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ABSTRACT. We construct a new 20-dimensional family of projective 6-dimensional
irreducible holomorphic symplectic manifolds. The elements of this family are de-
formation equivalent with the Hilbert scheme of three points on a K3 surface and
are constructed as natural double covers of special codimension 3 subvarieties of the
Grassmanian G(3,6). These codimension 3 subvarieties are defined as Lagrangian de-
generacy loci and their construction is parallel to that of EPW sextics, we call them
the EPW cubes. As a consequence we prove that the moduli space of polarized THS
sixfolds of K3-type, Beauville-Bogomolov degree 4 and divisibility 2 is unirational.

1. INTRODUCTION

By an irreducible holomorphic symplectic (IHS) 2n-fold we mean a 2n-dimensional
simply connected compact Kahler manifold with trivial canonical bundle that admits a
unique (up to a constant) closed non-degenerate holomorphic 2-form and is not a prod-
uct of two manifolds (see [Bea83]). The IHS manifolds are also known as hyperkéhler
and irreducible symplectic manifolds, in dimension 2 they are called K3 surface.

Moduli spaces of polarized K3 surfaces are a historically old subject, studied by
the classical Italian geometers. Mukai extended the classical constructions and proved
unirationality results for the moduli spaces Myy parametrising polarized K3 surfaces
of degree 2d for many cases with d < 19 see [Muk92], [Muk06], [Muk12]. On the other
hand it was proven in [GHS07] that Mo is of general type for d > 61 and some smaller
values. Note that when the Kodaria dimension of such moduli space is positive the
generic element of such moduli space is believed to be non-constructible.

There are only five known descriptions of the moduli space of higher dimensional
THS manifolds (all these examples are deformations equivalent to K3[™). In dimension
four we have the following unirational moduli spaces:

e double EPW sextics with Beauville-Bogomolov degree ¢ = 2 (see [0’G06]),

e Fano scheme of lines on four dimensional cubic hypersurfaces with ¢ = 6 (see
[BD85]),

e VSP(F,10) where F define a cubic hypersurface of dimension 4 with ¢ = 38
(see [IRO1]),

e zero locus of a section of a vector bundle on G(6,10) with ¢ = 22 described in
[DV10].

Moreover, there is only one more known family in dimension 8 with ¢ = 2 studied in
[LLSvS15]. Analogously to the case of K3 surfaces there are results in [GHS10] about
the Kodaira dimension of the moduli spaces of polarized IHS fourfolds of K 32-type:
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In particular it is proven that such moduli spaces with split polarization of Beauville-
Bogomolov degree ¢ > 24 are of general type (and for ¢ = 18, 22 are of positive Kodaira
dimension). We expect that the number of constructible families in higher dimension
becomes small.

According to O’Grady [O’GO06], the 20-dimensional family of natural double covers
of special sextic hypersurfaces in P° (called EPW sextics) gives a maximal dimensional
family of polarized THS fourfold deformation equivalent to the Hilbert scheme of two
points on a K 3-surface (this is a maximal dimensional family since by(S™) = 23 for
S a K3-surface). Our aim is to perform a construction parallel to that of O’Grady to
obtain a unirational 20-dimensional family (also of maximal dimension) of polarized
IHS sixfolds deformation equivalent to the Hilbert scheme of three points on a K3-
surface (i.e. of K38 type). The elements of this family are natural double covers
of special codimension 3 subvarieties of the Grassmannian G(3,6) that we call EPW
cubes.

Let us be more precise. Let W be a complex 6-dimensional vector space. We fix an
isomorphism j : ASW — C and the skew symmetric form

(1.1) n: AW x NBW = C,  (u,v) = j(uAv).
We denote by LG, (10, A>W) the variety of 10-dimensional Lagrangian subspaces of
A3W with respect to 7. For any 3-dimensional subspace U C W, the 10-dimensional
subspace
Ty = N2UAW C NBW
belongs to LG, (10, A3W), and P(Ty) is the projective tangent space to
G(3,W) C P(AW)

at [U].

For any [A] € LG,(10,A3W) and k € N, we consider the following Lagrangian
degeneracy locus, with natural scheme structure (see [PR97]),

D ={[U] e GB3,W) | dim ANTy >k} C G(3,W).

For the fixed [A] € LG,(10, A*W) we call the scheme D4 an EPW cube. We prove that
if A is generic then Dé“ is a sixfold singular only along the threefold D{;)4 and that D3
is empty. Moreover, D§4 is smooth such that the singularities of Dg‘ are transversal
%(1, 1,1) singularities along D{f.

Before we state our main theorem we shall need some more notation. The projec-
tivized representation A3 of PGL(W) on A3W splits P = P(A3W) into a disjoint
union of 4 orbits

PY = PO\ W)U (F\QU(Q\GB, W) UGB, W),

where G(3,W) c Q c F c P dim(Q) = 14, Sing(Q) = G(3,W), dim(F) = 18,
Sing(F) = Q, see [Don77]. We call the invariant sets G, ), F and P!Y the (projective)
orbits of A3 for PGL(6). See [Kapl4, Appendix] for some results about the geometry
of Q and its relations with EPW sextics. For any nonzero vector w € W, denote by

Fp) = (w) A (N*W)
the 10-dimensional subspace of A3W, such that

U PF.) =2 cP(A*W).
[w]eP(W)
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We denote, after O’Grady [0’G13],
¥ = {[4] € LG, (10, N*W)| P(A)NG(3, W) # 0}
and
A = {[A] € LG,(10,A’W)| 3w € W: dim AN F,; > 3}.
We also consider a third subset

I'={A¢€ LG,(10,°>W)| 3[U] € G3,W): dim ANTy > 4}.

Denote by
LG (10, A°W) := LG, (10, A°W) \ (S UT).

All three subsets X, A, T" are divisors (see [0’G13] and Lemma 3.6) and LG}](IO, NSW)
is hence a dense open subset of LG, (10, A3W). Our main result is the following:

Theorem 1.1. If [A] € LG}](lO, NSW), then there exists a natural double cover Y4 of
the EPW cube D§4 branched along its singular locus Df;‘ such that Y4 is an THS sizfold
of K3B-type with polarization of Beauville-Bogomolov degree ¢ = 4 and diwisibility
2. In particular, the moduli space of polarized IHS sizfolds of K3 -type, Beauville-
Bogomolov degree 4 and divisibility 2 is unirational.

We prove the theorem in Section 5 at the very end of the paper. The plan of the
proof is the following: In Proposition 3.1 we prove that for [A] € LGy (10, A3W), the
variety D§4 is singular only along the locus Dé“ and that it admits a smooth double
cover Y4 — Dé“ branched along Dé“ with a trivial canonical class. The proof of the
Proposition is based on a general study of Lagrangian degeneracy loci contained in
Section 2. By globalizing the construction of the double cover to the whole affine
variety LG (10, AW) we obtain a smooth family

Y — LG, (10, W)

with fibers J 4 = Ya. Note that the family ) is naturally a family of polarized varieties
with the polarization given by the divisors defining the double cover.

In Lemma 3.7 we prove that A\ (I'UY) is nonempty. Following [O’G13, Section 4.1],
we associate to a general [Ag] € A\ (I'UX) a K3 surface S4,. Then, in Proposition 4.1,

we prove that there exists a rational 2 : 1 map from the Hilbert scheme Sfi of length 3
subschemes on S4, to the EPW cube Dfo. We infer in Section 5 that in this case the

sixfold Yy, is birational to SE}). Together with the fact that Y4, is smooth, irreducible
and has trivial canonical class, this proves that Yy, is IHS.

Since flat deformations of THS manifolds are still IHS, the family ) is a family of
smooth THS sixfolds. The fact that the obtained IHS manifolds are of K3B-type is a
straightforward consequence of Huybrechts theorem [Huy99, Thm. 4.6].

During the proof of Theorem 1.1 we retrieve also some information on the constructed
varieties. We prove in Section 2.3 that the polarization £ giving the double cover
Yy — Dé“ has Beauville-Bogomolov degree ¢(£) = 4 and is primitive. Moreover, the
degree of an EPW cube D§' C G(3,6) C P is 480.

Note that the coarse moduli space M of polarized THS sixfolds of K 3[3]—type and
Beauville-Bogomolov degree 4 has two components distinguished by divisibility. We
conclude the paper by proving that the image of the moduli map LG,17(10, NW) —
M defined by ) is a 20 dimensional open and dense subset of the component of M
corresponding to divisibility 2 (see Proposition 5.3).
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2. LAGRANGIAN DEGENERACY LOCI

In this section we study resolutions of Lagrangian degeneracy loci. Let us start with
fixing some notation and definitions. We fix a vector space Wa, of dimension 2n and
a symplectic form w € A?W5,. Let X be a smooth manifold and let W = Wa, x Ox
be the trivial bundle with fiber W5, on X equipped with a nondegenerate symplectic
form @ induced on each fiber by w. Consider J C W a Lagrangian vector subbundle
i.e. a subbundle of rank n whose fibers are isotropic with respect to @. Let A C Wy,
be a Lagrangian vector subspace inducing a trivial subbundle A C W. For each k € N
we define the set

Dif = {z € X|dim(J, N A,) >k} C X
where J, and A, denote the fibers of the bundles J and A as subspaces in the fiber
W,. Let us now define LG, (n, Wa,,) to be the Lagrangian Grassmannian parametrizing
all subspaces of Wy, which are Lagrangian with respect to w. Then J defines a map
t: X — LG, (n,Wy,) in such a way that J = +*£ where £ denotes the tautological
bundle on the Lagrangian Grassmannian LG, (n, Wa,). Moreover, similarly as on X,
we can define

Dy = {[L] € LGu(n, Wa,)| dim(L N Ap)) > k} C LGo(n, Way),

and Df admits a natural scheme structure as a degeneracy locus. We then have D,? =
L_ID?, i.e. the scheme structure on DkA is defined by the inverse image of the ideal
sheaf of D7! [Har77, p.163].

2.1. Resolution of Di. For each k € N, let G(k, A) be the Grassmannian of k-
dimensional subspaces of A and let

Dy = {([L], [U]) € LGu(n, Way) x G(k, A)|L D U}

By [PR97], ]D,? is a resolution of }D);?. We shall describe the above variety more precisely.
First of all we have the following incidence described more generally in [PR9I7]:

By
7N
D¢ G(k, A)

The projection ¢ is clearly birational, whereas 7 is a fibration with fibers isomorphic
to a Lagrangian Grassmannian LG(n — k,2n — 2k). In particular ]13)? is a smooth
manifold of Picard number two with Picard group generated by H, the pullback of the
hyperplane section of LG (n, Way,) in its Pliicker embedding, and R, the pullback of the
hyperplane section of G(k, A) in its Pliicker embedding. Denote by Q the tautological
bundle on G/(k, A) seen as a subbundle of the trivial symplectic bundle Wa, @ Og(, 4)-
Consider the subbundle QO+ C Wa, ® Og(k,a) perpendicular to Q with respect the

symplectic form. The following was observed in [PR97].
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Lemma 2.1. The variety ]IN));Q4 1 isomorphic to the Lagrangian bundle
F:=LG(n -k Q1/Q).

Of course the tautological Lagrangian subbundle on LG (n — k, Q1/Q) can be iden-
tified with the bundle ¢*L/7*Q =: W. In particular, we have c;(W) = ¢*c1(L) —
™c1(Q) =R — H.

Lemma 2.2. The relative tangent bundle Ty of w: F — G(k, A) is the bundle S*(WV).

Proof. This can be seen by globalizing the construction of the tangent space of the
Lagrangian Grassmannian described for example in [Muk10]. O

Lemma 2.3. The canonical class of Df* is —(n+1—k)H — (k — 1)R.
Proof. We use the exact sequence
0—T: = Tr — 7 Tgr,a — 0.
Now WY has rank n — k, so
a(Tr) = a(SPWY) = (n+ 1= k)eeW") = (n+1—k)(H — R)
while 7*c1(Tg(k,4)) = nR. Hence Ky = —c1(Tr) = —(n+1-k)H — (k- 1)R. O
Lemma 2.4. The variety D{* is a hyperplane section of LG (n, Way).

Proof. Indeed ID){1 is the intersection of the codimension one Schubert cycle on the
Grassmannian G(n, 2n) with the Lagrangian Grassmannian, hence a hyperplane section
of the Lagrangian Grassmannian. U

Let us denote by [E the exceptional divisor of ¢.
Lemma 2.5. For k = 2 we have: [E] = [H] — 2[R].

Proof. 1t is clear that [E] = a[H] + b[R] for some a,b € Z. Let us now consider the
restriction of E to a fiber of 7 i.e. we fix Vo C A a vector space of dimension 2 and
consider LG (n — 2, V5" /Va). Since E = ¢~ D4 we have

Enx—'[Va] = {[L] € LG(n — 2, V5" /Vo)|dim(L/V5 N A/ Vo) > 1}.
It is hence a divisor of type ]D)f/ Y2 which is a hyperplane section of the fiber by Lemma
2.4. Tt follows that a = 1.

To compute the coefficient at [R] we fix a subspace V,,_o of dimension n — 2 in A
and consider the Schubert cycle

ov._, = {[U] € G(2, A)| dim(U N V,_5) > 1}.

The class [0y, _,] in the Chow group of G(2, A) is then the class of a hyperplane section.
We now describe ¢.m*(oy,_,) as the class of the Schubert cycle 0,2, on LG(n,2n)
defined by

On—2n ={[L] € LG(n,2n)| dim(LNV,—2) >1, dim(LNA)>2}.
By [PR97, Theorem 2.1] we have
[On—2n] = c1(LY)es(LY) — 2e4(LY).
Moreover, from the same formula [PR97, Theorem 2.1] we have:

D4] = e1(LY)ea(LY) — 2¢3(LY).
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In terms of intersection on @‘24 this gives

n(n+1) _3 n(n+1 n n+1) 3
2

H N D] = er(LY) 2ea(LY) = 2e1(LY) 3(LY)

and

n(n2+1) _3 n(n+1) 4

H¥3H 4 R D] = e (£9) 5 es(£7) — 201 (L) (L),

n(n+1)
Since we know that E is contracted by the resolution to DA we also have E- H 4=

0. We can now compute b:

n(n+ ) —4

n+1 +1
"(2 )_4 "("2 )_3

(21) 0=E-H TN

(2.2) c1(LY)

= (H+bR) - H
(e (LY)2ea(LY) + (b — 2)er (£V)es (L) — 2bea(LV)).

=H

n(n+1) _4

Now, using the theorem of Hiller-Boe ([Prad1l, Theorem 6.4]) on relations in the Chow
ring of the Lagrangian Grassmannian we get

cl(ﬁv) = QCQ(LV) and CQ(EV) (c;:,(ﬁv)cl(ﬁv) - 04(£V)).
Substituting in 2.1 we get:
0= (b+2)deg(c1(LY)es(LY) = 2¢4(LY)) = (b + 2) deg op—2.5-

It follows that b = —2.
O

2.2. The embedding of G(3,W) into LG,(10,A3W). Let W be a 6-dimensional
vector space. Let G = G(3,W) C P(A3W) be the Grassmannian of 3-dimensional
subspaces in W in its Pliicker embedding. Now, recall for each [U] € G,

Ty = N2U AW C A3W.

P(Ty) is tangent to G(3, W) at [U]. Let T be the corresponding vector subbundle of
AW ® Og. Let A be a 10-dimensional subspace of AW isotropic with respect to the
symplectic form 7 defined by (1.1) and such that P(A) N G(3,W) = (). Recall that for
k=1,2,3,4 we defined

Dit = {[U] € G|dim(Ty N A) > k} C G.

Observe that 7 is a Lagrangian subbundle of AW ® Og with respect to the 2-form
7. It follows that we are in the general situation described at the beginning of Section
2, with n =10, Woo = AW, X =G, J =T and A = A. Then T defines a map

L G(3, W) = LG, (10, °W), [U] = [Tu].

We denote by Cy := P(Ty) N G(3, W) the intersection of G(3, W) with its projective
tangent space [U]. Then Cy is linearly isomorphic to a cone over P2 x P2 with vertex [U].
The quadrics containing the cone Cy; plays in this situation a similar role in the local
analyze of the singularities of D/{;1 as the Pliicker quadrics containing the Grassmanian
P(Fj,;) N G(3, W) in [0’G13]; this will be made more precise in Lemma 2.7.

We aim at proving the following:

Proposition 2.6. Let A € LG, (10, A>W) such that P(A) N G(3, W) = 0.
The map ¢ is an embedding and L(G(3, W)) meets transversely all loci D} \H))kJrl for

k=1,2,3. In particular each D,;4 is of expected dimension.
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For the proof we shall adapt the idea of [O’G13] to our context, that we first need
to introduce. Let us describe ¢ more precisely locally around a chosen point [Uy] €
G(3,W). For this, we choose a basis v1,...,vs for W such that Uy = (v, ve,v3) and
define Uy, = (v4,v5,v6). For any [U] € G(3,W) we have Ty = A2U AW, so Ty,, Tu.,
are two Lagrangian spaces that intersect only at 0; Ty, N Ty, = 0. By appropriate
choice of vy4, v5,v6 We can also assume that Ty, N A = 0.

Let

V = {[L] € LG,(10, A*W)|L N Ty, = 0}.
The decomposition AW = Ty, @ Ty, into Lagrangian subspaces, and the isomorphism
Ty, — Tl\J/o induced by n, allows us to view a Lagrangian space L in V as the graph of
a symmetric linear map Qr, : Ty, — Ty, = Ty Let qr € SmeT[\J/O be the quadratic
form corresponding to Q7. The map [L] — gz, defines an isomorphism V — Sym?T, T
Consider the open neighbourhood
U=A{[U] e GBE,W)|Ty N Ty, = 0}

of [Up] in G(3,W). For [U] € U we denote by Qu := Qr,, and qu := g7y, the symmetric
linear map and the quadratic form corresponding to the Lagrangian space Ty.
We shall describe gi7 in local coordinates. Observe that for any [U] € G(3, W),

TyNTy, =0 UNUx =0

and that any such subspace U is the graph of a linear map Sy : Uy — Us. In particular,
there is an isomorphism:

p: U — Hom(Uy,Ux); [U]+— Bu
whose inverse is the map
a > [Uq] :=[(v1 + av1)) A (v2 + a(v2)) A (v3 + a(vs))].

In the given basis (v1,v2,v3), (v, v5,v6) for Up and U, we let By = (b; ;)i jeqi...3) be the
matrix of the linear map fy. In the dual basis we let (mo, M), with M = (m; j); jef1..3}5
be the coordinates in

Ty, = (NUo @ AUy ®@ Uso)” = (A*Up & Hom(Uyp, Uss))”

Note, that under our identification the map ¢ : G(3, W) — LG(10, wedge>W) restricted
to 4 is the map [U] — qu, which justifies our slight abuse of notation in the following.

Lemma 2.7. In the above coordinates, the map
LU Ul qui=qr, € SmeT(\J/O
is defined by
(2.3) qU(mo, M) = Z biiji’j + my Z Bé}jmi’j + mg det By,
i,5€{1...3} i,5€{1...3}
where M"J, B[ij’j are the entries of the matrices adjoint to M and By .

Proof. We write in coordinates the map A3Uy @ A2Up @ Usy — A3Us ® A2Us @ Up
whose graph is A3U @ A2U @ Uy, where U is the graph of the map Uy — U, given by
the matrix By. O

Let now Q4 be the symmetric map Ty, — Ty, = T(yo whose graph is A and ¢4 the
corresponding quadratic form. In this way

D Ny ={[U] € W dim Ty N A) > 1} = {[U] € U|rk(Qu — Qa) < 10— 1},
7



hence D{! is locally defined by the vanishing of the (11 — ) x (11 — ) minors of the
10 x 10 matrix with entries being polynomials in b; ;.

First we show that the space of quadrics that define Cy, surjects onto the space of
quadrics on linear subspaces in P(Ty).

Lemma 2.8. If P C P(Ty) \ G(3,6) is a linear subspace of dimension at most 2, then
the restriction map rp : H'(P(Ty), Ze, (2)) — HO(P,Op(2)) is surjective.

Proof. We may restrict to the case when P is a plane. Since Cyy C P(Ty)) N G(3,6) is
projectively equivalent to the cone over P? x P? in its Segre embedding, it suffices to
show that if P C P® is a plane that do not intersect P? x P? C P®, then the Cremona
transformation Cr on P® defined by the quadrics containing P2 x P? maps P to a linearly
normal Veronese surface. Note that the ideal of P? x P2 C P?® is defined 2 x 2 minors of
a 3 x 3 matrix with linear forms in P® and its secant by the determinant of this matrix.
Since the first syzygies between the generators of this ideal are generated by linear ones
we infer from [AR04, Proposition 3.1] that they define a birational map. Moreover this
Cremona transformation contracts the secant determinantal cubic hypersurface V3, to
a P? x P2, so the the inverse Cremona is of the same kind. Furthermore, the fibers of
the map V3 — P? x P? are 3-dimensional linear spaces spanned by quadric surfaces in
P2 x P2. Now, by assumption, P does not intersect P? x P2, so the restriction Cr |p
is a regular, hence finite, morphism. Since the fibers of the Cremona transformation
are linear, P intersects each fiber in at most a single point, so the restriction Cr |p is
an isomorphism. Thus, if Cr(P) is not linearly normal, the linear span (Cr(P)) is a
P*, being a smooth projected Veronese surface. Assume this is the case. Then Cr(P)
is not contained in any quadric. Since the quadrics that define the inverse Cremona,
map Cr(P) to the plane P, these quadrics form only a net, when restricted to the
4-dimensional space (Cr(P)). In fact the complement of P? x P2 N (Cr(P)) in (Cr(P))
is mapped to P by the inverse Cremona transformation. Therefore (Cr(P)) must be
contained in the cubic hypersurface that is contracted by this inverse Cremona. Since
this hypersurface is contracted to the original P? x P2, we infer that P is contained in
P2 x P2. This contradicts our assumption and concludes our proof. U

Lemma 2.9. Let K = ANTy, = kerQa C Ty, and assume that k = dim K < 3. Then
for any I < k the tangent cone Q:ZA,UO of DlA N at Uy is linearly isomorphic to a cone

over the corank 1 locus of quadrics in P(H°(P(K), Op(x(2)))-

Proof. We follow the idea of [O’G10, Proposition 1.9]. If we choose a basis A of TVO,
the symmetric linear map Qp is defined by a symmetric matrix M*(By) with entries
being polynomials in (b ;); je1..3}-

The linear summands of each entry in M*(By) form a matrix that we denote by
N2(By). Since Qo = 0, the entries of M*(By) have no nonzero constant terms.
Moreover, by using Lemma 2.7 and Ag = (mg, M), we see that the map U 5 U — ¢, €
Sym?T, (yo, where ¢j; is the quadratic form corresponding to the symmetric map defined
by the matrix N(By;), maps 4 linearly onto the linear system of quadrics containing
the cone Cpj,. Of course, this surjection is independent of the choice of basis.

We now choose a basis A in Ty, in which @4 is represented by a diagonal matrix
Ry, = diag{0...0,1...1} with k zeros in the diagonal. Then

Dif Nyl = {[U] € Y| dim(Tyy N A) > 1} = {[U] € Y| dimker(Qy — Q4) > I}

= {[U] € Y| rank(M™(By) — Ry,) < 10 —1}.
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Hence D{! is defined in coordinates (bij)ijeq1..3y on by (11 —1) x (11 — ) minors of
the matrix M*(By) — Rg. Furthermore, since [Up] is the point 0 in our coordinates
(bij)ijeq1..3}, the tangent cone to D N4l at [Up] is defined by the initial terms of the
(11 — 1) x (11 — 1) minors of M*(By) — Ry. Note that we can write

M*(By) — R, = —Ry, + N*(By) + Z(By),

where the entries of the matrix Z(By) are polynomials with no linear or constant terms.
We illustrate this decomposition as follows.

A A A A
N1+ 20541 -+ Niwot+ 24110
N + Z : ' -
A A A A

N N - - ANk k+1+ZAk kbl - Nk.13\+Zk o

Nevig 2 -+ Nepie T2k 1+ Nipi ke e gtr - Nit1,10 + Ziyaio
A L A ' AL A A LA ) A A
Nio,1 + Z10,1 Nio,x + Zio,k Nio,k+1 + 210,541 <o =1+ Nig10 + Z10,10

Let ® be an (11 —1) x (11 — 1) minor of M*(By) — Ry and consider its decomposition
d = &g+ - + &, into homogeneous parts ¢, of degree d. Observe that &5 = 0 for
d < k—1, moreover ®;_;,1 can be nonzero only if the sub matrix associated to the minor
® contains all nonzero entries of Ry. In the latter case ®;_; 41 isa (k+1—1)x (k+1-1)
minor of the k x k upper left corner sub matrix N2 (By) of the matrix N*(By). Let us
now denote by ¢;, the quadric corresponding to the matrix N AM(By) and by ¢V the map
U + qy;. Then, by changing ® we get that the tangent cone of DlA N4l is contained in:

&y, = (U] € U rank(Ni}(By)) < k — 1} = {[U] € 8 rank(ghr|ic) < & — 1},

The latter is the preimage by rx o !V of the corank I locus in the projective space of
quadrics P(H(P(K), Op(k)(2))). By Lemma 2.8, we have seen that ry o N is a linear

surjection. So we conclude that QfA U, 18 a cone over the corank [ locus of quadrics in

P(HY(P(K), Op(x)(2))) with vertex a linear space of dimension 10 — M It follows

that QA:% v, 18 an irreducible variety of codimension @ equal to the codimension of

DZA. Thus we have equality €€47U0 = @547(]0 which ends the proof. O

Corollary 2.10. If A is a Lagrangian space in N3W, such that P(A) doesn’t meet
G(3,W), then the variety DlA 1s smooth of the expected codimension @ outside
Df_‘H. Moreover, if | = 2 and dim ANTy, = 3, i.e. [Uo] is a point in D5\ D', then the
tangent cone 6?4 U, s a cone over the Veronese surface in P> centered in the tangent

space of Dj.

Proof of Proposition 2.6. It is clear from Lemma 2.7 that ¢ is a local isomorphism into
its image, and by Corollary 2.10, the subscheme D% = :~1(+(G(3, W)) N D) is smooth
outside D% s0 1(G(3, W) meets the degeneracy loci transversally. O

2.3. Invariants. We shall compute the classes of the Lagrangian degeneracy loci D,‘? C
G(3,W) in the Chow ring of G(3,W). We consider the embedding ¢ : G(3,W) —
LG,(10, A*W) defined by the bundle of Lagrangian subspaces 7 on G (3, W). According
to [PR97, Theorem 2.1] the fundamental classes of the Lagrangian degeneracy loci D,’:‘
are
[Df‘] = e (TV)NG(3, W), [Dg‘] = [(e2e1 — 2¢3)(TY) N G(3,W)]
and
[D4Y] = [(creacs — 2¢3eq + 2cacq + 2c105 — 2¢3)(TY) N G(3, W)].
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The P-bundle P(T) is the projective tangent bundle on G(3,W). So TV fits into an
exact sequence
0— Qg(g,w)(l) — 7-\/ — Og(&w)(l) —0
and we get
deg D{! = 168, deg D§ =480, deg D4 =720

Remark 2.11. This may be compared with the degree of the line bundle 2H — 3F
on SBI, where S is a K3 surface of degree 10, H is the pullback of the line bundle
of degree 10 on S, and E is the unique divisor class such that the divisor of non-
reduced subschemes in SP is equivalent to 2E. The degree, i.e. the value of the
Beauville Bogomolov form is ¢(2H — 3E) = 4, and the degree and the Euler-Poincare
characteristic of the line bundle is

(2H — 3E)% = 15¢(2H — 3E)®> =960 and x(2H — 3E) = 10.

So if the map defined by |2H — 3F| is a morphism of degree 2, the image would have
degree 480, like D3

In the section 4, we show that SB! for a general K3-surface S of degree 10, admits
a rational double cover of a degeneracy locus DQA. However that double cover is not a
morphism.

3. THE DOUBLE COVER OF AN EPW CUBE

Proposition 3.1. Let [A] € LG, (10, A>W). If P(A)NG(3,W) =0 and Di' = 0, then
D4 admits a double cover f : Ya — D3 branched over D4 with Ya a smooth irreducible
manifold having trivial canonical class.

Before we pass to the construction of the double cover let us observe the following.
Lemma 3.2. Under the assumptions of Proposition 3.1 the variety Dé“ 1s integral.

Proof. We know that Dé“ is of expected dimension. Observe now that by Corollary
2.10 the variety D4 is irreducible if and only if it is connected. To prove connectedness
we perform a computation in the Chow ring of the Grassmannian G(3, W) showing
that the class [D3'] does not decompose into a sum of nontrivial effective classes in the
Chow group A3(G(3,W)) whose intersection is the zero class in A%(G(3,W)). More
precisely we compute:

(D3] = 16h% — 12hsy 4 1253

where h is the hyperplane class on G(3,W), so and s3 are the Chern classes of the
tautological bundle on G(3,W). We then solve in integer coordinates a,b,c € Z the
equation

(ah® — bsy + ¢s3)((16 — a)h® — (12 — b)sg + (12 — ¢)s3) = 0
in the Chow group A%(G(3,W)) which is generated by: s3, h3s1sq, s3. Multiplying out
the equation in the Chow ring and extracting coefficients at the generators we get a
system of three quadratic diophantine equations in a, b, c:

—5a? + 4ab — b2 + 56a — 20b = 0

(3.1) —6a® + 8ab — 2b% — dac + 2bc + T2a — 52b + 20c = 0
6a? — 6ab + b? + 2ac — c* — T2a + 36b — 4c =0
The only integer solutions are: (0,0,0) and (16,12,12). This ends the proof. O
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The plan of the construction of the double cover in Proposition 3.1 is the following.
We consider the resolution Ds' — D! with exceptional divisor E. We prove that E is a
smooth even divisor, and hence that there is a smooth double cover Y — D! branched
over E. Finally, we contract the branch divisor of the double cover using a suitable
multiple of the pullback of a hyperplane class on DQA by the resolution and the double
cover.

Thus, we start by defining the incidences

DY = {([U],[U']) € G3,W) x G(2,A)] Ty >U'},
and
D4 = {([L],[U"]) € LG, (10, A*W) x G(2,A)] L>U'}.
They fit in the following diagram:
G(3,W) —— LG, (10, A3W)
Ul Ul

Lemma 3.3. Under the assumptions of Proposition 3.1 the variety Dé“ as well as
the exceptional locus E of the map o are smooth. In particular o is a resolution of
singularities of Df.

Proof. Since we know that D' = , the resolution « : Dg' — D4 is just the blow up of
D4 along D?f‘. Now, Dé“\E is isomorphic to D3'\ D4, so, by Corollary 2.10, we deduce
that Dg‘ is smooth outside E. Let p € E C Dg‘. Then a(p) € D4'. Take Py, Pa, P to
be three general hyperplanes passing through a(p). Consider Zp = D3 NP1 NPy NP3
and its strict transform Zp C Dé“. We have the following diagram:

Zp*)]ﬁﬁ4

[

Zp — Dj

The map ap : Zp — Zp is the blow up of Zp in D{;‘ NP1 N Ps NP3, which by
Corollary 2.10 is a finite set of isolated points. By the assumption on Py, Py, P3 the
strict transform Zp contains the whole fiber a~!(p) and hence also p € Zp. Let P;
be the strict transform of P; for i = 1,2,3. Then P; is a Cartier divisor on [?QA and
Zp = 151 N 152 N 153 is a complete intersection of Cartier divisors on [)5‘. Now, from
Corollary 2.10, the exceptional divisor Fp = E N Zp of ap is isomorphic to a finite
union of disjoint (IP2)'s, one for each point in D{;‘ NP1 NPy NP3. But Ep is itself a
Cartier divisor on Zp by general properties of blow up. Therefore Zp is smooth. We
conclude that l~)§1 is smooth at p and similarly, that F is smooth at p. O

We compute the first Chern class of the normal bundle of the embedding 7 : D3 —
D,
11



Lemma 3.4.
(T Ny paypa) = @™ Nyaewy) e, oaew)) = 38k,

where h is the pullback via the resolution a of the restriction of the hyperplane class on

G(3,W) to D4
Proof. From the transversality (Proposition 2.6) we have
U Nyppypg) = @V Nuaew))ILa, o)
which gives the first equality.
To get the second, consider the exact sequence:
0 = To@w) = ¢ (Tra,a003w)) = (NyaE,w) L, 1o.a3w)) = 0

and observe that *(Tpq, 10,03w)) = t*(S*LY) = S*(1*LY) = S*T, where £ denotes,
as before, the tautological bundle on the Lagrangian Grassmannian LG (10, NSW). We
obtain

Cl(a*L*NL(G(3,W))|LG77(10,/\3W)) = —11a¢1(T) — 6h.
Now, from
0= Og@aw)(=1) =T = Ta@w)(=1) =0
we obtain a*c1(7) = —4h, which proves the lemma. O

Note that in our notation we have i*H = i*¢*c1(LY) = a** e1(LY) = a*e1(TY) = 4h.
We aim now at constructing a double covering of D? branched along E. It is enough
to prove that F is an even divisor. This follows from the exact sequence:

and Lemma 2.3. Indeed, from them we infer

e1(Tpy) = T"(9H + R) — 38h = I*(R) — 2h,

which, by Lemma 2.5, means £ = EN D4 = i*(H —2R) = 2K pa. By Lemma 3.3 there

hence exists a smooth double cover f Y - f)é4 branched along the exceptional locus
E of the resolution . Moreover, from the adjunction formula for double covers we get
Ky = fYE)=E. o )

We now need to contract E = f~!(E) on Y. For that, with slight abuse of notation,
we denote by h the class of the hyperplane section on D4 € G(3, W). Then |f*a*h| is
a globally generated linear system whose associated morphism defines o o f and hence
contracts E to a threefold and is 2:1 on Y\ f ~1(E). It follows by standard arguments
(for example applying Stein factorization and [Har70, Proposition 4.4]) that there exists
a number n such that the system |nf*a*h| defines a morphism @ : ¥ — Y which is a
birational morphism contracting exactly E to a threefold Z and such that its image ¥
is normal. We then have the following diagram

v L, by
er la
y L pg

in which Y admits a 2:1 map f:Y — DQA branched along Dg‘.
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Proof of Proposition 3.1. We have constructed Y, a normal variety admitting a 2:1
map f:Y — D? branched along D{;‘. Clearly Ky = E implies Ky = 0. It hence
remains to prove that Y is smooth. Since @& is a contraction that contracts only F it is
clear that Y is smooth outside of Z = &(E). Let now p € Z and let p/ = f(p). We then
choose three general hypersurfaces Pq, Py, P3 of degree n in P(A3W) passing through
p’. Consider Zp = D NP1 NPy NP3 and Zp = D{ NP1 NPy NP3. Then Zp is a
finite set of points that includes p’. Consider the following natural restriction of the
above diagram:

i/pL)ZP

l&p lOtP

Yp —P Zp

Here ap = Oé‘a—l(ZP) : Zp — Zp is just the blow up of Zp along Zﬁ,. The exceptional
divisor Ep is then, by Corollary 2.10, isomorphic to a finite set of disjoint (IP2)'s that
each have normal bundle Op2(—2) in Zp. Taking the double cover of Zp branched
along the exceptional divisor Fp, the preimage of these (IP2)'s are the components
of Ep C Yp, each component a P? with normal bundle Op2(—1). The contraction
ap contracts the divisor Ep to a finite set of points in Yp. It contracts one of its
(P2)'s, denote it by Eg, to the point p. Note also that from the construction, Yp is
the i