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Abstract 

Deciding to choose the best alternative from a set of courses of action is a repeatable activity in 

most organizations (Ahti Salo et al., 2011). Companies, for example, commence some research 

and development projects for future investment in a business that can generate potential profit 

like late-stage development investments in a pharmaceutical company or taking a decision about 

constructing different facilities for educational services. Although these issues look different, the 

decision-maker should choose the portfolio of actions base on some limitations such as the 

feasibility of the subject, availability of resources, etc. And choose the alternatives which can 

contribute more to the outcome and maximize value creation. In all of them, the decision-maker 

should select, arrange, and allocate resources. in other words, managing the portfolio (Summers, 

2019). 

Usually, the normal rule for a decision-maker in a decision situation for choosing between 

different alternatives and maximize the value is to select the one with the maximum estimated 

value. These estimates are coupled with uncertainty (prediction errors). Having errors in value 

estimates and selecting the highest estimated value among them, induces a systematic bias that 

guarantees, over repeated decisions, less than the estimated expected value will be realized  

(Begg and Bratvold, 2008). And the value estimate for the recommended action to be biased high. 

This biased is called “optimizer’s curse”. 

In the optimization of the well location to maximize value creation, as measured by NPV, injection 

and production wells must be in the optimal locations. The process of optimizing well locations 

include a range of uncertain factors and requires a robust (stochastic) optimization approach. 

With these uncertain factors, NPV values are subjected to error. By coupling such estimated 

measures of values with the optimization-based selection process the alternatives that values 

which have been overestimated most, are more likely to be selected. It is not because of any bias 

in the estimates themselves, but the optimization process, which simply ranks the value estimates 

and selects the highest estimated value among them.  

In this work, we will study the optimizer’s curse in the context of optimizing a 5-spot pattern and 

indicate how the process of optimization leads to select the alternative with overestimated value. 

Further on we will develop a Bayesian model to correct these value estimates.  
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Chapter 1. Introduction 

1.1  Motivation 

Many projects in Norwegian Continental Shelf (NCS) end-up producing less than what was 

forecasted. Generally, in oil industry, it is common to overestimate the production volume and 

underestimate the uncertainties involving in geological aspects of a reservoir. It is partly due to 

an optimistic view and overconfidence in uncertainty quantification, and strategies of the oil 

companies which can support their decision policy. A part of this overestimation comes from 

optimization process itself which leads to select the alternatives with higher probability of being 

over estimated. 

Over the past decades, despite of introducing new technologies, collecting more data and 

improving the data quality, the ability to forecast the production has not improved so much 

(Mohus, 2018). As an example, Nandurdikar & Wallace used data derived from offshore oil and 

gas production database, which was developed and maintained by Independent Project Analysis 

Inc. (IPA) to indicate the deficiencies in production rate. In 1995, they showed that oil and gas 

projects delivered almost 94 percent of the estimated production, but by the time they published 

the result, it was only delivered 75 barrels instead of 100 barrels promised at the sanction time. 

They showed that optimistic subsurface evaluation leaded to overestimated predictions and 

consequently less production rate.  (Nandurdikar and Wallace, 2011). Furthermore, there was a 

huge gap between the historical experience and predictions which was skewed towards 

overestimation (Figure 3.1).  

Usually, in decision analysis process, alternatives are ranked by their value estimates and it 

recommends selecting alternatives with highest estimated values. Any decision-making attempt 

to optimize these estimates which consistently selecting alternatives based on the estimated 

values, leads the value estimate of the recommended alternative to be biased high. This 

phenomenon is called optimizer’s curse. (Smith and Winkler, 2006) This gap between the 

estimated value and the actual outcome may be substantial. It has a huge effect on the portfolio’s 

true outcome. It can be half of the value estimated when we forecast in the usual manner 

(Schuyler and Nieman, 2007). The optimizer’s curse has gained more attention recently and it 

seems to be less known and underappreciated. As the optimizer’s curse reduces the value added 

by decision analysis, it should be more considered in the process of decision making. 
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Figure 1.1: Historical and actual production attainment (Nandurdikar & Wallace, 2011) 

1.2 Aim of this thesis 

In this work we show how selecting and ranking among estimated measures of NPV for different 

well locations in the optimization-based selection process, leads to have an overestimated NPV 

value and then correcting these estimations by using a Bayesian model. 

Objective 1: Optimization of well location and injection rate 

The goal is to Optimize the well location and injection rate in a 5-spot pattern recovery method, 

with one injection well in the middle and four production wells scatter around. Finding the best 

coordinates for production wells and the best injection rate based on the highest values of NPV 

is the target. To obtain this goal two steps has been done: 

• Generating multiple reservoir realization  

The key reservoir parameter which is considered as an uncertain element in the simulation 

process is permeability. 100 realizations of permeability distribution are generated by using the 

Sequential Gaussian Simulation (SGS). 

• Optimizing well location and injection rate 
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The optimization procedure is done by using an algorithm which is developed in R programming. 

The genetic algorithm, which is used in this coding, helps to generate new locations for simulation 

and find a better production and injection rate in each stage or iteration. In the end, the best 

location and injection rate for the 5-spot pattern model will be identified. The optimal location 

will be shown by its coordinates. Optimal injection rate will be identified by its two parameters of 

gamma rate and starting value. 

The algorithm also lets us simulate random locations and generate the distribution of NPV for any 

location. 

Objective 2: Study the optimizer’s curse in the process of optimization 

Because of uncertain parameter in the reservoir model the NPV value estimates resulted from 

simulations, has some errors. The goal is to indicate that optimization algorithm which ranks and 

selects among these value estimates leads to choose the alternatives with higher probability to 

be overestimated.  

Objective 3: Develop a Bayesian model 

To overcome the optimizer’s curse, a Bayesian model is developed. The model is used to check 

the optimization results for the possible expected disappointment. This model can be used either 

to check the data from previous fields or to provide a coefficient or corrective measure to reform 

and adjust the production estimates for the future and ongoing projects. 

1.3  Scope and limitations 

Optimizer’s curse is an old phenomenon which drew attention not long ago. It was not subjected 

to so many studies and there are only a few numbers of the resources available. Most of the work 

is done by Smith and Winkler and the other papers are mostly referred to them.  

To My knowledge, it is the first time, that this phenomenon is studied on the process of 

optimization of the well location. It must be mentioned that it was a challenge to work with real 

data and reservoir model due to confidentiality.  

As discussed with Norwegian Petroleum Direktorate (NPD), there is a lack of data for 5-spot 

pattern in offshore Norway to have a comparison between original estimations and actual 

outcome. 
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Chapter 2. Optimizer’s curse 

 2.1 Introduction 

Usually, a decision is made in the process of predicting the future outcome of available 

alternatives (Harrison and March, 1984). In the process of decision making, the normal rule of 

selecting among alternatives is to estimate their values and apply a decision criterion such as 

selecting the alternatives which has the maximum estimated values (Begg and Bratvold, 2008). 

Depending on the subject, different methods like net present value or expected utility can be used 

to generate the estimates for the alternatives.  

After ranking and selecting among these value estimates based on the decision criteria, by 

implementing the selected alternatives, the outcome will be experienced. Sometimes the realized 

value of the selected alternatives is more than forecasted value and sometimes it is less. The 

differences between the estimated value of the selected alternative and its realized value, 

determined by executing that and experiencing the consequences (Harrison and March, 1984). 

Depending on the result, decision-maker will experience post-decision positive surprise or 

disappointment. The decision maker who consistently selects the alternatives which have the 

highest estimated values, due to error in these value estimates, on average will gain a lower value 

than estimated, and will experience post-decision disappointment. 

Even if a team of decision analysists does a complex calculation and analysis with unbiased 

judgments, an unpleasant bias will affect the estimations in a project portfolio assessment. The 

problem arises in the process of choosing the optimal alternative. Then by applying the optimal 

alternative, it tends to deliver less than the distribution’s mean value which is forecasted in the 

beginning.  

Even if the value estimates are unbiased, because of the uncertainty in the estimates which is 

coupled with optimization-based selection process, those alternatives with the highest estimated 

values are most likely to be selected and accepted alternatives tend to be those where random 

evaluation errors are optimistic. That leads the value estimate for the recommended action to be 

biased high. This biased is called “optimizer’s curse” (Smith and Winkler, 2006). It is happened 

just because of optimization process not because of any bias in estimation. Optimizer’s curse is a 

production of a statistical process. It is happened merely just by choosing the best of a set of 
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uncertain prospects (Marks, 2008).  It describes how the simple process of screening and ranking 

projects introduces a bias. 

2.2  Optimizer’s curse interpretation 

Kritzman(2011) states that the optimizing with mean-variance, taking in more errors in the 

optimization process. Optimization result is biased in favour of the alternatives with positive 

errors in the mean of the overestimated alternatives, and negative errors in the risk evaluation. 

So, it overstates the portfolio expected returns and leads to choose the wrong portfolio of action 

(Kritzman, 2011). 

The estimated values that are derived from limited data are never precisely known and always 

tangled with the errors. In other words, fundamental input for the model optimization process 

has errors inside. By taking in the uncertain estimates in the optimization process, errors will be 

transferred to the optimization results. When the input data is bad, the result will be poor. 

Garbage in garbage out.  

Daniel Kuhn explained how the errors in estimations lead to gain post-decision disappointment. 

Considering 10 different alternatives from A to J (figure 2.1), like ten different NPV’s which are 

calculated from 10 different locations for injection and production wells, with a limited amount 

of budget and time, just five of them can be selected and executed. The green bars indicate the 

expected net present value of each alternative. (Kuhn, 2018) 
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Figure 2.1. Ten different alternatives  

Given this information, alternatives with the highest expected net present value will be chosen to 

maximize the average of the expected net present value of the selected alternatives. As it is 

indicated in the figure below alternatives from F to J will be picked and the mean of the expected 

net present value is indicated by the blue line. 

 

 

Figure 2.2. Five optimal alternatives 
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It must be mentioned that these expected net present values for each alternative are estimations 

and they are not known precisely. These estimations are uncertain and estimated values has 

errors. Value estimate errors can be indicated by the error bars in the figure below. 

 

Figure 2.3. Error bars 

The errors on average are equal to zero and they cancel each other out. Therefore, some of the 

alternatives are underestimated and some of them are overestimated. But on average, errors in 

value estimates should be equal to zero. The number of times that they are overestimated are 

equal to the number of the times that are underestimated, and the expected net present value 

of estimated alternatives is equal to the true net present value of alternatives.  

In the figure 2.4 alternatives in red colour are overestimated, and yellow bars indicate the 

underestimated alternatives. The amount of error which is added to the alternatives on average 

is zero. 
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Figure 2.4. Estimated values 

In figure 2.5 alternatives are ranked based on estimated values. By choosing alternatives with the 

highest estimated value among these estimated values, it is more likely to choose overestimated 

ones rather than underestimated alternatives. The probability of choosing the overestimated 

alternatives are higher for a decision-maker who selects the alternatives base on the estimated 

values and not on true values.  

 

Figure 2.5. Optimal estimated alternatives 
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Figure 2.6 illustrates the average of the estimated expected net present value of the selected 

alternatives. It indicates that the NPV average of the estimated optimal alternatives is higher than 

the average of the true expected net present value of the previously selected alternatives. It is 

obvious that the estimation errors of the selected alternatives do not cancel out and they are 

positive.  

 

Figure 2.6. 

In figure 2.7 the blue line indicates the average of the true expected net present value of the 

selected alternatives, whereas the red line is the average of the estimated expected net present 

value of the selected ones, and the green line is the average of the true expected net present 

value if selected alternatives are implemented. 

By comparing the true expected net present value of each selected alternative which has shown 

by green bars, with the estimated ones (red and yellow bars), it illustrates that how much the 

decision-maker was optimistic about what he can achieve by implementing the selected 

alternatives. In fact, because of the estimation errors, the average of the estimated net present 

value of the selected alternatives is not achievable.  

The blue line is the best that could be possible if we had full knowledge.  
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Figure 2.7. 

In the example above I have demonstrated even if the errors in value estimates cancel each other 

out and on average is equal to zero (unbiased), the optimization result is biased and the result will 

be optimistic for what is achievable, and the decision-maker will be disappointed by executing the 

result of optimization process. 

2.3  Optimizers’ curse scenarios 

Identical alternatives   

An example by Smith & Winkler illustrates the optimizer’s curse when the alternatives are 

identical. Consider three different alternatives with true values (𝜇𝑖) equal to 0. The value of each 

alternative is estimated. These value estimates (𝜈𝑖) are independent and normally distributed. 

The mean of each distribution is equal to the true value of 0. The standard deviation of each 

distribution is equal to one and the estimations are conditionally unbiased. Now, choosing the 

highest value estimates among these three estimated alternatives and plot them to see the 

distribution of these selected values, the distribution of these optimal values has a mean equal to 

0.85. It illustrates the mean of maximum values is positively moved away from the mean 

distribution. It shows that by implementing the optimal alternative, the resulted outcome is on 

average 0.85 percent less than the estimated value and decision-maker will experience post-

0

2

4

6

8

10

12

14

16

B D F A H C J E G I

M
e

an
 N

P
V

Alternatives

Selected alternatives

Mean NPV for alternatives F,G,H,I,J

Estimated mean NPV for the selected alternatives

True mean NPV of the selected alternatives



11 

 

decision disappointment. the expected disappointment is 0.85 percent of the standard deviation. 

(Figure 2.8) 

 Following: 

𝐸[𝜈𝑖 − 𝜇𝑖] = 0.85  

Now consider a situation with ‘n’ identical alternatives (figure 2.9). Having the same distribution 

assumption, magnitude of the expected disappointment increases by increasing the number of 

the alternatives. Figure 2.9 shows that the distribution of maximum values is moved positively by 

increasing the number of the alternatives. It indicates that when the true values of the 

alternatives are equal, they cannot be distinguished even with the perfect estimates and the 

expected disappointment is higher (Smith and Winkler, 2006). 

 

Figure 2.8. Three identical alternatives 
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Figure 2.9. n identical alternatives 

Different alternatives 

If the true values of alternatives were separated by   ∆:  𝜇𝑖  =   −∆, 0, & ∆   and the estimate of 

the mean values are unbiased, and standard deviation is equal to one. The magnitude of 

disappointment will be reduced by increasing the degree of the separation between alternatives. 

Consider three alternatives which the value estimates of these alternatives normally distributed 

with the mean equal to -0.5, 0 and 0.5 (figure 2.10). As the degree of the separation increases, 

the difference between the mean of the optimal alternative which has the highest true value 

among all three, and the mean of the maximum value estimates decreases. In other words, 

magnitude of the post-decision disappointment decreases by increasing the degree of the 

separation among alternatives. 

𝐸[𝑉𝑖 − 𝜇𝑖] = 0.94 - (0+0.5) = 0.44   
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Figure 2.10. Three different alternatives 

Table 2.1 indicates the magnitude of the expected disappointment as the fraction of the degree 

of the separation between alternatives.  

Number of the alternatives = 3 

∆   Expected disappointment 

0 0.85 

0.2 0.66 

0.5 0.44 

0.8 0.3 

 1 0.22 

Table 2.1. Expected disappointment magnitude 

Figure 2.11 indicates when the alternatives are identical but with a bigger standard deviation. In 

this case the expected disappointment is higher than when they have lower standard deviation 

(figure 2.8). In this case standard deviation is equal to two. 

𝐸[𝑉𝑖 − 𝜇𝑖] = 1.69   
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Figure 2.11. Identical alternatives with bigger standard deviation 

 Distribution of alternatives 

Consider a distribution of NPVs for different alternatives like NPVs for different well locations with 

mean equal to 10 and a standard deviation of 1 (Figure 2.12). Green curve is an assumption of 

realized values of NPVs.  

 

Figure 2.12. Distribution of NPV 
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Red curve in figure 2.13 indicates unbiased errors. By adding the distribution of errors to the 

distribution of realized values we can generate the distribution of the estimated values. Blue curve 

shows the distribution of the errors. 

 

Figure 2.13. distribution of the estimated NPVs 

Now by comparing the mean of the distribution of the optimal estimated values and the optimal 

realized values, the magnitude of post-decision disappointment will be identified (figure 2.14). 

The graph shows, even if the input values are unbiased, the error inside the estimated values 

leads to having an overestimated expected net present value for the optimal alternatives.  

 

Figure 2.14. Distribution of optimal NPVs 



16 

 

Mean of the true optimal values = 12.66592 

Mean of the estimated optimal values = 13.76905 

Expected disappointment = 13.76905 - 12.66592 = 1.10313 

As shown, the gap between the mean of the estimated and true optimal values is almost 1.1. It 

indicates that by executing the optimal alternatives on average, we will gain less than the 

expected estimated value. 

2.4  Effect of correlation among estimated values 

Consider two alternatives with the same expected net present value, which are evaluated 

accurately or unbiased but imprecisely, and each estimation has a 50 percent chance of being 

overestimated and 50 percent chance being underestimated, possible outcomes will be: 

• 25 % chance of having both projects underestimated 

• 25 % chance of having both projects overestimated 

• 50 % chance of having one overestimated and one underestimated 

If the decision-maker selects the alternatives based on the highest estimated value, the chance 

of selecting overestimated alternative is 75 percent (Summers, 2019). The value estimate of the 

selected alternative will thus overestimate the true value on average.  

In the example above, value estimates are independent. However, the value estimates can be 

dependent and correlated. They may share a common element. For example, in selecting 

different strategies to develop an oil field, value estimates may share common probability of oil 

in place. In this example, if the two value estimates were perfectly positively correlated, then 

there was a 50 % chance of having both values overestimated and a 50 % chance of having both 

underestimated. In this case, to have an estimate for the selected alternative is equal to the true 

value on average, is expected. It indicates that a positive correlation among estimated values 

decreases the magnitude of the expected disappointment and negative correlation among them, 

in contrast, increases the degree of the expected disappointment. In practice, negative 

correlation is less likely to be considered (Smith and Winkler, 2006). In this example, true values 

are assumed to be fixed and value estimates are considered either independent or correlated, 

but in practice true values are uncertain and they might be positively correlated. For example, 
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when there is uncertainty about a probability of technical success resulted in true values of 

alternatives which are dependent on this probability, might be positively correlated. The positive 

correlation among true values decreases the degree of the separation among them which in 

return increases the magnitude of the expected disappointment and by contrast, a positive 

correlation among value estimates downsizes the magnitude of the optimizer’s curse.  

2.5   Errors and Biases  

Prediction errors 

In the previous section we showed that how a simple procedure of selecting and ranking among 

estimated values introduces a bias and leads to have a difference between predicted values that 

are used to make the decision and actual values that realized after the decision has been 

implemented. Some other reasons for this difference which Begge & Bratvold (2008) mentioned, 

are listed below: 

Uncertainty: 

Under uncertainty, predictions are estimates of expected value or expected utility when 

the uncertainty has been modelled. If the uncertainty has been ignored, predictions are 

considered deterministic. Consequently, estimated value highly unlikely to be realized on 

any single decision. 

Biased in inputs: 

Value estimates can be assessed directly, or they can be derived indirectly from assessed 

inputs upon which they depend. Both direct and indirect assessment are subjected to a 

variety of biases (Welsh et al., 2005). These input biases contribute to the gap between 

prediction and actual in any one decision.  

Mistakes and errors: 

One of the mistakes is measurement errors. It can be caused by limitation of the 

measurement devices or simply their misuse. Another error is simple mistakes in data 

entry or computation.  

Use of models: 
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Most of the estimates are resulted from models. As the model is not reality, we cannot 

expect model outputs to match reality. The famous quote by George Box about the 

models is “All models are wrong; some models are useful”. (Begg and Bratvold, 2008) 

Evaluation Biases  

Common evaluation biases are: 

Underestimating prior information 

In task prediction, behavioural studies show that there is a tendency to underestimate 

prior information about the base rate of the event which is being predicted and taking 

decision-based on most recent evidence. It leads to predict extreme realizations. 

(Kahneman and Tversky, 1977, Kahneman and Tversky, 1973) 

Judgment Biases 

An analyse is objective when subjective input judgments are objective (Kahneman et al., 

1982). Tendency to rely on some information or on certain direction, either in favour or 

against something, will contribute to the errors.  

o Overconfidence and optimism 

Overconfidence is the best-known cognitive bias in oil industry, is affecting the 

judgments of decision-makers both on their general knowledge (Capen, 1976), 

and oil related questions (Welsh et al., 2005). Overstating the confidence in our 

knowledge leads to decrease the range of possible outcomes. For example, in 

evaluating geological aspects of a reservoir like average porosity and thickness, 

the range of confidence which usually interpreters use is about 80%. Data from 

the industry (Hawkins et al., 2002) and other fields (Morgan et al., 1990) has 

shown that the range of the overconfidence in such parameters when the actual 

value is included, is less  than 50% of the time rather than 80% as the range of 

confidence should indicate.  

Overestimation which we refer as optimism, is one of the forms of 

overconfidence. Optimism is overestimation of one’s actual ability, performance, 

level of control, or chance of success. Consider a student who believes that he 

answered five questions correct in a 10-item quiz. He got the result and he 
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answered three correctly. He has overestimated his score. (Moore and Healy, 

2008) 

o Anchoring 

Cognitive bias like anchoring, leads us to rely too much on initial information in 

our decision-making process.  When the numerical values are estimated based on 

poorly adjusted initial information or value (anchor), the resulting answer will be 

biased (Montibeller and von Winterfeldt, 2015). 

o Farming 

The way that the information is presented, can lead people to make different 

judgments. Presenting some piece of information may have positive or negative 

effect on people (Hodgkinson et al., 1999). 

 

Bias in decision policy 

These Biases are deliberately assigned in the company’s decision policy. Some sort of 

decision policy which can be the source for the bias are as following: 

o Using high rate present value discount rate  

o Alternative with lower values are accepted because of the lower risk.  

o Instead of considering maximizing long-term shareholders value, put more weight 

on ethic toward corporate social responsibility. (Schuyler and Nieman, 2007) 

Summery 

In this chapter the optimizer’s curse is explained. We described how we should expect to be 

disappointed by taking decision based on the simple process of ranking and selecting among the 

estimated alternatives. We showed that even if the value estimates for alternatives are unbiased, 

uncertainty in the estimations coupled with optimization process leads to experience post 

decision disappointment. Different factors which affect the magnitude of this curse are explained.  

o Optimizer’s curse is worse when alternatives have the same expected value 

o Optimizer’s curse is increasing with the number of the alternatives  

o Having high degree of uncertainty increases the magnitude of post-decision 

disappointment 

o Correlation between estimated values decreases the magnitude of this curse 
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o Separation among true values decreases the expected disappointment 

We also introduce common evaluation errors and biases in addition to the optimizer’s curse which 

affects our prediction of future outcome. 
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Chapter 3. Optimizer’s curse reduction 

3.1  Introduction  

The solution to overcome the optimizer’s curse is conceptually quite simple and straight forward. 

“Model the uncertainty in the value estimates explicitly and use Bayesian method to interpret 

these value estimates”(Smith and Winkler, 2006). Bayesian modelling helps to reduce the amount 

of expected disappointment that the decision maker expects to experience. It also serves to 

increase the number of the alternatives which belong to the optimal portfolio (Vilkkumaa et al., 

2014). We will develop a Bayesian model later in this chapter. 

3.2  Simple actions that helps to reduce the effect of the optimizer’s curse 

Smith and Winkler described when the true values are more analogous and the uncertainty in 

value estimations is high, the optimizer’s curse effect will be higher. In other words, the likelihood 

of making a wrong decision is high when there is significant uncertainty in the ability to evaluate 

values and small differences between alternatives. Having a high degree of uncertainty in the 

value estimates, not only makes it difficult to distinguish the alternatives with the highest values 

but also makes it more likely to choose alternatives that are systematically overestimated. 

 Collecting more information  

In chapter 2 we described how random evaluation errors which is combined with optimization-

based selection process leads to post decision disappointment. Errors, which come with 

alternative evaluation, can be reduced by collecting more information and mitigating the 

uncertainty in value estimates. Generally, in making a choice between two alternatives, the value 

of information is highest when the decision-maker is indifferent between two alternatives and 

this value is lower when there is a preference in favour of one alternative over another (Delquié, 

2008). In this case, one suggestion is implementing sensitivity analysis and value of information 

assessment to find out whether to collect additional information. This additional information 

must provide enough insight to distinguish between alternatives to justify the cost of the new 

information collection. This new information can reduce the uncertainty in the value estimates. 

Consequently, decreases the magnitude of the optimizer’s curse.  
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Reducing estimation errors 

In single project evaluation, defining the reduction magnitude of the optimizer’s curse is not easy. 

While the uncertainty is assessed in the estimation of the alternatives value, in the optimizer’s 

curse estimation errors are more important. By collecting new information to reduce the degree 

of uncertainty in the project evaluation, it should be expected to achieve some reduction in the 

estimation errors as well. (Schuyler and Nieman, 2007) 

Reducing the errors in value estimates effects the optimizer’s curse in two ways: 

1- Expected disappointment which described as the difference between the estimated value 

and true value will be reduced 

2- The probability of selecting the best alternative will increase 

As the example by smith and Winkler in section 2 demonstrates, three alternatives each having 

true values separated by ∆, 0 and -∆ respectively. Value estimates are considered unbiased and 

normally distributed with a mean equal to the true value and a standard deviation of 1. To indicate 

the impact of reducing the errors in value estimates and changing in the degree of the separation 

between alternatives on expected disappointment, table 3.1 is created. 

The table indicates that modest degradation in value estimates uncertainty (standard deviation) 

results in a reduction in the magnitude of the optimizer’s curse. As the separation between true 

values becomes wider the magnitude of expected disappointment shows more reduction. 
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 Standard Deviation of the value estimate  

∆ 1.00 0.75 0.50 0.25 

Ex
p
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te
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t 

 

0.0 0.85 0.63 0.43 0.21 

0.2 0.66 0.45 0.25 0.07 

0.4 0.51 0.32 0.15 0.02 

0.6 0.39 0.21 0.08 0.00 

0.8 0.30 0.15 0.04 0.00 

1.0 0.22 0.10 0.02 0.00 

1.2 0.17 0.07 0.01 0.00 

1.4 0.12 0.04 0.01 0.00 

1.6 0.10 0.03 0.00 0.00 

1.8 0.07 0.01 0.00 0.00 

2.0 0.05 0.01 0.00 0.00 

2.2 0.03 0.00 0.00 0.00 

2.4 0.02 0.00 0.00 0.00 

2.6 0.01 0.00 0.00 0.00 

2.8 0.01 0.00 0.00 0.00 

3.0 0.00 0.00 0.00 0.00 

Table 3.1. expected disappointment as a fraction of ∆ and std. deviation 

3.3  Effect of uncertainty reduction on optimal alternative 

While uncertainty reduction reduces the magnitude of the optimizer’s curse, it doesn’t have a 

significant effect on the probability of selecting the alternative with the highest true value 

(Schuyler and Nieman, 2007). It might help to select more optimal alternatives. 

Schuyler and Neiman calculated the probability of selecting the best alternative for different 

levels of uncertainty (table 3.2) on the example proposed by Smith & Winkler. The table 3.2 

indicates another dimension of the previous example. It shows the probability of selecting the 

best alternative as a function of uncertainty changing in estimations and the magnitude of the 

separation between true values. Specifically, when the three alternatives true values are 

separated by ∆ = ± 1 and the standard deviation for the estimated values is equal to 0.5 (σ = 0.5), 

there is a 92 percent chance to select the correct alternative. It is obvious that when the 

separation between true values are ∆ = ± 3, the probability of selecting the optimal alternative is 

100 %. It indicates that the probability of picking the right choice or the best alternative is not 
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changed considerably by reducing the uncertainty in value estimates as it reduces the expected 

disappointment. (Schuyler and Nieman, 2007) 

 
Standard Deviation of Value Estimate  

∆ 1.00 0.75 0.50 0.25 
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0.0 0.33 0.33 0.33 0.33 

0.2 0.42 0.45 0.51 0.66 

0.4 0.51 0.56 0.66 0.87 

0.6 0.59 0.67 0.78 0.96 

0.8 0.66 0.75 0.87 0.99 

1.0 0.73 0.82 0.92 1.00 

1.2 0.78 0.87 0.95 1.00 

1.4 0.83 0.91 0.98 1.00 

1.6 0.87 0.93 0.99 1.00 

1.8 0.90 0.96 0.99 1.00 

2.0 0.92 0.97 1.00 1.00 

2.2 0.94 0.98 1.00 1.00 

2.4 0.96 0.99 1.00 1.00 

2.6 0.97 0.99 1.00 1.00 

2.8 0.98 1.00 1,00 1.00 

3.0 0.98 1.00 1.00 1.00 

Table 3.2. probability of success (Schuyler and Nieman, 2007) 

3.4  Develop a Bayesian model 

Post-decision disappointment can be modified by revising value estimates with Bayesian methods 

(Gelman et al., 2013). By implementing Bayesian modelling of estimation uncertainties, and 

instead of ranking the alternatives based on estimated values, selecting among these resulting 

revised estimates helps to 

1. Select alternatives which can have higher expected future value 

2. Increase the number of optimal alternatives 

3. Decrease the magnitude of post-decision disappointment 

4. Investigate how resources should be spent in order to reduce the uncertainty in 

estimations. Re-evaluating a small number of alternatives instead of spending a 
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pile of money on re-evaluating all possible choices can increase the expected value 

of the expected portfolio value. (Vilkkumaa et al., 2014) 

Estimating the parameters needed for Bayesian modelling is difficult in practice. Harrison and 

March suggest that obtaining more accurate value estimates helps to reduce the post-decision 

disappointment. (Harrison and March, 1984) 

In addition, in portfolio selection systematic prioritization among projects or alternatives 

estimated values (as opposed to the random selection), tends to add more value than trying to 

reduce the uncertainty and achieve more accurate estimated projects. (Keisler, 2004) 

 Selecting the optimal alternatives 

Selecting the optimal alternatives among a set of projects is defined by the decision variable              

𝑧 = [𝑧1, . . . ,𝑧𝑚], which is a binary decision with 𝑧𝑖 = 1 only if the project ⅈ is selected (Vilkkumaa 

et al., 2014). The set of alternatives which are qualified and within the constraints are defined by 

𝑧. In fact, if the true values 𝜈 were recognized, optimal alternatives can be determined by an 

equation for the optimization problem such that:  

𝑧(𝜈) = arg max𝑧𝑣
𝑧∈Z

      

But the true values are unknown, there are just estimated values 𝜈𝐸. For selecting the optimal 

alternatives from these value estimates equation below must be solved: 

𝑧(𝜈𝐸) = arg max𝑧𝑣𝐸

𝑧∈Z
  

Bayesian modelling of uncertainty 

The discussion below is borrowed from VilkKumaa’s work (2014). Consider 𝜈 is the indicator of 

the true values and 𝜈𝐸 shows the estimated one. If the decision-maker selects the alternatives 

based on the value estimates without considering uncertainties which are coupled with prior 

distribution 𝑓 ( 𝜈 ) and likelihood distribution 𝑓 ( 𝜈𝐸|𝜈 ), overestimated alternatives are more 

probable to be selected and it leads to gain post-decision disappointment. Revising value 

estimates allows to mitigate this value overestimation by correcting the initial estimation for 

Bayes. By using Bayes rules and having a prior distribution 𝑓(𝜈) and the likelihood distribution 

𝑓 (𝜈𝐸|𝜈 ), the posterior distribution 𝑓 (𝜈|𝜈𝐸 )  for the alternatives given the estimates, can be 

achieved.  
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𝑓(𝜈|𝜈𝐸)  ∝  𝑓(𝜈) 𝑓(𝜈|𝜈𝐸)   

Then the mean of the posterior distribution 𝑓(𝜈𝑖|𝜈
𝐸 ), will give the Bayesian estimate for the 

selected alternative. Given the value estimates, posterior distribution can be used to calculate the 

expected value for the alternative or the probability of having the alternative in the set of the 

optimal values.  

If the value of alternatives based on the Bayes estimates are 𝑣𝐵 = [𝜈1
𝐵, . . . , 𝜈𝑚

𝐵 ] then optimal 

alternatives can be obtained by 

𝑧(𝜈𝐵) = arg max𝑧𝑣𝐵

𝑧∈Z
  

Consider a set of alternatives in a portfolio ⅈ = 1, . . . ,m which if executed will gained values                     

𝑣 = [𝜈1, . . . , 𝜈𝑚]. These values are modelled as realizations of random variables 𝑉 = [𝑉1, . . . ,𝑉𝑚] 

~ 𝑓(𝜈). Which 𝑓(𝜈) or joint distribution function assumed to be known. Estimated values 𝑣𝐸 = 

[𝜈1
𝐸, . . . , 𝜈𝑚

𝐸 ] have errors which is normally distributed with a mean of 0 and standard deviation 

equal to 𝜏  . If the realized values of the alternatives are the random variables which are 

independent and identically distributed, then:  

𝑉𝑖 = 𝜇𝑖 + 𝐸𝑖  

When 𝐸𝑖  is a normal distribution with a mean of zero and variance of 𝜎2  and   𝜇𝑖 is the mean of 

the realized values. Value estimates can be obtained by: 

(𝑉𝑖
𝐸|𝑉𝑖 =  𝜈𝑖  ) = 𝜈𝑖 + ∆𝑖  

When, ∆𝑖 is a normal distribution of estimation errors with a mean equal to 0 and variance equal 

to 𝜏2 . By considering the same probability distribution family for both true values and estimated 

values, now the Bayes estimates of alternatives can be obtained by: 

𝜐𝑖
𝐵 = 𝛼𝑖 𝜐𝑖

𝐸 + (1 – 𝛼𝑖) 𝜇𝑖   

𝛼𝑖 can be acquired by having the standard deviation of realized values and the estimation errors: 

𝛼𝑖 = ( 1 + 
𝜏𝑖

2

𝜎𝑖
2 )

−1

  

By having a weighted average of the prior mean and the observed estimates, the Bayes estimates 

for a normal distribution can be obtained. The variance ratio  
𝜏𝑖

2

𝜎𝑖
2   provides the weighting. Now if 
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the standard deviation of the errors is larger than the prior standard deviation then, the weight 

has a positive effect on the prior expectation 𝜇𝑖   and reduces the 𝜐𝑖
𝐸 . In contrast when the 

estimations error standard deviation is smaller than the prior standard deviation, then 𝛼𝑖 value is 

closer to 1. It indicates that the estimated value 𝜐𝑖
𝐸 will provide a more realistic number which 

could be closer to the realized value.  

Adjusting the estimated values by Bayesian method not only reduces the degree of 

overestimation but also the alternatives whose values are underestimated will be adjusted. 

In the equation above, if the expected true value for the alternatives in a portfolio was more than 

the estimated value, the Bayesian adjustment corrects the estimated value for under estimation. 

(Vilkkumaa et al., 2014) 

Consider a set of alternatives in a portfolio which the realized values 𝑉𝑖 of these alternatives in 

the portfolio are independent and identically distributed following: 

𝑉𝑖 = 𝜇𝑖 + 𝐸𝑖 

The mean and the standard deviation of this distribution are given: 

𝜇𝑖 = 15 

𝐸𝑖 ~ (0,3)                    𝜎 ~ 𝑁(0,3) 

Two alternatives A & B from the set of alternatives are considered. Value estimates for these 

alternative modelled as:  

(𝑉𝑖
𝐸|𝑉𝑖 =  𝜈𝑖  ) = 𝜈𝑖 + ∆𝑖  

∆𝐴  ~  𝑁(0,3)            

∆𝐵  ~  𝑁(0,2.8) 

Figure 3.1 illustrates the estimated value and value for each alternative. Red and Green circles are 

indicator of estimated value for A & B, respectively. 
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By adjusting these estimated values for Bayes, resulted Bayes estimates are: 

  𝜐𝑖
𝐵 = 𝛼𝑖 𝜐𝑖

𝐸 + (1 – 𝛼𝑖) 𝜇𝑖       

𝛼𝑖 = ( 1 + 
𝜏𝑖

2

𝜎𝑖
2 )

−1

 

𝜐𝐴
𝐵 =  16.50 

𝜐𝐵
𝐵 = 9.65 

In figure 3.2 the pink and the light green circles are the Bayes estimates for A and B respectively. 

As the graph shows these Bayes corrected estimates are closer to the realized values for each 

alternative. 
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Figure 3.1. Values vs. estimates 
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For alternative A this estimate is corrected for overestimation and for alternative B it is corrected 

for underestimation. 

Summery 

In this chapter we explained how to reduce the optimizer’s curse. simple actions like collecting 

more information and reducing estimation uncertainty are introduced. We also explained how 

reducing the errors in value estimates can help to decrease the magnitude of the optimizer’s curse 

by: 

1- Reducing the difference between the estimated value and true value 

2- Increasing the probability of selecting the best alternatives  

It is also demonstrated although uncertainty reduction decreases the amount of post-decision 

disappointment and helps to increase the number of the optimal values in a portfolio, it doesn’t 

have a huge effect on the probability of selecting the alternative with the highest value. To reduce 

the magnitude of the optimizer’s curse, a Bayesian model based on the Vilkkumaa’s paper is 

developed. It helps to correct the original estimates of the alternatives by eliminating the gap 

between the estimated values and realized values and increases the expected future value of the 

selected portfolio. 
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Chapter 4. Uncertainty capturing and model 
development 

4.1  Introduction 

Usually, the geology of the underground cannot be determined directly, using indirect techniques 

to estimate the recoverable oil and gas volume of reserves is very uncertain. Although new 

technologies have made it more precise, but it still has a significant amount of uncertainty inside 

the prescription of underground (Morehouse, 1997). 

In reservoir simulation, data from subsurface can be divided in two groups, static and dynamic. 

Static subsurface data can be derived from assimilating well logs data and seismic information. It 

is a combination of measured data which is collected directly from wells, with indirect 

measurements, like seismic data. A three-dimensional static description of the subsurface was 

then built by integrating well data and seismic information by using geostatistical methods 

(Ramirez et al., 2017). 

In the history matching approach, dynamic subsurface descriptions integrate existing dynamic 

measurements, like well pressure and saturation. Quantification of uncertainty in subsurface 

descriptions is possible by applying Bayesian methods like Markov chain Monte Carlo, or by using 

deterministic methods. These approaches consider the uncertainty by ensembles of models 

which is referred to as samples from the posterior distribution of the uncertain parameters as 

they incorporate the dynamic information. 

4.2  Geostatistical methods 

With Geostatistical methods, uncertainty in the reservoir properties can be quantified as they 

move away from the location of the measured data. Static subsurface descriptions help to 

quantify uncertainties in the field. As these static subsurface descriptions do not include dynamic 

information, they can be referred to as samples from the prior distribution of the uncertain 

parameters (Ramirez et al., 2017). To make a continuous surface a geostatistical analyser uses 

sample points taken from different locations. These sample points can be the value or 

measurements of some phenomenon (Johnston et al., 2001). It can be some data that are derived 

directly from wells. These data from wells are measurements of some phenomena like porosity 

or permeability etc. These measurements will then be used to predict values for each location in 
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the reservoir. By using geostatistical methods these data can be interpolated to the whole 

reservoir. Interpolation can be done by deterministic and geostatistical techniques. Both two 

methods rely on similarity of nearby sample points (data points) to assign values to the whole 

volume. Deterministic method interpolation is done by mathematical functions while the 

geostatistical method uses both statistical and mathematical functions for interpolation and 

assesses the uncertainty of the predictions (Johnston et al., 2001). 

4.3  Sequential Gaussian simulation  

Quantify the uncertainties, both in production forecasting and optimization process is an 

important task. It may take hundreds of thousands of simulations to find out what is the uncertain 

parameter space.  

The Gaussian distribution is chosen because it can initiate conditional distributions that all have 

the normal or Gaussian shape with the mean and variance which are provided by kriging.  

A Gaussian field like a permeability ensemble is generated by a Sequential Gaussian Simulation 

method. Mean value, variance value and kriging method will be used in the procedure of the 

Sequential Gaussian Simulation (SGS). To calculate a value at an unstimulated grid cell, Gaussian 

procedure uses input data and simulated data. It generates realizations with equal probability 

which can be processed in a subsequent step to evaluate the uncertainty. In the Kriging 

interpolation method permeability mean value and standard deviation measures are provided for 

each cell in the grid. Then the Gaussian simulation draws samples from Monte Carlo simulation 

of the permeability distribution to make multiple realizations of permeability. It generates many 

equally probable realizations of a property to capture uncertainty in the permeability. The result 

provides a better representation of the natural variability of the property and delivers the mean 

value to quantify the uncertainty. Usually, Sequential Gaussian Simulation procedure is used to 

generate the values for continuous variables for geostatistical simulations in reservoir modelling 

(Gao, 2019). 

Basic following steps in Sequential Gaussian Simulation is: 

1. Original well data will be transformed into normal-score data with mean value equal to 

zero and unit variance. Any normal distribution can be identified by mean value (μ) and 

standard deviation (σ). Variable X from original data can be transformed to a standard 

normal variable like Y by the formula below: 
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Y=(X−μ)/σ 

If the mean and standard deviation of a variable X is equal to μ and σ when it transformed 

to variable Y, the mean would be equal to 0 and the standard deviation would be 1 (trek, 

2019). 

2. Establish a grid network and coordinate system  

3. Assign transformed data to the simulation grid and nearest grid node 

4. Create a random path through the grid nodes 

5. Find the closest data and the grid nodes which is simulated before 

6. Using kriging in the random path to build up a conditional distribution to estimate the 

mean and standard deviation at that node based on surrounding data and variogram. A 

local conditional probability distribution will be generated 

7. Randomly choosing a value from the local conditional probability distribution and 

consider it as the node value including the newly simulated value as a part of the 

conditioning data 

8. Check the results, if it honours the data, variogram and geological concept and repeating 

previous steps until all grid nodes have a value 

9. Transform the realizations back to the original space 

4.4  Generating permeability realizations 

In the Geological model the uncertain Petrophysical parameter is permeability. To capture the 

uncertainty in the model, 100 realizations are generated. Sequential Gaussian Simulation (Pyrcz 

and Deutsch, 2014) is used to generate the different realizations of the permeability in the model. 

Within the model which is adopted from Peyman Kor (2019) and later on developed specifically 

for this work by me, the production strategy is considered as a 5-spot pattern.  
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Parameters   value 

Nugget effect Sill/2, md^2 

Type Spherical 

Range 20(grid cell) 

Anisotropy Ratio 1 

Azimuth 0-degree (North) 

Table 4.1. Semi variogram parameters (Kor, 2019) 

As the anisotropy ratio is shown in the table above, horizontal permeability considered to be 

equal to the vertical permeability Kh = Kv. In this work, 100 realizations of the permeability are 

generated for each training observation. A grid  of values that are randomly selected from a 

standard normal distribution is built by the Sequential Gaussian Simulation procedure. By defining 

the semivariogram in the kriging layer, the semivariogram/covariance model will be applied to 

ensure that the raster values conform to the spatial coordinates found in the input data set. 

Developed raster provides an unconditional realization. Gaussian distribution generates more 

realizations by utilizing different rasters of random values.  

SequentialGaussian Simulation steps are as follow: 

1. Using the Q-Q plot, log 10 of permeability is transferred to Gaussian values 

2. The random path is generated by calculating the distance between the data and unknown 

location 

3. Spherical variogram model is used for the input model of spatial continuity 

4. Using isotropic variogram model to calculating the variogram matrix  

5. Calculating the auto-covariance matrix by subtracting the variogram from the variance 

6. Calculating simple kriging weight by multiplying the left-hand side inverted covariance 

matrix to the right-hand side matrix 

7. Calculating the kriging estimates and variance 
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8. Applying Monte Carlo simulation to provide the simulated realizations in the random 

path(Kor, 2019)  

In Figures below four different randomly chose permeability distributions which are generated 

by the Sequential Gaussian Simulation are indicated. The standard deviation and mean of each 

one is written underneath each ensemble. The red line is the indicator of the mean.  

 

 

Figure 4.1. Permeability distribution realization#1 

 

Mean = 525.7165 

Standard deviation = 130.3313 
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Figure 4.2. Permeability distribution realization#37 

Mean = 494.2892 

Standard deviation = 150.3611 

 

 

Figure 4.3. Permeability distribution realization#22 

Mean = 501.0345 

Standard deviation = 145.6655 



36 

 

 

Figure 4.4. Permeability distribution realization#85 

Mean = 507.3936 

Standard deviation = 134.9212 

 

As it is shown in the permeability distribution for four randomly chosen realizations, permeability 

values vary from almost 200 to 1000 md. The table below indicates the range of permeability for 

each possible situation. Permeability values illustrate that the reservoir rock considered for the 

model is semi-previous, consolidated rock consists of oil reservoir rocks.  

 

Table 4.2.  Ranges of common intrinsic permeability (Bear, 2013) 
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12 out of 100 permeability distributions in the model has been visualized in figure below 

 

 

 

Figure 4.5. Realizations of Permeability in the Geological Model 
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4.5  Geological model 

To study the flow a two-dimensional model in rectangular format of the reservoir is considered. 

It is a normal 5-spot pattern with 1 injection well in the middle and 4 production wells scatter 

around. The geometry has 45 cells in each direction. There are no fault transmissibility multipliers. 

Each cell dimension is 10 x 10 x 10 and the grid measurement is 450m on each side with 10m 

thickness. The thickness of the model is consisting of one cell. As the Water/Oil is two phases are 

considered for the model, the eclipse 100 is used for this work. The connection point of the wells 

considered on the top of the cell. 

Model properties are shown in the table below. 

Parameters value 

Dimension 45*45 

size 10m*10m*10m 

Initial pressure 234 psi 

Compressibility 10^-5 Psi^-1 

Porosity 21 % 

Injection well coordinate 23 - 23 

Water saturation 0.6 

Table 4.3.  Model properties 

 Relative permeability and wet ability in the model 

It has long been recognized that the wettability of the rock is an important factor to determine 

the efficiency of the production and recovery in a waterflood system (Jerauld and Rathmell, 1997). 

The reservoir which is more oil-wet has a lower oil recovery rate in comparison with a water-wet 

reservoir. While there is a compromise on the least oil recovery in the waterflooding method for 

the oil-wet reservoirs, there is no consensus on whether the wet condition leads to maximum oil 

recovery. The only agreement is when the reservoir is at some intermediate-wetting state, not 

strongly oil-wet and not strongly water-wet. In this condition, the best oil recovery will be 

achieved. (wiki, 2016) 
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Relative permeability in the model is shown by the curves in the figure below. The oil and water 

relative permeability curves cross each other when Sw > 0.6. it indicates that the model is more 

water wet.  

 

Figure 4.6. Relative Permeability Curves, water/oil System (Kor, 2019) 

Summary 

In this chapter we explained that permeability is the only uncertain petrophysical parameter in 

the model. To capture the uncertainty in permeability Sequential Gaussian Simulation (SGS) is 

used. There is a brief explanation of how Sequential Gaussian Simulation (SGS) generates the 

realizations of the permeability. Rock and fluid characteristics of the model is explained. Relative 

permeability in the model is also described. Geological model characteristic is indicated and 

relative permeability and wettability is introduced. 
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Chapter 5. Optimization 

5.1  Introduction 

Well Location Optimization is of the important factors for maximizing recovery from the reservoir. 

It can be identified by subsurface data and flow simulation. But information from the subsurface 

is never perfect and it is very uncertain and complex. This high degree of uncertainty can cause 

errors in estimation and leads to money loss. This situation has motivated the development of 

optimization processes that can help subsurface specialists to choose improved well locations 

(Ramirez et al., 2017). 

In this thesis the optimization method which is used to find the best location for the production 

wells is a combination of a stochastic search algorithm and a robust field development 

optimization.  

5.2  Robust Field Development   

In this chapter, the optimization algorithm which is used for field development will be explained. 

The algorithm for optimization is based on Payman Kor’s (2019) algorithm which later on I 

developed, changed and added some more codes for the purpose of my thesis. A robust and 

multidimensional optimization which optimizes the locations for 4 production wells and injection 

rate simultaneously will be used. The objective of this optimization is to optimize the expected 

value of the NPV function over the all geological realizations for each location by finding a control 

vector both for production wells coordinates and injection rate. In the process of optimization, to 

capture the geological uncertainties, a set of 100 realizations is used. The permeability is the only 

geological uncertainty considered in the simulation of the reservoir. The geostatistical method 

which is used to generate the realizations as described in chapter 4 is a Sequential Gaussian 

Simulation (SGS). Since the algorithm uses the average of all realizations to find the NPV for each 

location, the workflow is considered robust to geological uncertainty (Hong et al., 2017). It must 

be mentioned that the injection well is considered as a fixed location in the centre of the model.  

In each step of the optimization process, the new generation of different locations is created by 

the genetic stochastic algorithm. For each location, 100 realizations will be implemented, and 100 

outcomes will be produced. An average of 100 outcomes for each location will then be used to 

rank the locations. In the end, the algorithm reaches the stopping criteria. The best location will 
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be picked based on the highest estimated expected net present value and the coordinates will be 

identified. 

Changing the setting for the optimization algorithm and applying bigger numbers for the 

population and iterations needs more computational capacity and time which due to limited 

period was not possible. 

5.3  Optimization algorithm 

In the process of reservoir simulation, well locations usually considered as discrete variables. 

Therefore the optimization algorithm which is normally used in the reservoir simulation is the 

Genetic algorithm. (Wang et al., 2007) 

• Genetic algorithm 

Genetic algorithm is used to solve the problem and developing the optimization strategy which 

can optimize the well locations and injection rates simultaneously. 

The Genetic algorithm which is one of the sub approaches of the evolutionary algorithms is a 

stochastic search algorithm (Holland, 1975). It is inspired by the basic principles of biological 

evolution and natural selection (Affenzeller et al., 2017). The Genetic algorithm can solve both 

continuous and discrete optimization problems (Scrucca, 2013). It can have constraints on the 

parameters space as well (Yu and Gen, 2010). It can solve optimization problems by providing an 

exact or an approximate answer (Goldberg, 1989, Sivanandam et al., 2007). 

Following (Spall, 2004), to solve the problem of finding the optimal location and injection rate, 

the Genetic stochastic algorithm will be implemented. This stochastic search algorithm can 

develop an optimization strategy to solve the optimization problem. The problem of maximizing 

a string number objective function 𝑓 : S → R like optimization can be solved by solving equation 

below: 

 

Θ∗ ≡ 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃∈Θ

𝑓(𝜃)  = {𝜃∗ ∈ Θ ∶ 𝑓(𝜃∗) ≥ 𝑓(𝜃), ∀𝜃 ∈ Θ} 

The search space is defined as S ⊆ 𝑅𝑝 , when Θ ⊆ S, i.e., θ=(θ1, θ2,..,θp) is the domain of 

parameters where each θi varies between lower and upper bound. The optimization problem can 

be considered as the equation 1, where the NPV search space is S, where the extent of the 
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optimization problem parameter is bounded by water injection and well location specifications. 

(Scrucca, 2013) 

The Genetic algorithm is a procedure to resolve both constrained and unconstrained optimization 

problems based on a natural selection process that imitates the biological evolution. The 

algorithm adjusts a population of individual solutions repeatedly. At each step Genetic algorithm 

picks randomly individuals from the current population and uses them as parents to create the 

children for the next generation. In a consecutive generation, the population rises towards an 

optimal solution. Genetic algorithm is applicable to problems that are not suitable for standard 

optimization algorithms including a problem in which the objective function is stochastic, 

discontinuous, nondifferentiable or highly nonlinear. Genetic algorithm varies from a classical, 

derivative-based optimization algorithm in two main ways, which is summarized in the table 

below. (Mathworks, 2019) 

Algorithm 

Classical Genetic 

A single point is generated at each iteration. 

The sequence of points approaches an 

optimal solution 

A population of points is generated at each 

iteration. The best point in the population 

approaches an optimal solution 

next point in the sequence will be selected by 

a deterministic calculation 

Next population will be selected by 

calculation which uses random number 

generators 

Table 5.1. genetic algorithm type (Mathworks, 2019) 

For more details about Genetic algorithm, see Appendix 9.1.  

5.4  Genetic algorithm setup 

The Genetic algorithm package is used in a code written in R language programming to apply the 

optimization for the model. The model is simulated for each realization in eclipse to run the flow. 

The setting for the genetic algorithm operators are shown in table below: 
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Parameters   value 

Population size 10  

Crossover function 0,8 

Mutation function 0,1 

Iteration 100 

Number of unimprowed solutions 10 

Table 5.2. Setup for optimization algorithm 

5.5  Injection optimization  

Different scenarios for injection rates are calculated as follow: 

 𝐴 ∗ 𝑒𝑥𝑝(−𝛾 ∗ 𝑡) 

In this work 5 different ranges of the A value considered as the table below 

 

100 150 200 250 300 

 

The number of the 𝛾 values are 11. they vary from 0.0005 up to 0.002. Total number of values 

which is considered for the injection scenarios are 55. It is shown in the graphs below. Each 

injection outline is identified by it’s 𝐴 and 𝛾 values.   
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5.6  NPV Calculation 

Formula to calculate the NPV value is: 

𝑁𝑃𝑉 =   ∑
[ 𝑃𝑜 −  𝑃𝑤𝑝 − 𝑞𝑤

𝑘 𝐼𝑘𝑃𝑤𝑖 ] 𝛥𝑡𝑘𝑞𝑜

𝑘

(1 + 𝑏)𝑡𝑘 𝐷⁄

𝑛𝑇

𝑘=1

 

 𝑞𝑜
𝑘   : Oil production rate at time k 

 𝑞𝑤
𝑘   : Water production rate at time k 

𝐼𝑘  : Water injection rate 

𝑃𝑜  : Oil price 

𝑃𝑤𝑝  : Water production cost 

𝑃𝑤𝑖   : Water injection cost 

B  : Discount factor 

D  : Reference time for discounting (if the cash flow was discounted daily and b was expressed 

as fraction per year then D=365) 

𝑡𝑘  : Cumulative time for discounting 

Figure 6.3. Injection scenarios (kor 2019) 
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In each iteration and for any location, an average of net present value over 100 realizations will 

be calculated. Algorithm then takes an average of mean NPV over all locations in each stage. 

Following: 

𝐸𝑉(𝑁𝑃𝑉𝑋) = ∑
𝑁𝑃𝑉𝑖(𝑋)

𝑁

𝑛𝑟=50

𝑖=1

 

 

Where the production well coordinates are indicated by 𝑋 

Table below indicates the parameters which are considered to calculate the NPV after the flow 

simulation is done and the numerical result of the simulation is ready. 

 

Prameters   value 

Water injection cost/barrel 5 

Water production cost/barrel  18 

Discount factor 8 % 

Oil price/barrel 60 $ 

Table 5.3. Setup for NPV calculator 

Summary 

In this chapter the optimization algorithm which helps to find the optimal coordinates for location 

of the production wells and optimal injection rate is explained. A robust and multidimensional 

optimization which optimizes the locations for production wells and injection rate simultaneously 

is demonstrated.  

The objective of this optimization which is to optimize the expected value of the NPV function 

over the all geological realizations for each location, by finding a control vector both for 

production wells’ coordinates and injection rate is explained. Parameters and setup for the 

optimization algorithm are introduced. Different scenarios for injection rate which is used in this 

optimization is indicated. Formula used to calculate the NPV value for each location and setup for 

the NPV calculation is described.  
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Chapter 6. Optimization result 

Result 1 

The optimization algorithm ran for several times over the different parameters and settings. After 

several efforts for simulating the model, with the best computational capacity available in the lab, 

it took several days to complete the simulation for each setting. 

The first setting for the optimization algorithm consists of 10 members of the population 

(coordinates) and 100 iterations. Each stage or iteration of the algorithm consists of 10 locations. 

For each location 100 realizations of permeability are considered. The algorithm generates the 

location coordinates and the Eclipse simulates the location for each realizations. The output of 

the algorithm is an expected net present value over all members of the population in that stage. 

It also gives the highest expected net present value for each step. In the end if the highest 

expected net present value repeated for 10 times, algorithm reaches the stopping criteria and 

stops the optimization. It gives the coordinates for the location of the wells which has the highest 

net present value as the optimal location. 

The algorithm transferred the location for the highest expected net present value to the next step. 

Therefore, if the NPV of the last set of the locations does not exceed the previous step, the best 

location for the previous step is considered for the next one. 

In here, after 47 iterations optimization algorithm reached the stopping criteria. By considering 

100 realizations for each location, and 10 locations in each step, the number of simulations 

becomes 47000. Optimization improvement is shown in the figure 6.1. 
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In the graph, the green dots are indicators of the highest expected net present value for each step 

or iteration. In each step average of the expected net present value for all locations is shown by 

blue dots. As the suggested location coordinates are not considered to start the simulation, and 

the algorithm starts by selecting random locations from the beginning, starting values of NPV are 

different in all trial simulations over the model. 

Table below indicates the NPV values for the best location over the 100 realizations. After 47 

iterations the maximum expected value which is derived from average NPV of all 100 realizations 

at the best location is 61.4MM.  

 

 

 

 

Figure 6.1. Optimization development 
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NPV Values for 100 Realizations Over the Best Location  
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Table 6.1. NPV values for the optimal location 

The figure below is the histogram over the 100 realizations for the optimal location. Mean NPV 

is indicated by the red line. The expected net present value and standard deviation value are 

written below the figure. 

 

 

Figure 6.2. Histogram of the NPV values for the optimal location 
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Mean of best location NPV = 61,4$MM 

Standard deviation of best location NPV = 956511.17 

Table 6.2 is expected net present value for each step in the optimization process. 

 

NPV Mean Values for 47 Stages of the Simulation 
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Table 6.2. Mean NPV values for each step in optimization 

Mean NPV over the all iterations = 56.1$MM 

Standard deviation evaluated for all steps = 56.1MM 

The graph for the cumulative net present values for the optimal location is shown in figure 6.3 

 

Figure 6.3. cumulative distribution plot of NPV values for optimal location  
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In table 6.3 the best location coordinates are shown. It also indicates the optimal injection 

Gamma rate and starting injecting value.  

Prameters   value 

coordinate for injection well 23 – 23 

coordinate for production No: 1 7.419 – 43.519 

coordinate for production No: 2 41.054 – 14.173 

coordinate for production No: 3 4.594 – 9.894 

coordinate for production No: 4 39.724 – 42.924 

Injection Gamma rate 0,00103 

Injection Starting rate 264.53 

Table 6.3. Best location coordinates & injection rate 

Result 2 

This second result is gained by setting the parameters for the optimization in table 6.4. 

Parameters   value 

Population size 100  

Iteration 1 

Number of unimprowed solutions - 

Table 6.4. Setup for the optimization algorithm 

Because it has just one step, the output is consisted of just one average over 100 expected net 

present values and one optimal location. therefore there is no plot for the optimization 

improvement as it was for the previous one. 

The net present values over the 100 realization for optimal location are shown in table 6.5. 
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NPV Values for 100 Realizations Over the Best Location  
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Table 6.5. Mean NPV values for each location  

The histogram of the net present value distribution for the best location is shown in the figure 

6.4. The red line indicates the estimated expected net present value or the mean for the 

distribution: 

 

Figure 6.4. Histogram of the NPV values for the optimal location 

  

Mean of best location NPV = 52930785 
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Standard deviation of best location NPV = 966900.2 

The cumulative Net present value for the optimal location is shown in figure 6.5. 

 

Figure 6.5. Cumulative Net present value 

The expected net present value over 100 different locations = 32758210 

The result for the best location coordinate and injection rate based on gamma and starting value 

is shown in table 6.6. 

Prameters   value 

coordinate for injection well 23 – 23 

coordinate for production No: 1 37.089 – 5.247 

coordinate for production No: 2 7.207 – 14.059 

coordinate for production No: 3 2.383 – 7.053 

coordinate for production No: 4 40.277 – 37.831 

Injection Gamma rate 0,00124 

Injection Starting rate 223.441 

Table 6.6. Best location coordinates 
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Chapter 7. Discussion 

Introduction 

The focus of this work is on optimizer’s curse or the expected disappointment in the optimization 

of well location in a 5-spot pattern. The optimization process which is used in this work is done by 

simulating the locations for different geological realizations and taking an average over all values 

for NPV. Then it selects the optimal location based on the highest mean NPV. This procedure 

repeated for each stage until it reaches the stopping criteria. In the end, the highest expected net 

present value is the indicator of the optimal location for the wells and the best injection rate is 

identified for this location. The process of optimization in this work simply selects and ranks the 

alternatives which have the highest estimated expected net present value. these estimated values 

are combined with errors. The error might come from the model or the uncertainties. 

Having estimated values for optimal location and for all locations makes it possible to check the 

model for expected disappointment. Then the estimated values can be corrected by a Bayesian 

method which is explained in chapter 3. 

 Discussion I 

We can check the magnitude of post-decision disappointment by using the Bayesian model 

developed in chapter 3. Standard procedure in robust optimization draws random values from 

the prior and designate it as the true value following:  

𝑉𝑖 = 𝜇𝑖 + 𝐸𝑖  

By using equation from chapter 3 expected net present value estimated for optimal location, can 

be adjusted for Bayes. It should be mentioned that as the model is simple and the uncertainty is 

covered by 100 realizations for permeability, the possible gap between estimated value and the 

corrected value for Bayes is expected to be low. It indicates that the magnitude of expected 

disappointment should be low. 

Figure 7.1 illustrates the distributions of the net present values estimated for the optimal location 

and distribution of the expected net present values for all simulations.  

 



54 

 

Figure 7.1. NPV distribution 

 

In the graph, red histogram indicates the distribution of the all simulations and the blue histogram 

illustrates the distribution of NPV over 100 realizations for the best location. 

To correct the estimated value for the optimal location following chapter 3: 

𝛼𝑖 = ( 1 + 
𝜏𝑖

2

𝜎𝑖
2 )

−1

 

𝜐𝑖
𝐵 = 𝛼𝑖 𝜐𝑖

𝐸 + (1 – 𝛼𝑖) 𝜇𝑖   

Having the standard deviation for the distribution of all simulations and the best location,  𝛼𝑖 can 

be calculated like 

𝜏 = 0.95651117𝑀𝑀 

𝜎 = 1.77854756𝑀𝑀 

𝛼𝑖 = ( 1 + 
𝜏2

𝜎2
 )

−1

    =      ( 1 + 
0.956511172

1.778547562 )
−1

     

Having the expected net present value for the optimal location (𝜐𝑖
𝐸) and for all steps (𝜇𝑖).   

𝜐𝑖
𝐸 = 61.4$𝑀𝑀     
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 𝜇𝑖 = 56.1$𝑀𝑀 

Bayes corrected estimate 𝜐𝑖
𝐵 can be calculated as follow: 

𝜐𝑖
𝐵 = ( 1 + 

0.956511172

1.778547562 )
−1

*  61.4 + (1 – ( 1 + 
0.956511172

1.778547562 )
−1

) * 56.1 = 60.23$𝑀𝑀 

𝜐𝑖
𝐵 = 60.7$𝑀𝑀 

As it is shown the difference between the estimated expected net present value and Bayes 

correction for that is not very big as it was expected. 

(I)          𝜐𝑖
𝐸 - 𝜐𝑖

𝐵 = 61.4 - 60.2 = 1.17$𝑀𝑀 

It is almost 1.97 percent of the expected net present value estimated for the best location. 

In chapter 2, the effect of uncertainty reduction is explained. Here, If the distribution of all 

simulation values had a bigger standard deviation in compare to estimated one 𝛼𝑖 was closer to 

1. It proves that the estimated value has more weight in the Bayes equation than the realized 

value and the Bayes corrected estimation value would be closer to the value estimate.  

By increasing the standard deviation of realized values, the separation gap between realized 

values increases and it leads to a decrease in the magnitude of the optimizer’s curse. In fact, if 

there were more uncertainty in the input data for the model, it would be expected to have a 

bigger gap between the estimated value and corrected one for bias. For instance, transmissibility 

or more realizations of permeability and porosity increases the uncertainty.  

If the resulted expected net present value for the optimal location was lower than the realized 

net present value, then the Bayes correction for that value is expected to show a bigger number. 

It shows that the value is underestimated, and Bayes correction value is higher than the initial 

estimation.  

Discussion II 

In chapter 5 the process of generating the new population by a Genetic algorithm is explained (for 

more detailed explanation see appendix 9.1). Only in the first step of the Genetic algorithm the 

generates population (coordinates for locations) randomly. For the next steps, the algorithm uses 

different methods such as combining the genes from the previous generation to produce a new 

population and transferring the best of the previous step to the next population. Therefore, the 
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algorithm in each step is closer to the optimal value. To explain how the Genetic algorithm works, 

we imagine a target and arrows with an aim to hit the bullseye. On the left-side figure (7.2a), 

arrows clustered tightly and off the bullseye to the right side. Since it is tightly clustered, it 

indicates aiming with a steady hand that generates just small random errors. It clustered to the 

right because the bow’s sight might be off and affects all arrows. It shows precise but inaccurate 

targeting. Inaccuracy represents bias in the aiming. By contrast in the right-side figure (7.2b), 

targeting with an unsteady hand which produced large random errors into every shot. The scatter 

pattern of shots represents imprecision but as the cluster is centred on the bullseye, it indicates 

that the shots are accurate or unbiased (Summers, 2019). 

By looking at location coordinates for discussion I and II, it appears that when the algorithm runs 

for more steps, the location of the wells goes towards the corners of the model (Table 6.3). In 

contrast when it uses only the first step, we can have the well locations spread all over the model. 

In this case two of the location coordinates are too close (Table 6.6). 

To study the magnitude of expected disappointment when selecting the alternatives accurately 

but not precisely, the optimization is done with different parameters. Second attempt for the 

optimization is done by just one step and a population of 100. 

The result for the optimal location expected net present value 𝜐𝑖
𝐸 and expected net present value 

for all locations 𝜇𝑖 are: 

𝜐𝑖
𝐸 = 52.9$𝑀𝑀 

𝜇𝑖 = 32.7$𝑀𝑀 

Figure 7.3 shows the distribution of expected net present value for all 100 locations and net 

present values for the optimal location. 

Figure 7.2a Figure 7.2b 
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Having standard deviation for the optimal location 𝜏  ,over 100 realizations and the standard 

deviation for the 100 expected net present values 𝜎 for all locations, the Bayes estimation would 

be: 

𝜏 = 0.9669002𝑀𝑀 

𝜎 = 5.467260𝑀𝑀 

𝜐𝑖
𝐵 = 52.3𝑀𝑀 

(II)          𝜐𝑖
𝐸 - 𝜐𝑖

𝐵 = 52.9 - 52.3 = 0.65$𝑀𝑀 

It is almost 1.15 percent of the value estimated for the best location, which is lower than the 

condition with several steps (first discussion). It can be explained by having a bigger difference or 

separation among alternatives. But we should consider that the NPV values for the best location 

and for all locations are lower than the first attempt. In other words, the resulted coordinate for 

the best location is not good as the first attempt.  

Figure 7.3. NPV distribution 
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Discussion III 

In the first optimization attempt which has 47 iterations, possible post-decision disappointment 

is investigated by considering the 𝜇𝑖 over all steps or iterations. In the second attempt (section II), 

possible overestimation is investigated for a single step. In third attempt (III) I tried to check the 

post-decision disappointment by considering only the step or iteration which gives the best 

location.  

𝜐𝑖
𝐸 = 61.4$𝑀𝑀     &       𝜏 = 0.95651117𝑀𝑀 

𝜇𝑖 = 60.99𝑀𝑀        &        𝜎 = 0.9777726𝑀𝑀 

Value estimate corrected for Bayes is: 

𝜐𝑖
𝐵 = 61.00𝑀𝑀 

(III)          𝜐𝑖
𝐸 - 𝜐𝑖

𝐵 = 61.4 - 61.00 = 0.4$𝑀𝑀 

By comparing the result for the attempt II and III, the magnitude of the optimizer’s curse is 

reduced as the genetic algorithm generates more locations and the standard deviation over the 

population expected net present value becomes closer to the expected net present value of the 

best location. In section (II) all members of the population were selected randomly so there is a 

bigger standard deviation for all members of the population. But in section (III), the standard 

deviation for the net present values over all members of the population is smaller, and the 

resulted best-expected net present value estimation is closer to the Bayes corrected estimated 

value.  
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Chapter 8. Conclusion 

Conclusion 

The primary goal of this work is to study the optimizer’s curse on the concept of optimization of 

well location in a 5-spot pattern and how optimizer’s curse affects the result of this optimization. 

Selection technics which are used in optimization process leads to the creation of some artefact 

which is called Optimizer’s curse. It has no psychological dimension (Marks, 2008) and appears in 

any decision-making that needs to select among alternatives in which the true values are 

unknown and values are just estimations. It is not caused by any inherent bias in the estimates, 

but the product of the selection process itself.  

Optimizer’s curse happens when errors inside the estimations coupled with the optimization-

based process. It has been demonstrated in this work; even unbiased evaluation errors lead to 

results impacted by optimizer’s curse. These random errors, which are included in the assessment 

of the alternatives, can be reduced by collecting more data to reduce uncertainty in value 

estimates. Examples have demonstrated that the curse can be significant in practice and the 

expected disappointment would be substantial when the value estimates are biased.  

To overcome this curse, implementing a Bayesian method and modelling of estimation 

uncertainties helps to debias the estimations. Considering estimation results as uncertain and use 

Bayes rule to combine it with prior information helps to correct the value estimates for the bias 

which is built in the optimization process. (Smith and Winkler, 2006) 

failure to identify and modify this curse leads to a substantial loss in a project assessment. It leads 

to spending more money to achieve an overestimated project portfolio. And the actual outcome 

is likely to be significantly lower than forecasted.  

It is important to consider this curse in the project evaluation and understand how it affects the 

process of selecting the alternatives. Otherwise, the difference between the estimated alternative 

and the realized value of it can be expressed as systematic underperformance of the project or 

poor or deliberate misleading of the outcomes and costs.  

In conclusion, it must be mentioned that if the optimizer’s curse is not removed or corrected, 

most portfolio evaluations are overestimated, and the decision-maker may face post-decision 

disappointment after implementing the selected alternative. 
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Recommendation 

To study and investigate the optimizer’s curse by working with REAL reservoir model which is 

more complicated is recommended. Using field data to study this curse would be interesting. It is 

difficult to study the optimizer’s curse in real cases because usually companies do not publish 

their value estimates which is used to make decisions. Having an opportunity to work with such 

data will be helpful to study the optimizer’s curse and other factors which affects the predictions.  

Study the optimizer’s curse with conducting some experiment would be interesting. It can be 

done by estimating values for a complex problem with different alternatives and select the 

optimal one, then execute the selected alternative to study the result for possible expected 

disappointment.  
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Chapter 9. Appendix 

9.1 Genetic algorithm  

• How the genetic algorithm works 

The Genetic algorithm is a subcomponent of the evolutionary strategies. At each evolutionary 

iteration, a population is generated. This population is composed of some individuals which are 

called chromosomes or strings and each chromosome is made of genes that control the characters 

inherited from the parents. Inherited genes of a certain character are placed along the 

chromosome and the corresponding string positions are called Loci. Each genotype would be a 

possible solution to the optimization problem. In the Genetic algorithm, the decision variable or 

phenotypes are achieved by applying some mapping from the chromosome representation into 

the decision variable space, which represents a potential solution to the optimization problem. A 

proper decoding function may be required for mapping chromosomes onto phenotypes. (Scrucca, 

2013) 

The algorithm first creates a random initial population which can be either a suggestion for the 

first location or takes the first location randomly and then creates several locations based on the 

population size in the algorithm. 

In the next stage the algorithm generates a sequence of new populations. At each step, algorithm 

uses past locations to generate the new population. Genetic algorithm process is described as 

below.  

• The fitness value of each member of the population is Computed and scored  

• Based on the fitness value, probabilities will be assigned to each member of the 

population. These scaled values are called expectation values 

• Selecting members of the population or parents based on their expectations  

• Some of them which are chosen as elite will be passed to the next generation 

• Generating new population from the parents 

• New population is produced either by mutation or by crossover. In other words, by 

doing either some random changes to a single parent or by mixing the vector entries in a 

pair of parents 

• Next generation is produced by replacing the children with the current population 
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• When the new population is not significantly different from the previous generation, the 

algorithm will be terminated.  

 

• Genetic algorithm production methods 

1) Selection 

In the selection process of parents for the next generation, the probabilities assigned to the 

parents by fitness function is used to choose the best parents. Fitness scaling process scales the 

values and selection process chooses parents for the next generation based on these scaled 

values. If a parent contributes its genes to more than one child, it can be chosen several times. 

2) Crossover 

In crossover reproduction technic, chromosomes of two parents are used to generate two child 

chromosomes. The new population or children will be generated by mixing pairs of parents in 

the current population. One of the methods which is widely used for the crossover is the one-

point crossover. This method works with splitting the chromosomes of both parents into left 

figure 6.1. Genetic algorithm flowchart  
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and right subchromosomes, where each pair of two left and two right subchromosomes have 

the same length. Chromosomes in each child is generated by getting left subchromosomes from 

one parent and right subchromosomes from other parent. The generation of the new 

population in the default crossover function happens as a random weighted average of parents. 

(Wright, 1991) the figure below shows the crossover function.  

3) Mutation Children 

Another common reproduction operator in the Genetic algorithm is the mutation. In the mutation 

process, a new population is generated by randomly changing the genes of the parents in the 

current population. When a chromosome is selected to generate a new child with the mutation 

process, some of its genes of the chromosome, are randomly selected and modified to create a 

new population. (Wright, 1991)  Figure 6.2 illustrates different generation processes. 

 

 

 

Although the genetic algorithm which is used in this work to help the optimization process, is a 

stochastic search algorithm, in each step, it selects the alternatives which contribute more to the 

outcome. And It generates a new population by transferring selected genes. By considering this 

fact that a model is not perfect, the algorithm produces locations that tend to be more precise 

than to be accurate. It can be said that it is not an absolute stochastic search algorithm. It is only 

the first stage of the algorithm which generates the location coordinates completely random. 

Figure 6.2. Genetic algorithm population generation types 
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9.2 Optimizer’s Curse I 

 

  

N1 <- rnorm(10000000,0.5,1) 

N2 <- rnorm(10000000,0,1) 

N3 <- rnorm(10000000,-0.5,1) 

P1 <-plot(density(N1), xlim=c(-3,3), ylim=c(0,0.6), xaxs="i", yaxs="i" , lwd="3" , col="green",  

          main="Estimated Alternatives" , xlab ="" , ylab = "Density ") 

polygon(density(N1), col = rgb(red = 0, green = 1, blue = 0, alpha = 0.1), border="green") 

P2 <-lines(density(N2) , xlim=c(-3,3), ylim=c(0,0.6), xaxs="i", yaxs="i" , lwd="3" , col="blue")          

polygon(density(N2), col = rgb(red = 0, green = 0, blue = 1, alpha = 0.1), border="blue") 

P3 <-lines(density(N3) , xlim=c(-3,3), ylim=c(0,0.6), xaxs="i", yaxs="i" , lwd="3" , col="red" ) 

polygon(density(N3), col = rgb(red = 1, green = 0, blue = 0, alpha = 0.1), border="red") 

X1 <-pmax(N1,N2,N3) 

#   X1 

Px <-lines(density(X1), lwd= "3", col="black") 

polygon(density(X1), col = rgb(red = 0.5, green = 0.4, blue = 0.1, alpha = 0.1), border="red") 

L1 <-abline(v=mean(N1), col="green", lwd="3") 

mean(N1) 

L1 <-abline(v=mean(N2), col="blue", lwd="3") 

L1 <-abline(v=mean(N3), col="red", lwd="3") 

L1 <-abline(v=mean(X1), col="black", lwd="3") 

mean(X1) 

sd(X1) 

mean(X1)-mean(N1) 
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9.3 Optimizer’s curse II 

N <- 100000000 
AA <- rnorm(N, mean = 10, sd = 1)   
  
AD <- sort(AA, decreasing = TRUE) 
AM <- AD [c(1:1000000)] 
 
plot(density(AA), col="green", lwd="3", xlim=c(-5,20), ylim=c(0,2), xaxs="i", yaxs="i", xlab = 
"Distribution P & errors") 
 
EE <- (rnorm(N, mean = 0, sd = 2)) 
FF <- lines(density(EE),col="red", lwd="3", xlim=c(-5,20), ylim=c(0,2), xaxs="i", yaxs="i") 
AE <- AA+EE 
 
lines(density(AM), col="blue", lwd="3") 
lines(density(AE), col="blue", lwd="3") 
max(AE) 
min(AE) 
 
DC <- sort(AE, decreasing = TRUE) 
DM <- DC [c(1:1000000)] 
 
lines(density(DM),col= "green", lwd="3", xlim=c(-5,20), ylim=c(0,2), xaxs="i", yaxs="i") 
 
L1 <-abline(v=mean(AA), col="red", lwd="3") 
 
L1 <-abline(v=mean(EE), col="red", lwd="3") 
 
L1 <-abline(v=mean(AE), col="blue", lwd="3") 
 
L1 <-abline(v=mean(DM), col="black", lwd="3") 
 
L1 <-abline(v=mean(AM), col="black", lwd="3") 
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9.4 Sequential Gaussian Simulation 

library(gstat)                              (Pebesma and Wesseling, 1998)    
library(sp)                                     
# data frames 
library(plyr)                                 (Wickham and Wickham, 2016)  
library(fields)                                 
nx = 45                                        
ny = 45                                        
xsize = 10.0                                    
ysize = 10.0                                    
xmin = 0 
ymin = 0 
xmax = xmin + nx * xsize 
ymax = ymin + ny * ysize 
x<-seq(xmin,xmax,by=xsize)                      
y<-seq(ymin,ymax,by=ysize)                     
colmap = topo.colors(100)                       
 
nscore <- function(x)                            (Makido et al., 2008) 
  nscore <- qqnorm(x, plot.it = FALSE)$x  # normal score  
  trn.table <- data.frame(x=sort(x),nscore=sort(nscore)) 
  return (list(nscore=nscore, trn.table=trn.table))} 
addcoord <- function(nx,xmin,xsize,ny,ymin,ysize)  
  ixy = 1 
  for(iy in 1:nx) { 
    for(ix in 1:ny) { 
      coords[ixy,1] = xmin + (ix-1)*xsize   
      coords[ixy,2] = ymin + (iy-1)*ysize  
      ixy = ixy + 1 }} 
  coords.df = data.frame(coords) 
  colnames(coords.df) <- c("X","Y") 
  coordinates(coords.df) =~X+Y 
  return (coords.df)}   
sim2darray <- function(spdataframe,nx,ny,ireal)  
  model = matrix(nrow = nx,ncol = ny) 
  ixy = 1 
  for(iy in 1:ny) { 
    for(ix in 1:nx) { 
      model[ix,iy] = spdataframe@data[ixy,ireal]   
      ixy = ixy + 1 } } 
  return (model)}   
sim2vector <- function(spdataframe,nx,ny,ireal)   
  
  model = rep(0,nx*ny) 
  ixy = 1 
  for(iy in 1:ny) { 
    for(ix in 1:nx) { 
      model[ixy] = spdataframe@data[ixy,ireal]   
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      ixy = ixy + 1 }} 
  return (model)} 
 
mydata1=read.csv('Welllocation4SGS_inj.csv') 
j=1 
cumdata <- matrix(0,nrow = 1500,ncol = 4) 
cumdata <- as.data.frame(cumdata) 
for (i in 1:1){ 
  sample <- matrix(data.matrix(mydata1[i,2:9]),nrow = 4,ncol = 2) 
  locdata <- data.frame(rbind(matrix(c(23,23),nrow = 1,ncol = 2),sample)) 
  locgrid <- matrix(0,nrow=5,ncol = 2) 
  for (k in 1:5) { 
    locgrid[k,1] <- (locdata[k,1]-1)*xsize + 5 
    locgrid[k,2] <- (locdata[k,2]-1)*ysize + 5  
  } 
  m <- 500 
  s <- 150 
  location <- log(m^2 / sqrt(s^2 + m^2)) 
  shape <- sqrt(log(1 + (s^2 / m^2))) 
  Perm <- matrix(rlnorm(5,location,shape),nrow = 5,ncol = 1) 
  logperm <- log10(Perm) 
  logperm <- matrix(logperm,nrow = 5,ncol = 1) 
  mydata2 <- data.frame(cbind(locgrid,Perm,logperm)) 
  z <- i*5 
  cumdata[j:z,1:4] <- mydata2 
  colnames(mydata2) <- c('X','Y','Perm','logperm') 
  j=j+5 
   
   
  coordinates(mydata2) = ~X+Y   
  npor.trn = nscore(mydata2$logperm)               
  mydata2[["NPermeability"]]<-npor.trn$nscore      
   
  cuts = c(2.4,2.45,2.5,2.65,2.7,2.8,2.9) 
  cuts.var = c(0.05,.1,.15,.20,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8,.85,.9,.95) 
   
  spplot(mydata2, "logperm", do.log = TRUE,       
         key.space=list(x=1.05,y=0.97,corner=c(0,1)),cuts = cuts, 
         scales=list(draw=T),xlab = "X (m)", ylab = "Y (m)",main ="Permeability (Log(K)),  
         in md") 
  coords <- addcoord(nx,xmin,xsize,ny,ymin,ysize)  
   
  sill = var(mydata2$logperm)                     
  min = min(mydata2$logperm)                      
  max = max(mydata2$logperm)                
  zlim = c(min,max)             
  vm.nug1 <- vgm(psill =0.5*sill, "Sph", 200, anis = c(000, 1.0),nugget=0.5*sill) 
  condsim.nug1 = krige(logperm~1, mydata2, coords, model = vm.nug1, nmax = 100, nsim = 
10) 
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  par(mfrow=c(2,2)) 
  real1 <- sim2darray(condsim.nug1,nx,ny,1)      
  image.plot(10^real1,x=x,y=y,xlab="X(m)",ylab="Y(m)", 
             zlim = c(min(10^real1),max(10^real1)), 
             col=colmap,legend.shrink = 0.6); 
  mtext(line=1, side=3, "Realization #1", outer=F);box(which="plot") 
   
  real2 <- sim2darray(condsim.nug1,nx,ny,2)      
  image.plot(10^real2,x=x,y=y,xlab="X(m)",ylab="Y(m)", 
             zlim =c(min(10^real2),max(10^real2)) , 
             col=colmap,legend.shrink = 0.6); 
  mtext(line=1, side=3, "Realization #2", outer=F);box(which="plot") 
  real3 <- sim2darray(condsim.nug1,nx,ny,3)       
  image.plot(10^real3,x=x,y=y,xlab="X(m)",ylab="Y(m)",zlim = 
c(min(10^real3),max(10^real3)), 
             col=colmap,legend.shrink = 0.6); 
  mtext(line=1, side=3, "Realization #3", outer=F);box(which="plot") 
   
  real4 <- sim2darray(condsim.nug1,nx,ny,4)       
  image.plot(10^real4,x=x,y=y,xlab="X(m)",ylab="Y(m)", 
             zlim = c(min(10^real4),max(10^real4)), 
             col=colmap,legend.shrink = 0.6); 
  mtext(line=1, side=3, "Realization #4", outer=F);box(which="plot")}  
Adopted from (Kor, 2019) 
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9.5 Optimiziation algorithm 

install.packages('GA') 
install.packages('doParallel') 
install.packages('parallel') 
library(GA) 
library(parallel) 
library('doParallel') 
 
setwd("C:/ROOPT_Ide/Rcode") 
library(readr) 
X2D_1Inj_4Prod_R1 <- read_delim("2D_1Inj_4Prod_R.DATA",  
                                "\t", escape_double = FALSE, na = "null",  
                                trim_ws = TRUE) 
 
 
Injec_up1 <- read_delim("Injec_up1.csv",  
                        ";", escape_double = FALSE, col_names = FALSE,  
                        trim_ws = TRUE) 
 
Eclipse <- function(X1,Y1,X2,Y2,X3,Y3,X4,Y4,A1,gam1) { 
  result <- c(rep(0,10)) 
  for (i in 1:10) { 
    result[i] <- Eclipse1(X1,Y1,X2,Y2,X3,Y3,X4,Y4,A1,gam1,i) 
  } 
  mean_result <- mean(result) 
  # mean_result <- mean_result*0.6 
  return(mean_result) 
} 
 
run <- 'C:/ecl/macros/eclrun.exe eclipse "C:/ROOPT_Ide/En#/Ensemble.DATA"' 
 
Eclipse1 <- function(X1,Y1,X2,Y2,X3,Y3,X4,Y4,A1,gam1,i){ 
  wd <- 'C:/ROOPT_Ide/En#' 
  run1 <- gsub('#',i,run) 
  newwd <- gsub('#',i,wd) 
  setwd(newwd) 
  X1 <- round(X1) 
  X2 <- round(X2) 
  X3 <- round(X3) 
  X4 <- round(X4) 
  Y1 <- round(Y1) 
  Y2 <- round(Y2) 
  Y3 <- round(Y3) 
  Y4 <- round(Y4) 
  slope <- c(-0.0005,-
0.00025,0,0.00025,0.00050,0.00075,0.00100,0.00125,0.00150,0.00175,0.00200) 
  Avalue <- c(100,150,200,250,300) 
   
  A_1 <- Avalue[findInterval(A1,Avalue)] 
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  Gam1 <- slope[findInterval(gam1,slope)] 
   
  data <- X2D_4Inj_1Prod_R1 
  g1 <- data[131,1] 
  g2 <- data[132,1] 
  g3 <- data[133,1] 
  g4 <- data[134,1] 
  g5 <- data[138,1] 
  g6 <- data[139,1] 
  g7 <- data[140,1] 
  g8 <- data[141,1] 
  G1 <- gsub('103',X1, g1) 
  G2 <- gsub('104',Y1, G1) 
  G3 <- gsub('105',X2, g2) 
  G4 <- gsub('106',Y2, G3) 
  G5 <- gsub('107',X3, g3) 
  G6 <- gsub('108',Y3, G5) 
  G7 <- gsub('109',X4, g4) 
  G8 <- gsub('110',Y4, G7) 
  G9 <- gsub('113',X1, g5) 
  G10 <- gsub('114',Y1, G9) 
  G11 <- gsub('115',X2, g6) 
  G12 <- gsub('116',Y2, G11) 
  G13 <- gsub('117',X3, g7) 
  G14 <- gsub('118',Y3, G13) 
  G15 <- gsub('119',X4, g8) 
  G16 <- gsub('120',Y4, G15) 
  data[131,1] <- G2 
  data[132,1] <- G4 
  data[133,1] <- G6 
  data[134,1] <- G8 
  data[138,1] <- G10 
  data[139,1] <- G12 
  data[140,1] <- G14 
  data[141,1] <- G16 
   
  write.table(data, file ="Ensemble.DATA", sep = "\t",quote = F,row.names = F,col.names = F) 
  int <- seq(from=0,to=1470,by=30) 
  InjectionRatesex <- Injec_up1 
  vector <- 
c(c(3,4,5),c(11,12,13),c(19,20,21),c(27,28,29),c(35,36,37),c(43,44,45),c(51,52,53),c(59,60,61),c(67,
68,69), 
              
c(75,76,77),c(83,84,85),c(91,92,93),c(99,100,101),c(107,108,109),c(115,116,117),c(123,124,125),c
(131,132,133), 
              
c(139,140,141),c(147,148,149),c(155,156,157),c(163,164,165),c(171,172,173),c(179,180,181),c(18
7,188,189), 
              
c(195,196,197),c(203,204,205),c(211,212,213),c(219,220,221),c(227,228,229),c(235,236,237),c(24
3,244,245), 
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c(251,252,253),c(259,260,261),c(267,268,269),c(275,276,277),c(283,284,285),c(291,292,293),c(29
9,300,301), 
              
c(307,308,309),c(315,316,317),c(323,324,325),c(331,332,333),c(339,340,341),c(347,348,349),c(35
5,356,357), 
              c(363,364,365),c(371,372,373),c(379,380,381),c(387,388,389),c(395,396,397)) 
   
  InjectionRatesex <- InjectionRatesex[-vector,] 
  InjectionRatesex[seq(from=2,to=250,by=5),5] <- A_1*exp(-Gam1*int) 
  write.table(InjectionRatesex, 'InjectionRates.inc',quote = F,row.names = F,col.names = F, na = '') 
  a1 <- A_1*exp(-Gam1*int) 
  AA <- a1 
  shell(run1) 
  return(NPVcalculator(AA,newwd)) 
} 
 
   
NPVcalculator <- function(AA,newwd){ 
  setwd(newwd) 
  ens <- "ENSEMBLE.RSM" 
  NPV <- read.delim(ens,  header=FALSE, comment.char="#") 
  NPVcalc <- NPV[, c(2,5,6)] 
  colnames(NPVcalc) <- c('Days', 'Oilrate', 'waterrate') 
  NPVcalc <- na.omit(NPVcalc) 
  NPVcalc <- NPVcalc[-seq(9,400,by = 2), ] 
  rownames(NPVcalc) <- 1:nrow(NPVcalc) 
  days <- as.numeric(levels(NPVcalc$Days))[as.integer(NPVcalc$Days)] 
  days <- na.omit(days) 
  l1 <- min(which(days==c(1), arr.ind = TRUE)) 
  l2 <- min(which(days==c(1500), arr.ind = TRUE)) 
  days <- days[c(l1:l2)] 
  oil <- as.numeric(levels(NPVcalc$Oilrate))[as.integer(NPVcalc$Oilrate)] 
  oil <- na.omit(oil) 
  oil <- oil[c(l1:l2)] 
  water <- as.numeric(levels(NPVcalc$waterrate))[as.integer(NPVcalc$waterrate)] 
  water <- na.omit(water) 
  water <- water[c(l1:l2)] 
  FWCT <- numeric(length = length(water)) 
  FWCT <- water/(water+oil) 
  t <- seq(0,days[length(which(FWCT<0.85, arr.ind = TRUE))],by = 30) 
  t[1] <- 1 
  cashflow <- numeric(length(t)-1) 
  discashflow <- numeric(length(t)-1) 
  b <- 0.08 
  for (j in 1:(length(t)-1)) { 
    m1 <- t[j] 
    z1 <- which(days==c(m1), arr.ind = TRUE) 
    m2 <- t[j+1] 
    z2 <- which(days==c(m2), arr.ind = TRUE) 
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    cashflow[j] <- (mean(oil[z1],oil[z2])*6.29*75-mean(water[z1],water[z2])*6.29*19-
AA[j]*5*6.29)*30 
    discashflow[j] <- cashflow[j]/((1+b)^(t[j+1]/360)) 
  } 
  return(sum(discashflow))} 
 
 
#sugges <- c(1,45,45,1,1,1,45,45,150,0) 
GA <- ga(type = "real-valued", fitness = function(x) + 
Eclipse(x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9] 
                                                               ,x[10]) 
         ,lower = c(rep(1,8),rep(100,1),rep(-0.0005,1)), 
         upper = c(rep(45,8),rep(300,1),rep(0.002,1)),popSize = 10, maxiter = 100,run = 10,parallel = 
T,) #suggestions = sugges 
GA@solution 
plot(GA) 
Eclipse <- function(X1,Y1,X2,Y2,X3,Y3,X4,Y4,A1,gam1) { 
  result <- c(rep(0,100)) 
  for (i in 1:100) { 
    result[i] <- Eclipse1(X1,Y1,X2,Y2,X3,Y3,X4,Y4,A1,gam1,i) 
  } 
  return(result) 
} 
 
 
 
Eclipse_NPV <- Eclipse(1,45,45,1,1,1,45,45,150,0) 
Eclipse_NPV 
 
######### Histogram plot 
hist(Eclipse_NPV, breaks = 10, main = "Npv Distribution Over  
     Geological Realizations", probability = T, xlab="NPV ($$ MM)"  
     , col="blue", border="red") 
Eclipse_NPV 
Adopted from (Kor, 2019)  

 

 


