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ARTICLE INFO ABSTRACT

With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production be-
comes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is
becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the
gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to
a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore
represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of
broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector.
Microbiota supplementation has also demonstrated positive effects on growth and survival of several different
commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior
knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but
penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported
on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of
Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp
health and disease and describe how the gut microbiota changes with the introduction of several economically
important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role
in the future of penaeid shrimp production.
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1. Introduction diversity of gut-associated bacteria in shrimp grown under a range of

conditions across the world. Proteobacteria were the dominant phylum

Gut-inhabiting microbes are recognised as important drivers of
several metabolic processes in the host. As such, the characterisation
and subsequent manipulation of this microscopic community is an at-
tractive proposition for aquaculture research. Penaeid shrimp aqua-
culture is an important source of economic gain for many Asian and
Latin American countries (Hernandez-Rodriguez et al., 2001) and
shrimp research has subsequently dominated the field of marine-based
invertebrate gut microbiomes. However, in comparison with mammals
and terrestrial invertebrates, relatively very little is known about the
bacteria living in the gut of aquatic invertebrates such as penaeid
shrimp.

In this review, we summarise gut microbiome sequence data from
currently available penaeid shrimp studies that utilise a high-
throughput sequencing (HTS) approach, in order to investigate the
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in most studies, the vast majority of which have been carried out in
China (Fig. 1A) (Table 1). Proteobacteria are widespread in aquatic
invertebrate gut microbiotas and are often a dominant component of
this community in other Crustacea (Hakim, 2015; Holt et al., 2020;
Huang, 2014; Meziti, 2010; Rungrassamee, 2013, 2014; Zhang, 2014).
The phylum Proteobacteria is highly diverse in terms of physiology,
morphology, and genetics. They are Gram-negative, and most are fa-
cultative or obligate anaerobes (Stackebrandt et al., 1988). Gamma-
proteobacteria, the largest class in the phylum, are often described as
the most common bacteria in the gut of giant tiger shrimp (Penaeus
monodon) (Chaiyapechara et al., 2012; Rungrassamee et al., 2013,
2014, 2016) and Pacific white shrimp (Litopenaeus vannamei) (Tzuc
et al., 2014; Rungrassamee et al., 2016; Zheng et al., 2017). This class,
mainly comprising Vibrio and Photobacterium spp., has also been
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Fig. 1. Summary of high-throughput 16S studies investigating the shrimp gut microbiome. (A) Total number of studies originating from each country. Locations of
spatial comparisons are treated as one, unless comparing multiple countries. (B) Ribosomal small subunit hypervariable region/s used in each study. Green bars
represent eukaryotic studies. Blue bars represent prokaryotic. Duplicate studies listed in Table 1 removed from both plots.

reported to account for more than 70% of sequences isolated from the
guts of wild-caught and domesticated P. monodon with the remaining
classified sequences attributed to other high-level taxa: Firmicutes,
Bacteroidetes, Fusobacteria ~and Actinobacteria  (Fig. 2B)
(Rungrassamee et al., 2014). Many Vibrio spp. produce chitinolytic
enzymes (Sugita and Ito, 2006) which may explain their dominance in a
chitin-rich environment such as the crustacean gut, providing a niche
substrate for their utilisation. However, the enzymatic potential of
several Vibrio spp. may contribute to negative effects on the carapace of
the animal and other health implications, such as tail necrosis, red
disease and loose shell syndrome (Liu and Lee, 2002; Jayasree et al.,
2006). As such, several Vibrio spp. have historically caused large losses
to the aquaculture industry, with vibriosis often causing mass mor-
talities (Lavilla-Pitogo et al., 1998) and seemingly non-pathogenic Vi-
brio having expressed virulence in compromised hosts (Manilal et al.,
2010). Despite this, Vibrio spp. are often described as the dominant
genus within the shrimp gut microbiota and many exist harmoniously
with the host. This is an important caveat when considering that
therapeutic supplements are often designed to target the Vibrio genus.

While the majority of HTS microbiome studies focus on the midgut,
or in some cases, an unspecified region of the gut, relatively few de-
scribe the community of the foregut and hindgut. The penaeid digestive
tract, and the digestive tract of that of all Crustacea, is made up of three
sections (Fig. 2A); the foregut, containing the oesophagus and the two
chambered stomach; the midgut; which begins at the junction of the
hepatopancreas (HP) and traverses the length of the cephalothorax and
the majority of the abdomen; and finally the hindgut, containing the
rectum and anus. These regions of the gut differ in their cell structure
and function (Ceccaldi, 1989). There are few studies describing com-
munities inhabiting the foregut, however Alphaproteobacteria along
with Planctomycetales dominated the stomach of healthy Pacific white
shrimp (L. vannamei) in a study from Vietnam (Chen et al., 2017).
Microbial profiles are likely influenced by the longitudinal axis of the
gut itself as different morphologies and functions along the gut will
induce differential pressures on selection. These internal pressures are
perhaps why wild-caught and domesticated P. monodon shared similar
taxa in the gut despite clear differences in their rearing environment
(Rungrassamee et al., 2014) and L. vannamei guts from different farms
were more similar to each other despite differences in the community
structure of their respective rearing waters (Zoqratt et al., 2018). In an

earlier study, wild type L. vannamei from Mexico were shown to har-
bour a more diverse bacterial community compared to healthy cultured
animals and, unlike P. monodon, contained substantial proportions of
Cyanobacteria (Fig. 2C) (Cornejo-Granados et al., 2017). The avail-
ability and diversity of the diet likely impacts spatial comparisons.
Mode and location of feeding may determine the abundance of usable
substrate and the subsequent proliferation of microbial taxa within the
gut. Furthermore, studies tracking gut composition over development
stages have implicated changing in feeding to be the cause of bacterial
community changes seen at the family-level throughout development.
Although Gammaproteobacteria dominated the gut throughout the
different life-stages of P. monodon in Thailand (Fig. 2B), there were
shifts from a Photobacterium-based community to a Vibrio —based com-
munity between PL and juvenile stages (Rungrassamee et al., 2013).
Gammaproteobacteria also dominated the guts of L. vannamei at dif-
ferent life-stages in a holding facility in China, with the exception to 2-
month old juveniles which mainly harboured Bacteroidetes (Fig. 2C)
(Huang et al., 2014). Aquaculture practices, such as indoor- vs pond-
based culture can also impact the composition of the microbiome
(Landsman et al., 2019a) as can the integration of a multi-trophic
aquaculture system, which is also thought to improve productivity
(Omont et al., 2020). Overall, the growing wealth of evidence suggests
that both environmental and internal, host-associated factors can con-
tribute to the determination of microbial communities and it is often
difficult to untangle the direct effects of any one variable.

2. Patterns and processes relating shrimp health to gut microbiota

One of the biggest threats to shrimp aquaculture is the onset of
disease and subsequent mortality in cultured stocks (Seibert and Pinto,
2012; Stentiford et al., 2012). Even in cases where the clinical signs of
disease are well described, little is known about how the presence of a
pathogen may impact or interact with the microbial communities in the
gut and subsequently influence the metabolic processes within the host.
On the other hand, it is unclear whether changes to the gut microbiome
may predispose the gut to invasion by (a) pathogen(s). Changes in gut
microbiome structure could also facilitate the progression of enteric
pathogens that rely on translocation through the gut epithelia to initiate
infection in the target tissue. The notion of a ‘one pathogen-one disease’
scenario is being increasingly challenged (Dai et al., 2018; Bass et al.,
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Fig. 2. Overview of the penaeid shrimp gut microbiome in relation to disease, life stage and culture environment. (A) Visual mapping of the tripartite digestive tract.
(B) Bacterial gut profiles of black tiger shrimp (Penaeus monodon) at increasing life stages (Rungrassamee et al. 2013) and different culture environments
(Rungrassamee et al. 2014). (C) Bacterial gut profiles of Pacific white shrimp (Litopenaeus vannamei) at increasing life stages (Huang et al., 2014) and different culture
environments (Cornejo-Granados et al., 2017). (D) Major bacterial phyla associated with gut changes in Pacific white shrimp (Litopenaeus vannamei) during
pathogenesis; including diseased larvae from China (Zheng et al. 2017), Acute Hepatopancreatic Necrosis Disease (AHPND) infected postlarvae (PL) form Vietnam
(Chen et al. 2017), White Spot Syndrome Virus (WSSV) infected shrimp from China (Wang et al. 2019), WSSV juveniles in clearwater and Biofloc systems (Pilotto
et al. 2018), adults showing symptoms of White Faeces Syndrome (WFS) (Hou et al., 2018), adults with ‘cotton shrimp’-like disease (CSL) (Zhou et al. 2019), adults
with blue body syndrome (BBS) (Liang et al., 2020) and growth retarded adults from China (Xiong et al. 2017a). Blue triangle accompanying profile indicate healthy
animals. Pink triangle indicates corresponding disease. Relative abundance values are taken from studies cited in text. When relative abundances were not stated in
manuscript, corresponding bars in original figures were measured as a percentage of the axis scale.

2019; Huang et al. 2020b). The ‘pathobiome’ concept argues that the receptors (PRRs) such as Toll-like receptors on the surface of the gut
interactions between free-living microbes in the environment, host-as- epithelia are in close proximity to microbial associated molecular pat-
sociated symbionts (including the gut microbiota) and the host itself terns (MAMPs) of the microbiota such as lipopolysaccharides (Chu and
likely drive both beneficial and detrimental impacts on host health Mazmanian, 2014). Although there are key differences between the

(Bass et al., 2019). vertebrate and invertebrate immune system, the gut microbiota likely

In humans, changes to the gut microbiota have been implicated in a has important roles to play in maintaining the health of the shrimp. The
wide range of health conditions. Characterisation of the interplay be- presence alone of symbiotic microbiota could itself provide a kind of
tween the microbiota and the host immune system is becoming in- immunity. A general theory true of all hosts is that space and resources
creasingly well-defined (Sekirov et al., 2010). Pattern recognition within the gut are ultimately finite and colonisation resistance may
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limit the proliferation of pathogenic organisms through competitive
exclusion (Lawley and Walker, 2013). Furthermore, colonisation re-
sistance may be further supported through microbiota-derived anti-
microbial compounds, which may limit the establishment and pro-
liferation of transient microbes in the digestive tract (Kobayashi and
Ishibashi, 1993). A more species-diverse microbiota in the gut may
facilitate resistance to a greater degree of potentially problematic co-
lonisers, as there is consequently a larger set of species-species antag-
onisms. Reducing the abundance of certain bacterial classes within the
microbiota can allow previously symbiotic species to become patho-
genic (Blumberg and Powrie, 2016).

Because of the links between the gut microbiota and the host im-
mune system, it is often suggested that a reduction in bacterial diversity
within the gut or the differential abundance of particular microbial taxa
may be responsible for the onset of pathogenesis. However, without
follow-up studies involving gut supplementation and/or gnotobiotic
organisms (germ free animals and/or organisms that harbour a defined
microbial community) it is often impossible to discern between cause
and effect. Nevertheless, these correlations should not be dismissed
without merit and several studies have described such correlations in
shrimp under the affliction of important pathogens which cause mas-
sive economic loss (Table 1, Fig. 2D).

3. Changes to the gut microbiome can correlate with the incidence
of disease

The following section summarises what is known of the microbiome
in relation to key diseases which can impact production. Although we
have collated these studies in Fig. 2, it is important to recognise that
these samples were analysed independently of each other within their
original studies. Therefore, differences in methodologies and/or ana-
lyses (for example in the DNA extraction method, the region of the
genes sequenced and the bioinformatics approaches used) may in turn
bias comparisons between microbiomes associated with different dis-
ease studies (Cornejo-Granados et al., 2018; Xue et al. 2018; Garcia-
Lopez et al., 2020). The majority of studies sequencing the bacterial gut
microbiota utilise the V3-V4 amplicon (Fig. 1B). The V3-V4 amplicon
targeting the shrimp gut microbiota produced a larger number of op-
erational taxonomic units (OTUs) compared to V3 and V4 alone
(Garcia-Lopez et al., 2020). However, the V4 region, which is the
second most used 16S region, is much less variable in sequence length
(Garcia-Lopez et al., 2020) and is sometimes preferred on this basis to
V3 or both regions together. Unfortunately, short read data were not
accessible for all studies shown in Fig. 2 when we attempted a meta-
analysis to directly compare the results of all health studies.

3.1. Clinical signs of disease in penaeids

In ‘diseased’ Pacific white shrimp raised in a commercial hatchery in
Hainan, China, and characterised by poor growth, inactivity, lack of
appetite, empty digestive tracts and/or low survival rate, there were no
significant differences in the microbiota when compared to healthy
individuals up to and including 18 days post-larvae (Fig. 2D) (Zheng
et al., 2017). However, Linear Discriminate Analysis (LDA) Effect Size
(LEFSe) highlighted several taxa that were indicative of the disease
state (Zheng et al., 2017). Species of the Nautella genus (Rhodo-
bacteraceae), which can be pathogenic to algae and brine shrimp
(Gardiner, Thomas and Egan, 2015; Zheng et al., 2016) showed the
greatest association with diseased individuals and the water in which
they were reared. Unlike the shrimp samples themselves, water from
healthy and diseased ponds formed distinct clusters when ordinated
with non-metric multidimensional scaling (NMDS), therefore environ-
mental DNA (eDNA) assessment of the microbiome within the rearing
environment may be a useful indicator of disease in the cultivar. Due to
size restrictions, these data were based on whole-body homogenates,
however external tissues were cleaned prior to extraction in a bid to
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remove adherent microorganisms (Zheng et al. 2017).
3.2. Acute hepatopancreatic necrosis disease (AHPND)

Sometimes referred to as Early Mortality Syndrome (EMS), AHPND
has been responsible for large production losses of cultured shrimp. The
disease results in atrophy of the HP and ultimately necrosis of the HP
tubules, and is caused by plasmid-borne toxin-producing genes carried
by several species of Vibrio, resulting in the production of Photorhabdus
insect-related (Pir) binary toxins (Lee et al., 2015; Liu et al., 2018b;
Restrepo et al., 2018). The incidence of AHPND in L. vannamei corre-
sponded to a significant reduction in bacterial diversity of the HP
compared to that of healthy individuals (Fig. 2D), with those infected
with AHPND showing a reduction in diversity of over 53% within
7 days. Several Vibrio clusters were associated with AHPND positive
individuals, along with a high abundance of ‘Candidatus Bacilloplasma’-
like sequences. By analysing interaction networks within the commu-
nity, it is suggested that different commensal ‘Candidatus Bacilloplasma’
OTUs, which are found in several aquatic invertebrates, interact with
the pathogenic Vibrio strains and either enhance or inhibit infection
(Chen et al., 2017).

3.3. White spot syndrome virus (WSSV)

White spot syndrome virus is the biggest threat to shrimp health
worldwide (Stentiford et al., 2009). The double-stranded DNA (dsDNA)
virus infects nuclei of mesodermal- and/or ectodermal-derived tissues
and results in lethargy of the infected host and a reduction in food in-
take (Pradeep and Rai, 2012). Although predominantly infecting
shrimp, its severe pathogenesis results in a reduction in growth and
ultimately high mortality rates in a wide range of cultured species
(Stentiford et al., 2009; Bateman et al., 2012). The gut microbiota of L.
vannamei, obtained from a farm in Maoming, China, was recently
shown to be significantly altered in association with WSSV infection
(Wang et al., 2019). Individuals infected with WSSV saw a significant
increase in Proteobacteria and Fusobacteria in the gut, including po-
tentially pathogenic bacteria belonging to the Arcobacter genus, to-
gether with a reduction in Bacteroidetes and Tenericutes (Fig. 2D).
Despite changes in relative abundances of particular phyla, there was
no change in overall bacterial OTU richness and/or diversity of the gut
reported in animals infected with WSSV (Wang et al., 2019). It would
seem that compositional changes in response to WSSV infection are also
impacted by environmental factors in relation to culture environment,
which might obscure microbiome changes specifically associated with
the disease and/or presence of the virus. When comparing clear sea-
water and biofloc systems before and after WSSV infection, there were
inconsistent changes in phyla abundance and diversity (Pilotto et al.,
2018). Furthermore, although Proteobacteria did increase after WSSV
challenge in the biofloc system, a decrease in Bacteroidetes was not
observed in either culture condition, indicating a degree of disparity
between both studies. Evidence suggests that the gut microbiota of
shrimp raised in a variably-sized biofloc system have similar bacterial
communities to those of only medium-large sized bioflocs (Huang et al.,
2020a) therefore, the presence of a biofloc could alter any microbiome-
mediated resistance to WSSV infection.

3.4. White faeces syndrome (WFS)

White faeces syndrome, characterised by white-golden gut contents
and white faecal strings, is a syndromic condition of unknown ae-
tiology. WFS was initially thought to be linked to the presence of the
microsporidian Enterocytozoon hepatopenaei. Although PCR and in situ
hybridization has since demonstrated that ponds with high levels of
environmental (i.e. host-independent) E. hepatopenaei signal often lack
characteristic symptoms of the disease in the corresponding stocks
(Tangprasittipap et al., 2013), it is also true that white faeces can
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contain densely packed E. hepatopenaei spores (Tang et al., 2016).
Gregarine-like vermiform bodies are also associated with characterisic
signs of WFS, through the transformation, sloughing and aggregation of
microvilli within the hepatopancreas (Sriurairatana et al., 2014). The
cause of this phenomenon is unknown, however it would seem that
white faeces is a common characteristic of multiple health conditions,
and that EHP may be a necessary but insufficient cause of WFS, at least
in some manifestations . When comparing bacterial gut profiles of WFS
infected shrimp and asymptomatic individuals, there was an increase in
‘Candidatus Bacilloplasma’ (Tenericutes) and Phascolarctobacterium
(Firmicutes) along with a decrease in Paracoccus (Proteobacteria) and
Lactococcus spp. (Firmicutes), which correlated with a significant re-
duction in overall diversity of the bacterial community (Fig. 2D) (Hou
et al.,, 2018b). ‘Candidatus Bacilloplasma’ is commonly found in the
shrimp gut. Considering how well adapted this genus is for living in the
gut environment (Kostanjsek et al., 2007), its increased relative abun-
dance in diseased individuals is likely a consequence of the reduction in
other taxa, and overall diversity of the gut microbiota. An increase in
‘Candidatus Bacilloplasma’ and a reduction in overall richness and di-
versity in WFS-infected guts has also been confirmed elsewhere, where
the probability of disease could be estimated with 99.4% diagnostic
accuracy using disease-discriminatory taxa in the gut (Huang et al.,
2020b). Furthermore, this study demonstrated that 36.7% of healthy
shrimp that received intestinal microbiota transplants (IMTs) from
WFS-infected donors eventually became infected with the disease.
Conversely, WFS-infected shrimp receiving IMTs from healthy donors
recovered from the disease (Huang, et al. 2020b).

White faeces was also associated with changes to the eukaryotic gut
community but with somewhat contradicting results. Li et al. (2019)
noted Ascomycota and Basidiomycota were abundant in healthy and
diseased individuals with an increase in pathogenic Candida spp. in
individuals exhibiting clinical signs of WFS. Dai et al. (2019) reported
an overrepresentation of Ascomycota and Basidiomycota in WFS-in-
fected individuals. Both studies also reported significant differences in
non-host eukaryotic (Shannon) diversity associated with WFS.

3.5. ‘Cotton shrimp-like’ disease (CSL)

Despite no differences when comparing bacterial diversity, esti-
mates of species richness were significantly increased in individuals
suffering with a disease referred to as cotton shrimp-like disease, herein
referred to as CSL (Zhou et al., 2019). The clinical signs of this disease
include reduced growth, associated with atrophy of the HP and an
empty digestive tract, inactivity and a soft shell with slightly white,
opaque muscle (a definitive characteristic of cotton shrimp disease)
(Zhou et al., 2019). The authors note that an increase in Tenacibaculum
was associated with CSL, along with the presence of Rickettsiaceae,
however at very low abundance (~0.03%) (Zhou et al., 2019). Despite
a shared clinical sign (white, opaque muscle) with cotton-shrimp dis-
ease, CSL is of unknown aetiology, unlike cotton shrimp disease which
is primary associated with the presence of several microsporidian
genera: Pleistophora, Thelohania, Perezia, Agmasoma and Ameson
(Sprague and Couch, 1971; Overtsreet, 1973; Lightner 1996; Ramasamy
et al., 2001; Sokolva et al., 2015; Han et al., 2016). The gut microbiota
at the phylum level was reported to be very similar when comparing
healthy and CSL-infected individuals (Fig. 2D) (Zhou et al., 2019).
However, interspecies interaction was substantially reduced in gut
bacterial community networks associated with the disease (Zhou et al.,
2019).

3.6. Blue body syndrome (BBS)

Characterised by a blue colouration of the body and internal tissues,
‘blue body syndrome’ (BBS) or ‘blue body disease’, reportedly occurs
accompanied with slow growth, reduced or no feed intake and thin
bodies Liang et al., 2020). The blue shell is the result of low levels of
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carotenoid astazanthin, a reddish pigment found in several animals
(Baticados, 1990), and therefore a microbiota-dependent dietary defi-
ciency is a valid mechanism to explore. Healthy shrimp express more
penaeidin, lectin and defensinsl compared to those with BBS. However,
no significant and/or substantial differences in gut community com-
position or alpha diversity were observed when comparing healthy and
BBS-positive individuals (Fig. 2D) (Liang et al., 2020). On the contrary,
NMDS indicated a significant dissimilarity between the gut microbiota
of healthy and BBS individuals, which were more similar to bacterial
communities in the water (Liang et al., 2020), perhaps indicating a
reduction in the environmental filtering capacity of the infected host.

3.7. Nutritional acquisition and slow growth

The bacterial gut microbiome can impact the growth of the shrimp
through the modification of digestive enzyme activity. After rearing
larval L. vannamei for 70 days in ponds located in Xiangshan, China,
body size and weight significantly and positively correlated with
amylase, pepsin and lipase activity (Xiong et al., 2017b). Structural
equation modelling (SEM) demonstrated how gut community compo-
sition of both bacteria and eukaryotes accounted for significant positive
effects on enzymatic activity (Dai et al., 2017; Xiong et al., 2017b).
Bacterial diversity was significantly reduced in retarded shrimp as the
relative abundance of Gammaproteobacteria dramatically increased
(Fig. 2D) (Xiong et al., 2017b). Retarded shrimp also harboured less
phylogenetically clustered gut communities compared to normal in-
dividuals, indicating a reduction in host determinism in the assemblage
of bacterial gut communities (Xiong et al., 2017b).

Gut microbiotas are repeatedly noted to be distinct from the bac-
terial communities of their rearing waters (Harris 1993; Meziti et al.,
2012; Xiong et al., 2015; Zhang et al., 2016). This may be explained by
deterministic processes, such as environmental filtering, in the coloni-
sation of the shrimp gut during early life stages (Xiong et al., 2017a;
Xiong et al., 2018a). The onset of disease, however, can cause compo-
sitional shifts to atypical microbiota, often referred to as dysbiosis
(Xiong et al., 2015; Zhu et al., 2016; Xiong et al., 2017a; Xiong et al.,
2018a). The emergence of disease may also correlate with a reduction
in deterministic processes that influence microbiota composition and a
more stochastic assembly of gut colonisers (Zhu et al., 2016; Xiong
et al., 2017a). Therefore a dysbiosis may indicate (or precede) the
presence of a disease (Zhu et al., 2016). Furthermore, considering
healthy, sub-healthy, and diseased L. vannamei, based on characteristic
gross pathology of the gut, the severity of disease correlated with the
degree of dysbiosis, and the onset of disease can be modelled based on
the composition of the gut microbiota (Xiong et al., 2015; Xiong et al.,
2017a). Specifically, the shift in foregut microbiota associated with
AHPND was hypothesised to be a result of increased inability of the
shrimp to select gut bacteria (a deterministic process) thus increasing
the role of stochastic processes shaping gut microbiota assembly (Chen
et al., 2017). Furthermore, gut profiles of shrimp challenged with Vibrio
harveyi showed a lower degree of similarity (20-40% similar DGGE
profiles) compared to the uninfected, control group (80% similarity)
(Rungrassamee et al., 2016), which we suggest may be the result of a
shift to more stochastic determination of the gut flora post-challenge.
This shift in ecological processes is not only limited to bacterial com-
munity assembly; the eukaryotic microbiota of WFS-infected shrimp
showed more stochastic assembly compared to healthy individuals (Dai
et al. 2019). We hypothesise that early stochastic outcomes could result
in variation in microbiotas between members of a shrimp population
which then predispose certain individuals to pathogenesis; a phenom-
enon which could help explain variations in disease susceptibilities
within a population.

4. Improving shrimp production with gut supplementation

In light of the disease-associated compositional changes described in
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the studies cited above, it is perhaps unsurprising that manipulating the
gut microbiota has been shown to produce a number of positive effects
on the shrimp host. The addition of live, beneficial microorganisms
(probiotics) have been explored in a range of farmed animals for dec-
ades and is now becoming commonplace in shrimp aquaculture.
Probiotic supplementation can increase competition in the gut, poten-
tially supporting colonisation resistance against pathogenic microbes
(Farzanfar, 2006). Furthermore, supplemental bacteria can directly
affect and antagonise pathogens. Streptomyces spp., for example, have
demonstrated a protective effect in Artemia, P. monodon and L. vannamei
when challenged with pathogenic Vibrio strains, with an increase in
survival reported for all three shrimp species (Das et al., 2010;
Augustine et al., 2016; Garcia Bernal et al., 2017; Maz6n-Suéstegui
et al., 2019). Notably, the addition of Streptomyces sp. RL8 alone and a
combination of Streptomyces and Bacillus spp. led to an increase in
bacterial diversity in the guts of L. vannamei and also increased the
abundance of antimicrobial-producing gut bacteria (Mazén-Suastegui
et al., 2019). Isolation of lactic acid bacteria from wild shrimp guts
enabled experiments showing that application of Lactobacillus plan-
tarum MRO3.12 can also cause a reduction of V. harveyi, a common
cause of shrimp mortalities. Shrimp supplemented with L. plantarum in
their diet showed a significant increase in growth and survival rates,
along with an increased abundance of haemocytes and a reduction of V.
harveyi in the haemolymph (Kongnum and Hongpattarakere, 2012).
Infection with V. harveyi has also shown to alter the intestinal bacterial
profiles of both P. monodon and L. vannamei. Interestingly, the altered
profiles of infected L. vannamei reverted back to that of a healthy animal
after 72 h post infection. This was not observed with infected P.
monodon. The ability to regain intestinal normality was noted as a
possible explanation for the greater survival rate of L. vannamei infected
with V. harveyi (Rungrassamee et al., 2016).

There is now a range of probiotic complexes that are marketed to
the farming industry, however application of general combinations may
not be beneficial to the host (Liu et al., 2018b; Landsman et al., 2019b).
Firstly, probiotics must be able to survive passage through the gut.
Common probiotic mixtures used in shrimp aquaculture often contain
bacterial species that are not indigenous to the marine environment and
subsequently have limited proliferation potential (Vargas-Albores et al.,
2017). Identifying candidate probiotics from shrimp guts themselves,
much as in the case of Lactobacillus plantarum MRO3.12 above, reduces
the uncertainty about survivability in the host environment. Host ge-
netics, however, is an important consideration and constraint on the
ability of probiotics to illicit change in the gut microbiome (Landsman
et al.,, 2019b; Liu et al., 2019). Despite probiotics being an attractive
alternative to the use of broad-spectrum antibiotics, their use should be
tightly monitored. For example, antibiotic resistant genes have been
identified in probiotic supplements (Wong et al., 2015), including those
often applied to shrimp culture (Uddin et al., 2015). However, the latter
study did not identify any genetic elements associated with horizontal
gene transfer.

Prebiotic supplementation (inert sources of bacterial nutrition) of-
fers an alternative to using probiotic strains and may also offer benefit
to the microbiome by encouraging the proliferation of beneficial mi-
crobes within the gut. In an eight-week feeding trial using juvenile L.
vannamei, mannan oligosaccharide (MOS), one of the most common
prebiotics, significantly improved weight gain and growth rate. The
prebiotic also significantly increased the length of the microvilli in the
intestine which could account for increased surface area for nutrient
absorption, subsequently improving growth (Zhang et al., 2012). Al-
though MOS did not significantly improve survival, its addition did
significantly increase the activity of phenoloxidase and superoxide
dismutase — both important pathways in the invertebrate immune
system. In contrast, the application of MOS to an intensive commercial
culture of L. vannamei did not correspond to increases in growth
parameters but did improve survival (Gainza and Romero, 2020). In-
ulin, a prebiotic oligosaccharide isolated from grain, fruits and
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vegetables, has also demonstrated positive effects on the gut micro-
biota. An inulin-enriched diet significantly increased the abundance of
lactic-acid bacteria (LAB), which are recognised as beneficial to host
health, and correlated to a significant increase in survival of Indian
white shrimp post-larvae, Fenneropenaeus indicus (Hoseinifar et al.,
2015).

Co-application of both pre- and probiotics, termed synbiotics, can
stimulate an immune response in L. vannamei infected with WSSV,
subsequently increasing survival (Li et al., 2009), and could offer a
potential alternative to the traditional yet ineffective use of antibiotics
to treat the viral infection. Twenty-seven per cent (15/56) of shrimp
farmers interviewed in Thailand incorrectly used antibiotics as antiviral
preventions and treatments (Holmstrom et al., 2003) therefore gut
supplementation may serve as a more effective means to manage
(particularly viral) disease in aquaculture production and prevent un-
necessary antibiotic pressures on the environment. Dietary supple-
mentation of the probiotic Bacillus PC465, isolated from Chinese white
shrimp (Fenneropenaeus chinensis) also reduced cumulative mortalities
of L. vannamei infected with WSSV (Chai et al., 2016) and recent evi-
dence suggests a diet of brown seaweeds impacts the composition of the
shrimp gut microbiota and subsequently improves resistance to WSSV
infection (Schleder, 2020). As the seaweed was not sterilised, however,
it is unclear whether this effect was due to the addition of seaweed itself
or the microorganisms that were associated with the seaweed. The
addition of the macroalgae Porphyra haitanensis was previously asso-
ciated with improving survival after WSSV challenges (3 and 4% sup-
plement) and increased growth, as a result of increased feed intake (Niu
et al.,, 2018). It is difficult to separate any health/growth benefits
arising from ameliorisation of the gut microbiome from simply in-
creased nutritional resources provided by the addition of dietary sup-
plements.

As well as being ineffective in the treatment of several of the above-
mentioned diseases, antibiotics can have a direct impact on the gut
microbiome which may be detrimental to the host. Antibiotic applica-
tion can decrease colonisation resistance within the gut, alter its mi-
crobial composition, and facilitate the emergence of disease (Jernberg
et al.,, 2010). Zeng et al. (2019) showed that the addition of cipro-
floxacin and sulphonamide, which are commonly used to treat bacterial
diseases in aquaculture, caused a short-term reduction in bacterial
richness and diversity of the gut along with a significant increase in
antibiotic resistant genes in healthy L. vannamei. Antibiotic resistant
genes have been detected in aquaculture facilities throughout the world
and can persist in bacterial reservoirs even after the initial pressure for
their selection (Tamminen et al., 2011). Furthermore, antibiotic re-
sistance genes have been found to be more abundant in adult shrimp
compared to juveniles (Su et al. 2018). Phylogenetic analysis suggests
resistance genes are transferred from intestinal bacteria to those in the
culture environment (Zeng et al., 2019) and horizontal gene transfer
can spread resistance between microbes in the environment, including
those that are serious human pathogens (Tomova et al., 2015).

5. Recommendations for future microbiome studies

The investigation into the gut microbiome of the aquatic in-
vertebrates is a relatively new discipline. Therefore, any attempts to
guide the field into a more consistent and reliable consensus, in terms of
the information required for accurate reporting, should be encouraged.
Given the increasing number of available sample preparations and
bioinformatic tools, it is unrealistic to limit all future studies to one
methodology or analytical pipeline. However, that is not to say that
these same studies should not include the same level of detail, samples
sizes and availability of data that we expect from other, more estab-
lished fields. For example, the Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE) guidelines have es-
tablished a strong precedent for publishing reliable gene expression
datasets by encouraging best experimental practices through a set of
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standardised guidelines (Bustin et al., 2009). The Minimum Information
required to support a Stimulant Assessment experiment (MISA) guide-
lines aimed to provide the same for immunostimulant work (Hauton
et al., 2015). There are several extensive ‘best practice’ papers which
offer useful instruction for the design and implementation of marker
gene microbiome studies (Goodrich et al., 2014; Pollock et al., 2018;
Hornung et al. (2019), along with standards for the minimum in-
formation about a marker gene sequences (MIMARKS) (Yilmaz et al.,
2011). When considering implementing marker gene analysis for mi-
crobial profiling (metabarcoding), we offer the following suggestions:

(1) Always include adequate sample sizes in the experimental design.
Low sample sizes are unlikely to capture the individual variation
often associated with microbiome surveys. Furthermore, without an
accurate description of the distribution of data, robust statistical
testing may not be possible. Multiplexing with dual indexes and
custom library preparations (Kozich et al., 2013) now allow for the
inclusion of hundreds of samples per run. Therefore, the cost of
sequencing is now less of a barrier to adequate sample sizes.

(2) Consider the limitations of the gene/region of interest. The hy-
pervariable regions of the ribosomal small subunit RNA (SSU rRNA)
gene can differ in their ability to detect specific taxa (Kim et al.,
2011) and can impact the richness and diversity inferred from a
community, including those isolated from shrimp (Garcia-Lopez
et al., 2020).

(3) Avoid restricting taxonomic analyses to the phylum level. Phyla are
high-level, diverse assemblages of taxa and the differential abun-
dance of a phylum is often too ambiguous to infer specific me-
chanistic action or interaction with the host and/or other taxa in
the microbiome. This is particularly true of Proteobacteria, which
often dominate the gut of aquatic invertebrates.

(4) Avoid using marker genes to infer functional potential of aquatic
invertebrate gut microbiomes. The lack of annotated genomes from
marine microbes creates an analytical bias that may significantly
impact gene inference and the assessment of differential abundance
of functional gene profiles associated with aquatic invertebrate gut
microbiomes (Sun, Jones and Fodor, 2020).

(5) Consider the use of exact sequence variants as opposed to opera-

tional taxonomic units (OTUs). There is often valid reason to cluster

sequences according to percentage identity, such as accounting for
error and taxonomically uninformative variation (e.g. intragenomic
polymorphism of multi-copy genes). However, clustering overlooks
the high sequencing accuracy possible with modern-day sequencing
technologies, and can also obscure meaningful, biological variation

(Callahan et al., 2016). Analysis of ESVs allows the generation of

sequence clusters that are not dependent on the dataset itself and

are therefore comparable across other datasets.

Do not refer to amplicon sequencing data as ‘metagenomics’. This is

particularly misleading in titles and abstracts of publications.

Metagenomics refers to shotgun (not amplicon) sequencing of all

DNA in a sample, (sub)sampling genomes of eukaryotes, viruses,

and prokaryotes. Amplicon or marker-gene sequencing, by defini-

tion and design, targets a very specific region of those genomes and,
more often, a very specific region of a single gene (e.g. hypervari-
able regions of the SSU rRNA gene).

6
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6. Conclusions

The gut microbiomes of penaeid shrimp are becoming increasingly
well characterised in comparison to other aquatic invertebrates. There
are, however, still substantial gaps in the literature across all the pe-
naeid species, and from the range of farming systems utilised in their
culture. In support of the ‘pathobiome’ concept (Bass et al., 2019),
pathogenesis may not be directly linked to the relative abundance of a
particular taxon but rather the change in interactions between multiple
taxa and the host (Chen et al., 2017; Zhou et al., 2019; Huang, et al.,
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2020; Dai et al., 2020). However, we currently lack enough data to
make generalisations about the gut microbiome of different shrimp
species in regard to growth conditions and health status. We propose
that a concerted global effort to increase our understanding of micro-
bial complexity in these systems is needed. Inferences made from small
datasets may not be representative of a true change or general patterns
in terms of differential compositions in relation to disease, and provide
little to go on for the development of positive interventions. The con-
texts in which different microbiome states arise (shrimp species, de-
velopment stage, culture conditions, treatments, pond ecology, etc.) are
very varied and their own influences on shrimp microbiomes are largely
unknown. What is ‘normal’ in a wide range of situations needs to be
known before abnormal conditions, for example associated with or
predisposing to disease, can be reliably identified. Furthermore, the
ability for the global scientific community to access raw sequencing
data and experimental information (metadata) needs to improve in
order to undertake meta-analyses and generalise across studies. This
information is vital as demand for aquatic-based protein increases and
shrimp aquaculture becomes more intensive. Better characterisation of
the microbiota across the entire length of the gut, and across growth
and development cycles will likely facilitate the improvement of shrimp
probiotics to aid in improving growth and reducing the susceptibility
towards disease, which will ultimately maximise the sustainable pro-
duction of these key species.
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