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Abstract In this paper, we calculate the equation of state
of two-flavor finite isospin chiral perturbation theory at next-
to-leading order in the pion-condensed phase at zero temper-
ature. We show that the transition from the vacuum phase
to a Bose-condensed phase is of second order. While the
tree-level result has been known for some time, surprisingly
quantum effects have not yet been incorporated into the equa-
tion of state. We find that the corrections to the quantities we
compute, namely the isospin density, pressure, and equation
of state, increase with increasing isospin chemical poten-
tial. We compare our results to recent lattice simulations of
2 + 1 flavor QCD with physical quark masses. The agreement
with the lattice results is generally good and improves some-
what as we go from leading order to next-to-leading order in
χPT.

1 Introduction

Quantum chromodynamics (QCD), the fundamental theory
of strong interactions, has a rich phase structure, particularly
at finite baryon densities relevant for a number of physical
systems including neutron stars, neutron matter and heavy-
ion collisions among others [1–3]. However, finite baryon
densities are not accessible directly through QCD since the
physics is non-perturbative and lattice calculations are hin-
dered by the fermion sign problem. Though it is worth not-
ing that some progress has been made in circumventing the
sign problem through the fermion bag and Lefschetz thim-
ble approaches [4]. There is also the additional possibility of
solving QCD at finite baryon density with quantum comput-
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ers since the sign problem is absent in quantum algorithms
[5].

While finite baryon density is inaccessible through lat-
tice QCD, finite isospin systems in real QCD can be stud-
ied using lattice-based methods, see Refs. [6,7] for some
early results. The most thorough of these studies were
performed only recently [8–10] even though finite isospin
QCD was first studied over a decade ago using chiral per-
turbation theory (χPT) in a seminal paper by Son and
Stephanov [11]. χPT [12–15] is a low-energy effective
field theory of QCD that describes the dynamics of the
pseudo-Goldstone bosons that are the result of the spon-
taneous symmetry breaking of global symmetries in the
QCD vacuum. Being based only on symmetries and degrees
of freedom, the predictions of χPT are model indepen-
dent.

It is agreed through both lattice QCD and chiral pertur-
bation theory studies that at an isospin chemical potential
equal to the physical pion mass there is a second-order phase
transition at zero temperature from the vacuum phase to a
pion-condensed phase. With increasing chemical potential
there is a crossover transition to a BCS phase with a parity
breaking order parameter, 〈ūγ5d〉 �= 0 or 〈d̄γ5u〉 �= 0, that
has the same quantum numbers as a charged pion conden-
sate. Furthermore, for large temperatures of approximately
170 MeV, the pion condensate is destroyed due to thermal
fluctuations. Various aspects of χPT at finite isospin den-
sity can be found in Refs. [11, 16–23]. Finite isospin sys-
tems have also been studied in the context of QCD mod-
els including the non-renormalizable Nambu–Jona–Lasinio
model [24–38], and the renormalizable quark-meson model
[39–42], with the results found there being largely in agree-
ment with lattice QCD. A very recent review of meson con-
densation can be found in Ref. [43].
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In addition to the study of pions at finite isospin chem-
ical potential there has also been recent interest in the
study of pions in the presence of external magnetic fields,
which are relevant in the context of neutron stars with
large fields (magnetars) and possibly in RHIC collisions,
which generate magnetic fields due to accelerated charged
beams of lead and gold nuclei. In neutron star cores, an
isospin asymmetry is present since protons are converted
into neutrons and neutrinos through electron capture. How-
ever, in the presence of a magnetic field, finite isospin sys-
tems are difficult to study due to the fermion sign prob-
lem on the lattice QCD that arises as a consequence of fla-
vor asymmetry between up and anti-down quarks for elec-
tromagnetic interactions. The complex action problem is
tackled by studying finite isospin densities for small mag-
netic fields, where the sign problem is mild. The lattice
observes a diamagnetic phase [44], while studies in chi-
ral perturbation theory valid for magnetic fields eB �
(4π fπ )2 suggests that pions behave as a type-II supercon-
ductor [45].

More recently, due to the accessibility of the equation of
state (EoS) of pion degrees of freedom through lattice QCD,
there has been a lot of interest in the possibility of pion stars
[22,46], a type of boson star that does not require the hypoth-
esized axion, which was initially proposed as a solution to
the strong CP problem in QCD. Pion stars, on the other hand,
only require input from QCD and it is conjectured that pion
condensation takes place in a gas of dense neutrinos [47].
Recent work shows that pion stars are typically much larger
in size than neutron stars due to a softer equation of state
and that the isospin chemical potentials at the center of such
stars can be as high as 250 MeV for purely pionic stars
and smaller for pion stars electromagnetically neutralized by
leptons [46].

The goal of this paper is to revisit the equation of state for
finite isospin QCD in the regime of validity of χPT, where we
expect μI � 4π fπ . The equation of state (at tree level) was
originally calculated in Ref. [11] of QCD. In this paper, we
calculate the equation of state within χPT and incorporate
leading order quantum corrections.

We begin in Sect. 2 with a brief overview of chiral per-
turbation theory and discuss how to parametrize the fluctu-
ations around the ground state. We derive the Lagrangian
that is needed for all next-to-leading order (NLO) calcula-
tions within χPT at finite isospin chemical potential allow-
ing for a charged pion condensate. In Sect. 3, we use this
NLO Lagrangian to calculate the renormalized one-loop free
energy at finite μI . In Sect. 4, we calculate the isospin density,
the pressure, and the equation of state in the pion-condensed
phase. Our results are compared to those of recent lattice sim-
ulations. We summarize our findings in Sect. 5 and present
some calculations’ details in Appendices A–E.

2 χPT Lagrangian at O( p4)

In this section, we discuss the symmetries of two-flavor QCD
QCD and chiral perturbation theory as a low-energy approx-
imation to it. The two-flavor Lagrangian is

L = ψ̄
(
i/D − mq

)
ψ − 1

4
Fa

μνF
μνa, (1)

where mq = diag(mu,md) is the mass matrix, /D = γ μ(∂μ −
igAa

μt
a) is the covariant derivative, ta are the Gell-Mann

matrices, and Fa
μν is the field-strength tensor.

For massless quarks, the global symmetries of QCD are
SU (2)L × SU (2)R ×U (1)B , which is reduced to SU (2)V ×
U (1)B for nonzero quark masses in the isospin limit, i.e.
for mu = md . If mu �= md , this is further reduced to
U (1)I3 × U (1)B = U (1)u × U (1)d . Adding a quark chem-
ical potential μq for each quark, the symmetry is U (1)I3 ×
U (1)B = U (1)u ×U (1)d irrespective of the quark mass. In
the pion-condensed phase, the U (1)I3 symmetry is broken.
In the remainder of the paper, we work in the isospin limit.

We begin with the chiral perturbation theory Lagrangian
in the isospin limit at O(p2)

L2 = f 2

4
Tr
[
∇μΣ†∇μΣ

]
+ f 2m2

4
Tr
[
Σ + Σ†

]
, (2)

where f is the (bare) pion decay constant and m is the (bare)
pion mass. The relation between the physical pion mass mπ

and m, and between the physical pion decay constant fπ
and f are briefly discussed in Appendix B. The covariant
derivatives at finite isospin are defined as follows

∇μΣ ≡ ∂μΣ − i
[
vμ,Σ

]
(3)

∇μΣ† = ∂μΣ† − i[vμ,Σ†], (4)

where vμ = δμ0μI
τ3
2 with μI denoting the isospin chemical

potential and τ3 the third Pauli matrix.
It is well known that chiral perturbation theory encodes the

interactions among the Goldstone bosons (pions) that arise
due to the spontaneous breaking of chiral symmetry by the
QCD vacuum, i.e.

Σ j i ≡ 〈ψ̄i Rψ j L〉 �= 0 (5)

Under chiral rotations, i.e. SU (2)L × SU (2)R , the left-
handed and right-handed fields transform as

ψL → LψL

ψR → RψR .
(6)

As such Σ transforms as

Σ → LΣR† . (7)
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2.1 Ground state

We briefly review the ground state of χPT at finite isospin
using the O(p2) Lagrangian. The static Hamiltonian is

H static
2 = 1

8
f 2μ2

ITr
[
τ3Στ3Σ

† − 1
]

−1

4
f 2m2Tr

[
Σ + Σ†

]
. (8)

The ansatz for a μI -dependent rotated ground state can be
parametrized by the angle α as [11]

Σα = eiαφ̂i τi = cos α + i φ̂iτi sin α, (9)

where φ̂i φ̂i = 1. This requirement guarantees that Σ†
αΣα =

1. The static Hamiltonian at O(p2) then becomes

H static
2 = −L2 = − f 2m2 cos α

− 1

2
f 2μ2

I sin2 α(φ̂2
1 + φ̂2

2).
(10)

The first term in Eq. (8) favors the vacuum direction since the
trace of the Pauli matrices is zero, while the the second term
favors directions in isospin space which anticommute with
τ3, i.e. along τ1 and τ2. Thus there is competition between
these two terms. We also note that the ground-state energy

is minimized for φ̂3 = 0. Thus φ̂2
1 + φ̂2

2 = 1 and neutral
pions do not condense. By minimizing the above expression
with respect to α, we get the well-known result that charged
pion condensation occurs for μI ≥ m with cos α = m2

μ2
I
. For

μI < m, α = 0 and Σ = 1, i.e. the vacuum solution.

2.2 Parametrizing fluctuations

Since the goal of this paper is to study the equation of
state of the pion condensed phase including quantum cor-
rections, it is natural to expand the χ PT Lagrangian around
the pion condensed ground state. The Goldstone manifold
as a consequence of chiral symmetry breaking is SU (2)L ×
SU (2)R/SU (2)V . As such, we proceed by first parametriz-
ing the condensed vacuum as follows

Σα = AαΣ0Aα, (11)

Aα = e
i α

2

(
φ̂1τ1+φ̂2τ2

)

=cos
α

2
+i(φ̂1τ1+φ̂2τ2) sin

α

2
, (12)

where we, for the purposes of this paper, choose φ̂1 = 1
and φ̂2 = 0 without any loss of generality. Note that α = 0
reproduces the normal vacuum with Σ0 = 1 as required.
Then the fluctuations (which are axial) around this condensed
vacuum are parametrized as

Σ = LαΣαR†
α, (13)

with

Lα = AαU A†
α, (14)

Rα = A†
αU

†Aα. (15)

We emphasize that the fluctuations parameterized by Lα and
Rα around the ground state depend on α since the broken
generators (of QCD) need to be rotated appropriately as the
condensed vacuum rotates with the angle α [16].1 We dis-
cuss this briefly in Appendix C. U is an SU (2) matrix that
parameterizes the fluctuations around the ground state:

U = exp

(
i
φaτa

2 f

)
. (16)

With the parameterizations stated above, we get

Σ = Aα(UΣ0U )Aα. (17)

As we show later in this paper, this parameterization not
only produces the correct linear terms that vanish at O(p2),
the divergences of one-loop diagrams also cancel using
counterterms from the O(p4) Lagrangian. Furthermore, the
parametrization produces a Lagrangian that is canonical in
the fluctuations and has the correct limit when α = 0,
whereby

Σ = UΣ0U = U 2 = exp

(
i
φaτa

f

)
, (18)

as expected.
We would like to emphasize the importance of using Lα

and Rα instead of L = U and R = U †. If the latter set is
used, Eq. (13) is replaced by

Σwrong = UΣαU = U AαΣ0AαU, (19)

and one finds that the kinetic term of the Lagrangian is not
properly normalized. This is in itself not problematic since
the canonical normalization can be achieved by a field redef-
inition. This field redefinition changes the mass and inter-
action terms of the Lagrangian but only at the minimum of
the LO effective potential do the masses coincide with the
correct expressions, Eqs. (26)–(29) below. Moreover, if one
computes the one-loop effective potential, it turns out that
the counterterms cancel the divergences only at the classical
minimum. Thus one cannot renormalize the NLO effective
potential away from the LO minimum and therefore not find
the NLO minimum, which shows that the Σwrong in Eq. (19)
cannot be correct.

1 Consider e.g. a theory with an SO(3) symmetric Lagrangian with
the ground state picking up a vev say in the z-direction. If the vev
is rotated to the y-direction, then the (un)broken generators must be
rotated accordingly.
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2.3 Leading-order Lagrangian

Using the parameterization of Eq. (17) discussed above, we
can write down the Lagrangian in terms of the fields φa ,
which parametrizes the Goldstone manifold

L2 = L static
2 + L linear

2 + L
quadratic

2 + · · · , (20)

where

L static
2 = f 2m2 cos α + 1

2
f 2μ2

I sin2 α, (21)

L linear
2 = f

(
−m2 sin α + μ2

I cos α sin α
)

φ1

+ f μI sin α∂0φ2, (22)

L
quadratic

2 = 1

2
(∂μφa)(∂

μφa) + μI cos α(φ1∂0φ2 − φ2∂0φ1)

−1

2

[
(m2 cos α − μ2

I cos 2α)φ2
1

+(m2 cos α − μ2
I cos2 α)φ2

2

+(m2 cos α + μ2
I sin2 α)φ2

3

]
. (23)

The inverse propagator in the φa basis is

D−1 =
(
D−1

12 0
0 P2 − m2

3

)
, (24)

D−1
12 =

(
P2 − m2

1 i p0m12

−i p0m12 P2 − m2
2

)
, (25)

where P = (p0, p) is the four-momentum, P2 = p2
0 − p2,

and the masses are

m1 =
√
m2 cos α − μ2

I cos 2α, (26)

m2 =
√
m2 cos α − μ2

I cos2 α, (27)

m12 = 2μI cos α, (28)

m3 =
√
m2 cos α + μ2

I sin2 α, (29)

and with D−1
12 representing the inverse propagator for the

charged pions. The dispersion relation can be found using
the zeros of the inverse propagator D−1. We find that the
energies associated with the three pion modes are as follows

E2
π± = p2 + 1

2

(
m2

1 + m2
2 + m2

12

)

±1

2

√
4p2m2

12+(m2
1 + m2

2+m2
12)

2−4m2
1m

2
2, (30)

E2
π0 = p2 + m2

3. (31)

The full propagator can then be written in terms of the dis-
persion relations as follows

D =
(
D12 0
0 (p2 − m2

3)
−1

)
, (32)

D12 = 1

(p2
0 − E2

π+)(p2
0 − E2

π−)

(
P2 − m2

2 −i p0m12

i p0m12 P2 − m2
1

)
.

(33)

Expanding the Lagrangian L2 beyond the quadratic terms,
we get for terms with three and four fields

L cubic
2 = (m2 − 4μ2

I cos α) sin α

6 f
φ1(φaφa)

−μI sin α

f

[
φ2

1∂0φ2 + φ2
3∂0φ2

]
, (34)

L
quartic

2 = 1

24 f 2 (φaφa)
[
(m2 cos α − 4μ2

I cos 2α)φ2
1

+(m2 cos α − 4μ2
I cos2 α)φ2

2

+(m2 cos α + 4μ2
I sin2 α)φ2

3

]

−μI cos α

3 f 2 (φaφa)(φ1∂0φ2 − φ2∂0φ1)

+ 1

6 f 2

[
φaφb∂

μφa∂
μφb − φaφa∂μφb∂

μφb
]

.

(35)

The Lagrangian in the normal phase can be recovered simply
by setting α = 0. Note in particular that the cubic terms
vanish, L cubic

2 = 0.

2.4 Next-to-leading order Lagrangian

In order to perform calculations at NLO, we must consider
the terms in the Lagrangian that contribute at O

(
p4
)
. In the

notation of Ref. [48], the relevant terms are2

L4 = 1

4
l1
(

Tr
[
DμΣ†DμΣ

])2

+1

4
l2Tr

[
DμΣ†DνΣ

]
Tr
[
DμΣ†DνΣ

]

+ 1

16
(l3 + l4)m

4(Tr[Σ + Σ†])2

+1

8
l4m

2Tr
[
DμΣ†DμΣ

]
Tr[Σ + Σ†] + h1Trm4,

(36)

where l1–l4 and h1 are bare coupling constants. The bare and
renormalized couplings lri (Λ), hri (Λ) are related by

li = lri (Λ) − γiΛ
−2ε

2(4π)2

[
1

ε
+ 1

]
, (37)

hi = hri (Λ) − δiΛ
−2ε

2(4π)2

[
1

ε
+ 1

]
, (38)

where γi and δi are coefficients, and Λ is the renormalization
scale in the modified minimal subtraction (MS) scheme (see

2 There are additional operators with couplings l5–l7 and h2–h3 which
are not relevant for the present calculation.
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below). The renormalized lri s and hri s are running couplings
that satisfy renormalization group equations. Since the bare
couplings are independent of the renormalization scale Λ,
differentiation of Eqs. (37) and (38) immediately yields

Λ
d

dΛ
lri = − γi

(4π)2 , Λ
d

dΛ
hri = − δi

(4π)2 . (39)

The low-energy constants l̄i and h̄1 are defined via the solu-
tions to the renormalization group equations (39) as

lri (Λ) = γi

2(4π)2

[
l̄i + log

m2

Λ2

]
, (40)

hri (Λ) = δi

2(4π)2

[
h̄i + log

m2

Λ2

]
, (41)

and are up to a constant equal to the renormalized couplings
lri (Λ) and hri (Λ) evaluated at the scale Λ = m [13]. The
coefficients γi and hi are

γ1 = 1

3
, γ2 = 2

3
, γ3 = −1

2
, (42)

γ4 = 2, δ1 = 0. (43)

Since δ1 = 0, Eqs. (38), (39), and (41) obviously do not
apply. The coupling h1 is therefore not running, but simply
gives a Λ-independent contribution to the effective potential
which is the same in both phases. It drops out when we look
at the difference in pressure and we ignore it in the remainder
of the paper.

In writing the NLO Lagrangian above, we have ignored
contributions at finite isospin through the Wess–Zumino–
Witten (WZW) Lagrangian, which is of the form

LWZW ∼ ε0μναμITr
[
τ3(Σ∂μΣ†)(Σ∂νΣ

†)(Σ∂αΣ†)
]
,

(44)

with the leading contribution at O(p4). There is also a sep-
arate contribution at zero external field at the same order
[49] but neither of these terms through the WZW action con-
tributes to the thermodynamic quantities that we compute at
one loop.

Expanding the Lagrangian (36) in the fields, we obtain up
to quadratic order

L static
4 = (l1 + l2)μ

4
I sin4 α + l4m

2μ2
I cos α sin2 α

+(l3 + l4)m
4 cos2 α, (45)

L linear
4 = (l1 + l2)

4μ4
1

f
cos α sin3 αφ1

+l4
m2μ2

I

f
(2 sin α − 3 sin3 α)φ1

−(l3 + l4)
2m4

f
sin α cos αφ1

+(l1 + l2)
4μ3

I sin3 α

f
∂0φ2

+l4
2m2μI cos α sin α

f
∂0φ2 , (46)

L
quadratic
4 = (l1 + l2)

2μ4
I sin2 α

f 2

[
(1 + 2 cos 2α)φ2

1

+ cos2 αφ2
2 − sin2 αφ2

3

]

+l4
m2μ2

I cos α

4 f 2

[
(−5 + 9 cos 2α)φ2

1

+(1 + 3 cos 2α)φ2
2 − 6 sin2 αφ2

3

]

−(l3 + l4)
m4

f 2

[
(cos 2α)φ2

1 + cos2 α(φ2
2 + φ2

3)
]

−(l1 + l2)
4μ3

I sin α sin 2α

f 2 (φ2∂0φ1 − φ1∂0φ2)

−l4
m2μI

f 2 (cos2 α + cos 2α)(φ2∂0φ1 − φ1∂0φ2)

+l1
2μ2

I

f 2 sin2 α(∂μφa)(∂
μφa)

+l2
2μ2

I

f 2 sin2 α(∂μφ2)(∂
μφ2)

+(l1 + l2)
4μ2

I sin2 α

f 2 (∂0φ2)
2

+l4
m2 cos α

f 2 (∂μφa)(∂
μφa), (47)

Eqs. (21)–(23) and (34)–(35) from L2 and Eq. (45) from L4

provide us with all the terms we need for the NLO calculation
within χPT.

3 Next-to-leading order effective potential

The order-p2 contribution to the effective potential is given
by minus the static part of the Lagrangian L2. The one-
loop contribution which is of order p4 is given by a Gaus-
sian path integral and is ultraviolet divergent. The ultraviolet
divergences must be regularized and we choose dimensional
regularization. Dimensional regularization sets power diver-
gences to zero and logarithmic divergences show up as poles
in ε, where d = 3 − 2ε is the number of spatial dimensions
(see below). The divergences are cancelled by renormaliz-
ing the coupling constants appearing in the static part of the
Lagrangian L4, which is also of order-p4.

3.1 Vacuum phase

The order-p2 contribution V0 to the effective potential Veff

is equal to minus the static Lagrangian given in Eq. (21),
evaluated at α = 0,

V0 = − f 2m2. (48)

The dispersion relations for the neutral pion reduces to Eπ0 =√
p2 + m2 and for the charged pions Eπ± = √

p2 + m2 ∓
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μI . The one-loop contribution to the effective potential is
therefore

V1 = V1,π0 + V1,π+ + V1,π− = 1

2

∫

p

(
Eπ0 + Eπ+ + Eπ−

)

= 3

2

∫

p

√
p2 + m2. (49)

The integral is defined as
∫

p
=
(
eγEΛ2

4π

)ε ∫
dd p

(2π)d
, (50)

where Λ is the renormalization scale in the modified minimal
subtraction (MS) scheme and d = 3 − 2ε is the number of
spatial dimensions. Using Eq. (A.1), we find

V1 = − 3m4

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m2

)]
. (51)

The O(p4) static term V static
1 is given by minus L static

4 eval-
uated at α = 0,

V static
1 = −(l3 + l4)m

4. (52)

Using Eq. (37) with i = 3, 4, the renormalized one-loop
effective potential is then given by

Veff = V0 + V static
1 + V1

= − f 2m2 − 3m4

4(4π)2

[
1

2
− 1

3
l̄3 + 4

3
l̄4

]
. (53)

We note that Eq. (53) and therefore the thermodynamic quan-
tities are independent of the isospin chemical potential μI all
the way up to μI = mπ (see Sect. 4), which is the Silver-
Blaze property [50]. We therefore refer to this as the vacuum
phase. The scale dependence has cancelled in the final result
Eq. (53).

3.2 Pion-condensed phase

The order-p2 contribution V0 to the effective potential Veff

is equal to minus the static Lagrangian given in Eq. (21),

V0 = − f 2m2 cos α − 1

2
f 2μ2

I sin2 α. (54)

Using the dispersion relations for the pions, we can write
down the one-loop contribution to the effective potential as
follows

V1 = V1,π0 + V1,π+ + V1,π−

= 1

2

∫

p
Eπ0 + 1

2

∫

p
(Eπ+ + Eπ−), (55)

Using Eq. (A.1), we find

V1,π0 = 1

2

∫

p

√
p2 + m2

3

= − m4
3

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m2
3

)]

. (56)

The calculation of V1,π± requires isolating the ultraviolet
divergences, which can be done by expanding Eπ± in powers
of 1

p , which gives

Eπ+ + Eπ− = 2p + 2(m2
1 + m2

2) + m2
12

4p

−8(m4
1 + m4

2) + 4(m2
1 + m2

2)m
2
12 + m4

12

64p3 + · · ·
(57)

The ultraviolet behavior of Eπ+ + Eπ− is the same as that

of E1 + E2, where Ei =
√
p2 + m2

i + 1
4m

4
12 (i = 1, 2).

Defining m̃2
1 = m2

1 + 1
4m

4
12 = m2 cos α + μ2

I sin2 α = m2
3

and m̃2
2 = m2

2 + 1
4m

4
12 = m2 cos α, the divergent part of the

first two terms in Eq. (55) reads

V div
1,π+ + V div

1,π− = − m̃4
1

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃1
2

)]

− m̃4
2

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃2
2

)]

, (58)

where we have used Eq. (A.1). The finite part is defined as

V fin
1,π+ + V fin

1,π− = 1

2

∫

p

[
Eπ+ + Eπ− − E1 − E2

]
, (59)

such that the sum of Eqs. (58) and (59) is equal to the first
two terms in Eq. (55). The expression for the divergent pieces
can be written in terms of α using the explicit expressions
for mi , Eqs. (26)–(29). We find

V div
1 = − 1

2(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m2
3

)]

×
(
m2 cos α + μ2

I sin2 α
)2

− 1

4(4π)2

[
1

ε
+ 3

2
+ log

(
Λ2

m̃2
2

)]

m4 cos2 α. (60)

The staticO(p4) comes from the static part of the Lagrangian,
given by minus Eq. (45),

V static
1 = −(l1 + l2)μ

4
I sin4 α − l4m

2μ2
I cos α sin2 α

−(l3 + l4)m
4 cos2 α. (61)

After renormalization, using Eq. (37) the effective potential
Veff = V0 + V static

1 + V1 has the form

Veff = − f 2m2 cos α − 1

2
f 2μ2

I sin2 α

− 3

4(4π)2

[
1

2
− 1

3
l̄3 + 4

3
l̄4 + 1

3
log

(
m2

m̃2
2

)
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+2

3
log

(
m2

m2
3

)]

m4 cos2 α

− 1

(4π)2

[
1

2
+ l̄4 + log

(
m2

m2
3

)]

m2μ2
I cos α sin2 α

− 1

2(4π)2

[
1

2
+ 1

3
l̄1 + 2

3
l̄2 + log

(
m2

m2
3

)]

μ4
I sin4 α

+V fin
1,π+ + V fin

1,π− . (62)

We note that all the Λ-dependence cancels in the final result
(62). This implies that the thermodynamic functions are inde-
pendent of the renormalization scale.

4 Thermodynamics

In this section, we investigate the thermodynamics of the
pion-condensed phase using the effective potential (62). We
will calculate the pressure P and the isospin density nI as a
function of the isospin chemical potential μI , as well as the
equation of state, i.e. the energy density ε as a function of
the pressure P . In order to evaluate these quantities we need
to know the low-energy constants l̄i . Evaluated at the scale
μ = m, they have the following values and uncertainties [51]

l̄1 = −0.4 ± 0.6, l̄2 = 4.3 ± 0.1, (63)

l̄3 = 2.9 ± 2.4, l̄4 = 4.4 ± 0.2. (64)

The coupling constants l̄1 and l̄2 can be measured experimen-
tally via the d-wave scattering lengths, while the coupling
constant l̄3 has been estimated using three-flavor QCD [13].
Finally, the coupling l̄4 is related to the scalar radius of the
pion and has also been estimated to the value quoted above.

At LO, m = mπ and f = fπ and so their uncertainties
are the same. Given the values of l̄3 and l̄4, the parameters
m2 and f 2 at NLO are determined using Eqs. (B.11) and
(B.12) and the values for the pion mass and the pion decay
constant. Since we want to compare our results to lattice data,
we choose the same pion mass and pion decay constant [52],

mπ = 131 ± 3MeV, fπ = 128 ± 3√
2

MeV. (65)

The uncertainties in the low-energy constants, mπ , and fπ
translate into uncertainties in m and f . The central values
mcen and fcen are obtained by using the central values of l̄i ,
mπ and fπ . The minimum and maximum values of m and
f denoted by mmin, fmin and mmax, fmax respectively are
obtained by combining the maximum and minimum values
of the l̄i s, fπ , and mπ . The values for the bare pion mass and

decay constant are

mcen = 132.4884 MeV, fcen = 84.9342 MeV, (66)

mmin = 128.2409 MeV, fmin = 83.2928 MeV, (67)

mmax = 136.9060 MeV, fmax = 86.5362 MeV. (68)

We have also considered separately the uncertainties in the
LECs and the parameters mπ and fπ . It turns out that the
uncertainties are completely dominated by the latter.

The thermodynamic functions are derived from the effec-
tive potential (62) at its minimum as a function of α so we
must first solve

∂Veff

∂α
= 0. (69)

This can also be used to show that the linear term vanishes
on-shell i.e. for the value of α that minimizes Veff . We show
this explicitly in Appendix D.

In Fig. 1, we show the solution to Eq. (69) as function of
the isospin chemical potential μI divided by mπ . The red
curve is the order-p2 result, while the blue curve is the order-
p4 result. The curves are barely distinguishable.

We first discuss the quasi-particle masses. Restricting our-
selves to tree level, the masses are obtained by setting p = 0
in Eqs. (30)–(31). The normalized masses are shown in Fig. 2
as a function of the normalized isospin chemical potential
(both normalized by the pion mass in the vacuum). The mass
of the neutral pion is given by the red dotted line, the black
curve is the mass of π−, and the blue line is the mass of π+.

We see that the pionic excitation π+ is massless for μI ≥
mπ , In the pion-condensed phase, m2

2 = 0 at the minimum
of the effective potential. Expanding Eq. (30) around p = 0
yields

Eπ+ =
√

μ4
I − m4

π

3m4
π + μ4

I

p + O(p2), (70)

Fig. 1 α that minimizes the effective potential as a function of isospin
chemical potential μI . The red curve is the LO results, while the blue
curve is the NLO result
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Fig. 2 Tree-level masses normalized to the pion mass in the vacuum
as a function of isospin chemical potential normalized by the pion mass
in the vacuum

where we have set m = mπ which is correct at LO. This
shows explicitly that π+ is a massless excitation, which arises
due to spontaneous breaking of the U (1)I3 symmetry in the
pion-condensed phase.

In order to show that there is a second-order transition at a
critical chemical potential μc

I = mπ , we expand the effective
potential in powers of α up to O(α4) to obtain an effective
Landau-Ginzburg energy functional,

V LG
eff = a0 + a2(μI )α

2 + a4(μI )α
4. (71)

In Appendix E, we carry out the expansion of the effective
potential to order α4 using the techniques Ref. [53]. The
coefficient a2(μI ) can be read off from Eq. (E.36),

a2(μI ) = 1

2
f 2
π

[
m2

π − μ2
I

]
. (72)

The critical isospin chemical potential μc
I is defined by the

vanishing of the coefficient of the α2 term, i.e. a2(μ
c
I ) = 0.

This shows that μc
I = mπ . In order to obtain this result, we

had to take into account the one-loop corrections to the pole
mass of the pion and to the pion decay constant expressed in
terms of m, f and the low-energy constants, cf. Eqs. (B.11)–
(B.12). This result holds to all orders in perturbation theory
and is also in agreement with the lattice simulations of [8–10].
Moreover, if a4(μ

c
I ) > 0, the transition is second order. The

coefficient a4(μI ) can be read off from Eq. (E.36). Evaluated
at μc

I = mπ , we find

a4(μ
c
I ) = 1

8
f 2m2

{
1 − m2

2(4π)2 f 2

[
1 + 8

3
l̄1 + 16

3
l̄2 − 8l̄4

]}
,

(73)

which is larger than zero. This means that the onset of pion
condensation is via a second-order transition exactly at the
physical pion mass.

We next turn to the thermodynamic functions. The pres-
sure is given by P = −Veff . Since we are interested in the

Fig. 3 The normalized pressure as a function of the normalized isospin
chemical potential. The tree-level and one-loop results are the red solid
and blue dashed line, respectively, using mcen and fcen. The band is
obtained by varying m and f in their respective ranges. The dashed line
is the lattice results from Ref. [46]

pressure relative to the vacuum phase we subtract the pres-
sure for α = 0, and define

P = −Veff + Veff(α = 0), (74)

where the effective potential is evaluated at the minimum. In
Fig. 3, we show the pressure normalized to m4

π as a func-
tion of the isospin chemical potential normalized to mπ . The
red curve is the leading-order result, while the blue curve is
the next-to-leading order result using the central values of
m and f . The NLO band is obtained by varying the param-
eters of m and f as given in Eqs. (66)–(68). We also show
the lattice results for the pressure from Ref. [46]. The pres-
sure increases steadily with the chemical potential. The NLO
pressure increases faster than the LO pressure and is in good
agreement with the lattice results.

The isospin density is defined as

nI ≡ −∂Veff

∂μI

= f 2μI sin2 α + 2

(4π)2

[

l̄4 + log
m2

m2
3

]

m2μI cos α sin2 α

+ 2

(4π)2

[
1

3
l̄1 + 2

3
l̄2 + log

m2

m2
3

]

μ3
I sin4 α

−∂(V fin
1,π+ + V fin

1,π−)

∂μI
. (75)

In Fig. 4, we show the isospin density normalized by m3
π as

a function of the chemical potential μI normalized by mπ .
The red curves shows the tree-level result and the blue

curve shows the one-loop result using the central values of
the parameters m and f . The band is obtained by varying
the parameters m and f as given by Eqs. (66)–(68). We also
show the lattice points from Ref. [46]. There is no pion con-
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Fig. 4 Normalized isospin density as a function of the normalized
isospin chemical potential. The red curve shows the tree-level result
and the blue curve shows the one-loop result using the central values
mcen and fcen. The band is obtained by varying m and f in their respec-
tive ranges. The points are lattice data from Ref. [46]

densate in the vacuum up to the critical isospin chemical
potential μc

I = mπ . Hence nI is independent of μI , which
is an example of the Silver-Blaze property, namely that ther-
modynamic functions do not depend on μI all the way up to
its critical value [50]. For μI larger than the critical isospin
chemical potential μc

I = mπ , the density increases steadily.
The isospin density as a function of μI increases as one goes
from LO to NLO, and the latter is in better agreement with
the lattice results of Ref. [46].

The energy density is defined by

ε = −P + nIμI

= −Veff(α = 0) − f 2m2 cos α + 1

2
f 2μ2

I sin2 α

− 3

4(4π)2

[
1

2
− 1

3
l̄3 + 4

3
l̄4 + 1

3
log

(
m2

m̃2
2

)

+2

3
log

(
m2

m2
3

)]

m4 cos2 α

− 1

(4π)2

[
1

2
− l̄4 − log

m2

m2
3

]

m2μ2
I cos α sin2 α

− 1

2(4π)2

[
1

2
− l̄1 − 2l̄2 − 3 log

m2

m2
3

]

μ4
I sin4 α

+V fin
1,π+ + V fin

1,π− − μI

∂(V fin
1,π+ + V fin

1,π−)

∂μI
, (76)

and can be used to find the EoS. In Fig. 5, we show the
normalized equation of state. The LO result is the red curve
while the NLO result is the blue curve using the central values
of the parameters m and f . The blue band is obtained by
varying the parameters of m and f as given by Eqs. (66)–
(68). The black dashed line shows the lattice results from
Ref. [46]. We notice that the NLO equation of state is stiffer

Fig. 5 The normalized equation of state at tree level is the red curve
and at one loop is the blue curve using the central values mcen and fcen.
The blue band is obtained by varying the parameters m and f in their
respective ranges. The dashed line is the lattice results from Ref. [46]

than the LO one and that the difference increases steadily
with the pressure P . Moreover, the NLO EoS is in better
agreement with the lattice results for small values of P/m4

π

than the LO EoS, while for larger values it is the other way
around.

5 Summary

In conclusion, we have derived the χPT Lagrangian which
is necessary for all NLO calculations at finite isospin. We
have applied this Lagrangian calculating the pressure, isospin
density, as well as the equation of state. Our predictions are
in good agreement with the lattice results of Ref. [46] and
improves as one goes from LO to NLO. This is the first test of
χPT in the pion-condensed phase beyond leading order. The
Lagrangian we have derived can be used to calculate e.g.
the one-loop corrections to the quasiparticle masses in the
pion-condensed phase. Here a nontrivial check would be to
show that one of the branches is a massless Goldstone boson.
The Lagrangian for three-flavor QCD can be derived in the
same way and opens up the possibility to study quantum
effects in phases that involve pion or kaon condensation. In
the case of pion condensation, one can again compare with
the lattice results of Ref. [46], as well as between those of the
two and three-flavor calculations. This will give us an idea
of the effects of the strange quark. Work in this direction is
in progress [54].
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Appendix A: Dimensionally regularized integrals

We need a single integral in d = 3 − 2ε dimensions,
∫

p

√
p2 + m2 = − m4

2(4π)2

(
Λ2

m2

)ε [
1

ε
+ 3

2
+ O(ε)

]
.

(A.1)

We need several integrals in d+1 = 4−2ε dimensions. The
integrals are defined as in Eq. (50), execpt that the integral is
over P in d + 1 Euclidean dimensions.

∫

P
log
[
P2 + m2

]
= − m4

2(4π)2

(
Λ2

m2

)ε [
1

ε
+ 3

2
+ O(ε)

]
,

(A.2)
∫

P

1

P2 + m2 = − m2

(4π)2

(
Λ2

m2

)ε [
1

ε
+ 1 + O(ε)

]
, (A.3)

∫

P

1

[p2 + 1
2 (m2

1 + m2
2)

2]2 + p2
0m

2
12

= 1

(4π)2

[
1

ε
+ 2

− 2 log

√
m2

1 + m2
2 +

√
m2

1 + m2
2 + m2

12

2Λ
+ 2(m2

1 + m2
2)

m2
12

−
2
√

(m2
1 + m2

2)(m
2
1 + m2

2 + m2
12)

m2
12

+ O(ε)

]
. (A.4)

The integrals (A.2) and (A.3) are standard, while details
of the evaluation of (A.4) can be found in Ref. [53].

Appendix B: Mass renormalization

In order to show the second-order nature of the phase tran-
sition to a Bose-condensed phase at μc

I = mπ , where mπ

is the physical mass in the vacuum, we need to express it in
terms of the parameters m and f of the chiral Lagrangian.
The relevant terms are found by setting α = 0 in the L2 and
L4, both evaluated at μI = 0,

L
quartic

2 = m2

24 f 2 (φaφa)
2 + 1

6 f 2

[
φaφb∂

μφa∂
μφb

−φaφa∂μφb∂
μφb

]
, (B.5)

L
quadratic

4 = −(l3 + l4)
m4

f 2 φaφa + l4
m2

f 2 (∂μφa)(∂
μφa).

(B.6)

The inverse propagator for the pion is

K 2 − m2 − Σ1(K
2) − Σ2(K

2), (B.7)

where the O(p2) self-energy in the vacuum is

Σ1(K
2) = −2i K 2

3 f 2

∫

P

1

P2 − m2 + im2

6 f 2

∫

P

1

P2 − m2 ,

(B.8)

Σ2(K
2) = 2K 2 m

2

f 2 l4 − 2m4

f 2 (l3 + l4). (B.9)

Here the integral is in Minkowski space. The physical pion
mass mπ is defined as the pole of the propagator, or

m2
π − m2 − Σ1(m

2
π ) − Σ2(m

2
π ) = 0. (B.10)

Solving this equation self-consistently to NLO and going to
Euclidean space yield

m2
π = m2 + m2

2 f 2

∫

P

1

P2 + m2 + 2m4

f 2 l3

= m2
[

1 − m2

2(4π)2 f 2 l̄3

]
, (B.11)

where we have used Eq. (37) with i = 3, and Eq. (A.3).
The pion decay constant fπ can be determined in a similar
manner, either through the coupling of the axial current to
the pion, or by calculating the correlator between two axial
currents. The result is [13]

f 2
π = f 2

[
1 + 2m2

(4π)2 f 2 l̄4

]
. (B.12)

Appendix C: Rotated generators

Let us consider the rotated parametrization Lα given by

Lα = AαU A†
α. (C.13)

An infinitesimal fluctuation can be written as

Lα =
[
cos

α

2
+ iτ1 sin

α

2

] [
1 + i

φaτa

2 f

] [
cos

α

2
− iτ1 sin

α

2

]

= 1 + iφ1τ1

2 f
+ iφ2

2 f
(cos ατ2 − sin ατ3)

+ iφ3

2 f
(cos ατ3 + sin ατ2). (C.14)

We can define new rotated generators τ ′
i as

τ ′
1 = τ1, (C.15)

τ ′
2 = (cos ατ2 − sin ατ3), (C.16)
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Fig. 6 One-loop tadpole
diagram contributing to the
one-point function

τ ′
3 = (cos ατ3 + sin ατ2). (C.17)

It is easy to show that the generators τ ′
i satisfy the standard

commutation relations of the Pauli matrices. The form of the
rotated generators can be understood as follows. The vacuum
is rotated in the plane spanned by 1 and τ1, which implies
that only the generators in the other directions, i.e. τ2 and τ3

are rotated. To all orders in α, we can write

Lα = exp

(
i
φaτ

′
a

2 f

)
. (C.18)

Appendix D: Equation of motion

The equation of motion for the effective potential in the
absence of sources is

∂Veff

∂α
= 0. (D.19)

At tree level, the potential V0 is given by minus Eq. (21). Min-
imizing V0 yields f m2 sin α − f μ2

I sin α cos α = 0. Com-
paring Eqs. (21) and (22), we can write

Γ
(1)

0 = − 1

f

∂V0

∂α
, (D.20)

where Γ
(1)
n is the one-point function at order O(p2n+2). We

will next show that this relation is satisfied at next-to-leading
order, i.e. to order n = 1.

The one-loop diagrams contributing to the one-point func-
tion Γ (1) arise from the cubic terms in Eq. (34) and shown
in Fig. 6. All three pions run in the loop.

In order to work consistently to next-to-leading order, the
vertex factors must be evaluated at the classical minimum,
∂V0
∂α

= 0 or cos α = m2

μ2
I
. After Wick rotation, we find

Γ
(1)

one−loop| ∂V0
∂α

=0
= −3m2 sin α

2 f

∫

P

P2 + m2
2

(p2
0 + E2

π+)(p2
0 + E2

π−)

−m2 sin α

2 f

∫

P

P2 + m2
1

(p2
0 + E2

π+)(p2
0 + E2

π−)

−2μI sin α

f
m12

∫

P

p2
0

(p2
0 + E2

π+)(p2
0 + E2

π−)

−m2 sin α

2 f

∫

P

1

P2 + m2
3

= − 1

2 f

∫

P

1

(p2
0 + E2

π+)(p2
0 + E2

π−)

×
[

∂m2
1

∂α
(P2 + m2

2) + ∂m2
2

∂α
(P2 + m2

1)

+∂m2
12

∂α
p2

0

]

− m2 sin α

2 f

∫

P

1

P2 + m2
3

= − 1

f

∂V1

∂α
, (D.21)

where Ei =
√
p2 + m2

i (i = 1, 2) and the one-loop effective
potential is given by

V1 = 1

2

∫

P
log
[
(P2 + m2

1)(P
2 + m2

2) + p2
0m

2
12

]

+1

2

∫

P
log
[
P2 + m2

3

]
. (D.22)

Finally, comparing Eqs. (45) and (46) it is easy to see that

Γ
(1)

linear = −∂V static
1

∂α
. (D.23)

Adding Eqs. (D.20), (D.21), and (D.23), we find

Γ (1) = − 1

f

∂Veff

∂α
= 0, (D.24)

at the minimum of Veff . This is the unrenormalized version of
the equation of motion. We have checked that the divergences
of the one-loop diagram are cancelled by the counterterms
upon renormalization of the couplings li .

Appendix E: Expansion in α

In this section, we consider the expansion of Veff in powers
of α. We begin with the tree-level term, which is

V0 = − f 2m2 + 1

2
f 2 (m2 − μ2

I

)
α2 − 1

24
f 2 (m2 − 4μ2

I

)
α4

+O(α6). (E.25)

The static term −L static
4 reads

V static
1 = −(l3 + l4)m

4 +
[
(l3 + l4)m

4 − l4m
2μ2

I

]
α2

−
[

1

3
(l3 + l4)m

4 − 5

6
l4m

2μ2
I + (l1 + l2)μ

4
I

]
α4

+O(α6). (E.26)

Now consider the NLO contribution from the charged pions

V1,π± = 1

2

∫

P
log
[
(P2 + m2

1)(P
2 + m2

2) + p2
0m

2
12

]
,

(E.27)

which can be rewritten as

V1,π± = 1

2

∫

P
log

{[
P2 + 1

2
(m2

1 + m2
2)

]2

+ p2
0m

2
12

−1

4
(m2

1 − m2
2)

2
}

. (E.28)
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Since m2
1 − m2

2 = μ2
I sin2 α, we proceed by expanding in

powers of the mass difference, which as we will see is effec-
tively the same as expanding in powers α. At O(α4), this
yields

V1,π± = 1

2

∫

P
log

{[
P2 + 1

2
(m2

1 + m2
2)

]2

+ p2
0m

2
12

}

−1

8
(m2

1 − m2
2)

2
∫

P

1
[
P2 + 1

2 (m2
1 + m2
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(E.29)

The first integral in Eq. (E.29) which we denote by V a
1,π±

can be performed by rewriting the argument of the log in the
integrand as [(p0 + 1

2 im12)
2 + p2 + 1

2 (m2
1 + m2

2 + 1
2m

2
12)]

×[(p0 − 1
2 im12)

2 + p2 + 1
2 (m2

1 + m2
2 + 1

2m
2
12)]. Then by

shifting the integration variable p0 → p0 ∓ 1
2 im12 in the first

and second pieces respectively, the integral can be written as

V a
1,π± =

∫

P
log

[
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2

(
m2

1 + m2
2 + 1

2
m2

12

)]

= − m̃4

2(4π)2

[
1

ε
+ 3

2
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Λ2
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, (E.30)

where

m̃2 = 1

2

(
m2

1 + m2
2 + 1

2
m2

12

)
= m2 cos α + 1

2
μ2
I sin2 α.

(E.31)

Expanding to O(α4) yields

V a
1,π± = − m4

2(4π)2
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1

ε
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2
+ log
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]
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α4. (E.32)

The second integral (labelled as V b
1,π± ) reads

V b
1,π± = −1

8
(m2

1 − m2
2)

2
∫
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1
[
P2 + 1

2 (m2
1 + m2

2)
]2 + p2

0m
2
12

.

(E.33)

Since the prefactor (m2
1 − m2

2)
2 is O(α4) and higher, the

masses in the integral can be evaluated at α = 0 since we
only care to expand the effective potential up toO(α4). Using
Eq. (A.4), we find

V b
1,π± = − μ4

I

8(4π)2

⎡
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The last contribution is given by Eq. (56).

V1,π0 = − m4
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α4. (E.35)

Adding Eqs. (E.25), (E.26), (E.32), and (E.35), we can write
the one-loop effective potential up to O(α4):

V LG
eff = Veff (α = 0) + 1

2
m2 f 2

[
1 − m2

2(4π)2 f 2 (l̄3 − 4l̄4)

]
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2
f 2μ2
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⎬
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⎦α4. (E.36)

In order to find the critical isospin chemical potential, we
set the coefficient of the O(α2) term to zero and find that
μI = mπ at NLO, which can be found using Eqs. (B.11)–
(B.12). Then evaluating the O(α4) term at this critical chem-
ical potential gives a4(μ

c
I ) of Eq. (73), which is positive and

therefore at NLO the phase transition remains second order
as at tree level.
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