

2

Abstract

The importance of data sharing cannot be overexaggerated today, when the recent trend

toward automation fundamentally reshapes the way of how operations are done in the oil

industry. The emergence of real-time trend analysis softwares and digital twins led to the

increase need of reliable data sources to build, test and verify the physical and data-driven

models, which represent the core of these softwares. The OpenLab project at NORCE – by

integrating physical and virtual drilling and well operations – is a prime example of these novel

solutions. The purpose of this thesis is to provide actual field data for the OpenLab drilling

simulator, so that students, researchers and industry experts can train and run simulations on

virtual wellbores which are based on real well configurations.

The Volve dataset – disclosed by Equinor – provided the database for this work. Various data

sources have been investigated in the drilling-related features, and both manual and

automated data mining methods were developed in order to extract the required data. When

the processed data were available, a web application has been developed and integrated into

OpenLab. The end result enables the user to get an overview of the Volve wells with interactive

visualization, and create configurations in the OpenLab drilling simulator based on actual well

data. As a side-project, a browser-based application for well data management and

visualization has also been created.

This thesis serves as an example of how publicly available field data combined with free

educational softwares help new ideas to emerge. Hopefully the future holds similar initiatives

both by the industry and by the research community. This way innovators from the academia

could easily contribute to improved operational efficiency with creative and fresh ideas.

3

Table of Contents

Abstract ..2

Table of Contents ...3

List of Figures ...5

List of Abbreviations ...6

Acknowledgements ..8

1 Introduction ...9

1.1 Toward Drilling Automation ..9

1.2 Neccessity of Access to Field Data...9

1.3 Introduction to OpenLab Drilling ...10

1.4 Motivation ...10

2 Openlab Drilling Simulator ...12

2.1 Configurations ..12

2.2 Simulations...13

3 Volve Dataset ..14

3.1 Volve Field ...14

3.2 Landmark EDM Database ..15

3.2.1 Database Structure ...15

3.2.2 Data Mining Challenges ..17

3.3 Daily Drilling Reports ..17

3.3.1 DDR Generation and WITSML Standards ...18

3.3.2 DDR Structure ...19

3.3.3 DDR Content ...21

3.3.4 Data Extraction and Missing Data ...23

3.4 Final Well Reports ..23

3.4.1 Data Collection ..24

4 Volve-OpenLab App ..30

5 DDR Data Management and Visualization App ...36

4

5.1 Introduction ..36

5.2 Circulation Loss Use Case ...39

6 Conclusions and Future Work ...43

6.1 Conclusions..43

6.2 Future Work ...44

References ...45

Appendices ..47

Appendix A ...47

Appendix B ...47

Appendix C ...51

Appendix D ...54

Appendix E ...79

5

List of Figures

Figure 1: Location of the Volve field on the NCS (NPD, 2019) ..14

Figure 2: The process of DDR generation (Giese, Ornas, Overå, Svensson, & Waaler, 2012)

 ...18

Figure 3: 15/9-F1 C well schematic (Volve Data Village, 2019) ..24

Figure 4: Part of a directional survey showing casing points (Volve Data Village, 2019)25

Figure 5: Part of a directional survey with columns such as MD, inclination and azimuth (Volve

Data Village, 2019) ...25

Figure 6: Part of the BHA Performance Report as extracted from the 15/9-F1 C well’s

directional survey report (Volve Data Village, 2019) ...26

Figure 7: Pore pressure and wellbore stability prognosis for the 15/9-F1 C wellbore (Volve Data

Village, 2019) ...28

Figure 8: Geothermal gradient vs depth curve for the 15/9-F1 C wellbore (Volve Data Village,

2019) ..29

Figure 9: Wells page shows general well data and enables the selection of wellbores31

Figure 10: Hole section page with 3D representation of the wellbore structure31

Figure 11: Wellpath page, the survey points are colored according to dogleg severity32

Figure 12: Fluid page displaying density and rheological properties32

Figure 13: Drillstring page, drillstring assembly is shown after selection from the dropdown .33

Figure 14: Geopressures page with the drilling window shown on the left34

Figure 15: Temperature profile and geothermal gradients on the Geothermal page34

Figure 16: OpenLab page integrates the app into the OpenLab drilling simulator35

Figure 17: Time/depth curve module in the Volve-DDR app ...36

Figure 18: Time/depth curve displays information on hover separately for each day37

Figure 19: Operation timeline displays the breakdown of the operational activities38

Figure 20: Range selector is set to one week, hover info shows information on a stuck pipe

incident ...38

Figure 21: Fluid loss incident marked with purple on the timeline. The drilling of this well was

suspended several times, and the days axis shows the total number of days that passed since

spudding the well ..39

6

List of Abbreviations

BHA – Bottom Hole Assembly

BLOB – Binary Large Object

BHP – Bottomhole Pressure

BPD – Barrels per Day

COO – Chief Operating Officer

CSS – Cascading Style Sheets

CSV – Comma-separated Values

CTO – Chief Technical Officer

DDR – Daily Drilling Reports

DLS – Dogleg Severity

EDM – Engineer’s Data Model

E&P – Exploration and Production

FIT – Formation Integrity Test

GUI – Graphical User Interface

HPHT – High Pressure High Temperature

HSE&Q – Health, Safety, Environment and Quality

HTML – Hypertext Markup Language

IADC – International Association of Drilling Contractors

ID – Inner Diameter

IOR – Improved Oil Recovery

IRIS – International Research Institute of Stavanger

JPT – Journal of Petroleum Technology

JSON – JavaScript Object Notation

LCM – Loss Control Material

LOT – Leak-off Test

MATLAB – Matrix Laboratory

MD – Measured Depth

MPD – Managed Pressure Drilling

NCS – Norwegian Continental Shelf

NORCE – Norwegian Research Centre

NPD – Norwegian Petroleum Directorate

NPT – Non-productive Time

OD – Outer Diameter

PCA – POSC Caesar Association

PDF – Portable Document Format

7

PSA – Petroleum Safety Authority

PVT – Pressure, Volume, Temperature

PV – Plastic Viscosity

RDL – Reference Data Library

ROP – Rate of Penetration

RPM – Revolutions per Minute

TFA – Total Flow Area

UCS – Unconfined Compressive Strength

UK – United Kingdom

WITSML - Wellsite Information Transfer Standard Markup Language

XML – Extensible Markup Language

XSD – XML Schema Definition

YP – Yield Point

8

Acknowledgements

First and foremost, I give thanks to my supervisor, Jan Einar Gravdal for his guidence and the

original idea to set off for this journey. To the whole OpenLab team at NORCE, especially to

Robert Ewald and Andrew Holsaeter for helping me integrating the web application into

OpenLab. To Dan Sui for the weekly meetings, which proved to be a perfect platform for new

ideas to emerge. To Ankit Rohatgi, developer of WebPlotDigitizer. To all my professors, fellow

students and industry experts who made me realize the importance of the digital transformation

in our industry.

I need to thank the Norwegian state and society for providing me with free education, I am

most appreciative.

The biggest thanks of all goes to my family, especially to my Mom. Without them I would have

never been able to achieve this goal.

9

1 Introduction

1.1 Toward Drilling Automation

The recent trend toward automation is a key driver in the drilling industry. Semi- or fully

autonomous drilling rigs can mitigate the risk when drilling in challenging conditions, such as

narrow geopressure windows, deepwater or HPHT conditions. Physical models of the drilling

process are an essential part of most automated drilling solutions. The use of thermodynamic,

mechanical and hydraulic models allow these systems to estimate the current state of the

entire wellbore, perform forward simulations and detect drilling incidences. (Cayeux, Daireaux,

Dvergsnes, & Florence, 2014) Continuous modeling requires rig specifications, properties of

the wellbore configuration and most importantly real-time operational parameters as input.

Softwares based on physical models can also be used as drilling simulators for technology

development in digital drilling of oil and gas wells, enabling industry experts and researchers

to test new methods, techniques and equipment (Exebenus, 2019). Moreover, this approach

is extremely well suited for educational purposes to demonstrate drilling technology for

students. Simulators also allow to compare historical and simulator-generated real-time

datasets.

1.2 Neccessity of Access to Field Data

As digitalization gains momentum in the oil industry, the sharing of field data becomes of the

utmost importance. It means experience transfer between companies, new source of input for

research institutes and academia, as well as a positive change in the public perception of the

industry, demonstrating transparency and willingness of cooperation.

Though in Norway a vast amount of petroleum related information has been publlicly available

thanks to the Norwegian Petroleum Directorate, the sharing of the subsurface dataset of the

Volve field by Equinor in June 2018 (Equinor, 2018) marked the beginning of a new era. Since

then Lundin announced the collaboration with Aker BP regarding real-time production data

sharing between the Edvard Grieg and Ivar Aasen platforms (Lundin, 2018), also providing all

data from the Edvard Grieg field to the National IOR Centre of Norway for generating new

research projects (UiS, 2019). It seems like this trend will not stop at the borders of Norway.

The UK Oil and Gas Authority made available to the public some 130 terabytes of well,

geophysical, field, and infrastructure data earlier this year (JPT, 2019). These events

demonstrate how players from all levels realize the need of seeking new ways of cooperation

in order to improve operating efficiency.

Data sharing is especially important for educational and research purposes. Generating new

ideas would not be possible without close contact between the industry and academia. Often

10

the very existence of research projects relies on the availability of actual field data, which is

essential to verify physical models and run simulations. Moreover, the emergence of data-

driven models leads to the increased need of consistent and reliable datasets to train these

models with machine learning methods. As data-driven models also have their limitations, the

future lies in combining physics- and data-based approaches (Noshi & Schubert, 2018).

Jannicke Nilsson, Equinor’s COO summarized their intention with the Volve disclosure as

follows: „We believe that the learning potential for students is huge when they can train on real

data, and it will prepare them further for working on real cases in the future. ... We also share

this data set to encourage higher productivity and innovation in the industry. We hope that it

will not only help future energy innovators in their work, but also contribute to more efficient

operation and possibly better interaction between players in our industry.” (Equinor, 2018)

1.3 Introduction to OpenLab Drilling

A prime example of all the above is the OpenLab Drilling project at NORCE (formerly IRIS).

The project has been developed in close collaboration with universities and the oil industry to

provide a unique integration of physical and virtual well operations. OpenLab comprises three

systems, of which the last two is under development:

• Web-based drilling simulator

• Drilling control room

• Full-scale on-site operational drilling rig

The core module of OpenLab is the web enabled drilling simulator, which is based on highly

advanced well flow and drillstring mechanics models. The user interface offers a simple

environment, where the user can create new well configurations or use existing templates,

then run simulations either in the web browser or through MATLAB and Python clients.

The drilling control room provides control systems and 3D visualization of the drill floor to run

downhole simulations. Last but not least, OpenLab will be connected to the physical rig Ullrigg,

which is a full-scale drilling test site with access to seven wells. In this stage, surface and

downhole measurements will be partially replaced by input from virtual wells using the

OpenLab simulator (OpenLab Drilling, 2019).

1.4 Motivation

The purpose of this thesis has been to provide field data for running simulations in the OpenLab

drilling simulator. To achive this goal, first the Volve dataset’s drilling related features have

been explored by analyzing data quality and availability The next step has been to extract well

data and develop an integrated web application to display well configurations and export them

11

to OpenLab. Therefore simulations on virtual wellbores resembling the ones drilled on the

Volve field would be possible to conduct in OpenLab.

Well configuration in OpenLab refers to the elements and properties of the wellbore, rig, drilling

equipment, drilling fluids and formation, all of which directly or indirectly influence the

circulation system and drillstring mechanics. Therefore the scope of the thesis has been to

collect these data and organize them in a suitable way, which makes the export to OpenLab

possible.

While analyzing various data sources, the idea of another use case has emerged. It lead to

the development of a browser-based application for daily drilling report data management and

visualization, which provides a simple, interactive interface to scroll through the timeline of well

operations and identify drilling problems.

12

2 Openlab Drilling Simulator

2.1 Configurations

The simulator can be accessed from the homepage of OpenLab (OpenLab Drilling, 2019). The

web client has a user-friendly interface, but OpenLab also provides tutorials and manuals to

begin with. The opening page offers the option of creating a new configuration when signing

in for the first time. Several templates are available, and these can be modified later according

to the purpose of the simulation. The well configuration page consists of six tabs:

• Hole section

• Wellpath

• Fluid

• Drillstring

• Geology

• Rig

Each tab consists of tables that take input and an interactive visualization which displays the

input data and shows information on hover. Input is either manually typed or imported from

CSV files. In the following the detailed content of each tab will be described.

The Hole Section tab takes input to create the wellbore structure, such as ID and OD of the

riser, casings and liners, open hole interval and diameter together with wellhead elevation,

casing setting depths and liner hanger depths. All depths are measured depth in this section.

The visualization shows the wellbore structure in 2D.

The Wellpath tab requires trajectory data including MD, inclination and azimuth, while TVD and

DLS are calculated based on these values. A 3D wellbore trajectory is displayed to give an

interactive overview of the wellpath.

In the Fluid tab the user can select from predefined drilling fluids and modify parameters as

needed. Fluid properties include fluid type, density, oil-water ratio, gel strength, Fann dial

readings and base-oil PVT values. Pie charts show the mass fraction and volume fraction

distribution, while a rheogram displays the flow behaviour of the fluid. Fluid characteristics can

be specified for the main and the reserve fluid separately.

The Drillstring tab needs input to specify the tools that comprise the BHA, such as tool ID, OD,

length and linear weight, additionaly TFA for bits. Moreover, drillpipe specifications such as

body ID and OD, tool joint ID and OD, average joint length, tool joint length and total length

are taken to define the total length of the drillstring. The visualization shows a representaion

of the drillstring, displaying the details of each element by hover.

13

In the Geology tab there are three subsections, these are: Geopressures, Geothermal and

Formation. They take input to create the pressure, temperature and formation strength profile

of the wellbore. Input data are TVD, formation pressure, fracture pressure, air temperature,

water depth, temperature gradient and UCS. Each well profile is displayed on a separate

graph.

Lastly, the Rig tab’s visualization displays the a schematic of the rig layout. Input data in this

section includes specifications of mud pump and MPD pump (maximum flow rate acceleration),

BOP and MPD choke (maximum change rate), top drive (maximum rotation acceleration) and

drawwork (maximum top of string acceleration), as well as traveling block weight, mud loss

proportion at the shakers and volume of the mud tanks.

2.2 Simulations

All inputs described above are essential to build the physical models which are the heart of the

simulator. These include flow (Lorentzen & Fjelde, 2005) (Lorentzen, Nævdal, Karlsen, &

Skaug, 2014), temperature (Corre, Eymard, & Gounet, 1984), cuttings transport (Cayeux,

Mesagan, Tanripada, Zidan, & Fjelde, 2014) and torque & drag models (Yunfeng & al., 2004)

(Kyllingstad, 1995). Simulations can be run using either predefined templates or configurations

constructed by the user. After setting some parameters (initial bit depth and top of string

position, mud volume and temperature, influx and loss options) a new simulation is created.

Simulations can be run in real-time, fast-forward or sequence mode. Parameters that can be

adjusted during a simulation are:

• Main pump and MPD pump flow rate

• MPD choke opening

• Top of string speed

• ROP

• Surface RPM

• BOP open/closed

• Mud density

When a simulation is running, the state of the drilling operation is displayed in various time-

and depth-based graphs. The complete list of these plots is found in Appendix A. It is out of

the scope of this thesis to introduce the simulator in detail, but to get a grasp of the

opportunities provided by OpenLab, some use cases are listed here:

• Keeping constant BHP with back pressure MPD.

• Initiating a well control incident, circulating a kick.

• Simulating cuttings bed accumulation and erosion.

14

3 Volve Dataset

The Volve dataset can be accessed at Equinor’s Data Portal (Volve Data Village, 2019) after

a free registration. The data village consists of more then 40000 files, including geological and

geophysical interpretations, static and dynamic reservoir models, production data, well logs,

well technical data and real-time drilling data. This thesis is focusing on drilling data that is

needed to create well configurations in OpenLab. Due to the enormous size of the dataset, the

scope was narrowed to well technical data and well logs. The analysis of real-time drilling data

should be part of a future research.

3.1 Volve Field

The field is located in the Norwegian sector of the North Sea in block 15/9, approximately 200

km west of Stavanger (Figure 1).

Figure 1: Location of the Volve field on the NCS (NPD, 2019)

The licensees were Equinor as operator, and ExxonMobil and Bayerngas as partners. The

field was discovered in 1993, production started in 2008. Average water depth in the area is

80 meters, the Middle Jurassic sandstone reservoir rocks lie in a depth of 2700-3100 meters.

Field development was based on production from the Mærsk Inspirer jack-up rig, pressure

support was provided with water injection. A total of 25 wellbores were drilled: 5 exploration, 9

production, 8 observation and 3 injection wells. Oil was shipped with tankers, while gas was

piped to the Sleipner A platform for final processing and export. At peak, Volve produced some

15

56000 BPD, delivering a total of 63 million barrels of oil until being shut down in 2016, resulting

in a lifetime twice as long as initially planned. Recovery rate reached 54% (NPD, 2019).

3.2 Landmark EDM Database

Parts of this chapter are based on blog posts by Oliasoft CTO Marius Kjeldahl (Kjeldahl, 2019).

The dataset named Well Technical Data has the following directory structure:

Well_technical_data

├── CasingSeat

├── CasingWear

├── Compass

├── Daily Drilling Report - HTML Version

├── Daily Drilling Report - XML Version

├── Daily Drilling report - PDF Version

├── EDM.XML

├── Site

├── Site_TemplateSlot

├── StressCheck

├── WellPlan

├── WellWellbore

├── Wellcat

├── EDT_EDM_read_me.txt

└── license.txt

The directories CasingSeat, CasingWear, Compass, StressCheck, WellPlan and

Wellcat refer to Landmark products (Landmark is the name of software solutions for the E&P

industry by Halliburton). Oddly enough these folders are either empty or contain files only for

a fraction of the Volve wellbores. The EDT_EDM_read_me.txt file informs the user that the

Volve F.edm.xml file in the EDM.XML folder holds all exported Landmark data. EDM

database is an architecture that Landmark products can read and write to. XML is a popular

language that encodes documents in a format that is both human- and machine-readable.

3.2.1 Database Structure

The Volve F.edm.xml file is a relational database, consisting of 318000 lines. Unfortunately

half of the file is made up of BLOBs, these objects are useless unless they can be reverse

engineered to their original format. Of course this was out of the scope of this thesis. The basic

structure of the database is the following. Each line starts with a tag (blue), which has several

attributes (red), which in turn have values (purple). The example below shows a line with the

tag CD_WELLBORE.

<CD_WELLBORE

 well_id="6ekXXuRhFd"

 wellbore_id="FHcPbdxSIP"

 wellbore_type_id="Yerjn"

 bh_md="11368.4383201645"

 bh_tvd="10017.908058355397"

16

 is_deviated="Y"

 geo_offset_east_bh="1428265.842391806"

 geo_offset_north_bh="2.125394252713205E7"

 geo_latitude_bh="58.43840621636125"

 geo_longitude_bh="1.892469878637818"

 geo_offset_east_ko="1427330.08660846"

 geo_offset_north_ko="2.12551385169754E7"

 geo_latitude_ko="58.44163725137954"

 ko_md="298.556430445"

 ko_tvd="298.556430445"

 geo_longitude_ko="1.8874826218670009"

 well_legal_name="NO 15/9-F-12"

 wellbore_name="F-12"

 is_readonly="N"

 create_date="{ts '2005-11-02 13:22:53'}"

 create_user_id="pio"

 create_app_id="COMPASS"

 update_date="{ts '2017-09-30 12:49:27'}"

 update_user_id="frro(FRRO@STATOIL.NET)"

 update_app_id="COMPASS"

 default_fluid_id="E6O19" />

It is clear that this wellbore entry is connected to other entries through the wellbore_id,

wellbore_type_id and default_fluid_id attributes. Attribute values contain

information on depth, kick-off point and geographic location. This entry was created with

Compass, which is the directional wellpath planning product of Landmark. Another example

represents trajectory data. The CD_DEFINITIVE_SURVEY_STATION tag attributes contain

values necessary for wellpath planning and anti-collision analysis.

<CD_DEFINITIVE_SURVEY_STATION

 well_id="2DfUHhBj3x"

 wellbore_id="3W9ZjV2yj0"

 def_survey_header_id="iM93r"

 definitive_survey_id="y5K7P"

 azimuth="44.712372334329274"

 offset_east="-525.0256422747742"

 offset_north="566.3351553136704"

 covariance_yy="1.0E-8"

 sequence_no="13"

 ellipse_vertical="0.0"

 covariance_yz="0.0"

 covariance_zz="0.0"

 covariance_xx="1.0E-8"

 data_entry_mode="0"

 covariance_xy="0.0"

 dogleg_severity="3.2004"

 inclination="60.79827671850135"

 covariance_xz="0.0"

 ellipse_east="0.0"

 ellipse_north="0.0"

 md="9367.125984214495"

 casing_radius="7.0"

 tvd="8606.708750482321"

 global_lateral_error="0.0" />

17

The above snippets serve to showcase the logic behind the architecture of this database.

There are more than 140 different tags in the database. In addition to the above, information

on drillstring, casing strings, fluids, temperature gradient and geopressure are available among

others. Often several hundreds or thousands of lines with the same tags are present,

containing information on the different wellbores. It is out of the scope of this thesis to present

the whole database, but the interested reader can find the detailed list of tags together with

their corresponding location in Appendix B.

3.2.2 Data Mining Challenges

An effort was made to write scripts in Python to automate data extraction from the Landmark

data dump. A sample code snippet of these scripts is included in Appendix B. Several

challenges arose during this process, the main ones were as follows:

• Missing wellbores: when collecting BHA, drilling fluid, formation pressure and fracture

pressure related data, it became obvious that complete wellbore datasets were missing,

that happened most often with the exploration and appraisal wellbores. One of the possible

explanations for this is the presence of binary data in the database. Most likely these

unreadable BLOBs have some valuable information, which cannot be accessed.

• Missing values: these were most pronounced in fluid entries, where the lack of important

rheological properties made it impossible to collect all necessary information. Other

common missing values were tubular IDs and ODs. Moreover, the temperature profiles of

the wells were overly simplified, only one temperature gradient applied along the whole

wellpath.

• Ambiguous data: prototype, planned and actual well data exist together in the database,

and it often led to confusion whether an entry represents actual data, or it is just an

experimental value used when the well planner was trying different prototypes for a specific

scenario.

As the goal of this thesis was to construct well configurations, preferably using one consistent

data source, the difficulties encountered during data extraction resulted in terminating further

work with this database and continuing with other data sources.

3.3 Daily Drilling Reports

In the next stage the analysis of the Volve dataset focused on the daily drilling reports. These

documents are also located in the dataset named Well Technical Data, and available in three

different file formats, namely HTML, PDF and XML. As the content of these files are identical,

further work was done on the DDRs in XML, as this format is the most suitable to parse files

programmatically.

18

3.3.1 DDR Generation and WITSML Standards

DDRs are among the most important documents generated during drilling, completion,

workover and intervention operations. They compile information from various independent data

sources to give a comprehensive overview of well operations. The report content may vary

from country to country, also depending on operators. In Norway the report structure and

content are regulated by the Petroleum Safety Authority, operators are obliged to submit daily

reports to both NPD and PSA. In 2008 the Norwegian industry adopted the so-called WITSML

standards, an industry initiative to provide reference for data transmission from rig-site to

offices onshore. It is also used to share information with partners and governmental agencies.

WITSML is web-based and built on XML technology. By using these standards, all

instrumentation and software can work together, and incompatible data structures are no

longer a problem (Energistics, 2019).

Figure 2: The process of DDR generation (Giese, Ornas, Overå, Svensson, & Waaler, 2012)

To better understand data quality and data availability issues when extracting data from DDRs,

the process of DDR generation using WITSML standards shall be introduced (Figure 2). XML

serves not only as a transmission format, but also as a documentation format through the

associated XML Schema Definition (XSD) along with textual definitions from a Reference Data

Library (RDL). The RDL contains definitions in natural language, moreover it defines the

19

relationship between definitions in the form of superclasses, classes and subclasses (Giese,

Ornas, Overå, Svensson, & Waaler, 2012). Basically, XSD defines the structure and form of

the report, while RDL guides the user to select proper terms and definitions when reporting.

More information about XSD is provided by PSA (PSA, 2019), while RDL can be accessed at

the website of POSC Caesar Association (PCA, 2019).

3.3.2 DDR Structure

The document below shows a daily drilling report of the 15/9-19-A well from the Volve field. At

the time of the drilling of this well the WITSML format had not been in use, the original report

must have been converted according to the new standards. It serves a good example to

examine the structure of the report. Of course the information recorded in this file is only a

fraction of the available options that is usually part of a report. Let us first examine the

architecture. The main constituents are the elements, which consist of tags (blue), attributes

(red) and values (black). Elements have different names depending on their status in the

hierarchy, such as root (here drillReports), child (drillReport), subchild

(statusInfo) and so on. This tree-like structure makes it easy for humans to read, without

sacrificing machine-readability. The report starts with a declaration, then comes the root

drillReports. The root attributes refer to the reporting schema, XSD has been discussed

in Chapter 3.3.1. Information that can be of interest to this thesis is located within the child

drillReport. After some general well data, the element statusInfo holds details about

the recent status of the wellbore, together with a summary of past and forecasted activities.

<xml version="1.0" encoding="ISO-8859-1">

<witsml:drillReports

xsi:schemaLocation="http://www.witsml.org/schemas/1series

http://www.npd.no/schema//DDRS/1series/WITSML_drillReport_profiled_schema_p

hase2.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:witsml="http://www.witsml.org/schemas/1series"

version="1.4.0.0">

 <witsml:documentInfo>

 <witsml:documentName>Drill Report 1.2.2</witsml:documentName>

 <witsml:owner>IIP</witsml:owner>

 </witsml:documentInfo>

 <witsml:drillReport>

 <witsml:nameWell>NO 15/9-19 A</witsml:nameWell>

 <witsml:nameWellbore>NO 15/9-19 A</witsml:nameWellbore>

 <witsml:name>name</witsml:name>

 <witsml:dTimStart>1997-07-24T00:00:00+02:00</witsml:dTimStart>

 <witsml:dTimEnd>1997-07-25T00:00:00+02:00</witsml:dTimEnd>

 <witsml:versionKind>normal</witsml:versionKind>

 <witsml:createDate>2018-05-03T13:53:19+02:00</witsml:createDate>

 <witsml:wellAlias>

 <witsml:name>15/9-19 A</witsml:name>

 <witsml:namingSystem>NPD code</witsml:namingSystem>

 </witsml:wellAlias>

 <witsml:wellboreAlias>

20

 <witsml:name>15/9-19 A</witsml:name>

 <witsml:namingSystem>NPD code</witsml:namingSystem>

 </witsml:wellboreAlias>

 <witsml:wellboreAlias>

 <witsml:name>3145</witsml:name>

 <witsml:namingSystem>NPD number</witsml:namingSystem>

 </witsml:wellboreAlias>

 <witsml:wellboreInfo>

 <witsml:dTimSpud>1997-07-25T00:00:00+02:00</witsml:dTimSpud>

 <witsml:dateDrillComplete>1997-08-30</witsml:dateDrillComplete>

 <witsml:operator>Statoil</witsml:operator>

 <witsml:rigAlias>

 <witsml:name>BYFORD DOLPHIN</witsml:name>

 <witsml:namingSystem>NPD Name</witsml:namingSystem>

 </witsml:rigAlias>

 <witsml:rigAlias>

 <witsml:name>341331</witsml:name>

 <witsml:namingSystem>NPD code</witsml:namingSystem>

 </witsml:rigAlias>

 </witsml:wellboreInfo>

 <witsml:statusInfo>

 <witsml:reportNo>1</witsml:reportNo>

 <witsml:dTim>1997-07-25T00:00:00+02:00</witsml:dTim>

 <witsml:md uom="m">2213</witsml:md>

 <witsml:mdPlugTop uom="m">2203</witsml:mdPlugTop>

 <witsml:mdKickoff uom="m">2178</witsml:mdKickoff>

 <witsml:mdCsgLast uom="m">4643</witsml:mdCsgLast>

 <witsml:mdPlanned uom="m">-999.99</witsml:mdPlanned>

 <witsml:distDrill uom="m">-999.99</witsml:distDrill>

 <witsml:elevKelly uom="m">25</witsml:elevKelly>

<witsml:wellheadElevation

uom="m">106.5</witsml:wellheadElevation>

 <witsml:waterDepth uom="m">84</witsml:waterDepth>

<witsml:sum24Hr>MU BAKER WINDOWMASTER WHIPSTOCK & ASSOCIATED

BHA & TIH.</witsml:sum24Hr>

<witsml:forecast24Hr>TIH & SET BAKER WHIPSTOCK & MILL WINDOW IN

9 5/8" CASING.</witsml:forecast24Hr>

 <witsml:ropCurrent uom="m/h">-999.99</witsml:ropCurrent>

 <witsml:tightWell>0</witsml:tightWell>

 <witsml:hpht>0</witsml:hpht>

 <witsml:fixedRig>false</witsml:fixedRig>

 </witsml:statusInfo>

 </witsml:drillReport>

</witsml:drillReports>

The statusInfo element is just one example of the entries that can hold relevant operational

data. Below follow the subchilds in the Volve DDRs which are to record information related to

different well operations. The next chapter will elaborate on these entries separately.

activity – operational activities info

bitRecord – bit runs info

casing_liner_tubing – tubular info

coreInfo – core sampling info

equipFailureInfo – equipment failure info

fluid – properties of drilling and completion fluid

gasReadingInfo – gas reading and gas properties

21

lithShowInfo – rock class info

logInfo – well logging info

perfInfo – perforation info

porePressure – pore pressure evaluation

statusInfo – wellbore status info

stratInfo – geological formation info

surveyStation – directional survey info

wellTestInfo – well test info

3.3.3 DDR Content

It is important to mention that the collection below comprises the complete list of recordings.

Separate DDRs only have entries that are relevant to the current operations for that given day.

The activity entry contains information on operational activities including date, start time,

end time, MD, activity code, state of the activity and comments. Activity code refers to the

operation phase, such as drilling, completion, formation evaluation, etc. The complete list of

activity codes can be found in Appendix C. State of the activity differentiates between

productive and non-productive time. Categories used here are success for productive time,

mud loss & circulation loss, equipment failure, injury, operation failed and stuck equipment for

NPT. Comments give a short description of the activity.

The bitRecord element consists of data on bit runs including IADC dull grading, total MD

drilled, total hours drilled, average ROP, number of nozzles, nozzle diameter and a short

comment on the bit condition.

The casing_liner_tubing section has information on tubular goods being ran in the hole

including casing, liner and tubing. Properties listed are tubular type, material grade, connection

type, ID, OD, linear weight, length, top MD, bottom MD and a short description of the purpose

of the run.

The coreInfo element has information on core sampling including sampling length, core

length, recovery rate, core barrel type, barrel length and description of the core.

The equipFailure entry holds equipment failure data including date and time of the failure,

current MD where the failure happened, name of the equipment, description of the failure, time

of the repair and missed productive time.

The fluid section consists of information on the properties of drilling or completion fluid used

during operations including fluid class, fluid type, density, funnel viscosity, PV, YP, sampling

location and fluid loss test results such as filtrate volume and filter cake thickness.

22

The gasReadingInfo entry contains information on gas readings including type of the

reading, MD, TVD, total gas concentration, concentration of methane, ethane, propane, butane

and pentane. Type of the reading can be connection gas, drilling gas peak, flow check gas and

trip gas.

The lithShowInfo element comprises information on lithology including MD of top and

bottom of the rock unit, description of the lithology and possible oil shows.

The logInfo section consists of well logging data including MD of the logging interval,

description of the logging tool and name of the service company.

The perfInfo entry has information on perforation activities including MD of top and bottom

of the perforated interval and time of firing the perforation guns.

The porePressure section contains information on formation pressure evaluation including

MD where the evaluation is valid to, pore pressure expressed as equivalent mud weight and

type of the evaluation. Evaluation type is either estimated or measured.

The statusInfo element consists of some general well data as well as information on the

recent status of the wellbore including date, time of spudding, number of the report, water

depth, Kelly bushing elevation, wellhead elevation, current MD and TVD of the wellbore,

distance drilled, current average ROP, planned MD, MD of top of the hole section, MD and

TVD of the last casing shoe, MD of the kick-off point (if applicable), MD of the plug (if

applicable), diameter of the hole, diameter of the pilot hole (if applicable), average bottom hole

pressure and temperature, summary of activities in the last 24 hours, forecasted activities in

the next 24 hours. Additional information consists of formation strength or fracture pressure as

recorded during a FIT or LOT, also MD and TVD of the FIT or LOT. Moreover, HPHT and tight

well conditions are stated in this section, in addition to the type of the drilling rig.

The stratInfo entry has information on geological formations including MD and TVD of top

of the formation and formation name

The surveyStation section comprises directional survey data including MD, TVD,

inclination and azimuth.

The wellTestInfo entry consists of information on well tests including density, flow rate

and total volume of oil, water and gas. Additional information consists of test type, MD of the

flowing formation, choke orifice size, shut-in pressure, flowing pressure, gas-oil ratio, water-oil

ratio. Moreover chloride, carbon dioxide and hydrogen sulfide concentrations are recorded.

23

3.3.4 Data Extraction and Missing Data

The presented XML file structure offers a perfect opportunity to automate data mining from the

DDRs. Codes in Python have been written to automate the process, making it possible to parse

all 1759 DDRs and extract data which is required for further use in a matter of a few seconds.

As both the structure and the content are consistent thanks to the applied WITSML standards,

the scripts developed for the Volve dataset DDRs should be transferable to other sources with

only minor or no changes needed, given that the same standards are used. An example of

these scripts is in Appendix C.

Though DDRs offer a wide variety of well data, it became obvious that not all information which

is essential to construct well configurations in OpenLab is available. DDRs do not have any

info on bottom hole assemblies, also the drilling fluid data are insufficient, oil water ratio as well

as important rheological properties such as 10 sec and 10 min gel strength and Fann readings

are missing. The recorded formation pressure, fracture pressure and temperature values are

also deficient to create proper pressure and temperature profiles of the wellbores. To fulfill the

purpose of this thesis, yet another data source should be explored, and these are going to be

the End of Well Reports.

But to say that is was of no avail to examine the Landmark database and the DDRs is wrong.

The lessons learned and experience gained during this work led to an idea to develop an

application for well data management and visualization, which is based on automated data

extraction from the DDRs. The detailed process of the development of this app and the

description of how it works together with a possible use case is the topic of Chapter 5.

3.4 Final Well Reports

Final Well Reports, also known as End of Well Reports give a summary of general well data,

HSE&Q experience listing with future recommendations, evaluation of incidences and drilling

performance, cost and time distribution of well operations, activity highlights and formation

evaluation. Appendices consist of directional surveys, detailed listing of operations, wellbore

schematics, time/depth curve, pressure and temperature profiles, bit record, BHA list, drilling

fluid program and cementing program. Basically, FWRs provide all the information that is

needed to reach the goal of the thesis. The only disadvantage is that these reports require

manual processing and data mining. As more than 20 years passed between the drilling of the

first and the last well in the Volve field, the structure of the FWRs changed throughout the

years. It means that the location and the layout of the different sections are inconsistent.

FWRs are located in the Diverse Reports directory of the Well Logs. The next chapter offers

examples about how the required well data have been collected and which parts of FWRs

24

provide relevant information. The 15/9-F1 C well serves to showcase data extraction methods,

but the process is valid for the other wellbores as well.

3.4.1 Data Collection

In this chapter the process of manual data extraction from FWRs is explained in detail. The

order reflects the way of how well configurations are generated in the OpenLab drilling

simulator.

Figure 3: 15/9-F1 C well schematic (Volve Data Village, 2019)

25

The hole section tab needs input to create the wellbore structure. Figure 3 shows a wellbore

schematic displaying the detailed structure of the well. This data was double-checked using

the casing points section of the directional surveys, confirming that the values are valid. Slice

of a directional survey report containing information on casings is shown in Figure 4. No

information on riser ID and OD was found, so standard drilling riser diameters (ID: 19 in, OD:

21 in) were used. Casing IDs were extracted from the DDRs casing_liner_tubing

section.

Figure 4: Part of a directional survey showing casing points (Volve Data Village, 2019)

The wellpath section requires input to construct the well trajectory. Directional survey is part of

the FWR and holds survey data as illustrated in Figure 5. Only entries such as MD, inclination

and azimuth were extracted, as other values are computed internally by the OpenLab drilling

simulator.

Figure 5: Part of a directional survey with columns such as MD, inclination and azimuth (Volve
Data Village, 2019)

Data that is needed to populate the fluid tab are available in the Fluid Parameters section of

the BHA Performance Report, which is part of the directional survey report (Figure 6). Oil-water

ratio is not shown here, but it is also recorded in the same document. OpenLab also considers

base-oil PVT as input to model the density change of the mud. This information was not

available in the dataset, so the standard values given in the simulator were left unchanged in

this case.

26

Figure 6: Part of the BHA Performance Report as extracted from the 15/9-F1 C well’s directional
survey report (Volve Data Village, 2019)

27

A challenge was encountered, namely that Fann dial readings are not listed here, only PV and

YP values. This problem was solved by calculating 300 RPM and 600 RPM dial readings using

equation (1) and (2), then determining the missing values with curve-fitting.

𝑃𝑉 = 𝜃600 − 𝜃300 (1)

𝑌𝑃 = 𝜃300 − 𝑃𝑉 (2)

Where

PV: plastic viscosity [cP]

YP: yield point [lb/100ft2]

θ600: Fann dial reading at 600 RPM [-]

θ300: Fann dial reading at 300 RPM [-]

OpenLab takes Fann dial readings at 3, 6, 30, 60, 100, 200, 300 and 600 RPM as input. In

order to calculate these, the Herschel-Bulkley fluid model, as shown in Equation (3), was

implemented.

𝜏 = 𝜏0 + 𝐾 ∙ 𝛾𝑛 (3)

Where

τ: shear stress [Pa]

τ0: yield stress [Pa]

K: consistency index [Pa s]

γ: shear rate [1/s]

n: flow index [-]

Rearranging Equation (3) yields 𝑙𝑜𝑔(𝜏 − 𝜏0) = 𝑙𝑜𝑔𝐾 + 𝑛 ∙ 𝑙𝑜𝑔𝛾. This problem can be reduced

to a simple curve fitting in the form of 𝑦 = 𝑎 + 𝑏 ∙ 𝑥. Here τ refers to Fann dial reading, γ to

RPM and τ0 to YP. After determining K and n using YP, θ300 and θ600 values, Fann dial

readings at any arbitrary RPM can be calculated.

The BHA Performance Report String Parameters section (Figure 6) holds data which is needed

to construct the drillstring in OpenLab. ID, OD and length values were directly transferable,

while component names needed to be changed to their OpenLab equivalent. Information on

the linear weight of the different components, as well as drillpipe tool joint diameters were not

available here, so it was looked up in technical sheets provided by manufacturers online.

28

Figure 7: Pore pressure and wellbore stability prognosis for the 15/9-F1 C wellbore (Volve Data
Village, 2019)

In order to provide the simulator with geological data, information on formation pressure,

fracture pressure and geothermal gradient is required as input. It can be achieved by extracting

data points from wellbore stability (Figure 7) and geothermal plots (Figure 8). These graphs

are also part of the FWRs, but the datasets which are needed to reconstruct them are not

available. Therefore a free software that was developed for this purpose, the WebPlotDigitizer

was used, which enables semi-automated data extraction from various types of graphs.

OpenLab also takes UCS as an optional input, but due to the lack of any compressive strength

characteristics in the reports, this information is not available.

29

Figure 8: Geothermal gradient vs depth curve for the 15/9-F1 C wellbore (Volve Data Village,
2019)

Lastly, the issue of missing data was also encountered when collecting data from the FWRs,

though it was hardly as explicit as in case of the Landmark database and DDRs. It affected

only fluid and drillstring information. To overcome this problem, information from offset Volve

wellbores has been used to make up for the missing values.

30

4 Volve-OpenLab App

When all the required data were collected, checked, organized and saved as CSV files, it was

time to design and develop the application that would serve as a user interface to display well

data and communicate with the OpenLab drilling simulator. The idea was to follow the same

structure and layout as it is in OpenLab, in order to make it easy for the user to get an overview

of the different well configurations. The first intention was to develop a desktop application

using the Python TkInter library. As the simulator itself is a web-enabled app, after some initial

steps it was realized that creating a web application fits best for the purpose of the thesis.

Therefore further work was done with the Dash framework.

Dash is a Python framework, which offers a simple solution to develop interactive web

applications without JavaScript. Every aesthetic element in Dash is fully customizable thanks

to CSS. Another huge advantage of Dash is its lightweight nature, minimal lines of code is

required for a fully-functional GUI. Another Python libraly, Plotly was used to create interactive

graphs resembling those in OpenLab as closely as possible. Finally, the OpenLab Python client

made it possible to integrate the app with the drilling simulator and achieve the final goal of the

thesis, by providing an integrated web application that contains well information of the Volve

wells. The most recent version of the app is deployed to https://openlab.herokuapp.com. In the

future it might be a part of the OpenLab simulator, in this case it will be accessable directly

through the interface of the simulator. The Python code is attached in Appendix D.

The structure of the app is the following. On the top of the page is a navigation bar, where the

user can go to the corresponding pages, the order follows the logic of the well configurations

in OpenLab. There is an extra page called Wells (Figure 9), where a table shows general

information, such as wellbore name, purpose of the well, water depth, TVD, MD, entered and

completed data of the wellbore. Based on this information the user can select a wellbore from

the dropdown, then examine the details of that certain wellbore by navigating to the Hole

section, Wellpath, Fluid, Drillstring, Geopressures and Geothermal pages. The OpenLab page

serves as the connection point to the OpenLab simulator. After selecting a wellbore and a hole

section, the user can send that specific well configuration to his or her OpenLab account and

it is ready to run simulations on. The idea was to provide configurations separately for each

section of all the wellbores. It proved to be difficult to carry out, as OpenLab has a requirement

regarding well architecture, it says that the minimum number of casing strings are two. It means

configurations that could be used to simulate the drilling of the conductor and the surface

section cannot be constructed in OpenLab. In the following the app content will be presented

through an example of the 15/9-19 A well. This was an appraisal well, sidetracked from the

15/9-19 SR exploration well.

https://openlab.herokuapp.com/

31

Figure 9: Wells page shows general well data and enables the selection of wellbores

The Hole section page (Figure 10) shows the wellbore structure on a 3D interactive graph,

which displays information about hole or casing diameter, MD and TVD on hover. Casing

points and diameters are listed in the table on the right. The different sections are not true to

scale, but it makes it easy to differentiate between casings with distinct diameters. Coloring

also aids the user, cased hole is marked with bluish-green, while open hole with brown.

Figure 10: Hole section page with 3D representation of the wellbore structure

32

The Wellpath page (Figure 11) is similar to the previous one, except that the graph here shows

the wellbore trajectory and coloring reflects to the dogleg severity at the separate survey points.

Hover info consists of TVD, MD, inclination, azimuth and DLS, these values are also shown in

the table on the right side of the page. The 3D plot can be rotated and zoomed-in to give a

better view of the wellpath.

Figure 11: Wellpath page, the survey points are colored according to dogleg severity

The table on the Fluid page (Figure 12) shows information separately for each wellbore section.

Figure 12: Fluid page displaying density and rheological properties

33

As the 15/9-19 A well was a sidetrack, there is only one row, this holds data on the drilling fluid,

which was used during drilling the 8 1/2 inches section. In most cases there were only slight

adjustments in the rheology and the density of the fluid within one section. The properties

shown in the app are the ones that were the most representative for the given section.

OpenLab provides the option of specifying a reserve fluid with different characteristics. To

simplify the case, this reserve fluid is assumed to have the same properties, except having a

slightly higher density (+0.05 SG). It was already mentioned that the two uppermost section

needs to be present for all configurations, so fluids that apply for those sections are not shown,

even if the well is not a sidetrack.

Figure 13: Drillstring page, drillstring assembly is shown after selection from the dropdown

The Drillstring page table (Figure 13) has a similar layout as in OpenLab. Drilling BHAs are

available for every hole section separately, but the same ’two-casing-strings-need-to-be-

present’ rule applies here too. If more than one drilling BHA was used in a certain section, the

one with the longest distance drilled was chosen. The user can select from the available

options by using a dropdown.

The Geopressures page’s graph shows the drilling window, formation pressure is marked with

purple and fracture pressure with bluish-green. The plot displays information on hover, such

as TVD, pore pressure, fracture pressure and pressure window expressed in standard gravity.

Pressure values and the corresponding depths are displayed in the right-side table (Figure 14).

34

Figure 14: Geopressures page with the drilling window shown on the left

The Geothermal page (Figure 15) consists of a plot showing the temperature profile of the well,

and a table holding depth-specified geothermal gradients. Zero TVD refers to rotary kelly

bushing elevation, an arbitrary value of 10 °C was chosen for this point, while a standard value

of -2 °C is used as the geothermal gradient between sea level and seabed.

Figure 15: Temperature profile and geothermal gradients on the Geothermal page

35

It is the OpenLab page (Figure 16) that integrates the application into the OpenLab drilling

simulator. By running the OpenLab Python client in the background, the user is able to create

a configuration directly in the simulator. The process is the following: after the user selected a

well, chose a hole section and copy&pasted the required Python login script, a new

configuration is created in OpenLab by clicking the Create configuration button. The Python

login script is generated in the OpenLab drilling simulator by clicking on the account icon, then

choosing generate Python login script in the Settings menu. After pressing the Create

configuration button, the web browser’s tab displays the text Updating..., then in a few seconds

the new configuration is available in the user’s OpenLab account.

Figure 16: OpenLab page integrates the app into the OpenLab drilling simulator

Configurations are named according to this format: wellbore name followed by the hole section

size, for instance 15_9_19_A_section_8_5, where 15_9_19_A is the wellbore name and

section_8_5 refers to the hole section size in inches. Hole size in a configuration name means

that the drilling of that specific hole section can be simulated. In the above example the

configuration which is created in the simulator represents the following case: the 9 5/8 inches

casing is run and cemented, the casing shoe is drilled out, 5 meters are drilled ahead in the

new formation and drilling BHA with the 8 1/2 inches bit is run in the hole. The same logic

applies for the other configurations as well.

Rig technical parameters are not specified for the configurations. Default values provided by

the OpenLab drilling simulator are used instead.

36

5 DDR Data Management and Visualization App

5.1 Introduction

The idea of this application has emerged while experimenting with data extraction from the

DDRs of the Volve dataset. As mentioned earlier, the standardized structure and content of

these reports made them easily suitable for automatic data extraction. Combined with

interactive visualization, the end result is a powerful tool, which offers a simple environment

for data management for all 25 wellbores that was drilled in the Volve field. The same Python

libraries were used here as in case of the previously described Volve-OpenLab application.

The data source is the XML DDRs in the Volve dataset, the program directly extracts the

required information and visualizes them by the means of interactive plots. The Python code

to construct the application is included in Appendix E.

Figure 17: Time/depth curve module in the Volve-DDR app

The opening screen of the app is identical to the Wells page in the Volve-OpenLab app (Figure

9), it displays general information about the Volve wells and enables the user to select a

wellbore using a dropdown. The current version of the application consists of two modules: an

interactive time versus depth curve and an interactive operation timeline. Time/depth curves

are standard features in every well report and offer a convenient way to visualize the drilling

progress. The vertical axis represents the depth while the horizontal axis shows the drilling

days. The problem with these static plots is that they show only a limited amount of information

due to the restricted space that is available. By turning them interactive the only limiting factor

is data availability. This difference is shown in Figure 17 and Figure 18. The time/depth curve

37

for the 15/9-F10 well is shown here. It was an observation well and plugged back immediately

after the planned depth was reached. This process can be examined in Figure 17, but the real

advantage of the app is showing extra information on hover (Figure 18), such as date,

measured depth, section drilled and 24 hours summary of the operational activities. This

information is extracted from the statusInfo elements of the DDRs. The user can zoom-in

by drag-and-drop, zoom-out by double click and narrow the displayed time interval by using

the range selectors (1 week, 1 month, 6 months, 1 year, show all) on the upper left side of the

graph. When zoomed-in, the vertical axis serves as a range slider.

Figure 18: Time/depth curve displays information on hover separately for each day

The operation timeline module comprises an interactive timeline that shows the detailed

breakdown of the operational activities (Figure 19). The data that is needed to construct this

plot is extracted from the activity elements of the DDRs. The activities are colored

according to the state of the activity, which differentiates between productive and non-

productive time. Categories used here are success for productive time, mud loss & circulation

loss, equipment failure, injury, operation failed and stuck equipment for NPT. Hover info

consists of start and end time, duration, measured depth, operation phase, state of the activity

and a comment that gives a short summary of the activity. The interactive features (zooming,

sliding) are similar to the ones already presented for the time/depth curve.

38

Figure 19: Operation timeline displays the breakdown of the operational activities

By using the range selector and range slider, it becomes simple to get an overview of the

operations and identify various drilling- and equipment-related problems (Figure 20). This

feature could facilitate the investigation of drilling anomalies by identifying best practices to

solve these problems and overcome the challenges arose. A use case will be presented in the

next chapter.

Figure 20: Range selector is set to one week, hover info shows information on a stuck pipe
incident

39

There are some issues that needs to be handled during data extraction from the DDRs. In the

current version of the app, missing data is dealt with adding a zero to the array in case of

integers (e.g. MD) and a dash (-) character in case of strings (e.g. 24 hours summary). It may

lead to outlying data points in the time/depth curve. Moreover, 24 hours summaries and

comments are extracted as strings, splitted at dot (.) characters and line breaks are inserted.

If the dot character does not refer to a full stop, but stands for a decimal separator or a period

in an acronym, the resulted text in the hover box may be a little confusing, but readability is

maintained. Fortunately comma (,) is the default decimal separator in the majority of the drilling

reports in the Volve dataset.

5.2 Circulation Loss Use Case

Heavy fluid losses were encountered while drilling the 15/9-F15 well (Figure 21). It happened

when penetrating through the Ty formation between 2880 and 2915 meters. It is indicated with

purple color on the operation timeline. By scrolling through this time interval and examining the

comments in the hover box, the remedial actions and their effect on the loss rate can be easily

checked. The mud loss started at 18:45 14.11.2008 and the drilling crew regained control by

03:00 17.11.2008, so it caused more than two days of NPT, shedding light on the importance

of appropriately identifying best practices to overcome such challenges.

Figure 21: Fluid loss incident marked with purple on the timeline. The drilling of this well was
suspended several times, and the days axis shows the total number of days that passed since

spudding the well

40

The main steps to prevent, mitigate and control this fluid loss incident are listed below (all

quotes are as per the drilling reports, only spelling mistakes and grammar errors are corrected):

• Drilled 8 1/2" hole from 2591 m to 2883 m. Parameters: Flow 2200 lpm / SPP 241-246 bar

/ String RPM 80 / Bit RPM 209 / TQ 12-15 kNm / ECD 1.46-1.47 EMW / ROP 20-45 m/hr

Mud weight 1.35 SG. Started adding LCM according to plan 30 m above Ty formation.

• Had 8 m3/hr losses in Ty formation at 2880-2883 m. Pulled off bottom and flow checked

well static. Ok.

• Staged up pumps to establish loss free rate. Meanwhile continued adding LCM chemicals

to active fluid and prepared 150 kg/m3 LCM pill in pit according contingency plan. Monitored

losses while pumping and reciprocating pipe, Flow 440 lpm / SPP 25 bar / String RPM 10

/ TQ 9-10 kNm. Average loss rate 1000 ltrs/hr.

• Lined up and pumped 5 m3 LCM pill at 440 lpm. Spotted pill on TD at 2883 m. Pulled back

one stand to 2843 m while pumping the LCM pill out of the BHA.

• Let LCM pill settle/soak. Monitored well on trip tank and rotated string with 5 rpm. No losses

observed.

• RIH with 8 1/2" BHA to TD at 2883 m. Circulated bottoms up at 440 lpm while monitoring

for losses. Increased flow rate in steps of 200 lpm to 1200 lpm. Had losses 1-1.5 m3/hr.

Increased flow rate to 1400 lpm and had losses 6 m3/hr.

• Reduced flow rate to 600 lpm and monitored losses of 1 m3/hr while preparing second LCM

pill with 200 kg/m3. Reciprocated string.

• RIH with 8 1/2" BHA to TD at 2883 m. Lined up and pumped 5 m3 LCM pill at 600 lpm.

• Continued pumping 5 m3 LCM pill at 600 lpm at TD. Pulled off bottom and flow checked

well. Static.

• POOH with 8 1/2" BHA from 2842 m to 2735 m (above top of pill). Circulated, Flow 600 lpm

/ SPP 34 bar / String RPM 5 / TQ 8 kNm.

• Pumped 4 m3 200 kg/m3 LCM pill, Flow 600 lpm / SPP 34 bar / String RPM 5 / TQ 8 kNm.

Spotted pill on top of previous pill to cover all of Ty formation.

• POOH with 8 1/2" BHA from 2735 m to 2670 m (above top of Ty formation). Staged up

pumps to 1330 lpm and had 1 m3/hr losses that gradually was reduced down to zero.

• Circulated and reciprocated pipe from 2670 m to 2641 m , Flow 1000 lpm / SPP 66 bar /

String RPM 5 / TQ 5-7 kNm. Prepared for reducing mud weight down to 1.30 SG. Total

loss since starting to loose mud on this section was approx 19 m3.

• Bled into active to reduce mud weight from 1.35 SG to 1.30 SG. Meanwhile rotated and

reciprocated pipe from 2670 m to 2641 m , Flow 1000 lpm / SPP 66 bar / String RPM 5 /

TQ 5-7 kNm.

41

• Staged up flow rate in 200 lpm increments to 1800 lpm above top LCM pill and monitored

for losses. Had 1 m3/hr loss at 1600 lpm and 0.5 m3/hr loss at 1800 lpm.

• Lined up to trip tank and RIH from 2670 m to TD at 2883 m. Broke circulation and staged

up flow rate to 600 lpm whilst displacing out LCM pill to ship. Had 0.5 m3/hr losses.

• Staged up flow rate in 200 lpm increments to 1000 lpm while continuing to displace out

LCM pill. Had 0.5 m3/hr losses at 1000 lpm.

• Staged up flow rate in 200 lpm increments from 1000 lpm to 1800 lpm. Meanwhile rotated

and reciprocated pipe from 2883 m to 2855 m. Had 0.5-1.0 m3/hr losses at all flow rates.

Up weight 152 MT / Down weight 127 MT / Free rotation weight 138 MT (10 rpm).

• Made connection. Staged up pump rate slowly to 1800 lpm. Started drilling 8 1/2" hole at

2883 m. Parameters: Flow 1800 lpm / SPP 166 bar / String RPM 80 / Bit RPM 218 / TQ

10-12 kNm / ROP 10 m/hr. MUD weight 1.30 SG.

• Drilled 8 1/2" hole from 2883 m to 2893 m. Parameters: Flow 1800 lpm / SPP 167 bar /

String RPM 80 / Bit RPM 218 / TQ 10-16 kNm / 1-2 MT WOB / ECD 1.38 EMW / ROP 10

m/hr. MUD weight 1.30 SG.

• Stopped drilling due to 6 m3 losses/10 min. Discovered loss to be at shakers while changing

screens. Changing screens was not communicated to drill floor.

• Staged up pump rate slowly to 1800 lpm to start drilling ahead. Drilled 8 1/2" hole from 2893

m to 2915. Parameters: Flow 1800 lpm / SPP 164 bar / String RPM 80 / Bit RPM 218 / TQ

11-13 kNm / 2-5 MT WOB / ECD 1.38 EMW / ROP 10 m/hr. MUD weight 1.30 SG.

• Pick-up off bottom and reduced flow rate due to heavy losses of 36 m3/hr. Circulated at

450 lpm and staged up to find loss free rate at Flow 550 lpm / SPP 23 bar / String RPM 5

/ TQ 5-6 kNm.

• Pumped 5 m3 300 kg/m3 LCM pill at 550 lpm and spotted on bottom/TD.

• POOH with 8 1/2" BHA from 2915 m to 2775 m (above top of LCM pill).

• Staged up pumps in 200 lpm increments to 1800 lpm above top LCM pill at 2775 m. Had

0.7 m3/hr losses at 1800 lpm.

• Lined up to trip tank. Flow checked well. Static. RIH from 2775 m to TD at 2915 m.

• Broke circulation at 2914 m and staged up pumps in 200 lpm increments to 1000 lpm while

rotating pipe.

• Continued staging up pumps in 200 lpm increments from 1000 lpm to 1800 lpm while

rotating and reciprocating pipe slowly. Had 0.5 m3/hr losses at 1800 lpm.

Despite adding LCM and spotting several LCM pills along the problematic Ty formation, the

loss of mud could not be stopped, but eventually the loss rate could be minimized at an

acceptable rate of 0.5 m3/hour. This made it possible to drill further and reach the planned

depth without encountering additional drilling related problems. The information provided

42

above could be used for offset wells, either during the well planning phase or for operations

when a similar incident occurs. In order to use this experience as an operational guideline

during drilling, the neighboring wells should be analyzed too. The result would be a so-called

best practice guideline for fluid loss incidences. It would contain the recommended flow rate,

type and volume of LCM material added, volume of LCM pill spotted, required soaking time

separately for each formation that carries the risk of mud loss. Similar guidelines could be

compiled for stuck pipe and well control incidences.

43

6 Conclusions and Future Work

6.1 Conclusions

The overall objective of this thesis has been to develop an integrated web application for the

OpenLab drilling simulator, in order to enable the user to simulate the drilling of the Volve

wellbores as close to the real scenarios as possible. A potential use case is the benchmarking

of well flow and torque & drag models against field data. The application also provides a useful

online tool to get an overview of the Volve wells with interactive visualization, so the

opportunities given are not limited to OpenLab. The Volve dataset’s drilling related features

have been used to achieve this goal. Multiple data sources have been investigated and several

data mining challenges have arisen through this process. The Final Well Reports proved to be

the best source to collect all the necessary data that are essential to create configurations in

OpenLab. After the collected data have been analyzed and processed, the new web

application has been designed and developed in Python. By utilizing the functionality of the

OpenLab Python client, the integration of the newly developed app into the OpenLab drilling

simulator has been achieved without any problem. The resulted app is deployed to

https://openlab.herokuapp.com and hopefully will be added to the official OpenLab features in

the foreseeable future.

The development of another application is started as a side-project. This app is based on

automated data extraction from daily drilling reports, and offers a powerful tool for data

management and visualization with hugh potential for further development. As the data mining

scripts are developed to be compatible with the widely used WITSML standards, the usage of

this app is not limited to the Volve daily drilling reports. Currently the app consists of two

modules: an interactive time versus depth curve and an interactive operation timeline. The app

can be accessed at https://volve.herokuapp.com.

Moreover, the Landmark database in the Volve dataset has been thoroughly explored, its

structure and content together with possible data extraction methods have been described. It

can facilitate the use of this data source for future research.

To conclude, this thesis have tried to prove the advantage of industrial data sharing combined

with free softwares for educational purposes. Referring to the quote from Equinor’s COO

Jannicke Nilsson, the Volve dataset offers students the opportunity to set off for a digital

journey which promises a steep learning curve, ultimately benefiting not only the academia,

but also the industry as a whole.

https://openlab.herokuapp.com/
https://volve.herokuapp.com/

44

6.2 Future Work

The application developed for the OpenLab drilling simulator comprises only static properties,

such as wellbore structure, wellpath, drillstring assembly, geopressures and geothermal

gradients. These variables are assumed being independent of time. Even fluid properties, for

instance density and rheology parameters are taken constant for a given hole section. In order

to enhance the quality of the simulations, real-time operational parameters, such as flow rate,

rate of penetration and surface RPM should be considered. To achieve this goal, a web

application specifically designed to visualize and display real-time drilling data should be

developed. The Volve dataset’s drilling related real-time features could be the main data

source, but the development should focus on making the app compatible with other third-party

databases. Ultimately the app would enable the import of real-time data series into OpenLab,

facilitating simulations in sequence mode.

Regarding the daily drilling report application for data management and visualization, the future

development should focus on adding new modules to the existing ones. As it was discussed

earlier in Chapter 3.3.3, daily drilling reports represent a consistent data source that provides

information about all the important operational activities and parameters. Therefore the app

can be further developed by extending its modular architecture, the opportunitues are limited

only by the available data. Possible extensions could be:

• Fluid module: provides information about the applied drilling and completion fluid properties

on an interactive timeline.

• Equipment failure module: shows when an equpment has failed together with the caused

non-productive time.

• Bit run module: bit records can be tracked by displaying IADC classification code, IADC

dull grading, total distance drilled, etc.

In addition to the above, the data extraction scripts should be improved in order to better cope

with challenges due to missing data. Natural language processing could be used to deal with

spelling mistakes and grammar errors in input text, such as activity comments and 24 hours

summary. It was suggested in Chapter 5.2 that so-called best-practice-guidelines could be

created. Probably it is not a straightforward process and would require the involvement of

machine leraning/statistical learning methods. It is definitely a challenging, but also very

promising topic for a future thesis work.

45

References

Cayeux, E., Daireaux, B., Dvergsnes, E. W., & Florence, F. (2014). Toward Drilling Automation:

On the Necessity of Using Sensors That Relate to Physical Models. SPE Drilling &

Completion, 236-255.

Cayeux, E., Mesagan, T., Tanripada, S., Zidan, M., & Fjelde, K. K. (2014). Real-Time

Evaluation of Hole Cleaning Condidtions with a Transient Cuttings-Transport Model.

Drilling and Completion Journal.

Corre, B., Eymard, R., & Gounet, A. (1984). Numerical computation of Temperature

Distribution in a wellbore while drilling. SPE Annual Technical Conference and

Exhibition. Houston: SPE.

Energistics. (2019, May 15). Retrieved from Energistics website:

https://www.energistics.org/portfolio/witsml-data-standards/

Equinor. (2018, June 14). Retrieved from Equinor website:

https://www.equinor.com/en/news/14jun2018-disclosing-volve-data.html

Exebenus. (2019, February 8). Retrieved from Exebenus website:

http://www.exebenus.com/2019/02/08/exebenus-pulse-successfully-recognizes-non-

drilling-operation-procedures-using-the-norce-openlab-drilling-simulator/

Giese, M., Ornas, J. I., Overå, L., Svensson, I., & Waaler, A. (2012). Using Semantic

Technology to Auto-generate Reports: Case Study of Daily Drilling Reports. SPE

Intelligent Energy International. Utrecht.

JPT. (2019, March 25). Retrieved from Society of Petroleum Engineers website:

https://www.spe.org/en/jpt/jpt-article-detail/?art=5282&

Kjeldahl, M. (2019, April 14). Retrieved from Oliasoft Community website:

https://wpforum.oliasoft.com/log-in-equinor-statoils-volve-dataset-well-technical-data-

part-1/

Kyllingstad, A. (1995). Buckling of Tubular Strings in Curved Wells. Journal of Petroleum

Science and Engineering, 209-218.

Lorentzen, R. J., & Fjelde, K. K. (2005). Use of slopelimiter techniques in traditional numerical

methods for multi-phase flow in pipelines and wells. International Journal for Numerical

Methods in Fluids, 723-745.

Lorentzen, R. J., Nævdal, G., Karlsen, H. A., & Skaug, H. J. (2014). Estimation of Production

Rates With Transient Well-Flow Modeling and the Auxiliary Particle Filter. SPE Journal,

172-180.

46

Lundin. (2018, September 28). Retrieved from Lundin Norway website: https://www.lundin-

norway.no/2018/09/28/real-time-production-data-to-be-shared-between-edvard-grieg-

and-ivar-aasen/?lang=en

Noshi, C. I., & Schubert, J. J. (2018). The Role of Machine Learning in Drilling Operations; A

Review. SPE Eastern Regional Meeting. Pittsburgh: Society of Petroleum Engineers.

NPD. (2019, May 13). NPD FactPages. Retrieved from NPD website:

http://factpages.npd.no/factpages/

OpenLab Drilling. (2019, May 12). Retrieved from OpenLab Drilling website:

https://openlab.app/product/

PCA. (2019, May 15). Retrieved from POSC Caesar Association website:

http://data.posccaesar.org/rdl/

PSA. (2019, May 15). Retrieved from Petroleum Safety Authority website:

https://www.ptil.no/en/contact-us/reporting-to-the-psa/drilling-reports-ddrs/

UiS. (2019, March 25). Retrieved from University of Stavanger website:

https://www.uis.no/research/national-ior-centre-of-norway/shares-all-data-from-one-

field-article132284-13152.html

Volve Data Village. (2019, May 22). Retrieved from Equinor Data Portal:

https://data.equinor.com/dataset/Volve

Yunfeng, Y., & al. (2004). An Advanced Coiled Tubing Simulator for Calculations of Mechanical

and Flow Effects; Model Advancements and Full-Scale Verification Experiments. SPE

Coiled Tubing Conference and Exhibition. Houston: SPE.

47

Appendices

Appendix A

Lists of available graphs in OpenLab simulations:

Time-based Graphs Depth-based Graphs

Back pressure

Bit depth and total depth

Bit pressure

BOP pressure

Bottom hole pressure

Choke opening

Flow rate

Gas flow rate

Hook load

In slips

Mud temperature

Pit densities

Pit temperatures

Pit volumes

Reservoir flow

ROP

Stand pipe pressure

String and hook position

String and hook speed

Surface RPM

Surface torque

WOB

Cuttings bed

Cuttings transport

Density

Gas volume

ECD

Mud velocity

Temperature

Tension

Torque

Appendix B

List of tags in the Landmark EDM database, the numbers refer to their corresponding locations

as line numbers in the database.

TEMPERATURE DERATION SCHEDULE 6 - 25

TEMPERATURE DERATION POINT 26 - 59

LITHOLOGY CLASS 60 - 62

CD MATERIAL 63 - 83

CD GRADE 84 - 104

CD GRADE SECTION TYPE 105 - 145

48

CD CLASS 146

CD REAL TIME CONFIG 147 - 22646

CD CUSTOM BASE FLUID 22647 - 23616

CD GEO SYSTEM 23617

CD GEO ZONE 23618

GEO DATUM 23619

GEO ELLIPSOID 23620

CD SURVEY TOOL 23624 - 23653

DP TOOL TERM 23654 - 24489

CD WELLBORE TYPE 24490 - 24519

DP PROJECT TARGET 24527 - 24593

DP PROJECT TARGET POINT 24594 - 24693

CD WELL ALL 24696 - 24716

CD WELL 24717 - 24737

CD DATUM 24738 - 24861

CD WELLBORE 24862 - 24915

CD ASSEMBLY 24916 - 28817

CD ASSEMBLY COMP 28818 - 39467

CD BHA COMP BIT 39468 - 40099

CD BHA COMP DP HW 40100 - 42576

CD BHA COMP JAR 42577 - 43393

CD BHA COMP MOTOR 43394 - 44142

CD BHA COMP MWD 44143 - 45769

CD BHA COMP NOZZLE 45770 - 47327

CD BHA COMP STAB 47328 - 48645

CD WEQP PACKER 48646 - 48651

TU COMP TEMPERATURE DERATION POINT 48652 - 50052

CD CASE 50053 - 52672

CD CASE TEMP GRADIENT 52673 - 54604

CD NBK LEAK OFF TEST 54605 - 55046

CD NBK NOZZLES 55047 - 55048

CD NBK PUMP OUTPUT 55049

TU CASE ASSEMBLY PARAMETER 55050 - 98540

TU CUSTOM LOAD PROFILE 98541 - 101604

TU LOAD HEADER 101605 - 101641

TU EPP PARAMETERS 101642 - 101749

TU LOAD PARAMETERS 101750 - 101929

TU LOAD PROFILE 101930 - 167604

WP BHA PARAMS 167605 - 168552

WP CASE ANNOTATIONS 168553

WP CASE BOOSTER PUMP 168554 - 169507

WP CASE CEMENT FOAM SCHD 169508 - 170455

WP CASE CEMENT JOB DATA 170456 - 171408

WP CASE CEMENT JOB DATA ARR 171409 - 172392

WP CASE CEMENT FOAM DATA ARR 172393 - 172409

WP CASE CEMENT JOB DATA PRESSURE 172410 - 173357

WP CASE CENTRALIZER SCHD 173358 - 174310

WP CASE CENTRALIZER SCHD INT 174311 - 174315

WP CASE CIRC SYSTEM 174316 - 175268

WP CASE CSA BOUNDARY COND 175269 - 175270

WP CASE CSA PARAMS 175271 - 176218

WP CASE PUMP 176219 - 176807

WP CASE PUMP SLOW 176808

WP CASE RANGE 176809 - 176811

WP CASE SOIL PROP 176812

WP CASE SURFACE 176813 - 177765

WP CASE WBSIMULATOR ANAL 177766 - 178713

WP DYNAMIC PROPERTY HEADER 178714 - 178934

WP HYD OPTIONS 178935 - 179887

WP HYD PARAMS 179888 - 180840

WP KILL SHEET GEN 180841 - 181202

49

WP SRG PARAMS 181203 - 181218

WP SRG RECIPROCATION 181219 - 182171

WP SRG SURGE 182172 - 182188

WP SRG SWAB SURGE 182189 - 183141

WP TDA ACTLOAD 183142 - 183369

WP TDA ANNULUS FLUID GRAD 183370 - 183400

WP TDA DISCRETE PARAMS 183401 - 183417

WP TDA DRAGCHART 183418 - 201571

WP TDA DRAGCHART COF 201572 - 203239

WP TDA DRAGCHART MAN COF 203240 - 203638

WP TDA DRAGCHART SENS 203639 - 205430

WP TDA FRD 205431 - 205996

WP TDA FRD FORCE 205997 - 206745

WP TDA FRD ALL 206746 - 207311

WP TDA FRD ALL FORCE 207312 - 208060

WP TDA MANUAL COF 208061 - 208086

WP TDA OPTIONS 208087 - 209039

WP TDA PARAMS 209040 - 209992

WP TDA RISERLESS OUT ANN FLUID 209993 - 209995

WP TDA STRING RISERLESS FLUID GRAD 209996 - 209997

WP TDA STRING FLUID GRAD 209998 - 210056

WP UBD PARAMS 210057 - 210073

WP WCN PARAMS 210074 - 211026

CD DEFINITIVE SURVEY HEADER 211027 - 211136

CD DEFINITIVE SURVEY STATION 211137 - 226245

CD SURVEY PROGRAM 226246 - 226577

CD VERTICAL SECTION 226578 - 226685

DP ANTICOL 226686 - 228151

WP CASE TORT INT 228152 - 228157

CD FLUID 228159 - 228475

WP FLUID TEMP 228476 - 228634

WP FLUID TEMP FANN DATA 228635 - 229525

CD FORMATION INFLUX GROUP 229526 - 229533

CD FRAC GRADIENT GROUP 229534 - 229668

CD FRAC GRADIENT 229669 - 266925

CD HOLE SECTION GROUP 266926 - 267887

CD HOLE SECTION 267888 - 270628

CD PORE PRESSURE GROUP 270629 - 270763

CD PORE PRESSURE 270764 - 309847

CD SCENARIO 309848 - 309957

TU CASE PARAMETER 309958 - 310308

TU CASE USER PARAMETER 310309 - 310329

TU DLS OVERRIDE GROUP 310330 - 310367

TU DLS OVERRIDE 310368 - 310385

TU MMS APD 310386 - 310424

TU MMS APD DETAIL 310425 - 310568

TU ZONE PRESSURE GROUP 310569 - 310606

CD SURVEY HEADER 310607 - 310800

CD SURVEY STATION 310801 - 315753

CD TEMPERATURE GRAD GROUP 315754 - 315888

CD TEMPERATURE GRAD 315889 - 315918

CD WB REAL TIME CONFIG 315919 - 316143

CD WELLBORE FORMATION 316144 - 317411

DP MAGNETIC 317412 - 317465

CD PROJECT TARGET SITE LINK 317472 - 317538

CD PROJECT TARGET WB LINK 317539 - 317629

CD PROJECT TARGET WELL LINK 317630 - 317726

CD PROJECT TARGET SCENARIO LINK 317727 - 317893

CD SCENARIO FORMATION LINK 317894 - 318043

50

Python script to extract trajectory data from the Landmark EDM database. The same algorithm

can be used to process information from other tags.

import libraries

import xml.etree.ElementTree as et

import pandas as pd

parse xml file

volve_tree = et.parse('Volve F.edm.xml')

volve_root = volve_tree.getroot()

make a list of wellbore ids

wellbore_id = []

for child in volve_root:

 if child.tag == 'CD_DEFINITIVE_SURVEY_HEADER':

 if child.attrib['phase'] == 'ACTUAL':

 wellbore_id.append(child.attrib['wellbore_id'])

make a list of corresponding wellbore names

wellbore_name = []

for child in volve_root:

 if child.tag == 'CD_WELLBORE':

 if child.attrib['wellbore_id'] in wellbore_id:

 wellbore_name.append(child.attrib['well_legal_name'].replace('/','-'))

make a dictionary holding wellbore ids as keys and wellbore names as values

id_name_dict = dict(zip(wellbore_id, wellbore_name))

create a function to extract trajectory data from the database

def get_wellpath(dct):

 survey_header = []

 # consider only actual wellbores

 for child in volve_root:

 if child.tag == 'CD_DEFINITIVE_SURVEY_HEADER':

 if child.attrib['phase'] == 'ACTUAL':

 survey_header.append(child.attrib['def_survey_header_id'])

 # for loop to collect data for every wellbore in the dictionary that was

created earlier

 for key in dct:

 # append wellpath data to corresponding lists

 for item in survey_header:

 azimuth = []

 inclination = []

 md = []

 tvd = []

 easting = []

 northing = []

 for child in volve_root:

 if child.tag == 'CD_DEFINITIVE_SURVEY_STATION':

 if child.attrib['wellbore_id'] == key:

 if child.attrib['def_survey_header_id'] == item:

 azimuth.append(float(child.attrib['azimuth']))

 inclination.append(float(child.attrib['inclination']))

 md.append(float(child.attrib['md']) * 0.3048)

 tvd.append(float(child.attrib['tvd']) * 0.3048)

51

 easting.append(float(child.attrib['offset_east']) *

0.3048)

 northing.append(float(child.attrib['offset_north']) *

0.3048)

 # create a dataframe and save the dataframe as csv file

 if md:

 wellpath = pd.DataFrame(list(zip(md, azimuth, inclination)),

 columns = ['MD (m)','Azimuth (°)', 'Inc.

(°)'])

 wellpath.sort_values('MD (m)', inplace=True)

 wellpath = wellpath.reset_index(drop = True)

 wellpath = wellpath.round({'MD (m)': 0, 'Azimuth (°)': 2, 'Inc

(°)':2})

 wellpath.to_csv(f'{dct[key]}_wellpath.csv', sep = ';', index =

False)

run function

get_wellpath(id_name_dict)

Appendix C

Complete list of activity codes in the Volve DDRs.

completion -- bop/wellhead equipment

completion -- circulating conditioning

completion -- completion string

completion -- other

completion -- perforate

completion -- sand control

completion -- stimulate

completion -- test scsssv

completion -- wire line

drilling -- bop activities

drilling –- bop/wellhead equipment

drilling -- casing

drilling -- circulating conditioning

drilling -- drill

drilling -- hole open

drilling -- other

drilling -- pressure detection

drilling -- ream

drilling -- survey

drilling -- trip

drilling -- wait

formation evaluation -- circulating conditioning

formation evaluation -- circulation samples

formation evaluation -- core

formation evaluation -- drill stem test

formation evaluation -- log

formation evaluation -- other

formation evaluation -- rft/fit

formation evaluation -- rig up/down

formation evaluation -- trip

formation evaluation -- wait

interruption -- fish

interruption -- lost circulation

interruption -- maintain

interruption -- other

interruption -- repair

interruption -- rig up/down

52

interruption -- sidetrack

interruption -- wait

interruption -- waiting on weather

interruption -- well control

moving -- anchor

moving -- position

moving -- skid

moving -- transit

plug abandon -- cement plug

plug abandon -- circulating conditioning

plug abandon -- cut

plug abandon -- equipment recovery

plug abandon -- mechanical plug

plug abandon -- mill

plug abandon -- other

plug abandon -- perforate

plug abandon -- squeeze

plug abandon -- trip

plug abandon -- wait

workover -- bop/wellhead equipment

workover -- completion string

workover -- other

workover -- perforate

workover -- rig up/down

workover -- test scsssv

workover -- wait

workover -- wire line

A sample script for automated data extraction from the Volve DDRs. This code collects data

about the operational activities and returns them as a dataframe. By changing the strings

before elem.tag and subelem.tag in the for loop, data from other entries can be extracted

as well.

import libraries

import os

import xml.etree.ElementTree as et

import pandas as pd

from datetime import datetime

create a function for automated data extraction

def get_operations(well):

 # location of the DDRs

 report_list = os.listdir('Reports')

 # define lists and dataframe structure

 start = []

 end = []

 md = []

 operation = []

 comment = []

 duration = []

 state = []

 df = pd.DataFrame(

 list(zip(

 start,

 end,

 md,

53

 duration,

 operation,

 comment,

 state

)),

 columns = [

 'Start',

 'End',

 'MD (m)',

 'Duration',

 'Operation',

 'Comment',

 'State'

])

 os.chdir('Reports')

 # for loop to parse all the DDRs

 for file in report_list:

 if file[:-15] == well:

 report_tree = et.parse(file)

 report_root = report_tree.getroot()

 start = []

 end = []

 md = []

 operation = []

 comment = []

 duration = []

 state = []

 # append relevant values to the corresponding lists

 for child in report_root:

 for elem in child:

 if elem.tag ==

'{http://www.witsml.org/schemas/1series}activity':

 for subelem in elem:

 if 'dTimStart' in subelem.tag:

 start.append(datetime.strptime(subelem.text[:16],

'%Y-%m-%dT%H:%M'))

 start_temp = datetime.strptime(subelem.text[:16],

'%Y-%m-%dT%H:%M')

 elif 'dTimEnd' in subelem.tag:

 end.append(datetime.strptime(subelem.text[:16],

'%Y-%m-%dT%H:%M'))

 end_temp = datetime.strptime(subelem.text[:16],

'%Y-%m-%dT%H:%M')

 elif 'md' in subelem.tag:

 md.append(subelem.text)

 elif 'proprietaryCode' in subelem.tag:

 operation.append(subelem.text)

 elif 'comments' in subelem.tag:

 comment.append(subelem.text)

 elif 'stateDetailActivity' in subelem.tag:

 state.append(subelem.text)

 else:

 pass

 duration.append((end_temp-start_temp))

 df = df.append(

 pd.DataFrame(

 list(zip(

 start,

 end,

 md,

 duration,

 operation,

 comment,

54

 state

)),

 columns = [

 'Start',

 'End',

 'MD (m)',

 'Duration',

 'Operation',

 'Comment',

 'State'

]),

 ignore_index = True,

 sort = False

)

 df.sort_values(['Start'], inplace=True)

 os.chdir('../')

 # return the dataframe

 return df

Appendix D

Python code for the Volve-OpenLab app. The same scripts together with documentation,

requirements and data files are pushed to https://gitlab.com/a-nagy/volve-openlab-app. Here

the Data folder holds CSV files with data that is used by the app to populate the graphs and

tables, while the Configurations folder contains JSON files holding data needed to create

configurations in OpenLab. The structure and content of these JSON files follow strict rules set

by the OpenLab drilling simulator. As the web application itself is a multi-page app, the scripts

are splitted into separate Python files to keep the editing and maintenance of the code simpler.

The same file structure is presented here.

app.py

import dash

#external stylesheet for css styling

external_stylesheets = ['https://cdn.jsdelivr.net/gh/attilanagy1986/Dash-

css@master/undo.css']

#initiate Dash app

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

#title of the app

app.title = 'Openlab app'

#initiate server

server = app.server

#if set to False, Dash will raise an exception due to the multipage

structure of the app

app.config.suppress_callback_exceptions = True

index.py

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

https://gitlab.com/a-nagy/volve-openlab-app

55

from app import app

import wells

import hole_section

import wellpath

import fluid

import drillstring

import geopressures

import geothermal

import open_lab

#wellbores for dropdown selection

wells_dict = {

 '15_9_19_A': '15/9-19 A',

 '15_9_19_B': '15/9-19 B',

 '15_9_19_BT2': '15/9-19 BT2',

 '15_9_19_S': '15/9-19 S',

 '15_9_19_SR': '15/9-19 SR',

 '15_9_F_1': '15/9-F-1',

 '15_9_F_1_A': '15/9-F-1 A',

 '15_9_F_1_B': '15/9-F-1 B',

 '15_9_F_1_C': '15/9-F-1 C',

 '15_9_F_4': '15/9-F-4',

 '15_9_F_5': '15/9-F-5',

 '15_9_F_7': '15/9-F-7',

 '15_9_F_9': '15/9-F-9',

 '15_9_F_9_A': '15/9-F-9 A',

 '15_9_F_10': '15/9-F-10',

 '15_9_F_11': '15/9-F-11',

 '15_9_F_11_A': '15/9-F11 A',

 '15_9_F_11_B': '15/9-F-11 B',

 '15_9_F_12': '15/9-F-12',

 '15_9_F_14': '15/9-F-14',

 '15_9_F_15': '15/9-F-15',

 '15_9_F_15_A': '15/9-F-15 A',

 '15_9_F_15_B': '15/9-F-15 B',

 '15_9_F_15_C': '15/9-F-15 C',

 '15_9_F_15_D': '15/9-F-15 D'

 }

#define app layout

app.layout = html.Div([

 dcc.Location(id='url'),

 dcc.Link(

 'Wells',

 href='/wells',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold'

 }),

 dcc.Link(

 'Hole section',

 href='/hole_section',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 dcc.Link(

56

 'Wellpath',

 href='/wellpath',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 dcc.Link(

 'Fluid',

 href='/fluid',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 dcc.Link(

 'Drillstring',

 href='/drillstring',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 dcc.Link(

 'Geopressures',

 href='/geopressures',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 dcc.Link(

 'Geothermal',

 href='/geothermal',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 dcc.Link(

 'OpenLab',

 href='/openlab',

 style={

 'color': 'rgb(43,151,155)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 html.Div([

 html.H3(['Select a wellbore'], style={'paddingBottom': '10px',

'font-weight': 'bold', 'border-bottom': '1px solid black'}),

 dcc.Dropdown(

 options=[{'label':value, 'value':key} for key, value in

wells_dict.items()],

 value='15_9_19_A',

 placeholder='Select a wellbore',

57

 id='wells-dropdown',

 style={'width':'50%'}

),

 html.Br(),

], id='external-page-wells', style={'paddingLeft':'25px'}),

 html.Div(id='page-content')

], style={'font-family': 'Calibri', 'paddingLeft':'25px',

'paddingRight':'25px'})

#callback to update page content

@app.callback(

 Output('page-content', 'children'),

 [Input('url', 'pathname')]

)

def populate_content(url):

 if url == '/wells':

 return wells.page_layout

 elif url == '/hole_section':

 return hole_section.page_layout

 elif url == '/wellpath':

 return wellpath.page_layout

 elif url == '/fluid':

 return fluid.page_layout

 elif url == '/drillstring':

 return drillstring.page_layout

 elif url == '/geopressures':

 return geopressures.page_layout

 elif url == '/geothermal':

 return geothermal.page_layout

 elif url == '/openlab':

 return open_lab.page_layout

#callback for mulltipage persistence of the wellbore dropdown

@app.callback(

 Output('external-page-wells', 'style'),

 [Input('url', 'pathname')]

)

def hide_external(url):

 if url == '/wells':

 return {'display': 'block'}

 else:

 return {'display': 'none'}

#callback to display the selected wellbore name

@app.callback(

 Output('dropdown-output', 'children'),

 [Input('wells-dropdown', 'value')]

)

def display_dropdown_contents(val):

 if val:

 return f'Wellbore selected: {wells_dict[val]}'

#run the app

if __name__ == '__main__':

 app.run_server()

wells.py

import dash_table

58

import dash_html_components as html

import pandas as pd

#read data from csv

df_wells = pd.read_csv('Data/volve_wells.csv', sep=';')

#define wells page layout and content

page_layout = html.Div([

 dash_table.DataTable(

 id='wells-table',

 columns=[{"name": i, "id": i} for i in df_wells.columns],

 data=df_wells.to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-weight': 'bold'},

 style_cell={'padding':'10px', 'font-family': 'Calibri', 'font-

size': '16px', 'width': '100px'}

)], style={'width':'70%'})

hole_section.py

import dash_table

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.graph_objs as go

import pandas as pd

from app import app

#function to create hole section plot

def section_plot(df):

 x=df['N/S (m)'].max()-df['N/S (m)'].min()

 y=df['E/W (m)'].max()-df['E/W (m)'].min()

 z=df['TVD (m RKB)'].max()-df['TVD (m RKB)'].min()

 trace1 = go.Scatter3d(

 x=df[df['Section (in)']==30]['N/S (m)'],

 y=df[df['Section (in)']==30]['E/W (m)'],

 z=df[df['Section (in)']==30]['TVD (m RKB)'],

 mode='lines',

 name='Cased hole',

 line=dict(

 color='rgb(5,133,133)',

 width=2*30

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==30].index],

 hoverinfo='text',

 showlegend=True

)

 trace2 = go.Scatter3d(

 x=df[df['Section (in)']==20]['N/S (m)'],

59

 y=df[df['Section (in)']==20]['E/W (m)'],

 z=df[df['Section (in)']==20]['TVD (m RKB)'],

 mode='lines',

 name='Cased hole',

 line=dict(

 color='rgb(5,133,133)',

 width=2*20

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==20].index],

 hoverinfo='text',

 showlegend=False

)

 trace3 = go.Scatter3d(

 x=df[df['Section (in)']==14]['N/S (m)'],

 y=df[df['Section (in)']==14]['E/W (m)'],

 z=df[df['Section (in)']==14]['TVD (m RKB)'],

 mode='lines',

 name='Cased hole',

 line=dict(

 color='rgb(5,133,133)',

 width=2*14

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==14].index],

 hoverinfo='text',

 showlegend=False

)

 trace4 = go.Scatter3d(

 x=df[df['Section (in)']==13.375]['N/S (m)'],

 y=df[df['Section (in)']==13.375]['E/W (m)'],

 z=df[df['Section (in)']==13.375]['TVD (m RKB)'],

 mode='lines',

 name='Cased hole',

 line=dict(

 color='rgb(5,133,133)',

 width=2*13.375

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

60

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==13.375].index],

 hoverinfo='text',

 showlegend=False

)

 trace5 = go.Scatter3d(

 x=df[df['Section (in)']==12.25]['N/S (m)'],

 y=df[df['Section (in)']==12.25]['E/W (m)'],

 z=df[df['Section (in)']==12.25]['TVD (m RKB)'],

 mode='lines',

 name='Open hole',

 line=dict(

 color='rgb(198,137,75)',

 width=2*12.25

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==12.25].index],

 hoverinfo='text',

 showlegend=True

)

 trace6 = go.Scatter3d(

 x=df[df['Section (in)']==9.625]['N/S (m)'],

 y=df[df['Section (in)']==9.625]['E/W (m)'],

 z=df[df['Section (in)']==9.625]['TVD (m RKB)'],

 mode='lines',

 name='Cased hole',

 line=dict(

 color='rgb(5,133,133)',

 width=2*9.625

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==9.625].index],

 hoverinfo='text',

 showlegend=False

)

 trace7 = go.Scatter3d(

 x=df[df['Section (in)']==8.5]['N/S (m)'],

 y=df[df['Section (in)']==8.5]['E/W (m)'],

 z=df[df['Section (in)']==8.5]['TVD (m RKB)'],

61

 mode='lines',

 name='Open hole',

 line=dict(

 color='rgb(198,137,75)',

 width=2*8.5

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==8.5].index],

 hoverinfo='text',

 showlegend=True

)

 trace8 = go.Scatter3d(

 x=df[df['Section (in)']==7]['N/S (m)'],

 y=df[df['Section (in)']==7]['E/W (m)'],

 z=df[df['Section (in)']==7]['TVD (m RKB)'],

 mode='lines',

 name='Cased hole',

 line=dict(

 color='rgb(5,133,133)',

 width=2*7

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==7].index],

 hoverinfo='text',

 showlegend=False

)

 trace9 = go.Scatter3d(

 x=df[df['Section (in)']==6.625]['N/S (m)'],

 y=df[df['Section (in)']==6.625]['E/W (m)'],

 z=df[df['Section (in)']==6.625]['TVD (m RKB)'],

 mode='lines',

 name='Cased hole',

 line=dict(

 color='rgb(5,133,133)',

 width=2*6.625

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

62

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==6.625].index],

 hoverinfo='text',

 showlegend=False

)

 trace10 = go.Scatter3d(

 x=df[df['Section (in)']==6]['N/S (m)'],

 y=df[df['Section (in)']==6]['E/W (m)'],

 z=df[df['Section (in)']==6]['TVD (m RKB)'],

 mode='lines',

 name='Open hole',

 line=dict(

 color='rgb(198,137,75)',

 width=2*6

),

 text = [

 "Section: {} in
"

 "TVD: {} m
"

 "MD: {} m
"

 .format(

 df['Section (in)'].loc[i],

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

)

 for i in df[df['Section (in)']==6].index],

 hoverinfo='text',

 showlegend=True

)

 data =

[trace1,trace2,trace3,trace4,trace5,trace6,trace7,trace8,trace9,trace10]

 layout = dict(

 width=900,

 height=800,

 margin=dict(t=0,b=0, pad=0),

 autosize=False,

 legend=dict(x=1,y=0.85),

 hoverlabel=dict(

 bgcolor='rgb(255,255,255)',

 bordercolor='rgb(0,0,0)'

),

 hovermode='closest',

 scene=dict(

 xaxis=dict(

 title='Northing (m)',

 gridcolor='rgb(169,169,169)',

 zerolinecolor='rgb(169,169,169)',

 showbackground=True,

 backgroundcolor='rgb(255,255,255)',

 showspikes=False

),

 yaxis=dict(

 title='Easting (m)',

 gridcolor='rgb(169,169,169)',

 zerolinecolor='rgb(169,169,169)',

 showbackground=True,

 backgroundcolor='rgb(255,255,255)',

 showspikes=False

63

),

 zaxis=dict(

 title='Depth (m)',

 gridcolor='rgb(169,169,169)',

 zerolinecolor='rgb(169,169,169)',

 showbackground=True,

 backgroundcolor='rgb(255,255,255)',

 showspikes=False,

 autorange='reversed'

),

 camera=dict(

 up=dict(

 x=0,

 y=0,

 z=1

),

 eye=dict(

 x=-1.25,

 y=1.25,

 z=0.5,

)

),

 aspectmode = 'manual',

 aspectratio=dict(x=x/z, y=y/z, z=1)

)

)

 fig = dict(data=data, layout=layout)

 return fig

#default wellbore

df_survey = pd.read_csv(f'Data/Hole_section/Plot/Volve_15_9_19_A.csv',

sep=';', float_precision='round_trip')

df_hsection = pd.read_csv(f'Data/Hole_section/Table/Volve_15_9_19_A.csv',

sep=';', float_precision='round_trip')

#define hole section page layout and content

page_layout = html.Div([

 html.H3(['Hole section']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'border-

bottom': '1px solid black', 'font-weight': 'bold'}),

 html.Br(),

 html.Div(

 id='hole-section',

 children=[

 html.Div(dcc.Graph(

 id='hsection-graph',

 figure=section_plot(df_survey),

 config=dict(displayModeBar=False)

), style={'display': 'inline-block', 'float':

'left', 'border-right': '1px solid black'}),

 html.Div(children=[

 html.Br(),

 dash_table.DataTable(

 id='hsection-table',

 columns=[

 {"name": 'Type', "id": 'Type'},

 {"name": 'From depth (m)', "id": 'From depth (m)'},

 {"name": 'To depth (m)', "id": 'To depth (m)'},

 {"name": 'OD (in)', "id": 'OD (in)'},

 {"name": 'ID (in)', "id": 'ID (in)'}

64

],

 data=df_hsection.to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-weight':

'bold'},

 style_cell={'padding':'10px', 'font-family': 'Calibri',

'font-size': '16px'}

)], style={'display': 'inline-

block', 'paddingTop': '100px', 'paddingLeft': '75px'})

]

)

])

#callback to update table according to wellbore selection

@app.callback(

 Output('hsection-table', 'data'),

 [Input('wells-dropdown', 'value')]

)

def display_hsection_table(val):

 df_hsection = pd.read_csv(f'Data/Hole_section/Table/Volve_{val}.csv',

sep=';', float_precision='round_trip')

 data=df_hsection.to_dict("rows")

 return data

#callback to update plot according to wellbore selection

@app.callback(

 Output('hsection-graph', 'figure'),

 [Input('wells-dropdown', 'value')]

)

def display_hsection_graph(val):

 df_survey = pd.read_csv(f'Data/Hole_section/Plot/Volve_{val}.csv',

sep=';', float_precision='round_trip')

 return section_plot(df_survey)

wellpath.py

import dash_table

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.graph_objs as go

import pandas as pd

from app import app

#function to create wellpath plot

def wellpath_plot(df):

 x=df['N/S (m)'].max()-df['N/S (m)'].min()

 y=df['E/W (m)'].max()-df['E/W (m)'].min()

 z=df['TVD (m RKB)'].max()-df['TVD (m RKB)'].min()

 trace0 = go.Scatter3d(

 x=df['N/S (m)'],

 y=df['E/W (m)'],

 z=df['TVD (m RKB)'],

 mode='lines',

 line=dict(

 color='rgb(211,211,211)',

 width=20

),

 hoverinfo='none',

65

 showlegend=False

)

 trace1 = go.Scatter3d(

 x=df[df['DLS (deg/30m)']<2]['N/S (m)'],

 y=df[df['DLS (deg/30m)']<2]['E/W (m)'],

 z=df[df['DLS (deg/30m)']<2]['TVD (m RKB)'],

 mode='markers',

 marker=dict(

 color='rgb(128,196,196)',

 size=5

),

 name='DLS (°/30m): < 2',

 text = [

 "TVD: {} m
"

 "MD: {} m
"

 "Inclination: {} °
"

 "Azimuth: {} °
"

 "DLS: {} °/30m"

 .format(

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

 df['Inc (deg)'].loc[i],

 df['Azim (deg)'].loc[i],

 df['DLS (deg/30m)'].loc[i]

)

 for i in df[df['DLS (deg/30m)']<2].index],

 hoverinfo='text'

)

 trace2 = go.Scatter3d(

 x=df[(df['DLS (deg/30m)']>=2)&(df['DLS (deg/30m)']<4)]['N/S (m)'],

 y=df[(df['DLS (deg/30m)']>=2)&(df['DLS (deg/30m)']<4)]['E/W (m)'],

 z=df[(df['DLS (deg/30m)']>=2)&(df['DLS (deg/30m)']<4)]['TVD (m

RKB)'],

 mode='markers',

 marker=dict(

 color='rgb(0,115,172)',

 size=5

),

 name='DLS (°/30m): 2-4',

 text = [

 "TVD: {} m
"

 "MD: {} m
"

 "Inclination: {} °
"

 "Azimuth: {} °
"

 "DLS: {} °/30m"

 .format(

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

 df['Inc (deg)'].loc[i],

 df['Azim (deg)'].loc[i],

 df['DLS (deg/30m)'].loc[i]

)

 for i in df[(df['DLS (deg/30m)']>=2)&(df['DLS

(deg/30m)']<4)].index],

 hoverinfo='text'

)

 trace3 = go.Scatter3d(

 x=df[(df['DLS (deg/30m)']>=4)&(df['DLS (deg/30m)']<6)]['N/S (m)'],

66

 y=df[(df['DLS (deg/30m)']>=4)&(df['DLS (deg/30m)']<6)]['E/W (m)'],

 z=df[(df['DLS (deg/30m)']>=4)&(df['DLS (deg/30m)']<6)]['TVD (m

RKB)'],

 mode='markers',

 marker=dict(

 color='rgb(120,123,194)',

 size=5

),

 name='DLS (°/30m): 4-6',

 text = [

 "TVD: {} m
"

 "MD: {} m
"

 "Inclination: {} °
"

 "Azimuth: {} °
"

 "DLS: {} °/30m"

 .format(

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

 df['Inc (deg)'].loc[i],

 df['Azim (deg)'].loc[i],

 df['DLS (deg/30m)'].loc[i]

)

 for i in df[(df['DLS (deg/30m)']>=4)&(df['DLS

(deg/30m)']<6)].index],

 hoverinfo='text'

)

 trace4 = go.Scatter3d(

 x=df[(df['DLS (deg/30m)']>=6)&(df['DLS (deg/30m)']<8)]['N/S (m)'],

 y=df[(df['DLS (deg/30m)']>=6)&(df['DLS (deg/30m)']<8)]['E/W (m)'],

 z=df[(df['DLS (deg/30m)']>=6)&(df['DLS (deg/30m)']<8)]['TVD (m

RKB)'],

 mode='markers',

 marker=dict(

 color='rgb(183,18,124)',

 size=5

),

 name='DLS (°/30m): 6-8',

 text = [

 "TVD: {} m
"

 "MD: {} m
"

 "Inclination: {} °
"

 "Azimuth: {} °
"

 "DLS: {} °/30m"

 .format(

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

 df['Inc (deg)'].loc[i],

 df['Azim (deg)'].loc[i],

 df['DLS (deg/30m)'].loc[i]

)

 for i in df[(df['DLS (deg/30m)']>=6)&(df['DLS

(deg/30m)']<8)].index],

 hoverinfo='text'

)

 trace5 = go.Scatter3d(

 x=df[df['DLS (deg/30m)']>8]['N/S (m)'],

 y=df[df['DLS (deg/30m)']>8]['E/W (m)'],

 z=df[df['DLS (deg/30m)']>8]['TVD (m RKB)'],

 mode='markers',

67

 marker=dict(

 color='rgb(204,19,51)',

 size=5

),

 name='DLS (°/30m): > 8',

 text = [

 "TVD: {} m
"

 "MD: {} m
"

 "Inclination: {} °
"

 "Azimuth: {} °
"

 "DLS: {} °/30m"

 .format(

 df['TVD (m RKB)'].loc[i],

 df['MD (m RKB)'].loc[i],

 df['Inc (deg)'].loc[i],

 df['Azim (deg)'].loc[i],

 df['DLS (deg/30m)'].loc[i]

)

 for i in df[df['DLS (deg/30m)']>8].index],

 hoverinfo='text'

)

 data = [trace0,trace1,trace2,trace3,trace4,trace5]

 layout = dict(

 width=900,

 height=800,

 margin=dict(t=0,b=0, pad=0),

 autosize=False,

 legend=dict(x=1,y=0.85),

 hoverlabel=dict(

 bgcolor='rgb(255,255,255)',

 bordercolor='rgb(0,0,0)'

),

 hovermode='closest',

 scene=dict(

 xaxis=dict(

 title='Northing (m)',

 gridcolor='rgb(169,169,169)',

 zerolinecolor='rgb(169,169,169)',

 showbackground=True,

 backgroundcolor='rgb(255,255,255)',

 showspikes=False

),

 yaxis=dict(

 title='Easting (m)',

 gridcolor='rgb(169,169,169)',

 zerolinecolor='rgb(169,169,169)',

 showbackground=True,

 backgroundcolor='rgb(255,255,255)',

 showspikes=False

),

 zaxis=dict(

 title='Depth (m)',

 gridcolor='rgb(169,169,169)',

 zerolinecolor='rgb(169,169,169)',

 showbackground=True,

 backgroundcolor='rgb(255,255,255)',

 showspikes=False,

 autorange='reversed'

),

68

 camera=dict(

 up=dict(

 x=0,

 y=0,

 z=1

),

 eye=dict(

 x=-1.25,

 y=1.25,

 z=0.5,

)

),

 aspectratio = dict(x=x/z, y=y/z, z=1),

 aspectmode = 'manual'

)

)

 fig = dict(data=data, layout=layout)

 return fig

#default wellbore

df_survey = pd.read_csv(f'Data/Wellpath/Volve_15_9_19_A.csv', sep=';',

float_precision='round_trip')

#define wellpath page layout and content

page_layout = html.Div([

 html.H3(['Wellpath']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'border-

bottom': '1px solid black', 'font-weight': 'bold'}),

 html.Br(),

 html.Div(

 id='wellpath',

 children=[

 html.Div(dcc.Graph(

 id='wellpath-graph',

 figure=wellpath_plot(df_survey),

 config=dict(displayModeBar=False)

), style={'display': 'inline-block', 'float':

'left', 'paddingRight': '10px', 'border-right': '1px solid black'}),

 html.Div(children=[

 html.Br(),

 dash_table.DataTable(

 id='wellpath-table',

 columns=[

 {"name": 'MD (m RKB)', "id": 'MD (m RKB)'},

 {"name": 'Inc. (°)', "id": 'Inc (deg)'},

 {"name": 'Azimuth (°)', "id": 'Azim (deg)'},

 {"name": 'TVD (m RKB)', "id": 'TVD (m RKB)'},

 {"name": 'DLS (°/30m)', "id": 'DLS (deg/30m)'}

],

 n_fixed_rows=1,

 data=df_survey[['MD (m RKB)', 'Inc (deg)', 'Azim

(deg)', 'TVD (m RKB)', 'DLS (deg/30m)']].to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-weight':

'bold'},

 style_cell={'padding':'10px', 'font-family': 'Calibri',

'font-size': '16px', 'width': '100px'}

)], style={'display': 'inline-

block', 'paddingTop': '100px', 'paddingLeft': '25px'})

]

)

])

69

#callback to update table according to wellbore selection

@app.callback(

 Output('wellpath-table', 'data'),

 [Input('wells-dropdown', 'value')]

)

def display_wellpath_table(val):

 df_survey = pd.read_csv(f'Data/Wellpath/Volve_{val}.csv', sep=';',

float_precision='round_trip')

 data=df_survey[['MD (m RKB)', 'Inc (deg)', 'Azim (deg)', 'TVD (m RKB)',

'DLS (deg/30m)']].to_dict("rows")

 return data

#callback to update plot according to wellbore selection

@app.callback(

 Output('wellpath-graph', 'figure'),

 [Input('wells-dropdown', 'value')]

)

def display_wellpath_graph(val):

 df_survey = pd.read_csv(f'Data/Wellpath/Volve_{val}.csv', sep=';',

float_precision='round_trip')

 return wellpath_plot(df_survey)

fluid.py

import dash_table

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.graph_objs as go

import pandas as pd

from app import app

#default wellbore

df_fluid = pd.read_csv('Data/Fluid/Volve_15_9_19_A.csv', sep=';',

float_precision='round_trip')

#define fluid page layout and content

page_layout = html.Div([

 html.H3(['Fluid']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'border-

bottom': '1px solid black', 'font-weight': 'bold'}),

 html.Br(),

 html.Div([

 dash_table.DataTable(

 id='fluid-table',

 columns=[{"name": i, "id": i} for i in df_fluid.columns],

 data=df_fluid.to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-weight':

'bold'},

 style_cell={'padding':'10px', 'font-family': 'Calibri',

'font-size': '16px'}

)], style={'paddingTop': '10px', 'width':'50%'})

])

#update table according to wellbore selection

@app.callback(

70

 Output('fluid-table', 'data'),

 [Input('wells-dropdown', 'value')]

)

def display_fluid_table(val):

 df_fluid = pd.read_csv(f'Data/Fluid/Volve_{val}.csv', sep=';',

float_precision='round_trip')

 data=df_fluid.to_dict("rows")

 return data

drillstring.py

import dash_table

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.graph_objs as go

import pandas as pd

from app import app

#default wellbore section

df_drillstring = pd.read_csv('Data/Drillstring/Volve_15_9_19_A_8_5.csv',

sep=';', float_precision='round_trip')

#define drillstring page layout and content

page_layout = html.Div([

 html.H3(['Drillstring']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'font-

weight': 'bold', 'border-bottom': '1px solid black'}),

 html.Br(),

 dcc.Dropdown(

 options=[{'label':'8.5 in section', 'value':'8_5'}],

 placeholder = 'Select a hole section',

 id='drillstring-dropdown',

 style={'width':'50%'}

),

 html.Div(),

 html.Br(),

 html.Div(id='table-container', children=[

 dash_table.DataTable(

 id='drillstring-table',

 columns=[{'name': i, 'id': i} for i in df_drillstring.columns],

 data=df_drillstring.to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-weight': 'bold'},

 style_cell={'padding':'10px', 'font-family': 'Calibri', 'font-

size': '16px'}

)], style={'width':'50%', 'paddingTop':'25px'})

])

#update dropdown according to wellbore selection

@app.callback(

 Output('drillstring-dropdown', 'options'),

 [Input('wells-dropdown', 'value')]

)

def change_drillstring_dropdown(val):

 drillstring_dict = {

 '15_9_19_A': [8.5],

 '15_9_19_B': [8.5],

 '15_9_19_BT2': [6, 8.5],

71

 '15_9_19_S': [12.25, 17.5],

 '15_9_19_SR': [8.5, 12.25],

 '15_9_F_1': [8.5, 17.5],

 '15_9_F_1_A': [8.5],

 '15_9_F_1_B': [8.5, 12.25],

 '15_9_F_1_C': [8.5, 12.25, 17.5],

 '15_9_F_4': [8.5, 12.25],

 '15_9_F_5': [8.5, 12.25],

 '15_9_F_7': [12.25],

 '15_9_F_9': [12.25],

 '15_9_F_9_A': [8.5, 12.25],

 '15_9_F_10': [8.5, 12.25, 17.5],

 '15_9_F_11': [8.5, 17.5],

 '15_9_F_11_A': [8.5],

 '15_9_F_11_B': [8.5, 12.25],

 '15_9_F_12': [8.5, 12.25, 17.5],

 '15_9_F_14': [8.5, 12.25, 17.5],

 '15_9_F_15': [8.5, 12.25],

 '15_9_F_15_A': [8.5, 17.5],

 '15_9_F_15_B': [8.5],

 '15_9_F_15_C': [8.5, 12.25],

 '15_9_F_15_D': [8.5, 12.25, 17.5]

 }

 if val:

 drillstring_options = drillstring_dict[val]

 drillstring_options = list(reversed(drillstring_options))

 options=[{'label':str(drillstring_options[i])+' in section',

'value':str(drillstring_options[i]).replace('.', '_')} for i in

range(len(drillstring_options))]

 return options

update table according to wellbore and hole section selection

@app.callback(

 Output('drillstring-table', 'data'),

 [Input('wells-dropdown', 'value'), Input('drillstring-dropdown',

'value')]

)

def display_drillstring_table(val1, val2):

 df_drillstring =

pd.read_csv(f'Data/Drillstring/Volve_{val1}_{val2}.csv', sep=';',

float_precision='round_trip')

 data=df_drillstring.to_dict("rows")

 return data

#hide table until selection is made

@app.callback(

 Output('table-container', 'style'),

 [Input('drillstring-dropdown', 'value')]

)

def hide_table(input):

 if input:

 return {'width':'50%'}

 else:

 return {'display':'none'}

geopressures.py

import dash_table

import dash_core_components as dcc

72

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.graph_objs as go

import pandas as pd

from app import app

#function to create geopressures plot

def pressure_plot(df):

 trace0 = go.Scatter(

 x=df['Pore pressure (s.g.)'],

 y=[0 for num in df.index],

 mode='markers',

 marker = dict(

 color = 'rgb(0,0,0)',

 size = 0.01,

),

 name='dummy_data',

 hoverinfo='none',

 showlegend=False,

)

 trace1 = go.Scatter(

 x=df['Pore pressure (s.g.)'],

 y=df['TVD (m)'],

 mode='lines',

 line = dict(

 color = ('rgb(183,18,124)'),

 width = 2

),

 name='Pore pressure',

 text=[

 "TVD: {} m
"

 "Pore pressure: {} s.g.
"

 "Fracture pressure: {} s.g.
"

 "Pressure window: {} s.g.
"

 .format(

 df['TVD (m)'].loc[num],

 df['Pore pressure (s.g.)'].loc[num],

 df['Fracture pressure (s.g.)'].loc[num],

 round(df['Fracture pressure (s.g.)'].loc[num]-df['Pore

pressure (s.g.)'].loc[num], 3)

)

 for num in df.index

],

 hoverinfo="text",

 hoverlabel=dict(

 bgcolor='rgb(255,255,255)',

 bordercolor='rgb(0,0,0)'

),

 showlegend=True,

)

 trace2 = go.Scatter(

 x=df['Fracture pressure (s.g.)'],

 y=df['TVD (m)'],

 mode='lines',

 line = dict(

 color = ('rgb(0,115,172)'),

 width = 2

),

73

 name='Fracture pressure',

 text=[

 "TVD: {} m
"

 "Pore pressure: {} s.g.
"

 "Fracture pressure: {} s.g.
"

 "Pressure window: {} s.g.
"

 .format(

 df['TVD (m)'].loc[num],

 df['Pore pressure (s.g.)'].loc[num],

 df['Fracture pressure (s.g.)'].loc[num],

 round(df['Fracture pressure (s.g.)'].loc[num]-df['Pore

pressure (s.g.)'].loc[num], 3)

)

 for num in df.index

],

 hoverinfo="text",

 hoverlabel=dict(

 bgcolor='rgb(255,255,255)',

 bordercolor='rgb(0,0,0)'

),

 showlegend=True,

)

 data = [trace0,trace1,trace2]

 layout = go.Layout(

 title=None,

 height = 550,

 width = 800,

 margin=dict(t=25, pad=0),

 autosize = False,

 xaxis=dict(

 title='Pressure
(s.g.)',

 range=[0.8, 2.0]

),

 yaxis=dict(

 title='TVD
(m)',

 autorange='reversed'),

 legend=dict(x=0, y=-0.3),

 hovermode='closest'

)

 fig = go.Figure(data=data,layout=layout)

 return fig

#default wellbore

df_geopressures = pd.read_csv(f'Data/Geopressures/Volve_15_9_19_A.csv',

sep=';', float_precision='round_trip')

#define geopressures page layout and content

page_layout = html.Div([

 html.H3(['Geopressures']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'border-

bottom': '1px solid black', 'font-weight': 'bold'}),

 html.Br(),

 html.Div(

 id='geopressures',

 children=[

 html.Div(children=[

 html.Div(dcc.Graph(

 id='geopressures-graph',

 figure=pressure_plot(df_geopressures),

 config=dict(displayModeBar=False)

74

), style={'display': 'inline-block', 'float':

'left', 'border-right': '1px solid black'}),

 html.Div(children=[

 dash_table.DataTable(

 id='geopressures-table',

 columns=[

 {"name": 'TVD (m)', "id": 'TVD (m)'},

 {"name": 'Pore pressure (s.g.)', "id": 'Pore

pressure (s.g.)'},

 {"name": 'Fracture pressure (s.g.)', "id":

'Fracture pressure (s.g.)'}

],

 n_fixed_rows=1,

 data=df_geopressures.to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-

weight': 'bold'},

 style_cell={'padding':'10px', 'font-family':

'Calibri', 'font-size': '16px'},

 style_cell_conditional=[

 {'if': {'column_id': 'TVD (m)'},

 'width': '100px'},

 {'if': {'column_id': 'Pore pressure (s.g.)'},

 'width': '175px'},

 {'if': {'column_id': 'Fracture pressure

(s.g.)'},

 'width': '175px'},

])], style={'display': 'inline-block', 'paddingTop': '50px', 'paddingLeft':

'150px'})

])])])

#callback to update table according to wellbore selection

@app.callback(

 Output('geopressures-table', 'data'),

 [Input('wells-dropdown', 'value')]

)

def display_geopressures_table(val):

 df_geopressures = pd.read_csv(f'Data/Geopressures/Volve_{val}.csv',

sep=';', float_precision='round_trip')

 data=df_geopressures.to_dict("rows")

 return data

#callback to update plot according to wellbore selection

@app.callback(

 Output('geopressures-graph', 'figure'),

 [Input('wells-dropdown', 'value')]

)

def display_geopressures_graph(val):

 df_geopressures = pd.read_csv(f'Data/Geopressures/Volve_{val}.csv',

sep=';', float_precision='round_trip')

 return pressure_plot(df_geopressures)

geothermal.py

import dash_table

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.graph_objs as go

import pandas as pd

75

from app import app

#function to create temperature plot

def temp_plot(df):

 trace1 = go.Scatter(

 x=df['Temperature (degC)'],

 y=df['TVD (m)'],

 mode='lines',

 line = dict(

 color = ('rgb(0,115,172)'),

 width = 2

),

 name='Temperature gradient',

 text=[

 "TVD: {} m
"

 "Temperature: {} °C
"

 "Medium: {}
"

 .format(

 df['TVD (m)'].loc[num],

 df['Temperature (degC)'].loc[num],

 df['Medium'].loc[num]

)

 for num in df.index

],

 hoverinfo="text",

 hoverlabel=dict(

 bgcolor='rgb(255,255,255)',

 bordercolor='rgb(0,0,0)'

),

 showlegend=False

)

 data = [trace1]

 layout = go.Layout(

 title=None,

 height = 550,

 width = 800,

 margin=dict(t=25, pad=0),

 autosize = False,

 xaxis=dict(

 title='Temperature
(°C)',

 range=[0, 130]

),

 yaxis=dict(

 title='TVD
(m)',

 autorange='reversed'),

 hovermode='closest'

)

 fig = go.Figure(data=data,layout=layout)

 return fig

#default wellbore

df_geothermal = pd.read_csv(f'Data/Geothermal/Plot/Volve_15_9_19_A.csv',

sep=';', float_precision='round_trip')

df_geothermal_table =

pd.read_csv(f'Data/Geothermal/Table/Volve_15_9_19_A.csv', sep=';',

float_precision='round_trip')

#define geothermal page layout and content

page_layout = html.Div([

76

 html.H3(['Geothermal']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'border-

bottom': '1px solid black', 'font-weight': 'bold'}),

 html.Br(),

 html.Div(

 id='geothermal',

 children=[

 html.Div(children=[

 html.Div(dcc.Graph(

 id='geothermal-graph',

 figure=temp_plot(df_geothermal),

 config=dict(displayModeBar=False)

), style={'display': 'inline-block', 'float':

'left', 'border-right': '1px solid black'}),

 html.Div(dash_table.DataTable(

 id='geothermal-table',

 columns=[

 {"name": 'Medium', "id": 'Medium'},

 {"name": 'From TVD (m)', "id": 'From TVD (m)'},

 {"name": 'Temp. gradient (°C/100m)', "id": 'Temp.

gradient (°C/100m)'}

],

 data=df_geothermal_table.to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-weight':

'bold'},

 style_cell={'padding':'10px', 'font-family': 'Calibri',

'font-size': '16px'}

), style={'display': 'inline-

block', 'paddingTop': '50px', 'paddingLeft': '150px'})])

]

)

])

#callback to update table according to wellbore selection

@app.callback(

 Output('geothermal-table', 'data'),

 [Input('wells-dropdown', 'value')]

)

def display_geothermal_table(val):

 df_geothermal_table =

pd.read_csv(f'Data/Geothermal/Table/Volve_{val}.csv', sep=';',

float_precision='round_trip')

 data=df_geothermal_table.to_dict("rows")

 return data

#callback to update plot according to wellbore selection

@app.callback(

 Output('geothermal-graph', 'figure'),

 [Input('wells-dropdown', 'value')]

)

def display_geothermal_graph(val):

 df_geothermal = pd.read_csv(f'Data/Geothermal/Plot/Volve_{val}.csv',

sep=';', float_precision='round_trip')

 return temp_plot(df_geothermal)

open_lab.py

import dash_core_components as dcc

import dash_html_components as html

77

from dash.dependencies import Input, Output, State

import pandas as pd

import json

import openlab

from app import app

#wellbores for dropdown selection

well_dict = {

 '15_9_19_A': '15/9-19 A',

 '15_9_19_B': '15/9-19 B',

 '15_9_19_BT2': '15/9-19 BT2',

 '15_9_19_S': '15/9-19 S',

 '15_9_19_SR': '15/9-19 SR',

 '15_9_F_1': '15/9-F-1',

 '15_9_F_1_A': '15/9-F-1 A',

 '15_9_F_1_B': '15/9-F-1 B',

 '15_9_F_1_C': '15/9-F-1 C',

 '15_9_F_4': '15/9-F-4',

 '15_9_F_5': '15/9-F-5',

 '15_9_F_7': '15/9-F-7',

 '15_9_F_9': '15/9-F-9',

 '15_9_F_9_A': '15/9-F-9 A',

 '15_9_F_10': '15/9-F-10',

 '15_9_F_11': '15/9-F-11',

 '15_9_F_11_A': '15/9-F11 A',

 '15_9_F_11_B': '15/9-F-11 B',

 '15_9_F_12': '15/9-F-12',

 '15_9_F_14': '15/9-F-14',

 '15_9_F_15': '15/9-F-15',

 '15_9_F_15_A': '15/9-F-15 A',

 '15_9_F_15_B': '15/9-F-15 B',

 '15_9_F_15_C': '15/9-F-15 C',

 '15_9_F_15_D': '15/9-F-15 D'

 }

#define openlab page layout

page_layout = html.Div([

 html.H3(['Create a well configuration in OpenLab Drilling Simulator']),

 html.Div(['Choose a wellbore and a hole section'],

style={'paddingBottom':'10px'}),

 dcc.Dropdown(

 options=[{'label':value, 'value':key} for key, value in

well_dict.items()],

 placeholder = 'Select a wellbore',

 id='wellbore-dropdown',

 style={'width':'50%'}

),

 html.Br(),

 dcc.Dropdown(

 placeholder = 'Select a hole section',

 id='section-dropdown',

 style={'width':'50%'}),

 html.Br(),

 html.Div(["Generate Python login script in OpenLab Web

Client\Account\Settings"], style={'paddingBottom':'10px'}),

 dcc.Textarea(

 id='text-input',

 placeholder='Paste here the Python login

script\nusername="string"\napikey="string"\nlicenseguid="string"',

 rows=4,

78

 style={'width': '55%'}),

 html.Br(),

 html.Div(

 html.Button(

 children='Create configuration',

 id='create-button',

 n_clicks=0,

 style={

 'font-size': '14px',

 'border-radius':'2px',

 'padding':'5px',

 'cursor': 'pointer'}

), style={'paddingTop':'10px'}),

 html.Div(id='text-output')

])

#update hole section dropdown according to wellbore selection

@app.callback(

 Output('section-dropdown', 'options'),

 [Input('wellbore-dropdown', 'value')]

)

def change_section_dropdown(val):

 section_dict = {

 '15_9_19_A': [8.5],

 '15_9_19_B': [8.5],

 '15_9_19_BT2': [6, 8.5],

 '15_9_19_S': [12.25, 17.5],

 '15_9_19_SR': [8.5, 12.25],

 '15_9_F_1': [8.5, 17.5],

 '15_9_F_1_A': [8.5],

 '15_9_F_1_B': [8.5, 12.25],

 '15_9_F_1_C': [8.5, 12.25, 17.5],

 '15_9_F_4': [8.5, 12.25],

 '15_9_F_5': [8.5, 12.25],

 '15_9_F_7': [12.25],

 '15_9_F_9': [12.25],

 '15_9_F_9_A': [8.5, 12.25],

 '15_9_F_10': [8.5, 12.25, 17.5],

 '15_9_F_11': [8.5, 17.5],

 '15_9_F_11_A': [8.5],

 '15_9_F_11_B': [8.5, 12.25],

 '15_9_F_12': [8.5, 12.25, 17.5],

 '15_9_F_14': [8.5, 12.25, 17.5],

 '15_9_F_15': [8.5, 12.25],

 '15_9_F_15_A': [8.5, 17.5],

 '15_9_F_15_B': [8.5],

 '15_9_F_15_C': [8.5, 12.25],

 '15_9_F_15_D': [8.5, 12.25, 17.5]

 }

 if val:

 section_options = section_dict[val]

 section_options = list(reversed(section_options))

 options=[{'label':str(section_options[i])+' in section',

'value':str(section_options[i]).replace('.', '_')} for i in

range(len(section_options))]

 return options

#create configuration in OpenLab

@app.callback(

 Output('text-output', 'children'),

 [Input('create-button', 'n_clicks')],

79

 [

 State('text-input', 'value'),

 State('wellbore-dropdown', 'value'),

 State('section-dropdown', 'value')]

)

def create_config(n_clicks, val, wellbore, section):

 if (val and wellbore and section):

 input_text = val

 input_text.strip()

 text = input_text.split()

 username = text[0][text[0].find('=')+2:-1]

 apikey = text[1][text[1].find('=')+2:-1]

 licenseguid = text[2][text[2].find('=')+2:-1]

 session =

openlab.http_client(username=username,apikey=apikey,licenseguid=licenseguid

)

 with open(f'Configurations/{wellbore}_section_{section}.json', 'r')

as f:

 data = json.load(f)

 new_config =

session.create_configuration(f'{wellbore}_section_{section}', data['Data'])

Appendix E

Python code to create the Volve-DDR app. The same scripts together with documentation,

requirements and data files are pushed to https://gitlab.com/a-nagy/volve-ddr-app. Here the

Data folder holds a CSV file that contains general well data to populate the opening screen,

while the Reports folder contains the DDRs in XML format. As the web application itself is a

multi-page app, the scripts are splitted into separate Python files to keep the editing and

maintenance of the code simpler. The same file structure is presented here. The

data_extraction.py file contains the scripts for automated data extraction from the DDRs.

data_extraction.py

import os

import xml.etree.ElementTree as et

import pandas as pd

from datetime import datetime

#function to extract data from the daily drilling reports for the

time/depth curve

def get_timevsdepth(well):

 report_list = os.listdir('Reports')

 time = []

 md = []

 section = []

 summary = []

 df = pd.DataFrame(

 list(zip(

 time,

https://gitlab.com/a-nagy/volve-ddr-app

80

 md,

 section,

 summary

)),

 columns = [

 'Time',

 'MD (m)',

 'Section (in)',

 'Summary'

])

 os.chdir('Reports')

 for file in report_list:

 if file[:-15] == well:

 report_tree = et.parse(file)

 report_root = report_tree.getroot()

 time = []

 md = []

 section = []

 summary = []

 time_temp = True

 md_temp = True

 section_temp = True

 summary_temp = True

 for child in report_root:

 for elem in child:

 if elem.tag ==

'{http://www.witsml.org/schemas/1series}statusInfo':

 for subelem in elem:

 if subelem.tag ==

'{http://www.witsml.org/schemas/1series}dTim':

time.append(datetime.strptime(subelem.text[:16], '%Y-%m-%dT%H:%M'))

 time_temp = False

 elif subelem.tag ==

'{http://www.witsml.org/schemas/1series}md':

 md.append(float(subelem.text) if

float(subelem.text)>0 else 0)

 md_temp = False

 elif subelem.tag ==

'{http://www.witsml.org/schemas/1series}diaHole':

 section.append(float(subelem.text))

 section_temp = False

 elif subelem.tag ==

'{http://www.witsml.org/schemas/1series}sum24Hr':

 summary.append(subelem.text)

 summary_temp = False

 else:

 pass

 if time_temp:

 time.append('None')

 if md_temp:

 md.append(0)

 if section_temp:

 section.append('-')

 if summary_temp:

 summary.append('-')

81

 df = df.append(

 pd.DataFrame(

 list(zip(

 time,

 md,

 section,

 summary

)),

 columns = [

 'Time',

 'MD (m)',

 'Section (in)',

 'Summary'

]),

 ignore_index = True,

 sort = False

)

 df.sort_values(['Time'], inplace=True)

 os.chdir('../')

 return df

#function to extract data from the daily drilling reports for the

operations timeline

def get_operations(well):

 report_list = os.listdir('Reports')

 start = []

 end = []

 md = []

 operation = []

 comment = []

 duration = []

 state = []

 df = pd.DataFrame(

 list(zip(

 start,

 end,

 md,

 duration,

 operation,

 comment,

 state

)),

 columns = [

 'Start',

 'End',

 'MD (m)',

 'Duration',

 'Operation',

 'Comment',

 'State'

])

 os.chdir('Reports')

 for file in report_list:

 if file[:-15] == well:

82

 report_tree = et.parse(file)

 report_root = report_tree.getroot()

 start = []

 end = []

 md = []

 operation = []

 comment = []

 duration = []

 state = []

 for child in report_root:

 for elem in child:

 if elem.tag ==

'{http://www.witsml.org/schemas/1series}activity':

 for subelem in elem:

 if 'dTimStart' in subelem.tag:

start.append(datetime.strptime(subelem.text[:16], '%Y-%m-%dT%H:%M'))

 start_temp =

datetime.strptime(subelem.text[:16], '%Y-%m-%dT%H:%M')

 elif 'dTimEnd' in subelem.tag:

end.append(datetime.strptime(subelem.text[:16], '%Y-%m-%dT%H:%M'))

 end_temp =

datetime.strptime(subelem.text[:16], '%Y-%m-%dT%H:%M')

 elif 'md' in subelem.tag:

 md.append(subelem.text)

 elif 'proprietaryCode' in subelem.tag:

 operation.append(subelem.text)

 elif 'comments' in subelem.tag:

 comment.append(subelem.text)

 elif 'stateDetailActivity' in subelem.tag:

 state.append(subelem.text)

 else:

 pass

 duration.append((end_temp-start_temp))

 df = df.append(

 pd.DataFrame(

 list(zip(

 start,

 end,

 md,

 duration,

 operation,

 comment,

 state

)),

 columns = [

 'Start',

 'End',

 'MD (m)',

 'Duration',

 'Operation',

 'Comment',

 'State'

]),

 ignore_index = True,

 sort = False

)

83

 df.sort_values(['Start'], inplace=True)

 os.chdir('../')

 return df

app.py

import dash

#external stylesheet for css styling

external_stylesheets = ['https://cdn.jsdelivr.net/gh/attilanagy1986/Dash-

css@master/undo.css']

#initiate Dash app

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)

#title of the app

app.title = 'Volve app'

#initiate server

server = app.server

#if set to False, Dash will raise an exception due to the multipage

structure of the app

app.config.suppress_callback_exceptions = True

index.py

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

#import app and the separate app pages

from app import app

import volve_wells

import timevsdepth

import operations

#wellbore names for dropdown selection

wells_dict = {

 '15_9_19_A': '15/9-19 A',

 '15_9_19_B': '15/9-19 B',

 '15_9_19_BT2': '15/9-19 BT2',

 '15_9_19_S': '15/9-19 S',

 '15_9_19_ST2': '15/9-19 ST2',

 '15_9_F_1': '15/9-F-1',

 '15_9_F_1_A': '15/9-F-1 A',

 '15_9_F_1_B': '15/9-F-1 B',

 '15_9_F_1_C': '15/9-F-1 C',

 '15_9_F_4': '15/9-F-4',

 '15_9_F_5': '15/9-F-5',

 '15_9_F_7': '15/9-F-7',

 '15_9_F_9': '15/9-F-9',

 '15_9_F_9_A': '15/9-F-9 A',

 '15_9_F_10': '15/9-F-10',

 '15_9_F_11': '15/9-F-11',

 '15_9_F_11_A': '15/9-F11 A',

 '15_9_F_11_B': '15/9-F-11 B',

 '15_9_F_11_T2': '15/9-F-11 T2',

 '15_9_F_12': '15/9-F-12',

 '15_9_F_14': '15/9-F-14',

84

 '15_9_F_15': '15/9-F-15',

 '15_9_F_15_A': '15/9-F-15 A',

 '15_9_F_15_B': '15/9-F-15 B',

 '15_9_F_15_C': '15/9-F-15 C',

 '15_9_F_15_D': '15/9-F-15 D'

 }

#define the app layout

app.layout = html.Div([

 dcc.Location(id='url'),

 dcc.Link(

 'Volve wells',

 href='/volve_wells',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold'

 }),

 dcc.Link(

 'Time/depth curve',

 href='/timevsdepth',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 dcc.Link(

 'Operations',

 href='/operations',

 style={

 'color': 'rgb(0,0,0)',

 'font-size': '17px',

 'font-weight': 'bold',

 'paddingLeft':'25px'

 }),

 html.Div([

 html.H3(['Select a wellbore'], style={'paddingBottom': '10px',

'font-weight': 'bold', 'border-bottom': '1px solid black'}),

 dcc.Dropdown(

 options=[{'label':value, 'value':key} for key, value in

wells_dict.items()],

 value='15_9_19_A',

 placeholder='Select a wellbore',

 id='wells-dropdown',

 style={'width':'50%'}

),

 html.Br(),

], id='external-page-wells', style={'paddingLeft':'25px'}),

 html.Div(id='page-content')

], style={'font-family': 'Calibri', 'paddingLeft':'25px',

'paddingRight':'25px'})

#callback to update page content

@app.callback(

 Output('page-content', 'children'),

 [Input('url', 'pathname')]

)

def populate_content(url):

 if url == '/volve_wells':

 return volve_wells.page_layout

85

 elif url == '/timevsdepth':

 return timevsdepth.page_layout

 elif url == '/operations':

 return operations.page_layout

#callback for mulltipage persistence of the wellbore dropdown

@app.callback(

 Output('external-page-wells', 'style'),

 [Input('url', 'pathname')]

)

def hide_external(url):

 if url == '/volve_wells':

 return {'display': 'block'}

 else:

 return {'display': 'none'}

#callback to display the selected wellbore name

@app.callback(

 Output('dropdown-output', 'children'),

 [Input('wells-dropdown', 'value')]

)

def display_dropdown_contents(val):

 if val:

 return f'Wellbore selected: {wells_dict[val]}'

#run the app

if __name__ == '__main__':

 app.run_server()

volve_wells.py

import dash_table

import dash_html_components as html

import pandas as pd

#read data from csv

df_wells = pd.read_csv('Data/volve_wells.csv', sep=';')

#define volve wells page layout and content

page_layout = html.Div([

 dash_table.DataTable(

 id='wells-table',

 columns=[{"name": i, "id": i} for i in df_wells.columns],

 data=df_wells.to_dict("rows"),

 style_header={'font-family': 'Calibri', 'font-weight': 'bold'},

 style_cell={'padding':'10px', 'font-family': 'Calibri', 'font-

size': '16px', 'width': '100px'}

)], style={'width':

timevsdepth.py

import dash_table

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.graph_objs as go

import pandas as pd

86

import numpy as np

from app import app

import data_extraction

#function to create the time/depth plot

def timevsdepth_plot(df):

 trace0 = go.Scatter(

 x=df['Time'],

 y=[0 for num in df.index],

 mode='markers',

 marker = dict(

 color = 'rgb(0,0,0)',

 size = 0.1,

),

 name='dummy_data',

 hoverinfo='none',

 showlegend=False,

)

 trace1 = go.Scatter(

 x=df['Time'],

 y=df['MD (m)'],

 mode='lines+markers',

 line = dict(

 color = ('rgb(7,178,178)'),

 width = 2

),

 marker = dict(

 color = 'rgb(7,178,178)',

 size = 5,

),

 name='MD',

 text=[

 "Date: {}
"

 "MD: {} m
"

 "Section: {} in
"

 "Summary: {}"

 .format(

 str(df['Time'].loc[num])[0:10],

 df['MD (m)'].loc[num],

 df['Section (in)'].loc[num],

 df['Summary'].loc[num].replace('.','
')

)

 for num in df.index

],

 hoverinfo="text",

 hoverlabel=dict(

 bgcolor='rgb(255,255,255)',

 bordercolor='rgb(0,0,0)'

),

 showlegend=False,

)

 data = [trace0,trace1]

 layout = go.Layout(

 title=None,

 xaxis=dict(

 title=dict(

87

 text='Days',

 font=dict(family='Calibri', size=16)

),

 tickvals=pd.date_range(

 str(df['Time'].iloc[0])[0:10],

 str(df['Time'].iloc[-1])[0:10],

 freq='5d'

),

 rangeselector=dict(

 x=0,

 y=1.05,

 buttons=list([

 dict(count=7,

 label='1w',

 step='day',

 stepmode='backward'),

 dict(count=1,

 label='1m',

 step='month',

 stepmode='backward'),

 dict(count=6,

 label='6m',

 step='month',

 stepmode='backward'),

 dict(count=1,

 label='1y',

 step='year',

 stepmode='backward'),

 dict(step='all')

])

),

 showgrid=False

),

 yaxis=dict(

 title=dict(

 text='Depth (m)',

 font=dict(family='Calibri', size=16)

),

 autorange='reversed'),

 hovermode='closest'

)

 fig = go.Figure(data=data,layout=layout)

fig['layout']['xaxis'].update(ticktext=5*np.array(list(range(len(fig['layou

t']['xaxis']['tickvals'])))))

 return fig

#default wellbore

df_timevsdepth = data_extraction.get_timevsdepth('15_9_19_A')

#define time/depth curve page layout

page_layout = html.Div([

 html.H3(['Time/depth curve']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'border-

bottom': '1px solid black', 'font-weight': 'bold'}),

 html.Br(),

 html.Div(dcc.Graph(

 id='timevsdepth-plot',

 figure=timevsdepth_plot(df_timevsdepth),

 config=dict(displayModeBar=False)

88

), style={'display': 'block'}

)])

#callback to change the plot according to wellbore selection

@app.callback(

 Output('timevsdepth-plot', 'figure'),

 [Input('wells-dropdown', 'value')]

)

def display_timevsdepth_plot(value):

 df_timevsdepth = data_extraction.get_timevsdepth(value)

 return timevsdepth_plot(df_timevsdepth)

operations.py

import dash_table

import dash_core_components as dcc

import dash_html_components as html

from dash.dependencies import Input, Output

import plotly.figure_factory as ff

import pandas as pd

import numpy as np

from app import app

import data_extraction

#function to create the operations timeline plot

def operations_plot(df):

 data = [

 dict(

 Task='Activities',

 Start=df['Start'].loc[num],

 Finish=df['End'].loc[num],

 Resource=df['State'].loc[num].replace(' ','_')

)

 for num in df.index

]

 colors = dict(

 equipment_failure='rgb(0,115,172)',

 injury='rgb(255,210,0)',

 mud_loss='rgb(183,18,124)',

 circulation_loss='rgb(183,18,124)',

 stuck_equipment='rgb(149,99,47)',

 success='rgb(7,178,178)',

 operation_failed='rgb(204,19,51)'

)

 fig = ff.create_gantt(

 data,

 title=None,

 colors=colors,

 show_colorbar=True,

 index_col='Resource',

 bar_width=1,

 group_tasks=True

)

 text = [

89

 "Start: {}
"

 "End: {}
"

 "Duration: {}
"

 "MD: {} m
"

 "Operation: {}
"

 "State: {}
"

 "Comment: {}"

 .format(

 str(df['Start'].loc[i])[:16],

 str(df['End'].loc[i])[:16],

 str(df['Duration'].loc[i])[7:12],

 df['MD (m)'].loc[i],

 df['Operation'].loc[i],

 df['State'].loc[i],

 df['Comment'].loc[i].replace('.','
')

)

 for i in df.index

]

 for i in range(len(text)):

 fig['data'][i].update(text=text[i], hoverinfo='text')

 for i in range(len(fig['layout']['shapes'])):

 fig['layout']['shapes'][i].update(line={'width':0.1,

'color':'rgb(255,255,255)'})

 fig['layout']['xaxis']['rangeselector'].update(

 x=0,

 y=1.5,

 buttons=[

 dict(count=1,

 label='1d',

 step='day',

 stepmode='backward'),

 dict(count=7,

 label='1w',

 step='day',

 stepmode='backward'),

 dict(count=1,

 label='1m',

 step='month',

 stepmode='backward'),

 dict(count=6,

 label='6m',

 step='month',

 stepmode='backward'),

 dict(count=1,

 label='1y',

 step='year',

 stepmode='backward'),

 dict(step='all')

])

 fig['layout'].update(

 autosize=False,

 width=1400,

 height=240,

 margin=dict(r=0),

 legend=dict(

 orientation='h',

 x=0,

90

 y=-1.2

),

 hovermode='closest')

 fig['layout']['xaxis'].update(title=dict(text='Days',

font=dict(size=12)),tickvals=pd.date_range(str(df['Start'].iloc[0])[0:10],

str(df['End'].iloc[-1])[0:10], freq='5d'))

fig['layout']['xaxis'].update(ticktext=5*np.array(list(range(len(fig['layou

t']['xaxis']['tickvals'])))))

 return fig

#default wellbore

df_operations = data_extraction.get_operations('15_9_19_A')

#define operations page layout

page_layout = html.Div([

 html.H3(['Operations']),

 html.Div(id='dropdown-output', style={'paddingBottom': '10px', 'border-

bottom': '1px solid black', 'font-weight': 'bold'}),

 html.Br(),

 html.Div(dcc.Graph(

 id='operations-plot',

 figure=operations_plot(df_operations),

 config=dict(displayModeBar=False)

), style={'display': 'block'}

)])

#callback to change the plot according to wellbore selection

@app.callback(

 Output('operations-plot', 'figure'),

 [Input('wells-dropdown', 'value')]

)

def display_operations_plot(value):

 df_operations = data_extraction.get_operations(value)

 return operations_plot(df_operations)

