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Chapter 1

Introduction

Tables are one of those “universal tools” that are practical and useful in
many application scenarios. Tables can be used to collect and organize in-
formation from multiple sources and then turn that information into knowl-
edge (and, ultimately, support decision-making) by performing various op-
erations, like sorting, filtering, and joins. Because of this, a large number of
tables exist already out there on the Web, which represent a vast and rich
source of structured information that could be utilized.

The focus of the thesis is on developing methods for assisting the user in
completing a complex task by providing intelligent assistance for working
with tables. Specifically, our interest is in relational tables, which describe a
set of entities along with their attributes.

Imagine the scenario that a user is working with a table, and has already
entered some data in the table. Intelligent assistance can include providing
recommendations for the empty table cells, searching for similar tables that
can serve as a blueprint, or even generating automatically the entire a ta-
ble that the user needs. The table-making task can thus be simplified into
just a few button clicks. Motivated by the above scenario, we propose a set
of novel tasks such as table search, table generation, and table completion.
Table search is the task of returning a ranked list of tables in response to a
query. Google, for instance, can now provide tables as direct answers to
plenty of queries, especially when users are searching for a list of things.
Figure 1.1 shows an example. Table generation is about automatically orga-
nizing entities and their attributes in a tabular format to facilitate a better
overview. Table completion is concerned with the task of augmenting the in-
put table with additional tabular data. Figure 1.2 illustrates a scenario that
recommends row and column headings to populate the table with and au-
tomatically completes table values from verifiable sources. In this thesis, we
propose methods and evaluation resources for addressing these tasks.

1



1. Introduction

Figure 1.1: Google search results for the query “population of european
cities”. It retrieves an existing table as the direct answer.

Oscar Best Actor

……
ACTOR IN A LEADING ROLE
Casey A eck
Manchester by the Sea
……

oscar.go.com/winners

Year

2013

Actor Film

2014

2015

Matthew McConaughey

Eddie Redmayne

Leonard DiCaprio

Dallas Buyers Club

The theory of Everything

The Revenant

2016 Casey A eck

A

1.2017
2.2018

Add entity

B

 
Add column

1.Role(s)
2.Director(s)

C

Figure 1.2: Assistance with table completion by populating rows (A) and
columns (B), as well as automatically completing table values from verifiable
sources (C).

1.1 Research Questions

The research questions of this thesis center around the way to equip tables
with intelligent assistance functionalities such as searching, generating, and
completing tables. To address these, we propose a set of tasks and methods.
Below, we detail the main research questions along with the proposed tasks.

Table search is an important task on its own and is regarded as a funda-
mental step in many other table mining and extraction tasks as well, like

2



1.1. Research Questions

table integration or data completion. Yet, it has not received due attention,
and especially not from an information retrieval perspective. Table search
functionality is also available in commercial products; e.g., Microsoft Power
Query provides smart assistance features based on table search. Depend-
ing on the type of the query, table search may be classified as keyword query
search and table query search. However, public test collections and proper eval-
uation methodology are lacking, in addition to the need for better ranking
techniques. Our first question deals with keyword table search. Traditional
keyword table search relies on lexical matching between the keyword query
and tabular text. We seek to answer the following main research question.

RQ 1. Can we move beyond lexical matching and improve key-
word table search performance by incorporating semantic
matching?

For table-related tasks, the table that the user is working on can also be taken
as the query. Table search using a table as query boils down to computing
the similarity between the query table and candidate table. We thus ask:

RQ 2. Can we develop an effective and theoretically sound ta-
ble matching method for measuring and combining table
element level similarity, without resorting to hand-crafted
features?

There is a growing body of research on assisting users in the labor-intensive
process of table creation by helping them to augment tables with data [Yak-
out et al., 2012, Ahmadov et al., 2015a]. However, there are still some tasks
that have not been tackled in these flavors, like table population. As such,
we introduce and address the task of populating the input tables with addi-
tional rows and columns, and seek to answer:

RQ 3. How to populate table rows and column heading labels?

Organizing results, that is, entities and their attributes, in a tabular format fa-
cilitates a better overview. There exist two main families of methods that can
return a table as answer to a keyword query by: (i) performing table search
to find existing tables on the Web [Cafarella et al., 2008a, 2009, Venetis et al.,
2011, Pimplikar and Sarawagi, 2012, Nguyen et al., 2015], or (ii) assembling a
table in a row-by-row fashion [Yang et al., 2014] or by joining columns from
multiple tables [Pimplikar and Sarawagi, 2012]. However, these methods
are limited to returning tables that already exist in their entirety or at least
partially (as complete rows/columns). Another line of work aims to trans-
late a keyword or natural language query to a structured query language
(e.g., SPARQL), which can be executed over a knowledge base [Yahya et al.,
2012]. While in principle these techniques could return a list of tuples as
the answer, in practice, they are targeted for factoid questions or at most a
single attribute per answer entity. More importantly, they require data to

3



1. Introduction

be available in a clean, structured form in a consolidated knowledge base.
Motivated by these, we ask the following research question:

RQ 4. How to generate an output table as response to a free text
query?

The last task of fact finding is related to both table completion and genera-
tion. In particular, table completion tasks focus on the core column entities
and headings, and it can not provide suggestions for the rest table cells.
Assisting to fill in tabular cells with evidence can complement the table gen-
eration by verifying the value by tracking back to its source of origin. As
such, we seek to answer:

RQ 5. How to find facts with supporting evidence when com-
pleting tables?

1.2 Main Contributions

We now summarize the main contributions of this thesis.

1. Synthesizing existing research on table-related tasks: We provide a com-
prehensive survey on the broader topic of web table mining, retrieval
and augmentation, which also includes the work that has been done
outside information retrieval (i.e., databases, data mining and the Se-
mantic Web).

2. Revisiting the task of keyword table search, establishing test collec-
tions, baselines and methods: We introduce and formalize the ad
hoc table ranking task, and present both unsupervised and supervised
baseline approaches. We present a set of novel semantic matching
methods that go beyond lexical similarity. We develop a standard test
collection for this task and demonstrate the effectiveness of our ap-
proaches.

3. Defining the task of query-by-table, developing test collections and
methods: We introduce the query-by-table paradigm, adapt existing
methods, and present a discriminative approach that combines hand-
crafted features from the literature. We develop a general a table
matching framework and specific instantiations of this framework. We
construct a purpose-built test collection, perform a thorough experi-
mental evaluation, and provide valuable insights and analysis.

4. Proposing two table completion tasks, evaluation measures, test col-
lectins and method: We introduce and formalize two specific tasks
for providing intelligent assistance with tables: row population and
column population. We present generative probabilistic methods for
both tasks, which combine existing approaches from the literature with
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novel components. We design evaluation methodology and develop a
process that simulates a user through the process of populating a table
with data. We perform an experimental evaluation and carry out a
detailed analysis of performance.

5. Introducing the table generation task, presenting methods to generate
tables on the fly. We introduce the task of on-the-fly table genera-
tion and propose an iterative table generation algorithm. We develop
feature-based approaches for core column entity ranking and schema
determination, and design an entity-oriented fact catalog for fast and
effective value lookup. We perform extensive evaluation on the com-
ponent level and provide further insights and analysis.

6. Defining the task of value finding with supporting evidences, develop-
ing test collections, establishing baselines and methods: We present
the CellAutoComplete framework for finding cell values in relational
tables, which consists of preprocessing, candidate value finding, and
value ranking steps. Specific novel technical contributions include the
heading-to-heading and heading-to-predicate matching components
and as well as the features designed for combining evidence from mul-
tiple sources and for predicting empty values. We develop a purpose-
built test collection based on Wikipedia tables and perform an exten-
sive experimental evaluation. Our experiments show that our LTR
approach substantially outperforms existing data augmentation tech-
niques. We show that our CellAutoComplete framework can also be
used for checking existing values in tables.

7. SmartTable demo: The main contributions of this demonstrator are twofold.
First, we integrate the above assistance functionality into an online
spreadsheet application. Second, we describe the task-specific index-
ing structures employed, and evaluate the efficiency of our implemen-
tation in terms of response time. SmartTable is implemented using a
HTML5 front-end and a Python+ElasticSearch back-end. It uses DB-
pedia as the underlying knowledge base and a corpus of 1.6M tables
extracted from Wikipedia.

1.3 Organization of the Thesis

This section introduces how the thesis is organized. See Fig 1.3 for an il-
lustration. The thesis starts with the introduction and background chapters
(Chapter 1-2), followed by five technical chapters, each dedicated to a spe-
cific table-related task (Chapter 3-7), and concludes in Chapter 8. We assume
that the reader is familiar with traditional information retrieval approaches
and evaluation methods. For an introduction to these, see, e.g., [Zhai and
Massung, 2016].

5



1. Introduction

Introduction
Background

Table Generation
(Chapter 6)

Table Search
(Chapter 3-4)

Table Completion
(Chapter 5, 7)

Table Demo/
Resouces

(Appendix I&II)

Conclusion
(Chapter 8)

Figure 1.3: Overview of thesis organization.

Chapters 1-2 are dedicated to the introduction and background for the
rest of the thesis. Chapter 1 introduces the motivation, research questions,
contributions, and the origins of the thesis. Chapter 2 describes the table-
related tasks and existing approaches.

Chapter 3 defines and addresses the problem of table retrieval for keyword
query: answering a keyword query with a ranked list of tables.

Chapter 4 proposes a novel task called query-by-table: given an input table,
return a ranked list of tables. It boils down to computing the similarity
between the input table and a candidate table, which is referred as table
matching.

Chapter 5 introduces two specific tasks: populating rows with additional
instances (entities) and populating columns with new headings. It investi-
gates methods for utilizing different table elements for these tasks.

Chapter 6 introduces and addresses the task of the on-the-fly table genera-
tion: given a query, generate a relational table that contains relevant entities
(as rows) along with their key properties (as columns) by combining frag-
mentation information from web tables or from knowledge bases.

Chapter 7 addresses the task of finding table cell values with supporting
evidence, to support users in the labor-intensive process of creating rela-
tional tables.
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Chapter 8 concludes with remarks and provides future research directions.

Appendix A details the deployment of the SmartTable demonstrator, which
has two assistance functionalities of row and column population.

Appendix B lists the collection of resources developed in this thesis, which
are made publicly available.

1.4 Origins

The content of this thesis is based on a number of papers. Some of these
have been published, while others are currently under review. We list the
publications that are directly relevant to this thesis below.

P1. Shuo Zhang. SmartTable: Equipping Spreadsheets with Intelligent
Assistance Functionalities, in Proceedings of the 41st International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’18), pages 1447-1447, 2018.
[Integrated in Chapter 1].

P2. Shuo Zhang and Krisztian Balog. Web Table Extraction, Retrieval and
Augmentation: A Survey, accepted by ACM Transactions on Intelli-
gent Systems and Technology (TIST) (subject to minor revisions).
[Related to contribution 1; included in Chapter 2].

P3. Shuo Zhang and Krisztian Balog. Ad Hoc Table Retrieval using Seman-
tic Similarity, in Proceedings of the Web Conference 2018 (WWW ’18),
pages 1553-1562, 2018.
[Related to RQ1 and contribution 2; included in Chapter 3].

P4. Shuo Zhang and Krisztian Balog. Recommending Related Tables, arXiv
preprint arXiv:1907.03595, 2019.
[Related to RQ2 and contribution 3; included in Chapter 4].

P5. Shuo Zhang and Krisztian Balog. Semantic Table Retrieval using Key-
word and Table Queries, submitted to a journal, under review.
[Related to RQ1, RQ2, contribution 2, and contribution 3; included in Capters 3-
4].

P6. Shuo Zhang and Krisztian Balog. EntiTables: Smart Assistance for
Entity-Focused Tables, in Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR ’17), pages 255-264, 2017.
[Related to RQ3 and contribution 4; included in Chapter 5].

P7. Shuo Zhang and Krisztian Balog. On-the-fly Table Generation, in Pro-
ceedings of the 41st International ACM SIGIR Conference on Research
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and Development in Information Retrieval (SIGIR ’18), pages 595-604,
2018.
[Related to RQ4 and contribution 5; included in Chapter 6].

P8. Shuo Zhang and Krisztian Balog. Auto-completion for Data Cells in Re-
lational Tables, In Proceedings of The 28th ACM International Confer-
ence on Information and Knowledge Management (CIKM ’19), 2019.
[Related to RQ5 and contribution 6; included in Chapter 7].

P9. Shuo Zhang, Vugar Abdul Zada, and Krisztian Balog. SmartTable: A
Spreadsheet Program with Intelligent Assistance, in Proceedings of
the 41st International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR ’18), pages 1297-1300, 2018.
[Related to contribution 7; included in Appendix A].

The following papers are not directly related to this thesis but brought in-
sights to working with semi-structured data and capturing semantics.

P10. Shuo Zhang and Krisztian Balog. Design Patterns for Fusion-Based
Object Retrieval, in Proceedings of the 39th European Conference on
Information Retrieval (ECIR ’17), pages 684-690, 2017.

P11. Faegheh Hasibi, Dario Garigliotti, Shuo Zhang, and Krisztian Balog.
Supervised Ranking of Triples for Type-Like Relations-The Cress
Triple Score at WSDM Cup, in WSDM Cup 2017.

P12. Faegheh Hasibi, Krisztian Balog, Dario Garigliotti, and Shuo Zhang.
Nordlys: a Toolkit for Entity-oriented and Semantic Search, in Pro-
ceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’17), pages 255-264,
2017.

P13. Heng Ding, Shuo Zhang, Dario Garigliotti, and Krisztian Balog. Gen-
erating High-Quality Query Suggestion Candidates for Task-Based
Search, in Proceedings of the 40th European Conference on IR Re-
search (ECIR ’18), pages 625-631, 2018.

P14. Li Deng, Shuo Zhang, and Krisztian Balog. Table2Vec: Neural Word
and Entity Embeddings for Table Population and Retrieval, in Pro-
ceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’19), pages 1029-
1032, 2019.

P15. Shuo Zhang, Edgar Meij, Krisztian Balog, and Ridho Reinanda. Novel
Entity Discovery from Web Tables for Knowledge Base Population,
under review.

P16. Shuo Zhang, Jamie Callan, and Krisztian Balog. Generating New
Wikipedia Categories from Tabular Data, under review.

8



1.4. Origins

P17. Shuo Zhang and Krisztian Balog. Web Table Extraction, Retrieval,
and Augmentation (tutorial overview), in Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’19), pages 1409-1410, 2019.
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Chapter 2

Background

In this chapter, we present existing research on web tables. First, we discuss
the types of tables and public corpora (Sect. 2.1). Then, we organize existing
literature into six main categories of information access tasks: table extrac-
tion (Sect. 2.2), table interpretation (Sect. 2.3), table search (Sect. 2.4), ques-
tion answering on tables (Sect. 2.5), knowledge base augmentation (Sect. 2.6)
and table augmentation (Sect. 2.7). The relationship between the different
tasks is shown in Fig. 2.1. For each of these tasks, we identify and describe
seminal approaches, present relevant resources, and point out interdepen-
dencies among the different tasks.

2.1 Table Types and Corpora

In this section, we formally introduce tables (Sect. 2.1.1), present various
types of tables (Sect. 2.1.2), and provide an overview of publicly available
datasets (Sect. 2.1.3).

2.1.1 The Anatomy of a Table

A table T is grid of cells arranged in rows and columns. Tables are used as
visual communication patterns and as data arrangement and organization
tools. In this chapter, our primary focus is on web tables, that is, tables
embedded in webpages. Below, we define elements of a web table. We refer
to Fig. 2.2 for an illustration.

Table page title The table page title Tp is the title of the webpage which
embeds the table T.

Table caption The caption of a table, Tc, is a short textual label summarizing
what the table is about.
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Web and Docs

Table Search Table 
Extraction

Table 
Interpretation

Table 
Augmentation

Question 
Answering

Knowledge Base 
Augmentation

High level applications

Low-level tasks

Figure 2.1: Table-related information access tasks and their relationships.

Tp

Tc

TH

TE

T[:j]

T[i:]

T[i,j]

Figure 2.2: Illustration of table elements in a web table: table page title (Tp),
table caption (Tc), table headings (TH), table cell (T[i,j]), table row (T[i,:]), table
column (T[:,j]), and table entities (TE).

Table headings Table headings, TH, is a list of labels defining what each
table row/column is about. Headings are typically in the first row/-
column in a table. In case of relational tables (see below, in Sect. 2.1.2),
table headings are also referred to as table schema or attribute names.

Table cell A table cell T[i,j] is specified with the row index i and column
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2.1. Table Types and Corpora

index j. Table cells hold (possibly empty) values and are considered as
atomic units in a table.

Table row A table row T[i,:] is a list of table cells lying horizontally in line i
of a table.

Table column A table row T[:,j] is a list of table cells lying vertically in col-
umn j of a table.

Table entities Tables often mention specific entities, such as persons, organi-
zations, locations. Table entities TE is a set consisting of all the entities
that are mentioned in the table.

2.1.2 Types of Tables

A number of table classification schemes have been proposed in the litera-
ture. We start by reviewing those, then propose a normalized categorization
based on the main aspects these share.

In early work, Wang and Hu [2002a] make a distinction between genuine
and non-genuine tables:

• Genuine tables are leaf tables, i.e., do not contain other tables, lists,
forms, images or other non-text formatting tags in a cell. Furthermore,
they contain multiple rows and columns.

• Non-genuines tables refers to those that are not leaf tables.

Cafarella et al. [2008b] classify web tables into five main categories:

• Extremely small tables are those having fewer than two rows or columns.

• HTML forms are used for aligning form fields for user input.

• Calendars are a specific table type, for rendering calendars.

• Non-relational tables are characterized by low quality data, e.g., used
only for layout purposes (many blank cells, simple lists, etc.).

• Relational tables contain high-quality relational data.

Crestan and Pantel [2011] develop a fine-grained classification taxonomy,
organized into a multi-layer hierarchy.

• Relational knowledge tables contain relational data.

– Listings refer to tables consisting a series of entities with a single
attribute. In terms of layout direction, these are further classified
as vertical listings or horizontal listings.

– Attribute/value tables describe a certain entity along with its at-
tributes.
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– Matrix tables have the same value type for each cell at the junction
of a row and a column. Calendars, for example, can be regarded
as matrix tables.

– Enumeration tables list a series of objects that have the same onto-
logical relation (e.g., hyponomys or siblings).

– Form tables are composed of input fields for the user to input or
select values.

• Layout tables do not contain any knowledge and are used merely for
layout purposes.

– Navigational tables are meant for navigating within or outside a
website.

– Formatting tables are used for visually organizing content.

Lautert et al. [2013] refine the classification scheme of Crestan and Pantel
[2011].

• Relational knowledge tables

– Horizontal tables place attribute names on top (column header).
Each column corresponds to an attribute.

– Vertical tables place attribute names on the left (row header). Each
row represents an attribute.

– Matrix tables are three dimensional data sets, where headers are
both on the top and on the left.

• Layout tables, as before, are subdivided into navigational tables and for-
matting tables.

Relational knowledge tables are further classified according to a secondary
type taxonomy.

• Concise tables contain merged cells (cells having the same value are
merged into one) to avoid value repetition.

• Nested tables contain a table in a cell.

• Multivalued tables refer to tables containing multiple values in a single
cell. If all values in one cell come from one domain, they are named as
simple multivalued web tables, if not, they are called composed multivalued
value tables.

• Splitted tables present sequentially ordered repetitions in row/column
headers (i.e., each label is repeated in every x cell).

With a particular focus on web spreadsheets, Chen and Cafarella [2013] de-
fine the following type taxonomy:
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• Data frame spreadsheets contain data frames, each consisting of two re-
gions: data (numeric values) and headings (attribute names). These
are further classified based on how they are arranged:

– Hierarchical left spreadsheets place attributes on the left of the data
region.

– Hierarchical top spreadsheets put attributes on top of the data re-
gion.

• Non-data frame (flat) spreadsheets do not contain a data frame.

– Relation spreadsheets can be converted into the relational model [Codd,
1970].

– Form spreadsheets are designed for human-computer interaction.

– Diagram spreadsheets are for visualization purposes.

– List spreadsheets consist of non-numeric tuples.

– Other spreadsheets include schedules, syllabi, scorecards, and other
files without a clear purpose.

Eberius et al. [2015] distinguish tables along two dimensions: content and
layout. In terms of content, they adopt the classification scheme by Wang
and Hu [2002a]. Considering layout purposes, they sort tables according to
their logical structure into the following categories:

• Horizontal listings align cells horizontally.

• Vertical listings align cells vertically.

• Matrix tables refer to numerical tables.

Lehmberg et al. [2016] distinguish between three main types of tables:

• Relational tables contain a set of entities, which could exist in rows (hor-
izontal) or columns (vertical); the remainder of the cells contain their
descriptive attributes.

• Entity tables describe a certain entity.

• Matrix tables are referring to a numerical table.

The above categorization systems are quite diverse, which is not surpris-
ing considering that each was designed with a different use-case in mind.
Nevertheless, we can observe two main dimensions along which tables are
distinguished: content and layout. We propose a normalized classification
scheme, which is presented to Table 2.1. In the remainder of this chapter, we
shall follow this classification when referring to a certain type of table.
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Table 2.1: Classification of table types in this chapter.

Dimension Type Description

Content Relational Describes a set of entities with their attributes
Entity Describes a specific entity
Matrix A three dimensional data set, with row and

column headers
Other Special-purpose tables, including lists, calendars,

forms, etc.

Layout Navigational Tables for navigational purposes
Formatting Tables for visual organization of elements

Table 2.2: Overview of table corpora.

Table corpora Type #tables Source

WDC 2012 Web Table Corpus Web tables 147M Web crawl (Common Crawl)
WDC 2015 Web Table Corpus Web tables 233M Web crawl (Common Crawl)
Dresden Web Tables Corpus Web tables 174M Web crawl (Common Crawl)
WebTables Web tables 154M Web crawl (proprietary)
WikiTables Wikipedia tables 1.6M Wikipedia
TableArXiv Scientific tables 0.34M arxiv.org

2.1.3 Table Corpora

A number of table corpora have been developed in prior work, which are
summarized in Table 2.2.

WDC Web Table Corpus

There are two versions of WDC Web Table Corpus,1 which were released in
2012 and 2015 respectively. The 2012 version contains 147 million web tables,
which were extracted from the 2012 Common Crawl corpus (consisting of
3.5 billion HTML pages). Tables in this corpus are roughly classified as
relational or not relational in terms of layout. Statistically, 3.3 billion HTML
pages were parsed and 11.2 billion tables were identified; tables that are not
innermost (that is, contain other tables in their cells) were discarded. 1.3% of
the remaining tables (originating from 101 million different web pages) were
labeled as relational tables. Tables in this corpus are not classified further
and neither is table context data provided.

The WDC 2015 Web Table Corpus, constructed by Lehmberg et al. [2016],
contains 10.24 billion genuine tables. The extraction process consists of two
steps: table detection and table classification. The percentages of relational,

1http://webdatacommons.org/framework/
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entity, and matrix tables are 0.9%, 1.4%, and 0.03% respectively. The remain-
ing 97.75% accounts for layout tables. When storing a table, its orientation is
also detected, indicating how the attributes are placed. In horizontal tables,
the attributes are placed in columns, while in vertical tables they represent
rows. There are 90.26 million relational tables in total. Among those, 84.78
million are horizontal and 5.48 million are vertical. The average number of
columns and rows in horizontal tables are 5.2 and 14.45. In vertical tables,
these numbers are 8.44 and 3.66, respectively. Lehmberg et al. [2016] also
extract the column headers and classify each table column as being numeric,
string, data, link, boolean, or list. The percentages of the numeric and string
columns are 51.4% and 47.3%, respectively. Besides, the text surrounding
the table (before and after) is also provided.

Furthermore, Lehmberg et al. [2016] provide the English-language Rela-
tional Subset, comprising of relational tables that are classified as being
in English, using a naive Bayesian language detector. The language filter
considers a table’s page title, table header, as well as the text surrounding
the table to classify it as English or non-English. The average number of
columns and rows in this subset are 5.22 and 16.06 for horizontal tables,
and 8.47 and 4.47 for vertical tables. The percentages of numeric and string
columns are 51.8% and 46.9%.

A total of 139 million tables in the WDC 2015 Web Table Corpus are clas-
sified as entity tables. Out of these, 76.70 million are horizontal and 62.99
million are vertical tables. The average number of columns and rows are
2.40 and 9.08 for horizontal tables, and 7.53 and 2.06 for vertical tables. The
column data types are quite different from that of relational tables. String
columns are the most popular, amounting to 86.7% of all columns, while
numeric columns account for only 9.7%.

The complete corpus as well as the different subcorpora are made publicly
available.2

Dresden Web Table Corpus

Eberius et al. [2015] also extracted tables from the Common Crawl web cor-
pus. The total number of tables is 174 million, which is reduced to 125
million after filtering with regards to content-based duplication. The Dres-
den Web Table Corpus contains only the core table data, and not the entire
HTML page. Even though the corpus is not available for download directly,
the table extraction framework (extractor code and companion library for
working with the data set) is made publicly available.3

2http://webdatacommons.org/webtables/#results-2015
3https://wwwdb.inf.tu-dresden.de/misc/dwtc/
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WebTables

Cafarella et al. [2008b] extracted 154 million high-quality relational web ta-
bles from a (proprietary) general-purpose web crawl. Unfortunately, this cor-
pus is not made public. However, frequency statistics of attributes, known
as the ACSDb dataset (cf. Sec. 2.7.2), is available for download.4

Wikipedia Tables

Bhagavatula et al. [2015] focused on Wikipedia and extracted 1.6 million
high-quality relational tables. Each table is stored as a JSON file, including
table body, table caption, page title, column headers, and the number of row
and columns. The existing links in the tables are also extracted and stored in
a separate file. The corpus is available for download.5 This is the collection
we use in Chapters 3-7.

Scientific Tables

Scientific tables are a particular type of table, which contain valuable knowl-
edge and are available in large quantities. The TableArXiv corpus6 consists
of 341,573 tables, extracted from physics e-prints on arxiv.org. Along with
the corpus, 105 information needs and corresponding relevance judgements
are also provided for the task of scientific table search.

2.2 Table Extraction

A vast number of tables can be found on the Web, produced for various pur-
poses and storing an abundance of information. These tables are available
in heterogenous format, from HTML tables embedded in webpages to files
created by spreadsheet programs (e.g., Microsoft Excel). To conveniently uti-
lize these resources, tabular data should be extracted, classified, and stored
in a consistent format, resulting ultimately in a table corpus. This process
is referred to as table extraction. In this section, we present approaches for
the table extraction task, organized around three main types of tables: web
tables, Wikipedia tables, and spreadsheets.

2.2.1 Web Table Extraction

Table extraction is concerned with the problem of identifying and classifying
tables in webpages, which encompasses a range of more specific tasks, such
as relational table classification, header detection, and table type classifica-
tion. These three tasks (relational table classification, header detection, and

4https://web.eecs.umich.edu/~michjc/data/acsdb.html
5http://websail-fe.cs.northwestern.edu/TabEL/
6http://boston.lti.cs.cmu.edu/eager/table-arxiv/
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table type classification) are commonly approached as a supervised learn-
ing problem and employ similar features; these features are summarized in
Tables 2.3 and 2.4. In the follows, we organize the literature according to the
three tasks.

Relational table classification

The identification of tables on the Web is usually straightforward based on
HTML markup. Tables, however, are also used extensively for formatting
and layout purposes. Therefore, web table extraction involves a data clean-
ing subtask, i.e., identifying and filtering out “bad” tables (where “bad” usu-
ally denotes non-relational tables). Relational table classification (also known
as identifying high-quality or genuine tables) refers to the task of predicting
whether a web table contains relational data.

One of the pioneering works utilizing tables on the Web is the WebTables
project [Cafarella et al., 2008a,b]. Cafarella et al. [2008b] regard relational ta-
bles as high-quality tables, and filter those by training a rule-based classifier.
The classifier uses table characteristics, like table size and table tags, as fea-
tures. The model is trained on a set of manually annotated tables (as being
relational or non-relational) by two human judges. As a result, they con-
struct a high-quality table corpus, consisting of 154 million tables, filtered
from 14.1 billion HTML tables (cf. Sect. 2.1.3). Balakrishnan et al. [2015]
follow a similar approach to [Cafarella et al., 2008b] for relational table clas-
sification, but use a richer set of features, which include both syntactic and
semantic information. Syntactic features are related to the structure of the
table, as in [Cafarella et al., 2008b] (e.g., number of rows and columns). Se-
mantic features are obtained by (i) determining whether the table falls into
a boilerplate section of the containing page, (ii) detecting subject columns
(using a binary SVM classifier trained based on one thousand manually la-
beled tables), (iii) identifying column types (which will be detailed later, in
Sect. 2.3.1), (iv) and detecting binary relationships between columns (by an-
alyzing how these relationships are expressed in the text surrounding the
table). Wang and Hu [2002b] define a table as genuine, if it is a leaf table
where no subtable exists in any of the cells. They employ machine learned
classifiers (decision trees and support vector machines) to classify relational
tables, using three main groups of features: layout features, content type
features, and word group features. The layout features and most of the con-
tent features are listed in Tables 2.3 and 2.4. As for word group features,
Wang and Hu [2002b] treat each table as a document and compute word
frequency statistics. In follow-up work, the authors also experiment with
other machine learning methods (Naive Bayes and weighted kNN), using
the same set of features [Wang and Hu, 2002a]. Building on [Wang and Hu,
2002b], Eberius et al. [2015] carry out relational table classification as well
as classification according to layout type (vertical listings, horizontal listing,
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and matrix tables). Their first method performs classification along both
dimensions simultaneously, using a single layer. Their second approach
separates the two tasks into two layers, where the first layer executes table
detection and, subsequently, the second layer determines the layout type.
Various machine learning methods are employed, including decision trees,
Random Forests, and SVMs, using a combination of global and local fea-
tures; a selection of features are listed in Table 2.3 and Table 2.4. As a result,
Eberius et al. [2015] classify millions of tables and generate the Dresden Web
Table Corpus (DWTC, cf. Sect. 2.1.3).

To obtain metadata for relational tables, Eberius et al. [2015] consider whether
tables have a header row or not. They find that 71% of the tables in the cor-
pus have a relational header. For the remaining 29%, they attempt to gener-
ate synthetic labels by comparing the column content to similar columns that
have proper labels. Cafarella et al. [2009] design a system called OCTOPUS,
which combines search, extraction, data cleaning, and integration. Further
challenges related applying WebTables in practice, including table identifica-
tion and table semantics recovery, are detailed in [Balakrishnan et al., 2015].
The resulting system, Google Fusion Tables, is made publicly available.7

Header detection

To extract data in a structured format, the semantics of tables need to be
uncovered to some extent. One question of particular importance is whether
the table contains a header row or column. This is known as the task of
header detection. Headers may be seen as a particular kind of table metadata.
Header detection is commonly addressed along with the other two tasks
and uses similar features (cf. Tables 2.3 and 2.4).

Table type classification

Another type of metadata that can help to uncover table semantics is table
type. Table type classification is the task of classifying tables according to
a pre-defined type taxonomy (cf. Sect. 2.1.2 for the discussion of various
classification schemes). Additional metadata extracted for tables includes
the embedding page’s title, the table’s caption, and the text surrounding the
table.

The same features that are intended for relational table classification and
header detection can also be used for table type classification [Wang and
Hu, 2002b,a, Lehmberg et al., 2016, Chen and Cafarella, 2013, Cafarella et al.,
2008b]. For example, the features listed in Tables 2.3 and 2.4 are used in
[Eberius et al., 2015] for both relational table classification and table type
classification. Instead of directly classifying tables as relational or not, this

7https://research.google.com/tables
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Table 2.3: Selected features for relational table classification (RTC) and header
detection (HD) (Part 1/2).

Features Explanation Task Source

Global layout features

Max rows Maximal number of cells per
row

RTC,
TTC

[Crestan and Pantel,
2011, Eberius et al., 2015]

Max cols Maximal number of cells per col-
umn

RTC,
TTC

[Crestan and Pantel,
2011, Eberius et al., 2015]

Max cell length Maximal number of characters
per cell

RTC,
TTC

[Crestan and Pantel,
2011, Eberius et al., 2015]

#rows Number of rows in the table RTC,
HD

[Cafarella et al., 2008b]

#cols Number of columns in the table RTC,
HD

[Cafarella et al., 2008b]

%rows Percentage of rows that are
mostly NULL

RTC [Cafarella et al., 2008b]

#cols non-string Number of columns with non-
string data

RTC [Cafarella et al., 2008b]

μ Average length of cell strings RTC [Cafarella et al., 2008b]
δ Standard deviation of cell string

length
RTC [Cafarella et al., 2008b]

μ
δ Cell string length RTC [Cafarella et al., 2008b]
%length one Percentage of columns with

|len(row1)− μ| > 2δ
HD [Cafarella et al., 2008b]

%length two Percentage of columns with δ ≤
|len(row1)− μ| ≤ 2δ

HD [Cafarella et al., 2008b]

%length three Percentage of columns with
|len(row1)− μ| < δ

HD [Cafarella et al., 2008b]

Avg rows Average number of cells across
rows

RTC,
TTC

[Eberius et al., 2015,
Wang and Hu, 2002b]

Avg cols Average number of cells across
columns

RTC,TTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Avg cell length Average length of characters per
cell

RTC,TTC [Crestan and Pantel,
2011, Eberius et al., 2015,
Wang and Hu, 2002b]

can also be done indirectly by saying that a table is relational if relational
information can successfully be extracted from it [Chen and Cafarella, 2013].
Table extraction is also involved in a number of other studies, but these
datasets are not publicly available. For example, with the purpose of data
integration, Wang et al. [2012] use a rule-based filtering method to construct
a corpus of 1.95 billion tables. For a type-classification study, Crestan and
Pantel [2011] extract a corpus of 8.2 billion tables. Using a more fine-grained
type taxonomy (see Sect. 2.1.2), table type classification is approached as a
multi-class classification problem. Crestan and Pantel [2011] propose a rich
set of features, including global layout features, layout features, and content
features. Global layout features include the maximum number of rows, cols,
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2. Background

Table 2.4: Selected features for relational table classification (RTC), header detec-
tion (HD), and table detection (TD) (Part 2/2).

Features Explanation Task Source

Layout features

Std dev rows Standard dev. of the number of
cells per row

RTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Std dev cols Standard dev., of the number of
cells per column

RTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Std dev cell length Standard dev. of the number of
characters per cell

RTC [Crestan and Pantel,
2011, Eberius et al., 2015,
Wang and Hu, 2002b]

Local length avg Average size of cells in segment RTC [Crestan and Pantel,
2011, Eberius et al., 2015]

Local length vari-
ance

Variance of size of cells in seg-
ment

RTC [Crestan and Pantel,
2011, Eberius et al., 2015]

Content features

%body non-string Percentage of non-string data in
table body

HD [Cafarella et al., 2008b]

%header non-string Percentage of non-string data in
the first row

HD [Cafarella et al., 2008b]

%header punctua-
tion

Percentage of columns with
punctuation in the first row

HD [Cafarella et al., 2008b]

Local span ratio Ratio of cells with a 〈span〉 tag RTC,TTC [Crestan and Pantel,
2011, Eberius et al., 2015]

Local ratio header Cells containing 〈th〉 tag RTC,TTC [Crestan and Pantel,
2011, Eberius et al., 2015]

Local ratio anchor Cells containing 〈a〉 tag RTC,TTC [Crestan and Pantel,
2011, Eberius et al., 2015]

Local ratio input Cells containing 〈input〉 tag RTC,TTC [Crestan and Pantel,
2011, Eberius et al., 2015]

Ratio img Ratio of cells containing images RTC,TTC [Crestan and Pantel,
2011, Eberius et al., 2015,
Wang and Hu, 2002b]

Ratio form Ratio of cells containing forms RTC,TTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Ratio hyperlink Ratio of cells containing hyper-
links

RTC,TTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Ratio alphabetic Ratio of cells containing alpha-
betic characters

RTC,TTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Ratio digit Ratio of cells containing nu-
meric characters

RTC,TTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Ratio empty Ratio of empty cells RTC,TTC [Eberius et al., 2015,
Wang and Hu, 2002b]

Ratio other Ratio of other cells RTC,TTC [Eberius et al., 2015,
Wang and Hu, 2002b]
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2.2. Table Extraction

and maximum cell length. Layout features include average length of cells,
length variance, and the ratio of row/column span. Content features in-
clude HTML features (based on HTML tags) and lexical features (based on
cell content). As a follow-up work, Lautert et al. [2013] additionally consider
the category obtained in [Crestan and Pantel, 2011] as one features to further
classify tables into a multi-layer taxonomy. The first layer of classification is
similar to the one in [Crestan and Pantel, 2011]. A second layer of classifi-
cation focuses on relational knowledge, by additionally dividing relational
knowledge tables into concise, nested, multivalued (simple or composed),
and split tables. Lehmberg et al. [2016] construct a web table corpus from
Common Crawl (WDC Web Table Corpus, cf. 2.1.3). First, they filter out
non-genuine tables (referred to as not innermost tables, i.e., tables that con-
tain other tables in their cells) and tables that contain less than 2 columns or
3 rows. Then, using the table extraction framework of DWTC, the filtered ta-
bles are classified as either relational, entity matrix, or layout tables [Eberius
et al., 2015]. Recently, deep learning methods have also been used for table
type classification. For example, Nishida et al. [2017] regard a table as a
matrix of texts, which is similar to an image. Utilizing the type taxonomy
from [Crestan and Pantel, 2011], they design a framework named TabNet,
consisting of RNN Encoder, CNN Encoder, and Classifier. The RNN En-
coder encodes the input table cells to create a 3D table volume, like image
data, in the first step. The CNN encoders encode the 3D table volume to
capture table semantics, which is used for table type classification by the
Classifier. Even though TabNet is designed to capture table structure, it can
be applied to any matrix for type classification.

2.2.2 Wikipedia Table Extraction

Wikipedia tables may be regarded as a special case of web tables. They are
much more homogeneous than regular web tables and are generally of high
quality. Therefore, no additional data cleaning is required. Bhagavatula
et al. [2015] construct a Wikipedia table corpus, consisting of 1.6 million
tables, with the objective of extracting machine-understandable knowledge
from tables. For details, we refer to Sect. 2.1.3.

2.2.3 Spreadsheet Extraction

The Web contains a great variety and number of Microsoft Excel spreadsheets.
Spreadsheets are often roughly relational. Chen and Cafarella [2013] design
an automatic system to extract relational data, in order to support data in-
tegration operations, such as joins. A data frame is defined as a block of
numerical data. Chen and Cafarella [2013] extract 410,554 Microsoft Excel
files from the ClueWeb09 Web crawl by targeting Excel-style file endings
that contain a data frame. Within a data frame, the attributes might lie on
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2. Background

Figure 2.3: Illustration of table interpretation: (A) Column Type Identifica-
tion. (B) Entity Linking. (C) Relation extraction.

the left or top. Chen and Cafarella [2013] find that 50.5% of the spread-
sheets contain a data frame and 32.5% of them have hierarchical top or left
attributes (the rest are called flat spreadsheets). Among the 49.5% non-data
frame spreadsheets, 22% are relational, 10.5% are forms, 3.5% are diagrams,
3% are lists, and 10.5% are other spreadsheets. For each spreadsheet, the
extraction system firstly finds the data frame, then extracts the attribute hi-
erarchy (top or left), and finally builds relational tuples (see Sect. 2.3.3 for
more details).

2.3 Table Interpretation

Table interpretation encompasses methods that aim to make tabular data
processable by machines. Specifically, it focuses on interpreting tables with
the help of existing knowledge bases. Bhagavatula et al. [2015] identify three
main tasks aimed at uncovering table semantics: (i) column type identification,
that is, associating a table column with the type of entities or relations it
contains, (ii) entity linking, which is the task of identifying mentions of enti-
ties in cells and linking them to entries in a reference knowledge base, and
(iii) relation extraction, which is about associating a pair of columns in a table
with the relation that holds between their contents. Table 2.5 provides an
overview of studies addressing either or all of these tasks.

2.3.1 Column Type Identification

In relational tables, the core column (also referred to as subject column, name
column, or entity column [Lehmberg and Bizer, 2016]) is a special column
that contains entities. Commonly, this is the leftmost column in a table
(and other table columns correspond to attributes or relationships of these
entities). The identification of the core column is a central pre-processing
step for entity linking, table augmentation, and relation extraction. Most of
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2.3. Table Interpretation

Table 2.5: Overview of table interpretation tasks addressed in various stud-
ies.

Reference Column type Entity Relation
identification linking extraction

Bhagavatula et al. [2015] �
Chen and Cafarella [2013] �
Efthymiou et al. [2017] �
Fan et al. �
Hassanzadeh et al. [2015] �
Ibrahim et al. [2016] �
Lehmberg and Bizer [2016] �
Limaye et al. [2010] � �
Muñoz et al. [2014] �
Mulwad et al. [2013] �
Mulwad et al. [2010] � � �
Ritze and Bizer [2017] �
Ritze et al. [2016] �
Sekhavat et al. [2014b] �
Venetis et al. [2011] � �
Wang et al. [2012] �
Wu et al. [2016] �
Zhang and Chakrabarti [2013] � �
Zhang [2017] � � �
Zwicklbauer et al. [2013] �

the existing work assumes the presence of a single core column. Such tables
are also known as single-concept relational tables. However, in some cases,
a relational table might have multiple core columns that may be located at
any position in the table [Braunschweig et al., 2015b], called a multi-concept
relational table. Braunschweig et al. [2015b] extend a single-concept method,
which utilizes table headings as well as intrinsic data correlations, with more
features, like the correlation with the left neighbor, to determine all the core
columns. We focus on single-concept relational tables in the remainder of
this section.

Generally, column type identification is concerned with determining the types
of columns, including locating the core column. This knowledge can then be
used to help interpret a table. Table 2.6 displays a summary of the methods,
which we shall discuss below. Venetis et al. [2011] argue that the mean-
ing of web tables is “only described in the text surrounding them. Header
rows exist in few cases, and even when they do, the attribute names are
typically useless” [Venetis et al., 2011]. Therefore, they add annotations to
tables to describe the sets of entities in the table (i.e., column type identifi-
cation). This is accomplished by leveraging an IS-A database of entity-class
pairs. This IS-A database is created by aggregating all the entity-class 〈e, C〉
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Table 2.6: Comparison of column type identification tasks.

Reference Knowledge base Method

Venetis et al. [2011] Automatically
built IS-A database

Majority vote

Mulwad et al. [2010] Wikitology Entity search
Fan et al. Freebase Concept-based method + crowd-

sourcing
Wang et al. [2012] Probase Heading-based search
Lehmberg and Bizer [2016] DBpedia Feature-based classification
Zhang [2017] Wikipedia Unsupervised featured-based

method
Zhang and Chakrabarti
[2013]

- Semantic graph method

pairs that are mined from the Web (100 million English documents using
50 million anonymized queries) using the pattern “C [such as—including]
e [and—,—.].” A class label is assigned to a column if a certain fraction
of entities in that column is identified with that label in the IS-A database.
Venetis et al. [2011] conclude that using a knowledge base (YAGO) results
in higher precision, while annotating against the IS-A database has better
coverage, i.e., higher recall. Mulwad et al. [2010] map each cell’s value in
a column to a ranked list of classes, and then selects a single class which
best describes the whole column. To get the ranked list of classes, a com-
plex query, based on cell values, is submitted to the Wikitology knowledge
base [Syed, 2010]. Possible class labels are obtained by utilizing the relevant
entities in the knowledge base. Then, a PageRank-based method is used
to compute a score for the entities’ classes, from which the one with the
highest score is regarded as the class label. Mapping each column to one of
the four types (“Person”, “Place”, “Organization,” and “Other”), Mulwad
et al. [2010] achieve great success on “Person” and “Places,” and moderate
success on “Organization” and “Other” types, due to their sparseness in the
reference knowledge base.

Because of the inherent semantic heterogeneity in web tables, not all tables
can be matched to a knowledge base using pure machine learning meth-
ods. Fan et al. propose a “two-pronged” approach for matching web tables’
columns to a knowledge base. First, a concept-based method is used to
map each column to the best knowledge base concept. Specifically, they
employ Freebase as the concept catalog. Second, a hybrid human-machine
framework discerns the concepts for some exceptional columns manually.
The matches between table columns and their candidate concepts are repre-
sented as a bipartite graph, where relationships correspond to edges. Fan
et al. employ crowdsourcing for this task, and find that a higher payment
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leads to better accuracy.

A table corpus is constructed in [Wang et al., 2012] and it is classified accord-
ing to a probabilistic taxonomy called Probase, which is able to understand
entities, attributes, and cells in tables. To get the table semantics, a top-k can-
didates concepts are returned based on the table headings, which is similar
to the idea in [Limaye et al., 2010] (cf. Sect. 2.3.2). The candidate concepts
assist to detect entities in a given column by computing the maximum num-
ber of common concepts. In turn, the entity column type is obtained based
on the confidence of the concepts. Wang et al. [2012] demonstrate that table
headers can help to understand the columns as well as to identify the core
column.

Lehmberg and Bizer [2016] propose a categorization scheme for web table
columns which distinguishes the different types of relations that appear in
tables on the Web. First, a binary relation is a relation that holds between
the core column and the values in another column, e.g., populations of cities.
Second, an N-ary relation is a relation that holds between the core column
and additional entities and values in other columns. Third, an indepen-
dent column is one that has no direct relation with the core column. Lehm-
berg and Bizer [2016] propose a feature-based classifier that distinguishes
between these three types of relations for better table interpretation.

Zhang [2017] presents TableMiner+ for semantic table interpretation, where
core column detection and type identification linking are executed at the
same stage. Zhang [2017] first simply uses regular expressions and classifies
cells as “empty,” “entities,” “numbers,” “data,” “text,” or “other.” Then, evi-
dence is gathered from the Web for each column to predict the likelihood of
it being subject. Specifically, a keyword query is composed from all text con-
tent in each row, and the subject entity in this row is detected by recognizing
the top-ranked page. Finally, an unsupervised feature-based method is em-
ployed to find the core column and type by aggregating evidence across all
rows. Features include the fraction of empty cells, the fraction of cells with
unique content, context match score (heading frequency within surrounding
text), and web search score. The main differences between TableMiner+ and
other methods are twofold: (1) TableMiner+ uses context outside the tables
while others not, and (2) it adopts an iterative process to optimize and en-
force the interdependence between different annotation tasks (entity linking
and relation extraction.)

The above methods work well for string values and static attributes but per-
form poorly for numeric and time-varying attributes. Zhang and Chakrabarti
[2013] build a semantic graph over web tables suited for numeric and time-
varying attributes by annotating columns with semantic labels, like times-
tamp, and converting columns by comparing with columns from other ta-
bles. While this method is designed for entity augmentation, it can also be
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Table 2.7: Comparison of entity linking tasks.

Reference Knowledge base Method

Limaye et al. [2010] YAGO catalog, DBpedia,
and Wikipedia tables

Inference of five types of
featuresa

Bhagavatula et al. [2015] YAGO Graphical model
Wu et al. [2016] Chinese Wikipedia,

Baidu Baike, and
Hudong Baike

Probabilistic methodb

Efthymiou et al. [2017] DBpedia Vectorial representation and on-
tology matching

Zhang [2017] Wikipedia Optimization
Mulwad et al. [2010] Wikitology SVM classifier
Lehmberg et al. [2016] Google Knowledge

Graph
-

Ibrahim et al. [2016] YAGO Probabilistic graphical model
Zhang et al. [2013] DBpedia Instance-based schema map-

ping
Hassanzadeh et al. [2015] DBpedia, Schema.org,

YAGO, Wikidata, and
Freebase

Ontology overlapc

Ritze and Bizer [2017] DBpedia Feature-based method
Ritze et al. [2015, 2016] DBpedia Feature-based method
Lehmberg and Bizer [2017] DBpedia Feature-based method
a Designed for table search
b Multiple KBs
c KB comparison

utilized for column type identification.

2.3.2 Entity Linking

Recognizing and disambiguating specific entities (such as persons, organi-
zations, locations, etc.), a task commonly referred to as entity linking, is a
key step to uncovering semantics [Bhagavatula et al., 2015]. Since many web
tables are relational, describing entities, entity linking is a key step to under-
standing what the table is about. A number of table-related tasks, such as
table population [Wang et al., 2015a], and table search, rely on entity linking
in tables. Table 2.7 compares the tasks we will discuss below.

Limaye et al. [2010] pioneered research on table entity linking. They intro-
duce and combine five features, namely, the TF-IDF scores between cell text
and entity label, the TF-IDF scores between the column header and the type
label, the compatibility between column type and cell entity, compatibility
between relation and pair of column types, and the compatibility between
relation and entity pairs. Their idea of factor graph-based entity linking
approach influenced later research. For example, Bhagavatula et al. [2015]
design a system called TabEL for table entity linking. TabEL employs a
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graphical model that “assigns higher likelihood to sets of entities that tend
to co-occur in Wikipedia documents and tables” [Bhagavatula et al., 2015].
Specifically, it uses a supervised learning approach and annotated mentions
in tables for training. TabEL focuses on Wikipedia table and executes men-
tion identification for each table cell, then obtains a set of candidate entities
for disambiguation. The disambiguation technique is based on the assump-
tion that entities in a given row and column tend to be related. They use a
collective classification technique to optimize a global coherence score for a
set of entities in a given table. By comparing against traditional entity link-
ing methods for unstructured text, Bhagavatula et al. [2015] demonstrate the
need for entity linking methods designed specifically for tables.

Unlike most methods, which consider a single knowledge base, Wu et al.
[2016] propose an entity linking method for web tables that considers multi-
ple knowledge bases to ensure good coverage. From each knowledge base,
entities whose names share at least one word with the content of a given
table cell are taken as candidates. Then, an entity disambiguation graph
is constructed, consisting of mention nodes, entity nodes, mention-entity
edges, and entity-entity edges. The method utilizes entity linking “impact
factors,” which are two probabilities, for ranking candidates and for dis-
ambiguating entities, based on mention nodes and edges. To incorporate
multiple knowledge bases, “same-As” relations between entities from dif-
ferent knowledge bases are leveraged to reduce errors and to improve cov-
erage. This system shares many similarities with TabEL. TabEL, however,
does not consider synonyms and deals with a single KB. Efthymiou et al.
[2017] propose three unsupervised annotation methods for matching web
tables with entities. The first is a lookup-based method, which relies on the
minimal entity context from the tables to discover correspondences to the
knowledge base. A second method exploits a vectorial representation of the
rich entity context in a knowledge base to identity the most relevant subset
of entities in web tables. The third method is based on ontology matching,
and exploits schematic and instance information of entities available both
in a knowledge base and in a web table. Efthymiou et al. [2017] find that
the hybrid methods that combines the second and third methods (in any
order) tend to perform best. The column type identification component of
TableMiner+ [Zhang, 2017] has already been discussed earlier, in Sect. 2.3.1.
Building on this, TableMiner+ uses the partial annotations from column
type identification for all columns to guide entity linking in the rest of the
table. It re-ranks table rows under the assumption that some cells are easy
to disambiguate, i.e., they have more candidates or the text is less ambigu-
ous (candidate sampling). In each iteration of this so-called learning phase,
it searches new candidates and compares the feature representation of each
candidate entity (web search results) against all the feature representations
of that cell (using the same features as for column type identification). The

29



2. Background

associated concepts with the highest scoring entity are gathered as candi-
date concepts for the column. These are further compared against those
from the previous iteration in the learning phase (optimization). The process
is repeated until convergence is reached.

Mulwad et al. [2010] exploit the predicted class labels for columns (see
Sect. 2.3.1) as additional evidence, to link entities in table cells. A knowl-
edge base is queried to construct a feature vector, which comprises the en-
tity’s retrieval score, Wikipedia page length, PageRank, etc., which are used
for computing the similarity score against the table cell’s value. The feature
vectors are input to an SVMRank classifier, which outputs a ranked list of
entities. The top-ranked entity is selected and is used to introduce two more
features for a final classification (the SVM rank score for the top-ranked
entity and the score difference between the top two entities). The final clas-
sification yields a binary outcome whether the entity should be linked or
not. Similar to the column type identification task, this method performs
very well on the “Person” and “Place” entity types, achieves moderate accu-
racy on “Organization,” and low accuracy on “Other” (for the same reason
of sparseness, as before). A similar approach is taken by Lehmberg et al.
[2016], but they perform entity linking in table cells first, using the Google
Knowledge Graph, and then use this information for getting class labels for
columns.

Another study on knowledge base matching in [Ibrahim et al., 2016] aims to
overcome the problem of table matching and aggregation by making sense
of entities and quantities in web tables. Ibrahim et al. [2016] map the ta-
ble elements of table headers, entity tables cells and numeric table cells to
different knowledge bases. Specifically, (i) tables headers denote classes or
concepts and are linked to a taxonomic catalog or to Wikipedia pages, (ii)
named entities are mapped to a knowledge base (YAGO), and (iii) numeric
cells, which denote quantities, are mapped to normalized representations.
An interesting observation made about quantity linking is that many of the
linking errors are (i) due to the absence of specific measures or units and (ii)
because of ambiguous headings, like “Nat.”

As mentioned in Sect. 2.2.1, a relational table refers to an entity-attribute ta-
ble, where a set of entities and their attributes are listed. Zhang et al. [2013]
propose an instance-based schema mapping method to map entity-attribute
tables to a knowledge base. In [Zhang et al., 2013], an entity-attribute table
is supposed to have a key column, which contains a set of entities. Each
tuple is an entity with its attributes. Then, memory-based indexes are used
to judge whether a tuple contains candidate entities, resulting in an evi-
dence mapping vector. This vector is then used for finding the table-to-KB
schema mapping, which essentially serves as a bridge between web tables
and knowledge bases.
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The choice of the knowledge base for uncovering table semantics is impor-
tant. Hassanzadeh et al. [2015] give a detailed study on the utility of dif-
ferent knowledge bases, including DBpedia, Schema.org, YAGO, Wikidata,
and Freebase. The method of concept linking in [Hassanzadeh et al., 2015]
is tagging columns with entity types (classes) in the knowledge base. Specif-
ically, they firstly get the basic statistical distribution of tables sizes and val-
ues. Then, with the help of the selected knowledge base, the distribution of
overlap scores in the ontology is obtained. Finally, these scores can give an
indication of how well the table’s content is covered by the given knowledge
base.

Ritze and Bizer [2017] study the utility of different features for matching ta-
bles to DBpedia. These features are extracted from the table itself (such
as entity label, attribute label, value, entity, set of attribute labels, table,
URL, page title, and surrounding text) or from the knowledge base (such
as instance label, property label, class label, value, instance count, instance
abstract, and classes). The problem is decomposed into three specific sub-
tasks: table-to-class matching, row-to-instance matching, and attribute-to-
property matching. Ritze and Bizer [2017] introduce a specific similarity
matcher for each feature, resulting in similarity matrices, representing the
feature-specific results. These matrix predictors can be used to decide which
features to use for which web table. Ritze et al. [2016] implement the T2K
Match framework [Ritze et al., 2015] to map the WDC Web corpus to DB-
pedia, for knowledge base extension. Taking table content as evidence, the
incomplete and unclear values of DBpedia can be filled and corrected. They
find that “only 1.3% of all tables that were extracted from the Web crawl
contained relational data. Out of these relational tables, about 3% could be
matched to DBpedia” [Ritze et al., 2016]. Ritze et al. [2016] further introduce
three fusion strategies for deciding which value to use as output. Their best
method achieves an F1-score of 0.7. However, the above methods tend to per-
form better for large tables, i.e., tables with several rows. It is considered as
one of the main limitations of methods matching tables to DBpedia. To over-
come this, Lehmberg and Bizer [2017] stitch tables, i.e., merge tables from
the same website as a single large table, in order to improve the matching
quality.

2.3.3 Relation Extraction

Relation extraction refers to the task of associating a pair of columns in a
table with the relation that holds between their contents and/or extracting
relationship information from tabular data and representing them in a new
format (e.g., RDF). Table 2.8 summarizes the methods we will discuss below.
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Table 2.8: Comparison of relation extraction tasks.

Reference Knowledge
base

Method Source of extraction

Venetis et al. [2011] IS-A
database

Frequency-based Core + attribute
columns

Mulwad et al. [2010] DBpedia Utilizing CTI and
EL

Any pair of columns

Mulwad et al. [2013] DBpedia Semantic passing Any pair of columns
TableMiner+ [Zhang,
2017]

Wikipedia Optimization Any pair of columns

Sekhavat et al. [2014b] YAGO,
PATTY

Any pair of entities
in the same row

Muñoz et al. [2014] DBpedia Look-up based Any pair of entities
in the same row

Zwicklbauer et al.
[2013]

DBpedia Frequency-based

Chen and Cafarella
[2013]

- Classification All columns

Venetis et al. [2011] add annotations to tables to describe the binary rela-
tionships represented by columns. This is accomplished by leveraging a
relations database of (argument1, predicate, argument2) triples. For binary
relationships, the relationship between columns A and B is labeled with R if
a substantial number of pairs of values from A and B occur in the relations
database. Venetis et al. [2011] are only able to annotate a small portion of a
whole table corpus (i.e., low recall). They discover that the vast majority of
these tables are either not useful for answering entity-attribute queries, or
can be labeled using a handful of domain-specific methods.

Mulwad et al. [2010] propose a preliminary method for relation extraction,
which utilizes the results of entity linking and column type prediction. Specif-
ically, the method generates a set of candidate relations by querying DBpe-
dia using SPARQL. Each pair of strings in two columns vote for the candi-
date relation. The normalized scores are used for ranking candidate rela-
tions and the highest one is taken as the column relation. In follow-up work,
Mulwad et al. [2013] implement an improved semantic message passing
method to extract RDF triples from tables. The semantic message passing
first pre-processes the input table, separated by table elements such as col-
umn headers, cell values, columns, etc. Then, the processed table is passed
to a query and rank module, which turns to knowledge bases from Linked
Open Data to find candidates for each table element. Finally, a joint inference
step uses a probabilistic graph model to rank candidate relations that were
identified for the table elements. Mulwad et al. [2013] point out that current
methods rely on semantically poor and noisy knowledge bases and can only
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interpret part of a table (low recall). Moreover, systems for numeric values
remain challenging, which is consistent with [Ibrahim et al., 2016].

TableMiner+ [Zhang, 2017] interprets relations between the core column and
other columns on each row independently. It computes an individual confi-
dence score for each candidate relation from each row. The candidate set of
relations for two columns is derived by collecting the winning relations on
all rows. A final confidence score of a candidate relation adds up its instance
and context score computed based on context overlap. It is used to find the
relation with the highest confidence. A key finding in [Zhang, 2017] is that
a system that is based on partial tabular data can be as good as systems that
use the entire table.

Relation extraction can also be used to augment Linked Data repositories [Sekha-
vat et al., 2014b]. Sekhavat et al. [2014b] propose a probabilistic approach
using under-explored tabular data. Assuming that the entities co-occurring
in the same table are related, they focus on extracting relations between
pairs of entities appearing in the same row of a table. Entities in table cells
are mapped to a knowledge base first. Then, sentences containing both enti-
ties from the same table row are collected from a text corpus. Next, textual
patterns (describing these two entities’ relations) are extracted. Finally, the
probability of the possible relations is estimated using Bayesian inference.
A new relation, which is a triple consisting of two entities and a pattern,
can be added to the Linked Data repository for augmentation. Muñoz et al.
[2014] utilizes entity annotations in Wikipedia tables. Taking existing rela-
tions between entities in DBpedia, they look these entities up in Wikipedia
tables. This then indicates that the same relation stands between entities in
other rows of this table.

Zwicklbauer et al. [2013] propose a simple method to annotate table head-
ings with semantic types, using DBpedia’s type system. The method is
divided into three steps: (i) table cell entity linking, using a search-based
disambiguation method (detailed in Sect. 2.3.2), (ii) entity type resolution
(looking up the corresponding entity types from DBpedia), and (iii) type
aggregation, which takes the union of all entity types in that column and
selects the most frequent of those as the type for the given table heading.
Despite being considerably simpler, the method in [Zwicklbauer et al., 2013]
achieves comparable accuracy to other methods, such as Venetis et al. [2011].
The authors attribute it DBpedia being more exhaustive and containing high
quality data.

Chen and Cafarella [2013] introduce a system to automatically extract rela-
tional data from spreadsheets instead of the Web. Most of the methods on
spreadsheets requires users to provide sheet-specific specific rules [Hung
et al., 2011]. In contrast, Chen and Cafarella [2013] realize it in an auto-
matic manner. Generally, the system detects attributes and values, identifies
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the hierarchical structure of attributes, and generates relational tuples from
spreadsheet data. Specifically, the so-called frame finder module of their sys-
tem aims to identify the data frame regions within a spreadsheet. These data
frames consist of attribute and value regions. First, it labels each row with
one of the categories: title, header, data, or footnote. Then, the data frame
regions are created, which are passed to the hierarchy extractor for recover-
ing the attribute hierarchies by finding all parent-child pairs in an attribute
region. Finally, a series of parent-child candidates are generated and the
true parent-child pairs are identified through classification. Alternatively, a
so-called enforced-tree classification is proposed, which constructs a strict
hierarchical tree for attributes. In the end, relational tuples are generated
from the value region, whose value is annotated with one attribute from the
attribute hierarchy.

2.3.4 Other Tasks

Data translation is concerned with the problem of mapping raw data, col-
lected from heterogenous sources, to a transformed version for the end
user [He et al., 2018]. Tables encode a large number of mapping relation-
ships as column pairs, e.g., person and birthday, which can be useful data
assets for data translation. Wang and He [2017] propose to automatically
synthesize mapping relationships using table corpora by leveraging the com-
patibility of tables based on co-occurrence statistics. Braunschweig et al.
[2015b] propose a method to normalize web tables in cases where multiple
core columns and mixed concepts are detected in one table.

Web tables are embedded in HTML pages, where the surrounding text can
help to understand what a given table is about. However, these surround-
ing sentences are not equally beneficial for table understanding. Wang et al.
[2015b] present the Table-Related Context Retrieval system (TRCR) to de-
termine the relevance between a table and each surrounding sentence. Us-
ing TRCR, the most relevant texts are selected to uncover table semantics.
Another related study is performed in [Govindaraju et al., 2013], where
NLP tools, like part-of-speech tagging, dependency paths, and named-entity
recognition, are explored to mine surrounding texts for understanding table
semantics. Braunschweig et al. [2015a] propose a heuristic approach that
extracts text snippets from the context of a web table, i.e., caption, headline,
surrounding text, and full text, which describe individual columns in the
table and link these new labels to columns. As a follow-up, Braunschweig
et al. [2016] propose a contextualization method of splitting table context
into paragraphs with consistent topics, providing a similarity measure that
is able to match each paragraph to the table in question. Paragraphs are
then ranked based on their relevance.
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2.4 Table Search

Table search is the task of returning a ranked list of tables in response to a
query. It is an important task on its own and is regarded as a fundamen-
tal step in many other table mining and extraction tasks as well, like table
integration or data completion. Table search functionality is also available
in commercial products; e.g., Microsoft Power Query provides smart assis-
tance features based on table search. Depending on the type of the query,
table search may be classified as keyword query search and table query search.

2.4.1 Keyword Query Search

Given a keyword query, the process of returning a ranked list of tables is
called keyword query search. One of the first published methods is by Ca-
farella et al. [2008a], who implement keyword table search on top of an
existing web search engine. Specifically, they extract the top-k tables from
the returned web pages. In follow-up work, a similar system called OCTO-
PUS [Cafarella et al., 2009] extends the same method (referred to as Sim-
pleRank) with a reranking mechanism (SCPRank) that considers attribute
co-occurrences.

Later works search directly within a designated table corpus. Methods may
be divided into document-based and feature-based approaches. According to
the first group of approaches, a document-based representation is created
for each table. This might contain all text included in the table or only
certain elements of the table (e.g., caption or header labels). Then, these
document-based representations may be ranked using traditional retrieval
models, such as TF-IDF [Pimplikar and Sarawagi, 2012].

Feature-based methods employ supervised machine learning for table rank-
ing. Features may be divided into three main categories: query features,
table features and query-table features. Query features include query length
and IDF scores of query terms. Table features characterize the table in terms
of its dimensions (number of rows, columns) and schema coherency. With
a focus on Wikipedia tables, Bhagavatula et al. [2013] introduce features re-
lated to the connectivity of the Wikipedia page (pageViews, inLinks, and
outLinks) and the table’s importance within the page (table importance and
table page fraction). Finally, query-table features capture the degree of match-
ing between the user’s information need and the table. Typically, these
include similarity scores between the query and various table elements. Ta-
ble 2.9 lists a selection of features for keyword table search. In terms of
learning algorithm, Cafarella et al. [2008a] train a linear regression classifier,
while Bhagavatula et al. [2013] train a linear ranking model learned with
Coordinate Ascent.

Instead of relying on a single keyword query as input, Pimplikar and Sarawagi
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Table 2.9: A selection of features for keyword table search.

Query features Source

QLEN Number of query terms [Tyree et al., 2011]
IDF f Sum of query IDF scores in field

f
[Qin et al., 2010]

Table features

#rows Number of rows in the table [Cafarella et al., 2008a,
Bhagavatula et al., 2013]

#cols Number of columns in the table [Cafarella et al., 2008a,
Bhagavatula et al., 2013]

#of NULLs in table Number of empty table cells [Cafarella et al., 2008a,
Bhagavatula et al., 2013]

PMI ACSDb-based schema co-
herency score

[Cafarella et al., 2008a]

inLinks Number of in-links to the page
embedding the table

[Bhagavatula et al., 2013]

outLinks Number of out-links from the
page embedding the table

[Bhagavatula et al., 2013]

pageViews Number of page views [Bhagavatula et al., 2013]
tableImportance Inverse of number of tables on

the page
[Bhagavatula et al., 2013]

tablePageFraction Ratio of table size to page size [Bhagavatula et al., 2013]

Query-table features

#hitsLC Total query term frequency in
the leftmost column cells

[Cafarella et al., 2008a]

#hitsSLC Total query term frequency in
second-to-leftmost column cells

[Cafarella et al., 2008a]

#hitsB Total query term frequency in
the table body

[Cafarella et al., 2008a]

qInPgTitle Ratio of the number of query to-
kens found in page title to total
number of tokens

[Bhagavatula et al., 2013]

qInTableTitle Ratio of the number of query to-
kens found in table title to total
number of tokens

[Bhagavatula et al., 2013]

yRank Rank of the table’s Wikipedia
page in web search engine re-
sults for the query

[Bhagavatula et al., 2013]

MLM similarity Language modeling score be-
tween query and multi-field
document repr. of the table

[Hasibi et al., 2017a]
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[2012] take q columns, each described by a set of keywords Q1, . . . , Qq, as in-
put (e.g., Q1 =“chemical element,” Q2 =“atomic number,” and Q3 =“atomic
weight”), and return a table with q columns as the answer. First, they rank
tables using the union of words in Q1, . . . , Qq. Then, each table column is
labeled with the query column it maps to. Finally, relevant columns and
rows are merged into a single table, by considering the table-level relevance
scores and the column-level mapping confidence scores. To decide if two
rows are duplicates of each other, they employ the method in [Gupta and
Sarawagi, 2009]. In Chapter 3 we will perform semantic matching between
queries and tables for keyword table search. Specifically, we (i) represent
queries and tables in multiple semantic spaces (both discrete sparse and
continuous dense vector representations) and (ii) introduce various similar-
ity measures for matching those semantic representations. Most recently,
Deng et al. [2019] train word embeddings utilizing the Wikipedia table cor-
pus and achieve comparable results.

2.4.2 Search by Table

Table search is not limited to keyword queries. The input may be also be
a table, in which case the task of returning related tables is referred to as
search by table or query by table. At its core, this task boils down to computing
a similarity score between the input and candidate tables, which we shall re-
fer to as table matching. Search by table may be performed for different goals:
(1) to be presented to the user to answer her information need [Das Sarma
et al., 2012, Limaye et al., 2010, Nguyen et al., 2015] and (2) to serve as an
intermediate step that feeds into other tasks, like table augmentation [Ah-
madov et al., 2015b, Lehmberg et al., 2015, Yakout et al., 2012, Nargesian
et al., 2018].

One group of approaches addresses the table matching task by using certain
table elements as a keyword query, and scoring tables using keyword-based
methods. For example, Ahmadov et al. [2015b] use table entities and table
headings as queries to retrieve a ranked list of tables. The two ranked lists
are then intersected afterwards in order to arrive at a more complete result
set.

More commonly, table matching is tackled by dividing tables into various
elements (such as table caption, table entities, column headings, cell values),
then computing element-level similarities. Table 2.10 provides an overview
of the table elements that have been utilized in past work. It is worth point-
ing out that in most of these cases, table search is not the ultimate goal, it
is only used as a component in a larger application. The Mannheim Search
Join Engine [Lehmberg et al., 2015] seeks to extend the input table with ad-
ditional attributes. It utilizes table headings by comparing the column head-
ings between the input table and candidate tables. Specifically, they first
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Table 2.10: Overview of table elements used when querying by table for
various table-related applications.

Application Source TE TH T[:,j] Tp T[i,j]

Data completion [Ahmadov et al., 2015b]
√ √

Relation join [Lehmberg et al., 2015]
√

Schema complement [Das Sarma et al., 2012]
√ √

Entity complement [Das Sarma et al., 2012]
√

Table augmentation [Yakout et al., 2012]
√ √ √ √

Diverse table search [Nguyen et al., 2015]
√ √

Table cell retrieval [Limaye et al., 2010]
√ √

filter tables that share at least one column heading with the input table, us-
ing exact term matching. Then, the table matching score is computed by (i)
building an edit distance similarity matrix between the input and candidate
tables’ column headings, and (ii) calculating the Jaccard similarity of the
two tables using the matrix’s maximum weighted bipartite matching score.
Similar to the Mannheim Search Join Engine that is based on table headings,
Nargesian et al. [2018] search tables that are likely unifiable with the seed
table, which is called attribute union ability. Nargesian et al. [2018] formalize
three statistical models to estimate the likelihood that two attributes contain
values that are in the same domain. The simplest case, named set domains,
uses the size of the intersection of values between two columns. The second
case, called semantic domains, measures the semantic similarity between the
values by mapping the columns to classes, e.g., entities. For values that are
expressed in natural language, the third case of natural language domains mea-
sures semantics based on natural langue rather than on ontologies. They use
word embeddings trained based on Wikipedia documents to define natural
language domains and statistical tests between the vectors are used to evalu-
ate the likelihood that two attributes are from the same domain. Das Sarma
et al. [2012] aim to find related tables for augmenting the input table with
additional rows or columns, referred to as entity complement and schema com-
plement, respectively. Entity complement considers the relatedness between
entity sets of the input and candidate tables. Relatedness between two enti-
ties is estimated by representing entities as weighed label sets (from a knowl-
edge base or from a table corpus) and taking their dot product. Das Sarma
et al. [2012] propose multiple methods to aggregate pairwise entity related-
ness scores for computing relatedness between two sets of entities. Schema
complement combines two element-wise similarities: table entities and col-
umn headings. The former considers the overlap between table entities. The
latter estimates the benefits of adding a column from the candidate table
to the input table by determining the consistency between the new column
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and the existing columns of the input table. Yakout et al. [2012] propose
InfoGather, a holistic method for matching tables in order to support three
core operations: augmentation by column headings, augmentation by exam-
ple, and column heading discovery. They consider element-wise similarities,
including table context, URL, tuples, column headings, column values, and
table data, as well as cross-element similarity between table and context.
Similarity is measured using the vector product of TF/IDF-weighted term
vectors. Then, element-level similarity scores are combined as features in a
machine learned model. In follow-up work, InfoGather is extended as Info-
Gather+ [Zhang and Chakrabarti, 2013] to incorporate tables with numeric
and time-varying attributes. Nguyen et al. [2015] consider the diversity of
the returned tables. They focus on two table elements: column headings
and table data. The former is similar in spirit to the Mannheim Search Join
Engine [Lehmberg et al., 2015]. The latter works by measuring the similar-
ity between table columns, which are represented as term frequency vectors.
In Chapter 4, we will perform semantic table retrieval when the query is a
table.

Unlike the above methods, which consider tables as the unit of retrieval, Li-
maye et al. [2010] return a ranked list of cells as result. They train a machine
learning method for annotating (i) entities in tables cells, (ii) columns with
types, and (iii) relations between columns. Then, search is performed by
issuing an automatically generated structured query.

2.5 Question Answering on Tables

Tables are a rich source of knowledge that can be utilized for answering nat-
ural language questions. This problem has been investigated in two main
flavors: (i) where the table, which contains the answer to the input question,
is given beforehand [Pasupat and Liang, 2015c], and (ii) where a collection of
tables are to be considered [Sun et al., 2016]. The latter variant shares many
similarities with traditional question answering (QA), while the former re-
quires different techniques. One of the main challenges of QA on tables,
shared by both scenarios, is how to match the unstructured query with the
(semi-)structured information in tables. Question answering on tables is also
closely related to work on natural language interfaces to databases, where
the idea is that users can issue natural language queries, instead of using
formal structured query languages (like SQL), for accessing databases [An-
droutsopoulos et al., 1995, Li and Jagadish, 2014, Li et al., 2005, Popescu
et al., 2003]. Semantic parsing is the task of parsing natural language queries
into a formal representation. Semantic parsing is often used in question an-
swering, by generating logical expressions that are executable on knowledge
bases [Berant et al., 2013, Fader et al., 2014].
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2.5.1 Using a Single Table

We first discuss approaches that take a single table as input (sometimes re-
ferred to as knowledge base table [Yin et al., 2016]), and seek the answer to the
input question in that table. The basic idea is to regard the input table as
a knowledge base, which poses a number of challenges. First, knowledge
bases contain a canonicalized set of relations, while tabular data is much
more noisy. Second, traditional semantic parsing sequentially parses natural
language queries into logical forms and executes them against a knowledge
base. To make them executable on tables, special logical forms are required.
Lastly, semantic parsing and query execution become complicated for com-
plex questions as they need carefully designed rules to parse them into logic
forms. Pasupat and Liang [2015a] propose to answer complex questions, in-
volving operation such as comparison, superlatives, aggregation, and arith-
metics in order to address above problems. They convert the input table
into a knowledge graph by taking table rows as row nodes, strings as en-
tity nodes, and columns as directed edges. The column headings are used
as predicates. Numbers and strings are normalized following a set of man-
ual rules. Being one of the earliest works addressing this task, Pasupat
and Liang [2015a] follow a traditional parser design strategy. A semantic
parser is trained based on a set of question-answer pairs. Given a table
and a question, a set of candidate logical forms is generated by parsing the
question. Then, logic forms are ranked using a feature-based representation,
and the highest ranked one is applied on the knowledge graph to obtain
the answer. Pasupat and Liang [2015a] develop a dataset, called WikiTable-
Question, which consists of a random sample of 2,100 tables from Wikipedia
and 22,000 question-answer pairs. The proposed approach is found to suffer
from the coverage issue, i.e., it is able to answer only 20% of the queries that
have answers in Freebase.

Different from semantic parsing methods that require predefined logical op-
erations, Yin et al. [2016] propose a neural network architecture, named
Neural Enquirer for semantic parsing with a specific table. Neural Enquirer
is a fully neural system that generates distributed representations of queries
and tables (called query encoder and table encoder, respectively). Then, the
question is executed through a series of query operations, called executors,
with intermediate execution results computed in the form of table annota-
tions at different levels. Training can be performed in an end-to-end fashion
or carried out using step-by-step supervision (for complex queries). They
use query answers as indirect supervision, but jointly perform semantic
parsing and query execution in distributional spaces. The distributed repre-
sentations of logical forms are learned in end-to-end tasks, which is based
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on the idea of adopting the results of the query execution as indirect super-
vision to train the parser. It is worth pointing out that this model makes
a number of strong assumptions. For example, they consider four specific
types of queries, provide the logical form template for each, and carefully
and manually select a table that is supplied as part of the input. Similar
to [Yin et al., 2016], Neelakantan et al. [2015] attempt to solve the task of
question answering on tables using neural networks, a system called Neural
Programmer. Neural Programmer runs for T steps and the final result is
formed step by step. The model adopts a Recurrent Neural Network (RNN)
architecture to process the input question, a selector to assign probabilities
to a set of possible operations and data segments at each step, and a history
RNN to remember the previous operation and data selections. Providing a
small set of basic operations, they also take the result of correct executions as
indirect supervision. During the training, adding random noise to the gradi-
ent greatly improves performance as the operations and data selections are
quite heterogenous.

2.5.2 Using a Collection of Tables

Another line of work focuses on answering questions using a collection of
tables. These approaches are more similar to traditional question answer-
ing on text, comprising of candidate identification, query type prediction,
and ranking components. The main differences are twofold. One is schema
matching, which is the same as before (in Sect. 2.5.1), but there is an ad-
ditional normalization issue across tables here. The other is the need for
extracting quantity values from tables. Sarawagi and Chakrabarti [2014]
show that over 40% of table columns contain numeric quantities, and pro-
pose a collective extraction framework to extract quantities from raw web
tables based on a consensus model. Their system, called QEWT, extends
the work of Banerjee et al. [2009] to tables. They employ keyword-based
table ranking in order to fetch table candidates. This corresponds to the
candidate snippet/answer identification step in traditional QA. QEWT can
answer quantity-target queries with a ranked list of quantity distributions,
which are taken from the tables. It uses a table column unit annotator based
on probabilistic context free grammars for easily extracting quantities from
table columns to deal with ambiguity (both for headings and for values).
From an information retrieval perspective, quantity queries on web tables
refer to the task of returning a ranked list of quantities for a query. QEWT
employs a quantity response model for this task.

Inspired by classical textual QA, Sun et al. [2016] decompose table cells into
relational chains, where each relational chain is a two-node graph connect-
ing two entities. Specifically, each row of a table represents relations among
the cells. They construct a pseudo-node to connect all the cells and take
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(a) (b)

Figure 2.4: Illustration in Chirigati et al. [2016], showing an example of
knowledge exploration for the query of “kentucky derby” through Knowl-
edge Carousels: (a) a downward showing the winners of Kentucky Derby;
(b) a sideway representing the famous Triple Crown horse races in the US,
of which Kentucky Derby is a member.

the headings to label relationships. Any pair of cells in the same row form
a directional relational chain. The input query is also represented as a two-
node graph question chain, by identifying the entities using an entity linking
method. The task then boils down to finding the relational chains that best
match the question chain. This matching is performed using deep neural
networks, to overcome the vocabulary gap limitation of bag-of-words mod-
els. Specifically, they employ the Convolutional Deep Structured Semantic
Model (C-DSSM) [Shen et al., 2014]. They find that combining the deep fea-
tures with some shallow features, like term-level similarity between query
and table chains, achieve the best performance. Sun et al. [2016] conclude
that their method can complement KB-based QA methods by improving the
coverage.

2.6 Knowledge Base Augmentation

The knowledge extracted from tabular data can be used for enriching knowl-
edge bases. First, we present an approach that is devised for exploring the
knowledge contained in web tables. Then, we discuss methods for knowl-
edge base augmentation using tabular data.

2.6.1 Tables for Knowledge Exploration

The knowledge contained in web tables can be harnessed for knowledge
exploration. Knowledge Carousels [Chirigati et al., 2016] is the first system
addressing this, by providing support for exploring “is-A” and “has-A” rela-
tionships. These correspond to two kinds of entity-seeking queries (queries
searching for attributes and relationships of entities), called “sideways” and
“downwards,” respectively. Given an input entity, Chirigati et al. [2016] uti-
lize web tables to select the carousel type, create a set entities of this carousel,
generate human-readable titles, and rank carousels based on popularity and
relatedness extracted from tables. See Fig. 2.4 for an illustration.

42



2.6. Knowledge Base Augmentation

2.6.2 Knowledge Base Augmentation and Construction

Tabular data on the Web can be used to construct new or augment existing
knowledge bases.

Knowledge Base Augmentation

In Sect. 2.3, we have presented techniques for interpreting tables with the
help of knowledge bases. The obtained annotations, in turn, can contribute
to extending those knowledge bases. Knowledge base augmentation, also known
as knowledge base extension, is concerned with generating new instances of re-
lations using tabular data and updating knowledge bases with the extracted
information.

Knowledge bases need to be complete, correct, and up-to-date. A precon-
dition of extending knowledge bases using web tables is matching them
to those existing knowledge bases. Specifically, matching problems include
table-to-class matching, row-to-instance matching, and attribute-to-property match-
ing. Ritze et al. [2015] propose an iterative matching method, T2K, to match
web tables to DBpedia for augmenting knowledge bases. They also develop
and make publicly available the T2D dataset for matching, consisting of
8,700 schema-level and 26,100 entity-level correspondences between web ta-
bles and DBpedia, which are extracted and annotated manually. The T2K
method utilizes the T2D dataset to execute iterative steps between candidate
matching and property matching, to find proper entities/schemas in DBpe-
dia for table rows/columns. However, T2D mainly focuses on large tables
and does not work that well for small-sized tables [Lehmberg and Bizer,
2017]. To counter this problem, Lehmberg and Bizer [2017] propose to com-
bine tables from each website into larger tables for table matching, building
on the intuition that tables from the same website are created in a similar
fashion.

Strictly speaking, we classify the work in Wang et al. [2015a] as row exten-
sion. Nevertheless, since they map table entities to a knowledge base with
the purpose of collecting more entities from other tables that belong to the
same concept in the knowledge base, their work can also be regarded as a
knowledge base augmentation task.

Knowledge Base Construction

Instead of augmenting existing knowledge bases, web tables contain abun-
dant information to be turned to knowledge bases themselves.

Even though there exists a number of large-scale knowledge bases, they are
still far from complete [Dong et al., 2014]. Therefore, Dong et al. [2014] in-
troduce a web-scale probabilistic knowledge base named Knowledge Vault
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Figure 2.5: Illustration of three table augmentation tasks: row extension,
column extension, and data completion.

(KV) that fuses different information sources. For web tables, Dong et al.
[2014] firstly identify the relation that is expressed in a table column by
checking the column’s entities, and reason about which predicate each col-
umn could correspond to. This latter task is approached using a standard
schema matching method [Venetis et al., 2011], with Freebase as the knowl-
edge base. The extracted relation, together with relational data from other
sources, is converted into RDF triples, along with associated confidence
scores. The confidence scores are computed based on a graph-based method.
Specifically, the triples are fused by machine learning methods from multi-
ple sources, including an existing knowledge base, (i.e., Freebase) and web
tables. Consequently, 1.6B triples are generated, of which 324M have a con-
fidence score above 0.7 and 271M have a confidence score above 0.9.

2.7 Table Augmentation

Table augmentation refers to the task of extending a seed table with more data.
Specifically, we discuss three tasks in this section: row extension (Sect. 2.7.1),
column extension (Sect. 2.7.2), and data completion (Sect. 2.7.3). See Fig. 2.5
for an illustration. One might envisage these functionalities being offered
by an intelligent agent that aims to provide assistance for people working
with tables (cf. Appendix A).

2.7.1 Row Extension

Row extension aims to extend a given table with more rows or row elements
(see Fig. 2.6). It mainly focuses on a particular type of table, namely, rela-
tional tables. More specifically, row extension primarily targets horizontal
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Figure 2.6: Illustration of row extension by adding (Left) only an entity and
(Right) an entire row (entity and cell values).

Table 2.11: Overview of row population methods. Notice that table search
is inherently involved.

Data Tasks
Reference KB Tables Table search Row population

Wang et al. [2015a] � � �*
Das Sarma et al. [2012] � �
Yakout et al. [2012] � � �
Zhang and Balog [2017c] � � � �
∗ Originally developed for concept expansion, but can be used for row population.

relational tables, where rows represent entities and columns describe the at-
tributes of those entities. In such tables there usually exists a core column (or
key column) containing mostly entities [Bhagavatula et al., 2015, Venetis et al.,
2011]. Instead of directly providing a complete tuple (row), existing work
has focused on identifying entities for populating such core columns (i.e.,
the Upper scenario in Fig. 2.6). Table 2.11 provides an overview of meth-
ods that will be covered below. As we shall see, table search is inherently
involved here.

Populating entities in the core column of a table is similar to the problem
of concept expansion, also known as entity set expansion, where a given set of
seed entities is to be completed with additional entities [Bron et al., 2013,
He and Xin, 2011, Metzger et al., 2013, 2014]. Existing methods for concept
expansion suffer from two main issues: input ambiguity and semantic drift
(i.e., entities belonging to different concepts are mixed during expansion).
Motivated by the intuition that tables tend to group entities that belong to
a coherent concept, Wang et al. [2015a] leverage web tables for the concept
expansion task, thereby aiming to prevent semantic drift. They provide both
the seed entities as well as a concept name are as input. First, they retrieve
tables related to the seed entities. Then, they use a graph-based ranking
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method to rank candidate entities that co-occur with the seed entities in
those tables. Specifically, they first expand the set by iteratively adding
the most relevant tables based on concept likelihood, and collecting enti-
ties there. Then, they refine the earlier estimation and remove less relevant
tables based on more complete information. Wang et al. [2015a] find that
adding an input concept can address the semantic drift problem for tail con-
cepts. While this method is developed for concept expansion, it is directly
applicable to the problem of populating entities in a core column.

Das Sarma et al. [2012] search for entity complement tables that are semanti-
cally related to entities in the input table (as we have already discussed in
Sect. 2.4.2). Then, the top-k related tables are used for populating the input
table. Das Sarma et al. [2012], however, stop at the table search task. A sim-
ilar approach is taken in InfoGather [Yakout et al., 2012], where this task is
referred to as the augmentation by example operation. There, they first search
for related tables (cf. Sect. 2.4.2), and then consider entities from these ta-
bles, weighted by the table relatedness scores. Yakout et al. [2012] build a
schema matching graph among web tables (SMW graph) based on pairwise
table similarity. Despite the use of scalable techniques, this remains to be
computationally very expensive, which is a main limitation of the approach.
Instead of relying only on related tables from a table corpus, Zhang and
Balog [2017c] also consider a knowledge base (DBpedia) for identifying can-
didate entities. Specifically, they collect entities sharing the same types or
categories with the input entities from DBpedia, and entities from similar
tables (i.e., tables sharing seed entities, having similar captions, or including
the same headings) as candidates. They find that entity type information in
DBpedia is too general to help identify relevant candidates, and end up us-
ing only category information when extracting candidates from DBpedia. It
is also shown that using related tables and using a knowledge base are com-
plementary when identifying candidate entities. They develop a generative
probabilistic model for the subsequent ranking of candidate entities based
on their similarity to (i) other entities in the table, (ii) column headings, and
(iii) the caption of the input table. Among the three table elements, seed enti-
ties are the most important component for entity ranking, followed by table
headings and caption. A combination of the three table elements performs
the best in the end. In recent work, Deng et al. [2019] utilize Word2vec to
train table embeddings for core column entities. Combining the embedding-
based similarity scores with the probability-based scores from [Zhang and
Balog, 2017c] results in further performance improvements.

2.7.2 Column Extension

The most widely studied subtask in table augmentation is column extension:
extending a table with additional columns. This task roughly corresponds
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Figure 2.7: Illustration of column extension by adding (Left) only a heading
label (Right) an entire column (heading label and cell values).

Table 2.12: Overview of column extension methods.

Data
Reference Task Web tables WP tables KBs

Cafarella et al. [2008a] Schema auto-completion �
Das Sarma et al. [2012] Schema complement �
Lehmberg et al. [2015] Search join � � �
Zhang and Balog [2017c] Column population �
Bhagavatula et al. [2013] Relevant join �

Output
Reference Task TH TH + T[:,j]

Cafarella et al. [2008a] Schema auto-completion �
Das Sarma et al. [2012] Schema complement
Lehmberg et al. [2015] Search join �
Zhang and Balog [2017c] Column population �
Bhagavatula et al. [2013] Relevant join �

to the join operation in databases. In this context, the set of column heading
labels is also often referred to as the table schema. Commonly, column exten-
sion is approached by first locating similar tables and then considering the
column headings/values in those tables. Table 2.12 provides an overview of
the methods discussed in this section.

One particular variant of column extension aims to identify additional col-
umn heading labels (see Fig. 2.7 (Upper)). As table columns often cor-
respond to entity attributes, this task is also referred to as attribute dis-
covery [Yakout et al., 2012] or schema auto-complete Cafarella et al. [2008a].
The WebTables system [Cafarella et al., 2008a] implements this functionality
based on the attribute correlation statistics database (ACSDb). ACSDb contains
frequency statistics of attributes and co-occurring attribute pairs in a table
corpus. ACSDb comprises 5.4M unique attribute names and 2.6M unique
schemas. With these statistics at hand, the next probable attribute can be
chosen using a greedy algorithm. The statistics-based method in [Cafarella
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et al., 2008a] was the first approach to column extension, and was found to
be able to provide coherent heading suggestions. However, later research
has proven that considering additional features can further improve perfor-
mance. Das Sarma et al. [2012] focus on finding related tables, with the
aim of schema complement. For ranking tables, they consider two factors:
(i) the coverage of entities, and (ii) the potential benefits of adding addi-
tional attributes from those tables (we discussed the table search method in
Sect. 2.4.2). Again, they stop at the table search task. The task of identifying
potential attributes or column labels is also known as schema matching [Lehm-
berg et al., 2015] or column population [Zhang and Balog, 2017c]. Zhang and
Balog [2017c] try to find the headings that can be placed as the next column
in an input table. They first find candidate headings from similar tables
(the same strategy that they also use for row population). Zhang and Balog
[2017c] observe that input entities and table caption contribute comparably
to the identification of relevant candidates, while table headings are the
least important component. However, similar to row population, all these
sources are complementary, i.e., each source can identify candidate headings
that none of the others could. In a subsequent ranking step, the candidates
are scored based on table similarity, by aggregating element-wise similari-
ties between (corresponding elements of) the input table and related tables.
In [Deng et al., 2019], they utilize Word2vec to train embeddings for table
headings. Similar to row population, combining the embedding similarity
scores with the probabilities from [Zhang and Balog, 2017c] yields further
performance improvements. The above approaches differ in what they use
as input, i.e., whether they use only table headings [Cafarella et al., 2008a,
Lehmberg et al., 2015] or the entire table [Das Sarma et al., 2012, Zhang and
Balog, 2017c].

Another variant attempts to augment the input table with entire columns,
that is, including both the heading label as well as the corresponding cell
values for each row within that column (see Fig. 2.7 (Lower)). Bhagavatula
et al. [2013] present the relevant join task, which returns a ranked list of col-
umn triplets for a given input table. Each triplet consists of SourceColumn,
MatchedColumn, and CandidateColumn. SourceColumn is from the query table,
while MatchedColumn and CandidateColumn are from the candidate tables.
They propose a semantic relatedness measure to find candidate tables from
related Wikipedia pages, where page relatedness is estimated based on in-
link intersections. Their idea is to compute similarity between columns, such
that if SourceColumn and MatchedColumn share largely similar values, then
the input table may be extended with CandidateColumn. These candidate
columns are classified as relevant or non-relevant, using a linear ranking
model, before performing the actual join. To reduce the number of candi-
date columns, some are filtered out in a pre-processing stage using simple
heuristics. Columns that are kept are required to be non-numeric, have more
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Figure 2.8: Illustration of data completion tasks: (Left) join and (Right) data
imputation.

Table 2.13: Overview of data completion methods.

Data Output
Reference Tables Web T[:,j] T[i,j]

Yakout et al. [2012] � �
Zhang and Chakrabarti [2013] � �
Cafarella et al. [2009] � �
Ahmadov et al. [2015b] � � � �

than four rows, and an average string length larger than four. Bhagavatula
et al. [2013] find that columns containing numeric data make more rele-
vant additions than non-numeric ones. Additionally, more distinct values
in the SourceColumn and a higher match percentage lead to better quality
joins. The join operation is also supported by the Mannheim Search Join
Engine [Lehmberg et al., 2015]. It first searches for related tables based on
column headings (cf. Sec. 2.4.2), then applies a series of left outer joins be-
tween the query table and the returned tables. Afterwards, a consolidation
operation is performed to combine attributes. Specifically, they employ a
matching operator that relies on data from knowledge bases. Given two
columns, similar match (Levenshtein distance) and exact match are used for
matching headings. Lehmberg et al. [2015] observe that similar match re-
turns on average 3.4 times more tables than exact match. Among different
table corpora, web tables provide the largest number of relevant tables, and
Wikipedia tables tend to be populous on certain topics, such as countries
and films.

2.7.3 Data Completion

Data completion for tables refers to the task of filling in the empty table cells.
Table 2.13 summarizes the methods we discuss here. One variant of this
task attempts to find the cell values for an entire column (see Fig. 2.8 (Up-
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per)). This is known as the augmentation by attribute name operation in the
InfoGather system [Yakout et al., 2012]. This is typical of a scenario where
the core entity column as well as the column headings are given in a re-
lational table, and the values for the corresponding attributes (augmenting
attributes) are to be filled in. The system in [Yakout et al., 2012] takes the in-
complete table as input to search for matching tables, then extracts attribute
values from those tables. It is worthwhile to point out that InfoGather fo-
cuses on finding values that are entities. An extended version of the sys-
tem, InfoGather+ [Zhang and Chakrabarti, 2013], focuses on numerical and
time-varying attributes. They use undirected graphical models and build a
semantic graph that labels columns with units, scales, and timestamps, and
computes semantic matches between columns. Their experiments are con-
ducted on three types of tables: company (revenue and profit), country (area
and tax rate) and city (population). Zhang and Chakrabarti [2013] find that
the conversion rules (manually designed unit conversion mapping) achieve
higher coverage than string-based schema matching methods. Similar to
InfoGather’s augmentation by attribute name operation, the extend operation
in the OCTOPUS systems [Cafarella et al., 2009] enables the user to add
more columns to a table by performing a join. It takes a keyword query and
a given (existing) table column as input, where the keyword describes the
newly added column. Different from a regular join, the added column is
not necessarily an existing column. It may be formed row-by-row by com-
bining information from multiple related tables (see Sect. 2.4.1 for the table
search operation). However, Cafarella et al. [2009] rely on simple methods
like edit-distance for schema matching, which leaves room for improvement.

Another flavor of the data completion task focuses on filling in missing val-
ues for individual cells, referred to as data imputation (see Fig. 2.8 (Lower)).
Ahmadov et al. [2015b] present a hybrid imputation method that combines a
lookup-based approach, based on a corpus of web tables, and a model-based
approach that uses machine learning (e.g., k-nearest neighbors or linear re-
gression) to predict the value for a missing cell. It is worth noting that all
the above methods rely only on tables and ignore the cases where no similar
tables can be found. The method in [Ahmadov et al., 2015b] is shown to
be able to improve coverage. However, being able to automatically decide
when to do simple lookup and when to employ a machine learned model
remains an open challenge.

2.8 Summary and Conclusions

Tables are a powerful and popular tool for organizing and manipulating
data. Research on web tables has seen nearly two decades of development.
During this long period, the research focus has evolved considerably, from
low level tasks (table extraction) to tapping more and more into the ac-
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tual knowledge contained in tables (for search and for augmenting exist-
ing knowledge bases). In this chapter, we have reviewed past progress and
identified open research issues, organized around six main tasks.

In this thesis, we address a number of tasks, which include table search,
table generation, and table completion. For table search, previous work
focuses on lexical matching, while we improve the keyword table search
task with semantic matching and present the query-by-table paradigm. We
propose table generation models for free text (natural language) queries.
For table augmentation, previous work only utilizes other tables, while we
additionally incorporate a knowledge base. More specific differences will
be discussed throughout the respective technical chapters, Chapters 3-7.
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Chapter 3

Keyword Table Search

In this chapter, we introduce and address the problem of ad hoc table re-
trieval: answering a keyword query with a ranked list of tables. See Fig. 3.1
for an illustration. Tables can provide direct answers to many information
needs, and can effectively summarize, e.g., properties of entities, thereby
saving users the efforts of looking these up one by one. Thus this task is not
only interesting on its own account, but is also being used as a core compo-
nent in many other table-based information access scenarios, such as table
completion (Chapter 5) or table generation (Chapter 6). The main novel
contribution of this chapter is a method for performing semantic matching
between queries and tables in order to fix the “vocabulary gap” problem.
Specifically, we (i) represent queries and tables in multiple semantic spaces
(both discrete sparse and continuous dense vector representations) and (ii)
introduce various similarity measures for matching those semantic represen-
tations. We consider all possible combinations of semantic representations
and similarity measures and use these as features in a supervised learning
model. Using a purpose-built test collection based on Wikipedia tables, we
demonstrate significant and substantial improvements over a state-of-the-art
baseline.

The chapter is organized as follows. We introduce and formalize the ad hoc
table ranking task, and present both unsupervised and supervised baseline
approaches in Sect. 3.1. We present a set of novel semantic matching meth-
ods that go beyond lexical similarity in Sect. 3.2. We develop a standard test
collection for this task in Sect. 3.3 and demonstrate the effectiveness of our
approaches in Sect. 3.4. Section 3.5 concludes this chapter.

3.1 Ad Hoc Table Retrieval

We formalize the ad hoc table retrieval task, explain what information is
associated with a table, and introduce baseline methods.
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Figure 3.1: Ad hoc table retrieval: given a keyword query, the system returns
a ranked list of tables.

Table 3.1: Notation used in this chapter.

Symbol Description

q Keyword query
T Candidate table
C Table collection

3.1.1 Problem Statement

Given a keyword query q, ad hoc table retrieval is the task of returning a
ranked list of tables, (T1, . . . , Tk), from a collection of tables C. Being an ad
hoc task, the relevance of each returned table Ti is assessed independently of
all other returned tables Tj, i �= j. Hence, the ranking of tables boils down to
the problem of assigning a score to each table in the corpus: score(q, T). Ta-
bles are then sorted in descending order of their scores. We list the notation
used in this chapter in Table 3.1.

3.1.2 Unsupervised Ranking

An easy and straightforward way to perform the table ranking task is by
adopting standard document ranking methods. Cafarella et al. [2009, 2008a]
utilize web search engines to retrieve relevant documents; tables are then ex-
tracted from the highest-ranked documents. Rather than relying on external
services, we represent tables as either single- or multi-field documents and
apply standard document retrieval techniques.
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Table 3.2: Baseline features for table retrieval I.

Query features Source Value

QLEN Number of query terms [Tyree et al., 2011] {1,...,n}
IDF f Sum of query IDF scores in field

f
[Qin et al., 2010] [0, ∞)

Table features

#rows The number of rows in the table [Cafarella et al., 2008a,
Bhagavatula et al., 2013]

{1,...,n}

#cols The number of columns in the ta-
ble

[Cafarella et al., 2008a,
Bhagavatula et al., 2013]

{1,...,n}

#of NULLs in ta-
ble

The number of empty table cells [Cafarella et al., 2008a,
Bhagavatula et al., 2013]

{0,...,n}

PMI The ACSDb-based schema co-
herency score

[Cafarella et al., 2008a] (−∞, ∞)

inLinks Number of in-links to the page
embedding the table

[Bhagavatula et al., 2013] {0,...,n}

outLinks Number of out-links from the
page embedding the table

[Bhagavatula et al., 2013] {0,...,n}

pageViews Number of page views [Bhagavatula et al., 2013] {0,...,n}
tableImportance Inverse of number of tables on

the page
[Bhagavatula et al., 2013] (0, 1]

tablePageFraction Ratio of table size to page size [Bhagavatula et al., 2013] (0, 1]

Single-field Document Representation

In the simplest case, all text associated with a given table is used as the
table’s representation. This representation is then scored using existing re-
trieval methods, such as BM25 or language models.

Multi-field Document Representation

Rather than collapsing all textual content into a single-field document, it
may be organized into multiple fields, such as table caption, table headers,
table body, etc. (cf. Table. 2.2). For multi-field ranking, Pimplikar and
Sarawagi [2012] employ a late fusion strategy [Zhang and Balog, 2017a]. That
is, each field is scored independently against the query, then a weighted
sum of the field-level similarity scores is taken:

score(q, T) = ∑
i

wi × score(q, fi) , (3.1)

where fi denotes the ith (document) field for table T and wi is the corre-
sponding field weight (such that ∑i wi = 1). score(q, fi) may be computed
using any standard retrieval method. We use language models in our exper-
iments.
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Table 3.3: Baseline features for table retrieval II.

Query features Source Value

#hitsLC Total query term frequency in the
leftmost column cells

[Cafarella et al., 2008a] {0,...,n}

#hitsSLC Total query term frequency in
second-to-leftmost column cells

[Cafarella et al., 2008a] {0,...,n}

#hitsB Total query term frequency in the
table body

[Cafarella et al., 2008a] {0,...,n}

qInPgTitle Ratio of the number of query to-
kens found in page title to total
number of tokens

[Bhagavatula et al., 2013] [0, 1]

qInTableTitle Ratio of the number of query to-
kens found in table title to total
number of tokens

[Bhagavatula et al., 2013] [0, 1]

yRank Rank of the table’s Wikipedia
page in Web search engine results
for the query

[Bhagavatula et al., 2013] {1,...,n}

MLM similarity Language modeling score be-
tween query and multi-field doc-
ument repr. of the table

[Chen et al., 2016] (−∞,0)

3.1.3 Supervised Ranking

The state-of-the-art in document retrieval (and in many other retrieval tasks)
is to employ supervised learning [Liu, 2011]. Features may be categorized
into three groups: (i) document, (ii) query, and (iii) query-document fea-
tures [Qin et al., 2010]. Analogously, we distinguish between three types
of features: (i) table, (ii) query, and (iii) query-table features. In Table 3.2
and Table 3.3, we summarize the features from previous work on table
search [Cafarella et al., 2008a, Bhagavatula et al., 2013]. We also include
a number of additional features that have been used in other retrieval tasks,
such as document and entity ranking; we do not regard these as novel con-
tributions.

Query Features

Query features have been shown to improve retrieval performance for doc-
ument ranking [Macdonald et al., 2012]. We adopt two query features from
document retrieval, namely, the number of terms in the query [Tyree et al.,
2011], and query IDF [Qin et al., 2010] according to: IDFf (q) = ∑t∈q IDFf (t),
where IDFf (t) is the IDF score of term t in field f . This feature is computed
for the following fields: page title, section title, table caption, table heading,
table body, and “catch-all” (the concatenation of all textual content in the
table).
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Table Features

Table features depend only on the table itself and aim to reflect the quality of
the given table (irrespective of the query). Some features are simple charac-
teristics, like the number of rows, columns, and empty cells [Cafarella et al.,
2008a, Bhagavatula et al., 2013]. One important feature is Point-wise Mutual
Information (PMI), which is taken from linguistics research, and expresses
the coherency of a table. The correlation between two table headings cells,
hi and hj, is given by: PMI(hi, hj) = log

(
P(hi, hj)/(P(hi)P(hj))

)
. A table’s

PMI is computed by calculating the PMI values between all pairs of column
headings of that table, and then taking their average. Following Cafarella
et al. [2008a], we compute PMI by obtaining frequency statistics from the
Attribute Correlation Statistics Database (ACSDb) [Cafarella et al., 2008b],
which contains table heading information derived from millions of tables
extracted from a large web crawl.

Another group of features has to do with the page that embeds the table, by
considering its connectivity (inLinks and outLinks), popularity (pageViews),
and the table’s importance within the page (tableImportance and tablePage-
Fraction).

Query-Table Features

Features in the last group express the degree of matching between the query
and a given table. This matching may be based on occurrences of query
terms in the page title (qInPgTitle) or in the table caption (qInTableTitle).
Alternatively, it may be based on specific parts of the table, such as the
leftmost column (#hitsLC), second-to-left column (#hitsSLC), or table body
(#hitsB). Tables are typically embedded in (web) pages. The rank at which a
table’s parent page is retrieved by an external search engine is also used as
a feature (yRank). (In our experiments, we use the Wikipedia search API to
obtain this ranking.) Furthermore, we take the Mixture of Language Models
(MLM) similarity score [Ogilvie and Callan, 2003] as a feature, which is
actually the best performing method among the four text-based baseline
methods (cf. Sect. 3.4). Importantly, all these features are based on lexical
matching. Our goal in this chapter is to also enable semantic matching; this
is what we shall discuss in the next section.

3.2 Semantic Matching

This section presents our main contribution, which is a set of novel semantic
matching methods for table retrieval. The main idea is to go beyond lexical
matching by representing both queries and tables in some semantic space,
and measuring the similarity of those semantic (vector) representations. Our
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Figure 3.2: Our methods for computing query-table similarity using seman-
tic representations.

approach consists of three main steps, which are illustrated in Figure 3.2.
These are as follows (moving from outwards to inwards on the figure):

1. The “raw” content of a query/table is represented as a set of terms,
where terms can be either words or entities (Sect. 3.2.1).

2. Each of the raw terms is mapped to a semantic vector representation
(Sect. 3.2.2).

3. The semantic similarity (matching score) between a query-table pair is
computed based on their semantic vector representations (Sect. 3.2.3).

We compute query-table similarity using all possible combinations of seman-
tic representations and similarity measures, and use the resulting semantic
similarity scores as features in a learning-to-rank approach. Table 3.4 sum-
marizes these features.

3.2.1 Content Extraction

We represent the “raw” content of the query/table as a set of terms, where
terms can be either words (string tokens) or entities (from a knowledge base).
We denote these as {q1, . . . , qn} and {t1, . . . , tm} for query q and table T,
respectively.

Word-based

It is a natural choice to simply use word tokens to represent query/table
content. That is, {q1, . . . , qn} is comprised of the unique words in the query.
As for the table, we let {t1, . . . , tm} contain all unique words from the ti-
tle, caption, and headings of the table. Mind that at this stage we are only
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considering the presence/absence of words. During the query-table similar-
ity matching, the importance of the words will also be taken into account
(Sect. 3.2.3).

Entity-based

Many tables are focused on specific entities [Zhang and Balog, 2017c]. There-
fore, considering the entities contained in a table amounts to a meaningful
representation of its content. We use the DBpedia knowledge base as our
entity repository. Since we work with tables extracted from Wikipedia, the
entity annotations are readily available (otherwise, entity annotations could
be obtained automatically, see, e.g., [Venetis et al., 2011]). Importantly, in-
stead of blindly including all entities mentioned in the table, we wish to
focus on salient entities. It has been observed in prior work [Venetis et al.,
2011, Bhagavatula et al., 2015] that tables often have a core column, contain-
ing mostly entities, while the rest of the columns contain properties of these
entities (many of which are entities themselves). We write Ecc to denote the
set of entities that are contained in the core column of the table, and describe
our core column detection method below. In addition to the entities taken
directly from the body part of the table, we also include entities that are
related to the page title (Tpt) and to the table caption (Ttc). We obtain those
by using the page title and the table caption, respectively, to retrieve rele-
vant entities from the knowledge base. We write Rk(s) to denote the set of
top-k entities retrieved for the query s. We detail the entity ranking method
in Sect. 3.2.1. Finally, the table is represented as the union of three sets
of entities, originating from the core column, page title, and table caption:
{t1, . . . , tm} = Ecc ∪ Rk(Tpt) ∪ Rk(Ttc).

To get an entity-based representation for the query, we issue the query
against a knowledge base to retrieve relevant entities, using the same re-
trieval method as above. I.e., {q1, . . . , qn} = Rk(q).

Core Column Detection

We introduce a simple and effective core column detection method. It is
based on the notion of column entity rate, which is defined as the ratio of
cells in a column that contain an entity. We write cer(Tc[j]) to denote the
column entity rate of column j in table T. Then, the index of the core column
becomes: arg maxj=1..T|c| cer(Tc[j]), where T|c| is the number of columns in T.

Entity Retrieval

We employ a fielded entity representation with five fields (names, categories,
attributes, similar entity names, and related entity names) and rank entities
using the Mixture of Language Models approach [Ogilvie and Callan, 2003].
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Table 3.4: Semantic similarity features. Each row represents 4 features (one
for each similarity matching method, cf. Table 3.5). All features are in
[−1, 1].

Features Semantic repr. Raw repr.

Entity * Bag-of-entities entities
Category * Bag-of-categories entities
Word * Word embeddings words
Graph * Graph embeddings entities

The field weights are set uniformly. This corresponds to the MLM-all model
in [Hasibi et al., 2017b] and is shown to be a solid baseline. We return the
top-k entities, where k is set to 10.

3.2.2 Semantic Representations

Next, we embed the query/table terms in a semantic space. That is, we map
each table term ti to a vector representation �ti, where �ti[j] refers to the jth
element of that vector. For queries, the process goes analogously. We discuss
two main kinds of semantic spaces, bag-of-concepts and embeddings, with
two alternatives within each. The former uses sparse and discrete, while
the latter employs dense and continuous-valued vectors. A particularly nice
property of our semantic matching framework is that it allows us to deal
with these two different types of representations in a unified way.

Bag-of-concepts

One alternative for moving from the lexical to the semantic space is to rep-
resent tables/queries using specific concepts. In this work, we use entities
and categories from a knowledge base. These two semantic spaces have
been used in the past for various retrieval tasks, in duet with the traditional
bag-of-words content representation. For example, entity-based represen-
tations have been used for document retrieval [Xiong et al., 2017, Raviv
et al., 2016] and category-based representations have been used for entity
retrieval [Balog et al., 2011]. One important difference from previous work
is that instead of representing the entire query/table using a single seman-
tic vector, we map each individual query/table term to a separate semantic
vector, thereby obtaining a richer representation.

We use the entity-based raw representation from the previous section, that
is, ti and qj are specific entities. Below, we explain how table terms tj are
projected to�ti, which is a sparse discrete vector in the entity/category space;
for query terms it follows analogously.
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Bag-of-entities Each element in�ti corresponds to a unique entity. Thus, the
dimensionality of �ti is the number of entities in the knowledge base
(on the order of millions). �ti[j] has a value of 1 if entities i and j are
related (there exists a link between them in the knowledge base), and
0 otherwise.

Bag-of-categories Each element in �ti corresponds to a Wikipedia category.
Thus, the dimensionality of �ti amounts to the number of Wikipedia
categories (on the order hundreds of thousands). The value of�ti[j] is 1
if entity i is assigned to Wikipedia category j, and 0 otherwise.

Embeddings

Recently, unsupervised representation learning methods have been proposed
for obtaining embeddings that predict a distributional context, i.e., word
embeddings [Mikolov et al., 2013, Pennington et al., 2014] or graph embed-
dings [Perozzi et al., 2014, Tang et al., 2015, Ristoski and Paulheim, 2016].
Such vector representations have been utilized successfully in a range of IR
tasks, including ad hoc retrieval Ganguly et al. [2015], Mitra et al. [2016],
contextual suggestion Manotumruksa et al. [2016], cross-lingual IR Vulić
and Moens [2015], community question answering Zhou et al. [2015], short
text similarity Kenter and de Rijke [2015], and sponsored search Grbovic
et al. [2015]. We consider both word-based and entity-based raw represen-
tations from the previous section and use the corresponding (pre-trained)
embeddings as follows.

Word embeddings We map each query/table word to a word embedding.
Specifically, we use word2vec [Mikolov et al., 2013] with 300 dimen-
sions, trained on Google News data.

Graph embeddings We map each query/table entity to a graph embedding.
In particular, we use RDF2vec [Ristoski and Paulheim, 2016] with 200
dimensions, trained on DBpedia 2015-10.

3.2.3 Similarity Measures

The final step is concerned with the computation of the similarity between
a query-table pair, based on the semantic vector representations we have ob-
tained for them. We introduce two main strategies, which yield four specific
similarity measures. These are summarized in Table 3.5.

Early Fusion

The first idea is to represent the query and the table each with a single vec-
tor. Their similarity can then simply be expressed as the similarity of the
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Table 3.5: Similarity measures.

Measure Equation

Early cos(�Cq, �CT)
Late-max max({cos(�qi,�tj) : i ∈ [1..n], j ∈ [1..m]})
Late-sum sum({cos(�qi,�tj) : i ∈ [1..n], j ∈ [1..m]})
Late-avg avg({cos(�qi,�tj) : i ∈ [1..n], j ∈ [1..m]})

corresponding vectors. We let �Cq be the centroid of the query term vec-
tors (�Cq = ∑n

i=1�qi/n). Similarly, �CT denotes the centroid of the table term
vectors. The query-table similarity is then computed by taking the cosine
similarity of the centroid vectors. When query/table content is represented
in terms of words, we additionally make use of word importance by em-
ploying standard TF-IDF term weighting. Note that this only applies to
word embeddings (as the other three semantic representations are based on
entities). In case of word embeddings, the centroid vectors are calculated as
�CT = ∑m

i=1�ti × TFIDF(ti). The computation of �Cq follows analogously.

Late Fusion

Instead of combining all semantic vectors qi and tj into a single one, late
fusion computes the pairwise similarity between all query and table vectors
first, and then aggregates those. We let S be a set that holds all pairwise co-
sine similarity scores: S = {cos(�qi,�tj) : i ∈ [1..n], j ∈ [1..m]}. The query-table
similarity score is then computed as aggr(S), where aggr() is an aggrega-
tion function. Specifically, we use max(), sum() and avg() as aggregators;
see the last three rows in Table 3.5 for the equations.

3.3 Test Collection

We introduce our test collection, including the table corpus, test and devel-
opment query sets, and the procedure used for obtaining relevance assess-
ments.

3.3.1 Table Corpus

We use the WikiTables corpus [Bhagavatula et al., 2015], which comprises
1.6M tables extracted from Wikipedia (dump date: 2015 October). The fol-
lowing information is provided for each table: table caption, column head-
ings, table body, (Wikipedia) page title, section title, and table statistics like
number of headings rows, columns, and data rows. We further replace all
links in the table body with entity identifiers from the DBpedia knowledge
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Table 3.6: Example queries from our query set.

Queries from [Cafarella et al., 2009] Queries from [Venetis et al., 2011]

video games asian coutries currency
us cities laptops cpu
kings of africa food calories
economy gdp guitars manufacturer
fifa world cup winners clothes brand

base (version 2015-10) as follows. For each cell that contains a hyperlink, we
check if it points to an entity that is present in DBpedia. If yes, we use the
DBpedia identifier of the linked entity as the cell’s content; otherwise, we
replace the link with the anchor text, i.e., treat it as a string.

3.3.2 Queries

We sample a total of 60 test queries from two independent sources (30 from
each): (1) Query subset 1 (QS-1): Cafarella et al. [2009] collected 51 queries
from Web users via crowdsourcing (using Amazon’s Mechanical Turk plat-
form, users were asked to suggest topics or supply URLs for a useful data
table). (2) Query subset 2 (QS-2): Venetis et al. [2011] analyzed the query logs
from Google Squared (a service in which users search for structured data)
and constructed 100 queries, all of which are a combination of an instance
class (e.g., “laptops”) and a property (e.g., “cpu”). Following [Bhagavatula
et al., 2013], we concatenate the class and property fields into a single query
string (e.g., “laptops cpu”). Table 3.6 lists some examples.

3.3.3 Relevance Assessments

We collect graded relevance assessments by employing three independent
(trained) judges. For each query, we pool the top 20 results from five baseline
methods (cf. Sect. 3.4.3), using default parameter settings. (Then, we train
the parameters of those methods with help of the obtained relevance labels.)
Each query-table pair is judged on a three point scale: 0 (non-relevant), 1
(somewhat relevant), and 2 (highly relevant). Annotators were situated in a
scenario where they need to create a table on the topic of the query, and wish
to find relevant tables that can aid them in completing that task. Specifically,
they were given the following labeling guidelines: (i) a table is non-relevant
if it is unclear what it is about (e.g., misses headings or caption) or is about
a different topic; (ii) a table is relevant if some cells or values could be used
from this table; and (iii) a table is highly relevant if large blocks or several
values could be used from it when creating a new table on the query topic.
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Table 3.7: Table retrieval evaluation results.

Method NDCG@5 NDCG@10 NDCG@15 NDCG@20

Single-field document ranking 0.4315 0.4344 0.4586 0.5254
Multi-field document ranking 0.4770 0.4860 0.5170 0.5473
WebTable [Cafarella et al., 2008a] 0.2831 0.2992 0.3311 0.3726
WikiTable [Bhagavatula et al., 2013] 0.4903 0.4766 0.5062 0.5206
LTR baseline (this chapter) 0.5527 0.5456 0.5738 0.6031

STR (this chapter) 0.5951 0.6293† 0.6590‡ 0.6825†

We take the majority vote as the relevance label; if no majority agreement
is achieved, we take the average of the scores as the final label. To measure
inter-annotator agreement, we compute the Kappa test statistics on test an-
notations, which is 0.47. According to Fleiss et al. [1971], this is considered
as moderate agreement. In total, 3120 query-table pairs are annotated as test
data. Out of these, 377 are labeled as highly relevant, 474 as relevant, and
2269 as non-relevant.

3.4 Evaluation

In this section, we list our research questions (Sect. 3.4.1), discuss our ex-
perimental setup (Sect. 3.4.2), introduce the baselines we compare against
(Sect. 3.4.3), and present our results (Sect. 3.4.4) followed by further analysis
(Sect. 3.4.5).

3.4.1 Research Questions

The research questions we seek to answer are as follows.

RQ1/A Can semantic matching improve retrieval performance?

RQ1/B Which of the semantic representations is the most effective?

RQ1/C Which of the similarity measures performs better?

3.4.2 Experimental Setup

We evaluate table retrieval performance in terms of Normalized Discounted
Cumulative Gain (NDCG) at cut-off points 5, 10, 15, and 20. To test signifi-
cance, we use a two-tailed paired t-test and write †/‡ to denote significance
at the 0.05 and 0.005 levels, respectively.

Our implementations are based on Nordlys [Hasibi et al., 2017a]. Many
of our features involve external sources, which we explain below. To com-
pute the entity-related features (i.e., features in Table 3.3 and Table 3.4 as
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Table 3.8: Comparison of semantic features, used in combination with base-
line features (from Table 3.3 and Table 3.4), in terms of NDCG@20. Relative
improvements are shown in parentheses. Statistical significance is tested
against the LTR baseline in Table 3.7.

Sem. Repr. Early Late-max Late-sum Late-avg ALL

Bag-of-entities 0.6754 (+11.99%) 0.6407 (+6.23%)† 0.6697 (+11.04%)‡ 0.6733 (+11.64%)‡ 0.6696 (+11.03%)‡

Bag-of-categories 0.6287 (+4.19%) 0.6245 (+3.55%) 0.6315 (+4.71%)† 0.6240 (+3.47%) 0.6149 (+1.96%)
Word embeddings 0.6181 (+2.49%) 0.6328 (+4.92%) 0.6371 (+5.64%)† 0.6485 (+7.53%)† 0.6588 (+9.24%)†

Graph embeddings 0.6326 (+4.89%) 0.6142 (+1.84%) 0.6223 (+3.18%) 0.6316 (+4.73%) 0.6340 (+5.12%)
ALL 0.6736 (+11.69%)† 0.6631 (+9.95%)† 0.6831 (+13.26%)‡ 0.6809 (+12.90%)‡ 0.6825 (13.17%)‡

well as the features based on the bag-of-entities and bag-of-categories repre-
sentations in Table 3.4), we use entities from the DBpedia knowledge base
that have an abstract (4.6M in total). The table’s Wikipedia rank (yRank) is
obtained using Wikipedia’s MediaWiki API. The PMI feature is estimated
based on the ACSDb corpus [Cafarella et al., 2008b]. For the distributed
representations, we take pre-trained embedding vectors, as explained in
Sect. 3.2.2.

3.4.3 Baselines

We implement four baseline methods from the literature.

Single-field document ranking In [Cafarella et al., 2009, 2008a] tables are
represented and ranked as ordinary documents. Specifically, we use
Language Models with Dirichlet smoothing, and optimize the smooth-
ing parameter using a parameter sweep.

Multi-field document ranking Pimplikar and Sarawagi [2012] represent each
table as a fielded document, using five fields: Wikipedia page title, ta-
ble section title, table caption, table body, and table headings. We use
the Mixture of Language Models approach [Ogilvie and Callan, 2003]
for ranking. Field weights are optimized using the coordinate ascent
algorithm; smoothing parameters are trained for each field individu-
ally.

WebTable The method by Cafarella et al. [2008a] uses the features in Ta-
ble 3.3 and Table 3.4 with [Cafarella et al., 2008a] as source. Follow-
ing [Cafarella et al., 2008a], we train a linear regression model with
5-fold cross-validation.

WikiTable The approach by Bhagavatula et al. [2013] uses the features in Ta-
ble 3.3 and Table 3.4 with [Bhagavatula et al., 2013] as source. We train
a Lasso model with coordinate ascent with 5-fold cross-validation.

Additionally, we introduce a learning-to-rank baseline:
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LTR baseline It uses the full set of features listed in Table 3.3 and Table 3.4.
We employ pointwise regression using the Random Forest algorithm.1

We set the number of trees to 1000 and the maximum number of fea-
tures in each tree to 3. We train the model using 5-fold cross-validation
(w.r.t. NDCG@20); reported results are averaged over 5 runs.

The baseline results are presented in the top block of Table 3.7. It can be
seen from this table that our LTR baseline (row five) outperforms all existing
methods from the literature; the differences are substantial and statistically
significant. Therefore, in the remainder of this chapter, we shall compare
against this strong baseline, using the same learning algorithm (Random
Forests) and parameter settings. We note that our emphasis is on the seman-
tic matching features and not on the supervised learning algorithm.

3.4.4 Experimental Results

The last line of Table 3.7 shows the results for our semantic table retrieval
(STR) method. It combines the baseline set of features (Table 3.3 and Ta-
ble 3.4) with the set of novel semantic matching features (from Table 3.4, 16
in total). We find that these semantic features bring in substantial and sta-
tistically significant improvements over the LTR baseline. Thus, we answer
RQ1/A positively. The relative improvements range from 7.6% to 15.3%,
depending on the rank cut-off.

To answer RQ1/B and RQ1/C, we report on all combinations of seman-
tic representations and similarity measures in Table 3.8. In the interest of
space, we only report on NDCG@20; the same trends were observed for
other NDCG cut-offs. Cells with a white background show retrieval per-
formance when extending the LTR baseline with a single feature. Cells
with a grey background correspond to using a given semantic representa-
tion with different similarity measures (rows) or using a given similarity
measure with different semantic representations (columns). The first obser-
vation is that all features improve over the baseline, albeit not all of these
improvements are statistically significant. Concerning the comparison of
different semantic representations (RQ1/B), we find that bag-of-entities and
word embeddings achieve significant improvements; see the rightmost col-
umn of Table 3.8. It is worth pointing out that for word embeddings the
four similarity measures seem to complement each other, as their combined
performance is better than that of any individual method. It is not the case
for bag-of-entities, where only one of the similarity measures (Late-max) is
improved by the combination. Overall, in answer to RQ1/B, we find the
bag-of-entities representation to be the most effective one. The fact that this

1We also experimented with Gradient Boosting regression and Support Vector Regres-
sion, and observed the same general patterns regarding feature importance. However, their
overall performance was lower than that of Random Forests.
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Figure 3.3: Normalized feature importance (measured in terms of Gini
score).

sparse representation outperforms word embeddings is regarded as a some-
what surprising finding, given that the latter has been trained on massive
amounts of (external) data.

As for the choice of similarity measure (RQ1/C), it is difficult to name a
clear winner when a single semantic representation is used. The relative dif-
ferences between similarity measures are generally small (below 5%). When
all four semantic representations are used (bottom row in Table 3.8), we find
that Late-sum and Late-avg achieve the highest overall improvement. Impor-
tantly, when using all semantic representations, all four similarity measures
improve significantly and substantially over the baseline. We further note
that the combination of all similarity measures do not yield further improve-
ments over Late-sum or Late-avg. In answer to RQ1/C, we identify the late
fusion strategy with sum or avg aggregation (i.e., Late-sum or Late-avg) as
the preferred similarity method.

3.4.5 Analysis

We continue with further analysis of our results.

Features

Figure 3.3 shows the importance of individual features for the table retrieval
task, measured in terms of Gini importance. The novel features are distin-
guished by color. We observe that 8 out of the top 10 features are semantic
features introduced in this chapter.

Semantic Representations

To analyze how the four semantic representations affect retrieval perfor-
mance on the level of individual queries, we plot the difference between the
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(a) Bag-of-entities (b) Bag-of-categories (c) Word embed-
dings

(d) Graph embed-
dings

Figure 3.4: Distribution of query-level differences between the LTR baseline
and a given semantic representation.

Figure 3.5: Table retrieval results, LTR baseline vs. STR, on the two query
subsets in terms of NDCG@20.

LTR baseline and each semantic representation in Figure 3.4. The histograms
show the distribution of queries according to NDCG@20 score difference
(Δ): the middle bar represents no change (Δ <0.05), while the leftmost and
rightmost bars represents the number of queries that were hurt and helped
substantially, respectively (Δ >0.25). We observe similar patterns for the
bag-of-entities and word embeddings representations; the former has less
queries that were significantly helped or hurt, while the overall improve-
ment (over all topics) is larger. We further note the similarity of the shapes
of the distributions for bag-of-categories and graph embeddings.

Query Subsets

On Figure 3.5, we plot the results for the LTR baseline and for our STR
method according to the two query subsets, QS-1 and QS-2, in terms of
NDCG@20. Generally, both methods perform better on QS-1 than on QS-
2. This is mainly because QS-2 queries are more focused (each targeting a
specific type of instance, with a required property), and thus are considered
more difficult. Importantly, STR achieves consistent improvements over LTR
on both query subsets.
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(a) QS-1 (b) QS-2

Figure 3.6: Query-level differences on the two query subsets between the
LTR baseline and STR. Positive values indicate improvements made by the
latter.

Table 3.9: Example queries from our query set. Rel denotes table relevance
level. LTR and STR refer to the positions on which the table is returned by
the respective method.

Query Rel LTR STR

QS-1-24: stocks
Stocks for the Long Run / Key Data Findings: annual real returns 2 - 6
TOPIX / TOPIX New Index Series 1 9 -
Hang Seng Index / Selection criteria for the HSI constituent stocks 1 - -

QS-1-21: ibanez guitars
Ibanez / Serial numbers 2 1 2
Corey Taylor / Equipment 1 2 3
Fingerboard / Examples 1 4 5

QS-2-27: board games number of players
List of Japanese board games 1 13 1
List of licensed Risk game boards / Risk Legacy 1 - 3

QS-2-21: cereals nutritional value
Sesame / Sesame seed kernels, toasted 2 1 8

QS-2-20: irish counties area
Counties of Ireland / List of counties 2 2 1
List of Irish counties by area / See also 2 1 2
List of flags of Ireland / Counties of Ireland Flags 2 - 3
Provinces of Ireland / Demographics and politics 1 4 4
Toponymical list of counties of the United Kingdom / Northern . . . 1 - 7
Múscraige / Notes 1 - 6

Individual Queries

We plot the difference between the LTR baseline and STR for the two query
subsets in Figure 3.6. Table 3.9 lists the queries that we discuss below. The
leftmost bar in Figure 3.6(a) corresponds to the query “stocks.” For this broad
query, there are two relevant and one highly relevant tables. LTR does not re-
trieve any highly relevant tables in the top 20, while STR manages to return
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one highly relevant table in the top 10. The rightmost bar in Figure 3.6(a)
corresponds to the query “ibanez guitars.” For this query, there are two rele-
vant and one highly relevant tables. LTR produces an almost perfect ranking
for this query, by returning the highly relevant table at the top rank, and the
two relevant tables at ranks 2 and 4. STR returns a non-relevant table at
the top rank, thereby pushing the relevant results down in the ranking by a
single position, resulting in a decrease of 0.29 in NDCG@20.

The leftmost bar in Figure 3.6(b) corresponds to the query “board games num-
ber of players.” For this query, there are only two relevant tables according
to the ground truth. STR managed to place them in the 1st and 3rd rank
positions, while LTR returned only one of them at position 13th. The right-
most bar in Figure 3.6(b) is the query “cereals nutritional value.” Here, there
is only one highly relevant result. LTR managed to place it in rank one,
while it is ranked eighth by STR. Another interesting query is “irish counties
area” (third bar from the left in Figure 3.6(b)), with three highly relevant
and three relevant results according to the ground truth. LTR returned two
highly relevant and one relevant results at ranks 1, 2, and 4. STR, on the
other hand, placed the three highly relevant results in the top 3 positions
and also returned the three relevant tables at positions 4, 6, and 7.

3.5 Summary and Conclusions

In this chapter, we have introduced and addressed the problem of ad hoc
table retrieval: answering a keyword query with a ranked list of tables.
Table retrieval is not interesting on its own, it is highly relevant to many
table-related tasks like table completion (Chapter 5) and table generation
(Chapter 6). We have developed a novel semantic matching framework,
where queries and tables can be represented using semantic concepts (bag-
of-entities and bag-of-categories) as well as continuous dense vectors (word
and graph embeddings) in a uniform way. We have introduced multiple
similarity measures for matching those semantic representations. For eval-
uation, we have used a purpose-built test collection based on Wikipedia
tables. Finally, we have demonstrated substantial and significant improve-
ments over a strong baseline.

Ad hoc table retrieval requires the user to issue a keyword query. When the
user is already working on a table, we could retrieve related tables proac-
tively based on that table as input, instead of resorting to a user-issued key-
word query. Accordingly, we propose a separate table retrieval task, termed
“query-by-table” in Chapter 4.
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Chapter 4

Query-by-Table

In Chapter 3, we have looked at how to rank tables using semantic matching
in response to a keyword query. In a spreadsheet application, for instance,
the table that a user is working on can in fact also be used as query. There-
fore, we propose a novel table retrieval paradigm, referred to as query-by-
table: given an input table, return a ranked list of relevant tables. At its core,
this task boils down to computing the similarity between a pair of tables.
We develop a theoretically sound framework for performing table matching.
Our approach hinges on the idea of representing table elements in multi-
ple semantic spaces, and then combining element-level similarities using a
discriminative learning model, which is similar to that in Chapter 3. How-
ever, we further estimate the cross-element similarities for this task. Using a
purpose-built test collection from Wikipedia tables, we demonstrate that the
proposed approach delivers state-of-the-art performance.

This chapter is organized as follows. We introduce the query-by-table para-
digm, adapt existing methods in Sect. 4.1, and present a discriminative ap-
proach that combines hand-crafted features from the literature in Sect. 4.2.
We develop a general a table matching framework and specific instantiations
of this framework in Sect. 4.3. We construct a purpose-built test collection in
Sect. 4.4, perform a thorough experimental evaluation, and provide valuable
insights and analysis in Sect. 4.5. Section 4.6 concludes this chapter.

4.1 Task Definition and Baseline Methods

In this section, we first introduce a novel table search paradigm, referred
to as query-by-table: given an input table T̃, return a ranked list of related
tables. That is, instead of requiring the user to express her information
need by formulating a keyword query, we let her search for related tables by
providing a table as input. This input table may be an incomplete table she
currently works on or an existing table from earlier. Figure 4.1 illustrates the
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Figure 4.1: Query-by-table: given an input table, the system returns a ranked
list of tables.

Table 4.1: Notation used in this chapter.

Symbol Description

T̃ Input table
T Candidate table
Tc Table caption
Tp Title of the page embedding the table
TE Set of entities in the table
TH Set of table column headings
TD Table data (or column data)

idea. Secondly, we present a number of existing methods from the literature
that can be used to perform table matching. The objective is to compute the
similarity between an input table T̃ and a candidate table T, expressed as
score(T̃, T). On the high level, all these methods operate by (i) subdividing
tables into a number of table elements (such as caption, heading columns,
and table data; Table. 4.1 lists all the notations), (ii) measuring the similarity
between various elements of the input and candidate tables, and (iii) in case
multiple elements are considered, combining these element-level similarities
into a final score. Table 4.2 provides an overview of existing methods and
the table elements they utilize.
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Table 4.2: Table elements used in existing methods.

Method Tc Tp TE TH TD

Keyword-based search using TE (Sect. 4.1.1)
√

Keyword-based search using TH (Sect. 4.1.1)
√

Keyword-based search using Tc (Sect. 4.1.1)
√

Mannheim Search Join Engine (Sect.4.1.2)
√

Schema complement (Sect.4.1.3)
√ √

Entity complement (Sect.4.1.4)
√

Nguyen et al. (Sect.4.1.5)
√ √

InfoGather (Sect.4.1.6)
√ √ √

4.1.1 Keyword-based Search

Tables may be represented as unstructured documents, and ranked by means
of keyword queries using standard document retrieval methods (e.g., BM25).
Ahmadov et al. [2015a] use table entities and table headings as queries. Ad-
ditionally, we also consider using the table caption as a query. Formally,
we let dT denote the document-based representation of table T. The candi-
date table’s score is computed by taking the terms from T̃E, T̃H, or T̃c as the
keyword query q: score(T̃, T) = scoreBM25(q, dT).

4.1.2 Mannheim Search Join Engine

The Mannheim Search Join Engine (MSJE) [Lehmberg et al., 2015] provides
table search functionality with the overall aim to extend an input table with
additional attributes (i.e., columns). First, it uses exact column heading
matching to filter tables that share at least one heading with the input ta-
ble: T = {T : |T̃H ∩ TH | > 0}. Then, all tables in T are scored against the
input table using the FastJoin matcher [Wang et al., 2011]. Specifically, Lehm-
berg et al. [2015] adapt edit distance with a threshold of δ to measure the
similarity between the input and candidate tables’ heading terms, w(ti, tj),
where ti ∈ T̃H and tj ∈ TH. Terms in T̃H and TH form a bipartite graph,
with w(ti, tj) as edge weights. Let |T̃H∩̃δTH | denote the maximum weighted
bipartite matching score on the graph’s adjacency matrix, considering edges
exceeding edit distance threshold. Then, the Jaccard similarity of two tables
is expressed as:

score(T̃, T) =
|T̃H∩̃δTH |

|{t : t ∈ T̃H}|+ |{t : t ∈ TH}| − |T̃H∩̃δTH |
,

where |{t : t ∈ TH}| denotes the number of unique terms in the column
headings of T.
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4.1.3 Schema Complement

Das Sarma et al. [2012] search for related tables with the overall goal of
extending the input table with additional attributes (referred to as schema
complement in [Das Sarma et al., 2012]). For this task, they consider two
factors: (i) the coverage of entities and (ii) the benefits of adding additional
attributes. The final matching score is computed as:

score(T̃, T) = SEC(T̃, T)× SHB(T̃, T). (4.1)

The first component, entity coverage (EC), computes the entity overlap be-
tween two tables:

SEC(T̃, T) =
|T̃E ∩ TE|

|T̃E|
. (4.2)

The second component in Eq. (4.1) estimates the benefit of adding an addi-
tional column heading h to the input table:

HB(T̃H, h) =
1

|T̃H | ∑
h̃∈T̃H

#(h̃, h)
#(h̃)

,

where #(h̃, h) is number of tables containing both h̃ and h as column head-
ings, and #(h̃) is the number of tables containing h̃. The heading benefit
between two tables, SHB(T̃, T), is computed by aggregating the benefits of
adding all headings h from T to T̃:

SHB(T̃, T) = aggr(HB(T̃H, h)) .

The aggregation function aggr() can be sum, average, or max.

4.1.4 Entity Complement

In addition to schema complement tables, Das Sarma et al. [2012] also search
for entity complement tables, in order to augment the input table with addi-
tional entities (as rows). This method considers the relatedness between
entities of the two tables:

score(T̃, T) =
1

|T̃E||TE| ∑
ẽ∈T̃E

∑
e∈TE

sim(ẽ, e),

where sim(ẽ, e) is a pairwise entity similarity measure. Specifically, we
employ the Wikipedia Link-based Measure (WLM) [Milne and Witten, 2008],
which estimates the semantic relatedness between two entities based on
other entities they link to:

simWLM(e, ẽ) = 1 − log(max(|Le|, |Lẽ|))− log(|Le ∩ Lẽ|)
log(|E | − log(min(|Le|, |Lẽ|)))

,

where Le is the set of outgoing links of e (i.e., entities e links to) and |E | is
the total number of entities in the knowledge base.
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4.1.5 Nguyen et al.

Nguyen et al. [2015] match tables by considering both their headings and
content (table data). These two similarities are combined using a linear
mixture:

score(T̃, T) = α × simH(T̃, T) + (1 − α)× simD(T̃, T) .

The heading similarity simH is computed by first creating a similarity matrix
between the heading terms of T̃H and TH, as in Sect. 4.1.2. Next, an attribute
correspondence subgraph C ⊆ (|T̃H | × |TH |) is obtained by solving the max-
imum weighted bipartite sub-graph problem [Anan and Avigdor, 2007]. Finally,
heading similarity is computed as:

simH(T̃, T) =
∑(i,j)∈C wti ,tj(T̃H, TH)

max(|T̃H |, |TH |)
.

Data similarity is measured based on columns. Each table column is rep-
resented as a binary term vector, TD,i, where each element indicates the
presence (1) or absence (0) of a given term in column i of table T. The sim-
ilarity between two columns is measured by their cosine similarity. Table
similarity considers all column combinations of T̃ and T. To account for the
high number of possible combinations, for table each column, only the most
similar column is considered from the other table:

simD(T̃, T) =
1
2
(
∑

i
max

j
cos(T̃D,i, TD,j) + ∑

j
max

i
cos(T̃D,i, TD,j)

)
.

4.1.6 InfoGather

Following Yakout et al. [2012], we consider element-wise similarity across
four table elements: table data, column values, page title, and column head-
ings. Element-wise similarities are combined by training a linear regression
scorer:

score(T̃, T) = ∑
x

wx × simx(T̃, T) ,

where x is a given table element, simx() is the element-level similarity score,
and wx is the weight (importance) of that element. Each table element is
expressed as a term vector, denoted as T̃x and Tx for element x of the input
and candidate tables, respectively. Element-level similarity is then estimated
using the cosine similarity between the two term vectors:

simx(T̃, T) = cos(T̃x, Tx) =
T̃x · Tx

||T̃x|| × ||Tx||
. (4.3)

Specifically, following [Yakout et al., 2012], for the table data and page ti-
tle elements we use IDF weighting, while for column heading and column
values, we employ TF-IDF weighting.
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4.2 Using Hand-crafted Features

We combine the various table similarity measures from the previous section
in a feature-based ranking framework. Additionally, we introduce a set of
features to describe the input and candidate tables on their own. As we
will show in our experimental section, this approach outperforms the best
method from the literature by almost 30%. Therefore, even though the indi-
vidual features are not regarded as novel, the rich feature set we introduce
here does represent an important contribution.

4.2.1 Retrieval Framework

Formally, our goal is to learn a ranking model h(T̃, T) = h(�xT̃,T) that gives
a real-valued score for an input and candidate table pair, or equivalently, to
the corresponding feature vector �xT̃,T. The feature vector is defined as:

�xT̃,T =
〈

ϕ1(T̃), . . . , ϕn(T̃), (4.4)

ϕn+1(T), . . . , ϕ2n(T),

ϕ2n+1(T̃, T), . . . , ϕ2n+m(T̃, T)
〉

There are two main groups of features. The first m features are used for
representing the similarity between a pair of tables; these are described in
Sect. 4.2.2. Then, 2n features are based on the characteristics of the input and
candidate tables, respectively (n features each). These features are discussed
in Sect. 4.2.3.

4.2.2 Table Similarity Features

We consider all element-level similarity scores from the individual methods
in Sect. 4.1 as table similarity features. These are shown in Table 4.3, grouped
by table elements.

4.2.3 Table Features

Additionally, we present a set of features that characterize individual tables.
Table features are computed for both the input and candidate tables. They
might be thought of as analogous to the query and document features, re-
spectively, in document retrieval [Macdonald et al., 2012]. In fact, we adapt
some features from document retrieval, such as query IDF score [Qin et al.,
2010]. Specifically, we compute IDF for the table caption and page title el-
ements, by summing up the term IDF scores: IDF( f ) = ∑t∈ f IDF(t). We
further consider general table descriptors from [Bhagavatula et al., 2013],
like the number of table rows, columns, and empty cells. Another group of
features is concerned with the page in which the table is embedded. The
includes page connectivity (inLinks and outLinks), page popularity (page
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Table 4.3: Table similarity features. All values are in [0, 1].

Element / Feature Source

Page title (T̃p ↔ Tp)
InfoGather page title IDF similarity score (Sect. 4.1.6) [Yakout et al., 2012]

Table headings (T̃H ↔ TH)
MSJE heading matching score (Sect. 4.1.2) [Lehmberg et al., 2015]
Schema complement schema benefit score (Sect. 4.1.3) [Das Sarma et al., 2012]
InfoGather heading-to-heading similarity (Sect. 4.1.6) [Yakout et al., 2012]
Nguyen et al. heading similarity (Sect. 4.1.5) [Nguyen et al., 2015]

Table data (T̃D ↔ TD)
InfoGather column-to-column similarity (Sect. 4.1.6) [Yakout et al., 2012]
InfoGather table-to-table similarity (Sect. 4.1.6) [Yakout et al., 2012]
Nguyen et al. table data similarity (Sect. 4.1.5) [Nguyen et al., 2015]

Table entities (T̃E ↔ TE)
Entity complement entity relatedness score (Sect. 4.1.4) [Das Sarma et al., 2012]
Schema complement entity overlap score (Sect. 4.1.3) [Das Sarma et al., 2012]

counts), and the table’s importance within the page (tableImportance and
tablePageFraction). Table 4.4 provides an overview of table features. Notice
that these features largely overlap with those we considered in the previous
chapter, cf. Table 3.2.

4.3 The CRAB Approach

This section presents our novel approach for table matching. Our contribu-
tions are twofold. We introduce a general element-oriented table matching
framework in Sect. 4.3.1 followed by specific instantiations of this framework,
referred to as CRAB, in Sect. 4.3.2.

4.3.1 Element-Level Table Matching Framework

We combine multiple table quality indicators and table similarity measures
in a discriminative learning framework. Input and candidate table pairs are
described as a feature vector, shown in Eq. (4.4). The main novelty lies in
how table similarity is estimated. Instead of relying on hand-crafted features,
like the ones presented in Sect. 4.2, we represent table elements in a uniform
manner. Moreover, instead of relying of lexical matches, we perform the
matching of table elements in multiple semantic spaces.

Let T̃y
x1 denote element x1 of the input table T̃ in representation space y.

Similarly, let Ty
x2 denote element x2 of the candidate table T in representation

space y. We then take table similarity features to be element-level matching
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Tx = [t1, ..., tN ]

⎡
⎣ ty1[ ... ]
...
tyN [ ... ]

⎤
⎦

Term 
space

Semantic 
space y

Figure 4.2: Representation of a table element Tx in the term and in a given
semantic space y.

scores:
ϕi(T̃, T) = sim(T̃y

x1, Ty
x2) ,

where i ∈ [2n + 1, 2n + m] and sim() is a similarity function. Importantly,
these similarity functions are applicable both to elements of the same type
(x1 = x2), referred to as element-wise matching (e.g., caption vs. caption,
headings vs. headings, etc.) and to elements of different types (x1 �= x2),
referred to as cross-element matching (e.g., caption vs. headings or headings
vs. data). Next, we present various ways of representing table elements
(Sect. 4.3.1), and measuring element-level similarity (Sect. 4.3.1).

Representing Table Elements

Each table element, Tx, is represented both in a term space and in a semantic
space. We start with the former one. Tx is described as a weighted vector
of terms, where terms may be words or entities. Formally, T�x = [t1, . . . , tN ],
where ti corresponds to the weight of the ith term in the vocabulary. For
words, the vocabulary is the set of unique words in the table corpus, for
entities it is the set of entries in a knowledge base. We also represent each
table element in a semantic space. Given a semantic space y, each term ti is
described by a corresponding embedding vector,�ty

i . The space of embeddings
may be words, entities, or graphs (cf. Sect. 4.3.2).

In summary, each table element is represented in the term space by a term
vector T�x, and each term ti ∈ T�x is represented by a semantic vector �ty

i .
Note that the term space serves only as an intermediate representation, to
help map table elements to semantic space y. The subsequent element-level
matching will only be performed in this semantic space. See Fig. 4.2 for an
illustration.

Measuring Element-level Similarity

We estimate the similarity between two table elements, T̃x1 and Tx2 , based on
their semantic representations. Notice that these semantic representations
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Table 4.4: Table features.

Feature Description Source

#rows Number of rows in the table [Cafarella et al., 2008a, Bhaga-
vatula et al., 2013]

#cols Number of columns in the table [Cafarella et al., 2008a, Bhaga-
vatula et al., 2013]

#of NULLs Number of empty table cells [Cafarella et al., 2008a, Bhaga-
vatula et al., 2013]

IDF(Tc) Table caption IDF [Qin et al., 2010]
IDF(Tp) Table page title IDF [Qin et al., 2010]
inLinks Number of in-links to the page embed-

ding the table
[Bhagavatula et al., 2013]

outLinks Number of out-links from the page em-
bedding the table

[Bhagavatula et al., 2013]

pageViews Number of page views [Bhagavatula et al., 2013]
tableImportance Inverse of number of tables on the page [Bhagavatula et al., 2013]
tablePageFraction Ratio of table size to page size [Bhagavatula et al., 2013]

(that is, the embedding vectors �ty
i ) are on the term level and not on the

element level. Thus, the term embedding vectors need to be aggregated on
the element level. Following in spirit with the approach taken in Chapter 3,
we present four specific element-level similarity methods. These are roughly
analogous to the early and late fusion strategies in [Snoek et al., 2005, Zhang
and Balog, 2017b]. We refer to Fig. 4.3 for an illustration.

One strategy, referred to as early fusion, represents each table element Tx in
semantic space y by combining the term-level semantic vectors to a single
element-level semantic vector, �Cy

x . We take the weighted centroid of term-
level semantic vectors:

�Cy
x [i] =

∑N
j=1 tj ×�ty

j [i]

∑N
j=1 tj

,

where [i] refers to the ith element of the vector. Then, the similarity of two
table elements is taken to be the cosine similarity of their respective centroid
vectors:

simearly(T̃x1 , Tx2) = cos(�Cy
x1, �Cy

x2) .

According to another strategy, referred to as late fusion, we first compute
the cosine similarities between all pairs of semantic vectors. Then, these
term-level similarity scores are aggregated into an element-level score:

simlate(T̃x1 , Tx2) = aggr({cos(�t1,�t2) :�t1 ∈ T̃y
�x1

,�t2 ∈ Ty
�x2
}) ,

where aggr() is an aggregation function. Specifically, we use max(), sum(),
and avg() as aggregation functions.
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[ ... ] Cy
x2C̃y

x1
[ ... ]

⎡
⎣ ty1[ ... ]
...
tyM [ ... ]

⎤
⎦

simearly

⎡
⎣ t̃y1[ ... ]
...
t̃yN [ ... ]

⎤
⎦

(a) Early fusion

⎡
⎣ cos(t̃y1, t

y
1)

...
cos(t̃yN , tyM )

⎤
⎦

⎡
⎣ t̃y1[ ... ]
...
t̃yN [ ... ]

⎤
⎦

⎡
⎣ ty1[ ... ]
...
tyM [ ... ]

⎤
⎦

simlate

(b) Late fusion

Figure 4.3: Illustration of element-level similarity methods.

4.3.2 CRAB

We detail a specific instantiation of our framework, which includes the rep-
resentation of table elements (Sect. 4.3.2) and the element-level similarity
scores that are used as ranking features (Sect. 4.3.2).

Representing Table Elements

We split tables into the following elements (see Fig. 2.2 for an illustration)
and represent them in (at most) two term spaces, words and entities, as
follows:

• Table headings (TH) Table headings are represented only as words,
since entity occurrences in headings are extremely rare. In the case that
entities appear in headings, we assign them to the table data element.

• Table data (TD) The contents of table cells are used both as words and
as entities. For the latter, entity mentions need to be recognized and
disambiguated; such annotations be made readily available as markup
(e.g., in Wikipedia tables) or may be obtained automatically using en-
tity linking techniques [Shen et al., 2015].

• Table topic (Tt) For simplicity, we combine table caption and page
title into a single table topic element. We can directly use this text for
representing the table topic in the word space. To obtain entities for the
table topic, we use the table topic text as a search query to retrieve the
top-k relevant entities from a knowledge base. Specifically, we employ
the MLM [Hasibi et al., 2017a] retrieval method with k = 10.

• Table entities (TE) Many relational tables have a core entity column [Bha-
gavatula et al., 2015, Venetis et al., 2011], while the rest of columns
represent attributes of those entities. For this table element we only
keep entities from the table’s core column, i.e., the column with the
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highest entity rate. We estimate entity rate by calculating the number
of column cells that contain an entity and divide it by the number of
rows.

We consider three semantic spaces for representing table elements: word,
entity, and graph embeddings. These are explained below.

Word embeddings Each table element is represented in the term space as
a TF-IDF-weighted vector of words. I.e., ti ∈ Tx refers to the TF-IDF
weight of the ith word in the vocabulary. Then, each word is repre-
sented in the semantic space y = w by a word embedding vector tw

i .
Specifically, we use pre-trained Word2vec [Mikolov et al., 2013, Pen-
nington et al., 2014] vectors.

Graph embeddings Each table element is represented in the term space as
a binary vector of entities. I.e., ti ∈ Tx is 1 if the ith entity in the
knowledge base appears in table element Tx, and is 0 otherwise. Then,
each entity is represented in the semantic space y = g by a graph em-
bedding vector t

g
i . Specifically, we use pre-trained Graph2vec [Ristoski

and Paulheim, 2016] vectors.

Entity embeddings We use the same term space representation as for graph
embedding, i.e., each table element is described as a binary vector
of entities. Then, each entity ti is represented in the semantic space
y = e as a vector of linked entities. I.e., the dimensionality of te

i is
the total number of entities in the knowledge base. The jth element
of the related entity vector is expressed as t

g
i [j] = 1(ej), where 1 is a

binary indicator function that returns 1 if ei and ej link to each other,
otherwise returns 0.

Table Similarity Features

Existing methods have only considered matching between elements of the
same type, referred to as element-wise matching. Our framework also en-
ables us to measure the similarities between elements of different types in
a principled way, referred to as cross-element matching. Finally, as before,
we can also utilize table features that characterize the input and candidate
tables. Below, we detail the set of features used for measuring element-level
similarity.

Element-wise similarity We compute the similarity between elements of
the same type from the input and candidate tables. Each table element
may be represented in up to three semantic spaces. Then, in each of
those spaces, similarity is measured using the four element-level simi-
larity measures (early, late-max, late-sum, and late-avg). Element-wise
features are summarized in the left half of Table 4.5.
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Table 4.5: Element-wise and cross-element features used in CRAB. The di-
mension is r × #s × #m, where r is reflection (1 for element-wise and 2 for
cross-element), s is the number of semantic spaces, and m is the number of
element-wise similarity measures.

Element Dimension Element Dimension

T̃H to TH 1 × 1 × 4 = 4 T̃H to Tt 2 × 1 × 4 = 8
T̃D to TD 1 × 3 × 4 = 12 T̃H to TD 2 × 1 × 4 = 8
T̃E to TE 1 × 2 × 4 = 8 T̃D to Tt 2 × 3 × 4 = 24
T̃t to Tt 1 × 3 × 4 = 12 T̃D to TE 2 × 2 × 4 = 16

T̃t to TE 2 × 2 × 4 = 16

Total 36 72

Cross-element similarity This approach compares table elements of differ-
ent types in an asymmetrical way. Each pair of elements need to be rep-
resented in the same semantic space. Then, the same element-level sim-
ilarity measures may be applied, as before. We list the cross-element
similarity features in the right half of Table 4.5.

We present four specific instantiations of our table matching framework,
by considering various combinations of the three main groups of features.
These instantiations are labelled as CRAB-1 .. CRAB-4 and are summarized
in Table 4.6.

4.4 Test collection

We introduce our test collection, which consists of a table corpus, a set of
query tables, and corresponding relevance assessments.

4.4.1 Table Corpus

We use the WikiTables corpus [Bhagavatula et al., 2015], which contains
1.6M tables extracted from Wikipedia. The knowledge base we use is DB-
pedia (version 2015-10). We restrict ourselves to entities which have a short
textual summary (abstract) in the knowledge base (4.6M in total). Tables are
preprocessed as follows. For each cell that contains a hyperlink we check if
it points to an entity that is present in DBpedia. If yes, we use the DBpedia
identifier of the linked entity as the cell’s content (with redirects resolved);
otherwise, we replace the link with the anchor text (i.e., treat it as a string).
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Table 4.6: Features used in various instantiations of our element-wise table
matching framework. Element-wise and cross-element features are summa-
rized in Table 4.5, table feature are listed in Table 4.4.

Method
Table similarity features

Element-wise Cross-element Table features

CRAB-1
√

CRAB-2
√ √

CRAB-3
√ √

CRAB-4
√ √ √

4.4.2 Query Tables and Relevance Assessments

We sample 50 Wikipedia tables from the table corpus to be used as queries.
Each table is required to have at least five rows and three columns. These ta-
bles cover a diverse set of topics, including sports, music, films, food, celebri-
ties, geography, and politics.

Ground truth relevance labels are obtained as follows. For each input table,
three keyword queries are constructed: (i) caption, (ii) table entities (entities
from table plus the entity corresponding to the Wikipedia page in which
the table is embedded), and (iii) table headings. Each keyword query is
used to retrieve the top 150 results, resulting in at most 450 candidate tables
for each query table. All methods that are compared in the experimental
section operate by reranking these candidate sets. For each method, the top
10 results are manually annotated.

Each query-table pair is judged on a three point scale: non-relevant (0), rel-
evant (1), and highly relevant (2). A table is highly relevant if it is about
the same topic as the input table, but contains additional novel content that
is not present in the input table. A table is relevant if it is on-topic, but it
contains limited novel content; i.e., the content largely overlaps with that of
the input table. Otherwise, the table is not relevant; this also includes tables
without substantial content. Three colleagues were employed and trained as
annotators. We take the majority vote as the relevance label; if no majority
vote is achieved, the mean score is used as the final label. To measure inter-
annotator agreement, we compute the Fleiss Kappa test statistics, which is
0.6703. According to Fleiss et al. [1971], this is considered as substantial
agreement.

4.4.3 Evaluation Metrics

We evaluate table retrieval performance in terms of Normalized Discounted
Cumulative Gain (NDCG) at cut-offs 5 and 10. To test significance, we use a
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two-tailed paired t-test and write †/‡ to denote significance at the 0.05 and
0.01 levels, respectively.

4.5 Evaluation

In this section, we report on the experiments we conducted to answer our
research questions.

4.5.1 Experimental Setup

The experimental configurations of the various methods are as follows. For
keyword-based search (Sect. 4.1.1), the TE and TH methods query an index of
the table corpus against the respective fields, while the Tc variant searches
against both the caption and catchall fields; all the three methods use BM25.
For the Mannheim Search Join Engine (Sect. 4.1.2), the edit distance thresh-
old is set to δ = 0.8. For schema complement (Sect. 4.1.3), the heading fre-
quency statistics is calculated based on the Wikipedia table corpora and
the heading similarity is aggregated using average. For entity complement
(Sect. 4.1.4), WLM is based on entity out-links. The data similarity thresh-
old is set the same as for string comparison, i.e., δ = 0.8. To parse terms
in attribute values, we remove stopwords and HTML markup, and lower-
case tokens. For Nguyen et al. (Sect. 4.1.5), the smoothing parameter value
is taken from [Nguyen et al., 2015] to be α = 0.5. InfoGather (Sect. 4.1.6)
is trained using linear regression with coordinate ascent. All methods in-
troduced by us, i.e., HCF-X and CRAB-X, are trained using Random Forest
Regression with 5-fold cross-validation; the number of trees is 1000 and the
maximum number of features is 3.

4.5.2 Baselines

Table 4.7 presents the evaluation results for the eight existing methods from
the literature, which we presented in Sect. 4.1. Among the three keyword-
based search methods, which operate on a single table element (top 3 lines),
the one that uses table headings as the keyword query performs the best,
followed by table entities and table caption. The methods in lines 4–8 con-
sider multiple table elements; all of these outperform the best single-element
method. The approach that performs best among all, by a large margin, is
InfoGather, which incorporates four different table elements (cf. Sect. 4.1.6).
Consequently, we will test our methods against InfoGather.

4.5.3 Results

Table 4.8 compares the evaluation results of the methods we developed in
this paper against InfoGather. HCF-1, which combines all table similarity
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Table 4.7: Evaluation results for existing methods from the literature. Best
scores for each metric are boldfaced.

Method NDCG@5 NDCG@10

Keyword-based search using TE (Sect. 4.1.1) 0.2001 0.1998
Keyword-based search using TH (Sect. 4.1.1) 0.2318 0.2527
Keyword-based search using Tc (Sect. 4.1.1) 0.1369 0.1419
Mannheim Search Join Engine (Sect. 4.1.2) 0.3298 0.3131
Schema complement (Sect. 4.1.3) 0.3389 0.3418
Entity complement (Sect. 4.1.4) 0.2986 0.3093
Nguyen et al. (Sect. 4.1.5) 0.2875 0.3007
InfoGather (Sect. 4.1.6) 0.4530 0.4686

features from existing approaches, achieves 18.27% improvement upon in-
foGather in terms of NDCG@10, albeit the differences are not statistically
significant. HCF-2 incorporates additional table features, which leads to
substantial (29.11% for NDCG@10) and significant improvements over Info-
Gather. The bottom block of Table 4.8 presents the evaluation results for four
specific instantiations of our table matching framework (cf. Table 4.6). Re-
call that CRAB-1 employs only table similarity features, thus it is to be com-
pared against HCF-1. CRAB-2..4 additionally consider table features, which
corresponds to the settings in HCF-2. We find that CRAB-1 and CRAB-2
outperform the respective HCF method, while CRAB-4 is on par with it.
None of the differences between CRAB-X and the respective HCF method
are statistically significant. The best overall performer is CRAB-2, with a
relative improvement of 36.2% for NDCG@5 and 33.7% for NDCG@10 over
InfoGather. Figure 4.4 shows performance differences on the level of indi-
vidual input tables between InfoGather and CRAB-2. Clearly, several tables
are improved by a large margin, while only a handful of tables are affected
negatively.

The summary of our findings thus far is that our semantic table element
representation with element-wise matching is very effective. We can achieve
the same performance as a state-of-the-art approach that relies on hand-
crafted features (CRAB-1 vs. HCF-1 and CRAB-2 vs. HCF-2). With that,
we have accomplished our main research objective. We further observe that
cross-element matching is less effective than element-wise matching (CRAB-
3 vs. CRAB-2). Combining all element-wise and cross-element features
performs worse than using only the former (CRAB-4 vs. CRAB-2).

Now that we have assessed the overall effectiveness of our approach, let us
turn to answering a series of more specific research questions.

RQ2/A Which of the semantic representations (word-based, graph-based, or
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Table 4.8: Table retrieval evaluation results of our methods against the best
existing method. Significance is tested against Infogather. Highest scores
are in boldface.

Method NDCG@5 NDCG@10

InfoGather 0.4530 0.4686

HCF-1 (feats. from Table 4.3) 0.5382 0.5542
HCF-2 (feats. from Tables 4.3 and 4.4) 0.5895† 0.6050†

CRAB-1 0.5578 0.5672
CRAB-2 0.6172‡ 0.6267‡
CRAB-3 0.5140 0.5282
CRAB-4 0.5804† 0.6027†

Figure 4.4: Performance difference between InfoGather (baseline) and CRAB-
2 on the level of individual input tables. Positive bars indicate the advantage
of CRAB-2.

Table 4.9: Element-wise similarities for various semantic representations.
Rows and columns corresponds to elements of the input and candidate ta-
bles, respectively. The evaluation metric is NDCG@10. The best scores for
each row are in boldface.

Word-based Graph-based Entity-based
Tt TH TD Tt TE TD Tt TE TD

T̃t 0.2814 0.0261 0.0436 T̃t 0.2765 0.0546 0.0430 T̃t 0.4796 0.0808 0.0644
T̃H 0.0336 0.1694 0.0288 T̃E 0.0700 0.0679 0.0501 T̃E 0.0705 0.0617 0.0725
T̃D 0.0509 0.0183 0.1276 T̃D 0.1012 0.0423 0.0259 T̃D 0.1052 0.0812 0.0610

entity-based) is the most effective for modeling table elements?

Table 4.10 displays results for each of the three semantic representations.
Among those, entity-based performs the best, followed by word-based and
graph-based. The differences between entity-based and word-based are sig-
nificant (p < 0.01), but not between the other pairs of representations. Inter-

86



4.5. Evaluation

Table 4.10: Comparison of semantic representations.

Semantic Repr. NDCG@5 NDCG@10

Word-based 0.3779 0.3906
Graph-based 0.3012 0.3376
Entity-based 0.4484 0.4884

Combined 0.5578 0.5672

estingly, the entity-based representation delivers performance that is compa-
rable to that of the best existing method, InfoGather (cf. Table 4.7). When
combing all three semantic representations (line 4, which is the the same as
CRAB-1 in Table 4.8), we obtain substantial and significant improvements
(p <0.01) over each individual representation. This shows the complimen-
tary nature of these semantic representations.

RQ2/B Which of the two element-level matching strategies performs better,
element-wise or cross-element?

We found that adding all the cross-element similarities hurts (CRAB-4 vs.
CRAB-2 in Table 4.8). In order to get a better understanding of how the
element-wise and cross-element matching strategies compare against each
other, we break down retrieval performance for all table element pairs ac-
cording to the different semantic representations in Table 4.9. That is, we
rank tables by measuring similarity only between that pair of elements (4
table similarity features in total). Here, diagonal cells correspond to element-
wise matching and all other cells correspond to cross-element matching. We
observe that element-wise matching works best across the board. This is
in line with our earlier findings, i.e., CRAB-2 vs. CRAB-3 in Table 4.8.
However, for graph-based and entity-based representations, there are sev-
eral cases where cross-element matching yields higher scores than element-
wise matching. Notably, input table data (T̃D) has much higher similarity
against the topic of the candidate table (Tt) than against its data (TD) ele-
ment, for both graph-based and entity-based representations. This shows
that cross-element matching does have merit for certain table element pairs.
We perform further analysis in Sect. 4.5.4.

RQ2/C How much do different table elements contribute to retrieval perfor-
mance?

To explore the importance of table elements, we turn to Table 4.9 once again.
We first compare the results for element-wise similarity (i.e., the diagonals)
and find that among the four table elements, table topic (T̃t ↔ Tt) con-
tributes the most and table data (T̃D ↔ TD) contributes the least. Second,
our observations for cross-element matching are as follows. Using word-
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Figure 4.5: Performance in terms of NDCG with different number of top
features utilized.

based representation, table data (T̃D) is the most important element for the
input table, while for the candidate table it is table topic (Tt). Interestingly,
for graph-based and entity-based representations it is exactly the other way
around: the most important input table element is topic (T̃t), while the most
important candidate table element is data (TD).

4.5.4 Further Analysis

Now that we have represented our experimental results, we perform further
performance analysis on individual features and on input table size.

Feature Analysis

To understand the contributions of individual features, we first rank all fea-
tures based on Gini importance. Then, we incrementally add features in
batches of 10, and plot the corresponding retrieval performance in Figure 4.5.
We observe that we can reach peak performance with using only the top-20
features. Let us take a closer look at those top-20 features in Figure 4.6.
We use color coding to help distinguish between the three main types of
features: element-wise, cross-element, and table features. Then, based on
these feature importance scores, we revisit our research questions. Concern-
ing semantic representations (RQ2/A), there are 8 word embedding, 7 entity
embedding, and 3 graph embedding features in the top 20. Even though
there are slightly more features using word embedding than entity embed-
dings, the latter features are much higher ranked (cf. Fig. 4.6). Thus, the
entity-based semantic representation is the most effective one. Comparing
matching strategies (RQ2/B), the numbers of element-wise and cross-wise
features are 15 and 3, respectively. This indicates a substantial advantage of
element-wise strategies. Nevertheless, it shows that incorporating the simi-
larity between elements of different types can also be beneficial. Addition-
ally, there are 2 table features in the top 20. As for the importance of table
elements (RQ2/C), table topic (Tt) is clearly the most important one; 8 out
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Figure 4.6: Top-20 features in terms of Gini importance.

Figure 4.7: Performance analysis using only a portion of the table as input.

of the top 10 features consider that element. In summary, our observations
based on the top-20 features are consistent with our earlier findings.

Input table size

Next, we explore how the size of the input table affects retrieval perfor-
mance. Specifically, we vary the input table size by splitting it horizontally
(varying the number of rows) or vertically (varying the number of columns),
and using only a portion of the table as input; see Fig. 4.7 for an illustration.
We explore four settings by setting the split rate x between 25% and 100% in
steps of 25%. Figure 4.8 plots retrieval performance against input table size.

We observe that growing the table, either horizontally or vertically, results
in proportional increase in retrieval performance. This is not surprising,
given that larger tables contain more information. Nevertheless, being able
to utilize this extra information effectively is an essential characteristic of
our table matching framework.
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Figure 4.8: Performance of CRAB-2 with respect to (relative) input table size,
by varying the number of rows (Left) or columns (Right).

4.6 Summary and Conclusions

In this chapter, we have introduced and addressed the query-by-table task:
returning a ranked list of tables that are related to a given input table. We
have proposed a novel element-oriented table matching framework that rep-
resents table elements uniformly and considers their similarity in multiple
semantic spaces. This framework can incorporate the similarity between
table elements that are of the same type (element-wise matching) as well
as those that are of different types (cross-element matching). We have fur-
ther presented four specific instantiations of this general framework and
considered word-based, graph-based, and entity-based semantic representa-
tions. For evaluation, we have developed a standard test collection based on
Wikipedia tables, and demonstrated that our approach delivers state-of-the-
art performance.

Table retrieval can be utilized in a range of table-centric tasks by providing
related tables with additional tabular data. In the next chapter, we will
illustrate how we can assist users in completing tables by leveraging related
tables and knowledge bases.

90



Chapter 5

Table Completion

Our motivation for this chapter is to assist users with completing tables
by providing smart assistance capabilities. The scenario we consider is the
following. We assume a user, working with a table, at some intermediate
stage in the process. At this point, she has already set the caption of the
table and entered some data into the table. The table is assumed to have a
column header (located above the first content row), which identifies each
column with a unique label. Recall that in this thesis we concentrate on
one particular family of tables, namely, relational tables (tables with an en-
tity focus). Our objective is to aid the user by offering “smart suggestions,”
that is, recommending (i) additional entities (rows) and (ii) additional col-
umn headings, to be added to the table. Accordingly, we introduce and
focus on two specific tasks: populating rows with additional instances (en-
tities) and populating columns with new headings. See Figure 5.1 for an
illustration. The task of row population relates to the task of entity set expan-
sion [Das Sarma et al., 2012, Bron et al., 2013, Metzger et al., 2014, He and
Xin, 2011, Wang and Cohen, 2008, Wang et al., 2015a], where a given set of
seed entities (examples) is to be completed with additional entities. Here,
we also have a seed set of entities from the leftmost table column. But, in
addition to that, we can also make use of the column heading labels and the
caption of the table. We show in our experiments, that utilizing these can
lead to substantial improvements over using only the seed entities. The sec-
ond task, column population, shares similarities with the problem of schema
complement [Das Sarma et al., 2012, Lehmberg et al., 2015, Bhagavatula et al.,
2013, Yakout et al., 2012], where a seed table is to be complemented with
related tables that can provide additional columns. Many of these existing
approaches utilize the full table content and also address the task of merging
data into the seed table. Here, our focus is only on finding proper column
headings, using the same sources as for row population (i.e., leftmost col-
umn, header row, and table caption). We develop generative probabilistic
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Figure 5.1: Envisioned user interface. Column headings and the leftmost
column are marked with a grey background. The user can populate the
table with (A) additional entities (rows) and (B) additional column headings.
The suggestions in the pop-ups are updated dynamically as the content of
the table changes.

models for both tasks. For estimating the components of these models, we
consider a knowledge base as well as a large table corpus. Our experimen-
tal evaluation simulates the various stages of the user entering content into
an actual table. A detailed analysis of the results shows that the models’
components are complimentary and that our methods outperform existing
approaches from the literature.

The chapter is organized as follows. In Sect 5.1 we introduce and formalize
two specific tasks for providing intelligent assistance with tables: row popu-
lation and column population. We present generative probabilistic methods
for both tasks, which combine existing approaches from the literature with
novel components in Sect. 5.2 and Sect. 5.3. We design evaluation method-
ology and develop a process that simulates a user through the process of
populating a table with data in Sect. 5.4. We perform an experimental eval-
uation and carry out a detailed analysis of performance in Sect. 5.5 and
Sect. 5.6. Section 5.7 concludes this chapter.

5.1 Problem Statement

In this section, we provide a formal description of the tasks we propose to
undertake. We refer to Table 5.1 for the notation used in this chapter.

Definition 5.1 (Table) A table T is grid of cells, which hold values, arranged in
n + 1 rows and m columns. The top row is a special designated place, where the
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Table 5.1: Notation used in this chapter.

Symbol Description

T Table
c Table caption
E Seed entities E = (e1, . . . , en)

L Seed column labels L(j) = (l1, . . . , lm)

column headings reside. It is followed by n regular (content) rows. We let L =
(l1, . . . , lm) be the list of column heading labels. In addition to the grid content, the
table also has a caption c.

Definition 5.2 (Entity-Focused Table) A table is said to be entity-focused, if its
leftmost column contains only entities as values, and those entities are unique
within the column (a particular relational table with a fixed core column). We
let E = (e1, . . . , en) be the list of entities corresponding to the leftmost table column.
I.e., the table takes the following shape:

T =

⎡
⎢⎢⎢⎢⎢⎣

l1 l2 . . . lm
e1 v1,2 . . . v1,m
e2 v2,2 . . . v2,m
...

...
. . .

...
en vn,2 . . . vn,m

⎤
⎥⎥⎥⎥⎥⎦ ,

where vi,j (i ∈ [1..m], j ∈ [2..n]) denote the cell values.

Our objective is to provide intelligent assistance for a user who is working
on an entity-focused table. We shall refer to the table that is being edited by
the user as seed table. We assume that the seed table has already been given
a caption, and contains some heading labels (seed labels) in the top row and
some entities (seed entities) in the leftmost column. Note that we do not make
any assumptions about the values in the other table cells. Essentially, the vi,j

values are immaterial, therefore, we omit them in the following.1 When we
talk about a table containing entity e, we always mean the leftmost table
column.

Our goal is to present suggestions for the user for extending the seed table
with (i) additional entities, and (ii) additional column heading labels. Both
tasks are approached as a ranking problem: given a seed table, generate
a ranked list of entities (for row population) or column labels (for column
population).

1We note that the vi,j values may also be utilized for row/column population. However,
this is left for future work.
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Definition 5.3 (Row Population) Row population is the task of generating a
ranked list of entities to be added to the leftmost column of a given seed table, as
en+1.

Definition 5.4 (Column Population) Column population is the task of generat-
ing a ranked list of column labels to be added to the column headings of a given seed
table, as lm+1.

In the following two sections, we present our approaches for row and col-
umn population. Following prior studies [Lehmberg et al., 2015, Bhagavat-
ula et al., 2013, Yakout et al., 2012, Ahmadov et al., 2015a, Das Sarma et al.,
2012, Yin et al., 2016, Cafarella et al., 2008a, Venetis et al., 2011, Crestan and
Pantel, 2011, Sekhavat et al., 2014a, Wang et al., 2012, 2015a, Bhagavatula
et al., 2015], we rely heavily on the availability of a large table corpus as an
external resource (which, in our case, is extracted from Wikipedia). Addi-
tionally, we also exploit information stored about entities in a knowledge
base (in our case, DBpedia). Further specifics about our data sources are
provided in Sect. 5.4.1.

5.2 Populating Rows

In this section, we address problem of row population using a two-step ap-
proach. We assume that a seed table is given, with a list of n seed entities E,
a list of m seed column labels L, and a table caption c. The task is to generate
a ranked list of suggestions for entity en+1, which may be added to the seed
table as a new row. First, we identify a set of candidate entities (Sect. 5.2.1),
and then rank them in a subsequent entity ranking step (Sect. 5.2.2).

5.2.1 Candidate Selection

We identify candidate entities using two sources: knowledge base (KB) and
table corpus (TC). In the knowledge base, each entity e is described by a
set of properties Pe. We focus on two specific properties: types and cate-
gories. We discuss these notions in the context of DBpedia, but note that all
knowledge bases employ some taxonomy of types. Types in DBpedia are
assigned from a small ontology (the DBpedia Ontology, containing a few
hundred classes). Categories originate from Wikipedia; these do not form a
strict is-a hierarchy, and may be seen more like “semantic sets.” Categories
are in the order of several 100K. Intuitively, an entity e that has several types
or categories overlapping with those of the seed entities represents a good
candidate. Thus, we rank entities based on the overlap of these properties,
and then take the top-k ones as the set of candidates:

score(e, E) =
∣∣∣Pe ∩

(
∪n

i=1 Pei

)∣∣∣ .
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When using the table corpus, we search for tables that contain the seed enti-
ties or have a similar caption to that of the seed table. This can be efficiently
performed using existing retrieval methods against an inverted index of ta-
bles. Specifically, we use either the seed table’s caption or seed entities as
the search query and rank tables using the BM25 retrieval algorithm.

5.2.2 Ranking Entities

We introduce a probabilistic formulation and rank candidate entities accord-
ing to the multi-conditional probability P(e|E, L, c). By applying Bayes’s
theorem and making a full independence assumption between table caption,
seed entities, and seed column labels, we factor this probability as follows:

P(e|E, L, c) =
P(E, L, c|e)P(e)

P(E, L, c)

=
P(E|e)P(L|e)P(c|e)P(e)

P(E)P(L)P(c)
∝ P(e|E)P(L|e)P(c|e) . (5.1)

In the last step, we rewrote P(E|e) using Bayes’ rule (which cancelled out
P(e) and P(E)). We further dropped the probabilities P(L) and P(c) from
the denominator, since those are the same across all candidate entities and
thus do not influence their ranking. Then, entities are ranked by multiplying
(i) the posteriori probability P(e|E) that expresses entity similarity, (ii) the
column labels likelihood P(L|e), and (iii) the caption likelihood P(c|e). The
reason for keeping the latter two probabilities conditioned on the candidate
entity is that column labels and captions are very short. In those cases, the
candidate entity offers a richer observation. Below, we discuss the estimation
of each of these probabilities.

Note that entities may be ranked using any subset of the components in
Eq. (5.1). We explore all possible combinations in our experimental section
(Sect. 5.5). It is our expectation that using all three sources of evidence
(seed entities, seed column labels, and table caption) would result in the
best performance.

5.2.3 Entity Similarity

The estimation of P(e|E) corresponds to the task of entity list completion (also
known as set/concept expansion or query by example): given a small set of seed
entities, complement this set with additional entities. The general idea is
to measure the semantic similarity between the candidate entity and the set
of seed entities. One line of prior work [Bron et al., 2013, Metzger et al.,
2014] relies on a knowledge base for establishing this semantic similarity.
Another family of approaches [Das Sarma et al., 2012, Wang and Cohen,
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2008, Wang et al., 2015a] leverages a large table corpus for collecting co-
occurrence statistics. We combine both these sources in a single model:

P(e|E) = λEPKB(e|E) + (1 − λE)PTC(e|E) , (5.2)

where PKB is based on the knowledge base and PTC is the estimate based on
the table corpus.

Estimation Using a Knowledge Base

Bron et al. [2013] create a structured entity representation for each entity
from the RDF triples describing that entity. The structured representation
of an entity is comprised by the set of relations of the entity. Each relation
r is modeled as a pair, by removing the entity itself from the triples. E.g.,
given the triple 〈dbr:Japan, dbo:capital, dbr:Tokyo〉 describing the en-
tity Japan, the corresponding relation becomes (dbo:capital, dbr:Tokyo).
We write ê to denote the structured representation of entity e. Formally,
given a set of subject-predicate-object (s, p, o) triples describing the entity
(i.e., the entity stands either as subject or object):

ê = {(p, o) : (s = e, p, o)} ∪ {(s, p) : (s, p, o = e)} .

Similarly, each seed entity is represented as a set of pairs: ê1, . . . , ên. The set
of seed entities is modeled as a multinomial probability distribution θE over
the set of relations. The probability P(e|E) is then obtained by considering
all relations that appear in the representation of the candidate entity:

PKB(e|E) = ∑
r∈ê

P(r|θE) = ∑
r∈ê

∑n
i=1 1(r, êi)

|θE|
,

where 1(r, êi) is a binary indicator function, which is 1 if r occurs in the
representation of êi and is 0 otherwise. The denominator is the representa-
tion length of the seed entities, i.e., the total number of relations of all seed
entities: |θE| = ∑n

i=1 ∑r∈êi
1(r, êi).

Instead of using a single model built for the set of seed entities, we also
explore an alternative approach by taking the average pairwise similarity
between the candidate and seed entities (similar in spirit to He and Xin
[2011] and Das Sarma et al. [2012]):

PKB(e|E) ∝
1
n

n

∑
i=1

sim(e, ei) ,

where sim(e, ei) is a similarity function. We consider two alternatives for
this function. The first is the Wikipedia Link-based Measure (WLM) [Milne and
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Witten, 2008], which estimates the semantic relatedness between two entities
based on other entities they link to:

simWLM(e, ei) = 1 − log(max(|Le|, |Lei |))− log(|Le ∩ Lei |)
log(|E | − log(min(|Le|, |Lei |)))

,

where Le is the set of outgoing links of e (i.e., entities e links to) and |E | is the
total number of entities in the knowledge base. The second similarity func-
tion is the Jaccard coefficient, based on the overlap between the outgoing
links of entities:

simJacc(e, ei) =
|Le ∩ Lei |
|Le ∪ Lei |

.

Estimation Using a Table Corpus

Another way of establishing the similarity between a candidate entity e and
the set of seed entities E is to obtain co-occurrence statistics from a table
corpus (as in [Das Sarma et al., 2012] and [Ahmadov et al., 2015a]). We
employ a maximum likelihood estimator:

PTC(e|E) =
#(e, E)
#(E)

,

where #(e, E) is the number of tables that contain the candidate entity to-
gether with all seed entities, and #(E) is the number of tables that contain
all seed entities. Provided that the table corpus is sufficiently large, we ex-
pect this simple method to provide an accurate estimate.

5.2.4 Column Labels Likelihood

For computing P(L|e), we consider the tables from the table corpus where
the entity appears in the leftmost column. We obtain and combine two
different estimates. The first one is the representation of the entity in terms
of the words of the column labels, i.e., a unigram language model (LM). The
second one is a maximum likelihood estimate using exact label matching
(EM), i.e., without breaking labels up to words. We consider each individual
label l from the seed column labels and combine the above two estimates
using a linear mixture:

P(L|e) = ∑
l∈L

(
λL

(
∏
t∈l

PLM(t|θe)
)
+

(1 − λL)

|L| PEM(l|e)
)

.

The first component is a Dirichlet-smoothed unigram language model, cal-
culated using:

PLM(t|θe) =
t f (t, e) + μP(t|θ)

|e|+ μ
,

97



5. Table Completion

where t f (t, e) is the total term frequency of t in column heading labels of
the tables that include e in their leftmost column. One may think of it as
concatenating all the column heading labels of the tables that include e, and
then counting how many times t appears in there. The length of the entity
|e| is the sum of all term frequencies for the entity (|e| = ∑t′ t f (t′, e)). The
background language model P(t|θ) is built from the column heading labels
of all tables in the corpus.

The exact label matching probability is estimated using:

PEM(l|e) = #(l, e)
#(e)

,

where #(l, e) is the number of tables containing both e and l, and #(e) is the
total number of tables containing e.

5.2.5 Caption Likelihood

To estimate the caption likelihood given an entity, P(c|e), we combine two
different term-based entity representations: one from the knowledge base
and one from the table corpus. Formally:

P(c|e) = ∏
t∈c

(
λcPKB(t|θe) + (1 − λc)PTC(t|e)

)
.

The knowledge base entity representation is a unigram language model con-
structed from the entity’s description (specifically, its abstract in DBpedia).
Smoothing is done analogously to the column labels language model, but
the components of the formula are computed differently:

PKB(t|θe) =
t f (t, e) + μP(t|θ)

|e|+ μ
, (5.3)

where t f (t, e) denotes the (raw) term frequency of t in the entity’s descrip-
tion, |e| is the length (number of terms) of that description, and P(t|θ) is
a background language model (a maximum likelihood estimate from the
descriptions of all entities in the KB).

To construct a term-based representation from the table corpus, we consider
the captions of all tables that include entity e:

PTC(t|e) =
#(t, e)
#(e)

,

where #(t, e) denotes the number of tables that contain term t in the caption
as well as entity e in the leftmost column. The denominator #(e) is the total
number of tables containing e.2

2We also experimented with constructing a smoothed language model, similar to how it
was done for the KB, but that gave inferior results.
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5.3 Populating Columns

In this section, we address the problem of column population using a two-
step approach: we identify a set of candidate column heading labels (or
labels, for short), and then subsequently rank them.

5.3.1 Candidate Selection

We use (i) the table caption, (ii) table entities, and (iii) seed column heading
labels to search for similar tables. The searching method is the same as
in Sect. 5.2.1, i.e., we use BM25 similarity using either of (i)–(iii) to get a
ranking of tables from the table corpus. From these tables, we extract the
column heading labels as candidates (excluding the seed column labels).
When searching is done using the seed column labels as query, our method
is equivalent to the FastJoin matcher [Wang et al., 2014] (which was also
adopted in [Lehmberg et al., 2015]).

5.3.2 Ranking Column Labels

We are interested in estimating the probability P(l|E, c, L), given j seed labels,
the table caption, and a set of entities from the rows.

Baseline Approach

Das Sarma et al. [2012] consider the “benefits” of additional columns. The
benefit of adding l to table T is estimated as follows:

P(l|L) = LB(L, l) =
1
|L| ∑

l1∈L
cs(l1, l) , (5.4)

where L denotes column labels and cs is the AcsDB (Attribute Correlation
Statistics Database) schema frequency statistics [Cafarella et al., 2008a], which
is given in Eq. (5.5). It is more effective to derive the benefit measure by
considering the co-occurrence of pairs of labels, rather than the entire set
of labels [Das Sarma et al., 2012]. Eq. (5.5) determines the consistency of
adding a new label l to an existing label l1:

cs(l1, l) = P(l|l1) =
#(l1, l)
#(l1)

, (5.5)

where #(l1, l) is number of tables containing both l1 and l, and #(l1) is the
number of tables containing l1.

Our Approach

Instead of estimating this probability directly, we use tables as a bridge. We
search related tables sharing similar caption, labels, or entities with the seed
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table. Searching tables with only one aspect similarity is thought as a single
method, e.g., searching tables with similar caption has the probability of
P(T|c). All these related tables are candidate tables acting as bridges. Each
candidate table is weighted by considering its relevance with each candidate
label, denoted as P(l|T).
By applying the law of total probability, we get:

P(l|E, c, L) = ∑
T

P(l|T)P(T|E, c, L) ,

where P(l|T) is the label’s likelihood given a candidate table (see Sect. 5.3.3),
and P(T|E, c, L) expresses that table’s relevance (see Sect. 5.3.4).

5.3.3 Label Likelihood

Label likelihood, P(l|T), may be seen as the importance of label l in a given
table T. The simplest way of setting this probability is uniformly across the
labels of the table:

P(l|T) =
{

1, if l appears in T
0, otherwise .

5.3.4 Table Relevance Estimation

Table relevance expresses the degree of similarity between a candidate table
and the seed table the user is working with. Tables with higher relevance
are preferred. Specifically, we search for tables by considering the similarity
of the set of entities, table caption, and column labels. The probability of a
candidate table is factored as:

P(T|E, c, L) =
P(T|E)P(T|c)P(T|L)

P(T)2 .

Notice that an independence assumption between E, c, and L was made.
Further, assuming that the prior probability of a table follows a uniform dis-
tribution, the denominator can be dropped. The components of this model
are detailed below.

Entity Coverage

When selecting a candidate table, the coverage of the tables’ entity set is
a important factor [Das Sarma et al., 2012, Ahmadov et al., 2015a]. We
compute the fraction of the seed table’s entities covered by candidate table
as:

P(T|E) = |TE ∩ E|
|E| .
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We note that the same concept is used in [Das Sarma et al., 2012], where it
is referred to as entity coverage.

Caption Likelihood

Having similar captions is a strong indicator that two tables are likely to
have similar contents. An effective way of calculating caption similarity is to
use the seed table’s caption as a query against a caption index of the table
corpus. We can use any term-based retrieval model (like BM25 or language
modeling) for measuring caption similarity:

P(T|c) ∝ sim(Tc, c) .

Column Labels Likelihood

Finally, we estimate the column labels likelihood similar to Lehmberg et al.
[2015], who rank tables according to the number of overlapping labels:

P(T|L) = |TL ∩ L|
|L| .

5.4 Experimental design

We present the data sets we use in our experiments and our evaluation
methodology. We develop an approach that simulates a user through the
process of populating a seed table with data.

5.4.1 Data

We use the WikiTables corpus [Bhagavatula et al., 2015], which contains 1.6M
tables extracted from Wikipedia. The knowledge base we use is DBpedia
(version 2015-10). We restrict ourselves to entities which have an abstract
(4.6M in total).

We preprocess the tables as follows. For each cell that contains a hyperlink
we check if it points to an entity that is present in DBpedia. If yes, we use the
DBpedia identifier of the linked entity as the cell’s content (with redirects
resolved); otherwise, we replace the link with the anchor text (i.e., treat it as
a string).

5.4.2 Entity-Focused Tables

Recall that we defined an entity-focused table as one that contains only
unique entities in its leftmost column (cf. Sect. 5.1). In addition to being
an entity-focused table, we require that the table has at least 6 rows and
at least additional 3 columns (excluding the entity column). We introduce
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Table 5.2: Statistics of table corpus. Constraints mean having ≥ 6 rows and
≥ 4 columns.

leftmost column # tables # tables with
total constraints

Contains entity 726913 212923
60% are entities 556644 139572
80% are entities 483665 119166
100% are entities 425236 78611
100% are unique entities 376213 53354

these constraints so that we can simulate a real-world scenario with suffi-
cient amount of content.

In Table 5.2, we report statistics based on what percentage of cells in the left-
most column contains entities. Let us note here that only those entities are
recognized that have a corresponding Wikipedia article. Thus, the reported
numbers should be treated as lower bound estimates. It is clear that many
tables have an entity focus.

To be able to perform an automated evaluation without any human inter-
vention, we apply the most strict conditions. Out of the tables that contain
100% unique entities in their leftmost column and have at least 6 rows and at
least 4 columns (53 K in total, see Table 5.2), we randomly select 1000 tables
as our validation set (used for parameter tuning) and another 1000 tables as
our test set. We use a different random selection of validation/test tables
for row and column population. The validation and test sets are excluded
from the table corpus during training. It is important to note that we use all
other tables from the corpus when computing statistics, and not only those
that classify as entity-focused.

5.4.3 Simulation Process

We evaluate row/column population by starting from an actual (complete)
entity-focused table, with n content rows (with an entity in each) and m
column headings. We simulate a user through the process of completing
that table by starting with some seed rows/columns and iteratively adding
one row/column at a time.

• For evaluating row population, we take entities from the first i rows
(i ∈ [1..5]) as seed entities E, and use the entities from the remaining
rows as ground truth, Ê. We use all column heading labels.

• For evaluating column population, we take labels from the first j col-
umn (j ∈ [1..3]) as seed column labels L, and use the labels from the
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Figure 5.2: Illustration of our evaluation methodology. A part of an existing
table is designated as the seed table; the entities/column labels outside the
seed table serve as ground truth. The arrows indicate the direction of the
population.

remaining columns as ground truth, L̂. We use all entities from the
table’s rows.

See Figure 5.2 for an illustration. Notice that we are expanding in a single
dimension at a time; populating both rows and columns at the same time is
left for future work.

5.4.4 Matching Column Labels

For the column population task, we are matching string labels (as opposed
to unique identifiers). Let us consider Date as the ground truth column la-
bel. When the suggested labels are compared against this using strict string
matching, then date, Dates, date:, etc. would not be accepted as correct,
despite being semantically identical. Therefore, we apply some simple nor-
malization steps, on both the ranked and ground truth column labels, before
comparing them using strict string matching. When multiple ranked labels
are normalized to the same form, only the one with the highest score is
retained.

5.4.5 Evaluation Metrics

Given that the relevance judgments are binary, we use Mean Average Preci-
sion (MAP) as our main evaluation metric. In addition, we also report on
Mean Reciprocal Rank (MRR). We measure statistical significance using a
two-tailed paired t-test, with Bonferroni correction. To avoid cluttering the
discussion, we report significance testing only for our main metric.
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Table 5.3: Candidate selection performance I for the row population task on
the validation set. #cand refers to the number of candidate entities. Highest
recall values are typeset in boldface.

#Seed entities (|E|)
Method 1 2 3

Recall #cand Recall #cand Recall #cand

(A1) Categories (k=256) 0.6470 1721 0.6985 2772 0.7282 3678
(A2) Types (k=4096) 0.0553 7703 0.0577 8047 0.0585 8225
(B) Table caption (k=256) 0.3966 987 0.3961 987 0.3945 987
(C) Table entities (k=256) 0.6643 312 0.7212 458 0.7435 589

(B) & (C) (k=256) 0.7090 1250 0.7464 1383 0.7626 1505
(A1) & (B) (k=256) 0.7642 2671 0.7969 3711 0.8157 4610
(A1) & (C) (k=256) 0.8434 1962 0.8885 3118 0.9038 4117

(A1) & (B) & (C) (k=256) 0.8662 2880 0.8997 4018 0.9154 5005
(A1) & (B) & (C) (k=4096) 0.9576 28733 0.9718 40171 0.9787 49478

Table 5.4: Candidate selection performance II for the row population task on
the validation set. #cand refers to the number of candidate entities. Highest
recall values are typeset in boldface.

#Seed entities (|E|)
Method 4 5

Recall #cand Recall #cand

(A1) Categories (k=256) 0.7476 4507 0.7604 5224
(A2) Types (k=4096) 0.0605 8419 0.0600 8551
(B) Table caption (k=256) 0.3938 987 0.3929 987
(C) Table entities (k=256) 0.7564 689 0.7639 759

(B) & (C) (k=256) 0.7732 1599 0.7788 1664
(A1) & (B) (k=256) 0.8305 5434 0.8405 6145
(A1) & (C) (k=256) 0.9196 5014 0.9285 5773

(A1) & (B) & (C) (k=256) 0.9255 5894 0.9329 6645
(A1) & (B) & (C) (k=4096) 0.9811 58021 0.9821 65204

5.5 Evaluation of Row Population

This section presents the evaluation of row population.

5.5.1 Candidate Selection

In Sect. 5.2.1, we have introduced four individual methods to select candi-
dates: entity category (A1) and entity type (A2) from the knowledge base,
and table caption (B) and table entities (C) from the table corpus. These
methods involve a cut-off threshold parameter k; the top-k entities are con-
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sidered as candidates for the subsequent ranking step. A larger k value
typically implies higher recall. At the same time, each of the candidate enti-
ties will need to be scored, which is a computationally expensive operation.
Therefore, we wish to find a setting that ensures high recall, while keeping
the number of candidate entities manageably low (to ensure reasonable re-
sponse time). We use the validation set to explore a range of k values: 26, 28,
210, and 212. For each method, we select the k value that produces the best
recall and candidate entity number ratio.

The results are reported in the top block of Table 5.3 and Table 5.4. We
observe that more seed entities we have, the better recall gets. This is ex-
pected behavior. Out of the two entity properties from the knowledge base,
categories and types, categories performs far better. For types, even with
k = 4096, the recall is still unsatisfactory. This is because many of the DBpe-
dia entities have no ontology type information assigned to them. Moreover,
ontology types are more general than categories and result in too many
candidates. The best individual method is (C) table entities; it is the most
effective (achieves the highest recall) and the most efficient (produces the
lowest number of candidates) at the same time.

To further enhance performance, we combine the individual methods. How-
ever, we exclude type (A2) from this combination, because of its low perfor-
mance. We find that all combinations improve over the single methods. This
means that they capture complimentary aspects. Combining all three meth-
ods (A1+B+C) leads to the best overall performance. The last two lines of
Table 5.3 and Table 5.4 show the performance of this combination (A1+B+C)
using two different k values. We find that with a high k value (4096), we are
able to achieve close to perfect recall. The number of candidates, however, is
a magnitude larger than with a low k (256). Motivated by efficiency consid-
erations, we decided not to pay this price and chose to use k = 256, which
still gives us very high recall.

5.5.2 Entity Ranking

Our entity ranking model is comprised of three components: entity sim-
ilarity (P(e|E)), column labels likelihood (P(L|e)), and caption likelihood
(P(c|e)). Each of these methods involve an interpolation parameter (λE, λL,
and λc, respectively). We train these parameters on the validation set, by
performing a sweep in 0.1 steps over the [0..1] range. The effect of varying
the parameter values is shown in Figure 5.3. It can be seen that the value 0.5
provides the best setting everywhere. We also found that there is very little
difference in terms of performance when λ is in the 0.3..0.7 range (hence the
choice of showing the 0.1 and 0.9 values on the plots).

We start by discussing the performance of individual components, reported
in the top block of Table 5.5 and Table 5.6. The two-component entity simi-
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Figure 5.3: Effect of varying the interpolation parameters for P(e|E) (Left),
P(L|e) (Middle), and P(c|e) (Right). The plots show MAP scores measured
on the validation set.

larity model combines estimated based on the knowledge base and the table
corpus (cf. Eq. (5.2)). For the former, we compare three alternatives: using
relations of entities, as in [Bron et al., 2013] (A1), and two similarity meth-
ods based on outgoing links of entities: WLM (A2), and Jaccard similarity
(A3). Out of the three methods, (A1) Relations has the best performance.
However, (A3) has only marginally lower retrieval performance, while be-
ing computationally much more efficient. Therefore, we choose (A3), when
it comes to combining it with the other elements of the entity ranking model.
Compared to entity similarity (P(e|E)), the other two components (B and C)
have much lower performance. The differences (A3) vs. (B) and (A3) vs.
(C) are highly significant (p < 10−5). This means that the knowledge base
contributes more.

Next, we combine the individual components to further enhance perfor-
mance. The middle block of Table 5.5 and Table 5.6 reports results when
two components are used. We find that these combinations improve signifi-
cantly over the individual methods in all cases (p < 10−5). It is interesting
to note that while (C) caption likelihood outperforms (B) column labels like-
lihood in the individual comparison (significantly so for #1..#3 seed entities,
p < 0.001), the two perform on a par when combined with (A3) entity simi-
larity.

As expected, using all three component (A3 & B & C) results in the best
performance. The differences between this vs. (A3 & C) and vs. (B & C) are
significant for any number of seed entities (p < 0.001); regarding (A3 & B &
C) vs. (A3 & B), the differences are significant only for seed entities #1 and
#5 (p < 0.05). This means that combining information from the knowledge
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Table 5.5: Entity ranking performance I on the test set.

#Seed entities (|E|)
Method 1 2 3

MAP MRR MAP MRR MAP MRR

Baseline [Bron et al., 2013] 0.3076 0.4967 0.3273 0.5156 0.3404 0.5326

(A1) P(e|E) Relations (λ = 0.5) 0.4962 0.6857 0.5469 0.7297 0.5687 0.7415
(A2) P(e|E) WLM (λ = 0.5) 0.4674 0.6246 0.5154 0.6901 0.5293 0.6930
(A3) P(e|E) Jaccard (λ = 0.5) 0.4905 0.6731 0.5427 0.7086 0.5617 0.7270
(B) P(L|e) 0.2857 0.3558 0.2878 0.3518 0.2717 0.3463
(C) P(c|e) 0.2348 0.2656 0.2366 0.2676 0.2371 0.2656

(A3) & (B) 0.5726 0.7593 0.6108 0.8055 0.6189 0.7879
(A3) & (C) 0.5743 0.7467 0.6108 0.7749 0.6221 0.7746
(B) & (C) 0.3677 0.4521 0.3715 0.4508 0.3712 0.4455

(A3) & (B) & (C) 0.5922 0.7729 0.6260 0.8000 0.6339 0.7849

base with column labels from the table corpus yields significant benefits;
considering the captions of tables on top of that leads to little additional
gain.

For baseline comparison, we employ the method by Bron et al. [2013], which
combines text-based and structure-based similarity. Note that we used only
the structure-based part of their method earlier, as (A1); here, we use their
approach in its entirety. It requires a keyword query, which we set to be
the table caption. We find that our methods substantially and significantly
(p < 10−5) outperforms this baseline; see the bottom two rows in Table 5.5
and Table 5.6.

One final observation is that performance climbs when moving from a single
to two and three seed entities; after that, however, it plateaus. This behavior
is consistent across all methods, including the baseline. The phenomena is
known from prior work [Bron et al., 2013, Metzger et al., 2014, Pantel et al.,
2009].

5.5.3 Analysis

Now that we have presented our overall results, we perform further examina-
tion on the level of individual tables. Figure 5.4 shows the average precision
(AP) scores for the 1000 test tables, ordered by decreasing score. Statistically,
there are 285 tables having AP = 1, 193 tables having 0.4 < AP < 0.6, and
42 tables having AP = 0. To understand the reasons behind this, we check
the recall of the candidate selection step for these three categories; see Fig-
ure 5.5. In this figure, we can observe that higher recall generally leads to
better AP. Delving deeper, we compute the average number of tables con-
taining at least one ground truth entity, for each of the three groups. When
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Table 5.6: Entity ranking performance II on the test set.

#Seed entities (|E|)
Method 4 5

MAP MRR MAP MRR

Baseline [Bron et al., 2013] 0.3428 0.5290 0.3406 0.5202

(A1) P(e|E) Relations (λ = 0.5) 0.5734 0.7294 0.5693 0.7274
(A2) P(e|E) WLM (λ = 0.5) 0.5331 0.6861 0.5258 0.6789
(A3) P(e|E) Jaccard (λ = 0.5) 0.5662 0.7098 0.5609 0.7058
(B) P(L|e) 0.2651 0.3365 0.2585 0.3336
(C) P(c|e) 0.2350 0.2614 0.2343 0.2602

(A3) & (B) 0.6182 0.7755 0.6108 0.7689
(A3) & (C) 0.6211 0.7668 0.6156 0.7447
(B) & (C) 0.3688 0.4408 0.3667 0.4378

(A3) & (B) & (C) 0.6348 0.7800 0.6310 0.7630

Figure 5.4: Performance of individual tables, ordered by decreasing Average
Precision, for row population.

AP = 0, the number is 18, for 0.4 < AP < 0.6 it is 79, and for AP = 1 it
is 127. It appears that we could provide excellent suggestions, when there
were enough similar tables to the seed table in the table corpus. However,
for tables that are “too unique,” we would need alternative methods for
suggestions.

5.6 Evaluation of Column Population

This section presents the evaluation of column population. This task relies
only on the table corpus; the data set is exactly the same as for row popula-
tion, see Sect. 5.4.1.
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Figure 5.5: Recall of candidate selection against entity ranking performance,
for row population.

Table 5.7: Candidate selection performance for the column population task
on the validation set.

#Seed column labels (|L|)
Method 1 2 3

Recall #cand Recall #cand Recall #cand

(A) Table caption (k=256) 0.7177 232 0.7115 232 0.7135 231
(B) Column labels (k=256) 0.2145 115 0.5247 235 0.7014 357
(C) Table entities (k=64) 0.7617 157 0.7544 156 0.7505 155
(A) (k=256) & (B) (k=256) & (C) (k=64) 0.8799 467 0.8961 572 0.9040 682
(A) (k=4096) & (B) (k=4096) & (C) (k=4096) 0.9211 2614 0.9292 3309 0.9351 3978

5.6.1 Candidate Selection

In Sect. 5.3.1, we have introduced three individual methods to select candi-
dates: table caption (A), column heading labels (B) and table entities (C).
Method (B) actually corresponds to the FastJoin matcher in [Wang et al.,
2014]. These methods also involve a cut-off threshold parameter k, for the
same reasons we already discussed in Sect. 5.5.1. The results are reported
in the top block of Table 5.7. We observe that the more seed labels we have
the better recall gets when using labels. We also explore combinations of
pairs of methods as well as using all three. We find that all combinations im-
prove over the single methods, and that combining all three methods leads
to the best overall performance. Our selected method is the second to last
in Table 5.7, motivated by efficiency considerations; for comparison, we also
show the performance for k = 4096.

5.6.2 Column Label Ranking

Our column label ranking model is comprised of two components: table
relevance and label likelihood. For estimating candidate table relevance,
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Table 5.8: Column label ranking performance on the test set.

#Seed column labels (|L|)
Method 1 2 3

MAP MRR MAP MRR MAP MRR

Baseline [Das Sarma et al., 2012] 0.4413 0.5473 0.4640 0.5535 0.4535 0.5079

(A) Table caption 0.2584 0.3496 0.2404 0.2927 0.2161 0.2356
(B) Column labels 0.2463 0.3676 0.3145 0.4276 0.3528 0.4246
(C) Table entities 0.3878 0.4544 03714 0.4187 0.3475 0.3732
(A) & (B) 0.4824 0.5896 0.4929 0.5837 0.4826 0.5351
(A) & (C) 0.5032 0.5941 0.4909 0.5601 0.4724 0.5132
(B) & (C) 0.5060 0.5954 0.5410 0.6178 0.5323 0.5802
(A) & (B) & (C) 0.5863 0.6854 0.5847 0.6690 0.5696 0.6201

we have three individual methods, using table caption (A), column labels
(B), and table entities (C). All methods use the same estimation of label
likelihood (cf. Sect. 5.3.3).

We start by discussing the performance of individual methods, which is
reported in the top block of Table 5.8. Of the three, method (C) outperforms
the other two, and does significantly so (p < 10−5). Looking at the tendency
of MAP, the increasing number of seed column labels only contributes to
method (B). When combining two of the methods, all combinations improve
significantly over the individual methods (p < 10−5). Out of the three, (B)
& (C) performs best in terms of both MAP and MRR. In the end, putting
together all three individual methods delivers the best results. Also, this
combination (A & B & C) improves significantly over the combination of
any two of the methods (p < 10−5).

For baseline comparison, we employ the method by Das Sarma et al. [2012].
They consider the “benefits” of adding additional columns, which expressed
in Eq. (5.4). We find that our three-component method substantially and sig-
nificantly (p < 10−5) outperforms this baseline. It should be noted that the
baseline in [Das Sarma et al., 2012] uses our candidate selection method
to make it comparable; this actually performs better than their original ap-
proach.

5.6.3 Analysis

Figure 5.6 plots the performance of individual (test) tables, in decreasing
order of average precision score. We find that there are 427 tables hav-
ing AP = 1, 122 tables having 0.4 < AP < 0.6, and 186 tables having
AP = 0. We examine these three table groups, based on performance,
in terms of their corresponding recall values from the candidate selection
step. Figure 5.7 shows these values (averaged over all tables that fall in the
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Figure 5.6: Performance of individual tables, ordered by decreasing Average
Precision, for column population.

Figure 5.7: Recall of candidate selection against column label ranking per-
formance, for column population.

given performance group). Looking at the number of tables containing at
least one ground truth column heading label, it is 204 for AP = 0, 403 for
0.4 < AP < 0.6, and 1114 for AP = 1. We can draw similar conclusions here
as we did for entity ranking.

5.7 Summary and Conclusions

In this chapter, we have introduced the idea of assisting users with complet-
ing tables by providing smart assistance capabilities. Specifically, we have
concentrated on tables with an entity focus, and investigated the tasks of row
population and column population. We have devised methods for each task
and showed experimentally how the different components all contribute to
overall performance. For evaluation, we have developed a process that sim-
ulates a user through her work of populating a table with data. Our overall
results are very promising and substantially outperform existing baselines.
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In this study, we have studied one particular type of assistance, for complet-
ing row and column headings of a table. In the next chapters, we aim to
generating a table responding to natural language queries in Chapter 6 and
provide support for filling in value cells in Chapter 7.

112



Chapter 6

Table Generation

Many information needs revolve around entities, which would be better an-
swered by summarizing results in a tabular format, rather than presenting
them as a ranked list. There exist two main families of methods that can
return a table as answer to a keyword query. One is to perform table search
to find existing tables on the Web. The other is to assemble a table in a
row-by-row fashion [Yang et al., 2014] or by joining columns from multiple
tables [Pimplikar and Sarawagi, 2012]. However, these methods are limited
to returning tables that already exist in their entirety or at least partially (as
complete rows or columns). Instead, we aim to answer queries by automat-
ically compiling a table in response to a query. One line of related research
is about translating a keyword or natural language query to a structured
query language (e.g., SPARQL), which can be executed over a knowledge
base [Yahya et al., 2012]. While in principle these techniques could return
a list of tuples as the answer, in practice, they are targeted for factoid ques-
tions or at most a single attribute per answer entity. More importantly, they
require data to be available in a clean, structured form in a consolidated
knowledge base.

In this chapter, we introduce and address the task of on-the-fly table genera-
tion: given a query, generate a relational table that contains relevant entities
(as rows) along with their key properties (as columns). For example, for the
query “video albums of Taylor Swift,” we can list the albums in a table, as
shown in Fig. 6.1. This problem is decomposed into three specific subtasks:
(i) core column entity ranking, (ii) schema determination, and (iii) value
lookup. We employ a feature-based approach for entity ranking and schema
determination, combining deep semantic features with task-specific signals.
We further show that these two subtasks are not independent of each other
and can assist each other in an iterative manner. For value lookup, we com-
bine information from existing tables and a knowledge base. Using two sets
of entity-oriented queries, we evaluate our approach both on the component
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Figure 6.1: Answering a search query with an on-the-fly generated table,
consisting of core column entities E, table schema S, and data cells V.

level and on the end-to-end table generation task.

The chapter is organized as follows. We introduce the task of on-the-fly table
generation and propose an iterative table generation algorithm in Sect. 6.1.
We develop feature-based approaches for core column entity ranking in
Sect. 6.2 and schema determination in Sect. 6.3, and design an entity-oriented
fact catalog for fast and effective value lookup in Sect. 6.4. We introduce the
queries and experimental setup in Sect. 6.5. We perform extensive evalua-
tion on the component level in Sect. 6.6 and provide further insights and
analysis in Sect. 6.7. Section 6.8 concludes this chapter.

6.1 Overview

The objective of on-the-fly table generation is to assemble and return a
relational table as the answer in response to a free text query. Formally,
given a keyword query q, the task is to return a table T = (E, S, V), where
E = 〈e1, . . . en〉 is a ranked list of core column entities, S = 〈s1, . . . sm〉 is
a ranked list of heading column labels, and V is an n-by-m matrix, such
that vij refers to the value in row i and column j of the matrix (i ∈ [1..n],
j ∈ [1..m]). Table 6.1 lists the notation used in this chapter. According to
the needed table elements, the task boils down to (i) searching core column
entities, (ii) determining the table schema, and (iii) looking up values for the
data cells. Figure 6.2 shows how these three components are connected to
each other in our proposed approach.

6.1.1 Iterative Table Generation Algorithm

There are some clear sequential dependencies between the three main com-
ponents: core column entity ranking and schema determination need to be per-
formed before value lookup. Other than that, the former two may be con-
ducted independently of and parallel to each other. However, we postulate
that better overall performance may be achieved if core column entity rank-
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Table 6.1: Notation used in this chapter.

Symbol Description

q Query
T Table
E Core column entities E = 〈e1, . . . en〉
S Heading column labels S = 〈s1, . . . sm〉
V Value matrix

Query
(q)

E

 

Core column 
entity ranking

(Section 6.2)

Schema 
determination

(Section 6.3)

Value lookup
(Section 6.4)

E

 
 

S

S

V

 

Figure 6.2: Overview of our table generation approach.

ing and schema determination would supplement each other. That is, each
would make use of not only the input query, but the other’s output as well.
To this end, we propose an iterative algorithm that gradually updates core
column entity ranking and schema determination results.

The pseudocode of our approach is provided in Algo 1, where rankEntites(),
rankLabels(), and lookupValues() refer to the subtasks of core column entity
ranking, schema determination, and value lookup, respectively. Initially, we
issue the query q to search entities and schema labels, by rankEntites(q, {})
and rankLabels(q, {}). Then, in a series of successive iterations, indexed by
t, core column entity ranking will consider the top-k ranked schema labels
from iteration t − 1 (rankEntites(q, St−1)). Analogously, schema determina-
tion will take the top-k ranked core column entities from the previous iter-
ation (rankLabels(q, Et−1)). These steps are repeated until some termination
condition is met, e.g., the rankings do not change beyond a certain extent
anymore. We leave the determination of a suitable termination condition to
future work and will use a fixed number of iterations in our experiments.
In the final step of our algorithm, we look up values V using the core col-
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Algorithm 1: Iterative Table Generation
Data: q, a keyword query
Result: T = (E, S, V), a result table

1 begin
2 E0 ← rankEntities(q, {});
3 S0 ← rankLabels(q, {});
4 t ← 0 ;
5 while ¬terminate do
6 t ← t + 1 ;
7 Et ← rankEntities(q, St−1);
8 St ← rankLabels(q, Et−1);
9 end

10 V ← lookupValues(Et, St);
11 return (Et, St, V)

12 end

umn entities and schema (lookupValues(Et, St)). Then, the resulting table
(Et, St, V) is returned as output.

6.1.2 Data Sources

Another innovative element of our approach is that we do not rely on a sin-
gle data source. We combine information both from a collection of existing
tables, referred to as the table corpus, and from a knowledge base. We shall
assume that there is some process in place that can identify relational tables
in the table corpus, based on the presence of a core column. We further
assume that entities in the core column are linked to the corresponding en-
tries in the knowledge base. The technical details are described in Sect. 6.5.
Based on the information stored about each entity in the knowledge base,
we consider multiple entity representations: (i) all refers to the concatena-
tion of all textual material that is available about the entity (referred to as
“catchall” in [Hasibi et al., 2017b]), (ii) description is based on the entity’s
short textual description (i.e., abstract or summary), and (iii) properties con-
sists of a restricted set of facts (property-value pairs) about the entity. We
will use DBpedia in our experiments, but it can be assumed, without loss
of generality, that the above information is available in any general-purpose
knowledge base.

6.2 Core column entity ranking

In this section, we address the subtask of core column entity ranking: given
a query, identify entities that should be placed in the core column of the
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Table 6.2: Features used for core column entity retrieval.

Feature Iter. (t)

Term-based matching
ϕ1: LM(q, ea) ≥ 0

Deep semantic matching
ϕ2: DRRM TKS(q, ed) ≥ 0
ϕ3: DRRM TKS(q, ep) ≥ 0
ϕ4: DRRM TKS(s, ed) ≥ 1
ϕ5: DRRM TKS(s, ep) ≥ 1
ϕ6: DRRM TKS(q ⊕ s, ed ⊕ ep) ≥ 1

Entity-schema compatibility
ϕ7: ESC(S, e) ≥ 1

generated output table. This task is closely related to the problem of ad hoc
entity retrieval. Indeed, our initial scoring function is based on existing en-
tity retrieval approaches. However, this scoring can be iteratively improved
by leveraging the identified table schema. Our iterative scoring function
combines multiple features as ranking signals in a linear fashion:

scoret(e, q) = ∑
i

wi ϕi(e, q, St−1) , (6.1)

where ϕi is a ranking feature and wi is the corresponding weight. In the first
round of the iteration (t = 0), the table schema is not yet available, thus St−1

by definition is an empty list. For later iterations (t > 0), St−1 is computed
using the methods described in Sect. 6.3. For notational convenience, we
shall write S to denote the set of top-k schema labels from St−1. In the
remainder of this section, we present the features we developed for core
column entity ranking; see Table 6.2 for a summary.

6.2.1 Query-based Entity Ranking

Initially, we only have the query q as input. We consider term-based and
semantic matching as features.

Term-based matching

There is a wide variety of retrieval models for term-based entity ranking [Ha-
sibi et al., 2017b]. We rank document-based entity representations using Lan-
guage Modeling techniques (cf. Eq. (5.3)). Despite its simplicity, this model
has shown to deliver competitive performance [Hasibi et al., 2017b]. Specif-
ically, following Hasibi et al. [2017b], we use the all entity representation,
concatenating all textual material available about a given entity.
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Figure 6.3: Architecture of the DRRM TKS deep semantic matching method.

Deep semantic matching

We employ a deep semantic matching method, referred to as DRRM TKS [Fan
et al., 2017]. It is an enhancement of DRRM [Guo et al., 2016] for short text,
where the matching histograms are replaced with the top-k strongest sig-
nals. Specifically, the entity and the query are represented as sequences of
embedding vectors, denoted as e = [we

1, we
2, ..., we

n] and q = [wq
1, wq

2, ..., wq
m].

An n × m matching matrix M is computed for their joint representation, by
setting Mij = we

i · (w
q
j )

ᵀ. The values of this matrix are used as input to the
dense layer of the network. Then, the top-k strongest signals, based on a
softmax operation, are selected and fed into the hidden layers. The output
layer computes the final matching score between the query and entity. The
architecture of DRRM TKS is shown in Fig. 6.3.

We instantiate this neural network with two different entity representations:
(i) using the entity’s textual description, ed, and (ii) using the properties of
the entity in the knowledge base, ep. The matching degree scores computed
using these two representations, DRRM TKS(q, ed) and DRRM TKS(q, ep),
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are used as ranking features ϕ2 and ϕ3, respectively.

6.2.2 Schema-assisted Entity Ranking

After the first iteration, core column entity ranking can be assisted by utiliz-
ing the determined table schema from the previous iteration. We present a
number of additional features that incorporate schema information.

Deep semantic matching

We employ the same neural network as before, in Sect. 6.2.1, to compute
semantic similarity by considering the table schema. Specifically, all schema
labels in S are concatenated into a single string s. For the candidate enti-
ties, we keep the same representations as in Sect. 6.2.1. By comparing all
schema labels s against the entity, we obtain the schema-assisted deep fea-
tures DRRM TKS(s, ed) and DRRM TKS(s, ep). Additionally, we combine
the input query with the schema labels, q ⊕ s, and match it against a com-
bined representation of the entity, ed ⊕ ep, where ⊕ refers to the string con-
catenation operation. The resulting matching score is denoted as DRRM TKS
(q ⊕ s, ed ⊕ ep).

Entity-schema compatibility

Intuitively, core column entities in a given table are from the same semantic
class, for example, athletes, digital products, films, etc. We aim to capture
their semantic compatibility with the table schema, by introducing a mea-
sure called entity-schema compatibility.

We compare the property labels of core column entities E against schema S
to build the compatibility matrix C. Element Cij of the matrix is a binary
indicator between the jth schema label and the ith entity, which equals to 1
if entity ei has property sj. To check if an entity has a given property, we look
for evidence both in the knowledge base and in the table corpus. Formally:

Cij =

{
1, if matchKB(ei, sj) ∨ matchTC(ei, sj)

0, otherwise ,

where matchKB(ei, sj) and matchTC(ei, sj) are binary indicator functions. The
former is true if entity ei has property sj in the knowledge base, the latter
is true if there exists a table in the table corpus where ei is a core column
entity and sj is a schema label. Then, the entity-schema compatibility score,
which is used as ranking feature ϕ7, is computed as follows:

ESC(S, ei) =
1
|S| ∑

j
Cij .
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Table 6.3: Features used for schema determination.

Feature Iter. (t)

Column population ϕ1: P(s|q) ≥ 0
ϕ2: P(s|q, E) ≥ 1

Deep semantic matching ϕ3: DRRM TKS(s, q) ≥ 0
Attribute retrieval ϕ4: AR(s, E) ≥ 1
Entity-schema compatibility ϕ5: ESC(s, E) ≥ 1

For example, for query “Apollo astronauts walked on the Moon” and schema
{country, date of birth, time in space, age at first step, ...}, the ESC scores of
entities Alan Shepard, Charles Duke, and Bill Kaysing are 1, 0.85, and 0.4, re-
spectively. The former two are Apollo astronauts who walked on the Moon,
while the latter is a writer claiming that the six Apollo Moon landings were
a hoax.

6.3 Schema determination

In this section, we address the subtask of schema determination, which is to
return a ranked list of labels to be used as heading column labels (labels, for
short) of the generated output table. The initial ranking is based on the input
query only. Then, this ranking is iteratively improved by also considering
the core column entities. Our scoring function is defined as follows:

scoret(s, q) = ∑
i

wi ϕi(s, q, Et−1), (6.2)

where ϕi is a ranking feature with a corresponding weight wi. For the initial
ranking (t = 0), core column entities are not yet available, thus Et−1 is an
empty list. For successive iterations (t > 0), Et−1 is computed using the
methods described in Sect. 6.2. Since we are only interested in the top-k
entities, and not their actual retrieval scores, we shall write E to denote the
set of top-k entities in Et−1. Below, we discuss various feature functions ϕi
for this task, which are also summarized in Table 6.3.

6.3.1 Query-based Schema Determination

At the start, only the input query q is available for ranking labels. To col-
lect candidate labels, we first search for tables in our table corpus that are
relevant to the query. We let T denote the set of top-k ranked tables. Then,
the column heading labels are extracted from these tables as candidates:
S = {s|s ∈ TS, T ∈ T }. We provide further details below.

120



6.3. Schema determination

Column population

In Chapter 5 we have introduced the task of column population: generating a
ranked list of column labels to be added to the column headings of a given
seed table. We can adapt the method we have developed there by treating
the query as if it was the caption of the seed table. Then, the scoring of
schema labels is performed according to the following probabilistic formula:

P(s|q) = ∑
T∈T

P(s|T)P(T|q) ,

where related tables serve as a bridge to connect the query q and label s.
Specifically, P(s|T) is the likelihood of the schema label given table T and
is calculated based on the maximum edit distance [Lehmberg et al., 2015],
dist,1 between the s and the schema labels of T:

P(s|T) =
{

1, maxs′∈TS dist(s, s′) ≥ γ

0, otherwise .
(6.3)

The probability P(T|q) expresses the relevance of T given the query, and is
set proportional to the table’s retrieval score (here: BM25).

Deep semantic matching

We employ the same neural network architecture as in Sect. 6.2.1 for com-
paring labels against the query. For training the network, we use our table
corpus and treat table captions as queries. All caption-label pairs that co-
occur in an existing table are treated as positive training instances. Negative
training instances are sampled from the table corpus by selecting candidate
labels that do not co-occur with that caption. The resulting matching score,
DRRM TKS(s, q), is used as feature ϕ3.

6.3.2 Entity-assisted Schema Determination

After the initial round, schema determination can be assisted by considering
the set of top-k core column entities, E. The set of candidate labels, from
before, is expanded with (i) schema labels from tables that contain any of
the entities in E in their core column and (ii) the properties of E in the
knowledge base.

Entity enhanced column population

We employ a variant of the column population method from Chapter 5 that
makes use of core column entities:

P(s|q, E) = ∑
T

P(s|T)P(T|q, E) .

1Note that despite the name used in [Lehmberg et al., 2015], it is in fact a similarity
measure.

121



6. Table Generation

The schema label likelihood P(s|T) is computed the same as before, cf.
Eq. (6.3). The main difference is in the table relevance estimation compo-
nent, which now also considers the core column entities:

P(T|q, E) =
P(T|E)P(T|q)

P(T)
.

Here, P(T|E) is the fraction of the core column entities covered by a related
table, i.e., |TE ∩ E|/|E|, and P(T|q) is the same as in Sect. 6.3.1.

Attribute retrieval

Attribute retrieval refers to the task of returning a ranked list of attributes
that are relevant given a set of entities [Kopliku et al., 2011]. Using the core
column entities as input, we employ the method proposed by Kopliku et al.
[2011], which is a linear combination of several features:

AR(s, E) =
1
|E| ∑

e∈E

(
match(s, e, T) + drel(d, e) + sh(s, e) + kb(s, e)

)
.

The components of this formula are as follows:

• match(s, e, T) compares the similarity between an entity and a schema
label with respect to a given table T. We take T to be the table that
is the most relevant to the query (arg maxT∈T P(T|q)). This match-
ing score is the difference between the table match score and shadow
match score:

match(s, e, T) = match(e, T)− match(e, shadow(a)) . (6.4)

The table match score is computed by representing both the entity
and table cells Txy as term vectors, then taking the maximum cosine
distance between the two:

match(e, T) = maxTxy∈Tcos(e, Txy) .

For the latter component in Eq. 6.4, the notion of a shadow area is intro-
duced: shadow(a) is set of cells in the table that are in the same row
with e or are in the same column with the s. Then, the shadow match
score is estimated as:

match(e, shadow(a)) = max
Txy∈ shadow(a)

cos(e, Txy) .

• drel(d, e) denotes the relevance of the document d that contains T:

drel(e) =
#results − rank(d)

#results
,

where #results is the number of retrieved results for entity e and rank(d)
is the rank of document d within this list.
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• sh(s, e) corresponds to the number of search results returned by a Web
search engine to a query “〈s〉 of 〈e〉,” where s and e are substituted
with the label and entity, respectively. If the base-10 logarithm of the
number of hits exceeds a certain threshold (106 in [Kopliku et al., 2011])
then the feature takes a value of 1, otherwise it is 0.

• kb(s, e) is a binary score indicating whether label s is a property of
entity e in the knowledge base (i.e., s ∈ ep).

Entity-schema compatibility

Similar to Sect. 6.2.2, we employ the entity-schema compatibility feature
for schema determination as well. As before, C is a compatibility matrix,
where Cij denotes whether entity ei has property sj. The ESC score is then
computed as follows:

ESC(sj, E) =
1
|E| ∑

i
Cij .

6.4 Value Lookup

Having the core column entities and the schema determined, the last com-
ponent in our table generation approach is concerned with the retrieval of
the data cells’ values. Formally, for each row (entity) i ∈ [1..n] and column
(schema label) j ∈ [1..m], our task is to find the value Vij. This value may
originate from an existing table in our table corpus or from the knowledge
base. The challenges here are twofold: (i) how to match the schema label sj
against the labels of existing tables and knowledge base predicates, and (ii)
how to deal with the case when multiple, possibly conflicting values may be
found for a given cell.

We go about this task by first creating a catalogue V of all possible cell values.
Each possible cell value is represented as a quadruple 〈e, s, v, p〉, where e is
an entity, s is a schema label, v is a value, and p is provenance, indicating
the source of the information. The source may be a knowledge base fact or a
particular table in the table corpus. An entity-oriented view of this catalog is
a filtered set of triples where the given entity stands as the first component
of the quadruple: eV = {〈s, v, p〉|〈e, s, v, p〉 ∈ V}. We select a single value for
a given entity e and schema label s according to:

score(v, e, s, q) = max
〈s′,v,p〉∈eV
match(s,s′)

conf (p, q) ,

where match(s, s′) is a soft string matching function (detailed in Sect. 6.5.3)
and conf (p, q) is the confidence associated with provenance p. Motivated by
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the fact that the knowledge base is expected to contain high-quality manu-
ally curated data, we set the confidence score such that the knowledge base
is always given priority over the table corpus. If the schema label does not
match any predicate from the knowledge base, then we chose the value from
the table that is the most relevant to the query. That is, conf (p, q) is based
on the corresponding table’s relevance score; see Sect. 6.6.3 for the details.
Notice that we pick a single source for each value rather than aggregating
evidence from multiple sources. The reason for that is that on the user in-
terface, we would like to display a single traceable source where the given
value originates from.

6.5 Experimental Setup

Queries, dataset, data preprocessing methods and relevance assessments are
introduced in this section.

6.5.1 Test Queries

We use two sets of queries in our experiments:

QS-1 We consider list type queries from the DBpedia-Entity v2 test collec-
tion [Hasibi et al., 2017b], that is, queries from SemSearch LS, TREC
Entity, and QALD2. Out of these, we use the queries that have at least
three highly relevant entities in the ground truth. This set contains 119
queries in total.

QS-2 The RELink Query Collection [Saleiro et al., 2017] consists of 600
complex entity-relationship queries that are answered by entity tuples.
That is, the answer table has two or three columns (including the core
entity column) and all cell values are entities. The queries and cor-
responding relevance judgments in this collection are obtained from
Wikipedia lists that contain relational tables. For each answer table,
human annotators were asked to formulate the corresponding informa-
tion need as a natural language query, e.g., “find peaks above 6000m
in the mountains of Peru.”

For both sets, we remove stop words and perform spell correction.

6.5.2 Data Sources

We rely on two main data sources simultaneously: the same knowledge base
and table corpus as in Chapter 5.

Further, each table in the table corpus is classified as relational or non-
relational according to the existence of a core entity column and the size
of the table. We set the following conditions for detecting the core column

124



6.5. Experimental Setup

of a table: (i) the core column should contain the most entities compared to
other columns; (ii) if there are more than one columns that have the highest
number of entities, then the one with lowest index, i.e., the leftmost one,
is regarded as the core column; (iii) the core column must contain at least
two entities. Tables without a core column or having less than two rows or
columns are regarded as non-relational. In the end, we classify the WikiTa-
bles corpus into 973,840 relational and 678,931 non-relational tables. Based
on a random sample of 100 tables from each category, we find that all the
sampled tables are correctly classified.

6.5.3 Schema Normalization

Different schema labels may be used for expressing the same meaning, e.g.,
“birthday” vs. “day of birth” or “nation” vs. “country.” For the former case,
where similar terms are used, we employ a FastJoin match [Wang et al.,
2014] to normalize the strings (with stopwords removed). Specifically, we
take the maximum edit distance as in [Lehmberg et al., 2015] to measure
string similarity. When it exceeds a threshold of δ, we regard them as the
same label. We set δ as 0.8 which is consistent with [Lehmberg et al., 2015],
where headings are matched for table column join. For the latter case, where
different terms are used, we consider predicates connecting the same subject
and object as synonyms. These pairs are then checked and erroneous ones
are eliminated manually. Whenever schema labels are compared in the chap-
ter, we use their normalized versions.

6.5.4 Relevance Assessments

For QS-1, we consider the highly relevant entities as the ground truth for the
core column entity ranking task. For the task of schema determination, we
annotated all candidate labels using crowdsourcing. Specifically, we used
the Figure Eight platform2 and presented annotators with the query, three
example core column entities, and a label, and asked them to judge the
relevance of that label on a three point scale: highly relevant, relevant, or
non-relevant. Each query-entity-label triple was annotated by at least three
and at most five annotators. The labelling instructions were as follows: a
label is highly relevant if it corresponds to an essential table column for the
given query and core column entities; a label is relevant when it corresponds
to a property shared by most core column entities and provides useful in-
formation, but it is not essential for the given query; a label is non-relevant
otherwise (e.g., hard to understand, not informative, not relevant, etc.). We
take the majority vote to decide the relevance of a label. Statistically, we have
7000 triples annotated, and on average, there are 4.2 highly relevant labels,
1.9 relevant labels, and 49.4 non-relevant labels for each query. The Fleiss’

2https://www.figure-eight.com/
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Kappa test statistics for inter-annotator agreement is 0.61, which is consid-
ered as substantial agreement [Fleiss et al., 1971]. For the value lookup task,
we sampled 25 queries and fetched values from the table corpus and the
knowledge base. We again set up a crowdsourcing experiment on Figure
Eight for annotation. Given a query, an entity, a schema label, a value, and a
source (Wikipedia or DBpedia page), three to five annotators were asked to
validate if the value can be found and whether it is correct, according to the
provided source. Overall, 14,219 table cell values were validated. The total
expense of the crowdsourcing experiments was $560.

QS-2: Since for this query set we are given the ground truth in a tabular
format, based on existing Wikipedia tables, we do not need to perform ad-
ditional manual annotation. The main entities are taken as the ground truth
for the core column entity ranking task, heading labels are taken as the
ground truth for the schema determination task, and the table cells (for a
sample of 25 queries) are taken as the ground truth for the value lookup
task.

6.5.5 Evaluation Measures

We evaluate core column entity ranking and schema determination in terms
of Normalized Discounted Cumulative Gain (NDCG) at cut-off points 5 and
10. The value lookup task is measured by Mean Average Precision (MAP)
and Mean Reciprocal Rank (MRR). To test significance, we use a two-tailed
paired t-test and write †/‡ to denote significance at the 0.05 and 0.005 levels,
respectively.

6.6 Experimental Evaluation

We evaluate the three main components of our approach, core column entity
ranking, schema determination, and value lookup, and assess the effective-
ness of our iterative table generation algorithm.

6.6.1 Core Column Entity Ranking

We discuss core column entity ranking results in two parts: (i) using only
the query as input, and (ii) leveraging the table schema as well.

Query-based Entity Ranking

The results are reported in top block of Table 6.4. The following methods
are compared:

LM For term-based matching we use Language Modeling with Dirichlet
smoothing, with the smoothing parameter set to 2000, following Ha-
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sibi et al. [2017b]. This method is also used for obtaining the candi-
date set (top 100 entities per query) that are re-ranked by the methods
below.

DRRM TKS We train the deep matching model using 5-fold cross-validation.
We use a four-layer architecture, with 50 nodes in the input layer, two
hidden layers in the feed forward matching networks, and one out-
put layer. The optimizer is ADAM [Kingma and Ba, 2014], with hinge
loss as the loss function. We set the learning rate to 0.0001 and we
report the results after 50 iterations.3 We employ two instantiations of
this network, using entity descriptions (ed) and entity properties (ep)
as input.

Combined We combine the previous three methods, with equal weights,
using a linear combination (cf. Eq. (6.1)). Later, in our analysis in
Sect. 6.7.2, we will also experiment with learning the weights for the
combination.

On the first query set, QS-1, LM performs best of the single rankers. Com-
bining it with deep features results in 16% and 9% relative improvement for
NDCG@5 and NDCG@10, respectively. On QS-2, a slightly different picture
emerges. The best individual ranker is DRRM TKS using entity properties.
Nevertheless, the Combined method still improves significantly over the LM
baseline.

Schema-assisted Entity Ranking

Next, we also consider the table schema for core column entity ranking.
The results are presented in the bottom block of Table 6.4. Note that on
top of to the three features we have used before, we have four additional
features (cf. Table 6.2). As before, we use uniform weight for all features.
We report results for three additional iterations, Rounds #1–#3, where the
schema is taken from the previous iteration of the schema determination
component. Further, we report on an Oracle method, which uses the ground
truth schema. In all cases, we take the top 10 schema labels (k = 10); we
analyze the effect of using different k values in Sect. 6.7.1. These methods are
to be compared against the Combined method, which corresponds to Round
#0. We find that our iterative algorithm is able to gradually improve results,
in each iteration, for both of the query sets and evaluation metrics; with
the exception of QS-1 in Round #1, all improvements are highly significant.
Notice that the relative improvement made between Round #0 and Round
#3 is substantial: 22% and 86% in terms of NDCG@5 for QS-1 and QS-2,
respectively.

3We also experimented with C-DSSM and DSSM. However, their overall performance
was much lower than that of DRRM TKS for this task.
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Table 6.4: Core column entity ranking results. The top block of the table uses
only the keyword query as input. The bottom block of the table uses the
table schema; Round #1–#3 rely on automatically determined schema, while
the Oracle method uses the ground truth schema. Statistical significance
for query-based entity ranking is compared against LM, for schema-assisted
entity ranking is compared against the Combined method.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Query-based Entity Ranking (Round #0)

LM 0.2419 0.2591 0.0708 0.0823
DRRM TKS (ed) 0.2015 0.2028 0.0501 0.0540
DRRM TKS (ep) 0.1780 0.1808 0.1089‡ 0.1083‡

Combined 0.2821† 0.2834 0.0852‡ 0.0920†

Schema-assisted Entity Ranking

Round #1 0.3012 0.2892 0.1232‡ 0.1201‡

Round #2 0.3369‡ 0.3221‡ 0.1307‡ 0.1264‡

Round #3 0.3445‡ 0.3250‡ 0.1345‡ 0.1270‡

Oracle 0.3518‡ 0.3355‡ 0.1587‡ 0.1555‡

6.6.2 Schema Determination

Schema determination results are presented in two parts: (i) using only the
query as input and (ii) also leveraging core column entities.

Query-based Schema Determination

In the top block of Table 6.5 we compare the following three methods:

CP We employ the column population method from Chapter 5 to determine
the top 100 labels for each query. Following Lehmberg et al. [2015], the
γ parameter for the edit distance threshold is set to 0.8. This method
is also used for obtaining the candidate label set (top 100 per query)
that is re-ranked by the methods below.

DRRM TKS We use the same neural network architecture as for core col-
umn entity ranking. For training the network, we make use of Wikipedia
tables. If an entity and a schema label co-occur in an existing Wikipedia
table, then we consider it as a positive pair. Negative training instances
are generated by sampling, for each entity, a set of schema labels that
do not co-occur with that entity in any existing table. In the end, we
generate a total of 10.7M training examples, split evenly between the
positive and negative classes.
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Table 6.5: Schema determination results. The top block of the table uses
only the keyword query as input. The bottom block of the table uses the core
column entities as well; Round #1–#3 rely on automatic entity ranking, while
the Oracle method uses the ground truth entities. Statistical significance
for query-based schema determination is compared against CP, for entity-
assisted entity ranking is compared against the Combined method.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Query-based Entity Ranking (Round #0)

CP 0.0561 0.0675 0.1770 0.2092
DRRM TKS 0.0380 0.0427 0.0920 0.1415
Combined 0.0786† 0.0878† 0.2310‡ 0.2695‡

Entity-assisted Schema Determination

Round #1 0.1676‡ 0.1869‡ 0.3342‡ 0.3845‡

Round #2 0.1775‡ 0.2046‡ 0.3614‡ 0.4143‡

Round #3 0.1910‡ 0.2136‡ 0.3683‡ 0.4350‡

Oracle 0.2002‡ 0.2434‡ 0.4239‡ 0.4825‡

Combined We combine the above two methods in a linear fashion, with
equal weights (cf. Eq. (6.2)). Later, in our analysis in Sect. 6.7.2, we
will also experiment with learning the weights for the combination.

We find that the CP performs better than DRRM TKS, especially on the
QS-2 query set. The Combined method substantially and significantly out-
performs both of them, with a relative improvement of 40% and 30% over
CP in terms of NDCG@5 on QS-1 and QS-2, respectively.

Entity-assisted Schema Determination

Next, we incorporate three additional features that make use of core column
entities (cf. Table 6.3), using uniform feature weights. For the attribute
retrieval feature (Sect. 6.3.2), we rely on the Google Custom Search API
to get search hits and use the same parameter setting (feature weights) as
in Kopliku et al. [2011]. For all features, we use the top 10 ranked entities
(and analyze different k values later, in Sect. 6.7.1).

The results are shown in the bottom block of Table 6.5. Already Round
#1 shows a significant jump in performance compared to the Combined
method (corresponding to Round #0). Subsequent iterations results in fur-
ther improvements, reaching a relative improvement of 243% and 159% for
Round #3 in terms of NDCG@5 for QS-1 and QS-2, respectively. Judging
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Table 6.6: Value lookup results.

QS-1 QS-2
Source MAP MRR MAP MRR

KB 0.7759 0.7990 0.0745 0.0745
TC 0.1614 0.1746 0.9564 0.9564
KB+TC 0.9270 0.9427 0.9564 0.9564

from the performance of the Oracle method, there is further potential for
improvement, especially for QS-2.

6.6.3 Value Lookup

For value lookup evaluation we take the core column entities and schema
labels from the ground truth. This is to ensure that this component is eval-
uated on its own merit, without being negatively influenced by errors that
incur earlier in the processing pipeline. In our evaluation, we ignore cells
that have empty values according to the ground truth (approximately 12%
of the cells have empty values in the Wikitables corpus). The overall eval-
uation results are reported in Table 6.6. We rely on two sources for value
lookup, the knowledge base (KB) and the table corpus (TC). Overall, we
reach excellent performance on both query sets. On QS-1, the knowledge
base is the primary source, but the table corpus also contributes new values.
On QS-2, since all values originate from existing Wikipedia tables, using the
knowledge base does not bring additional benefits. This, however, is the
peculiarity of that particular dataset. Also, according to the ground truth
there is a single correct value for each cell, hence the MAP and MRR scores
are the same for QS-2.

6.7 Analysis

In this section, we conduct further analysis to provide insights on our itera-
tive algorithm and on feature importance.

6.7.1 Iterative Algorithm

We start our discussion with Fig. 6.4, which displays the overall effective-
ness of our iterative algorithm on both tasks. Indeed, as it is clearly shown
by these plots, our algorithm performs well. The improvements are the
most pronounced when going from Round #0 to Round #1. Performance
continues to rise with later iterations, but, as it can be expected, the level
of improvement decreases over time. The rightmost bars in the plots corre-
spond to the Oracle method, which represents the upper limit that could
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(a) CCER QS-1 (b) CCER QS-2

(c) SD QS-1 (d) SD QS-2

Figure 6.4: Performance change across iterations for core column entity rank-
ing (CCER) and schema determination (SD).

be achieved, given a perfect schema determination method for core column
entity ranking and vice versa. We can observe that for core column entity
ranking on QS-1 (Fig. 6.4(a)), has already reached this upper performance
limit at iteration #3. For the other task/query set combinations there re-
mains some performance to be gained. It is left for future work to devise a
mechanism for determining the number of iterations needed.

Next, we assess the impact of the number of feedback items leveraged, that
is, the value of k when using the top-k schema labels in core column entity
ranking and top-k entities in schema determination. Figure 6.5 shows how
performance changes with different k values. For brevity, we report only on
NDCG@10 and note that a similar trend was observed for NDCG@5. We
find that the differences between the different k values are generally small,
with k = 10 being a good overall choice across the board.

To further analyze how individual queries are affected over iterations, Ta-
ble 6.7 reports the number of queries that are helped (↑), hurt (↓), and re-
mained unchanged (−). We define change as a difference of ≥0.05 in terms
of NDCG@10. We observe that with the exception of schema determination
on QS-2, the number of queries hurt always decreases between successive
iterations. Further, the number of queries helped always increases from

131



6. Table Generation

(a) CCER QS-1 (b) CCER QS-2

(c) SD QS-1 (d) SD QS-2

Figure 6.5: Impact of the cutoff parameter k for Core Column Entity Ranking
(CCER) and Schema Determination (SD).

Round #1 to #3.

Lastly, we demonstrate how results change over the course of iterations, we
show one specific example table in Fig. 6.6 that is generated in response to
the query “Towns in the Republic of Ireland in 2006 Census Records.”

6.7.2 Parameter Learning

For simplicity, we have so far used all features with equal weights for core
column entity ranking (cf. Eq. (6.1)) and schema determination (cf. Eq. (6.2)).
Here, we aim to learn the feature weights from training data. In Tables 6.8
and 6.9 we report results with weights learned using five-fold cross-validation.
These results are to be compared against the uniform weight settings in Ta-
bles 6.4 and 6.5, respectively. We notice that on QS-1, most evaluation scores
are lower with learned weights than with uniform weights, for both core
column entity ranking and schema determination. This is due to the fact
that queries in this set are very heterogeneous [Hasibi et al., 2017b], which
makes it difficult to learn weights that perform well across the whole set. On
QS-2, according to expectations, learning the weights can yield up to 18%
and 21% relative improvement for core column entity ranking and schema
determination, respectively.
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Figure 6.6: Generated table in response to the query “Towns in the Republic
of Ireland in 2006 Census Records.” Relevant entities and schema labels are
boldfaced.

Table 6.7: The number queries helped (ΔNDCG@10≥0.05), hurt
(ΔNDCG@10≤-0.05), and unchanged (remaining) for core column entity
ranking (CCER) and schema determination (SD).

CCER SD
QS-1 ↑ ↓ − ↑ ↓ −
Round #0 vs. #1 43 38 38 52 7 60
Round #0 vs. #2 50 30 39 61 5 53
Round #0 vs. #3 49 26 44 59 2 58

QS-2 ↑ ↓ − ↑ ↓ −
Round #0 vs. #1 166 82 346 386 56 158
Round #0 vs. #2 173 74 347 388 86 126
Round #0 vs. #3 173 72 349 403 103 94

6.7.3 Feature Importance

To measure the importance of individual features, we use their average
learned weights (linear regression coefficients) across all iterations. The or-
dering of features for core column entity ranking and QS-1 is: ϕ1(0.566)
> ϕ7(0.305) > ϕ6(0.244) > ϕ2(0.198) > ϕ5(0.127) > ϕ4(0.09) > ϕ3(0.0066).
For QS-2 it is: ϕ7(0.298) > ϕ1(0.148) > ϕ3(0.108) > ϕ4(0.085) > ϕ5(0.029)
> ϕ2(−0.118) > ϕ6(−0.128). Overall, we find the term-based matching
(Language Modeling) score (ϕ1) and our novel entity-schema compatibility
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Table 6.8: Core column entity retrieval results with parameters learned using
five-fold cross-validation. In parentheses are the relative improvements w.r.t.
using uniform weights.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Round #0 0.2523 (-11%) 0.2653 (-6%) 0.1003 (+18%) 0.1048 (+14%)
Round #1 0.2782 (-8%) 0.2772 (-4%) 0.1308 (+6%) 0.1252 (+4%)
Round #2 0.3179 (-6%) 0.3180 (-1%) 0.1367 (+5%) 0.1323 (+5%)
Round #3 0.3192 (-7%) 0.3109 (-4%) 0.1395 (+4%) 0.1339 (+5%)
Oracle 0.3017 (-14%) 0.3042 (-9%) 0.1728 (+9%) 0.1630 (+5%)

Table 6.9: Schema determination results with parameters learned using five-
fold cross-validation. In parentheses are the relative improvements w.r.t.
using uniform weights.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Round #0 0.0928 (+18%) 0.1064 (+21%) 0.2326 (+1%) 0.2710 (+1%)
Round #1 0.1663 (-1%) 0.2066 (+11%) 0.3865 (+16%) 0.4638 (+12%)
Round #2 0.1693 (-5%) 0.2212 (+8%) 0.3889 (+8%) 0.4599 (+11%)
Round #3 0.1713 (-10%) 0.2321 (+9%) 0.3915 (+6%) 0.4620 (+6%)
Oracle 0.1719 (-14%) 0.2324 (-5%) 0.4678 (+10%) 0.5307 (+10%)

score (ϕ7) to be the most important features for core column entity rank-
ing. Turning to schema determination, on QS-1 the ordering is: ϕ5(0.23) >
ϕ3(0.076) > ϕ1(−0.035) > ϕ2(−0.072) > ϕ4(−0.129). For QS-2 it is: ϕ5(0.27)
> ϕ4(0.181) > ϕ1(0.113) > ϕ3(0.018) > ϕ2(−0.083). Here, entity-schema
compatibility (ϕ5) is the single most important feature on both query sets.

6.8 Summary and Conclusions

We have introduced the task of on-the-fly table generation, which aims to
answer queries by automatically compiling a relational table in response to
a query. This problem is decomposed into three specific subtasks: (i) core
column entity ranking, (ii) schema determination, and (iii) value lookup. We
have employed a feature-based approach for core column entity ranking and
schema determination, combining deep semantic features with task-specific
signals. We have further shown that these two subtasks are not independent
of each other and have developed an iterative algorithm, in which the two
reinforce each other. For value lookup, we have entity-oriented fact catalog,
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which allows for fast and effective lookup from multiple sources. Using two
sets of entity-oriented queries, we have demonstrated the effectiveness of
our method.

In this chapter, the main focus of our attention was on the core column entity
ranking and schema determination subtasks, while for the value finding we
presented a simple but effective solution. It should, however, be noted that
we considered a somewhat simplified version of the value finding task. For
example, we do not deal with the cases where a cell has multiple valid values
or when a cell does not have a value and should be left empty. Therefore,
we take a closer look at the value finding problem in the next chapter.
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Chapter 7

Auto-completion for Data Cells in
Relational Tables

Previsouly, we have developed methods for assisting users in the labor-
intensive process of table creation by helping them to retrieve existing tables
(Chapter 3 and 4), augment tables with data (Chapter 5), and even auto-
matically generate entire tables (Chapter 6). In this chapter, we address the
task of finding table cell values with supporting evidence, to support users
in the labor-intensive process of creating relational tables. This problem
falls in the category of data augmentation (also referred to as data imputa-
tion [Ahmadov et al., 2015a]), which is concerned with extending a given
seed table with more data. Examples of data augmentation include popu-
lating relational tables with additional rows (entities) and column headings
(attributes) (Chapter 5), and automatically finding missing values for data
cells [Ahmadov et al., 2015a, Yakout et al., 2012]. This latter task is exactly
what we undertake in the current chapter. Figure 7.1 provides an illustration
of two scenarios: (A) when finding missing cell values and (B) when vali-
dating existing values. We present the CellAutoComplete framework to
tackle several novel aspects of this problem, including: (i) enabling a cell to
have multiple, possibly conflicting values, (ii) supplementing the predicted
values with supporting evidence, (iii) combining evidence from multiple
sources, and (iv) handling the case where a cell should be left empty. Our
framework makes use of a large table corpus and a knowledge base as data
sources, and consists of preprocessing, candidate value finding, and value
ranking components. Using a purpose-built test collection, we show that
our approach is 40% more effective than the best baseline.

The chapter is organized as follows. We present the CellAutoComplete
framework for finding cell values in relational tables in Sect. 7.1. We de-
tail the candidate value finding in Sect. 7.2, and value ranking in Sect. 7.3.
Specific novel technical contributions include the heading-to-heading and
heading-to-predicate matching components in Sect. 7.2.1 and Sect. 7.2.2) as
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Oscar Best Actor

Year

2013

Actor Film Role(s)

2014

2015

Matthew McConaughey

Eddie Redmayne

Leonard DiCaprio

Dallas Buyers Club

The theory of Everything

The Revenant

Ron Woodroof

Stephen Hawking

Hugh Class

2016 Casey A eck Manchester by the Sea Lee Chandler

2017 Gary Oldman

1.Darkest Hour
https://en.wikipedia.org/wiki/Academy_Award_for_Best_Actor
(2 additional sources)
2.Tinker Tailor Soldier Spy
https://en.wikipedia.org/wiki/Academy_Award_for_Best_Actor
(1 additional source)
3.Nil by Mouth
http://dbpedia.org/page/Gary_Oldman A

1.Lee Chandler
https://en.wikipedia.org/wiki/Academy_Award_for_Best_Actor
https://en.wikipedia.org/wiki/Casey_A eck
2.Ray Sybert
https://en.wikipedia.org/wiki/Casey_A eck B

Figure 7.1: Envisioned user interface. By clicking on a table cell, the user
receives a ranked list of suggested values along with supporting sources.
Case (A) is to find the value for an empty cell. Case (B) is to check/verify
an existing value.

Table corpus

Knowledge 
base

Table matching

Value extraction

Candidate nding (Sect. 7.2)

Heading-to-heading 
matching

Heading-to-predicate 
matching

TC value ranking

KB value ranking

Value ranking (Sect. 7.3)

{(v; e, h′, T ′)}

{(v; e, p)}

KB+TC value ranking

(e, h, T )

score(v; e, h, T )

Input:

Output: ranked list of values ordered by

Figure 7.2: Overview of the CellAutoComplete framework.

well as the features designed for combining evidence from multiple sources
and for predicting empty values in Sect. 7.3.3. We develop a purpose-built
test collection based on Wikipedia tables in Sect. 7.4 and perform an exten-
sive experimental evaluation in Sect. 7.5. Our experiments show that our
LTR approach substantially outperforms existing data augmentation tech-
niques. Section. 7.6 concludes this chapter.

7.1 Problem Statement and Overview

We address the task of automatically finding the values of cells in relational
tables. A table is said to be relational if it describes a set of entities in its core
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Table 7.1: Notation used in this chapter.

Symbol Description

T Input table
e Entity
h Heading label
v Value

column (typically, the leftmost column) and the attributes of those entities
in additional columns. We shall assume that entities in the core column
of each table have been identified and linked to a knowledge base. These
annotations may be supplied manually (e.g., tables in Wikipedia) or can
be obtained automatically [Efthymiou et al., 2017, Ritze et al., 2015]. The
additional (attribute) columns are identified by their heading labels.

Formally, given an input table T, we seek to find the value of the cell that is
identified by the row with entity e (in the core column) and the column with
heading label h. The output is a ranked list of values v, where the ranking
of values is defined by a scoring function score(v; e, h, T). Table 7.1 lists the
notation used in this paper.

Our approach, shown in Fig. 7.2, has two main components. First, we iden-
tify candidate values from two sources, a table corpus and a knowledge base.
Second, these values are ranked based on their likelihood of being correct,
and the top-K ranked values are presented to the user as auto-complete sug-
gestions. Note that it is a design decision for us to keep the user in the loop
and let her make a judgment call on the appropriateness of a suggestion by
considering the supporting evidence.

The two main components of our CellAutoComplete framework are de-
scribed in the following two sections.

7.2 Candidate Value Finding

In this section, we address the problem of identifying candidate values for
a given target cell in table T, identified by the target entity e and target
heading label h. Candidate value finding is a crucial step as the recall of the
end-to-end task critically depends on it. We gather candidate values from
two sources: a table corpus (Sect. 7.2.1) and a knowledge base (Sect. 7.2.2).
Novel contributions in this part include the heading-to-heading and heading-
to-predicate matchings, and the TMatch table matching approach.
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7.2.1 Table Corpus

Our goal is to locate tables from the corpus that contain the target entity
and attribute (heading label) pair. We assume a setting where entities in
the core table columns have been linked to knowledge base (cf. Sect. 7.4.1).
With that, it is easy to find the tables that contain the target entity (with high
confidence). The matching of heading labels, however, is not that straight-
forward: the same meaning may be expressed using different labels (e.g.,
“established” vs. “founded”), while the same label can mean different things
depending on the table’s context (e.g., the column label “played” may refer,
among others, to the number of games played, to the date of a game, or
the name of the opponent). Therefore, we need to perform a matching be-
tween heading labels. Naively considering all candidate tables that mention
the entity and heading is not sufficient; additionally, we should also take
into account their semantic similarity to the input table, referred to as the
problem of table matching (cf. Chapter 4).

Heading-to-Heading Matching

For a given heading label h, we wish to identify additional heading labels
that have the same meaning (i.e., refer to the same entity attribute). This is
closely related to the problem of schema matching [Dong and Halevy, 2005].
The main idea is that if two tables Ta and Tb contain the same value v for
a given entity e in columns with headings ha and hb, respectively, then ha
and hb might mean the same. Sharing a value does not always mean the
equivalence of heading labels. Nevertheless, the intuition is that the more
often it happens, the more likely it is that ha and hb refer to the same entity
attribute. We capture this intuition in the following formula:

P(h′|h) = n(h′, h)
∑h′′ n(h′′, h)

, (7.1)

where n(h′, h) is the number of table pairs in the table corpus that contain
the same value for a given entity in columns h′ and h, respectively.

Table Matching

All tables in the table corpus that contain (i) the target entity e and (ii) the
target heading h or any related heading label h′ (n(h′, h) > 0), are considered
as candidates. As we explained above, not all these tables are actually good
candidates. Therefore, we estimate the semantic similarity between the input
table T and a candidate table T′, score(T, T′). This table matching score
later will be utilized as a confidence estimate in a subsequent value ranking
step (in Sect. 7.3). We present two feature-based learning methods for table
matching. We start with a state-of-the-art approach, InfoGather. Then, we

140



7.2. Candidate Value Finding

Table 7.2: Overview of table ranking features used in TMatch.

Group / Feature Source

Table features
Number of rows in the table [Cafarella et al., 2008a,

Bhagavatula et al., 2013]
Number of columns in the table [Cafarella et al., 2008a,

Bhagavatula et al., 2013]
Number of empty table cells [Cafarella et al., 2008a,

Bhagavatula et al., 2013]
Table caption IDF [Qin et al., 2010]
Table page title IDF [Qin et al., 2010]
Number of in-links to the page embedding the table [Bhagavatula et al., 2013]
Number of out-links from the page embedding the
table

[Bhagavatula et al., 2013]

Number of page views [Bhagavatula et al., 2013]
Inverse of number of tables on the page [Bhagavatula et al., 2013]
Ratio of table size to page size [Bhagavatula et al., 2013]

Matching features
InfoGather page title IDF similarity score [Yakout et al., 2012]
InfoGather heading-to-heading similarity [Yakout et al., 2012]
InfoGather column-to-column similarity [Yakout et al., 2012]
InfoGather table-to-table similarity [Yakout et al., 2012]
MSJE heading matching score [Lehmberg et al., 2015]
Nguyen et al. [2015] heading similarity [Nguyen et al., 2015]
Nguyen et al. [2015] table data similarity [Nguyen et al., 2015]
Schema complement schema benefit score [Das Sarma et al., 2012]
Schema complement entity overlap score [Das Sarma et al., 2012]
Entity complement entity relatedness score [Das Sarma et al., 2012]

introduce TMatch, which extends InfoGather with a rich set of features from
the literature.

InfoGather InfoGather [Yakout et al., 2012] measures element-wise similar-
ities across four table elements (table data, column values, page title, and
heading labels), and combines them in a linear fashion:

score(T, T′) = ∑
x

wx × sim(Tx, T′
x) ,

where x refers to a given table element. Each table element Tx is expressed as
a term vector. Element-wise similarity sim() is computed using the cosine
similarity between the respective term vectors of the input and candidate
tables.

TMatch We extend the four element-wise matching scores of InfoGather
with a number of additional matching, which are summarized in Table 7.2.
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We use Random Forests regressor as our machine-learned model. We distin-
guish between two main groups of features. The first group of features (top
block in Table 7.2) aim to characterize an individual table and are associated
with its quality and importance. These features are computed for both the
input and candidate tables. The second group of features (bottom block in
Table 7.2) measures the degree of matching between the input and candidate
tables. In the interest of space, we present a high-level description of these
features and refer to the original publications for details.

• The Mannheim Search Join Engine (MSJE) [Lehmberg et al., 2015] mea-
sures the similarity between the headings of two tables by creating an
edit distance graph between the input and candidate tables’ heading
terms. Then, the maximum weighted bipartite matching score is computed
on this graph’s adjacency matrix.

• Nguyen et al. [2015] consider the table headings and table data for
matching. Specifically, heading similarity is computed by solving the
maximum weighted bipartite sub-graph problem [Anan and Avigdor, 2007].
Data similarity is measured by representing each table column as a
binary term vector, and then taking the cosine similarity between the
most similar column pairs.

• Das Sarma et al. [2012] compute the matching score by aggregating the
benefits of adding additional headings columns and entities from the
candidate table to the input table.

7.2.2 Knowledge Base

Next, we discuss how to utilize a knowledge base for gathering candidate
values. By definition, the columns in relational tables correspond to entity
attributes. The main challenge to be addressed here is how to map the
column heading label to the appropriate KB predicate. After that, candidate
values can easily be fetched from the KB.

Heading-to-Predicate Matching

Both table heading labels and knowledge base predicates represent entity
attributes, but these are often expressed differently, making string matching
insufficient. Similarly to how it was done in heading-to-heading matching,
we capitalize on the observation that if entity e has value v for predicate p
in the KB, and the same entity has value v in the heading column h of many
tables, then p and h are likely to mean the same (more precisely, h is a string
label that corresponds to the semantic relation p). This idea is illustrated
in Fig. 7.3. The similarity between heading label (h) and predicate (p) is
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Legion

Original air date

14 October 1993

<dbr:Legion_(Red_Dwarf)>    <dbp:airdate>     "1993-10-14" 

Value 
Normalization

<dbp:airdate>  DBpedia:

e

h

e p v

Figure 7.3: Illustration of table heading label to KB predicate matching. No-
tice that value normalization is also involved.

Table 7.3: Examples of heading label and predicate matches.
Heading label (h) Predicate (p) n(h, p)

Director dbp:director 38587
dbp:writer 2348

Location dbp:city 10772
dbp:location 9170

Country dbp:birthPlace 9077
dbp:country 3546

computed according to the conditional probability P(p|h):

P(p|h) = n(h, p)
∑p′ n(h, p′)

, (7.2)

where n(h, p) denotes the times of h and p indicate the same value in the
corpus. Table 7.3 lists some examples.

Value Extraction

Given a table heading, all matching predicates (i.e., where n(h, p) > 0) are
considered. Then, for each of these predicates p, the object values associated
with the subject e and predicate p in the knowledge base are considered as
candidate values (i.e., all the subjects of SPO triples matching the pattern
〈e, p, ?〉).

7.3 Value Ranking

In this section we describe methods for ranking the candidate cell values
that were identified in the previous step. For each source, we have a set
of candidate values V and for each of the candidate values v ∈ V a set of
supporting evidence sources Sv. In the case of a knowledge base, the triples
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where the predicate matches the target heading h or related headings h′ are
the evidence sources. In the case of a table corpus, Sv contains all candidate
tables T′ where v is a cell value corresponding the target entity e and to
heading label h′. Our task is to score each candidate value v based on the
available evidence.

There are two main challenges we need to deal with. One is how to handle
Empty values, i.e., quantify our confidence in that the given cell should be
left empty. Another is how to combine evidence across multiple sources,
specifically, a knowledge base and a table corpus. We start by considering
each source individually in Sects. 7.3.1 and 7.3.2, and then combine the two
in a feature-based learning approach in Sect. 7.3.3. Novel contributions in
this part include the source-specific value finding methods as well as the
three groups of features, each designed with a specific intuition in mind: (i)
quantifying the support each source has for a given value, (ii) dealing with
Empty values, and (iii) effectively prioritizing values from semantically more
related tables in a table corpus.

7.3.1 Knowledge Base

We deal with empty values by adding a designated special value Empty to
the set of candidates. The scoring of values is then based on the following
formula:

score(v; e, h, T) =
{

arg maxp score(p, h), v �= Empty

γ, v = Empty ,
(7.3)

where γ is a free parameter that we learn empirically. For non-empty values,
score(p, h) can be estimated in two alternative ways:

• We take the edit distance between the column heading and the (label
of the) predicate1 (which we referred to as soft matching in Sect. 6.3).

scoreED(p, h) = 1 − dist(p, h)
max(|p|, |h|) , (7.4)

where dist() represents the minimum number of single-character edit
operations (i.e., insertion, deletion, or substitution) needed to trans-
form one string into another.

• We use the conditional probability P(p|h) (cf. Eq. (7.2)).

7.3.2 Table Corpus

A given candidate value may have multiple supporting tables in the corpus.
We formulate two evidence combination strategies. One method is to con-
sider a single table that best matches semantically the input table, similarly

1We are not using the predicate itself, but the corresponding label from the KB that is
meant for human consumption. E.g., for <dbp:timeZone> the label is “time zone.”
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to [Ahmadov et al., 2015a]. Another method is to consider multiple tables
but weigh them according on their semantic similarity to the input table, an
idea in line with [Yakout et al., 2012, Zhang and Chakrabarti, 2013]. Both
methods are based on the notion of table matching, which we described in
Sect. 7.2.1. One important addition, compared to prior approaches, is that
we also consider which heading h′ of the candidate table T′ matches best the
target heading h (Sect. 7.3.2). As we will show in our experiments, this has
a positive effect.

Top-ranked Table

This method takes the best matching candidate table T′, i.e., the one that is
most similar to the input table T, and combines that table’s matching score
with the best matching heading label within that table. Formally:

score(v, e, h, T) = arg max
T′

score(T′, T)×
(

max
h′∈T′

sim(h′, h)
)

. (7.5)

All Tables

Alternatively, one might consider all matching tables, as opposed to a single
best one, and aggregate information from these. Formally:

score(v, e, h, T) = ∑
T′

(
score(T′, T)× max

h′∈T′
sim(h′, h)

)
, (7.6)

where sim(h′, h) is the similarity between two heading column labels, which
we detail below.

Heading Label Similarity

We consider four methods for computing the similarity sim(h′, h) between
two heading column labels:

• Uniform: we set similarity to a fixed value (e.g., 1). This way the simi-
larity of headings is not considered at all in Eqs. (7.5) and (7.6). (The
uniform estimator will merely serve as a baseline, to evaluate the ben-
efits of incorporating heading similarity.)

• Edit distance: We use the edit distance between h and h′ (as in Eq. (7.4),
but replacing p with h′).

• Mapping probability: we use the conditional probability P(h′|h) as de-
fined in Eq. (7.1).

• Label2Vec: We employ the skip-gram model of Word2vec [Mikolov
et al., 2013] to train heading label embeddings on the table corpus.
Then, sim(h′, h) is taken to be the cosine similarity between the embed-
ding vectors of h′ and h, respectively.
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Table 7.4: Features for value ranking I. e and h denote the entity and head-
ing column, respectively in the input table T, while h′ is the best matching
column (based on mapping probability) in the candidate table T′.

Group / Feature Description Source Value

Feature group I
IS TC Whether the value comes from the

table corpus (v ∈ VTC)
TC {0, 1}

IS KB Whether the value comes from the
knowledge base (v ∈ VKB)

KB {0, 1}

EDITDIST PH Predicate-to-heading edit distance
(scoreED(p, h))

KB, TC [0, 1]

MAPPINGPROB PH Predicate-to-heading mapping
probability (P(p|h))

KB, TC [0, 1]

EDITDIST HH Heading-to-heading edit distance
(scoreED(h′, h))

TC [0, 1]

MAPPINGPROB HH Heading-to-heading mapping prob-
ability (P(h′ |h))

TC [0, 1]

TMATCH NUM Number of matching ta-
bles, using TMatch scorer
(|{T′ : scoreHCF(T′, T) > 0}|)

TC [0, ∞)

TMATCH {MAX,AVG,SUM} Aggregated table matching
scores, using TMatch scorer
(aggrT′

[
scoreHCF(T′, T)

]
)

TC [0, ∞)

7.3.3 Combination of Evidence

We combine evidence from multiple sources using a feature-based approach.
Table 7.6 summarizes our features. Additionally, we use the same table
quality/importance features as for table matching (cf. top block in Table 7.2).

Feature group I captures how much support there is for the given value in
each source. Two binary features (IS TC and IS KB) are meant to indicate
whether the value can be found in a given source (table corpus and knowl-
edge base). The next four features are used for capturing heading level
similarity, based on edit distance (EDITDIST PH and EDITDIST HH) and
mapping probability (MAPPINGPROB PH and MAPPINGPROB HH).

Feature group II aims at empty value prediction. The intuition is that if
the entity-heading combination appears a lot in the table corpus or in the
knowledge base, then we have a better chance of finding a value. Some fea-
tures (NUM E, NUM H, and NUM EH) are general statistics on the num-
ber of entity, heading or entity-heading occurrences in the tables corpus.
EMPTY RATE measures the fraction of cells that are empty in a given col-
umn. MATCH EH NUM and MATCH HH NUM are the number of predicate-
heading and heading-heading matches. The last 6 features are the aggre-
gated counts of predicate-heading and heading-heading matches in the knowl-
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Table 7.5: Features for value ranking II. e and h denote the entity and head-
ing column, respectively in the input table T, while h′ is the best matching
column (based on mapping probability) in the candidate table T′.

Group / Feature Description Source Value

Feature group II
NUM E Number of times entity e appears in

the table corpus
TC [0, ∞)

NUM H Number of times heading h appears
in the table corpus

TC [0, ∞)

NUM EH Number of times entity e and head-
ing h co-occur in the table corpus

TC [0, ∞)

EMPTY RATE Fraction of empty cells in column h
in the table corpus

TC [0, 1]

PH NUM Number of predicate-to-heading
matches (|{p : P(p|h) > 0}|)

KB, TC [0, ∞)

HH NUM Number of heading-to-heading
matches (|{h′ : P(h′ |h) > 0}|)

TC [0, ∞)

PH {MAX,AVG,SUM} Aggregated number of
predicate-to-heading matches
(aggrp

[
count(p, h)

]
)

KB, TC [0, ∞)

HH {MAX,AVG,SUM} Aggregated number of
heading-to-heading matches
(aggrh′

[
count(h′, h)

]
)

TC [0, ∞)

edge base and in the table corpus.2

Feature group III aims for capturing the semantic relatedness between the
input table and candidate table where the value is taken from. The matches
between the input table and candidate tables are captured in the number
of matching tables (TMATCH NUM) as well as aggregates over the table
matching scores (TMATCH *). Additionally, we consider the value scoring
mechanism devised specifically for TC (cf. Sect. 7.3.2), which involves a ta-
ble matching method (InfoGather (IG) or TMatch), heading similarity (edit
distance (ED), mapping probability (MP), or Label2vec (L2V)), and an ag-
gregator (MAX, AVG, or SUM). All possible combinations yield a total of
18 features. For example, SCORE IG ED SUM corresponds to Eq. (7.6) us-
ing InfoGather for table matching and edit distance heading similarity, and
SCORE TMATCH L2V MAX corresponds to Eq. (7.5) using TMatch table
matching, and Label2Vec heading similarity.

2For predicate-to-heading and heading-to-heading matching, empty values are not con-
sidered, i.e., two empty cell values are not considered as being the same.
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Table 7.6: Features for value ranking III. e and h denote the entity and head-
ing column, respectively in the input table T, while h′ is the best matching
column (based on mapping probability) in the candidate table T′.

Group / Feature Description Source Value

Feature group III
SCORE IG ED {MAX,AVG,SUM} Aggregated value score using

InfoGather table matching with
edit distance

TC [0, ∞)

SCORE IG MP {MAX,AVG,SUM} Aggregated value score using
InfoGather table matching with
mapping probability

TC [0, ∞)

SCORE IG L2V {MAX,AVG,SUM} Aggregated value score using
InfoGather table matching with
Label2vec

TC [0, ∞)

TMATCH ED {MAX,AVG,SUM} Aggregated value score using
TMatch table matching with
edit distance

TC [0, ∞)

TMATCH MP {MAX,AVG,SUM} Aggregated value score using
TMatch table matching with
mapping probability

TC [0, ∞)

TMATCH L2V {MAX,AVG,SUM} Aggregated value score using
TMatch table matching with La-
bel2vec

TC [0, ∞)

7.4 Experimental Setup

Auto-completion for data cells is a novel problem, and as such, no public
test collection exists. In this section, we introduce the data sources used in
our experiments and describe the construction of our test collection, which
is another main contribution of this study. It is based on 1000 table cells and
contains labels for 35k cell-value pairs, obtained via crowdsourcing. We also
present the techniques we employed for column data type detection and
value normalization, which are essential to ensure data quality.

7.4.1 Data Sources

We use two main data sources:

Table Corpus (TC) The WikiTables corpus [Bhagavatula et al., 2015] is ex-
tracted from Wikipedia and contains 1.6M high-quality tables. Follow-
ing Chapter 3, we select the core column by taking the one among the
left-most 2 columns with the highest entity rate. Based on a sample of
100 tables, this method has an accuracy of over 98%. There are 755k re-
lational tables in the corpus that have a core column where 80% of the
cell values are entities. Since tables are from Wikipedia, the mentioned
entities have been explicitly marked up.
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Entity StringQuantity DateTimeURL GeoCoordinate

Numerical Periodal Length Area Weight Date Time

Other

Figure 7.4: Value data type taxonomy used in this paper.

Knowledge Base (KB) DBpedia is a general-purpose knowledge base that
is a central hub in the Linked Open Data cloud. Specifically, we use
the 2015-10 version and restrict ourselves to entities that have at least
a short description (abstract), amounting to a total of 4.6M entities.

7.4.2 Column Data Type Detection

Our objective is to classify a given table column according to some taxonomy
of data types. It is assumed that all cells within a column share the same data
type. To determine the data type of a given column, we classify each (non-
empty) cell within that column and then take a majority vote. In the rare
case of a tie, the column will be assigned multiple types. In the following, we
introduce the value data type taxonomy used and our method for classifying
the value data types of individual table cells.

Value Data Type Taxonomy

Different value data type taxonomies have been proposed in the literature,
see, e.g., [Ritze et al., 2015, Yin et al., 2011]. We build on and extend the
taxonomy by Yin et al. [2011], who consider seven value data types in the
context of fact finding from web tables: string, date/time, numerical, dura-
tion, length, area, and weight. Knowledge bases also have their own data
type taxonomies, e.g., DBpedia has 25 data types.3 Informed by these, we in-
troduce a two-layer value data type taxonomy, which is shown in Figure 7.4.
We manually map the data types of the knowledge base (here: DBpedia) to
our value data type taxonomy.4

Cell Value Type Classification

Following standard practice [Ritze et al., 2015], we design a rule-based
method for classifying cell values into our value data type taxonomy. For
example, DateTime values are identified based on the cell values matching

3http://mappings.dbpedia.org/index.php/DBpedia Datatypes
4The mappings will be made available in an online appendix.
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given patterns and on certain terms appearing in the column heading label
(such as “year,” “birth,” “date,” “founded,” “created,” or “built”). The com-
plete set of rules will be released in an online appendix upon acceptance.

Evaluation

We obtain the distribution of column data types based on a sample of 100K
relational tables from the table corpus. The results, ordered by frequency,
are as follows: (1) Quantity: 269,260 cells (43.2%), (2) Entity: 200,637 cells
(32.2%), (3) String: 76,259 cells (12.2%), (4) Other: 51,999 cells (8.3%), (5)
DateTime: 24,413 cells 3.9%, (6) GeoCoordinate: 161 cells (0.0%). There
were not any cells of type URL, as in our sample all links refer to entities
in Wikipedia. Given that number of columns with type GeoCoordinate is
negligible, we exclude this type in our experiments. We further note that
columns with type Other contain mostly empty values.

To verify whether the performance of our column type detection method is
sufficient, we manually evaluate it on a sample of 100 tables. Specifically,
tables are selected such that each has at least 6 rows and 4 columns, and has
a core column where over 80% of the cell values are entities. Our sample
contains a total of 473 table columns. The accuracy of column type detection
is found to be 94.92%.

7.4.3 Value Normalization

The previous step informs us about the data type of the value that we are
looking for. Values, however, may be expressed in a variety of ways in
different sources. For example, dates are written differently by individuals
in different parts of the world. We normalize cell values according to the
data types of the corresponding column.

To ensure high data quality, we employ a rule-based approach. On close
inspection of the data, we develop over 100 rules for normalizing cell values
based on their data types. We illustrate these transformations with some
examples. All dates are converted to “YYYY-MM-DD” format and all times
are transformed to “HH:MM:SS” format. Date periods with only years are
normalized to “year–year” and those with dates are separated into two dates.
E.g., “1998–99” is normalized to “[1998,1999],” while “5 October 1987 to 30
December 1987” is converted to “[1987-10-05, 1987-12-30].” For quantities,
the numeric values and the units are kept separately, e.g, “100 m” is stored
as (100, “m”) and “-54 kilograms” is stored as (-54, “kilograms”). No unit
conversion is performed. In the case of composite values, we only keep the
first value, e.g., “71 kg/m2 (14.5 lb/ft2)” is stored as (71, “kg/m2”).
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Sampled 
Column

Picked 
values

Figure 7.5: Illustration of sampling values. Firstly, the column of “Inhab-
itants” is the sampled as the numerical column. Then, five values in this
column are picked as the test collection values.

Table 7.7: Summary of our test collection based on 1000 cells.

KB TC KB+TC

Avg. #values 1.31 2.51 2.65
Empty rate 0.48 0.31 0.18

7.4.4 Test Collection

We create a test collection for value finding based on a sample of existing
tables from the table corpus. (These test tables are excluded from our index
and when computing statistics.) Specifically, we perform stratified sampling
according to the four main column data types: Entity, Quantity, String, and
DateTime. For each data type, we first randomly select 50 columns, each
from a different table, where there is at least 80% agreement on the column
data type according to the majority vote method (cf. Sect. 7.4.2). We further
require that the table has at least 5 rows and 3 columns, and the respective
heading label is at least 4 characters long. From each sampled table column,
5 specific cells are picked randomly. This way, our test collection consists of
4 × 50 × 5 = 1000 cells for which we are trying to find values. These input
tables are then excluded from the collection. See Fig. 7.5 for an illustration.

Relevance assessments were collected via crowdsourcing using the Figure
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Table 7.8: Value finding performance with empty cells excluded (Top) and
included (Bottom). Significance for line i (i > 1) is tested against the best
method in lines 1..i − 1.

Source Method Sources used Empty excluded
KB TC NDCG@5 NDCG@10

Single-source KBLookupED � 0.2635 0.2652
InfoGather, top, UNI � 0.4563‡ 0.4710‡

InfoGather, top, L2V � 0.4868 0.4978
TMatch, top, UNI � 0.4744‡ 0.4873‡

TMatch, top, L2V � 0.5046 0.5139

Multi-source OTG (cf. Chapter 6) � � 0.5856 0.6062
CellAutoComplete (feat. I) � � 0.6641‡ 0.6826‡

CellAutoComplete (feat. I+II) � � 0.6844‡ 0.7034‡

CellAutoComplete (feat. I+II+III) � � 0.7570‡ 0.7641‡

Source Method Sources used Empty included
KB TC NDCG@5 NDCG@10

Single-source KBLookupED � 0.2780 0.2806
InfoGather, top, UNI � 0.4158‡ 0.4302‡

InfoGather, top, L2V � 0.4413 0.4537
TMatch, top, UNI � 0.4297‡ 0.4417‡

TMatch, top, L2V � 0.4531 0.4624

Multi-source OTG (cf. Chapter 6) � � 0.5185 0.5367
CellAutoComplete (feat. I) � � 0.5766‡ 0.5954‡

CellAutoComplete (feat. I+II) � � 0.5905‡ 0.6100‡

CellAutoComplete (feat. I+II+III) � � 0.6716‡ 0.6785‡

Eight platform.5 For each cell, human assessors were presented with the
page title (embedding the table), table caption, the core column entity, the
heading column label, and a source document. The source document is ei-
ther the DBpedia page of the core column entity or an existing table from the
table corpus. Users were then asked to check if the missing cell value can be
found within the source document, and, if yes, to provide the correspond-
ing value (otherwise enter a designated special Empty value). Each instance
was annotated by 7 assessors. The inter-annotator agreement in terms of
Fleiss’ kappa statistic was about 0.7 when using the knowledge base and 0.8
when using the table corpus as source. The former is considered as substan-
tial, the latter is considered as almost perfect agreement [Landis and Koch,
1977]. The total expense of the crowdsourcing experiments was $770.

We then combine the correct values from these two sources as our ground
truth. (We only use the KB and TC specific subsets in our analysis of specific
sources in Sect. 7.5.2.) Table 7.7 provides a summary of our test collection.
We find that, when using both sources, cells on average have over two pos-

5https://www.figure-eight.com/
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sible correct values. It is further worth noting that the rate of empty cells is
much lower when combining the two sources, attesting to their complemen-
tary nature.

7.4.5 Table Matching

To train our table matching models (InfoGather and TMatch in Sect. 7.2.1),
we construct a training dataset. We group tables by topics and sample 50
tables with diverse topics (such as military, paleontology, sports, geography,
etc.) from the corpus as input tables. Each table should have at least five
rows and three columns. For each table, we utilize the query-based search
methods in [Ahmadov et al., 2015a] to obtain a set of candidate tables. We
ask 3 annotators to judge if the candidate table is highly relevant, relevant,
or not relevant.

7.4.6 Evaluation Measures

We evaluate performance in terms of Normalized Discounted Cumulative
Gain (NDCG) at cut-off points 5 and 10. To test significance, we use a two-
tailed paired t-test with Bonferroni correction and write †/‡ to denote sig-
nificance at the 0.05 and 0.01 levels, respectively.

7.5 Experimental Evaluation

This section presents evaluation results for the value finding task (Sect. 7.5.1)
followed by further analysis of value sources (Sect. 7.5.2), features (Sect. 7.5.3),
and specific examples (Sect. 7.5.4).

7.5.1 Evaluating Auto-Completion

We begin with the evaluation of the end-to-end cell value auto-completion
task. Table 7.8 reports the results. At the top block of Table 7.8, we display
the methods that use an individual source, either knowledge base (KB, line
1) or table corpus (TC, lines 2–5). These methods meant to serve as single-
source baselines; they are further detailed in Sect. 7.5.2. The bottom block
of Table 7.8 shows methods that utilize both sources. There is only one
existing work in the literature that we find directly applicable: the On-the-
Fly Table Generation (OTG) approach in Chapter 6. This method combines
a knowledge base and a table corpus in a simple way, by always giving
preference to the former source over the latter.

Looking at the results in Table 7.8, it is clear that the table corpus is a more
effective source for value finding than the knowledge base. At the same
time, they are complementary and combining the two yields substantial im-
provements. This is already witnessed for OTG, but to a much larger extent
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with our CellAutoComplete methods. Our best methods, using the com-
plete feature set (cf. Table 7.6) outperforms OTG substantially, i.e., by over
26% on all evaluation metric and experimental conditions (lines 6 vs. 9).
These improvements can be attributed to two main factors. First, instead
of naively giving preference to the knowledge base over the table corpus,
as in OTG, CellAutoComplete (feat. I) decides for each cell individually
which source should be preferred, by considering the predicate-to-heading
and heading-to-heading matching probabilities, among other signals. This
makes a large difference, as can be observed in the scores (lines 6 vs. 7).
Second, taking into account the semantic similarity of tables, when using a
table corpus as source, makes a large difference. This is what feature group
III contributes. We find that it brings in an over 10% relative improvement,
see CellAutoComplete (feat. I+II) vs. (feat. I+II+III), i.e., the bottom two
lines in Table 7.6). As for the second group of features, which aims at im-
proving empty value prediction, we find that is has a small, but positive and
significant impact (lines 7 vs. 8).

7.5.2 Analysis of Sources

Next, we analyze cell auto-completion performance using only a single
source: a knowledge base (Table 7.9) and a table corpus (Table 7.10). As
before, we distinguish between two settings, with Empty values excluded
and included. We note that the ground truth is restricted to the specific
source, therefore, it is different in the two cases (and also different from
Table 7.8, which uses the union of the two).

Using a Knowledge Base

We compare two different KB-based value lookup methods, edit distance
(ED) and matching probability (MP), in Table 7.9. The two methods yield vir-
tually identical performance when Empty values are excluded. When Empty

values are considered, ED performs significantly better than MP. Recall that
our approach involves a γ threshold for Empty detection (cf. Eq. (7.3)). Here,
we estimate this threshold using 5-fold cross-validation, and the average γ
value is 0.8 for ED and 0.6 for MP. The reason that edit distance performs
better is that it is more robust with respect to the value of γ. In other words,
a single γ value performs well across different predicate-column heading
pairs.

Using a Table Corpus

We consider (i) two table matching methods, InfoGather and TMatch;6 (ii)
two evidence combination strategies, top-ranked table (top) and all tables

6Additionally, we have also considered DTS [Nguyen et al., 2015] and the method
in [Das Sarma et al., 2012] for table matching. However, both were inferior to InfoGather
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Table 7.9: Value finding performance using a knowledge base. Significance
of MP is tested against ED.

Method Empty excluded Empty included
NDCG@5 NDCG@10 NDCG@5 NDCG@10

KBLookup ED 0.5255 0.5308 0.5015 0.5048
KBLookup MP 0.5222 0.5316 0.4489‡ 0.4549‡

(all); and (iii) four heading label similarity methods, uniform (UNI), edit
distance (ED), mapping probability (MP), and Label2Vec (L2V). Table 7.10
presents all possible combinations of these.

Our observations are as follows. Regarding the two table matching meth-
ods (lines 1–8 vs. 9–16), we find that TMatch can outperform InfoGather by
up to 18%, with all other components being identical. Many of the differ-
ences (esp. when using all tables) are statistically significant. This shows
that value finding benefits from better table matching, which is as expected.
When comparing the two evidence combination strategies (lines 1–4 vs. 5–8
and 9–12 vs. 13–16), we find the top method to be the better overall per-
former. There are a few exceptions, however, when all delivers marginally
better results, e.g., TMatch with ED, MP, or L2V, with Empty included. Fi-
nally, the ranking of heading label similarity methods is ED, L2V > UNI >
MP. That is, ED and L2V perform best, with minor differences between the
two depending on the particular configuration. Interestingly, MP does not
work well, in fact, it performs even worse than not incorporating heading
similarity at all (UNI).

7.5.3 Feature Importance Analysis

In order to gain an understanding of which features contribute most to the
effectiveness of our value ranking approach, we measure their importance
in terms of Gini score. The results are shown in Fig. 7.6, ordered left to
right from most to least important. Generally, features from group I and III
are the most represented at the top ranks, while feature group II and table
features dominate the bottom half of the ranking.

7.5.4 Cell-level Analysis

So far, we have reported on aggregate statistics. In our final experimental
section, we perform an analysis on the level of individual cells. Recall that
when creating the test collection, we have concealed the original cell values
from the input tables, pretending that these were missing. In this part, we

in terms of effectiveness. Therefore, in the interest of space we only report only on Info-
Gather.

155



7. Auto-completion for Data Cells in Relational Tables

Table 7.10: Value finding performance using a table corpus. Highest score
are boldfaced. Significance of TMatch (lines 9-16) is tested against Info-
Gather (lines 1-8).

Method Empty excluded Empty included
NDCG@5 NDCG@10 NDCG@5 NDCG@10

InfoGather top UNI 0.6178 0.6425 0.5142 0.5370
ED 0.6670 0.6854 0.5497 0.5675
MP 0.4968 0.5428 0.4474 0.4848
L2V 0.6600 0.6792 0.5442 0.5634

InfoGather all UNI 0.5992 0.6255 0.5052 0.5289
ED 0.6445 0.6685 0.5561 0.5753
MP 0.4677 0.5252 0.4348 0.4802
L2V 0.6489 0.6714 0.5365 0.5576

TMatch top UNI 0.6463‡ 0.6670‡ 0.5342† 0.5524‡

ED 0.6930‡ 0.7077‡ 0.5626 0.5772
MP 0.5256‡ 0.5790‡ 0.4664 0.5096
L2V 0.6863‡ 0.7028‡ 0.5630‡ 0.5791‡

TMatch all UNI 0.6208‡ 0.6459‡ 0.5335‡ 0.5534‡

ED 0.6402 0.6692 0.5534 0.5753
MP 0.5234 0.5427‡ 0.4788 0.4921
L2V 0.6739‡ 0.6921‡ 0.5678‡ 0.5851‡

Figure 7.6: Feature importance measured in terms of Gini score.

compare these original cell values (referred to as original) with the values
that were retrieved automatically by our approach (referred to as found).

Table 7.11 reports the overall statistics. The first and second lines of this table
represent the cases where the cell was originally empty and had a value in
the input table, respectively. The columns of the table correspond to how
many different (valid) values were found by our approach. Below, we take a
closer look at each of these cases, from top to bottom and from left to right.

• There are 20 cells, where originally the cell was empty and we also did
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Table 7.11: Cell-level analysis, comparing the original (concealed) values in
test tables against those found by our CellAutoComplete method.

Original
Found

0 1 2+

0 20 3 5
1 154 205 613

not find a value (i.e., no difference).

• In 3 cases, we found the value for a cell that was originally empty. On
such example is the “departure” time for “Hampton Roads” in a table
about “Itinerary.”

• In 5 cases, we identified two valid values for a cell that was originally
empty. For instance, for the “type” column of “Polvorones”, in a ta-
ble about “Breads and pastries,” both “shortbread” and “bread” are
correct values.

• There are 154 cells where the cell is originally not empty, but we could
not find its value. This is the category where our method failed. It
turns out that in most of these cases, the given values exist only in the
original tables (which were excluded from the corpus).

• In 205 cases, both original and found have the same single value (i.e., no
difference).

• For 613 cells that are originally non-empty, we found multiple valid
values. In many cases, found includes further values in addition to the
original value. E.g., the original value is “Republican Party (United
States),” while the found values also include “R” and “Republican.”
Another example is an athlete’s “country,” which is originally “Brazil
at the Olympics”, while the found values also include “Brazil.” In
some cases the granularity of the values differ, e.g., the “location” of
“Pike” is “Levee Township, Pike County, Illinois” in the original table,
while values in found also include “Hull, Illinois”, “Detroit, Illinois”,
“Pittsfield, Illinois”, and “Pearl, Illinoi.” In other cases, there is no
overlap between the values returned by original and found. There are
several cases where the difference is in the value formats or in the gran-
ularity. E.g., the original table contains “1982” as the “death” date of
“Hugh John Flemming,” while the value we returned from the knowl-
edge base is “1982-10-16.” Another reason for the differences has to do
with temporal mismatch, i.e., one of the sources is out-of-date.Finally,
there are also some genuine cases of conflicting values. E.g., the “open
date” of “Kannon Station” is “1923-07-05” in the original table, while
in DBpedia the “opening year” is “1913-01-01.” Similarly, the “Plat-
form” of “Okular” is “MS” according to one Wikipedia table, while it

157



7. Auto-completion for Data Cells in Relational Tables

is “Unix-like” in DBpedia.

Overall, our method finds the same as the original value in 22.5% of the
cases, misses the original value in 15.4% of the cases, and finds either addi-
tional correct values or conflicting values in 62.1% of the cases. This latter
category highlights the usefulness of cell auto-completion. It also suggests
further potential for other applications, such as fact-checking.

7.6 Summary and Conclusions

We have addressed the task of finding cell values, given an input relational
table, by developing the CellValueFinder framework. It consists of prepro-
cessing, candidate finding, and value ranking steps, and utilizes a knowl-
edge base and a table corpus as data sources. The main innovative elements
of our approach include (i) dealing with multiple, possibly conflicting val-
ues, (ii) supplementing the identified values with supporting evidence, (iii)
combining evidence across multiple sources, (iv) considering multiple value
types, and (v) identifying cases where a table cell should be left empty. We
have demonstrated the effectiveness of our method on a purpose-built test
collection and have advanced the current state-of-the-art by a considerable
margin.

As the last task of this thesis, the CellValueFinder framework complements
the tasks of table completion (Chapter 5) and table generation (Chapter 6).
We will detail possible future directions for this task in Chapter 8.
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Chapter 8

Future Directions and Conclusions

In this chapter, we will summarize our main contributions and then discuss
the future directions of each task proposed in this thesis.

8.1 Main Contributions

The main motivation for this thesis was to facilitate tables with smart capabil-
ities. To address it, we proposed a set of tasks such as searching, generating
and completing tables.

Table search. We proposed two table search tasks based on two types of
queries. Keyword table search addresses the ad hoc table retrieval in order
to reply a keyword query with a ranked list of tables. Query-by-table deals
with the scenario when the query is a table. We developed semantic match-
ing frameworks for both tasks, where queries and tables can be represented
using semantic concepts (bag-of-entities and bag-of-words) as well as contin-
uous dense vectors (word and graph embeddings) in a uniform manner. We
conducted multiple similarity measures for matching those semantic repre-
sentations. Apart from the query type, the main difference between the two
tasks is that we additionally incorporate the similarity between elements
that are of different types (cross-element matching) in the later task. We fur-
ther developed two purpose-built test collections based on Wikipedia tables
and demonstrated superiority over a number of baselines.

Table completion. For table completion, we introduced the idea of assist-
ing users with completing tables by recommending additional entities and
additional column headings to be added to the table. Correspondingly, we
focused on two specific tasks: row population and column population. Tak-
ing the seed table as input, we proposed generative probabilistic methods
for both tasks. The experimental evaluation simulates different stages of
the user entering content into an actual table. We also detailed that our
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methods outperform existing methods from the literature by assembling the
complementary components.

Table Generation. We proposed the task of on-the-fly table generation that
automatically compiles a table in response to a query. We addressed the
task by composing it into three specific subtasks: core column entity rank-
ing, schema determination and value lookup. We employed a feature-based
approach for entity ranking and schema determination, combining deep se-
mantic features with task-specific signals. We assumed that core column en-
tity ranking and schema determination can reinforce each other, and verified
it by implementing the idea of iterative refinement. We combine information
from existing tables and a knowledge base for value lookup. We evaluated
our methods using two sets of entity-oriented queries.

Table value finding. We introduced the task of finding table cell values
with supporting evidence, to support users in the labor-intensive process of
creating relational tables. To address it, we proposed the CellValueFinder
framework, which consists of preprocessing, candidate value finding, and
value ranking. We designed a feature-based method by combining the sig-
nals from the tasks of heading-to-heading and heading-to-predicate match-
ing components. We show that our LTR method outperforms existing data
augmentation techniques.

8.2 Future Directions

A large number of recently published studies, which are concerned with
problems such as table summarization, table generation, and supporting
decision-making, suggest that tables will remain a key research area for
years to come. In the following, we will discuss the future directions related
to our search: table search, table completion, table generation, table value
finding and the choice of table corpus.

Table search. Our semantic matching frameworks designed for table search
ignore the tabular data from the non-core columns. As such, it would be
interesting to investigate the way to utilize them. We are further interested
in evaluating the utility of our approach with user studies in a task-based
scenario. Additionally, we wish to relax the requirements regarding the
focus on Wikipedia relational tables, and make our methods applicable to
other types of tables, like scientific tables [Gao and Callan, 2017] or Web
tables. This task is one of the core tasks that was started in the early days
and remains to be an active research topic ever since. One topic that deserves
attention in our opinion, but has not been explored yet, is the presentation of
table search results. For example, for large tables, how should appropriate
snippets (summaries) be generated for search result pages?
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Table completion. With the huge success of Learn-To-Rank methods and
recent success of Deep Learning method in IR community, there is an in-
creasing demand for investigate the methods to assist to complete tables in
a supervised manner. Similar to table search, table completion in this thesis
limits itself from the constraints such as relying on a relational seed table.

Table Generation. We designed an iterative method for the core column en-
tity ranking and schema determination. However, we relied on the posterior
evaluations instead of finding a priori termination condition. As a result,
a study on the proper termination condition is needed here. Alternatively,
a more efficient method for generating tables will enhance the efficiency of
the current iterative method. Besides, on-the-fly table generation aims to an-
swer the queries that target at a number of entities. In a real table generation
system, a module to distinguish the query type is needed. As such, it will
figure out when a relational table is needed as the answer.

Table value finding. There is a solid body of work on augmenting exist-
ing tables with additional data, extracted either from other tables or from
knowledge bases. However, there are at least two issues that remain. One
is tapping into the large volumes of unstructured sources (e.g., web pages).
The other is combining data from multiple sources, which brings about a
need for techniques to deal with conflicting information. Corresponding to
above concerns, we developed methods for finding values from structured
sources in this thesis. Additionally, we are interested in incorporating evi-
dence from unstructured text, e.g., web pages. Finally, we wish to explicitly
address the temporal aspects of certain entity attributes. While our approach
has been developed with a specific application in mind, the core techniques
we developed for table value finding may also be put to use in other prob-
lem contexts, such as information extraction, populating KBs from tables,
and truth/fact finding. We see several avenues for future work.

Table corpus. Table tasks in this thesis are conducted under a few assump-
tions such as Wikipedia relational tables. In the future, we plan to test our
methods on a more heterogeneous collections of tables form the Web, which
vary more quality-wise than Wikipedia tables.

Other tasks. The abundant information embedded in tables can be utilized
in many other tasks like question answering, knowledge base augmentation,
and so on. There is a body of work on extracting facts from the tables.
The facts extracted from tables can be used as answers for natural language
questions. They additionally can also enrich the current knowledge bases.
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Appendix A

SmartTable: A Spreadsheet Program
with Intelligent Assistance

Tables can be found in vast quantities on the Web, and spreadsheet programs
are among the most commonly used desktop applications. Our objective is
to equip spreadsheet programs with intelligence assistance capabilities, to
aid users while working with tables. To demonstrate the techniques we
proposed in Chapter 5 of this thesis, we introduce SmartTable, an online
spreadsheet tool equipped with smart assistance capabilities. As before, we
work with relational tables; See Figure A.1 for an illustration.

There exists a number of online tools and resources for table-related tasks,
such as table search (Google Fusion Tables [Cafarella et al., 2009] and Wik-
iTables [Bhagavatula et al., 2015]), question answering [Pasupat and Liang,
2015b], and entity linking in tables [Bhagavatula et al., 2015]. To the best of
our knowledge, our system, called SmartTable, is the first online spreadsheet
program that provides intelligent table content recommendation. Specifi-
cally, our application is capable of providing two kinds of assistance: (i)
recommending additional entities, from an underlying knowledge base, to
be added to the core column (row population) and (ii) recommending addi-
tional entity attributes to be included as columns (column population). Such
recommendations are particularly useful in scenarios with an exploratory
or recall-oriented nature, i.e., when the user does not have a very clear idea
beforehand as to what should be included in the table. Additionally, Smart-
Table also provides regular table operations, such as adding, deleting, and
moving rows and columns, editing cells, and supporting various value types
(entities, numbers, currencies, dates, etc.).

Both types of assistance, that is, row and column population, are based on
probabilistic models that we developed in Chapter 5. The main contribu-
tions of this work are twofold. First, we integrate the above assistance func-
tionality into an online spreadsheet application. Second, we describe the
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The Avengers $1,518,812,988 2012 3 
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2

3
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6

c

Figure A.1: Example of a relational table T, where c is the table caption, E
denotes the core column entities E = {e1, . . . , en}, and L is the set of column
labels L = {l1, . . . , lm}.

task-specific indexing structures employed, and evaluate the efficiency of
our implementation in terms of response time. SmartTable is implemented
using a HTML5 front-end and a Python+ElasticSearch back-end. It uses
DBpedia as the underlying knowledge base and a corpus of 1.6M tables ex-
tracted from Wikipedia. The implementation is released as open source. The
application is available at http://smarttable.cc.

A.1 Overview

In this section, we provide an overview of the functionality of the SmartTable
application, by walking through the process of creating a table from scratch.

• Initially, we start with an empty table, with the table caption, core
column entities, column labels, and cell values waiting to be filled. The
user is expected to add a few entities and column labels first, along
with an optional table caption, to supply the system with some data to
base recommendations on. We shall refer to this (incomplete) table as
the seed table. See Fig. A.2(a).

• When adding entities to the core column, the user is presented with
a ranked list of suggestions. Additionally, the user can search the
underlying knowledge base for entities. See Fig. A.2(b).

• When adding new columns, the user needs to specify the data type for
that column (which can be one of entity, text, date, number, currency,
or percentage) and provide a label for that column. For the latter,
a ranked list of suggestions are offered, along with a search box to
search for additional labels. See Fig. A.2(c).
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A.1. Overview

(a) Seed table with some initial data.

(b) Row population assistance.

(c) Column population assistance.

Figure A.2: Screenshots from the SmartTable system.
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A.2 Methods

In this section, we introduce the methods underlying the assistance function-
ality. We refer to Fig. A.1 for the notation used for the various table elements.
As for the data, we employ a table corpus (TC) extracted from Wikipedia and
use DBpedia as the knowledge base (KB); further details about the datasets
are given in Sect. 5.4.1.

A.2.1 Row population

Row population is the task of generating a ranked list of entities to be added
to the core column of a given seed relational table. The row population task
is split into two sub-tasks, which are candidate selection and ranking entities,
respectively.

Candidate selection

We identify candidate entities using both the knowledge base and the table
corpus. From the knowledge base, we take entities that share the assigned
semantic categories with those of the seed entities. From the table corpus,
we first find tables similar to the seed table, based on table caption, core
column entities, and column heading labels. Then, we take the core column
entities from those similar tables as candidates.

Ranking entities

For efficiency, we implement a variant probabilistic model based on that
proposed in Chapter 5, which is a multi-conditional probability:

P(e|E, L, c) ∝ P(e|E)P(L|e)P(c|e) ,

where P(e|E) is entity similarity, P(L|e) denotes column labels likelihood,
and P(c|e) is caption likelihood. We refer to Section 5.2.2 for the estimation
of these components. We only differ in the estimation of P(L|e). In our
original approach, in Chapter 5, this estimate was a two-component mix-
ture. Due to efficiency considerations, we use a simplified version here. The
relative difference in terms of effectiveness is below 5%. Specifically, we set:

P(L|e) = ∑
l∈L

∏
t∈l

t f (t, e) + μP(t|θ)
|e|+ μ

,

where t f (t, e) is the term frequency of t in the column labels of tables con-
taining e and |e| is the sum of all term frequencies for e. The collection
language model P(t|θ) is computed based on the column labels of all tables
in TC.
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A.2.2 Column population

Column population is the task of generating a ranked list of column labels
to be added to the column headings of a given seed table. It is also imple-
mented as a sequence of two steps: candidate selection and column label
ranking.

Candidate selection

Candidate labels are obtained from related tables. To find related tables, we
use (i) the table caption, (ii) table entities, and (iii) seed column heading
labels as queries. From the matching tables, column labels are extracted as
candidates.

Ranking column labels

The related tables, identified in the candidate selection stage, are also uti-
lized in the ranking step. According to the model in Chapter 5, the probabil-
ity of a candidate column label is given by:

P(l|E, c, L) = ∑
T

P(l|T)P(T|E, c, L) ,

where T represents a related table, P(l|T) is the label’s likelihood given T,
and P(T|E, c, L) expresses that table’s relevance. We refer to Section. 5.3.2
for the estimation of these probabilities.

A.3 Implementation

In this section, we describe the datasets used and indices built, along with
technical details of our implementation.

A.3.1 Datasets

We rely on two data sources: a table corpus and a knowledge base. The
knowledge base is DBpedia, version 2015-10.1 We filter out entities that do
not have a short textual description (abstract). After filtering, we are left
with a total of 4.6M entities. As for the table corpus, we use the WikiTa-
bles collection [Bhagavatula et al., 2015], which comprises of 1.65M tables,
extracted from Wikipedia. We preprocess tables as follows. Entities are
marked up in the original table with hyperlinks. If the link points to an
entity that exists in DBpedia, we replace that link with the corresponding
entity identifier. Otherwise, we replace the link with the anchor text.

1http://wiki.dbpedia.org/dbpedia-dataset-version-2015-10
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Figure A.3: Example entry from the entity index.

A.3.2 Indices

We build the following inverted indices:

Table index It contains 1.65M Wikipedia tables (6.4GB). For each table, the
following fields are stored: page title, section title, table caption, col-
umn labels, table data, and core column entities.

Entities It contains 4.6M DBpedia entities (2GB). For each entity, we store
its canonical name (label), and the list and number of categories it is
assigned to. See Fig. A.3 for an example.

Categories We use Wikipedia’s category system, comprising of around 1M
categories. For each category, we store the list of entities that are as-
signed to that category. This index occupies 2GB.

A.3.3 Implementation

SmartTable is a web application that is comprised of a HTML5 front-end
and a back-end based on Python and Elasticsearch.

Front-end

The front-end stack is made up of HTML, CSS, and JavaScript (ECMAScript6
standard). We build on a third-party JavaScript spreadsheet framework
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A.3. Implementation

Figure A.4: Overview of the application front-end.

called Handsontable,2 which provides a rich set of functionality for tables, in-
cluding sorting, conditional formatting, contextual menus, moveable and re-
sizable rows and column, etc. Additionally, we utilize the Gulp.js, Babel.js,
and Node.js JavaScript libraries.

For development, we follow the MVC (Model View Controller) software
architecture pattern. The system is divided into self-contained components
that are easy to debug and maintain, with loose coupling and modularity
between the fundamental parts. Figure A.4 provides an overview. At the
center of front-end lies the TableContainer class, connecting the following
components:

• Handontable.js: Third party JavaScript spreadsheet framework.

• TableViewManager.js: Smart Assistant view controller.

• TableModel.js: Provides storage and accessibility to all core column
entities and column heading labels.

• RestClient.js: Communication component, which is responsible for re-
quest sending and response provision via the respective callback calls.

2https://handsontable.com/
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(a) Row population (b) Column population

Figure A.5: Performance in terms of response time.

Back-end

The back-end consists of two parts: a web server and a recommendation
engine. The main role of the former is to connect the front-end spreadsheet
application (client) with the recommendation engine. The web server is im-
plemented in Python, using the Flask framework.3 Communication is done
over HTTP, with request and response messages encoded in JSON format.
The recommendation engine is responsible for generating the ranked list of
suggestions (entities and column labels). It uses Elasticsearch as the under-
lying indexing and retrieval engine. All indices are built using the Nordlys
toolkit [Hasibi et al., 2017a].4

A.4 Evaluation

In Chapter 5, we have performed an extensive evaluation of the row and
column population methods in terms of effectiveness. Here, we evaluate
our system in terms of efficiency. We measure response time as the time
elapsed between receiving the request and sending off the response on the
back-end, i.e., net computation time without the network overhead. Using
10 random tables, we vary the number of core column entities (seed entities)
and the number of heading column labels (seed labels). The measurements
are repeated 10 times and averages are reported in Figs. A.5(a) and A.5(b).
We can observe that, in both cases, response time grows linearly with the
size of the input. For row population, the response time is beyond 250ms,
even with the largest input size, which is considered very acceptable. For

3http://flask.pocoo.org/
4http://nordlys.cc
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column population, responses are a magnitude slower. This is due to the
fact that we consider all related tables in our scoring formula. Limiting the
computations to the top-k most similar tables may provide a solution; it is
left for future work to find a k value that provides a good trade-off between
effectiveness and efficiency.

A.5 Summary and Conclusions

We have introduced SmartTable, an online spreadsheet application that is
equipped with smart assistance capabilities. Specifically, we aid users work-
ing with relational tables by suggesting them additional entities and column
heading labels to be included in the table. In future work, we consider di-
versifying recommendations and plan to extend the scope of content rec-
ommendation to data cells as well, by suggesting possible values for them.
Furthermore, we intend to integrate table search and table generation func-
tionality, which we developed in this thesis.
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Appendix B

Resources Developed in this Thesis

To ensure the reproducibility of our research, we made publicly available a
collection of resources developed in this thesis, which are listed in Table B.1.
A denotes appendix.

Table B.1: Resources developed in this thesis.

Chapter Description Link

3 Test collection, feature file, https://github.com/iai-group/www2018-table

and run files related to
keyword table search

5 Code and test collections https://github.com/iai-group/sigir2017-table

related to table completion
6 Test collections, feature files, https://github.com/iai-group/sigir2018-table

and run files related to
table generation

7 Test collections, feature files, https://github.com/iai-group/cikm2019-table

and run files related to
table cell completion

A A Code of SmartTable demo https://github.com/iai-group/SmartTable

http://smarttable.cc/
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I. Vulić and M.-F. Moens. Monolingual and cross-lingual information re-
trieval models based on (bilingual) word embeddings. In Proc. of SIGIR
’15, pages 363–372, 2015.

C. Wang, K. Chakrabarti, Y. He, K. Ganjam, Z. Chen, and P. A. Bernstein.
Concept expansion using web tables. In Proc. of WWW ’15, pages 1198–
1208, 2015a.

H. Wang, A. Liu, J. Wang, B. D. Ziebart, C. T. Yu, and W. Shen. Context
retrieval for web tables. In Proc. of ICTIR ’15, pages 251–260, 2015b.

J. Wang, G. Li, and J. Fe. Fast-join: An efficient method for fuzzy token
matching based string similarity join. In Proc. of ICDE ’11, pages 458–469,
2011.

J. Wang, H. Wang, Z. Wang, and K. Q. Zhu. Understanding tables on the
web. In Proceedings of ER’12, pages 141–155, 2012.

J. Wang, G. Li, and J. Feng. Extending string similarity join to tolerant fuzzy
token matching. ACM Trans. Database Syst., 39(1):1–45, 2014.

R. C. Wang and W. W. Cohen. Iterative set expansion of named entities using
the web. In Proc. of ICDM ’08, pages 1091–1096, 2008.

Y. Wang and Y. He. Synthesizing mapping relationships using table corpus.
In Proc. of SIGMOD ’17, pages 1117–1132, 2017.

Y. Wang and J. Hu. Detecting tables in html documents. In Proc. of DAS ’02,
pages 249–260, 2002a.

Y. Wang and J. Hu. A machine learning based approach for table detection
on the web. In Proc. of WWW ’02, pages 242–250, 2002b.

T. Wu, S. Yan, Z. Piao, L. Xu, R. Wang, and G. Qi. Entity linking in web tables
with multiple linked knowledge bases. In Semantic Technology, pages 239–
253. Springer International Publishing, 2016.

182



Bibliography

C. Xiong, J. Callan, and T.-Y. Liu. Word-entity duet representations for doc-
ument ranking. In Proc. of SIGIR ’17, pages 763–772, 2017.

M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, and
G. Weikum. Natural language questions for the Web of Data. In Proc.
of EMNLP-CoNLL ’12, pages 379–390, 2012.

M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri. Infogather: En-
tity augmentation and attribute discovery by holistic matching with web
tables. In Proc. of SIGMOD ’12, pages 97–108, 2012.

M. Yang, B. Ding, S. Chaudhuri, and K. Chakrabarti. Finding patterns in a
knowledge base using keywords to compose table answers. Proc. VLDB
Endow., 7(14):1809–1820, 2014.

P. Yin, Z. Lu, H. Li, and B. Kao. Neural Enquirer: Learning to Query Tables
in Natural Language. In Proc. of IJCAI ’16, pages 2308–2314, 2016.

X. Yin, W. Tan, and C. Liu. Facto: A fact lookup engine based on web tables.
In Proc. of WWW ’11, pages 507–516, 2011.

C. Zhai and S. Massung. Text Data Management and Analysis: A Practical Intro-
duction to Information Retrieval and Text Mining. Association for Computing
Machinery and Morgan &#38; Claypool, New York, NY, USA, 2016. ISBN
978-1-97000-117-4.

M. Zhang and K. Chakrabarti. Infogather+: Semantic matching and anno-
tation of numeric and time-varying attributes in web tables. In Proc. of
SIGMOD ’13, pages 145–156, 2013.

S. Zhang and K. Balog. Design patterns for fusion-based object retrieval. In
Proc. of ECIR ’17, pages 684–690, 2017a.

S. Zhang and K. Balog. Design patterns for fusion-based object retrieval.
In Proceedings of the 39th European conference on Advances in Information Re-
trieval, ECIR ’17, pages 684–690. Springer, 2017b.

S. Zhang and K. Balog. Entitables: Smart assistance for entity-focused tables.
In Proc. of SIGIR ’17, pages 255–264, 2017c.

X. Zhang, Y. Chen, X. Du, and L. Zou. Mapping entity-attribute web tables
to web-scale knowledge bases. Database Systems for Advanced Applications,
pages 108–122, 2013.

Z. Zhang. Effective and efficient semantic table interpretation using tablem-
iner+. Semantic Web, 8:921–957, 2017.

183



Bibliography

G. Zhou, T. He, J. Zhao, and P. Hu. Learning continuous word embedding
with metadata for question retrieval in community question answering. In
Proc. of ACL ’15, pages 250–259, 2015.

S. Zwicklbauer, C. Einsiedler, M. Granitzer, and C. Seifert. Towards disam-
biguating web tables. In Proc. of ISWC-PD’13, pages 205–208, 2013.

184


