ul
us
G
',

[P
a
]

Storage Modulus against Frequency at Different Concentrations, Floppam 5115-VLM

Figure 65: Storage Modulus G′, plotted against angular frequency ω,at 20oC, at different

polymer concentrations, and 0 g/l salt concentration for the commercial EOR polymer,

Flopaam 5115 VLM.
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Figure 66: Loss Modulus G′′, plotted against angular frequency ω, at 20oC, at different

polymer concentrations, and 0 g/l salt concentration for the commercial EOR polymer,

Flopaam 5115 VLM.
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Storage and Loss Modulus against Frequency at 200ppm, 35g/l Salinity, FP 5115 VLM

Figure 67: Storage and Loss Modulus against frequency at 200 ppm polymer concen-

tration, and 35 g/l salt concentration for the commercial EOR polymer Flopaam 5115

VLM.

●

●

●

●

●

●
●●●●●●●●●

▲

▲
▲▲

▲
▲

▲
▲▲▲▲▲

▲▲▲

● G'

▲ G''

0.1 0.5 1 5 10 50
10-5

10-4

0.001

0.010

0.100

1

10

Frequency, ω [rads -1]

G
'a
nd
G
'',

[P
a
]

Storage and Loss Modulus against Frequency at 500ppm, 35g/l Salinity FP 5115 VLM

Figure 68: Storage and Loss Modulus against frequency at 500 ppm polymer concen-

tration, and 35 g/l salt concentration for the commercial EOR polymer Flopaam 5115

VLM.
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Storage and Loss Modulus against Frequency at 1000ppm, 35g/l Salinity FP 5115 VLM

Figure 69: Storage and Loss Modulus against frequency at 1000 ppm polymer concen-

trations, and 35 g/l salt concentration for the commercial EOR polymer Flopaam 5115

VLM.

●

●

●

●

●

●

●

●

●
● ▲

▲

▲

▲
▲

▲

▲

▲

▲
▲

● G'

▲ G''

2 5 10 20 50
0.001

0.010

0.100

1

10

Frequency, ω [rads -1]

G
'a
nd
G
'',

[P
a
]

Storage and Loss Modulus against Frequency at 1500ppm, 35g/l Salinity FP 5115 VLM

Figure 70: Storage and Loss Modulus against frequency at 1500 ppm polymer concen-

trations, and 35 g/l salt concentration for the commercial EOR polymer Flopaam 5115

VLM.
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Storage and Loss Modulus against Frequency at 2000ppm, 35g/l Salinity

Figure 71: Storage and Loss Modulus against frequency at 2000 ppm polymer concen-

trations, and 35 g/l salt concentration for the commercial EOR polymer Flopaam 5115

VLM.
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F.Figures for FLOPAAM AN-125 VLM

Figure 72: Storage Modulus G′, plotted against angular frequency ω,at 20oC, at different

polymer concentrations, and 0 g/l salt concentration for the commercial EOR polymer,

Flopaam AN-125 VLM.

Figure 73: Loss Modulus G′, plotted against angular frequency ω,at 20oC, at different

polymer concentrations, and 0 g/l salt concentration for the commercial EOR polymer,

Flopaam AN-125 VLM.
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Figure 74: Storage and Loss Modulus against frequency at 1500 ppm polymer concen-

trations, and 0 g/l salt concentration for the commercial EOR polymer Flopaam AN-125

VLM.

Figure 75: Storage and Loss Modulus against frequency at 2000 ppm polymer concen-

trations, and 0 g/l salt concentration for the commercial EOR polymer Flopaam AN-125

VLM.
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Figure 76: Loss Modulus G′′, plotted against angular frequency ω, at 20oC, at poly-

mer concentrations 2000 ppm, and different salt concentration for the commercial EOR

polymer, Flopaam AN-125 VLM.
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Figure 77: Storage and Loss Modulus against frequency at 200 ppm polymer concentra-

tion, and 35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125

VLM.
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Storage and Loss Modulus against Frequency at 500ppm, 35g/l Salinity

Figure 78: Storage and Loss Modulus against frequency at 500 ppm polymer concentra-

tion, and 35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125

VLM.
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Figure 79: Storage and Loss Modulus against frequency at 1000 ppm polymer concen-

tration, and 35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125

VLM.
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Figure 80: Storage and Loss Modulus against frequency at 1500 ppm polymer concen-

tration, and 35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125

VLM.
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Figure 81: Storage and Loss Modulus against frequency at 2000 ppm polymer concen-

tration, and 35 g/l salt concentration for the commercial EOR polymer Flopaam AN-125

VLM.
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