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Abstract
The portfolio selection problem has been known for centuries. However, Markowitz (1952)
was the first to introduce a robust framework for optimized portfolios on financial mar-
kets. Later this approach was applied in the petroleum industry to increase the corpo-
rate performance of oil and gas companies and to manage associated risks (Hightower
et al. (1991)).

Nevertheless, despite the lack of uncertainty optimization, simple portfolio selec-
tion techniques such as the Rank and Cut method remains popular in the industry
(Wood (2016)). In this thesis, the advantages and disadvantages of this approach were
briefly mentioned. Besides Markowitz Portfolio Theory and the Rank and Cut Method,
a number of new portfolio selection methods were developed that not only improve the
performance and minimize the risks but also can be used as processes and tools to
deliver shareholder value or to achieve strategic corporate goals.

One such approach is the use of multi-objective time series portfolio optimization,
where the corporate goals are defined as constraints, the level of constraint accomplish-
ment is quantified in terms of probability of exceeding the constraint and net present
value is set as the main objective. This method was used to select an optimal portfolio
from the pool of petroleum projects. One of the main contributions of this work is to
provide a tool and process that can be used by management teams to evaluate different
portfolios quickly using multiple time-dependent corporate constraints. The tool can
be used to evaluate the impact on the portfolio of changing constraints or weighting the
constraints differently. The ability to do this interactively is essential as it allows the
management team to evaluate and address the key elements of their portfolio decision
problem.

A crucial part of the portfolio optimization problem is the choice of optimization al-
gorithms. Several algorithms that facilitate the petroleum industry’s needs of portfolio
optimization were studied, and a brief overview of them was presented.

We also included a discussion of the choice of programming language for portfolio
models. Although we built the project model in R, we ended up using Python as it
provided significant computational speed improvements over R. We also argued why
Excel, although very popular, is far from an optimal tool for portfolio modeling.
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1 Introduction
Diversification for a long time was considered as a desirable property of a good in-
vestment. In the early 18th century Daniel Bernoulli stated: "it is advisable to divide
goods which are exposed to some danger into several portions rather than to risk them
all " (Bernoulli (1954)). In addition, he gave an example that having possesses in
foreign countries and given the fact that every tenth ship goes down, in terms of the
expectation of commodities, it is beneficial to transport them by two different ships.

D. Bernoulli nevertheless was not the first one who showed advantages of diversi-
fication. Rubinstein (2002) has mentioned The Merchant of Venice, a play written by
William Shakespeare, as another illustration of this concept:

"My ventures are not in one bottom trusted,
Nor to one place; nor is my whole estate
Upon the fortune of this present year:
Therefore my merchandise makes me not sad."

Act I, Scene 1

The superiority of diversification comes from uncertainty mitigation of future out-
comes, and in order to fully understand the economic risk, one should quantify it. Vari-
ance as a measure of risk was first proposed by Fisher (1906); Tobin (2006) suggested
variance of return as investment portfolio risks quantification. In 1949 a well-known
investor Graham (1949) chose a margin of safety to be a measure of risk and adviced
to look for undervalued companies based on their historical performance. He also rec-
ommended diversification of investments to diminish uncertainties (S. Mitra (2009)).

The traditional method of portfolio selection is to allocate capital by ranking and
funding projects in decreasing order of some economic measure (net present value
(NPV), internal rate of return, discounted profit-to-investment ratio, etc.) until the
budget is exhausted (Erdogan et al. (2007)). This method is known as "rank and
cut" approach and is commonly used in Exploration and Production (E&P) industry
(Lessard (2003)). A detailed review of the technique can be found in section 2.1.

Although concepts of investment risks and diversification were well known among
financial economists, a clear mathematical framework of portfolio analysis was not
well established until Harry Markowitz proposed his Portfolio Theory in 1952 (S. Mi-
tra (2009)). It was a significant breakthrough in the theory of financial economics, and
later in 1990 he was awarded Alfred Nobel Memorial Prize in Economic Sciences for
having developed the theory of portfolio choice. This approach will be discussed later
in section 2.2.

As it was stated earlier diversification, as a mean of managing risk, is a key property
of an optimized portfolio. Selection of equal shares of each of the security is the easiest
way to achieve it. This technique was suggested by DeMiguel et al. (2009) as a rule in
which a fraction 1/𝑁 is allocated equally to each of the 𝑁 securities (section 2.3).

Another approach is time series multi-objective portfolio optimization (TSMPO),
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where various constraints are set along the future timeline to facilitate established cor-
porate strategy. Instead of portfolio variance, probabilities of constraint accomplish-
ment are chosen as measures of risk. This approach is widely known in the petroleum
industry and has been discussed in multiple papers: Howell et al. (2001); DuBois (2007);
Faya et al. (2007). Further description of this portfolio optimization technique will be
presented in section 2.4.

Optimization algorithm that was chosen to solve the problem beyond its application
provide suboptimal results. In the case of portfolio optimization, poor selection of the
optimization algorithm may lead to significant potential losses. To address this issue
an overview of optimization algorithms regarding the portfolio selection problem and
their application areas has been presented in chapter 3.

This research has two main contributions. The first is the use of Python program-
ming language for portfolio modeling. TSMPO has been chosen to reflect the needs
of the petroleum industry. We applied this method to develop a Python-based port-
folio optimization model that was described in chapter 5. Project model (chapter 4)
that provides data to portfolio optimization model was built separately in Python and
in R. In chapter 7 we discussed the advantages of these programming languages and
compared them to Microsoft Excel.

Literature overview of TSMPO method applied to a pool of petroleum projects
has demonstrated a lack of processes and tools that describe the results of optimized
portfolios. This was the motivation for the second contribution of this work. In chapter
6 we provided a case study and in section 6.2 presented a method to determine the
most significant corporate constraints that impact the optimized portfolios.
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2 Portfolio Optimization Methods

2.1 The Rank and Cut Method

The Rank and Cut approach is a basic optimizer imposing an objective set by the
decision-maker. It’s routinely applied across E&P industry, in particular concerning
budget limitations (e.g., capital investment).

The algorithm of portfolio selection is described by Wood (2016):

1. Establish the objective metric to be used to rank the projects, normally an ob-
jective function to optimize (e.g., NPV, discounted profit-to-investment ratio,
etc.).

2. Rank the projects and order them according to the significance of their contri-
bution with respect to the chosen objective metric.

3. Select the constraint.

4. Select and accumulate the projects, starting with the ranked #1 project and con-
secutively adding projects one by one in decreasing order (i.e., rank#2, rank#3,
etc.) until the constraint limit is reached.

5. In reaching the constraint limit, only a fraction of the project is selected, so that
the constraint limit is not exceeded.

The method is applied to the project pool shown in table 2.1.1, where 𝐸[𝑁𝑃𝑉 ]: ex-
pected NPV; 𝐶𝑎𝑝𝐸𝑥: capital expenditures; 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦: a ratio 𝐸[𝑁𝑃𝑉 ]/𝐶𝑎𝑝𝐸𝑥.

Table 2.1.1: Project Pool for the Rank and Cut Method

Project E[NPV] CapEx Capital Efficiency
USD (million) USD (million)

1 917 556 1.65
2 449 780 0.58
3 2232 1743 1.28
4 1388 889 1.56
5 929 387 2.40
6 1480 507 2.92
7 1629 1397 1.17
8 2117 729 2.90
9 254 153 1.66
10 673 296 2.27
11 1163 965 1.21
12 875 324 2.70
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Table 2.1.2: The Rank and Cut Method Applied (ranking with respect to Expected
NPV)

Project E[NPV] CapEx Capital Efficiency Selected
USD (million) USD (million) %

3 2232 1743 1.28 100
8 2117 729 2.90 100
7 1629 1397 1.17 100
6 1480 507 2.92 100
4 1388 889 1.56 13.9
11 1163 965 1.21 0
5 929 387 2.40 0
1 917 556 1.65 0
12 875 324 2.70 0
10 673 296 2.27 0
2 449 780 0.58 0
9 254 153 1.66 0

Table 2.1.3: The Rank and Cut Method Applied (ranking with respect to Capital
Efficiency)

Project E[NPV] CapEx Capital Efficiency Selected
USD (million) USD (million) %

6 1480 507 2.92 100
8 2117 729 2.90 100
12 875 324 2.70 100
5 929 387 2.40 100
10 673 296 2.27 100
9 254 153 1.66 100
1 917 556 1.65 100
4 1388 889 1.56 100
3 2232 1743 1.28 37.8
11 1163 965 1.21 0
7 1629 1397 1.17 0
2 449 780 0.58 0

The projects are ranked with respect to expected NPV and sorted. The budget is
set to 4500 USD (million), and the projects are selected based on the ranking (table
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2.1.2). Accumulated capital expenditures of the four best projects are equal to 4376
USD (million), the remaining 124 USD (million) were allocated to project #4, which
resulted in a share of 13.9%. The same procedure can be applied to Capital Efficiency
as the objective function.

Unsurprisingly the rank and cut method based on capital efficiency does not produce
the same results when ranking is done with respect to expected NPV (table 2.1.3).
Projects # 1, 5, 9, 10, 12 are part of the portfolio, yet they were not selected by
expected NPV ranking. The same applies to project #7 that is dropped from the
portfolio in the case of capital efficiency ranking.

Moreover, the rank and cut method does not account for risk. Erdogan et al. (2007)
showed that the technique leads to a higher risk in comparison to optimization ap-
proaches that explicitly take risk into account. The rank and cut furthermore fails
to select projects that are subject to multiple objective functions and/or several limit
constraints. Despite the aforementioned disadvantages, the method is very popular
and can be used as a benchmark or starting point of optimization algorithms.

2.2 Markowitz’s Portfolio Theory (MPT)

Before presenting MPT, it’s necessary to introduce some definitions and assumptions.
Uncertainty and risk are often used interchangeably, and this was illustrated in chapter
1. However, there is a noticeable difference in the formal definition.

Definition 2.2.1. Uncertainty is a subjective aspect and represents a lack of knowledge
regarding the statement (Bratvold et al. (2010)).

Definition 2.2.2. Risk is an undesirable consequence of uncertainty (Bratvold et
al. (2010)).

In the subsequent sections, this distinction between the terms of risk and uncertainty
will be preserved.

The assumptions of the Markowitz model are based on the behavior of investor
(Reilly (2003)):

∙ The measure of the uncertainty of the portfolio is the variance of expected returns.

∙ Investors decide solely on the basis of uncertainty and expected returns.

∙ For a given expected return, investors prefer less uncertainty to more uncertainty.
Correspondingly, for a given level of uncertainty, investors select higher expected
returns to lower.

On the aforementioned support, Markowitz (1952) stated that a single portfolio is
efficient if no other portfolio with fixed uncertainty level has higher expected returns,
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or, similarly, no other portfolio with fixed expected returns has lower uncertainty. In
addition, he performed a geometric analysis of three- and four-security pools to demon-
strate the properties of efficient sets. The set of efficient mean-variance combinations
of portfolios defined by Markowitz (1952) became known as the efficient frontier.

Later Markowitz (1959) derived and further defined an expected value - variance
(E-V) efficient portfolios.

Stock Market vs. E&P Industry

Markowitz theory was developed to be applied to securities on the stock markets.
Later Hightower et al. (1991) implemented the E-V portfolio optimization to find
the optimized portfolio of petroleum assets.

We, therefore, would like to emphasize the key differences between stock and
E&P investments listed by Ball et al. (1999):

- Stock portfolios depend only on uncertain returns. E&P projects face both
local uncertainties (e.g., the discovery and production of oil at a given
site), and global uncertainties (e.g., prices, politics, etc.). Moreover, stock
returns’ uncertainties typically have a bell-shaped distribution while E&P
uncertainties are highly skewed and stress rare events.

- Uncertainty in stock portfolios is commonly measured in terms of volatility
(variance). E&P portfolios must specifically get use of risk.

- E&P projects pay out over long periods. Stocks can be bought and sold at
will.

- Stock portfolios mostly contain investments with a small fraction of shares.
E&P portfolios, on the other hand, include projects with participation of
100%.

As it was stated in the "Stock Market vs. E&P Industry" note, Markowitz’ portfolio
optimization can be applied to petroleum assets; thus, the E-V optimization will be
explained with respect to petroleum assets.

For a set of n assets and time period of t, every asset has a vector of returns (R)
which is a vector of realizations drawn from the identified distribution:

𝑅1 =

⎡⎢⎢⎢⎣
𝑅11

𝑅12
...

𝑅1𝑡

⎤⎥⎥⎥⎦ , 𝑅2 =

⎡⎢⎢⎢⎣
𝑅21

𝑅22
...

𝑅2𝑡

⎤⎥⎥⎥⎦ , · · · , 𝑅𝑛 =

⎡⎢⎢⎢⎣
𝑅𝑛1

𝑅𝑛2
...

𝑅𝑛𝑡

⎤⎥⎥⎥⎦ (2.2.1)

Given this historical data, one can calculate means (𝜇) and variances (𝜎2) of returns
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for each of the asset:

𝜇1 =
1

𝑡

𝑡∑︁
𝑗=1

𝑅1𝑗, 𝜇2 =
1

𝑡

𝑡∑︁
𝑗=1

𝑅2𝑗, · · · , 𝜇𝑛 =
1

𝑡

𝑡∑︁
𝑗=1

𝑅𝑛𝑗 (2.2.2)

𝜎2
1 =

1

𝑡

𝑡∑︁
𝑗=1

(𝑅1𝑗−𝜇1)
2, 𝜎2

2 =
1

𝑡

𝑡∑︁
𝑗=1

(𝑅2𝑗−𝜇2)
2, · · · , 𝜎2

𝑛 =
1

𝑡

𝑡∑︁
𝑗=1

(𝑅𝑛𝑗−𝜇𝑛)2, (2.2.3)

Then, based on the linearity of expectations, the expected value of portfolio return
P can be written as:

𝐸[𝑃 ] =
𝑛∑︁

𝑖=1

(𝑤𝑖𝑅𝑖) (2.2.4)

where 𝑤𝑖 is a corresponding share of selected asset i.

However, variance doesn’t have the same linearity property as the expected value.
In order to calculate the variance of the portfolio returns the following formula should
be used:

𝑉 𝑎𝑟(𝑃 ) =
𝑛∑︁

𝑖=1

(𝑤𝑖 · 𝜎2
𝑖 ) + 2

𝑛∑︁
𝑖=1,𝑘=1

(𝑤𝑖 · 𝑤𝑘 · 𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑘)) (2.2.5)

where 𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑘) is the covariance of 𝑅𝑖 and 𝑅𝑘 and is given by equation:

𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑘) = 𝐸[(𝑅𝑖 − 𝜇𝑖)(𝑅𝑘 − 𝜇𝑘)] (2.2.6)

Presenting expected return 𝜇 and weights 𝑤 of 𝑛 assets as vectors of form 𝑛× 1:

𝜇 =

⎡⎢⎢⎢⎣
𝜇1

𝜇2
...
𝜇𝑛

⎤⎥⎥⎥⎦ , 𝑤 =

⎡⎢⎢⎢⎣
𝑤1

𝑤2
...
𝑤𝑛

⎤⎥⎥⎥⎦ (2.2.7)

and portfolio variance 𝑉 𝑎𝑟(𝑃 ) as covariance matrix Σ:

Σ =

⎡⎢⎢⎢⎣
𝜎2
1 𝜎12 · · · 𝜎1𝑛

𝜎21 𝜎2
2 · · · 𝜎2𝑛

...
... . . . ...

𝜎𝑛1 𝜎𝑛2 · · · 𝜎2
𝑛

⎤⎥⎥⎥⎦ (2.2.8)

portfolio expected return 𝐸[𝑃 ] and portfolio variance 𝑉 𝑎𝑟(𝑃 ) can be written as:

𝐸[𝑃 ] = 𝜇𝑇 ×𝑤 (2.2.9)
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𝑉 𝑎𝑟(𝑃 ) = 𝑤𝑇 ×Σ×𝑤 (2.2.10)

Correlation Coefficient

From the equation (2.2.5) it can be concluded, that in order to minimize the
variance of portfolio, not only variances of each of the assets should be considered,
but also covariance between returns of the assets. Yet, covariance interpretation
may not be intuitive, so a correlation coefficient can be used instead:

𝑐𝑜𝑟𝑟(𝑅𝑖, 𝑅𝑘) =
𝑐𝑜𝑣(𝑅𝑖, 𝑅𝑘)

𝜎2
𝑖 𝜎

2
𝑘

Correlation coefficient can take values in the range [−1, 1]. This set can be
divided into 3 cases:

1. 𝑅𝑖 and 𝑅𝑘 are independent: 𝑐𝑜𝑟𝑟(𝑅𝑖, 𝑅𝑘) = 0

2. 𝑅𝑖 and 𝑅𝑘 are positevely correlated: 𝑐𝑜𝑟𝑟(𝑅𝑖, 𝑅𝑘) > 0. Meaning: increase
of 𝑅𝑖 implies increase of 𝑅𝑘 and vice-versa.

3. 𝑅𝑖 and 𝑅𝑘 are negatively correlated: 𝑐𝑜𝑟𝑟(𝑅𝑖, 𝑅𝑘) < 0. Meaning: increase
of 𝑅𝑖 implies decrease of 𝑅𝑘 and vice-versa.

It was showed that correlation coefficient provides a better interpretation of
projects interaction. Nonetheless, in the derivation of E-V problem we will stick
to covariance.

It’s important to emphasize that portfolio return is the measure of uncertainty
(see definition of uncertainty 2.2.1). Markowitz (1959) defined the semi-variance as an
alternative measure of risk (notice the definition of risk 2.2.2).

Now, having defined the expected return of portfolio and portfolio variance, E-V
portfolio optimization problem can be represented as follows:

- Portfolio expected return maximization with a portfolio variance as an upper
constraint:

max
𝑤∈𝑊

𝜇𝑇 ×𝑤 (2.2.11)

- Portfolio variance minimization with a portfolio expected return as a lower con-
straint:

min
𝑤∈𝑊

𝑤𝑇 ×Σ×𝑤 (2.2.12)

- Alternatively, taking in account risk aversion coefficient 𝜆:
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max
𝑤∈𝑊

𝜇𝑇 ×𝑤 + 𝜆×𝑤𝑇 ×Σ×𝑤 (2.2.13)

Risk Aversion Coefficient

The von Neumann-Morgenstern expected utility theory (see Von Neumann et
al. (2007)) is commonly applied to find the optimized portfolio. The weights of
the optimized portfolio maximize the expected utility of future wealth as well.
The problem then is to find a functional form of the utility function. One of such
functions is the exponential utility given by:

𝑈𝑒𝑥𝑝(𝑅𝑤) = 1 − 𝑒−𝛾𝑒𝑥𝑝𝑅𝑤

where
𝑅𝑤: the return of the portfolio 𝑅𝑤 = 𝑅𝑇 ×𝑤 (see equation 2.2.11)
𝛾𝑒𝑥𝑝: the risk aversion coefficient, which is a parameter that defines the decision
maker attitude towards risk.

If the asset returns are multivariate normally distributed then the maximiza-
tion of 𝐸(𝑈𝑒𝑥𝑝(𝑅𝑤)) is equal to maximization of mean-variance utility function
(Okhrin et al. (2008)):

𝜇𝑇 ×𝑤 +
𝛾𝑚𝑣

2
×𝑤𝑇 ×Σ×𝑤

where 𝛾𝑚𝑣 is the risk aversion coefficient.

If 𝛾𝑚𝑣

2
is substituted with 𝜆 we get the equation 2.2.13. The quantification of the

risk aversion coefficient is not obvious, and we would like to refer the reader to
a paper written by Bodnar et al. (2018) where the problem of its estimation was
discussed.

The problem of E-V portfolio optimization lies in the field of quadratic programming
algorithms that are described in section 3.2.

Finally, constructed portfolios can be plotted with portfolio variance on the x-axis,
and portfolio expected return on the y-axis (figure 2.2.1 ). The scatter plot represents
the set of possible portfolios, and the curved line is an efficient frontier. From the plot,
it’s clearly seen that for a given expected return (line 𝐴 − 𝐶) no other portfolio has
lower variance, than point 𝐴. Equivalently, for a given variance (line 𝐵 − 𝐶) no other
portfolio has a higher expected return than that on the efficient frontier: point 𝐵.
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Figure 2.2.1 : Efficient Frontier (adapted from Reilly (2003))

2.3 Naive Diversification and Risk Parity Portfolio Optimiza-
tion

In their work DeMiguel et al. (2009) mentioned the naive diversification as a simple
and therefore widespread method to select an optimal portfolio. The 1/𝑁 strategy was
chosen to be a benchmark in a series of comparisons to other optimizing models. Out
of all the chosen techniques, the minimum-variance portfolio showed the best results
in terms of Sharpe ratio (see definition 2.3.1).

Definition 2.3.1. Sharpe ratio 𝑆 of portfolio is stated as follows(Reilly (2003)):

𝑆 =
�̄�−𝑅𝐹𝑅

𝜎
(2.3.1)

where: �̄� = the average rate of return for portfolio; 𝑅𝐹𝑅 = the average rate of
return for risk-free assets; 𝜎 = the standard deviation of the rate of return for portfolio.

On the basis of simulation results, DeMiguel et al. (2009) defined three required
conditions of the optimizing models to outperform naive diversification:

1. Long estimation window.
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2. True Sharpe ratio of the E-V efficient portfolio is considerably higher than that
of the naive diversification.

3. Number of assets in the pool is small.

An obvious reason for the advantages of the 1/𝑁 method is that a very long time
series of data is needed to estimate the consistent vector of expected returns and
variance-covariance matrix of returns for mean-variance method. Resulting portfolio
weights of these techniques are less optimal in comparison to naive diversification in a
way that errors caused by the 1/𝑁 method are smaller (DeMiguel et al. (2009)).

Finally, DeMiguel et al. (2009) recommended choosing the naive diversification as
a natural benchmark for its simplicity and low-cost implementation.

The post-Markowitz era gave birth to numerous measures of risk as well. In the
overview of recent advances in portfolio theory, Kolm et al. (2014) listed risk contribu-
tion, marginal risk contribution and relative risk contribution.

Risk contribution has different definitions. J.P Morgan (1997) specified it as follows.
Let’s consider portfolio, where asset #𝑖 is removed. Then portfolio weights have the
following representation:

𝑤−𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤1
...

𝑤𝑖−1

0
𝑤𝑖+1

...
𝑤𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.3.2)

The risk contribution 𝜎𝑖 of asset 𝑖 in portfolio 𝑤 thus is defined as:

𝜎𝑖(𝑤) = 𝜎(𝑤) − 𝜎(𝑤−𝑖) (2.3.3)

However, the asset-wise sum of risk contributions is not equal to the standard
deviation of portfolio returns, which makes this approach less intuitive.

Alternatively, Kolm et al. (2014) advised to use risk contribution derived on the
basis of marginal risk contribution 𝑀𝑅𝐶𝑖(𝑤), determined as a partial derivative of
portfolio standard deviation 𝜎(𝑤) with respect to weight 𝑤𝑖 of selected asset 𝑖:

𝑀𝑅𝐶𝑖(𝑤) =
𝜕𝜎(𝑤)

𝜕𝑤𝑖

=
(Σ × 𝑤)𝑖
𝜎(𝑤)

(2.3.4)

Then, risk contribution 𝑅𝐶𝑖 of asset 𝑖 is calculated as weighted marginal risk con-
tribution:

𝑅𝐶𝑖(𝑤) = 𝑤𝑖 ·𝑀𝑅𝐶𝑖(𝑤) (2.3.5)
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As opposed to the definition of J.P Morgan (1997) the analogue (2.3.5) defined by
Kolm et al. (2014) has nice property such that:

𝑛∑︁
𝑖=1

𝑅𝐶𝑖(𝑤) =
𝑛∑︁

𝑖=1

𝑤𝑖 · (Σ𝑤)𝑖
𝜎(𝑤)

=
𝜎𝑇Σ𝑤

𝜎(𝑤)
= 𝜎(𝑤) (2.3.6)

Finally, relative risk contribution 𝑅𝑅𝐶𝑖 is specified as a fraction of risk contribution
𝑅𝐶𝑖 of asset 𝑖 and portfolio standard deviation 𝜎(𝑤):

𝑅𝑅𝐶𝑖(𝑤) =
𝑅𝐶𝑖(𝑤)

𝜎(𝑤)
(2.3.7)

On the basis of relative risk contribution 𝑅𝑅𝐶𝑖 Asness et al. (2012) suggested a
risk parity portfolio optimization method. In this approach, the optimal portfolio is
constructed so that risk is evenly allocated between all the selected assets. To achieve
this, the portfolio should satisfy the only condition:

𝑅𝐶𝑖(𝑤) =
𝜎(𝑤)

𝑛
(2.3.8)

To conclude, the naive diversification method and risk-parity method follows quite
similar principles: an equal allocation of capital and total risk, respectively.

2.4 Time Series Multi-Objective Portfolio Optimization (TSMPO)

All oil and gas companies have corporate strategies that are explicitly defined in the
form of goals, or implicitly in the form of historical business practices (Howell et
al. (2001)). In the explicit case, a portfolio selection problem to achieve multiple goals,
that are distributed across a future timeline, is known as time series multi-objective
portfolio optimization. These goals are interpreted as constraints that are imposed on
portfolio optimization.

To illustrate the process of portfolio optimization, let’s consider the following set up.
The corporate strategy consists of three constraints: oil production, gas production,
and capital expenditures. Each of the constraints is set annually for 𝑚-year periods,
and the NPV is defined as the main objective function. The problem set-up is as
follows:

max
𝑤

𝑛∑︁
𝑖=1

𝑁𝑃𝑉𝑖 · 𝑤𝑖 (2.4.1)

subject to:

𝑛∑︁
𝑖=1

𝑄𝑜𝑖𝑙
𝑖,𝑗 · 𝑤𝑖 ≥ 𝐶𝑜𝑖𝑙

𝑗 (2.4.2)
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𝑛∑︁
𝑖=1

𝑄𝑔𝑎𝑠
𝑖,𝑗 · 𝑤𝑖 ≥ 𝐶𝑔𝑎𝑠

𝑗 (2.4.3)

𝑛∑︁
𝑖=1

𝐶𝑎𝑝𝐸𝑥𝑖,𝑗 · 𝑤𝑖 ≥ 𝐶𝐶𝑎𝑝𝐸𝑥
𝑗 (2.4.4)

0 ≤ 𝑤𝑖 ≤ 1 (2.4.5)

where:
𝑖 = 1, ..., 𝑛: project #
𝑗 = 1, ...,𝑚: year #
𝑤𝑖: portfolio weight for project #𝑖

𝑁𝑃𝑉𝑖: NPV for project #𝑖

𝑄𝑜𝑖𝑙
𝑖,𝑗 : oil production of year #𝑗 for project #𝑖

𝐶𝑜𝑖𝑙
𝑗 : oil production constraint for year #𝑗

𝑄𝑔𝑎𝑠
𝑖,𝑗 : gas production of year #𝑗 for project #𝑖

𝐶𝑔𝑎𝑠
𝑗 : gas production constraint for year #𝑗

𝐶𝑎𝑝𝐸𝑥𝑖,𝑗: CapEx of year #𝑗 for project #𝑖

𝐶𝐶𝑎𝑝𝐸𝑥
𝑗 : CapEx constraint for year #𝑗

Project metrics (𝑁𝑃𝑉𝑖, 𝑄𝑜𝑖𝑙
𝑖,𝑗 , 𝑄

𝑔𝑎𝑠
𝑖,𝑗 , 𝐶𝑎𝑝𝐸𝑥𝑖,𝑗) can be deterministic or probabilistic.

In the probabilistic case, the parameters are defined as expected values of the cor-
responding probability density function/probability mass function or quantiles (e.g.,
P90, P50, P10) with respect to risk preferences of the decision-maker. Probability of
constraint accomplishment is set as uncertainty measure.

The aforementioned problem is optimized using linear programming (LP) algo-
rithms (section 3.1), as all project metrics have linear properties. However, in the
highly constrained setup, when it’s not possible to achieve at least one of the con-
straints, LP will fail to find a feasible solution. Penalty functions (section 3.4) help to
overcome this issue. The results of optimization are presented on figures 2.4.1 , 2.4.2 ,
2.4.3 , where constraints are depicted as red bars, means of the optimized portfolio as
green bars, and probabilities of achieving constraints as blue lines.

Uncertainty minimization problem with respect to a certain constraint lays in the
field of quadratic programming (section 3.2) or, in the case of non-convex/non-concave
- evolutionary algorithms (section 3.3). The setup where the probability of exceeding
oil production constraint for year 5 is the objective function, and portfolio NPV is
constrained to be greater or equal to 𝐶𝑁𝑃𝑉 , has the following form:

max
𝑤

𝑃

[︃
𝑛∑︁

𝑖=1

(𝑄𝑜𝑖𝑙
𝑖,5 · 𝑤𝑖) ≥ 𝐶𝑜𝑖𝑙

5

]︃
(2.4.6)

subject to
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𝑛∑︁
𝑖=1

𝑁𝑃𝑉𝑖 · 𝑤𝑖 ≥ 𝐶𝑁𝑃𝑉 (2.4.7)

The TSMPO approach provides a way to set and evaluate corporate strategies
(Howell et al. (2001)). It takes into account uncertainties in terms of probabilities of
exceeding constraints, which is a more intuitive measure than variance or standard
deviation.

Figure 2.4.1 : Oil Production of Portfolio (TSMPO)

Figure 2.4.2 : Gas Production of Portfolio (TSMPO)

14



Figure 2.4.3 : CapEx of Portfolio (TSMPO)
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3 Optimization Algorithms

3.1 Linear Programming

Linear programming (LP) optimizers are widely applied in the petroleum industry.
The reason for that is performance metrics such as revenues, costs, cash flows, oil
production, gas production which are aggregated linearly (Wood (2016)).

LP is a mathematical method to solve constrained optimization problems in the
following form (Lessard (2003)):

min
𝑥

𝑝𝑇𝑥 (3.1.1)

subject to:

𝐴𝑥 ≥ 𝑙 (3.1.2)

𝐶𝑥 = 𝑏 (3.1.3)

where:
𝑝: vector of linear coefficients of the objective function;
𝑥: decision variables vector (e.g., vector of portfolio weights);
𝐴: matrix of the inequality constraint coefficients;
𝑙: vector of coefficients imposed as bounds on 𝐴𝑥;
𝐶: matrix of the equality constraint coefficients;
𝑏: vector of coefficients imposed as equality constraint on 𝐶𝑥

Equation (3.1.1) is called an objective function; term (3.1.2) is defined as inequality
constraint, and term (3.1.3) as equality constraint.

A well-known method to solve LP problems is simplex approach (Dantzig et al. (1955)).

However, LP algorithms fail to optimize the original Markowitz E-V portfolio, which
is a quadratic programming problem. This comes from the fact that variance aggrega-
tion is not linear unless all selected assets are considered independent (see equations
2.2.5, 2.2.6, 2.2).

LP optimization can be easily applied in the petroleum industry-related problem:

min
𝑥

𝑛∑︁
𝑖=1

𝑁𝑃𝑉𝑖 · 𝑤𝑖 (3.1.4)

𝑛∑︁
𝑖=1

𝑄𝑖 · 𝑤𝑖 ≥ 𝑐 (3.1.5)

𝑛∑︁
𝑖=1

𝑤𝑖 = 1 (3.1.6)
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where 𝑁𝑃𝑉𝑖 is net present value and 𝑄𝑖 is oil production.

A number of Python and R packages using LP solvers have been developed: lp-
Solve (Berkelaar et al. (2015)); APMonitor (Hedengren et al. (2014)); SciPy (Jones
et al. (2001–)), etc.

However, the LP problem has numerous issues :

1. The majority of uncertainty or risk measures are not optimized unless they are
linearly aggregated (some examples of LP computable risk and uncertainty mea-
sures are mentioned by Mansini et al. (2014))

2. Algorithm fails to optimize non-concave/non-convex functions

3. Algorithm may not find a solution in case of highly constrained set up

The listed disadvantages and shortcomings of LP problem are partially addressed
by quadratic programming (see item 1 in the list of the disadvantages of LP) and
are completely overcome by genetic algorithm along with introduction of the penalty
function, which will be discussed in the next sections.

3.2 Quadratic Programming

As it was stated in section 3.1, the problem defined by Markowitz (1959) is a quadratic
programming problem (QP). The general definition of the problem is as follows (G.
Mitra et al. (2007)):

min
𝑥

𝑝𝑇𝑥− 1

2
𝑥𝑇𝑄𝑥 (3.2.1)

subject to:

𝐴𝑥 ≥ 𝑙 (3.2.2)

𝐶𝑥 = 𝑏 (3.2.3)

where 𝑄 is the symmetric matrix of the objective function coefficients, and other
terms are defined as in the LP formulation (3.1).

Quadratic programming has a very nice property (Cottle et al. (2010)):

Theorem 3.2.1. If LP problem:
min
𝑥

𝑝𝑇𝑥

subject to:

𝐶𝑥 = 𝑏,

𝑥 ≥ 0
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has an optimal solution, then for every 𝜆 ≥ 0, so does the QP problem:

min
𝑥

𝜆𝑝𝑇𝑥− 1

2
𝑥𝑇𝑄𝑥

subject to:

𝐶𝑥 = 𝑏,

𝑥 ≥ 0

The possibility to optimize non-linear functions (i.e. uncertainty or risk
measure) and theorem 3.2.1 make quadratic programming a good choice. The
technique has been included in multiple Python and R packages: APMonitor (Heden-
gren et al. (2014)); SciPy (Jones et al. (2001–)); quadprog (Berwin et al. (2019));
Rmosek (Friberg (2019)), etc.

Despite its advantages relative to LP solutions, QP fails to optimize a highly con-
strained problem and fails to find a global maximum/minimum in case of optimization
of non-convex/non-concave functions.

3.3 Evolutionary Algorithms

The genetic algorithm (GA) was inspired by Darwin’s principle of survival of the fittest
and was first discussed by Holland (1975). In GA, a randomly defined initial popula-
tion undergoes the process of selection. Each individual (portfolio) has a chromosome
subdivided into genes, which in the case of portfolio optimization are interpreted as
asset weights. Selection is done with respect to fitness function 𝑓(𝑥):

𝑓(𝑥) = 𝑝𝑇𝑥 (3.3.1)

where:
𝑝: vector of linear coefficients of the objective function;
𝑥: decision variables vector (e.g., portfolio weights);

Individuals that were chosen on the selection stage are called parents. They form
pairs and proceed to the crossover step, where their offsprings inherit genes from par-
ents. On the mutation stage offsprings are randomly altered. Final generation is
composed of parents and offsprings. If the termination condition is reached, the al-
gorithm stops, otherwise, all steps are repeated with the previous generation as the
initial generation for the next step. Figure 3.3.1 illustrates the algorithm.

Selection, crossover and mutation stages filter individuals, thus the initial popula-
tion will converge to the optimal solution. The stages can be adjusted and modified:
one can set the genes ratio of parent 1 to parent 2 inherited by offspring; mutation
can be set to follow random gaussian distribution, random uniform distribution or any
other distribution; the magnitude of the alteration can be defined as a parameter of
the probability density function, etc.
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Figure 3.3.1 : Genetic Algorithm

Another evolutionary optimization method is differential evolution (DE) defined by
Storn et al. (1995). Keller et al. (2017) stated that the differences between DE and
GA are in the methods of crossover and mutation schemes. They also briefly reviewed
the algorithm of differential evolution. While genetic algorithm applies addition or
multiplication by random variable drawn from a distribution, the differential evolution
approach performs mutation by adding the weighted difference of chromosomes of two
randomly selected individuals to the third one. The crossover between mutated indi-
viduals and individuals from the past generation is executed, followed by the selection
step to produce the generation of offsprings. The following parameters can be chosen
to control DE process: population size, perturbation rate to define mutation scheme,
and method to generate individuals for the solution.

A more detailed and comprehensive explanation of the genetic algorithm and dif-
ferential evolution can be found in the books written by Shukla et al. (2010) and Price
et al. (2006).

Successful application of evolutionary algorithms to solve real optimization non-
convex problems, as well as robustness of this approach, made the technique attrac-
tive to researches and the subject to numerous packages in Python and R: distributed
evolutionary algorithms in python DEAP (Rainville et al. (2012)); mystic optimization
algorithm framework (McKerns et al. (2009)); GA package (Scrucca et al. (2013)); RF-
reak (Nunkesser (2008)), etc. However, the main disadvantage of the method is long
execution times compared to QP and LP.
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3.4 Penalty Function

Imposing equality/inequality constraints that are not feasible will lead to failure in find-
ing solutions in LP and QP problems. One possible approach is to adjust constraints,
another is to establish a penalty function that ’penalizes’ the objective functions 3.1.1
or 3.2.1.

In the case of LP in section 3.1 the objective function 3.1.1 is transformed to
(Venkataraman (2002)):

min
𝑥

𝑝𝑇𝑥 + 𝑃 (𝑥) (3.4.1)

where 𝑃 (𝑥) is penalty function and is defined as follows:

𝑃 (𝑥) = 𝑟𝑒 ·
𝐽∑︁

𝑗=1

(ℎ2
𝑒(𝑥))𝑗 + 𝑟𝑖 ·

𝐾∑︁
𝑘=1

𝑚𝑎𝑥(0, (𝑔𝑖(𝑥))𝑘)2 (3.4.2)

where:
𝑗 = 1, 2, ..., 𝐽 : number of equality constraints
𝑘 = 1, 2, ..., 𝐾: number of inequality constraints
ℎ𝑒: function of equality constraint;
𝑟𝑒: penalty multiplier of equality constraint;
𝑔𝑖: function of inequality constraint;
𝑟𝑖: penalty multiplier of inequality constraint.

Function ℎ𝑒 is a reformulated equality constraint (3.1.3). Every time when equality
(3.1.3) will not be satisfied the equality term will be greater than 0 and will contribute
to the penalty function (3.4.2).

ℎ𝑒 = 𝐶𝑥− 𝑏 (3.4.3)

Function 𝑔𝑖 is a representation of inequality constraint (3.1.2). While inequality
constraints are not met, the function takes positive values, so does the inequality term
in penalty function (3.4.2).

𝑔𝑖 = 𝑙−𝐴𝑥 (3.4.4)

Parameters of control in the penalty function are 𝑟𝑒 and 𝑟𝑖. Possible adjustment of
the penalty function by varying the penalty multipliers will be useful in the portfolio
optimization.
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4 Project Model

4.1 Class "Projects"

We developed a probabilistic model for each project where the relevant uncertainties
for portfolio analysis were generated using Monte Carlo simulation with 5000 iterations
(n=5000) over a 100 year time period (period=100).

The model is developed using Python class Projects, where individual projects are
represented as an instance of the class. To create the instance the following arguments
(see table 4.1.1) should be provided to the class (see listing 4.1.1).

Object Orienting Programming (OOP)

In Python, Objects can be thought of as a representation of real-world objects:
houses, cars, laptops, etc. At the same time, say, houses have own parameters:
area, number of floors, number of windows, etc. These parameters are named
Attributes.

Python class provides a framework for the object and its attributes. Different
houses can be set as class House, and the individual house is called Instance.

Finally, we may want to have a function of the class Houses, that calculates the
number of windows per unit of area. This function is called method.

In the example below, class House was defined, it has attributes area,
number_of_floors, number_of_windows, and the method windows_per_area

1 class House(object):
2 def __init__(self , area , number_of_floors , number_of_windows):
3 self.area = area
4 self.number_of_floors = number_of_floors
5 self.number_of_windows = number_of_windows
6

7 def windows_per_area(self):
8 return self.number_of_windows / self.area

The OOP is beyond the scope of this work, a detailed explanation of OOP appli-
cation in Python can be found in the text-book written by Lutz (2009)

The input argument Hydrocarbon Price (hc_price), which is a matrix of size
period × n (number of simulated years × number of realizations), can be generated
by using the function Oil and Gas Price (price()) described in section 4.2.

Listing 4.1.1: Class "Projects" Definition
1 Projects(life_cycle , locat , m_res , poes_expl , poas_appr ,

m_av_max_well_rate , capex_scaler , opex_scaler , well_cap_pot ,
hc_price , y_to_start_project =0, hc=’oil’, period =100, n=5000,
start_of_sim =2009 , pipe =0)
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Table 4.1.1: Input Parameters of Class "Projects"

Parameter Units Python Argument Variable
Type

Current Stage of
Project’s Life Cycle

"expl", "appr",
"dev" life_cycle string

Location of the
Project

"onshore",
"shelf", "deep" locat string

Units of Reserves Mstb; Bscf m_res float

Probability of Success
of Exploration Stage - poes_expl float

Probability of Success
of Appraisal Stage - poas_appr float

Units of Average
Maximum Well Rate Kbpd; Mscfpd m_av_max_well_rate float

CapEx Scaler - capex_scaler float

OpEx Scaler - opex_scaler float

Well Capacity
Potential - well_cap_pot float

Hydrocarbon Price USD/bbl;
USD/Kscf hc_price numpy array

Years to Start Project years y_to_start_project float

Hydrocarbon "oil", "gas" hc string

Simulation Period years period float

Number of
Realisations - n float

Start of Simulation year # start_of_sim float

Pipeline Cost USD (million) pipe float

4.2 Oil and Gas Price

Oil and gas prices were modeled as mean reverting (MR) processes. The MR model is
a stochastic process, where prices in each time period follow a log-normal distribution,
but the logarithmic price changes are related to each other and have constant long
term equilibrium price and mean reversion rate (Begg et al. (2007)):
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𝑑𝑃

𝑃
= 𝜂(𝑃 − 𝑃 *)𝑑𝑡 + 𝜎𝜖

√
𝑑𝑡 (4.2.1)

where:
𝑃 : price
𝑃 *: long term equilibrium price
𝑡: time period
𝜂: mean reversion rate (speed at which the price tends to revert to the mean)
𝜎: price volatility
𝜖: random variable with standard normal distribution

We will not discuss a detailed description of the process, for a comprehensive review
of the MR the reader should consult Begg et al. (2007).

The MR price model was presented in the form of function price with default
arguments period=100, n=5000: simulation periods in years and number of realizations
respectively (see listing 4.2.1). Parameters used for price calculations are derived from
historical prices. These parameters are shown in table 4.2.1, and the values are defined
in the function’s body. Prefix o_ and g_ at the beginning of parameters refers to oil
and gas, respectively.

Listing 4.2.1: Oil and Gas Price Function
1 price(period =100, n=5000)

Table 4.2.1: Parameters for Oil and Gas Price Calculation

Parameter Unit Python Variable Oil Gas

Time Period years period 100 100

Realizations n 5000 5000

Price Floor USD/bbl;
USD/Mscf

o_price_floor;
g_price_floor

8 0.8

Simulation Time Step years o_dt; g_dt 1 1

Standard Deviation of
Annual Increments

USD/bbl;
USD/Mscf o_sd; g_sd 5 0.7

Half Life years o_half_life;
g_half_life

4 8

Initial Price USD/bbl;
USD/Mscf

o_initial;
g_initial

70 5

Long Term Mean
Price

USD/bbl;
USD/Mscf

o_l_term;
g_l_term

48.3333 5.8333
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The function returns two arrays oil_price and gas_price, where each row repre-
sents the time period and each column is individual realization. Figure 4.2.1 shows the
price of oil across the 100-year period, while figure 4.2.2 illustrates oil price distribution
for year 8.

Figure 4.2.1 : Oil Price

Figure 4.2.2 : Oil Price Year 8
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4.3 Project Simulation

Project Simulation is developed as the method proj_sim() of class Projects (see
listing 4.3.1). No arguments are required, as proj_sim() makes use of class attributes
defined in section 4.1.

Calculated variables that are constant along the simulation timeline are summarized
in table 4.3.1.

Listing 4.3.1: Project Simulation Method
1 Projects.proj_sim ()

Table 4.3.1: Parameters Constant Along the Timeline

Parameter Unit Python Variable Distribution

Reserves Mstb; Bscf res PERT

Equivalent Reserves Mboe res_for_case -

Reservoir Case - case -

Average Maximum Well
Rate Kbpd; Mscfpd av_max_well_rate PERT

Average Annual
Maximum Well Rate Mbpa; Bscfpa well_max_prod -

Exploration Indicator 1 or 0 do_expl_i -

Exploration Success 1 or 0 expl_success Bernoulli

Appraisal Indicator 1 or 0 do_appr_i -

Appraisal Success 1 or 0 appr_success Bernoulli

Development Indicator 1 or 0 do_dev_i -

Length of Exploration
Program 1, 2 or 3 p_l_expl Multinomial

Length of Appraisal
Program 1, 2 or 3 p_l_appr Multinomial

Exploration Program
Cost USD (million) expl_cost PERT

Appraisal Program Cost USD (million) appr_cost PERT

Average Development
Well Cost USD (million) av_dev_well_cost PERT
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Parameter Unit Python Variable Distribution

Facility Cost USD (million) facil_cost PERT

Fixed OpEx USD (million) fixed_opex PERT

Variable OpEx USD/bbl;
USD/Kscf var_opex PERT

Abandonment Cost USD (million) aband_cost -

Number of Wells - n_of_wells -

Wells Ready for the 1st
Production Year - wells_ready_1st -

Years to Start
Development years y_to_start_dev -

Years of Development
Phase years y_of_dev -

Number of Wells Drilled
per Year wells/year wells_per_year -

Well Effective
Production Rate Mbblpa; Bscfpa well_eff_prod -

Processing Capacity Mbblpa; Bscfpa proces_cap_year -

Years to First
Production years y_to_firs_prod -

Start of Exploration
Program year # expl_start -

End of Exploration
Program year # expl_end -

Start of Appraisal
Program year # appr_start -

End of Appraisal
Program year # appr_end -

Start of Development
Program year # dev_start -

End of Development
Program year # dev_end -

Eleven parameters (Reserves, Exploration Success, etc.) are simulated as random
variables that follow PERT, Bernoulli and multinomial distributions. Figures 4.3.1 ,
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4.3.2 , 4.3.3 illustrate three parameters that follow each of the distributions.

Figure 4.3.1 : Exploration Success [Bernoulli]

Figure 4.3.2 : Length of Appraisal Program [Multinomial]

27



Figure 4.3.3 : Reserves [PERT]

Seven uncertain parameters (Reserves, Exploration Program Cost, Appraisal Pro-
gram Cost, Average Development Well Cost, Facility Cost, Fixed Operating Expen-
ditures (OpEx) and Variable OpEx) are calculated as functions of the project phase,
project location, and fluid type. Table 4.3.2 and table 4.3.3 provide information needed
for the calculations.

Average Maximum Well Rate and Abandonment Cost are considered as functions
of the project phase and project location, respectively.

Years to Start Development, Wells Ready for the 1st Production Year, Start/End
of Exploration Program, Start/End of Appraisal Program, and CapEx are defined as
functions of gas/oil reserves. The calculations are based on the information from table
4.3.4.
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Table 4.3.2: Uncertainty Factors as Function of Project Phase

Parameter Unit
Exploration Appraisal Development

Min Max Min Max Min Max

Reserves - 0.20 2.00 0.50 1.50 0.75 1.50

Exploration
Program Cost

USD
(million) 5.00 30.00 - - - -

Appraisal
Program Cost

USD
(million) 5.00 20.00 5.00 15.00 - -

Average
Development
Well Cost

USD
(million) 5.00 20.00 5.00 15.00 8.00 15.00

Average
Maximum
Initial Rate

- 0.25 1.75 0.50 1.50 0.75 1.25

Facilities Cost USD
(million) 5.00 20.00 5.00 20.00 8.00 20.00

Variable OpEx USD/bbl;
USD/Kscf 5.00 15.00 7.00 13.00 7.50 12.50

Fixed OpEx USD (mil-
lion)/year 5.00 15.00 7.00 13.00 9.00 11.00
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Table 4.3.3: Most Likely Values as Function of Project Location

Parameter Unit
Oil Gas

Onshore Shelf
Deep
Wa-
ter

Onshore Shelf
Deep
Wa-
ter

Reserves per
Well

Mstb;
Mboe 1 10 20 1 10 20

Exploration
Program Cost

USD
(million) 100 200 500 100 200 500

Appraisal
Program Cost

USD
(million) 200 400 1000 200 400 1000

Average
Development
Well Cost

USD
(million) 10 30 150 10 30 150

Abandonment
as % of CapEx % 5% 15% 20% 5% 15% 20%

Facilities Cost
Multiplier - 1 1.5 2 1.5 2.25 3

Variable OpEx USD/bbl;
USD/Kscf 10 15 20 1.645 2.468 3.290

Fixed OpEx % 0.5% 1.0% 1.5% 0.5% 1.0% 1.5%
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Once values from the table 4.3.1 are known, time-series parameters presented in
table 4.3.5 are calculated. NPV, Development Wells, and Annual Production are shown
on figures 4.3.4 , 4.3.5 , 4.3.6 , 4.3.7 , 4.3.8 as examples of projected parameters across
the selected period of 100 years, and distributions of these parameters for a selected
year.

Table 4.3.5: Time-Series Parameters

Parameter Unit Python Variable

Development Wells # of wells eff_dev_well

Annual Production Mstb; Bscf ann_prod

Cumulative Production Mstb; Bscf cum_prod

CapEx USD (million) capex

NCF USD (million) bt_ncf

NPV USD (million) npv_year

Time-series and distribution of three parameters are displayed on figures 4.3.4 ,
4.3.6 , 4.3.8 . The peaks of distributions concentrated around zero are the results of
project failures, which are driven by Probability of Success of Exploration Stage and
Probability of Success of Appraisal Stage (table 4.1.1).

Figure 4.3.4 : NPV Distribution
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Figure 4.3.5 : Development Well Forecast

Figure 4.3.6 : Development Well Distribution Year 8
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Figure 4.3.7 : Mean Annual Production Forecast

Figure 4.3.8 : Annual Production Distribution Year 8

The data, generated by project simulation is accessed through method get_data().
After calling the method the user will be asked to select the parameter that will be
returned in the form of a dataframe table.
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5 Portfolio Optimization Model
To perform portfolio optimization a pool of projects has to be available. In the model
used here, this is done by establishing a Portfolio_Pool class, where a vector with
the project’s data is supplied as an argument (listing 5.0.1). An optimized portfolio is
constructed by project selection from this portfolio pool.

Listing 5.0.1: Class "Portfolio Pool" Initiation
1 Portfolio_Pool(pool_data)

The portfolio optimization model is defined as the MTPO problem (section 2.4).
Prior to optimization the objective function and constraints have to be specified. It’s
done by calling obj_func() and constraint() methods respectively (listings 5.0.2
and 5.0.3).

Listing 5.0.2: Objective Function Method
1 Portfolio_Pool.obj_func ()

Listing 5.0.3: Constraint Method
1 Portfolio_Pool.constraint ()

First, obj_func() method should be called. Once this is done the user will be
asked to choose a representation of the main objective (NPV):

∙ P90

∙ P50

∙ P10

∙ Expected value

Although these parameter representations are not a consistent implementation of
risk attitude, they help to provide quick information of optimized portfolios with respect
to predefined cases (P90, P50, P10, expected value).

In the next step, the constraints have to be selected. The constraint() method
allows us to choose any combination of the following constraint parameters:

- Oil Production

- Gas Production

- Oil Reserves

- Gas Reserves
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- CapEx

- Net Cash Flow (NCF)

As in the case of obj_func() method, the user will be prompted to select between
the following representations of constraints: P90, P50, P10, expected value.

Two methods of portfolio optimization were developed:

1. Main objective (NPV) optimization with corporate constraints

2. Maximization of the probability of exceeding the corporate goal constrained by
NPV

The first problem is solved by the QP algorithm (section 3.2) and constraints are
defined by the penalty function (section 3.4). To start optimization qp() method
should be called (listing 5.0.4). The outcome of qp() method is a vector of portfolio
weights.

Listing 5.0.4: Portfolio Optimization. QP Method
1 Portfolio_Pool.qp()

The second problem is solved by the differential evolution algorithm (section 3.3)
where NPV constraint is defined by penalty function. To solve this problem de()
method was developed (listing 5.0.5). Following the call of de() method uncertainty
parameter (probability of exceeding a corporate goal) has to be chosen, and NPV
constraint should be defined. The outcome of de() method is a vector of portfolio
weights.

Listing 5.0.5: Portfolio Optimization. DE Method
1 Portfolio_Pool.de()

Optimized portfolio performance can be visualized in the same manner, that was
shown on figures 2.4.1 , 2.4.2 , 2.4.3 .
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6 Case Study
In this chapter, a pool of E&P projects will be studied. The time-series multi-objective
portfolio optimization is used to construct optimized portfolios. Two portfolio opti-
mizations will be performed and compared: optimization with respect to expected
values, optimization with respect to the P90. In the next step, a sensitivity analysis
will be conducted. It will provide information on which corporate constraints have the
largest impact on portfolio selection. Finally, we will illustrate and discuss probability
optimization.

The project pool includes 30 E&P projects. The decision-makers have to choose
projects so that the resulting portfolio meets corporate constraints set by management
(table 6.0.1). NPV is chosen as the main objective, and probabilities of exceeding
corporate constraints are defined as uncertainty measures.

Table 6.0.1: Corporate Constraints Along the Timeline

Parameter Unit Year Corporate
Constraint

Oil Production Mstb

1 15
2 17
3 18
4 20
5 22
6 24
7 27
8 29
9 32
10 35

Gas Production Mscfpd 1. . . 10 420

CapEx
USD (million) 1 -2500

2 -3500
3. . . 10 -1500

NCF USD (million) 1. . . 10 100
Oil Reserves Mstb - 600
Gas Reserves Bscf - 3500

Project simulation data is summarized and presented in terms of expected values
(tables 6.0.2, 6.0.3, 6.0.4). Projects #1 - #6 and #11 - #21 are oil projects, Expected
Gas Reserves and Expected Gas Production values for these projects are replaced with
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dashes (tables 6.0.2, 6.0.3), and vice versa for the gas projects (#7 - #10, #22 - #30).
From table 6.0.3 it’s clearly seen that expected oil production for individual projects
in the first year is 0 except for project #19 that yields 3.4 Mstb. In contrast to the
oil projects, three gas projects deliver approximately 450 Bscf of aggregated expected
production at year 1. However, although projects #9 and #10 have substantial gas
production they have poor expected NPVs of - USD 18,356 million and - USD 10
million, respectively. Additionally, the large exploration, appraisal, and development
costs were the reasons for negative expected NCFs in year 1 and 2 for almost all the
projects.

Table 6.0.2: NPV, Oil and Gas Reserves

Project
Expected

Oil
Reserves

Expected
Gas

Reserves

Expected
NPV Project

Expected
Oil

Reserves

Expected
Gas

Reserves

Expected
NPV

Mstb Bscf USD
(million) Mstb Bscf USD

(million)

1 414 - 239 16 229 - 185

2 104 - -424 17 108 - 277

3 829 - -7141 18 125 - -422

4 156 - -1016 19 96 - 294

5 939 - -2837 20 145 - -432

6 312 - 724 21 268 - 146

7 - 714 -81 22 - 1009 -918

8 - 2062 1032 23 - 2027 -265

9 - 4171 -18356 24 - 554 68

10 - 2082 -10 25 - 630 -772

11 105 - 820 26 - 261 123

12 450 - -273 27 - 709 -1074

13 762 - -314 28 - 3048 -8153

14 649 - -1436 29 - 119 -16

15 996 - -5727 30 - 390 209
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6.1 Mean vs P10

Using the project pool presented in chapter 6, two portfolio are constructed; one with
the main objective being the maximization of expected values and the other with the
main objective being the maximization of the P10 of the NPV. The reason for doing
that is to provide alternatives to the decison-makers with respect to their preferences.

The results of the Mean Optimization and the P10 Optimization are shown on
figures 6.1.1 and 6.1.2 .

Figure 6.1.1 : Mean Optimization
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Figure 6.1.2 : P10 Optimization

P10-optimized portfolio outperforms Mean-optimized portfolio in terms of the prob-
ability of exceeding the corporate constraint. It’s clearly seen that probabilities of ex-
ceeding Oil and Gas Production Constraints are noticeably greater for the period from
year 6 to year 10. The same applies to oil reserves; however, probabilities of exceed-
ing CapEx and NCF showed a slight decline. Expected portfolio NPV is - USD 1214
million and - USD 1581 million for Mean and P10 optimized portfolios, respectively.
The negative outcomes can be explained by highly constrained optimization, especially
considering constraints of Oil and Gas Production as well as CapEx and NCF for the
period from year 1 to year 2, that have low probabilities of exceeding the corporate
constraint. Nevertheless, the difference between mean NPV is substantial and it is the
investor’s task to determine the importance of meeting the corporate constraints with
respect to the main objective (NPV).
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6.2 Sensitivity Analysis

In section 6.1 it was shown that both optimized portfolios have negative mean NPVs.
We also concluded that highly constrained optimization is the main factors that impact
NPV.

In the next step to gain more information and support portfolio decision, a sensitiv-
ity analysis should be conducted. Penalty multipliers (see section 3.4) for all corporate
constraints were set to be equal to 0.3. Then the penalty multiplier for each of the
constraints was changed to 0.1 once at a time, while others were kept constant at 0.3.
The procedure was then repeated with multipliers set to 0.5. The results were plotted
as a tornado diagram (figure 6.2.1 ).

It’s clearly seen from the plot that gas production corporate constraints for year 1
and 2 dominate other constraints. The second group of the most significant constraints
in terms of their impact on expected NPV is the following: Gas Production Year 3,
Gas Production Year 4, CapEx Year 1, NCF Year 1.

In the tables 6.2.1, 6.2.2, 6.2.3, 6.2.4, 6.2.5, 6.2.6 only projects with variations in
portfolio weights with respect to the six constraints identified in the tornado graph
are presented. The portfolio weight for project #9 is rising while constraints of gas
production are improved by the increase of the penalty multiplier. This is happening
because expected annual gas production of project #9 is the highest among all the
projects in the pool. It also has the lowest expected NPV which prevents a 100%
participation in this project.

Particular attention should be paid to the portfolio weight’s difference of project
#9 with respect to variations in penalty multipliers of Gas Production constraints from
Year 1 to Year 4. The optimized portfolio with Gas Production constraint for Year
1 and its penalty multiplier of 0.1 does not include project #9, thus, portfolio weight
is 0%. The optimized portfolio with the same constraint and its penalty multiplier of
0.5 has project #9 with portfolio weight of 28%. Therefore, the difference in portfolio
weights of project #9 for two penalty multipliers of Gas Production constraint for Year
1 is 28%. Similarly, the weight’s differences of project #9 for penalty multiplier varia-
tions of Gas Production constraints for Year 2, 3, 4 are 10%, 4%, and 3%, respectively.
A probable explanation for this is a decreasing impact on the optimized portfolio of the
Gas Production constraints from Year 1 to Year 4. However, the changes of portfolio
weights for other projects (#6, #13, #17, #28) can not be easily explained, due to the
combined effect of multiple constraints. To describe the interaction between the most
impactful corporate constraints, a number of 3D graphs were plotted.

On the figure 6.2.2 a 3D graph of expected NPV with respect to changes in penalty
multipliers of gas production constraints for year 1 and year 2 is presented. From the
tornado chart, it is not clearly seen which corporate constraint has a larger impact on
the main objective (NPV). Projections of the surface (figures 6.2.3 , 6.2.4 ) of figure 6.2.2
help to visualize the significance of one corporate constraint with respect to another.

The isolines (curves with fixed penalty multiplier of the second corporate constraint)
of the function Expected NPV(Penalty Multiplier of Gas Production for Year
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1) are steeper compared to the curves on figure 6.2.3 . Thus, the corporate constraint
for Gas Production for Year 1 has a larger influence on the portfolio selection than
that for Year 2.

The same analysis was done to distinguish the importance of Gas Production for
Year 3 and Year 4. The projections (figures 6.2.6 , 6.2.7 ) showed the result that was
expected after looking up at the tornado diagram (figure 6.2.1 ) - corporate constraint of
Gas Production for Year 3 is indicated to have a larger effect on portfolio optimization.

Comparison of corporate constraints of Gas Production for Year 3 and CapEx for
Year 1 is not that trivial as it is hard to decide solely on the basis of the tornado plot.
However, figures 6.2.9 and 6.2.10 show us that the gas production constraint has a
higher magnitude with respect to expected NPV. We arrived at the same conclusion,
the relative importance of Gas Production constraint for Year 3 to NCF for Year 1, by
inspecting the figures 6.2.12 and 6.2.13 .

Figures 6.2.15 , 6.2.16 and 6.2.18 , 6.2.19 showed the results such that Gas Pro-
duction constraint for Year 4 is dominated by corporate constraints of CapEx Year 1
and NCF Year 1 respectively.

The similarities of the surfaces on the figures 6.2.8 and 6.2.11 as well as on the
figures 6.2.14 and 6.2.17 come from the fact that NCF for Year 1 and CapEx for Year
1 are highly correlated (correlation coefficient = 0.9051). This is also clearly seen from
the figures 6.2.20 , 6.2.21 , and 6.2.22 where NPV performance is the same considering
variations of penalty multipliers of NCF Year 1 and CapEx Year 1.

In summary, the following was revealed in this section:

∙ The two most significant groups of corporate constraints regarding the main
objective (NPV) were explored by plotting the tornado diagram (figure 6.2.1 ).

∙ Five projects that contribute to the changes in portfolio selection were displayed
in tables from 6.2.1 to 6.2.6.

∙ The significance of two groups of corporate constraints has the following order
(from largest to least impact): Gas Production Year 1 > Gas Production Year
2 > Gas Production Year 3 > CapEx Year 1 / NCF Year 1 > Gas Production
Year 4.

∙ The surface graphs showed that most of the optimized portfolios yielded negative
expected NPVs. To achieve positive values it’s necessary to reduce the penalty
multipliers of the most significant corporate constraints.
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Table 6.2.1: Portfolio Weights. Gas Production Year 1

Project #
E[Gas

Prod] Y1 E[NPV] Portfolio Weights (%)

Bscf USD (million) Pen Mult =
0.1

Pen Mult =
0.5

6 - 724 68 68
9 319.7 -18356 0 28
13 - -314 30 28
17 - 277 0 12
28 0 -8153 29 0

Table 6.2.2: Portfolio Weights. Gas Production Year 2

Project #
E[Gas

Prod] Y2 E[NPV] Portfolio Weights (%)

Bscf USD (million) Pen Mult =
0.1

Pen Mult =
0.5

6 - 724 57 69
9 319.7 -18356 12 22
13 - -314 29 28
17 - 277 70 0
28 141.1 -8153 5 14

Table 6.2.3: Portfolio Weights. Gas Production Year 3

Project #
E[Gas

Prod] Y3 E[NPV] Portfolio Weights (%)

Bscf USD (million) Pen Mult =
0.1

Pen Mult =
0.5

6 - 724 61 65
9 319.7 -18356 15 19
13 - -314 29 29
17 - 277 47 26
28 141.6 -8153 7 11

46



Table 6.2.4: Portfolio Weights. Gas Production Year 4

Project #
E[Gas

Prod] Y4 E[NPV] Portfolio Weights (%)

Bscf USD (million) Pen Mult =
0.1

Pen Mult =
0.5

6 - 724 58 60
9 319.7 -18356 16 19
13 - -314 29 29
17 - 277 62 50
28 141.6 -8153 8 10

Table 6.2.5: Portfolio Weights. CapEx Year 1

Project #
E[CapEx]

Y1 E[NPV] Portfolio Weights (%)

Bscf USD (million) Pen Mult =
0.1

Pen Mult =
0.5

6 -1019 724 62 67
9 -7217 -18356 22 13
13 0 -314 28 29
17 -189 277 48 7
28 -1000 -8153 6 13

Table 6.2.6: Portfolio Weights. NCF Year 1

Project #
E[NCF]

Y1 E[NPV] Portfolio Weights (%)

Bscf USD (million) Pen Mult =
0.1

Pen Mult =
0.5

6 -1019 724 60 69
9 -9364 -18356 23 12
13 0 -314 28 29
17 -189 277 61 0
28 -1000 -8153 4 14
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Figure 6.2.2 : Gas Production Year 1 - Gas Production Year 2

Figure 6.2.3 : G Prod Y2 Projection Figure 6.2.4 : G Prod Y1 Projection
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Figure 6.2.5 : Gas Production Year 3 - Gas Production Year 4

Figure 6.2.6 : G Prod Y4 Projection Figure 6.2.7 : G Prod Y3 Projection
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Figure 6.2.8 : Gas Production Year 3 - CapEx Year 1

Figure 6.2.9 : CapEx Y1 Projection Figure 6.2.10 : G Prod Y3 Projection
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Figure 6.2.11 : Gas Production Year 3 - NCF Year 1

Figure 6.2.12 : NCF Y1 Projection Figure 6.2.13 : G Prod Y3 Projection
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Figure 6.2.14 : Gas Production Year 4 - CapEx Year 1

Figure 6.2.15 : CapEx Y1 Projection Figure 6.2.16 : G Prod Y4 Projection
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Figure 6.2.17 : Gas Production Year 4 - NCF Year 1

Figure 6.2.18 : NCF Y1 Projection Figure 6.2.19 : G Prod Y4 Projection
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Figure 6.2.20 : CapEx Year 1 - NCF Year 1

Figure 6.2.21 : NCF Y1 Projection Figure 6.2.22 : CapEx Y1 Projection
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6.3 Probability Maximization

In this section, maximization of probability of exceeding a certain corporate goal sub-
ject to NPV constraint was performed. Three portfolios were constructed with different
NPV constraints: USD 100 million, USD 500 million, and USD 1000 million. The main
objective in these cases was the probability of exceeding the gas production of 420 Bscf
for year 4.

Figure 6.3.1 illustrates the performance of the probability optimized portfolios.
As was stated in the previous sections, natural gas projects with high annual gas
production generally have negative NPVs. Moreover, the two projects that produce
the largest volumes of gas also have the lowest expected NPV among all projects in
the pool (tables 6.0.2, 6.0.3). Thus, in order to facilitate "hard" NPV constraints,
the portfolio selection algorithm has to lower the shares of the most productive gas
project (table 6.3.1, projects #9, #28). This has a negative impact on the probability
of exceeding the gas production target for year 4.

By constructing probability optimized portfolios we concluded that it’s not possible
to maximize the probability of exceeding corporate goal for Gas Production Year 4 and
increase NPV constraints at the same time (see figure 6.3.1 ). This information can be
the basis for reconsideration of the corporate strategy with respect to the company’s
natural gas business or acquiring suitable natural gas projects that can deliver a large
amount of gas in the first years and have positive NPV.

Figure 6.3.1 : Optimized Portfolios with respect to Probability of exceeding Gas
Production Goal for Year 4 and constrained by NPV
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Table 6.3.1: Portfolio Weights of Gas Projects

Project #
Portfolio Weights (%)

E[Gas
Production

Y4]
E[NPV]

NPV
constraint

= 100
USD

(million)

NPV
constraint

= 500
USD

(million)

NPV
constraint
= 1000
USD

(million)

Bscf USD
(million)

7 100 100 100 27.5 -81
8 100 100 100 70.7 1032
9 15 3 1 319.7 -18356
10 100 100 99 107.3 -10
22 1 99 37 13.8 -918
23 1 5 3 0 -265
24 99 100 100 29.3 68
25 34 56 0 7.2 -772
26 100 100 100 24.3 123
27 2 10 5 9.7 -1074
28 10 14 2 141.6 -8153
29 95 100 100 10.5 -16
30 99 100 42 41.2 209

E[Portf NPV],
USD (million) 27 370 958
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7 Python for Portfolio Optimization
Spreadsheet-based software solutions, such as Microsoft Excel, remain popular among
business analysts. A survey conducted annually by KDnuggets online platform for data
science and business analytics showed that more than a third of respondents used Excel
as their major analytics/data science tool (Piatetsky (2018)). The strengths of the Mi-
crosoft Office program is that a relatively small amount of time needed to learn how to
perform analyses, the existence of add-on modules available to undertake various sta-
tistical tasks, formal user support, and integrations with other Microsoft products. The
software was used to construct portfolios in multiple papers (Wood (2016), Willigers
et al. (2010), Allan (2007), etc.). However, the use of Excel is impractical in case
of large scale problems, as the process becomes time-consuming while the number of
assets is increasing.

Contrary to Excel, Python and R are more efficient in the execution of large scale
problems, especially considering the use of list comprehension and lapply package,
respectively, that handle loops. Moreover, the capability of these programming lan-
guages has grown significantly as the number of packages increases over the years. To
illustrate, Muenchen (2019) showed the number of add-ons available for R on CRAN
package archive network (figure 7.0.1 ), while Becker (2019) presented active Python
packages from the year 2005 to 2018.

Figure 7.0.1 : Number of Ac-
tive R Packages available on CRAN
(Muenchen (2019))

Figure 7.0.2 : Number of Active Python
Packages available on PyPi (adapted
from Becker (2019))

Nevertheless, the quality of these packages varies greatly. Some of the add-ons are
not efficient, while others are limited to solving very specific problems. Furthermore,
both programming languages require solid programming skills to build the required
portfolio models. Another advantage of Python and R is community forums that
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provide solutions to a wide variety of problems, including those related to portfolio
optimization. The developer-focused industry analyst firm RedMonk analyzed the
popularity of programming languages by plotting the number of lines of code written
using each language on the GitHub repository against the number of tagged comments
on the discussion forum StackOverflow (Muenchen (2019)). According to the RedMonk
Programming Language Rankings, Python took the third place, while R was in the top
20 (figure 7.0.3 ) not very far away from the leaders in terms of Stack Overflow requests.
Visual Basic, a programming language used to automate tasks in Excel, is behind the
two in terms of popularity on Stack Overflow and GitHub.

Figure 7.0.3 : Programming Language Rankings 2019 (adapted from O’Grady (2019))

The project model described in chapter 4.3 was built in R and then compared to the
model constructed in Python. Despite the fact that the number of Python packages is
significantly greater than the number of packages in R, a Python function to sample
the values from PERT distributions had to be written from scratch. This is due to
the fact that R was primarily designed for statistical computing, while Python is a
general-purpose language. Another difference between the languages is relative ease of
learning Python that is the main reason of its popularity. In a survey conducted by
WP Engine Python was indicated by 9.0% of respondents as the easiest language to
learn and took second place in the rating (How do developers feel about programming
languages? (2017)). R was picked by only 4.4% of respondents and was even included
in the list of most complicated languages with 3.6%.
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However, the determining factor for the final choice was performance characteristics.
Python based models required less than half the run time compared to R-based models.
The main reason for this is slow execution of the for-loop in R. Optimized for-loops
written in Python and R by using list comprehension and lapply-package respectively,
did not improve the relative performance of the model built in R. Considering the
number of Monte Carlo realizations and number of projects in the pool, it was decided
to use the Python programming language.
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Conclusion
The uncertain nature of assets’ outcomes and a desire to mitigate these uncertainties
were the main reasons why people throughout history have seen the benefits of diver-
sifying their investments. Markowitz (1952) was the first to propose a mathematically
sound framework to reduce uncertainties through diversification of financial market
investments.

Petroleum companies face a very similar problem as upstream petroleum projects
include a large number of uncertain parameters and events including oil and gas prices,
exploration success, reserves, production, etc. New portfolio optimization techniques
that are more suitable given the multi-objective nature of petroleum portfolio deci-
sion were developed. In this work, we have focused on multi-objective time series
portfolio optimization, where the objective is NPV maximization subject to corporate
constraints through a consistent and comprehensive portfolio selection process.

This method was applied to a set of petroleum projects with uncertain outcomes.
We have argued and demonstrated that it is not only the specific investment suggestions
of the mathematical optimization that are important but, maybe even more so, also
the facilitation of crucial conversations in support of difficult investment decisions. The
latter was the motivation for the sensitivity analysis that showed the most significant
corporate constraints in terms of their impact on the main objective of the optimized
portfolio. Additionally, the analysis helped to identify the projects that provide the
largest contribution to the portfolio objective. Given this information, the management
team can make the necessary changes in order to improve the portfolio performance,
e.g. to adjust the corporate strategy or to acquire projects that will improve corporate
performance or farm out a project that does not.

Using poor optimization algorithms may mislead the decision makers by providing
results that are not global optima. To address this issue, an overview of optimization
algorithms was provided. Applications of the algorithms were discussed, including their
advantages and disadvantages.

The project model was built in R and Python. In terms of computational perfor-
mance Python significantly surpassed R, which was the main reason for using Python
for the continued work. A brief comparison of the two languages and Microsoft Excel
was provided in the last chapter. We concluded that Excel is a suboptimal choice
as the execution time of the portfolio problem increases in case of a realistic number
of projects. Programming languages such as R and Python are more efficient, how-
ever, they may require time to gain the required programming knowledge and skills to
implement and use the model.
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