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Abstract

Cells and organisms have developed homeostatic mechanisms which protect them against

a changing environment. How growth and homeostasis interact is still not well understood,

but of increasing interest to the molecular and synthetic biology community to recognize and

design control circuits which can oppose the diluting effects of cell growth. In this paper we

describe the performance of selected negative feedback controllers in response to different

applied growth laws and time dependent outflow perturbations of a controlled variable. The

approach taken here is based on deterministic mass action kinetics assuming that cell con-

tent is instantaneously mixed. All controllers behave ideal in the sense that they for step-

wise perturbations in volume and a controlled compound A are able to drive A precisely

back to the controllers’ theoretical set-points. The applied growth kinetics reflect experimen-

tally observed growth laws, which range from surface to volume ratio growth to linear and

exponential growth. Our results show that the kinetic implementation of integral control and

the structure of the negative feedback loop are two properties which affect controller perfor-

mance. Best performance is observed for controllers based on derepression kinetics and

controllers with an autocatalytic implementation of integral control. Both are able to defend

exponential growth and perturbations, although the autocatalytic controller shows an offset

from its theoretical set-point. Controllers with activating signaling using zero-order or bimo-

lecular (antithetic) kinetics for integral control behave very similar but less well. Their perfor-

mance can be improved by implementing negative feedback structures having repression/

derepression steps or by increasing controller aggressiveness. Our results provide a guide

what type of feedback structures and integral control kinetics are suitable to oppose the dilu-

tion effects by different growth laws and time dependent perturbations on a deterministic

level.
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Introduction

The term homeostasis was defined by Walter B. Cannon [1] to describe the coordinated ability

of organisms and cells to maintain an internal stability by keeping concentrations of cellular

components within certain tolerable limits [2]. Cannon’s emphasis on homeo indicates that he

considered the internal physiological state not as a constant, as suggested earlier by Bernard’s

concept of a fixed “milieu intérieur” [2, 3], but conceives homeostasis as a dynamic adaptable

system which allows variations within certain limits. Dependent on the controlled compo-

nents, the homeostatic limits in which one or several controllers operate can vary considerably.

For example, while the negative feedback regulation of cellular sodium shows an apparently

changing and less well-defined set-point [4, 5], the regulation of other metal ions have more

strict limits [6–8].

Growth, an essential aspect of all living beings is a highly regulated process. According to

Bertalanffy [9, 10], the different observed growth kinetics of organisms can be related to the

organisms’ metabolism. For example, when respiration is proportional to the surface of the

organism linear growth kinetics are obtained. On the other hand, if respiration is proportional

to the organism’s weight/volume, exponential growth occurs. Growth kinetics of bacteria [11,

12] appear closely related to the bacterial form or shape. Rod-shaped bacteria show exponen-

tial growth rates, i.e.

_V ¼ kV ; k > 0 ð1Þ

whereas spherical bacteria increase their cellular volume by a rate law related to the surface to

volume ratio, i.e.,

_V ¼ Z � V2
3 � x � V ð2Þ

where η and ξ are constants reflecting anabolism and catabolism, respectively [13].

Although the protective functions of homeostasis need to be in place during growth, the

interacting mechanisms between homeostasis and growth are not well understood. In princi-

ple, there are two aspects of growth to consider. The first one, which is focused on in this

paper is how homeostatic mechanisms can compensate for growth without affecting it. The

second aspect, which will be treated in another paper, is how homeostatic mechanisms can

influence growth. In this paper we consider growth as an increase of the cellular volume. As a

continuous process growth represents a time-dependent perturbation which would lead to the

dilution of cellular/cytosolic compounds unless other mechanisms counteract for it.

Integral control is a concept from control engineering [14], which enables robust regulation

for step-wise perturbations and has been implicated to occur in a variety of homeostatic regu-

lated systems [5, 15–17]. How different integral controllers will perform under (nonlinear)

time-dependent growth is little investigated. Based on a previous study [18] we have chosen

four controller motifs, which are shown in Fig 1. The most promising controllers which are

able to handle nonlinear time dependent growth are a motif 2 zero-order type of controller

based on derepression and a motif 1 first-order controller based on autocatalysis [19–21]. A

relatively new discovered integral feedback mechanism, the so-called antithetic motif [22], has

also been included. For comparison, we have also included a motif 1 zero-order type of con-

troller. The controllers were investigated with respect to their capabilities to compensate for

time-dependent outflow perturbations in A and in the presence of different growth laws

(increase in the reaction volume V) according to Bertalanffy’s classifications [9, 10]. The

growth kinetics that will be considered include linear (constant) as well as saturating and expo-

nential growth laws. We focus here primarily on outflow perturbations, because together with
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the diluting effects of the different growth laws these perturbations represent the most severe

conditions for testing the controllers.

Materials and methods

To arrive at controller candidates which can oppose various dilution and perturbation kinetics

a couple of simplifications have been made, which are discussed in more detail below. One is

the assumption that compounds in a growing cells undergo instantaneous and ideal mixing,

thereby ignoring the spatial organization of the cell. In addition, we ignore stochastic effects

due to diffusion or low molecule numbers (however, see Discussion). Deterministic computa-

tions were performed by using the Fortran subroutine LSODE [23]. Plots were generated with

gnuplot (www.gnuplot.info) and Adobe Illustrator (adobe.com). To make notations simpler,

concentrations of compounds are denoted by compound names without square brackets.

Time derivatives are generally indicated by the ‘dot’ notation. Concentrations and rate

Fig 1. The controllers investigated in this study. Reaction orders are with respect to E. The reaction between E1 and E2 in the

antithetic controller is an overall second-order process. The controllers behave ideal in the sense that they for step-wise changes in

A and/or V, are able to keep A precisely at their defined theoretical set-points Atheor
set .

https://doi.org/10.1371/journal.pone.0207831.g001
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parameter values are given in arbitrary units (au). Rate parameters are presented as ki’s (i = 1,

2, 3, . . .) irrespective of their kinetic nature, i.e. whether they represent turnover numbers,

Michaelis constants, or inhibition constants. A set of MATLAB (mathworks.com) calculations

with instructions are provided in the Supporting Information as a combined zip-file (S1

Matlab).

Overview of treated cases and analytical steady state expressions

The four controller motifs are studied for internal and transporter-based compensatory fluxes,

different growth laws, and different removal kinetics of the controlled variable A. In the fol-

lowing we give a brief summary how the paper is structured and under what conditions the

four motifs are tested. The paper divides into the following major parts.

In chapter “Reaction kinetics during volume changes” the rate equations during volume

changes are derived.

The results are divided into two major cases:

In Case A: “Controllers with transporter-based compensatory fluxes” the behaviors of the

four negative feedback motifs are shown when the compensatory fluxes are transporter based

and when systems are exposed to linear and exponential growth with corresponding removal

kinetics in A during growth. The transporter-based compensatory fluxes consist of an (by con-

troller molecule E activated or derepressed) zero-order inflow of A molecules with respect to

the transporter, _nA , which for each time point is divided by the volume to get the contribution

to the concentration of A due to the inflow.

In Case B: “Controllers with cell-internal compensatory fluxes” results are described when

the compensatory fluxes are generated cell-internally and when the systems are exposed to lin-

ear, exponential, and surface-to-volume ratio related growth. Also here, during growth, A is

subject to linear and exponential removal kinetics.

For most of the numerically studied control structures analytical steady state expressions

for A are derived in the Supporting Information. The analytical expressions in Ass are derived

by writing first down the rate equations for A and E (E1 and E2 for the antithetic controller),

while treating fluxes coming from precursor species as constants, i.e., rates are zero-order with

respect to these species. Then the second time-derivative Ä is calculated and the rate equation

of E (E2 for the antithetic controller) is inserted into the Ä equation which is set to zero. This

leads to an analytical expression for Ass showing how different parameters influence the steady

state.

In “Overview of results” the four motifs are ranked according to their abilities to oppose the

different growth laws and outflow perturbations. The motif 2 based controller with repression/

derepression kinetics clearly outperforms the other motifs, followed by the autocatalytic motif

1 controller. The performance of the four motifs is discussed in terms of the internal model

principle, which reflects the kinetic limits controllers can handle.

We also demonstrate the influence the feedback structure (termed motifs in [7]) has in rela-

tionship with the integral controller part. Using an antithetic integral controller together with

a motif 2 repression/derepression structure as an example, we show how the motif 2 structure

improves controller performance, but also point to the limitations which are caused by the

kinetics of the integral controller.

Reaction kinetics during volume changes

To describe concentration changes during cell growth we have to consider the concentration

changes due to the increasing reaction volume V. If A denotes the concentration of nA moles

of compound A in volume V, the overall change of concentration A is composed of two terms,
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one that describes the changes of A while V is kept constant, ð _AÞV , and of a second term,

Að _V=VÞ, which describes the influence of the volume changes on the concentration of A, i.e.,

_A ¼
_nA

V
� A

_V
V

� �

¼ ð _AÞV � A
_V
V

� �

ð3Þ

Eq 3 will be used as a “template” when formulating the rate equations of cellular com-

pounds in the presence of changing V. Before we turn to the actual controller examples we

show how growth ( _V ) affects the concentration of a given species A (which will be later our

controlled variable) when A is unreactive, being produced internally within the cell, or being

produced by a transporter-mediated process.

Unreactive A
In this example (Fig 2) nA is kept constant, but the volume V increases with rate _V .

As V increases the concentration of A will decrease, i.e.,

A ¼
nA

V
) _A ¼

_nA

V
þ nA �

d 1

V

� �

dt
¼

_nA

V
� nA �

_V
V2
¼

_nA

V
� A �

_V
V

ð4Þ

Since we assume that nA is constant, we have that _nA ¼ 0 and the concentration of A decreases

according to

_A ¼ � A �
_V
V
)

_A
A
¼ �

_V
V
)

d log ðAÞ
dt

¼ �
d log ðVÞ

dt
ð5Þ

Fig 2. A is present inside the cell with a constant amount of nA moles, while the cellular volume V increases with

rate _V .

https://doi.org/10.1371/journal.pone.0207831.g002
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Integrating Eq 5 leads to:

log ðAðtÞÞ � log ðA0Þ �
n
logVðtÞ � logV0

o
) log

AðtÞ
A0

� �

¼ log
V0

VðtÞ

� �

ð6Þ

which can be rewritten as

AðtÞ ¼ A0

V0

VðtÞ

� �

, AðtÞVðtÞ ¼ A0V0 ð7Þ

Eq 7 can also be derived by noting that A0 = nA/V0 and A(t) = nA/V(t). Solving for nA from one

of the equations and inserting it into the other leads to Eq 7.

Cell internal generated A
In order to counteract diminishing levels of a controlled compound A compensatory fluxes

can be generated by a cell internal compound (assumed here to be homogeneously distributed

inside V) or by the help of transporters from stores outside of the cell or from cell-internal

(organelle) stores. We will investigate both ways to generate compensatory fluxes.

To achieve a constant level of A from a cell internal source, despite increasing V, we con-

sider first a zero-order enzymatic reaction where enzyme E converts a species S (assumed to be

present in sufficiently high amounts) to A, where V is assumed to increase by a constant rate

(Fig 3).

Fig 3. A is formed by zero-order kinetics within the cell while the cellular volume increases with a constant rate
_V ¼ k1.

https://doi.org/10.1371/journal.pone.0207831.g003
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We assume that E is not subject to any synthesis, but that during the increase of V, E
remains always saturated with S and produces A by zero-order kinetics with respect to A. The

initial production rate of A at time t = 0 is given as

_A0 ¼
vmax;0 � S0

KM þ S0

ð8Þ

Since E is considered to be saturated by S at all times we have that KM� S(t) leading to

_A0 ¼ vmax;0 ¼ k2 � E0 ð9Þ

where k2 is the turnover number of the enzymatic process generating A, and E0 is the enzyme

concentration at time t = 0. As volume V increases, the concentrations of E and A are subject

to dilution as described by the rate equations

_E ¼ � E �
_V
V

ð10Þ

_A ¼ k2 � E � A �
_V
V

ð11Þ

For _V = k1 = constant, E(t) and A(t) are described by the equations (S1 Text)

EðtÞ ¼ E0 �
a

t þ a
; a ¼

V0

k1

ð12Þ

AðtÞ ¼ k2 � E0 � a � k2 � E0 � a � A0ð Þ �
a

t þ a ð13Þ

From Eq 13 we see that A will approach a final concentration Afinal = k2�E0�α even when V con-

tinues to grow. The time needed of A to approach Afinal is determined by the term α/(t+α).

Fig 4 shows that Afinal is independent of the initial values of A. However, the system is not

stable against perturbations which remove A. In such a case A will go to zero (S1 Text).

Fig 4. A approaches Afinal independent of the initial concentration of A. (a) A0 = 8.0; (b) A0 = 0.0. All other rate parameters are: k1 ¼
_V ¼ 1:0, k2 = 2.0, E0 = 0.1, V0

= 20.0.

https://doi.org/10.1371/journal.pone.0207831.g004
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Transporter generated A
Alternatively, A may be imported into the cell by a transporter T (Fig 5).

Also here we consider that the transporter works under saturation (zero-order) conditions

adding _nA moles of A per time unit into the cellular volume V

_nA ¼
k2 � T � Aext

KT
M þ Aext

’ k2 � T ð14Þ

where T denotes the (surface/membrane) concentration of the transporter, KT
M is a dissociation

constant between external A (Aext) and T, and k2 is the turnover number of the transporter-

mediated uptake of A.

The change in the concentration of A inside an expanding cell is given by (see Eq 3)

_A ¼
_nA

V
� A

_V
V

� �

¼
k2 � T

V
� A

_V
V

� �

ð15Þ

For constant _V , k2, and T the steady state of A ( _A ¼ 0) is k2T= _V independent of the initial

concentration of A. However, also in the transporter-based inflow of A, the steady state in A is

not stable against perturbations removing A. Any reaction within the cell removing A while

Fig 5. A is imported into the cell by transporter T.

https://doi.org/10.1371/journal.pone.0207831.g005
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growth occurs will drive A to zero (S2 Text). To get a steady state that is stable against pertur-

bations a negative feedback controller needs to be included.

Case A.1: Controllers with transporter-based compensatory fluxes

and linear time-dependent perturbations

In this section the four controller motifs (Fig 1) are tested using a transporter-based compen-

satory flux with respect to constant growth, _V ¼ k1. In addition, an outflow perturbation with

a time-dependent rate parameter k3 is invoked, which removes A as a first-order reaction with

respect to A.

Motif 1 zero-order controller

Fig 6 shows the motif 1 controller with zero-order implementation of integral control [7]. A is

the controlled compound and E is the controller molecule which concentration (in the ideal

controller case) is proportional to the integrated error between A and Atheor
set . M is considered

as a store/precursor into which “consumed” E is recycled to. M is included to make it explicit

Fig 6. Motif 1 based zero-order integral controller with a transporter (T) generated compensatory flux. The

controller species E is produced by an enzymatic zero-order process from compound M. E is recycled by another zero-

order process (with respect to E) but the rate of E-removal is proportional to the concentration of A. Outflow

perturbations are represented by the rate r3 = k3�A, where k3 is either constant or increases linearly with time.

https://doi.org/10.1371/journal.pone.0207831.g006
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that even under recycling conditions the increasing demand for E under growth and other

time-dependent perturbations leads to a continuous reduction in M. This may lead to control-

ler breakdown once all M is consumed. A situation when this occurs will be shown below for

the motif 1 autocatalytic controller.

The rate equations for this system are:

_A ¼
_nA

V
� k3 � A � A

_V
V

� �

¼
k2 � E � T

V
Aext

KT
M þ Aext

� �

� k3 � A � A
_V
V

� �

ð16Þ

_E ¼
k4 �M

k5 þM
�

k6 � E
k7 þ E

� �

A � E
_V
V

� �

ð17Þ

_M ¼ �
k4 �M

k5 þM
þ

k6 � E
k7 þ E

� �

A � M
_V
V

� �

ð18Þ

For simplicity, T and Aext=ðKT
M þ AextÞ are set to 1 leading to an inflow rate in A of k2E/V.

When _k3 ¼
_V ¼ 0, the set-point of the controller is (Ref. [7], S3 Text)

Atheor
set ¼

k4

k6

ð19Þ

independent of the inflow rate constant k2 and the time-dependent outflow perturbation

parameter k3.

When _V = constant the zero-order controller maintains a steady state below Atheor
set (S3

Text):

Ass ¼
k4

k6 þ
2 _V k3

k2

ð20Þ

which is dependent of _V , and the rate constants k2 and k3.

In testing the performance of this controller we consider three phases (see Fig 7). During

the first phase the volume and the perturbation k3 are kept constant. The controller is able to

compensate for the perturbation rate k3�A and keeps A at its theoretical set-point Atheor
set . In the

second phase the volume increases linearly with time, while k3 remains constant. The zero-

order controller is now no longer able to maintain homeostasis at Atheor
set ¼ k4=k6, but shows

a _V -dependent offset below Atheor
set as described by Eq 20. When k3 increases linearly during

phase 3 along the increase in V the controller breaks down and A goes to zero.

Motif 1 antithetic controller

The antithetic controller [22] uses two controller molecules, E1 and E2 (Fig 8). Compound E1

is activated by A but is removed by compound E2 by a second-order process. E2 is formed by a

zero-order process which acts as a constant reference rate. In addition, E2 also acts as a signal-

ing molecule, which closes the negative feedback loop by activating the transporter-based com-

pensatory inflow of A.
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Assuming, as in the previous two examples that T and Aext=ðKT
M þ AextÞ are both 1, the rate

equations are

_A ¼
_nA

V
� k3 � A � A �

_V
V
¼

k2 � E2

V
� k3 � A � A

_V
V

� �

ð21Þ

_E1 ¼ A
k4 �M

k5 þM

� �

� k6 � E1 � E2 � E1

_V
V

� �

ð22Þ

_E2 ¼
k8 � O

k9 þ O
� k6 � E1 � E2 � E2

_V
V

� �

ð23Þ

_M ¼ � A
k4 �M

k5 þM

� �

� M
_V
V

� �

ð24Þ

_O ¼ �
k8 � O

k9 þ O
� O

_V
V

� �

ð25Þ

_Q ¼ k3 � A � Q
_V
V

� �

ð26Þ

_P ¼ k6 � E1 � E2 � P
_V
V

� �

ð27Þ

where k5�M and k9� O such that the generation of E1 and E2 are zero-order processes with

respect to M and O.

Fig 7. Performance of the motif 1 zero-order controller with transporter mediated compensatory flux (Eqs 16–18). Phase 1: constant volume V and constant k3.

Initial concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E0 = 0.0, M0 = 4 × 104, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 =

1 × 10−6. The controller keeps A at its theoretical set-point, Atheor
set ¼ k4=k6 ¼ 2:0 (Eq 19). Phase 2: rate constants remain the same as in phase 1, but V increases linearly

with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. In agreement with Eq 20, the controller shows an offset below Atheor
set with Ass = 1.11. Phase 3: V continues to

increase with the same speed while k3 starts to increase linearly with _k3 ¼ 1:0. As indicated by Eq 20 the controller now breaks down and A goes to zero as V and k3

increase.

https://doi.org/10.1371/journal.pone.0207831.g007
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In case _V ¼ 0 and _k3 ¼ 0 the set-point of the controller is given by setting Eqs 22 and 23 to

zero. Eliminating the second-order term k6�E1�E2 leads to

Atheor
set ¼

k8

k4

¼ 2:0 ð28Þ

which is shown in phase 1 of Fig 9. In phase 2 the volume increases linearly with _V ¼ 2:0 (Fig

9, left panel) while k3 remains to be constant at k3 = 2.0. The controller is no longer able to

keep A at its theoretical set-point (Eq 28). When _V and k3 are constant an analytical expression

of Ass can be derived in good agreement with the numerical calculations (S4 Text):

Ass ¼
k2k8

k2k4 þ 2k3
_V

ð29Þ

which is analogous to the Ass expression of the motif 1 zero-order controller (Eq 20). Finally,

in phase 3 k3 increases linearly with _k3 ¼ 1 together with _V ¼ 2:0. As indicated by Eq 29 and

shown by the numerical calculations (Fig 9) the antithetic controller, like the zero-order con-

troller, breaks down and A goes to zero (S4 Text).

Fig 8. Motif 1 based controller with second-order (antithetic) integral control. The controller species E2 is

produced by an enzymatic zero-order process from compound O. E2 activates the transporter-based compensatory

flux of A and is removed by E1 using second-order kinetics forming P.

https://doi.org/10.1371/journal.pone.0207831.g008

Homeostatic controllers

PLOS ONE | https://doi.org/10.1371/journal.pone.0207831 August 12, 2019 12 / 39

https://doi.org/10.1371/journal.pone.0207831.g008
https://doi.org/10.1371/journal.pone.0207831


Although not shown explicitly here, the following mass balances are obeyed:

nM;0 ¼ nMðtÞ þ nE1
ðtÞ þ nPðtÞ ð30Þ

nO;0 ¼ nOðtÞ þ nE2
ðtÞ þ nPðtÞ ð31Þ

where ni,0 and ni are respectively the initial number of moles and the number of moles at time

t of compound i.
As described above, when using a transporter mediated compensation in A the antithetic

and the motif 1 zero-order controllers have to increase their controller variables E2 or E in

order to keep Ass constant, as indicated by the equation

_A ¼ 0 )
k2 � Eð2ÞðtÞ

VðtÞ
¼ k3 � Ass ð32Þ

where E(2) represents E2 or E and ð _V=VÞAss becomes negligible.

Motif 1 autocatalytic controller

Similar to controllers based on double integral action [24] an autocatalytic design [19] is able

to keep the controlled species at its set-point even when perturbations become linearly time

dependent and rapid [18]. However, in contrast to double integral action the autocatalytic

controller is able to compensate for time-dependent perturbations of the form a�tn where n is

larger than 1.

Fig 10 shows the reaction scheme. The controller compound E is produced autocatalyti-

cally, i.e., its rate is proportionally to the concentration of E, while M, present in relative large

amounts, produces E by an enzyme-catalyzed reaction which is zero-order with respect to M.

E increases the activity of transporter T and leads to an increased import of external A into the

cell. The negative feedback is closed by an A-induced recycling of E to M. Rate constant k3 rep-

resents a perturbation which removes A by a first-order process with respect to A. The rate

Fig 9. Performance of the antithetic controller with transporter mediated compensatory flux (Eqs 21–27). Phase 1: constant volume V and constant k3. Initial

concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E1,0 = 0.0, E2,0 = 0.0, M0 = 1 × 105, O0 = 1 × 105, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 10.0, k5 =

1 × 10−6, k6 = 20.0, k7 not used, k8 = 20.0, k9 = 1 × 10−6. The controller keeps A at its theoretical set-point at Atheor
set ¼ k8=k4 ¼ 2:0 (Eq 28). Phase 2: rate constants remain

the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller shows an offset below Atheor
set with Ass = 1.11 in

agreement with Eq 29. Phase 3: V continues to increase while k3 increases linearly with _k3 ¼ 1:0. As indicated by Eq 29 the controller breaks down and A goes to zero.

https://doi.org/10.1371/journal.pone.0207831.g009
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equations are:

_A ¼
_nA

V
� k3 � A � A

_V
V

� �

¼
k2 � E � T

V
Aext

KT
M þ Aext

� �

� k3 � A � A
_V
V

� �

ð33Þ

_E ¼ E
k4 �M

k5 þM

� �

� k6 � E � A � E
_V
V

� �

þ kin
E � kout

E � E ð34Þ

_M ¼ � E
k4 �M

k5 þM

� �

þ k6 � E � A � M
_V
V

� �

ð35Þ

As in the previous cases, in Eq 33, the term T � Aext=ðKT
M þ AextÞ is set to 1. The last two

terms in Eq 34, kin
E � kout

E � E, represent required background reactions to keep E at a suffi-

ciently high level such that the autocatalysis in E can start at low/zero initial E concentrations

(see also Ref. [18] and Discussion there). In the calculations presented here, kin
E and kout

E are set

Fig 10. Motif 1 autocatalytic integral controller. The controller species E is produced by an enzymatic zero-order

process from compound M, but E activates its own production and the transporter-based compensatory flux. The

negative feedback is due to the inflow activation of A by E through transporter T, while A activates the (first-order)

recycling of E to M. Outflow perturbation in A is described by the rate k3�A, where k3 is either a constant or increases

linearly with time. kin
E and kout

E represent background reactions creating and removing E.

https://doi.org/10.1371/journal.pone.0207831.g010
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to 1×10−5. To show that in this case the controller can start from initial concentration E0 = 0,

see the corresponding calculation later in the paper when using a cell-internal compensatory

flux, or test it using S1 Matlab for Fig 11. When E0 is larger than 10−5 the kin
E � kout

E � E term is

not needed, but its presence will not affect controller dynamics or set-point as long as kin
E and

kout
E are kept low. In case the kin

E and kout
E values are higher, a change/reduction in the set-point

is observed, which the controller still defends (see later in this chapter).

To determine the controller’s set-point at constant V and k3 we set Eq 34 to zero. Neglecting

the kin
E � kout

E � E term and setting _V ¼ 0, we can solve for the steady state value of A, which

defines the controller’s theoretical set-point Atheor
set :

_E ¼ Ess
k4 �M

k5 þM

� �

� k6 � Ess � Ass ¼ Ess
k4 �M

k5 þM

� �

� k6 � Ass

� �

¼ 0 ð36Þ

Since M/(k5 + M) = 1 (ideal zero-order conditions), we get from Eq 36

k4 � k6 � Ass ¼ 0 ) Ass ¼ Atheor
set ¼

k4

k6

ð37Þ

For constant _V and _k3 values the set-point is calculated to be (S5 Text)

Ass ¼
k4

k6

�
_k3

k6 � k3

!
k4

k6

¼ Atheor
set as t !1 ð38Þ

According to previous findings on the autocatalytic controller [18], any time-dependent

function k3(t) = k3,0 + a�tn where a, n> 0 will lead to the set-point conditions described by Eq

38 (S5 Text).

The recycling scheme between E and M implies that E and M obey a mass balance of the

form

nEðtÞ þ nMðtÞ ¼ nE;0 þ nM;0 ð39Þ

with nE(t) = E(t)�V(t), nM(t) = M(t)�V(t), and where nE,0 and nM,0 are the initial number of

Fig 11. Performance of the motif 1 autocatalytic controller (Eqs 33–35). Phase 1: constant volume V and constant k3. Initial concentrations and rate constant

values (at the controller’s steady state): V0 = 25.0, _V ¼ 0:0, A0 = 2.0, E0 = 100.0, M0 = 1 × 106, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0,

kin
E ¼ kout

E ¼ 1� 10� 5. The controller keeps A at its set-point at Atheor
set ¼ k4=k6 ¼ 2:0. Phase 2: rate constants remain the same as in phase 1, but V increases linearly with

_V ¼ 1:0. Phase 3: V continues to increase with the same rate and k3 increases with rate _k3 ¼ 1:0. The controller moves A towards Atheor
set in both phase 2 and phase 3,

but breaks down when no additional E becomes available through M (indicated by the arrow in the right panel).

https://doi.org/10.1371/journal.pone.0207831.g011
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moles of respectively E and M. The rates how nE and nM change at a given time t are given as

(S5 Text)

_nE ¼
_E þ E

_V
V

� �� �

� V ¼ � _nM ¼ �
_M þM

_V
V

� �� �

� V ð40Þ

Fig 11 shows the results. During the first phase no volume change occurs and k3 is a constant.

The controller keeps A at Atheor
set ¼ 2:0 as described by Eq 37. During the second phase both V

and k3 increase linearly and the controller still keeps A at Atheor
set ¼ 2:0 according to Eq 38. To

keep A at its set-point during increasing V and/or k3 the concentration of E has to increase in

order to maintain the steady state condition given by Eq 33 when _A ¼ 0 and _V=V ! 0, i.e.,

EðtÞ ¼
k3ðtÞ � VðtÞ � Ass

k2

ð41Þ

From the initial conditions (see legend of Fig 11) we have that nE(t) + nM(t) = V0 �M0 = 2.5 × 107.

When kin
E and kout

E are significantly higher than 10−5, then the set-point of the controller

changes to the following steady state value in A:

Ass �
k4 � kout

E

k6

ð42Þ

The new set-point is defended by the controller for step-wise changes and for linearly

increasing values of k3 and V (for details, see S5 Text).

Motif 2 zero-order controller

The reaction scheme of this controller is shown in Fig 12. The transporter-based compensatory

flux is regulated by E through repression or derepression by E. E is removed by a zero-order

reaction creating M, which then is recycled in a A-dependent manner.

The rate equations are

_A ¼
_nA

V
� k3 � A � A

_V
V

� �

¼
k2k4

k4 þ E
T � Aext

KT
M þ Aext

� �

�
1

V
� k3 � A � A

_V
V

� �

ð43Þ

_E ¼
k8 �M

k11 þM

� �

� A �
k9 � E

k10 þ E
� E

_V
V

� �

ð44Þ

_M ¼ �
k8 �M

k11 þM

� �

� Aþ
k9 � E

k10 þ E
� M

_V
V

� �

ð45Þ

_P ¼ k3 � A � P
_V
V

� �

ð46Þ

Also here, we keep for the sake of simplicity, T � Aext=ðKT
M þ AextÞ ¼ 1. In presence of grow-

ing V and k3 the motif 2 zero-order controller successfully defends its theoretical set-point

given by (S6 Text)

Atheor
set ¼

k9

k8

ð47Þ
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However, since an increase of the compensatory flux is based on derepression by E
(decreasing E), the controller will break down when E� k4 or k4/(k4+E)�1. Neglecting the

A� _V=V term, the point when the breakdown occurs can be estimated by setting Eq 43 to zero

_A ¼
k2

V
� k3 � A

theor
set ¼ 0 ) k3 � V ¼

k2

Atheor
set

ð48Þ

Fig 13 shows that the motif 2 based controller is able to defend successfully against linear growth

in both V and k3 and keeping A at Atheor
set . Prolonged time intervals with increasing V and k3 will

lead to controller breakdown when the condition of Eq 48 is met. The condition k4/(k4+E)�1

also indicates that the capacity limit of the controller has been reached, because the compensa-

tory flux k2 k4/(k4+E) (Eq 43) has reached its maximum value k2 and can no longer be increased.

Case A.2: Controllers with transporter-based compensatory fluxes

and exponential time-dependent perturbations

Here we describe the performance of the four controller motifs (Fig 1) with transporter-based

compensatory fluxes when exposed to exponential growth, _V ¼ k � V, and an exponential

increase in the outflow perturbation rate parameter k3 (Fig 14).

Fig 12. Motif 2 based controller with zero-order integral control. An increase of the compensatory flux occurs by a

decrease of E (derepression of the compensatory flux).

https://doi.org/10.1371/journal.pone.0207831.g012
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There are three phases the controllers are exposed to. During the first phase the controllers

are at their steady states and V and k3 are kept constant at respectively 25.0 and 2.0. During the

second phase V increases exponentially according to _V ¼ kV (κ = 0.1), while k3 is kept con-

stant at 2.0. During phase 3, V continues to grow exponentially and k3 starts to increase

Fig 13. Performance of the motif 2 zero-order based controller with respect to linear increases in V and k3. The controller is able to defend Atheor
set successfully,

but breaks down when k3V reaches k2=Atheor
set (Eq 48). Rate parameters: k2 = 1 × 105, k4 = 1 × 10−3, k8 = 1.0, k9 = 2.0, k10 = k11 = 1 × 10−6. Initial conditions:

A0 ¼ Atheor
set ¼ 2:0, E0 = 1.0, M0 = 1 × 106, P0 = 0.0, V0 = 25.0, k3,0 = 2.0. _V ¼ 2:0 (phase 2 and phase 3), _k3 ¼ 1:0 (phase 3).

https://doi.org/10.1371/journal.pone.0207831.g013

Fig 14. The perturbation profile with exponential growth of V and k3. Due to presentation reasons V is plotted semi-logarithmically while the k3 scale is

linear.

https://doi.org/10.1371/journal.pone.0207831.g014
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according to

k3ðtÞ ¼ k3;p3 þ 0:2 e0:2ðt� tp3Þ � 1
� �

ð49Þ

where k3,p3 and tp3 are the values of respectively k3 and time t at the beginning of phase 3.

Fig 15 shows that only the motif 2 based controller with derepression kinetics (panel d) is

able to counteract both exponential increases in V and k3. However, due to the derepression

kinetics and due to the transporter based kinetics (see Eq 48) the controller breaks down when

the product of the perturbations, k3V reaches k6=Atheor
set . The motif 1 autocatalytic controller

(panel c) shows slight constant offsets below Atheor
set , as expected [18], both for the single expo-

nential increase of V during phase 2 and when both V and k3 increase exponentially in phase

3. These offsets increase when the values of kin
E and kout

E are large and cannot be neglected (S5

Text). Since E increases with increasing perturbation strengths the controller is limited by

the supply for E via M as indicated in Fig 11. Neither the motif 1 based zero-order controller

(panel a) nor the antithetic controller based on motif 1 (panel b) are able to compensate for

exponentially increasing perturbation strengths. They behave very similar, as already seen in

Figs 7 and 9 for linear time-dependent perturbations.

Fig 15. Performance of the (a) motif 1-zero-order, (b) -antithetic, (c) -autocatalytic, and (d) motif 2 zero-order controllers with transporter-based

compensatory fluxes in relation to the perturbation profile of Fig 14. For rate equations of the individual controllers, see the descriptions in the previous sections

dealing with linear time-dependent perturbations. Rate parameters and initial conditions: (a) see legend of Fig 7, (b) see Fig 9, (c) see Fig 11, but using M0 = 1×1010,

and (d) see Fig 13.

https://doi.org/10.1371/journal.pone.0207831.g015
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Growth related to surface to volume ratio and controllers with transporter-

based compensatory fluxes

We have investigated how the controllers with transporter-based compensatory fluxes behave

with respect to the growth law described by Eq 2 (η = 1 and ξ = 0.2) when k3 increases expo-

nentially in phase 3 according to Eq 49 (Fig 16a).

Fig 16b–16d show the results of the antithetic, motif 1 autocatalytic and motif 2 zero-order

controllers. The motif 1 zero-order controller’s behavior of A is identical to that of the anti-

thetic controller and only the result of the antithetic controller is shown. Typically for this type

of growth law is that the motif 1 based controllers gain successively control during phase 2

when _V decreases and approaches zero. During phase 3, when k3 increases exponentially, only

the motif 2 based is able to defend its theoretical set-point, but breaks down when E become

too low. The autocatalytic controller shows a constant offset below Atheor
set . Both the antithetic

and the motif 1 zero-order controllers break down during phase 3 and A goes to zero.

Fig 16. Performance of the motif 1 antithetic, motif 1 autocatalytic and motif 2 zero-order controllers with respect to surface to volume ratio related growth

and an exponential increase of k3. (a) Perturbation profile. Phase 1: constant V (25.0) and k3 (2.0); phase 2: V increases according to Eq 2 (η = 1 and ξ = 0.2) and k3

remains constant; phase 3: V continues to increase and k3 starts to increase exponentially as described by Eq 49. (b) Behavior of the antithetic controller (Eqs 21–27).

Rate constant values as in Fig 9. Initial concentrations: A0 = 2.0, E1,0 = 0.01, E2,0 = 100, M0 = O0 = 1 × 106. (c) Behavior of the autocatalytic controller (Eqs 33–35). Rate

constant values as in Fig 11. Initial concentrations: A0 = 2.0, E0 = 0.01, M0 = 1 × 106. (d) Behavior of the motif 2 zero-order controller (Eqs 43–46). Initial

concentrations: A0 = 2.0, E0 = 1.0, M0 = 1 × 103. Note the breakdown of the controller at the very end of phase 3 due to low E (arrow).

https://doi.org/10.1371/journal.pone.0207831.g016
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Case B.1: Controllers with cell-internal compensatory fluxes and

linear time-dependent perturbations

We consider here the four controllers, but the compensatory fluxes are now generated from

cell-internal and homogeneously distributed sources.

Motif 1 zero-order controller

Fig 17 shows the motif 1 zero-order controller using a cell-internal compensatory flux. The

homogenously distributed compound N serves as a source for A, which is activated by E. Com-

pound M serves as a source for E, while by the activation of A, M is recycled from E.

The rate equations are

_A ¼ k2 � E
N

k7 þ N

� �

� k3 � A � A
_V
V

� �

ð50Þ

_E ¼
k4 �M

k5 þM
�

k6 � E
k8 þ E

� �

A � E
_V
V

� �

ð51Þ

_M ¼ �
k4 �M

k5 þM
þ

k6 � E
k8 þ E

� �

A � M
_V
V

� �

ð52Þ

_N ¼ �
k2 � N

k7 þ N

� �

E � N
_V
V

� �

ð53Þ

Fig 17. Motif 1 zero-order controller with a cell-internal compensatory flux.

https://doi.org/10.1371/journal.pone.0207831.g017
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_P ¼ � k3 � A � P
_V
V

� �

ð54Þ

The steady state of A when both _V and _k3 are constant is given by the following expression

(S3 Text)

Ass ¼
k2k4

k2k6 þ
_k3

ð55Þ

When _k3 ¼ 0 and _V = constant Ass becomes Atheor
set ¼ k4=k6 and the motif 1 zero-order

controller is able to compensate for a constant growth rate (Fig 18, phases 1 and 2). However,

when k3 increases linearly, Ass is below Atheor
set and remains constant as long as sufficient M and

N are present (Fig 18, phase 3). Thus, in comparison with a transporter-mediated compensa-

tory fluxes, the motif 1 zero-order controller with an internally generated compensatory flux

shows an improved performance by being able to compensate for a constant growth rate in the

absence of other outflow perturbations in A.

Motif 1 antithetic controller

When the antithetic integral controller is equipped with an internally generated compensatory

flux (Fig 19) its performance towards constant growth and linearly increasing outflow pertur-

bations k3 is significantly improved in comparison with a controller having a transporter gen-

erated compensatory flux (Fig 9). The rate equation for A is now changed to

_A ¼
k2 � N

k7 þ N

� �

E2 � k3 � A � A
_V
V

� �

ð56Þ

while the other rate equations (Eqs 22–27) remain the same.

Fig 18. Performance of the motif 1 zero-order controller with internally generated compensatory flux (Fig 17; Eqs 50–54). Phase 1: constant volume V and

constant k3. Initial volume, concentrations, and rate constants: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E0 = 0.0, M0 = 4 × 104, N0 = 1 × 105, P0 = 0.0, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0,

k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 = 1 × 10−6, k8 = 1 × 10−6. The controller moves A to its set-point at Atheor
set ¼ ðk4=k6Þ ¼ 2:0 (Eq 55). Phase 2: rate constants remain

the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller is able to keep A at Atheor
set ¼ ðk4=k6Þ ¼ 2:0 in

agreement with Eq 55. Phase 3: V continues to increase with the same speed while k3 now linearly increases with _k3 ¼ 1:0. As indicated by Eq 55 Ass leads to a constant

offset below Atheor
set .

https://doi.org/10.1371/journal.pone.0207831.g018
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When _V is constant Ass becomes (S4 Text)

Ass ¼
k2k8

k2k4 þ
_k3

ð57Þ

As indicated by Eq 57 numerical results show (Fig 20, phase 2) that the antithetic controller

is now able to compensate for linear volume increases by moving A to Atheor
set ¼ ðk8=k4Þ. How-

ever, an offset in Ass below Atheor
set is observed when, in addition, k3 increases linearly with time,

i.e., when _k3 is constant.

Although not explicitly shown here, during the volume increase, the mass (mole) balances

described by Eqs 30 and 31 are obeyed in addition to the mass balance connecting N, A, and Q

nN;0 ¼ nNðtÞ þ nAðtÞ þ nQðtÞ ð58Þ

where nN,0 is the number of moles of initial N at t = 0 with nA,0 = nQ,0 = 0.

Motif 1 autocatalytic controller

Fig 21 shows the autocatalytic controller but now with an internally generated compensatory

flux. As for the motif 1 zero-order controller (Fig 17) the compensatory flux originates from

compound N and is activated by E. N is present in high concentration and forms A by a zero-

order process with respect to N.

Fig 19. The antithetic controller with an internal generated compensatory flux.

https://doi.org/10.1371/journal.pone.0207831.g019
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Fig 20. Performance of the antithetic controller when the compensatory flux is homogeneously generated within the cellular volume (Eqs 56 and 22–27). Phase

1: constant volume V and constant k3. Initial concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E1,0 = 0.0, E2,0 = 0.0, M0 = 2 × 105, N0 = 1 × 106, O0

= 2 × 105, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 10.0, k5 = 1 × 10−6, k6 = 20.0, k7 = 1 × 10−5, k8 = 20.0, k9 = 1 × 10−5. The controller moves A to Atheor
set ¼ ðk8=k4Þ ¼ 2:0 (Eq 57

when _k3 ¼ 0). Phase 2: rate constants remain the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller is able

to maintain A at Atheor
set ¼ k4=k6 ¼ 2:0 in agreement with Eq 57. Phase 3: V continues to increase with the same speed while k3 now linearly increases with _k3 ¼ 1:0. As

indicated by Eq 57 the controller is no longer able to keep A at Atheor
set but shows a constant steady state value below its theoretical set-point.

https://doi.org/10.1371/journal.pone.0207831.g020

Fig 21. Scheme of autocatalytic controller with an internally generated compensatory flux from compound N.

Otherwise the controller has the same structure as shown in Fig 10.

https://doi.org/10.1371/journal.pone.0207831.g021
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The rate equation for the controlled variable A is

_A ¼ k2 � E
N

k7 þ N

� �

� k3 � A � A
_V
V

� �

ð59Þ

while the rate equations for E and M remain the same as Eqs 34 and 35. Species P is included

with the rate equation

_P ¼ k3 � A � P
_V
V

� �

ð60Þ

to test that the mass (mole) balance between N, A, and P is preserved.

The controller’s steady state in A is also in this case described by Eq 38 (S5 Text). In contrast

to the other controllers, even when _V and _k3 are constant, the autocatalytic controller is able

to move A to Atheor
set ¼ ðk4=k6Þ (Fig 22).

When kin
E and kout

E are large and cannot be neglected the steady state in A is described by the

quadratic equation (S5 Text)

A2
ss � Ass

k4 � kout
E

k6

�
_k3

k3k6

 !

�
k2kin

E

k3k6

¼ 0 ð61Þ

In case only V increases linearly Ass is given by the solution of Eq 61, independent of V’s

growth rate. On the other hand, if k3 increases linearly, the terms _k3=k3k6 and k2kin
E =k3k5 go to

zero for large k3 and Ass is given by ðk4 � kout
E Þ=k6 as described by Eq 42 for the transporter-

based compensatory flux.

Fig 22. Performance of the autocatalytic controller when the compensatory flux is generated within the cellular volume (Eqs 34, 35, 59 and 60). Phase 1: constant

volume V and constant k3. Initial concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E0 = 0.0, M0 = 4 × 104, N0 = 1 × 106, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0,

k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 = 1 × 10−6, kin
E ¼ kout

E ¼ 1� 10� 5. The controller moves A to its theoretical set-point at Atheor
set ¼ ðk4=k6Þ ¼ 2:0 (Eq 37). Phase 2: rate

constants remain the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller is able to maintain A at Atheor
set in

agreement with Eq 37. Phase 3: V continues to increase with the same speed while k3 now linearly increases with _k3 ¼ 1:0. As indicated by Eq 38 the controller keeps A
at Atheor

set as k3 increases.

https://doi.org/10.1371/journal.pone.0207831.g022
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Motif 2 zero-order controller

The rate equations for the motif 2 controller using a cell-internal compensatory flux are (Fig 23):

_A ¼
k4 � k6

k4 þ E

� �

�
N

k7 þ N

� �

� k3 � A � A
_V
V

� �

ð62Þ

_E ¼
k8 �M

k11 þM

� �

� A �
k9 � E

k10 þ E
� E

_V
V

� �

ð63Þ

_M ¼ �
k8 �M

k11 þM

� �

� Aþ
k9 � E

k10 þ E
� M

_V
V

� �

ð64Þ

_N ¼ �
k4 � k6

k4 þ E

� �

�
N

k7 þ N

� �

� N
_V
V

� �

ð65Þ

_P ¼ k3 � A � P
_V
V

� �

ð66Þ

Fig 24 shows the performance of the motif 2 feedback structure with zero-order integral control.

The controller is able to defend successfully Atheor
set against a linear increase in V (phase 2) as well

Fig 23. Motif 2 type controller with integral control based on zero-order kinetics and a cell-internally generated

compensatory flux from compound N.

https://doi.org/10.1371/journal.pone.0207831.g023
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as against linear increase in V and a simultaneous linear increase in k3 (phase 3). For both cases

the controller will move A precisely to Atheor
set ¼ k9=k8 without any offset (see S6 Text for details).

Case B.2: Controllers with cell-internal compensatory fluxes and

exponential time-dependent perturbations

The controllers are exposed to the same exponential perturbation profiles as in Fig 14. The

exponential growth of V is written as _V ¼ k � V, where κ (>0) is a constant and related to the

doubling time of V given by ln 2/κ.

Fig 25a shows the performance of the motif 1 zero-order controller while Fig 25b shows the

responses of the motif 1 antithetic controller. During exponential growth and constant k3 the

motif 1 zero-order and the antithetic controller show slight offsets from the theoretical set-

point Atheor
set , while during phase 3 when both V and k3 increase exponentially, both controllers

break down. Besides their different kinetic implementation of integral control both the motif 1

zero-order and the motif 1 antithetic controller have analogous responses (for details, see S3

and S4 Texts).

Fig 25c shows the response of the autocatalytic controller when kin
E ¼ kout

E ¼ 1� 10� 5. The

controller is able to keep A at Atheor
set during exponential growth while k3 is kept constant. Only

when V and k3 both increase exponentially then there is an offset from Atheor
set , which can be esti-

mated as:

Ass ¼
k4

k6

�
k

k6

�
z

k6

ð67Þ

where the theoretical set-point Atheor
set ¼ k4=k6 and κ and z describe the doubling times ln 2/κ

and ln 2/z of the exponential increases for V and k3, respectively (see S5 Text).

In case kin
E and kout

E are large Eq 67 changes to (S5 Text):

Ass ¼
k4

k6

�
k

k6

�
z

k6

�
kout

E

k6

ð68Þ

The motif 2 based controller shows in phase 2 a significant overcompensation from Atheor
set

when exposed to exponential growth only. The overcompensated steady state in A at constant

Fig 24. Performance of the motif 2 feedback scheme with zero-order based integral control and a cell-internal compensatory flux. Rate constants and initial

conditions: k3 = 2.0, k4 = 1 × 10−3, k6 = 1 × 105, k7 = 1 × 10−6, k8 = 1.0, k9 = 2.0, k10 = k11 = 1 × 10−6, A0 = 2.0, E0 = V0 = 25.0, M0 = 1 × 106, N0 = 3 × 106. Phase 1: V and

k3 remain unchanged. Phase 2: V increases linearly with _V ¼ 2:0, while k3 remains constant. Phase 3: V continues to increase and k3 increases linearly with _k3 ¼ 1:0.

https://doi.org/10.1371/journal.pone.0207831.g024
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k3 and exponential growth can be expressed as

Ass ¼ Atheor
set þ

k

k8

Ess ð69Þ

where Atheor
set ¼ k9=k8 and (κ/k8)Ess is the overcompensated offset (S6 Text).

The response kinetics of the motif 2 based controller is mostly determined by k4, which

reflects the derepression property by E. For large k4 the derepression by E is observed to be

slow and less effective.

Remarkably, when both k3 and V increase exponentially in phase 3 the controller is able to

move A close to Atheor
set . For this case Ass can be written as (S6 Text)

Ass ¼
g0

1þ g0

� �

Aapp
set ð70Þ

Fig 25. Behaviors of the motif 1 zero-order, antithetic, autocatalytic and motif 2 zero-order controllers with internal compensatory fluxes in response to an

exponential increase in V and k3. Time/perturbation profiles of V and k3 are the same as in Fig 14. (a) Behavior of the motif 1 zero-order controller. Rate constant

values as in Fig 18. Initial concentrations: A0 = 2.0, E0 = 4.0, V0 = 25.0, M0 = 4 × 109, N0 = 1 × 106. (b) Behavior of the antithetic controller. Rate constants as in Fig 20.

Initial concentrations: A0 = 2.0, E1,0 = 0.25, E2,0 = 4.0, V0 = 25.0, M0 = N0 = O0 = 1 × 106, Q0 = P0 = 0.0. During phase 2 the controller shows a slight but constant offset

below Atheor
set . During phase 3 the controller breaks down when both V and k3 increase exponentially. (c) Behavior of the autocatalytic controller. Rate constants are as

described in Fig 22. Initial concentrations: A0 = 2.0, E0 = 4.0, V0 = 25.0, M0 = 4 × 109, N0 = 1 × 107. During autocatalytic growth only (phase 2) the autocatalytic

controller is able to move Ass precisely to Atheor
set , but shows an offset from Atheor

set when both k3 and V increase exponentially). (d) Behavior of the motif 2 based controller

(Eqs 62–66). Rate constants and initial conditions as in Fig 24. Note the significant overcompensation (offset above Atheor
set ) during phase 2, but the return to Atheor

set (=k9/

k8) when k3 starts to grow exponentially.

https://doi.org/10.1371/journal.pone.0207831.g025
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where

g0 ¼
k4k6k8

_k3ðk4 þ EðtÞÞ2
ð71Þ

and

Aapp
set ¼ Atheor

set þ
k

k8

EðtÞ ð72Þ

Note that during phase 3 E is not in a steady state, but decreases due to the controller’s dere-

pression, while _k3 increases exponentially. However, the derepression kinetics by E are faster

than the exponential increase of _k3 (Eq 71), such that γ0 increases and Aapp
set and Ass approach

Atheor
set (S6 Text).

Growth related to the surface to volume ratio and controllers with cell-

internal compensatory fluxes

Here we show how the four controllers having cell internal compensatory fluxes perform with

respect to a surface to volume ratio related growth law as found for spherical bacteria ([9, 10,

13], Eq 2). We consider again three phases as in the previous sections, but with the difference

that V now grows according to Eq 2 with η = 1 and ξ = 0.2 (Fig 26a). The values of η and ξ are

arbitrarily chosen. The outflow perturbation, described by k3, is kept constant during phases 1

and 2, but increases exponentially during phase 3 (Eq 49). The response behaviors of the con-

trollers towards increasing volume (when k3 is kept constant) is initially very similar to that

when V increases linearly. However, the motifs gain more and more control as _V decreases,

provided that there is sufficient material in the cell to generate enough E’s (for the motif 1

controllers) or that there is still sufficient E left (for the motif 2 controller) to keep the negative

feedback loop operating.

As an example, Fig 26 shows the behavior of the motif 1 antithetic and autocatalytic con-

trollers and the motif 2 zero-order controller when k3 in phase 3 increases exponentially as

described by Fig 14 and compensatory fluxes are generated cell internally. The motif 1 zero-

order controller’s behavior (not shown) is again very similar in comparison with the motif 1

antithetic controller.

Overview of results

Tables 1 and 2 gives an overview of controller performances by dividing perturbations into (i)

linear V only, (ii) linear V and k3, (iii) exponential V only, and (iv) exponential V and k3. Con-

troller performances are described by the four categories perfect adaptation, partial adaptation,

over-adaptation, and breakdown. Perfect adaptation means that the controller is able to keep A
at Atheor

set . A controller with partial adaptation can maintain a constant A value during an applied

outflow perturbation, but below Atheor
set . A controller showing over-adaptation keeps A above

Atheor
set even when the perturbation leads to a decrease in A. Controller breakdown means that

the controller is unable to withstand the perturbation and A goes to zero.

Concerning the results with respect to surface/volume related growth we group this growth

law together with the category of linear growth, because controllers behave initially quite simi-

lar towards these two growth laws (compare phases 2 in Fig 16b–16d with respective phase 2

behaviors of Figs 9, 11 and 13 and phases 2 in Fig 26b–26d with the phase 2 behaviors of Figs

20, 22 and 24, respectively).
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Clearly, motif 1 controllers based on zero-order or on antithetic integral control, cannot

oppose an exponential volume increase or when an additional exponential increase in k3 is

applied. When exponentially increasing perturbations are applied the motif 1 autocatalytic

controller shows good performances with a stable offset in A below Atheor
set , but requires the pres-

ence of sufficient controller species E to maintain autocatalysis. The motif 2 controller using

zero-order based integral control shows best performance, and is able to keep A at Atheor
set , even

when both V and k3 increase exponentially. However, the drawback of controllers based on

derepression, like motif 2, is that controller breakdown occurs when concentrations of the

derepressing control species is getting too low.

Fig 26. Performance of the antithetic, autocatalytic and motif 2 based controllers towards surface/volume related growth in V and exponentially increasing

outflow perturbation k3 with cell-internal compensatory flux. Rate constant values and initial conditions as in Fig 25.

https://doi.org/10.1371/journal.pone.0207831.g026

Table 1. Performance of controllers based on internal generated compensatory fluxes.

controller type linear V only linear V and k3 exponential V only exponential V and k3

m1—zero-order perfect adaptation partial adaptation breakdown breakdown

m1—antithetic perfect adaptation partial adaptation breakdown breakdown

m1—autocatalytic perfect adaptation perfect adaptation perfect adaptation partial adaptation

m2—zero-order perfect adaptation perfect adaptation over-adaptation perfect adaptation

https://doi.org/10.1371/journal.pone.0207831.t001
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Discussion

Internal model principle and the kinetic limit of controllers

From Tables 1 and 2 it is seen that the motif 2 controller outperforms the other controllers.

The derepression kinetics of the motif 2 controller is described by the term (Eqs 43 and 62):

finhibðEÞ ¼
k4

k4 þ E
ð73Þ

which is an essential part in generating the compensatory flux in A. For decreasing (derepress-

ing) E finhib(E) increases with hyperbolic response kinetics, i.e. having exponentially increasing

doubling times. The motif 2 controller is therefore able, as observed [18], to counteract hyper-

bolically decreasing concentrations in A. The balancing between a perturbation and the by the

perturbation induced compensatory flux reflects the Internal Model Principle [25–27], which

states that if a controller is able to oppose a perturbation, then the controller has the capability

to generate that kind of perturbation internally. For the motif 2 controller the hyperbolic

response kinetics represents the upper kinetic limit which the controller can handle. In addi-

tion, the motif 2 controller will handle any perturbing rate laws with doubling times lower

than an exponential (constant doubling times relate to an exponential rate law), although over-

compensation may occur as seen in Fig 25d.

Thus, as indicated in Tables 1 and 2 controllers group according to their kinetic limits,

where the motif 2 controller with hyperbolic response kinetics performs better than controllers

based on exponential/autocatalytic or linear responses.

Repression/derepression kinetics are ubiquitously used in homeostatic mechanisms (see

Supplementary Material in [7]), in gene on/off regulations [28–30] and as rhythm generators

[31, 32]. The fast response of derepression is also used in signaling [33], but may be needed to

be kept under additional control as indicated in a study of the nitrogenase switch [30] to avoid

overenhanced/overcompensated responses.

Breakdown of the motif 2 controller occurs when the compensatory flux has reached its

maximum value (described by rate constant k2 in Figs 12 and 23).

A somewhat surprising behavior of the motif 2 controller is its overcompensation when

growth increases exponentially at constant k3 (see phase 2 in Fig 25d). The overcompensation

can be described analytically (Eq 69). Its origin is due to the fact that with a cell-internal com-

pensatory flux an exponetial increase in V at constant k3 allows for steady states in A and E,

independent of V, where Ass is larger than Atheor
set (S6 Text).

Performance improvement by increased controller aggressiveness

Although the motif 1 zero-order and the antithetic controllers break down when exposed to

exponential growth and perturbations (Figs 15a and 15b and 25a and 25b), their performance

can be significantly improved at constant _V by increasing of what can be described as the

Table 2. Performance of controllers based on transporter based compensatory fluxes.

controller type linear V only linear V and k3 exponential V only exponential V and k3

m1—zero-order partial adaptation breakdown breakdown breakdown

m1—antithetic partial adaptation breakdown breakdown breakdown

m1—autocatalytic perfect adaptation perfect adaptation partial adaptation partial adaptation

m2—zero-order perfect adaptation perfect adaptation perfect adaptation perfect adaptation

https://doi.org/10.1371/journal.pone.0207831.t002
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controllers’ aggressiveness. By aggressiveness of a controller we mean loosely the controller’s

response to a perturbation in terms of (mainly) quickness and precision. Increasing the aggres-

siveness of a controller will generally lead to a quicker controller response and an improved

controller precision.

The aggressiveness of an integral controller can be varied by the controller’s gain. The gain

is a factor in front of the error integral. For an ideal motif 1 zero-order integral controller

(working at constant V and k3) _E is proportional to the error e ¼ ðAtheor
set � AÞ [7], i.e.,

_E ¼ k6

k4

k6

� A
� �

ð74Þ

where k6 is the controller gain and k4/k6 is the controller’s theoretical set-point, Atheor
set . As indi-

cated by Eq 74 the concentration of E is proportional to the integrated error with respect to

time. By increasing k6 and k4 such that Atheor
set remains unchanged the gain of the controller is

increased and the controller becomes more aggressive.

For constant _V and k3 the steady state of A for the motif 1 zero-order controller is given by

Eq 20

Ass ¼
k4

k6 þ
2 _V k3

k2

ð20Þ

where the offset in Ass below Atheor
set is due to the term 2 _Vk3=k2. This term indicates that for

increasing _V and/or increasing k3 values the controller will break down and A will go to zero

as observed in Fig 15a. There are two ways the controller’s aggressiveness can be increased.

One way, as indicated above, is by increasing k4 and k6 such that Atheor
set ¼ k4=k6 is preserved

with k6 becoming much larger than 2 _Vk3=k2. As a result the controller’s response kinetics

become quicker and Ass moves closer to Atheor
set ¼ k4=k6. The other way is to increase k2, which

means to increase the activity of the transporter. In a synthetic biology context this could be

done by over-expressing the genes which code for the transporter. On the other hand, “nor-

mal” cells may already have optimized controller aggressiveness or may change it in response

to environmental conditions.

Similar arguments apply also for the antithetic controller. Qian et al. [34] have shown that

when the controller dynamics become faster than growth this leads to an improved controller

performance.

Fig 27 shows the results of increasing the aggressiveness of the motif 1 zero-order and anti-

thetic controllers by increasing k2 from 1.0 to 1×103. The perturbation is divided into three

phases. During the first phase the volume V is kept constant at 25.0 and the controllers are at

their set-points. In phase 2 the volume increases with a constant rate ( _V ¼ 1:0). Finally, in

phase 3 V continues to grow with _V ¼ 1:0 but k2 is increased to 1×103. Both controllers show

improved precisions, but show different kinetics in their way to reach Atheor
set .

Similar is the situation when the compensatory flux is internally generated. Eq 55 shows the

steady state in A for the motif 1 zero-order controller. Also here increasing k2 values will move

Ass towards the theoretical set-point Atheor
set ¼ k4=k6.

Aggressiveness can also be increased for the autocatalytic controller by increasing k4 and k6

such that the k4/k6 ratio is maintained. This will move the steady state in A closer to its theoret-

ical set-point as offsets become smaller (Eqs S14 and S20 in S5 Text).
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Roles of kinetic implementations of integral control and negative feedback

structures

For the transporter-based cases the increased aggressiveness of the motif 1 zero-order and

antithetic controllers allows them to defend their theoretical set-points as long as (see Eqs 20

and 29)

k6 ðor k4Þ � 2 _V
k3

k2

� �

ð75Þ

However, for exponentially increasing V and _V this can be achieved only for a certain

(often short) time period. The motif 1 zero-order controller will break down when Eq 75 is no

longer fulfilled. On the other hand, as shown above, the autocatalytic motif 1 controller is able

to maintain a stable steady state in A, although with an offset from Atheor
set , when V and k3

increase exponentially (but also here dependent on the controller’s aggressiveness). As Eq 38

(for the transporter-based compensatory flux) indicates, any time-dependent perturbation of

the type k3(t) = k3,0 + a�tn (a, n> 0) will be successfully defended by the autocatalytic control-

ler, because _k3=k3 ! 0 (S5 Text) and thereby restoring the controller’s theoretical set-point.

However, breakdown may occur if no sufficient supply of E (for example via M, Fig 11) can be

maintained.

The sudden breakdown of a fully adapted controller due to capacity limits or exhaustion of

the controller variables E or E1/E2 has an interesting analogy in physiology described by Selye’s

General Adaptation Syndrome (GAS) [35]. When an animal is exposed to constant but severe

stress (for example cold temperatures) the animal can stay, after an alarm reaction, in a stage

of resistance, where the animal appears perfectly adapted to its environment. However, after a

certain time there appears the stage of exhaustion and the animal dies, despite of sufficient

food supplies. To understand the sudden and unexpected breakdown of adaptation, Selye

introduced the concept of adaptation energy [36]. In our analogous examples here, the

Fig 27. Increased transporter activity (k2 values) lead to increased aggressiveness and improved controller precision for transporter-based motif 1 zero-order

controller (left panel) and motif 1 antithetic controller (right panel) during constant growth (see Figs 6 and 8). Phase 1: controllers are at their steady state, no

growth, k2 = 1.0. Phase 2: constant growth ( _V ¼ 1:0) and k2 = 1.0. Both controllers show an offset in Ass below Atheor
set . Phase 3: constant growth continues but k2 is

increased to 1 × 103. Both controllers show improved precision and have their Ass close to Atheor
set , but show different adaptation kinetics during the transition from

phase 2 to phase 3. Rate parameters and initial concentrations, zero-order controller: k3 = 2.0, k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 = 1 × 10−6, A0 = 2.0, E0 = 100.0, V0 =

25.0, M0 = 1 × 107. Rate parameters and initial concentrations, antithetic controller: k3 = 2.0, k4 = 10.0, k5 = 1 × 10−6, k6 = 10.0, k8 = 20.0, k9 = 1 × 10−6, A0 = 2.0, E1,0 =

1 × 10−2, E2,0 = 1 × 102, V0 = 25.0, M0 = O0 = 1 × 108.

https://doi.org/10.1371/journal.pone.0207831.g027
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adaptation energy can be associated with the amounts of precursors M, N, and O, and with the

maximum controller capacity, described by the maximum rate a compensatory flux can

deliver. Although our single loop controllers are a far cry from a physiologically regulated sys-

tem, the analogy to Selye’s GAS is thought-provoking.

Our results indicate that the type of kinetics realizing integral control and the structure of

the negative feedback loop play essential roles in how a controller will perform. The antithetic

integral controller has in the literature [22, 37, 38] so far only been considered in a motif 1 set-

ting based on activation (Fig 1). However, its second-order integral controller part can be

embedded into other feedback structures (S7 Text). Although the intension of this work was

not to consider novel implementations of the antithetic integral controller, it is illustrative to

see the controller’s improvement and limitations when considering the antithetic controller in

a motif 2 background. Fig 28 shows two such implementations, one with a transporter based

compensatory flux and the other with a cell internal one.

When merging the motif 2 structure with the antithetic integral controller, we keep the

antithetic controller’s rate constant values, but change the k2 and the inhibition constant (k10)

values to those used in the motif 2 controller calculations. For the transporter based motif 2

antithetic controller Eq 21 is now replaced by

_A ¼
k2 � k10

k10 þ E1

�
1

V
� k3 � A � A

_V
V

� �

ð76Þ

while for the controller with a cell internal compensatory flux, Eq 56 is replaced by

_A ¼
N

k7 þ N

� �

�
k2k10

k10 þ E1

� �

� k3 � A � A
_V
V

� �

ð77Þ

Fig 28. Antithetic integral controllers with motif 2 feedback structure and transporter based and cell internal compensatory fluxes.

https://doi.org/10.1371/journal.pone.0207831.g028
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The other rate equations (Eqs 22–27) remain unchanged. Fig 29 shows the results when linear

and exponential growth and k3 changes (see Figs 9a and 14) are applied to the controllers in

Fig 28.

In comparison with the motif 1 antithetic structure, the usage of the motif 2 negative feed-

back shows a clear improvement in the antithetic controllers’ performance (compare Fig 29a,

29b, 29c and 29d with Figs 9, 15, 20 and 25, respectively). The feedback design based on a cell

internal compensatory flux shows again a better performance in comparison when the com-

pensatory flux is transporter based. On the other hand, when both V and k3 increase exponen-

tially both motif 2 antithetic controllers are not able to keep A at a constant steady state. The

Fig 29. Performance of the antithetic controller in a motif 2 (m2) structural background (Fig 28). (a) The controller has a transporter mediated compensatory flux

and is exposed to linear growth and increase in k3 as in Fig 9a. Same rate constants and initial concentrations as in Fig 9 with the exception that k2 = 1 × 105, and k10 =

1 × 10−3. Note the minor offset in A during phase 2. (b) Same controller with rate constants as in (a), but exposed to exponential volume and k3 increases as in Fig 14.

Initial concentrations: A0 = 2.0, E1,0 = E2,0 = 1.0, M0 = O0 = 1 × 105. The controller is not able to oppose exponential growth. (c) Controller with a cell internal

compensatory flux (Fig 28) and exposed to the conditions as in Fig 20. Same rate constants as in (a). Initial concentrations: A0 = 2.0, E1,0 = E2,0 = 25.0, M0 = O0 =

2 × 105, N0 = O0 = 1 × 106. The controller is fully capable to oppose linear growth together with a linear increase in k3. (d) Same controller with rate constants as in (c),

but exposed to exponential volume and k3 increases as in Fig 14. Initial concentrations as in (c), but to avoid depletion of M and O initial concentrations of these

compounds were raised to 1 × 106. Note also here the overcompensation in the case growth occurs exponentially in phase 2. Despite the larger consumption rates of M
and O in comparison with (c) the controller is not able to counteract both exponential increases in V and k3. See S7 Text for more details.

https://doi.org/10.1371/journal.pone.0207831.g029
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reason for this is that the rate of derepression/removal in E1 is limited by its reaction with E2

and thereby is slower than the E removal in the motif 2 zero-order case.

From a biochemical perspective one may question how realistic a second-order removal of

E1 and E2 is. Since practically all physiological reactions within a cell are catalyzed by enzymes,

it appears to be an interesting alternative to study the performance of controllers when an

enzyme uses E1 and E2 as substrates.

With respect to the autocatalytic implementation to achieve integral control [19–21], the

occurrence of autocatalysis and positive feedback loops are becoming more and more recog-

nized in signaling and homeostatic regulation [39–41]. As an illustration, in cortisol homeosta-

sis ACTH signaling from the brain-pituitary system to the cortisol producing adrenals occurs

by autocatalysis/positive feedback [42]. In blood sugar homeostasis insulin secretion is acti-

vated by several positive feedback/autocatalytic signaling pathways [43–45] to ensure an effec-

tive regulation in glucose concentration. These examples indicate the importance of additional

“helper kinetics” (such as autocatalysis/positive feedback) to obtain a homeostatic regulation

with optimum response and precision properties. For synthetic biology this means that knowl-

edge about controller structure and their inherent kinetics are important aspects in the design

and implementation of artificial regulatory units when trying to oppose the dilution effects of

growth or other time-dependent perturbations.

Outlook

The approach taken here is based on ordinary mass action kinetics and thereby is purely deter-

ministic. In addition, we made the assumption that the cellular volume is well-mixed and

homogenous. Both assumptions are subject to certain criticism, when applied to biochemical

reactions within a cell. While in many cases a chemically reacting system can be treated as a

continuous deterministic process, in other cases, in particular when the number of reacting

molecules becomes low, reactions may better be described as discrete stochastic processes [46–

48]. However, many, if not most of the stochastic approaches to describe cellular processes still

treat (and require) that systems are treated as homogenous, thereby neglecting “recruiting” or

“funneling” mechanisms which occur, for example, on the surface of cellular membranes,

involve multiprotein complexes (“antenna”) in photon harvesting [49], or use substrate

channeling (“tunnels”) in enzyme-catalyzed reactions [50].

Ignoring these spatial aspects, it may be mentioned, that the controller motifs 1 and 2 (Fig

1) based on zero-order and first-order autocatalysis are well-described by the Gillespie algo-

rithm [46] and show an excellent correspondence between the stochastic and deterministic

approach (P. Ruoff, unpublished results). The motif 1 antithetic controller has been shown to

work well under stochastic conditions by exploiting noise, and achieves regulation where a

similar deterministic approach apparently fails [21]. How these controllers behave under time-

dependent perturbations and stochastic conditions is an interesting aspect which we would

like to investigate in a later work.

Nevertheless, we feel that the deterministic calculations presented here give a first ranking

between the various integral controllers when exposed to different growth laws and dilution

kinetics.

Supporting information

S1 Matlab. A set of Matlab files showing the results of Figs 4, 7, 9, 11, 13, 15, 18, 20, 22, 24,

25, 26 and 27.
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S1 Text. Steady state of cell-internal-generated compound A without negative feedback.

(PDF)

S2 Text. Steady state of transporter-generated compound A without negative feedback.

(PDF)

S3 Text. Steady states and theoretical set-point for motif 1 zero-order controller.

(PDF)

S4 Text. Steady states and theoretical set-point for motif 1 second-order (antithetic) con-

troller.

(PDF)

S5 Text. Steady states and theoretical set-point for motif 1 autocatalytic controller.

(PDF)

S6 Text. Steady states and theoretical set-point for motif 2 zero-order controller.

(PDF)

S7 Text. Novel antithetic integral controller arrangements and steady states in a motif 2

background.

(PDF)
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