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Abstract. We construct a new 20-dimensional family of projective 6-dimensional
irreducible holomorphic symplectic manifolds. The elements of this family are de-
formation equivalent with the Hilbert scheme of three points on a K3 surface and
are constructed as natural double covers of special codimension 3 subvarieties of the
Grassmanian G(3, 6). These codimension 3 subvarieties are defined as Lagrangian de-
generacy loci and their construction is parallel to that of EPW sextics, we call them
the EPW cubes. As a consequence we prove that the moduli space of polarized IHS
sixfolds of K3-type, Beauville-Bogomolov degree 4 and divisibility 2 is unirational.

1. Introduction

By an irreducible holomorphic symplectic (IHS) 2n-fold we mean a 2n-dimensional
simply connected compact Kähler manifold with trivial canonical bundle that admits a
unique (up to a constant) closed non-degenerate holomorphic 2-form and is not a prod-
uct of two manifolds (see [Bea83]). The IHS manifolds are also known as hyperkähler
and irreducible symplectic manifolds, in dimension 2 they are called K3 surface.

Moduli spaces of polarized K3 surfaces are a historically old subject, studied by
the classical Italian geometers. Mukai extended the classical constructions and proved
unirationality results for the moduli spaces M2d parametrising polarized K3 surfaces
of degree 2d for many cases with d  19 see [Muk92], [Muk06], [Muk12]. On the other
hand it was proven in [GHS07] that M2d is of general type for d > 61 and some smaller
values. Note that when the Kodaria dimension of such moduli space is positive the
generic element of such moduli space is believed to be non-constructible.

There are only five known descriptions of the moduli space of higher dimensional
IHS manifolds (all these examples are deformations equivalent to K3[n]). In dimension
four we have the following unirational moduli spaces:

• double EPW sextics with Beauville-Bogomolov degree q = 2 (see [O’G06]),
• Fano scheme of lines on four dimensional cubic hypersurfaces with q = 6 (see
[BD85]),

• V SP (F, 10) where F define a cubic hypersurface of dimension 4 with q = 38
(see [IR01]),

• zero locus of a section of a vector bundle on G(6, 10) with q = 22 described in
[DV10].

Moreover, there is only one more known family in dimension 8 with q = 2 studied in
[LLSvS15]. Analogously to the case of K3 surfaces there are results in [GHS10] about
the Kodaira dimension of the moduli spaces of polarized IHS fourfolds of K3[2]-type:
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In particular it is proven that such moduli spaces with split polarization of Beauville-
Bogomolov degree q � 24 are of general type (and for q = 18, 22 are of positive Kodaira
dimension). We expect that the number of constructible families in higher dimension
becomes small.

According to O’Grady [O’G06], the 20-dimensional family of natural double covers
of special sextic hypersurfaces in P5 (called EPW sextics) gives a maximal dimensional
family of polarized IHS fourfold deformation equivalent to the Hilbert scheme of two
points on a K3-surface (this is a maximal dimensional family since b2(S[2]) = 23 for
S a K3-surface). Our aim is to perform a construction parallel to that of O’Grady to
obtain a unirational 20-dimensional family (also of maximal dimension) of polarized
IHS sixfolds deformation equivalent to the Hilbert scheme of three points on a K3-
surface (i.e. of K3[3] type). The elements of this family are natural double covers
of special codimension 3 subvarieties of the Grassmannian G(3, 6) that we call EPW
cubes.

Let us be more precise. Let W be a complex 6-dimensional vector space. We fix an
isomorphism j : ^6W ! C and the skew symmetric form

(1.1) ⌘ : ^3W ⇥ ^3W ! C, (u, v) 7! j(u ^ v).

We denote by LG
⌘

(10,^3W ) the variety of 10-dimensional Lagrangian subspaces of
^3W with respect to ⌘. For any 3-dimensional subspace U ⇢ W , the 10-dimensional
subspace

T
U

:= ^2U ^W ⇢ ^3W

belongs to LG
⌘

(10,^3W ), and P(T
U

) is the projective tangent space to

G(3,W ) ⇢ P(^3W )

at [U ].
For any [A] 2 LG

⌘

(10,^3W ) and k 2 N, we consider the following Lagrangian
degeneracy locus, with natural scheme structure (see [PR97]),

DA

k

= {[U ] 2 G(3,W ) | dimA \ T
U

� k} ⇢ G(3,W ).

For the fixed [A] 2 LG
⌘

(10,^3W ) we call the scheme DA

2 an EPW cube. We prove that
if A is generic then DA

2 is a sixfold singular only along the threefold DA

3 and that DA

4
is empty. Moreover, DA

3 is smooth such that the singularities of DA

2 are transversal
1
2(1, 1, 1) singularities along DA

3 .
Before we state our main theorem we shall need some more notation. The projec-

tivized representation ^3 of PGL(W ) on ^3W splits P19 = P(^3W ) into a disjoint
union of 4 orbits

P19 = (P19 \W ) [ (F \ ⌦) [ (⌦ \G(3,W )) [G(3,W ),

where G(3,W ) ⇢ ⌦ ⇢ F ⇢ P19, dim(⌦) = 14, Sing(⌦) = G(3,W ), dim(F ) = 18,
Sing(F ) = ⌦, see [Don77]. We call the invariant sets G,⌦, F and P19 the (projective)
orbits of ^3 for PGL(6). See [Kap14, Appendix] for some results about the geometry
of ⌦ and its relations with EPW sextics. For any nonzero vector w 2 W , denote by

F[w] = hwi ^ (^2W )

the 10-dimensional subspace of ^3W , such that
[

[w]2P(W )

P(F[w]) = ⌦ ⇢ P(^3W ).
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We denote, after O’Grady [O’G13],

⌃ = {[A] 2 LG
⌘

(10,^3W )| P(A) \G(3,W ) 6= ;}
and

� = {[A] 2 LG
⌘

(10,^3W )| 9w 2 W : dimA \ F[w] � 3}.
We also consider a third subset

� = {A 2 LG
⌘

(10,^3W )| 9[U ] 2 G(3,W ) : dimA \ T
U

� 4}.
Denote by

LG1
⌘

(10,^3W ) := LG
⌘

(10,^3W ) \ (⌃ [ �).

All three subsets ⌃, �, � are divisors (see [O’G13] and Lemma 3.6) and LG1
⌘

(10,^3W )
is hence a dense open subset of LG

⌘

(10,^3W ). Our main result is the following:

Theorem 1.1. If [A] 2 LG1
⌘

(10,^3W ), then there exists a natural double cover Y
A

of

the EPW cube DA

2 branched along its singular locus DA

3 such that Y
A

is an IHS sixfold

of K3[3]-type with polarization of Beauville-Bogomolov degree q = 4 and divisibility
2. In particular, the moduli space of polarized IHS sixfolds of K3[3]-type, Beauville-
Bogomolov degree 4 and divisibility 2 is unirational.

We prove the theorem in Section 5 at the very end of the paper. The plan of the
proof is the following: In Proposition 3.1 we prove that for [A] 2 LG1

⌘

(10,^3W ), the

variety DA

2 is singular only along the locus DA

3 and that it admits a smooth double
cover Y

A

! DA

2 branched along DA

3 with a trivial canonical class. The proof of the
Proposition is based on a general study of Lagrangian degeneracy loci contained in
Section 2. By globalizing the construction of the double cover to the whole a�ne
variety LG1

⌘

(10,^3W ) we obtain a smooth family

Y ! LG1
⌘

(10,^3W )

with fibers Y[A] = Y
A

. Note that the family Y is naturally a family of polarized varieties
with the polarization given by the divisors defining the double cover.

In Lemma 3.7 we prove that �\(�[⌃) is nonempty. Following [O’G13, Section 4.1],
we associate to a general [A0] 2 �\ (�[⌃) a K3 surface S

A0 . Then, in Proposition 4.1,

we prove that there exists a rational 2 : 1 map from the Hilbert scheme S[3]
A0

of length 3

subschemes on S
A0 to the EPW cube DA0

2 . We infer in Section 5 that in this case the

sixfold Y
A0 is birational to S[3]

A0
. Together with the fact that Y

A0 is smooth, irreducible
and has trivial canonical class, this proves that Y

A0 is IHS.
Since flat deformations of IHS manifolds are still IHS, the family Y is a family of

smooth IHS sixfolds. The fact that the obtained IHS manifolds are of K3[3]-type is a
straightforward consequence of Huybrechts theorem [Huy99, Thm. 4.6].

During the proof of Theorem 1.1 we retrieve also some information on the constructed
varieties. We prove in Section 2.3 that the polarization ⇠ giving the double cover
Y
A

! DA

2 has Beauville-Bogomolov degree q(⇠) = 4 and is primitive. Moreover, the
degree of an EPW cube DA

2 ⇢ G(3, 6) ⇢ P19 is 480.
Note that the coarse moduli space M of polarized IHS sixfolds of K3[3]-type and

Beauville-Bogomolov degree 4 has two components distinguished by divisibility. We
conclude the paper by proving that the image of the moduli map LG1

⌘

(10,^3W ) !
M defined by Y is a 20 dimensional open and dense subset of the component of M
corresponding to divisibility 2 (see Proposition 5.3).
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2. Lagrangian degeneracy loci

In this section we study resolutions of Lagrangian degeneracy loci. Let us start with
fixing some notation and definitions. We fix a vector space W2n of dimension 2n and
a symplectic form ! 2 ^2W ⇤

2n. Let X be a smooth manifold and let W = W2n ⇥ O
X

be the trivial bundle with fiber W2n on X equipped with a nondegenerate symplectic
form !̃ induced on each fiber by !. Consider J ⇢ W a Lagrangian vector subbundle
i.e. a subbundle of rank n whose fibers are isotropic with respect to !̃. Let A ⇢ W2n

be a Lagrangian vector subspace inducing a trivial subbundle A ⇢ W. For each k 2 N
we define the set

DA

k

= {x 2 X| dim(J
x

\A
x

) � k} ⇢ X

where J
x

and A
x

denote the fibers of the bundles J and A as subspaces in the fiber
W

x

. Let us now define LG
!

(n,W2n) to be the Lagrangian Grassmannian parametrizing
all subspaces of W2n which are Lagrangian with respect to !. Then J defines a map
◆ : X ! LG

!

(n,W2n) in such a way that J = ◆⇤L where L denotes the tautological
bundle on the Lagrangian Grassmannian LG

!

(n,W2n). Moreover, similarly as on X,
we can define

DA

k

= {[L] 2 LG
!

(n,W2n)| dim(L \A[L]) � k} ⇢ LG
!

(n,W2n),

and DA

k

admits a natural scheme structure as a degeneracy locus. We then have DA

k

=
◆�1DA

k

, i.e. the scheme structure on DA

k

is defined by the inverse image of the ideal
sheaf of DA

k

[Har77, p.163].

2.1. Resolution of DA

k

. For each k 2 N, let G(k,A) be the Grassmannian of k-
dimensional subspaces of A and let

D̃A

k

= {([L], [U ]) 2 LG
!

(n,W2n)⇥G(k,A)|L � U}.
By [PR97], D̃A

k

is a resolution of DA

k

. We shall describe the above variety more precisely.
First of all we have the following incidence described more generally in [PR97]:

D̃A

k

DA

k

G(k,A)

� ⇡

The projection � is clearly birational, whereas ⇡ is a fibration with fibers isomorphic
to a Lagrangian Grassmannian LG(n � k, 2n � 2k). In particular D̃A

k

is a smooth
manifold of Picard number two with Picard group generated by H, the pullback of the
hyperplane section of LG(n,W2n) in its Plücker embedding, and R, the pullback of the
hyperplane section of G(k,A) in its Plücker embedding. Denote by Q the tautological
bundle on G(k,A) seen as a subbundle of the trivial symplectic bundle W2n ⌦O

G(k,A).

Consider the subbundle Q? ⇢ W2n ⌦ O
G(k,A) perpendicular to Q with respect the

symplectic form. The following was observed in [PR97].
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Lemma 2.1. The variety D̃A

k

is isomorphic to the Lagrangian bundle

F := LG(n� k,Q?/Q).

Of course the tautological Lagrangian subbundle on LG(n� k,Q?/Q) can be iden-
tified with the bundle �⇤L/⇡⇤Q =: W. In particular, we have c1(W) = �⇤c1(L) �
⇡⇤c1(Q) = R�H.

Lemma 2.2. The relative tangent bundle T
⇡

of ⇡ : F ! G(k,A) is the bundle S2(W_).

Proof. This can be seen by globalizing the construction of the tangent space of the
Lagrangian Grassmannian described for example in [Muk10]. ⇤

Lemma 2.3. The canonical class of D̃A

k

is �(n+ 1� k)H � (k � 1)R.

Proof. We use the exact sequence

0 ! T
⇡

! TF ! ⇡⇤T
G(k,A) ! 0.

Now W_ has rank n� k, so

c1(T⇡) = c1(S
2(W_)) = (n+ 1� k)c1(W_) = (n+ 1� k)(H �R)

while ⇡⇤c1(T
G(k,A)) = nR. Hence KF = �c1(TF ) = �(n+ 1� k)H � (k � 1)R. ⇤

Lemma 2.4. The variety DA

1 is a hyperplane section of LG
!

(n,W2n).

Proof. Indeed DA

1 is the intersection of the codimension one Schubert cycle on the
Grassmannian G(n, 2n) with the Lagrangian Grassmannian, hence a hyperplane section
of the Lagrangian Grassmannian. ⇤

Let us denote by E the exceptional divisor of �.

Lemma 2.5. For k = 2 we have: [E] = [H]� 2[R].

Proof. It is clear that [E] = a[H] + b[R] for some a, b 2 Z. Let us now consider the
restriction of E to a fiber of ⇡ i.e. we fix V2 ⇢ A a vector space of dimension 2 and
consider LG(n� 2, V ?

2 /V2). Since E = ��1DA

3 we have

E \ ⇡�1[V2] = {[L] 2 LG(n� 2, V ?
2 /V2)| dim(L/V2 \A/V2) � 1}.

It is hence a divisor of type DA/V2
1 which is a hyperplane section of the fiber by Lemma

2.4. It follows that a = 1.
To compute the coe�cient at [R] we fix a subspace V

n�2 of dimension n � 2 in A
and consider the Schubert cycle

�
Vn�2 = {[U ] 2 G(2, A)| dim(U \ V

n�2) � 1}.
The class [�

Vn�2 ] in the Chow group of G(2, A) is then the class of a hyperplane section.
We now describe �⇤⇡⇤(�Vn�2) as the class of the Schubert cycle �

n�2,n on LG(n, 2n)
defined by

�
n�2,n = {[L] 2 LG(n, 2n)| dim(L \ V

n�2) � 1, dim(L \A) � 2}.
By [PR97, Theorem 2.1] we have

[�
n�2,n] = c1(L_)c3(L_)� 2c4(L_).

Moreover, from the same formula [PR97, Theorem 2.1] we have:

[DA

2 ] = c1(L_)c2(L_)� 2c3(L_).
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In terms of intersection on D̃A

2 this gives

H
n(n+1)

2 �3 \ [D̃A

2 ] = c1(L_)
n(n+1)

2 �2c2(L_)� 2c1(L_)
n(n+1)

2 �3c3(L_)

and

H
n(n+1)

2 �4 ·R \ [D̃A

2 ] = c1(L_)
n(n+1)

2 �3c3(L_)� 2c1(L_)
n(n+1)

2 �4c4(L_).

Since we know that E is contracted by the resolution to DA

3 we also have E·H
n(n+1)

2 �4 =
0. We can now compute b:

0 =E ·H
n(n+1)

2 �4 = (H + bR) ·H
n(n+1)

2 �4 = H
n(n+1)

2 �3 + bH
n(n+1)

2 �4 ·R =(2.1)

c1(L_)
n(n+1)

2 �4(c1(L_)2c2(L_) + (b� 2)c1(L_)c3(L_)� 2bc4(L_)).(2.2)

Now, using the theorem of Hiller-Boe ([Pra91, Theorem 6.4]) on relations in the Chow
ring of the Lagrangian Grassmannian we get

c1(L_)2 = 2c2(L_) and c2(L_)2 = 2(c3(L_)c1(L_)� c4(L_)).

Substituting in 2.1 we get:

0 = (b+ 2) deg(c1(L_)c3(L_)� 2c4(L_)) = (b+ 2) deg �
n�2,n.

It follows that b = �2.
⇤

2.2. The embedding of G(3,W ) into LG
⌘

(10,^3W ). Let W be a 6-dimensional
vector space. Let G = G(3,W ) ⇢ P(^3W ) be the Grassmannian of 3-dimensional
subspaces in W in its Plücker embedding. Now, recall for each [U ] 2 G,

T
U

= ^2U ^W ⇢ ^3W.

P(T
U

) is tangent to G(3,W ) at [U ]. Let T be the corresponding vector subbundle of
^3W ⌦O

G

. Let A be a 10-dimensional subspace of ^3W isotropic with respect to the
symplectic form ⌘ defined by (1.1) and such that P(A) \G(3,W ) = ;. Recall that for
k = 1, 2, 3, 4 we defined

DA

k

= {[U ] 2 G| dim(T
U

\A) � k} ⇢ G.

Observe that T is a Lagrangian subbundle of ^3W ⌦O
G

with respect to the 2-form
⌘. It follows that we are in the general situation described at the beginning of Section
2, with n = 10, W20 = ^3W , X = G, J = T and A = A. Then T defines a map

◆ : G(3,W ) ! LG
⌘

(10,^3W ), [U ] 7! [T
U

].

We denote by C
U

:= P(T
U

) \ G(3,W ) the intersection of G(3,W ) with its projective
tangent space [U ]. Then C

U

is linearly isomorphic to a cone over P2⇥P2 with vertex [U ].
The quadrics containing the cone C

U

plays in this situation a similar role in the local
analyze of the singularities of DA

k

as the Plücker quadrics containing the Grassmanian
P(F[w]) \G(3,W ) in [O’G13]; this will be made more precise in Lemma 2.7.

We aim at proving the following:

Proposition 2.6. Let A 2 LG
⌘

(10,^3W ) such that P(A) \G(3,W ) = ;.
The map ◆ is an embedding and ◆(G(3,W )) meets transversely all loci DA

k

\DA

k+1 for

k = 1, 2, 3. In particular each DA

k

is of expected dimension.
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For the proof we shall adapt the idea of [O’G13] to our context, that we first need
to introduce. Let us describe ◆ more precisely locally around a chosen point [U0] 2
G(3,W ). For this, we choose a basis v1, . . . , v6 for W such that U0 = hv1, v2, v3i and
define U1 = hv4, v5, v6i. For any [U ] 2 G(3,W ) we have T

U

= ^2U ^W , so T
U0 , TU1

are two Lagrangian spaces that intersect only at 0; T
U0 \ T

U1 = 0. By appropriate
choice of v4, v5, v6 we can also assume that T

U1 \A = 0.
Let

V = {[L] 2 LG
⌘

(10,^3W )|L \ T
U1 = 0}.

The decomposition ^3W = T
U0�T

U1 into Lagrangian subspaces, and the isomorphism
T
U1 ! T_

U0
induced by ⌘, allows us to view a Lagrangian space L in V as the graph of

a symmetric linear map Q
L

: T
U0 ! T

U1 = T_
U0
. Let q

L

2 Sym2T_
U0

be the quadratic
form corresponding to Q

L

. The map [L] 7! q
L

defines an isomorphism V ! Sym2T_
U0
.

Consider the open neighbourhood

U = {[U ] 2 G(3,W )|T
U

\ T
U1 = 0}

of [U0] in G(3,W ). For [U ] 2 U we denote by Q
U

:= Q
TU and q

U

:= q
TU the symmetric

linear map and the quadratic form corresponding to the Lagrangian space T
U

.
We shall describe q

U

in local coordinates. Observe that for any [U ] 2 G(3,W ),

T
U

\ T
U1 = 0 $ U \ U1 = 0

and that any such subspace U is the graph of a linear map �
U

: U0 ! U1. In particular,
there is an isomorphism:

⇢ : U ! Hom(U0, U1); [U ] 7! �
U

whose inverse is the map

↵ 7! [U
↵

] := [(v1 + ↵(v1)) ^ (v2 + ↵(v2)) ^ (v3 + ↵(v3))].

In the given basis (v1, v2, v3), (v4, v5, v6) for U0 and U1 we let B
U

= (b
i,j

)
i,j2{1...3} be the

matrix of the linear map �
U

. In the dual basis we let (m0,M), withM = (m
i,j

)
i,j2{1...3},

be the coordinates in

T_
U0

= (^3U0 � ^2U0 ⌦ U1)_ = (^3U0 �Hom(U0, U1))_

Note, that under our identification the map ◆ : G(3,W ) ! LG(10, wedge3W ) restricted
to U is the map [U ] 7! q

U

, which justifies our slight abuse of notation in the following.

Lemma 2.7. In the above coordinates, the map

◆ : U 3 [U ] 7! q
U

:= q
TU 2 Sym2T_

U0

is defined by

(2.3) q
U

(m0,M) =
X

i,j2{1...3}

b
i,j

M i,j +m0

X

i,j2{1...3}

Bi,j

U

m
i,j

+m2
0 detBU

,

where M i,j, Bi,j

U

are the entries of the matrices adjoint to M and B
U

.

Proof. We write in coordinates the map ^3U0 � ^2U0 ⌦ U1 ! ^3U1 � ^2U1 ⌦ U0

whose graph is ^3U �^2U ⌦ U1 where U is the graph of the map U0 ! U1 given by
the matrix B

U

. ⇤
Let now Q

A

be the symmetric map T
U0 ! T

U1 = T_
U0

whose graph is A and q
A

the
corresponding quadratic form. In this way

DA

l

\ U = {[U ] 2 U| dimT
U

\A) � l} = {[U ] 2 U| rk(Q
U

�Q
A

)  10� l},
7



hence DA

l

is locally defined by the vanishing of the (11 � l) ⇥ (11 � l) minors of the
10⇥ 10 matrix with entries being polynomials in b

i,j

.
First we show that the space of quadrics that define C

U

, surjects onto the space of
quadrics on linear subspaces in P(T

U

).

Lemma 2.8. If P ⇢ P(T
U

) \G(3, 6) is a linear subspace of dimension at most 2, then
the restriction map r

P

: H0(P(T
U

), ICU (2)) ! H0(P,O
P

(2)) is surjective.

Proof. We may restrict to the case when P is a plane. Since C
U

⇢ P(T
U

)) \G(3, 6) is
projectively equivalent to the cone over P2 ⇥ P2 in its Segre embedding, it su�ces to
show that if P ⇢ P8 is a plane that do not intersect P2 ⇥ P2 ⇢ P8, then the Cremona
transformation Cr on P8 defined by the quadrics containing P2⇥P2 maps P to a linearly
normal Veronese surface. Note that the ideal of P2⇥P2 ⇢ P8 is defined 2⇥ 2 minors of
a 3⇥3 matrix with linear forms in P8 and its secant by the determinant of this matrix.
Since the first syzygies between the generators of this ideal are generated by linear ones
we infer from [AR04, Proposition 3.1] that they define a birational map. Moreover this
Cremona transformation contracts the secant determinantal cubic hypersurface V3, to
a P2 ⇥ P2, so the the inverse Cremona is of the same kind. Furthermore, the fibers of
the map V3 ! P2 ⇥ P2 are 3-dimensional linear spaces spanned by quadric surfaces in
P2 ⇥ P2. Now, by assumption, P does not intersect P2 ⇥ P2, so the restriction Cr |

P

is a regular, hence finite, morphism. Since the fibers of the Cremona transformation
are linear, P intersects each fiber in at most a single point, so the restriction Cr |

P

is
an isomorphism. Thus, if Cr(P ) is not linearly normal, the linear span hCr(P )i is a
P4, being a smooth projected Veronese surface. Assume this is the case. Then Cr(P )
is not contained in any quadric. Since the quadrics that define the inverse Cremona,
map Cr(P ) to the plane P , these quadrics form only a net, when restricted to the
4-dimensional space hCr(P )i. In fact the complement of P2 ⇥ P2 \ hCr(P )i in hCr(P )i
is mapped to P by the inverse Cremona transformation. Therefore hCr(P )i must be
contained in the cubic hypersurface that is contracted by this inverse Cremona. Since
this hypersurface is contracted to the original P2 ⇥ P2, we infer that P is contained in
P2 ⇥ P2. This contradicts our assumption and concludes our proof. ⇤

Lemma 2.9. Let K = A\T
U0 = kerQ

A

⇢ T
U0 and assume that k = dimK  3. Then

for any l  k the tangent cone Cl

A,U0
of DA

l

\ U at U0 is linearly isomorphic to a cone

over the corank l locus of quadrics in P(H0(P(K),OP(K)(2))).

Proof. We follow the idea of [O’G10, Proposition 1.9]. If we choose a basis ⇤ of T_
U0
,

the symmetric linear map Q
U

is defined by a symmetric matrix M⇤(B
U

) with entries
being polynomials in (b

i,j

)
i,j2{1...3}.

The linear summands of each entry in M⇤(B
U

) form a matrix that we denote by
N⇤(B

U

). Since Q0 = 0, the entries of M⇤(B
U

) have no nonzero constant terms.
Moreover, by using Lemma 2.7 and ⇤0 = (m0,M), we see that the map U 3 U 7! q0

U

2
Sym2T_

U0
, where q0

U

is the quadratic form corresponding to the symmetric map defined

by the matrix N⇤0(B
U

), maps U linearly onto the linear system of quadrics containing
the cone C

U0 . Of course, this surjection is independent of the choice of basis.
We now choose a basis ⇤ in T

U0 in which Q
A

is represented by a diagonal matrix
R

k

= diag{0 . . . 0, 1 . . . 1} with k zeros in the diagonal. Then

DA

l

\ U = {[U ] 2 U| dim(T
U

\A) � l} = {[U ] 2 U| dimker(Q
U

�Q
A

) � l}
= {[U ] 2 U| rank(M⇤(B

U

)�R
k

)  10� l}.
8



Hence DA

l

is defined in coordinates (b
i,j

)
i,j2{1...3} on U by (11� l)⇥ (11� l) minors of

the matrix M⇤(B
U

) � R
k

. Furthermore, since [U0] is the point 0 in our coordinates
(b

i,j

)
i,j2{1...3}, the tangent cone to DA

l

\ U at [U0] is defined by the initial terms of the

(11� l)⇥ (11� l) minors of M⇤(B
U

)�R
k

. Note that we can write

M⇤(B
U

)�R
k

= �R
k

+N⇤(B
U

) + Z(B
U

),

where the entries of the matrix Z(B
U

) are polynomials with no linear or constant terms.
We illustrate this decomposition as follows.

0

BBBBBBBBBBB@

N⇤
k + Zk

N⇤
1,k+1 + Z⇤

1,k+1 . . . N⇤
1,10 + Z⇤

1,10

.

.

.
. . .

.

.

.
N⇤

k,k+1 + Z⇤
k,k+1 . . . N⇤

k,10 + Z⇤
k,10

N⇤
k+1,1 + Z⇤

k+1,1 . . . N⇤
k+1,k + Z⇤

k+1,k

.

.

.
. . .

.

.

.
N⇤

10,1 + Z⇤
10,1 . . . N⇤

10,k + Z⇤
10,k

�1 + N⇤
k+1,k+1 + Z⇤

k+1,k+1 . . . N⇤
k+1,10 + Z⇤

k+1,10

.

.

.
. . .

.

.

.
N⇤

10,k+1 + Z⇤
10,k+1 . . . �1 + N⇤

10,10 + Z⇤
10,10

1

CCCCCCCCCCCA

Let � be an (11� l)⇥ (11� l) minor of M⇤(B
U

)�R
k

and consider its decomposition
� = �0 + · · · + �

r

into homogeneous parts �
d

of degree d. Observe that �
d

= 0 for
d  k�l, moreover �

k�l+1 can be nonzero only if the sub matrix associated to the minor
� contains all nonzero entries of R

k

. In the latter case �
k�l+1 is a (k+1� l)⇥(k+1� l)

minor of the k⇥k upper left corner sub matrix N⇤
k (BU

) of the matrix N⇤(B
U

). Let us
now denote by q0

U

the quadric corresponding to the matrix N⇤(B
U

) and by ◆N the map
U 7! q0

U

. Then, by changing � we get that the tangent cone of DA

l

\U is contained in:

Ĉl

A,U0
:= {[U ] 2 U| rank(N⇤

k (BU

))  k � l} = {[U ] 2 U| rank(q0
U

|
K

)  k � l}.
The latter is the preimage by r

K

� ◆N of the corank l locus in the projective space of
quadrics P(H0(P(K),OP(K)(2))). By Lemma 2.8, we have seen that r

K

� ◆N is a linear

surjection. So we conclude that Ĉl

A,U0
is a cone over the corank l locus of quadrics in

P(H0(P(K),OP(K)(2))) with vertex a linear space of dimension 10� k(k+1)
2 . It follows

that Ĉl

A,U0
is an irreducible variety of codimension l(l+1)

2 equal to the codimension of

DA

l

. Thus we have equality Cl

A,U0
= Ĉl

A,U0
which ends the proof. ⇤

Corollary 2.10. If A is a Lagrangian space in ^3W , such that P(A) doesn’t meet

G(3,W ), then the variety DA

l

is smooth of the expected codimension l(l+1)
2 outside

DA

l+1. Moreover, if l = 2 and dimA\T
U0 = 3, i.e. [U0] is a point in DA

3 \DA

4 , then the

tangent cone C2
A,U0

is a cone over the Veronese surface in P5 centered in the tangent

space of DA

3 .

Proof of Proposition 2.6. It is clear from Lemma 2.7 that ◆ is a local isomorphism into
its image, and by Corollary 2.10, the subscheme Dk

A

= ◆�1(◆(G(3,W ))\Dk

A

) is smooth
outside Dk+1

A

, so ◆(G(3,W ) meets the degeneracy loci transversally. ⇤

2.3. Invariants. We shall compute the classes of the Lagrangian degeneracy lociDA

k

⇢
G(3,W ) in the Chow ring of G(3,W ). We consider the embedding ◆ : G(3,W ) !
LG

⌘

(10,^3W ) defined by the bundle of Lagrangian subspaces T onG(3,W ). According
to [PR97, Theorem 2.1] the fundamental classes of the Lagrangian degeneracy loci DA

k

are
[DA

1 ] = [c1(T _) \G(3,W )], [DA

2 ] = [(c2c1 � 2c3)(T _) \G(3,W )]

and
[DA

3 ] = [(c1c2c3 � 2c21c4 + 2c2c4 + 2c1c5 � 2c23)(T _) \G(3,W )].
9



The P9-bundle P(T ) is the projective tangent bundle on G(3,W ). So T _ fits into an
exact sequence

0 ! ⌦
G(3,W )(1) ! T _ ! O

G(3,W )(1) ! 0

and we get
degDA

1 = 168, degDA

2 = 480, degDA

3 = 720

Remark 2.11. This may be compared with the degree of the line bundle 2H � 3E
on S[3], where S is a K3 surface of degree 10, H is the pullback of the line bundle
of degree 10 on S, and E is the unique divisor class such that the divisor of non-
reduced subschemes in S[3] is equivalent to 2E. The degree, i.e. the value of the
Beauville Bogomolov form is q(2H � 3E) = 4, and the degree and the Euler-Poincare
characteristic of the line bundle is

(2H � 3E)6 = 15q(2H � 3E)3 = 960 and �(2H � 3E) = 10.

So if the map defined by |2H � 3E| is a morphism of degree 2, the image would have
degree 480, like DA

2 .

In the section 4, we show that S[3] for a general K3-surface S of degree 10, admits
a rational double cover of a degeneracy locus DA

2 . However that double cover is not a
morphism.

3. The double cover of an EPW cube

Proposition 3.1. Let [A] 2 LG
⌘

(10,^3W ). If P(A) \G(3,W ) = ; and DA

4 = ;, then
DA

2 admits a double cover f : Y
A

! DA

2 branched over DA

3 with Y
A

a smooth irreducible
manifold having trivial canonical class.

Before we pass to the construction of the double cover let us observe the following.

Lemma 3.2. Under the assumptions of Proposition 3.1 the variety DA

2 is integral.

Proof. We know that DA

2 is of expected dimension. Observe now that by Corollary
2.10 the variety DA

2 is irreducible if and only if it is connected. To prove connectedness
we perform a computation in the Chow ring of the Grassmannian G(3,W ) showing
that the class [DA

2 ] does not decompose into a sum of nontrivial e↵ective classes in the
Chow group A3(G(3,W )) whose intersection is the zero class in A6(G(3,W )). More
precisely we compute:

[DA

2 ] = 16h3 � 12hs2 + 12s3

where h is the hyperplane class on G(3,W ), s2 and s3 are the Chern classes of the
tautological bundle on G(3,W ). We then solve in integer coordinates a, b, c 2 Z the
equation

(ah3 � bs2 + cs3)((16� a)h3 � (12� b)s2 + (12� c)s3) = 0

in the Chow group A6(G(3,W )) which is generated by: s32, h
3s1s2, s23. Multiplying out

the equation in the Chow ring and extracting coe�cients at the generators we get a
system of three quadratic diophantine equations in a, b, c:

(3.1)

8
><

>:

�5a2 + 4ab� b2 + 56a� 20b = 0

�6a2 + 8ab� 2b2 � 4ac+ 2bc+ 72a� 52b+ 20c = 0

6a2 � 6ab+ b2 + 2ac� c2 � 72a+ 36b� 4c = 0

The only integer solutions are: (0, 0, 0) and (16, 12, 12). This ends the proof. ⇤
10



The plan of the construction of the double cover in Proposition 3.1 is the following.
We consider the resolution D̃A

2 ! DA

2 with exceptional divisor E. We prove that E is a
smooth even divisor, and hence that there is a smooth double cover Ỹ ! D̃A

2 branched
over E. Finally, we contract the branch divisor of the double cover using a suitable
multiple of the pullback of a hyperplane class on DA

2 by the resolution and the double
cover.

Thus, we start by defining the incidences

D̃A

2 = {([U ], [U 0]) 2 G(3,W )⇥G(2, A)| T
U

� U 0},

and

D̃A

2 = {([L], [U 0]) 2 LG
⌘

(10,^3W )⇥G(2, A)| L � U 0}.
They fit in the following diagram:

G(3,W ) LG
!

(10,^3W )

DA

2 DA

2

D̃A

2 D̃A

2

◆

◆|
DA
2

✓ ✓
↵

◆̃

�

Lemma 3.3. Under the assumptions of Proposition 3.1 the variety D̃A

2 as well as
the exceptional locus E of the map ↵ are smooth. In particular ↵ is a resolution of
singularities of DA

2 .

Proof. Since we know that DA

4 = ;, the resolution ↵ : D̃A

2 ! DA

2 is just the blow up of
DA

2 along DA

3 . Now, D̃
A

2 \E is isomorphic to DA

2 \DA

3 , so, by Corollary 2.10, we deduce
that D̃A

2 is smooth outside E. Let p 2 E ⇢ D̃A

2 . Then ↵(p) 2 DA

3 . Take P1,P2,P3 to
be three general hyperplanes passing through ↵(p). Consider ZP = DA

2 \P1 \P2 \P3

and its strict transform Z̃P ⇢ D̃A

2 . We have the following diagram:

Z̃P D̃A

2

ZP DA

2

↵P ↵

The map ↵P : Z̃P ! ZP is the blow up of ZP in DA

3 \ P1 \ P2 \ P3, which by
Corollary 2.10 is a finite set of isolated points. By the assumption on P1,P2,P3 the
strict transform Z̃P contains the whole fiber ↵�1(p) and hence also p 2 Z̃P. Let P̃

i

be the strict transform of P
i

for i = 1, 2, 3. Then P̃

i

is a Cartier divisor on D̃A

2 and
Z̃P = P̃1 \ P̃2 \ P̃3 is a complete intersection of Cartier divisors on D̃A

2 . Now, from
Corollary 2.10, the exceptional divisor EP = E \ Z̃P of ↵P is isomorphic to a finite
union of disjoint (P2)0s, one for each point in DA

3 \ P1 \ P2 \ P3. But EP is itself a
Cartier divisor on Z̃P by general properties of blow up. Therefore Z̃P is smooth. We
conclude that D̃A

2 is smooth at p and similarly, that E is smooth at p. ⇤

We compute the first Chern class of the normal bundle of the embedding ◆̃ : D̃A

2 !
D̃A

2 .
11



Lemma 3.4.

c1(◆̃
⇤N

◆̃(D̃A
2 )|D̃A

2
) = c1(↵

⇤◆⇤N
◆(G(3,W ))|LG⌘(10,^3

W )) = 38h,

where h is the pullback via the resolution ↵ of the restriction of the hyperplane class on
G(3,W ) to DA

2 .

Proof. From the transversality (Proposition 2.6) we have

◆̃⇤N
◆̃(D̃A

2 )|D̃A
2 ) = ↵⇤◆⇤N

◆(G(3,W ))|LG⌘(10,^3
W ).

which gives the first equality.
To get the second, consider the exact sequence:

0 ! T
G(3,W ) ! ◆⇤(T

LG⌘(10,^3
W )) ! ◆⇤(N

◆(G(3,W ))|LG⌘(10,^3
W )) ! 0,

and observe that ◆⇤(T
LG⌘(10,^3

W )) = ◆⇤(S2L_) = S2(◆⇤L_) = S2T _, where L denotes,

as before, the tautological bundle on the Lagrangian Grassmannian LG
⌘

(10,^3W ). We
obtain

c1(↵
⇤◆⇤N

◆(G(3,W ))|LG⌘(10,^3
W )) = �11↵⇤c1(T )� 6h.

Now, from

0 ! O
G(3,W )(�1) ! T ! T

G(3,W )(�1) ! 0

we obtain ↵⇤c1(T ) = �4h, which proves the lemma. ⇤

Note that in our notation we have ◆̃⇤H = ◆̃⇤�⇤c1(L_) = ↵⇤◆⇤c1(L_) = ↵⇤c1(T _) = 4h.
We aim now at constructing a double covering of D̃A

2 branched along E. It is enough
to prove that E is an even divisor. This follows from the exact sequence:

0 ! T
D̃

A
2
! ◆̃⇤TD̃A

2
! ◆̃⇤N

◆̃(D̃A
2 )|D̃A

2
! 0,

and Lemma 2.3. Indeed, from them we infer

c1(T
D̃

A
2
) = ◆̃⇤(9H +R)� 38h = ◆̃⇤(R)� 2h,

which, by Lemma 2.5, means E = E\ D̃A

2 = ◆̃⇤(H�2R) = 2K
D̃

A
2
. By Lemma 3.3 there

hence exists a smooth double cover f̃ : Ỹ ! D̃A

2 branched along the exceptional locus
E of the resolution ↵. Moreover, from the adjunction formula for double covers we get
K

Ỹ

= f̃�1(E) =: Ẽ.

We now need to contract Ẽ = f̃�1(E) on Ỹ . For that, with slight abuse of notation,
we denote by h the class of the hyperplane section on DA

2 ⇢ G(3,W ). Then |f̃⇤↵⇤h| is
a globally generated linear system whose associated morphism defines ↵ � f̃ and hence
contracts E to a threefold and is 2:1 on Ỹ \ f̃�1(E). It follows by standard arguments
(for example applying Stein factorization and [Har70, Proposition 4.4]) that there exists
a number n such that the system |nf̃⇤↵⇤h| defines a morphism ↵̃ : Ỹ ! Y which is a
birational morphism contracting exactly Ẽ to a threefold Z and such that its image Y
is normal. We then have the following diagram

Ỹ D̃A

2

Y DA

2

↵̃

f̃

↵

f

in which Y admits a 2:1 map f : Y ! DA

2 branched along DA

3 .
12



Proof of Proposition 3.1. We have constructed Y , a normal variety admitting a 2:1
map f : Y ! DA

2 branched along DA

3 . Clearly K
Ỹ

= Ẽ implies K
Y

= 0. It hence

remains to prove that Y is smooth. Since ↵̃ is a contraction that contracts only Ẽ it is
clear that Y is smooth outside of Z = ↵̃(Ẽ). Let now p 2 Z and let p0 = f(p). We then
choose three general hypersurfaces P1,P2,P3 of degree n in P(^3W ) passing through
p0. Consider ZP = DA

2 \ P1 \ P2 \ P3 and Z 0
P = DA

3 \ P1 \ P2 \ P3. Then Z 0
P is a

finite set of points that includes p0. Consider the following natural restriction of the
above diagram:

ỸP Z̃P

YP ZP

↵̃P

f̃P

↵P

fP

Here ↵P = ↵|
↵

�1(ZP) : Z̃P ! ZP is just the blow up of ZP along Z 0
P. The exceptional

divisor EP is then, by Corollary 2.10, isomorphic to a finite set of disjoint (P2)0s that
each have normal bundle OP2(�2) in Z̃P. Taking the double cover of Z̃P branched
along the exceptional divisor EP, the preimage of these (P2)0s are the components
of ẼP ⇢ ỸP, each component a P2 with normal bundle OP2(�1). The contraction
↵̃P contracts the divisor ẼP to a finite set of points in YP. It contracts one of its
(P2)0s, denote it by Ẽp

P, to the point p. Note also that from the construction, YP is
the intersection of three Cartier divisors on Y which is smooth outside the finite set
of points Z 0

P. Thus, since we constructed Y to be normal, we deduce that YP is also
normal. We claim that p must be a smooth point of YP. Indeed, we know that ↵̃P is
a birational morphism onto the normal variety YP. Moreover, all lines l ⇢ Ẽp

P = P2

are numerically equivalent on ỸP and satisfy l ·K
ỸP

= �1 < 0. It follows from [Mor82,

Corollary 3.6], that there exists an extremal ray r for ỸP whose associated contraction
cont

r

: ỸP ! ŶP contracts Ẽp

P to a point p̂ and that ↵̃P factorizes through cont
r

. By

[Mor82, Theorem 3.3] we have that cont
r

is the blow down of Ẽp

P and p̂ is a smooth

point of ŶP. Let us now denote by � : ŶP ! YP the morphism satisfying ↵̃P = ��cont
r

.
Consider �

o

the restriction of � to small open neighborhoods of p̂ and p. Then �
o

is a
birational proper morphism which is bijective to an open subset of the normal variety
YP. It follows by Zariski Main Theorem that �

o

is an isomorphism and in consequence,
p is a smooth point on YP.

The latter implies that Y must also be smooth at p as it admits a smooth complete
intersection subvariety which is smooth at p. ⇤
Corollary 3.5. Let [A] 2 LG

⌘

(10,^3W ) be a general Lagrangian subspace with a 3-
dimensional intersection with some space F[w] = {w^↵| ↵ 2 ^2W}, then there exists a

double cover f
A

: Y
A

! DA

2 branched over DA

3 , where Y
A

is a smooth irreducible sixfold
with trivial canonical class.

Proof. It is enough to make a dimension count to prove that the general Lagrangian
space A satisfying the assumptions of the Corollary also satisfies the assumptions of
Proposition 3.1. Indeed, let as in the introduction

� = {[A] 2 LG
⌘

(10,^3W )|9w 2 W : dim(A \ F[w]) � 3},
and

� = {[A] 2 LG
⌘

(10,^3W )|9U 2 G(3,W ) : dim(A \ T
U

) � 4}.
We show:

13



Lemma 3.6. The set � ⇢ LG
⌘

(10,^3W ) is a divisor.

Proof. Let us consider the incidence

⌅ = {([U ], [A]) 2 G(3,W )⇥ LG
⌘

(10,^3W ) : dim(T
U

\A) � 4}.
The dimension of ⌅ can be computed by looking at the projection ⌅ ! G(3, 6). For a
fixed tangent plane we choose first a P3 inside: this choice has 24 parameters. Then
for a fixed P3 we have dim(LG(6, 12)) = 21 parameters for the choice of A. Thus
the dimension of ⌅ is 9 + 24 + 21 = 54. It remains to observe that the projection
⌅ ! LG

⌘

(10,^3W ) is finite, and that dim(LG
⌘

(10,^3W )) = 55. ⇤

Note that in [O’G13, Proposition 2.2] it is proven that � is irreducible and not
contained in ⌃ = {[A] 2 LG(10, 20)|P(A) \ G(3,W ) 6= ;}. Our corollary is now a
consequence of Proposition 3.1 and the following lemma.

Lemma 3.7. The divisors �, � ⇢ LG
⌘

(10,^3W ) have no common components.

Proof. We need to prove dim(�\ �) < 54 which, by the fact that � is irreducible and
not contained in ⌃, is equivalent to dim((� \ �) \ ⌃) < 54. For this, observe that if
[A] 2 (�\�)\⌃ then there exist [U ] 2 G(3,W ) and [w] 2 P(W ) with dim(A\T

U

) = 4
and dim(A \ F[w]) = 3. We can hence consider the incidence:

⇥ ={([A], [W3], [W4], [w], [U ]) | W3 = A \ F[w],W4 = A \ T
U

}(3.2)

⇢ LG
⌘

(10,^3W )⇥G(3,^3W )⇥G(4,^3W )⇥ P(W )⇥G(3,W )

such that its projection to LG
⌘

(10,^3W ) contains (� \ �) \ ⌃. Note also that if we
take ([A], [W3], [W4], [w], [U ]) 2 ⇥ then W4 \W3 = W4 \ F[w] = W3 \ T

U

.
We shall now compute the dimension of ⇥ by considering fibers under subsequent

projections:

LG
⌘

(10,^3W )⇥G(3,^3W )⇥G(4,^3W )⇥ P(W )⇥G(3,W )
⇡1�! G(3,^3W )⇥G(4,^3W )⇥ P(W )⇥G(3,W )

⇡2�! G(4,^3W )⇥ P(W )⇥G(3,W )
⇡3�! P(W )⇥G(3,W )

We have two possibilities for pairs ([w], [U ]) which give us two types of points to con-
sider:

(1) w 62 U , then dimT
U

\ F[w] = 3.
(2) w 2 U , then dimT

U

\ F[w] = 7.

We then have di↵erent types of elements in the intersection ⇡�1
3 ([w], [U ]) \ ⇡2(⇡1(⇥)),

depending on the number d1 := dim(W4 \ F[w]) = dim(W4 \W3)  3. If W?
4 denotes

the orthogonal to W4 w.r.t. ⌘ in ^3W , then dimW?
4 \F[w] = 6+ d1. Now, in order for

[W3] to be an element of ⇡�1
2 ([W4], [w], [U ]) \ ⇡1(⇥) we must have W3 ⇢ W?

4 \ F[w].

The fiber ⇡�1
1 ([W3], [W4], [w], [U ]) \ ⇥ is of dimension (3+d1)(4+d1)

2 . Hence to compute
the dimension of each component of ⇥ it is enough to compute the dimensions of the
spaces F

i,d1 of elements ([W3], [W4], [w], [U ]) of types (i, d1), where i = 1 if w 62 U and
i = 2 if w 2 U .

(1) For i = 1 we start with a choice of [U ] 2 G(3,W ). Then [w] belongs to an
open subset of P5. We have d1  3 and [W4] belongs to the Schubert cycle
consisting of 4-spaces in the 10-dimensional space T

U

that meet the fixed 3-
space T

U

\ F[w] in dimension d1. And [W3] belongs to the Schubert cycle of
14



3-spaces in the (6 + d1)-dimensional space W?
4 \ F[w] that contains the space

W4 \ F[w] of dimension d1
(2) For i = 2 we again start with a choice of [U ] 2 G(3,W ). In this case [w]

belongs to P(U). We have d1  3 and [W4] belongs to the Schubert cycle of
4-spaces in the 10-dimensional space T

U

that meet the fixed 7-space T
U

\ F[w]

in dimension d1. Then [W3] belongs to the Schubert cycle of 3-spaces in the
(6 + d1)-dimensional space W?

4 \ F[w] that contains the space W4 \ F[w] of
dimension d1.

We have:

dimF
i,d1 =

8
>>><

>>>:

9 + 5 + d1(3� d1) + (4� d1)6 + (d1 + 3)(3� d1)

= 47� 3d1 � 2d21 for i=1,

9 + 2 + d1(7� d1) + (4� d1)6 + (d1 + 3)(3� d1)

= 44 + d1 � 2d21 for i=2.

In each case we have dimF
i,d1 +

(3+d1)(4+d1)
2  53. It follows that dim⇥  53 which

implies dim(� \ �)  53. Hence � and � have no common components. ⇤

This concludes the proof also of Corollary 3.5. ⇤

4. Special A

Let us recall from [O’G13] the following construction. Let V and V0 be two vector
spaces of dimensions 5 and 1 respectively. Let W = V � V0. Consider the space ^3W
equipped with the symplectic form ⌘ given by the wedge product as above. Let v0 2 V0,
choose A a general Lagrangian subspace of ^3W such that A \ F[v0] is a vector space
of dimension 3 i.e. [A] is a general element of the divisor � ⇢ LG

⌘

(10,^3W ). In
particular, we assume [A] 2 � \ ⌃. Note that, by [O’G13, Proposition 2.2 (2)], for a
general [A] 2 � there is a unique [v0] such that F[v0] \A is of dimension 3.

Let K̃ = A \ F[v0] and denote by K ⇢ ^2V the 3-dimensional subspace such that

K̃ = v0 ^K. Observe that there is a natural isomorphism ^2V ! F[v0] given by wedge
product with v0. The latter induces an isomorphism ^3V ! F_

[v0]
.

Let [B] 2 LG
⌘

(10,^3W ) be a Lagrangian space such that B \ F[v0] = {0} and
B \ A = {0}. Then the symplectic form ⌘ defines a canonical isomorphism B ! F_

[v0]

by which A appears as the graph of a symmetric map Q̃
A

: F[v0] ! B = F_
[v0]

. Composed

with the isomorphisms ^2V ! F[v0] and ^3V ! F_
[v0]

we get a symmetric map

Q
A

: ^2V ! ^3V ⇠= (^2V )_.

Clearly kerQ
A

= K. Let q
A

be the quadric on ^2V given by Q
A

, then q
A

is a quadric
of rank 7; it is a cone over K. The map Q

A

defines an isomorphism ^2V/K ! K?

and hence the quadric q
A

defines a quadric K? ⇢ ^3V :

q⇤
A

: � 7! vol(↵ ^ �), where Q
A

(↵) = �.

Moreover, to each v⇤ 2 V _ we associate the quadric:

q
v

⇤ : ^3V 3 ! 7! vol(!(v⇤) ^ !) 2 C.
The quadrics q

v

⇤ are the Plücker quadrics defining the GrassmannianG(3, V ) ⇢ P(^3V ).
We denote by S

A

the smooth K3 surface (see [O’G13, Corollary 4.9]) of genus 6 defined

on P(K?) by the restrictions of the quadrics q
v

⇤ and the quadric q⇤
A

. Let S[2]
A

and
15



S[3]
A

denote the appropriate Hilbert schemes of points on S
A

. Observe that we have a
natural isomorphism:

W_ = V _ � V _
0 2 v⇤ + cv⇤0 7! q

v

⇤ + cq⇤
A

2 H0(I
SA(2))

We then have a rational two to one map:

' : S[2]
A

99K P(W )

well defined on the open subset consisting of reduced subschemes whose span is not con-
tained in G(3, V ), by associating to {�1,�2} ⇢ S

A

the hyperplane in W_ = H0(I
S

(2))
consisting of quadrics containing the line h�1,�2i. Let us describe this map more pre-
cisely. Since {�1,�2} ⇢ K? ⇢ ^3V ⇢ ^3W , �

i

^  = 0 for i = 1, 2 and  2 K hence
also for  2 K̃. Thus �

i

2 ^3W is contained in the space spanned by A and F[v0].
It follows that there exist ↵

i

2 ^2V such that �
i

+ v0 ^ ↵
i

2 A. Let us fix such ↵
i

(determined up to elements in K). Then Q
A

(↵
i

) = �
i

and

q⇤
A

(�1�1 + �2�2) = vol((�1↵1 + �2↵2) ^ (�1�1 + �2�2)) = �1�2 vol(↵1 ^ �2 + ↵2 ^ �1)
since q⇤

A

(�1) = q⇤
A

(�2) = 0. But A is Lagrangian, so we have:

↵
i

^ �
i

= 0 i = 1, 2 and vol(↵1 ^ �2) = vol(↵2 ^ �1) := c12.

Now, �1 and �2 are decomposable, i.e. q
v

⇤(�
i

) = 0, and their linear span is not contained
in G(3, V ). We may therefore choose a basis {v1, ..., v5} for V such that �1 = v1^v2^v3
and �2 = v1 ^ v4 ^ v5. A direct computation now shows

(t0q
⇤
A

+
5X

i=1

t
i

q
v

⇤
i
)(�1�1 + �2�2) = 2t0c12�1�2 + 2t1�1�2

so

(4.1) '({�1,�2}) = [c12v0 + v1] 2 P(W ).

It is proven in [O’G13] that '({�1,�2}) lies on the EPW sextic associated to A. Let
us present the proof in a way that we will be able to further generalize. It su�ces to
show that there are nonzero scalars x1, x2 and an element  2 K, such that

(x1(�1 + v0 ^ ↵1) + x2(�2 + v0 ^ ↵2) + v0 ^ ) ^ (c12v0 + v1) = 0.

Indeed, this implies [x1(�1+v0^↵1)+x2(�2+v0^↵2)+v0^] 2 P(F[c12v0+v1])\P(A).
Let us now denote by 1, 2, 3 a basis of K, then we consider the equation

(x1(�1 + v0 ^ ↵1) + x2(�2 + v0 ^ ↵2) +
3X

j=1

y
j

v0 ^ j) ^ (c12v0 + v1) = 0.

i.e.

(�x1c12v0 ^�1�x2c12v0 ^�2+x1v0 ^↵1 ^ v1+x2v0 ^↵2 ^ v1+
3X

j=1

y
j

v0 ^j ^ v1) = 0.

To make this equation into a system of linear equations we multiply with the elements
of basis in ^2V and compose with the volume map vol : ^6W ! C.

We obtain trivial equations when multiplying by v1 ^ v
i

, i = 2, 3, 4, 5. Multiplying
with v2 ^ v3 we get


i

^ v1 ^ v2 ^ v3 = 
i

^ �1 = 0, i = 1, 2, 3,

�1 ^ v2 ^ v3 = 0,↵1 ^ v1 ^ v2 ^ v3 = ↵1 ^ �1 = 0
16



and

↵2 ^ v1 ^ v2 ^ v3 = ↵2 ^ �1 = c12 = c12 vol(v0 ^ �2 ^ v2 ^ v3).

So the equation multiplied with v2 ^ v3 is also trivial. Similarly, the equation mul-
tiplied with v4 ^ v5 is trivial. So the only nontrivial linear equations are obtained by
multiplying by forms in hv2 ^ v4, v2 ^ v5, v3 ^ v4, v3 ^ v5i. Each of these 2-vectors an-
nihilates �1 and �2, so we get the following four independent equations in 5 variables,
with a unique solution up to scalars:

(x1↵1 + x2↵2 +
3X

j=1

y
j


j

) ^ v0 ^ v1 ^ v2 ^ v4 = 0.

(x1↵1 + x2↵2 +
3X

j=1

y
j


j

) ^ v0 ^ v1 ^ v2 ^ v5 = 0.

(x1↵1 + x2↵2 +
3X

j=1

y
j


j

) ^ v0 ^ v1 ^ v3 ^ v4 = 0.

(x1↵1 + x2↵2 +
3X

j=1

y
j


j

) ^ v0 ^ v1 ^ v3 ^ v5 = 0.

Let us now consider the rational map  : S[3]
A

! G(3,W ) defined on general sub-
schemes s ⇢ S

A

of length 3 as the 3-codimensional space in W_ = H0(I
S

(2)) consisting
of those quadrics which contain the plane spanned by s. It is clear that for a subscheme
corresponding to a general triple of points {�1,�2,�3} we have

(4.2)  ({�1,�2,�3}) = [h'({�1,�2}) ^ '({�1,�3}) ^ '({�2,�3})i].

Proposition 4.1. The map  is a generically 2:1 rational map onto D2
A

.

Proof. Let �1, �2, �3 be three general points on S
A

. The proof then amounts to two
lemmas:

Lemma 4.2. The fiber of  ,

 �1( ({�1,�2,�3})) = {{�1,�2,�3}, {�1, �2, �3}}
is two triples of points on S

A

whose union is a set of six distinct points on a twisted
cubic contained in G(3, V ).

Proof. Let U
�1 , U�2 , U�3 ⇢ V be the subspaces corresponding to �1, �2, �3. Then there

exists a unique 3-dimensional subspace U
�1,�2,�3 meeting each U

�i in a 2-dimensional
space. It follows that U

�1 , U�2 , U�3 is contained in the intersection C
�1,�2,�3 of P6

with the Schubert cycle S
�1,�2,�3 in G(3, V ) of three-spaces meeting U

�1,�2,�3 in a 2-
dimensional space. Since S

�1,�2,�3 is a cone over P1 ⇥ P2 the considered intersection
C
�1,�2,�3 is, in general, a twisted cubic. Moreover, under the generality assumption

C
�1,�2,�3 \ S

A

= C
�1,�2,�3 \ q⇤

A

consists of six points. Three of them are �1,�2,�3 and
the residual three will be denoted by �1, �2, �3. The linear span of C

�1,�2,�3 is a P3, we
denote it by P, and its intersection with G(3, V ) is P\G(3, V ) = C

�1,�2,�3 . We denote
by ⇧ the plane h�1,�2,�3i. Now, every quadric containing S

A

and ⇧, when restricted
to P, decomposes into ⇧ and another plane ⇧0. Since, in general, ⇧ does not pass
through �

i

for i = 1, 2, 3, the plane ⇧0 must pass through the points �
i

for i = 1, 2, 3.
This means that ⇧0 = h�1, �2, �3i. It is then clear that  ({�1,�2,�3}) =  ({�1, �2, �3}).

17



Assume on the other hand that  ({�1,�2,�3}) =  ({�01, �02, �03}). Then, by the equa-
tions 4.2 and 4.1, we deduce that U

�1,�2,�3 = U
�

0
1,�

0
2,�

0
3
hence C

�1,�2,�3 = C
�

0
1,�

0
2,�

0
3
. It

follows that h�01, �02, �03i ⇢ P. But the net of quadrics corresponding to  ({�1,�2,�3}) =
 ({�01, �02, �03}) define on P two planes h�1, �2, �3i and h�1,�2,�3i. It follows that
{�01, �02, �03} = {�1,�2,�3} or {�01, �02, �03} = {�1, �2, �3}. Which ends the proof. ⇤
Lemma 4.3. dim(T

 ({�1,�2,�3}) \A) = 2

Proof. By appropriate choice of basis of V we can assume, without loss of generality,
that �1 = v1 ^ v2 ^ v3, �2 = v1 ^ v4 ^ v5, and �3 = v2 ^ v4 ^ (v3 + v5). Observe as above
that �

i

^  = 0 for i = 1, 2 and  2 K, hence �
i

is contained in the space spanned by
A and F[v0]. It follows that there exist ↵

i

2 ^2V such that �
i

+ v0 ^ ↵i

2 A. We fix
such ↵

i

(determined modulo K). Since A is Lagrangian we have:

↵
i

^ �
i

= 0, i = 1, 2, 3, ↵1 ^ �2 = ↵2 ^ �1 := c12,

↵1 ^ �3 = ↵3 ^ �1 := c13 and ↵2 ^ �3 = ↵3 ^ �2 := c23.

As above, a direct computation gives

'({�1,�2}) = c12v0 + v1, '({�1,�3}) = c13v0 + v2, and '({�2,�3}) = �c23v0 + v4.

It follows that:

T
 ({�1,�2,�3}) = {! 2 ^3W |! ^ (c12v0 + v1) ^ (c13v0 + v2) =

! ^ (c12v0 + v1) ^ (�c23v0 + v4) = ! ^ (c13v0 + v2) ^ (�c23v0 + v4) = 0}.
Again we denote by 1, 2, 3 a basis of K. Now, �

i

+ v0 ^↵i

2 A and K ^ v0 ⇢ A, so
to prove the lemma it is enough to prove that the system of equations

8
><

>:

(
P3

i=1 xi(�i + v0 ^ ↵i

) +
P3

j=1 yjv0 ^ j) ^ (c12v0 + v1) ^ (c13v0 + v2) = 0

(
P3

i=1 xi(�i + v0 ^ ↵i

) +
P3

j=1 yjv0 ^ j) ^ (c12v0 + v1) ^ (�c23v0 + v4) = 0

(
P3

i=1 xi(�i + v0 ^ ↵i

) +
P3

j=1 yjv0 ^ j) ^ (c13v0 + v2) ^ (�c23v0 + v4) = 0

in variables x = (x1, x2, x3), y = (y1, y2, y3) has a 2-dimensional set of solutions satis-
fying x = (x1, x2, x3) 6= 0. By reductions as above and rearranging we get the system

(4.3)

8
><

>:

v0 ^ (�c12x2�2 ^ v2 + c13x3�3 ^ v1 + (
P3

i=1 xi↵i

+ y
i


i

) ^ v1 ^ v2) = 0

v0 ^ (�c12x1�1 ^ v4 � c23x3�3 ^ v1 + (
P3

i=1 xi↵i

+ y
i


i

) ^ v1 ^ v4) = 0

v0 ^ (�c13x1�1 ^ v4 � c23x2�2 ^ v2 + (
P3

i=1 xi↵i

+ y
i


i

) ^ v2 ^ v4) = 0

To make the system of equations (4.3) into a system of linear equations we multi-
ply each of the equation by the coordinate vectors and obtain a system of 18 linear
equations in 6 coordinates. If we now denote the three left hand side expressions de-
pendent on (x, y) in the equations from (4.3) by u1(x, y), u2(x, y), u3(x, y) 2 ^5W , a
straightforward computation, as above, shows that the following equations are trivial:

u1(x, y) ^ v0 = u1(x, y) ^ v1 = u1(x, y) ^ v2 = u1(x, y) ^ v3 = 0,

u2(x, y) ^ v0 = u2(x, y) ^ v1 = u2(x, y) ^ v4 = u2(x, y) ^ v5 = 0,

u3(x, y) ^ v0 = u3(x, y) ^ v2 = u3(x, y) ^ v4 = u3(x, y) ^ (v3 + v5) = 0.

The following products are equal

u1(x, y) ^ v4 = �u2(x, y) ^ v2 = u3(x, y) ^ v1 = (
3X

i=1

x
i

↵
i

+ y
i


i

) ^ v0 ^ v1 ^ v2 ^ v4,

18



while

u1(x, y) ^ v5 = c13x3v0 ^ . . . ^ v5 + (
3X

i=1

x
i

↵
i

+ y
i


i

) ^ v0 ^ v1 ^ v2 ^ v5

u2(x, y) ^ v3 = c23x3v0 ^ . . . ^ v5 � (
3X

i=1

x
i

↵
i

+ y
i


i

) ^ v0 ^ v1 ^ v3 ^ v4,

u3(x, y) ^ (v3 � v5) = (c13x1 � c23x2)v0 ^ . . . ^ v5

� (
3X

i=1

x
i

↵
i

+ y
i


i

) ^ v0 ^ v2 ^ v4 ^ (v3 � v5).

So the 18 linear equations are reduced the following four independent ones:

u1(x, y) ^ v4 = 0, u1(x, y) ^ v5 = 0,

u2(x, y) ^ v3 = 0, u3(x, y) ^ (v3 � v5) = 0.

It follows that the system of linear equations admits a 2-dimensional system of
solutions. To prove that nonzero solutions satisfy x 6= 0 it is enough to observe that a
solution with x = 0 is a 3-vector v0 ^  with  2 K such that

 ^ v1 ^ v2 =  ^ v1 ^ v4 =  ^ v2 ^ v4 = 0.

But any such  lies in the space hv1^v2, v1^v4, v2^v4i = ^2hv1, v2, v4i. By assumption,
P(v0 ^K) ⇢ P(A) does not intersect G(3,W ), so this is impossible. Therefore the only
solution of the system (4.3) satisfying x = 0 is (x, y) = (0, 0). ⇤

Proposition 4.1 follows immediately from Lemmas 4.2 and 4.3. ⇤
Remark 4.4. There is an alternative approach to the Proposition 4.1. We consider
the intersection F of the quadrics containing S

A

together with a generic plane B =
h�1,�2,�3i. This is a complete intersection of degree 8 with six ordinary double points
that span a 3-space. Three of them are the points of intersection of B \ S

A

and the
residual three points span another plane B0 contained in our Fano threefold F . Since
S
A

does not contain any plane curve, if a plane passes through three points of S
A

these
points are isolated in the intersection. If the plane is contained in F , the three points
must therefore be three of the six ordinary double points. Since the 3-space spanned
by B and B0 cuts F along the sum of B [ B0 it follows that the degree of  is two at
the point corresponding to F . On the other hand the generic complete intersection of
three quadrics containing S

A

have also six ordinary double points. The six ordinary
double points spans a P3 and a complete intersection F of degree 8 that contain S

A

corresponds to a point of the EPW cube when the intersection of this P3 with F is a
reducible quadric.

Next, we compute the codimension of the indeterminacy locus and the ramification
locus of  .

Proposition 4.5. The rational map  is well defined outside a set of codimension 2.
Moreover, the ramification locus of  is of codimension � 2.

Before we pass to the proof of the Proposition we introduce some more notation.
Recall first that, by the assumption on generality of A, we know that S

A

does not
contain any line, conic or twisted cubic. Let F

A

be the Fano threefold obtained as the
intersection G(3, V ) \ hS

A

i. By the generality of A, it follows that F
A

is smooth. Let
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[U ] 2 G(3, V ). Consider the Schubert cycle S
U

= {U 0 2 G(3, V )| dim(U \ U 0) � 2}.
It is clear that in the Plücker embedding of G(3, V ) ⇢ P(^3V ) the variety S

U

is the
tangent cone of G(3, V ) in [U ]. It spans the projective tangent space and is a cone over
P1 ⇥ P2 with vertex [U ]. We are interested in intersections S

U

\ F
A

. Note that F
A

is
of degree 5 and has Picard group of rank 1 generated by the hyperplane class. Hence
F
A

does not contain any surface of degree  4. It follows that P6
A

\ S
U

= F
A

\ S
U

is a
cubic curve, a possibly reducible or nonreduced degeneration of a twisted cubic curve.
We denote the corresponding subscheme of the Hilbert scheme of twisted cubics in F

A

by H
A

.

Let B1 be the subset of S[3]
A

consisting of those subschemes that are contained in a
conic in F

A

⇢ G(3, V ). Since F
A

is a linear section of G(3, V ) and contains no planes,
the Hilbert scheme of conics in F

A

admits a birational map to P(V ) associating to
a conic c the intersection of three-spaces parametrized by points on c. It is hence of

dimension 4 and we get that B1 is of dimension 4. Let B2 be the subset of S
[3]
A

consisting
of those subschemes that meet some line contained in G(3, V ) in a scheme of length
two. Then B2 is also of dimension 4, since the Hilbert scheme of lines in F

A

isomorphic
to P2 (cf. [O’G13, Proposition 5.2], [Isk77]).

Lemma 4.6. Let s be a subscheme of length 3 in S
A

corresponding to a point from

S[3]
A

\ (B1[B2). Then there is a unique, possibly degenerate, twisted cubic from H
A

that

contains s. Furthermore, the induced map S[3]
A

\ (B1 [ B2) ! H
A

is dominant.

Proof. Since S
A

⇢ G(3, V ) ⇠= G(2, V _), we may characterize the elements of � 2 S[3]
A

via the incidence of curves C
�

of degree 3 in P(V _) supported on lines. For a general
�, the curve C

�

is the union of three lines and has a unique transversal line, a line that

meet all three lines. If � 2 S[3]
A

\ (B1 [ B2) the curve C
�

spans P(V _) and contains
no conic. It follows that C

�

admits a unique transversal line hence s
�

is contained
in S

U

for a unique U . We conclude by the definition of H
A

. For dominancy of the
map we observe that if c 2 H

A

then c \ q⇤
A

⇢ S
A

and clearly contains a subscheme in

S[3]
A

\ (B1 [ B2) . ⇤

We can now pass to the proof of Proposition 4.5

Proof of Proposition 4.5. Any subscheme s of length 3 in S
A

spans a plane ⇧s. The map
 associates to s the space V q

s of quadrics containing S
A

[⇧s. For general s the latter is
a space of dimension 3. Now,  is well defined exactly on those s for which dimV q

s = 3.
But V q

s is the kernel of the restriction map H0(S
A

, I
SA(2)) ! H0(⇧s, ISA\⇧s(2)). The

latter kernel is 3-dimensional unless dimH0(⇧s, ISA\⇧s(2))  2. Hence  is not defined
only if S

A

\ ⇧s has length at least 4. Then the intersection ⇧s \ G(3, V ) contains a
scheme of length 4. As S

A

contains no conics, ⇧s cannot be contained in G(3, V ). We
infer by [Muk93, proof of Lemma 2.2] that ⇧s \ G(3, V ) contains a line or a unique
conic. If ⇧s \ G(3, V ) contains a line, then it is either a reducible conic or the union
of this line with a point. In the latter case, since S

A

contains no lines, the intersection
⇧s \ S

A

does not contain any subscheme of length 4. It follows that there is a map
with finite fibers from the indeterminacy locus of  to the Hilbert scheme of conics in
G(3, V ) \ P6 which is of dimension 4. We conclude that the indeterminacy locus is of
dimension at most 4. In fact it is equal to 4 since a general V4 ⇢ V defines a conic in
G(3, V ) \ P6 which meets S

A

in four points.
Finally to bound the dimension of the ramification locus, we again let s be a sub-

scheme of length 3 in S
A

corresponding to a point from S[3]
A

\(B1[B2). Then by Lemma
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4.6 there is a possibly degenerate twisted cubic from H
A

spanning a P3 and containing

s. Now, from the proof of Proposition 4.1 we know that a point from S[3]
A

\ (B1 [ B2)
can be in the ramification locus of  only if the quadric Q

A

is totally tangent to the
twisted cubic. The latter is a codimension 3 condition on twisted cubics in G(3, V )\P6,
hence by Lemma 4.6 a codimension 3 condition for the ramification locus. To be more
precise we have an incidence:

X = {(C,Q) 2 H
A

⇥H0(OP6(2))| Q|
C

is totally non reduced}.
We compute its dimension from the projection onto H

A

. Indeed, fixing C we get a
codimension 3 space of quadrics totally tangent to it. The dimension of the general
fiber of the second projection follows giving codimension 3 in H

A

. ⇤

5. the proof of Theorem 1.1

Let us choose a generic Lagrangian space A0 satisfying [A0] 2 � \ (� [ ⌃) ⇢
LG

⌘

(10,^3W ). Note that from Lemma 3.7, we can choose A0 such that K is generic

in F[v0]. From Proposition 4.1 there is a rational 2 : 1 map  : S[3]
A0

! DA0
2 . On the

other hand from Proposition 3.1 there exists a double cover Y
A0 ! DA0

2 such that Y
A0

is a smooth sixfold with trivial canonical bundle. Our aim is to construct a birational
map

S[3]
A0

99K X
A0 .

We consider the subset B in S[3]
A0

, the union of the indeterminacy locus and the

ramification locus of the rational 2 : 1 map  : S[3]
A0

! DA0
2 . Clearly the restriction

of the map  to S[3]
A0

\ B is an étale covering of degree 2 onto a smooth open subset

D ⇢ DA0
2 . In particular D \ DA0

3 = ;. Note that S[3]
A0

is simply connected and by

Proposition 4.5 the subset B is of codimension 2. This implies that S[3]
A0

\ B is also
simply connected. It follows that ⇡1(D) = Z2 and  |

S

[3]
A0

\B is a universal covering.

Since D is disjoint from DA0
3 , the restriction of the double cover f

A0 : YA0 ! DA0
2 to

f�1
A0

(D) is also an étale covering.
By Proposition 3.1 the variety Y

A0 is smooth and irreducible. It follows that the
étale covering f

A0 |
f

�1
A0

(D) is not trivial. We infer that f
A0 |

f

�1
A0

(D) is also the universal

covering, and deduce that Y
A0 is birational to S[3]

A0
.

Note that the fact that f
A0 |

f

�1
A0

(D) is the universal covering implies f�1
A0

(D) is simply

connected. It follows that Y
A0 is also simply connected because f�1

A0
(D) is obtained

from the smooth variety Y
A0 by removing a subset of real codimension 2. Moreover,

since both Y
A0 and S[3] have trivial canonical bundle, by [Ito03, Theorem 1.1] they

have equal Hodge numbers. Thus

h2(O
YA0

) = h2(O
S

[3]
A0

) = 1.

From the Beauville classification theorem [Bea83, Theorem 2] we infer that Y
A0 is IHS.

Recall the notation

LG1
⌘

(10,^3W ) := {[A] 2 LG
⌘

(10,^3W )|P(A)\G(3,W ) = ;, 8[U ] 2 G(3,W ) : dim(A\T
U

)  3}.
Consider now the varieties:

D
k

= {([A], [U ]) 2 LG1
⌘

(10,^3W )⇥G(3,W )|[U ] 2 DA

k

},
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for k = 2, 3. By globalizing the construction in Proposition 3.1 to the a�ne variety
LG1

⌘

(10,^3W ) we construct a variety Y which is a double cover of D2 branched in D3.
We get a smooth family

Y ! LG1
⌘

(10,^3W )

with fibers Y[A] = Y
A

polarized by the divisor defining the double cover. In particular
a special fiber Y[A0] = Y

A0 is an IHS manifold. Since a smooth deformation of an
IHS manifold is still IHS we obtain that Y

A

is IHS for every A 2 LG1
⌘

(10,^3W ). So
Y ! LG1

⌘

(10,^3W ) is a family of IHS manifolds.

In order to show that the IHS sixfolds in the family Y are ofK3[3]-type we use the fact

proved above that S[3]
A0

and Y
A0 are birational. Indeed, two birational IHS manifolds are

deformation equivalent from [Huy99, Theorem 4.6]. The Beauville-Bogomolov degree
q = 4 of our polarization follows from our computation of degree in Section 2.3.

We end the proof of Theorem 1.1 by performing a study of the moduli map defined
by the family Y.

Proposition 5.1. Let M be the coarse moduli space of polarized IHS sixfolds of K3[3]-
type and Beauville-Bogomolov degree 4. Let

MY : LG1
⌘

(10,^3W ) ! M, [A] 7! [Y
A

]

be the map given by Y. The image of MY is a dense open subset of a component of
dimension 20 in M.

For the proof we will need the following lemma.

Lemma 5.2. Let A 2 LG1
⌘

(10,^3W ). If g 2 PGL(^3W ) is such that DA

2 ⇢ G(3,W )\
g(G(3,W )), then G(3,W ) = g(G(3,W )).

Proof. Let us denote by G1, G2 the varieties G(3,W ) and g(G(3,W )) respectively.
Let X ⇢ G1 \G2 be an irreducible component of the intersection that contains D2

A

.
Then X has codimension at most 3 in both G1 and G2 and spans P19. Furthermore it
is contained in a complete intersection of quadric hypersurfaces on each G

i

. If X has
codimension 3, then X = DA

2 and lies in a complete intersection of three quadrics. But
the complete intersection has degree 8 · 42 = 336, while DA

2 has degree 480, so this is
impossible.

For lower codimension of X we first note that DA

2 ⇢ DA

1 . Since [DA

1 ] = [c1(T _) \
G(3,W )] and c1(T _) = 4h, the divisor DA

1 is a quartic hypersurface section of G1 and
G2. So we may assume that DA

2 is contained in a quartic hypersurface section of X.
Consider the following subvariety in G1: Let V5 ⇢ W be a general 5-dimensional

subspace, and let V1 be a general 1-dimensional subspace of V5. Let F (1, 5) = {[U ] 2
G1|V1 ⇢ U ⇢ V5} ⇢ G1 and denote by P (1, 5) the span of F (1, 5). Then F (1, 5) is a
4-dimensional smooth quadric and the span, P (1, 5), is a P5.

If X has codimension 2, then X(1,5) := X\F (1, 5) is an irreducible surface. Further-
more, X(1,5) is contained in at least 2 quadric sections of F (1, 5). So X(1,5) has degree
at most 8. On the other hand

D(1,5) := DA

2 \ F (1, 5) ⇢ X(1,5)

is a curve of degree 56, contained in a quartic hypersurface section of X(1,5), which has
degree at most 32. Since this is absurd, we may assume that X has codimension one,
i.e. is a divisor in the G

i

.
Since DA

2 spans P9, the divisor X must be a quadric hypersurface section of each G
i

.
Then P (1, 5) \X is complete intersection of two quadrics, and through every point of
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P (1, 5) there are inifinitely many secants lines to X. The union of the spaces P (1, 5)
as V5 and V1 varies is a variety ⌦1 ⇢ P19, characterized in [Don77, Lemma 3.3] as the
locus of points in P19 that lies on more than one secant line to G1. Furthermore G1

is the singular locus of ⌦1. Similarly, ⌦2 is defined with respect to G2. By the above
argument each P (1, 5) in ⌦1 is also contained in ⌦2. Thus ⌦1 ⇢ ⌦2. But then they
coincide, and since G

i

= Sing(⌦
i

), the two grassmannians G1 and G2 coincide.
⇤

Proof. We claim that MY([A1]) = MY([A2]) if and only if there exists a linear auto-
morphism g 2 Aut(G(3,W )) ' Z/2⇥PGL(W ) such that g(A1) = A2. Indeed, assume
that MY([A1]) = MY([A2]). Then Y

A1 and Y
A2 , polarized by ample classes defining

double covers to D2
A1

and D2
A2

respectively, are isomorphic. It follows that there is
a linear automorphism g 2 PGL(^3W ) such that g(D2

A1
) = D2

A2
. It follows that

D2
A2

⇢ G(3,W ) \ g(G(3,W )). By Lemma 5.2, we deduce that G(3,W ) = g(G(3,W )).
It follows that g 2 Aut(G(3,W )).

By [O’G06] the locus LG1
⌘

(10,^3W ) is contained in the stable locus of the natural
linearized PGL(W ) action on LG

⌘

(10,^3W ). From our claim we hence infer that

dim(MY(LG
1
⌘

(10,^3W ))) � dimLG1
⌘

(10,^3W )� dim(PGL(W )) = 55� 35 = 20.

But 20 is the dimension of M, so our map is surjective onto an (also by stability) open
subset of a component of M of dimension 20. ⇤

We conclude by determining the component of the moduli space that is filled by our
family.

Recall that for v 2 H2((K3)[3],Z) the divisibility of v is defined as the generator
of the subgroup (v,H2((K3)[3],Z)) ⇢ Z where (., .) is the scalar product induced by
the Beauville-Bogomolov form. Note that for Beauville-Bogomolov degree 4 there are
two possible divisibilities for H either l = 1 or 2 (see [GHS10, Proposition 3.6]). It
follows from [Apo11, Proposition 2.1(3) and Corollary 2.4] that there are exactly two
components, distinguished by the divisibility, of the coarse moduli space of polarized
IHS sixfolds of K3[3]-type and Beauville-Bogomolov degree 4. Which one is determined
by the following proposition, whose proof was pointed out to us by Kieran O’Grady.

Proposition 5.3. The image of MY is open and dense in the connected component
of the coarse moduli space of IHS sixfolds of K3[3]-type, Beauville-Bogomolov degree 4
and divisibility 2;

Proof. By the above, it remains to compute the divisibility of our polarization. For
this, fix A general and denote the polarization by P . Observe that the involution
of the double cover Y

A

! D2
A

defined by the polarization is anti-symplectic. Indeed
as an involution on an IHS manifold it is either symplectic or anti-symplectic, but
the fixed point locus of a symplectic involution is a symplectic manifold (see [Cam12,
Proposition 3]) whereas the fixed locus of our involution is of dimension 3. This means
that the involution must be anti-symplectic . Moreover, since we proved that our family
is of maximal dimension, we may assume that Y

A

has Picard group spanned by the
polarization P . It follows that the action of the involution on H2(Y

A

) has an invariant
subspace spanned by the class [P ]. Furthermore, the involution respects the Beauville-
Bogomolov bilinear form (., .). Thus, since ([P ], [P ]) = 4, the involution on H2(Y

A

) is
of the form

v 7! �v +
1

2
(v, [P ])[P ].
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Since the involution must map integral cohomology to integral cohomology, it follows
that (v, [P ]) is even for all integral classes v. This implies that the divisibility of [P ] is
not equal to 1. We infer that it is equal to 2. ⇤
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