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Summary 

In the field of X-ray optics, compound refractive lenses (usually termed 
CRLs) function as a focusing device for hard X-rays and they are 
believed to possess a lot of prominent advantages over other focusing 
devices, such as the ease of alignment and compactness. Among all the 
potential materials used to fabricate CRLs, diamond stands out mainly 
due to its unique physical properties, e.g. strong thermal resistance and 
the ability to keep stable under extremely intense radiation (suitable for 
the even brighter next-generation X-ray source). When choosing 
between single-crystal and polycrystalline diamond, single-crystal 
diamond is favoured because it can avoid unwanted diffuse scattering 
induced by a sintered structure of polycrystalline diamond. Therefore, 
single-crystal diamond CRLs deserve a comprehensive analysis and are 
chosen as the subject of this thesis. 

This PhD thesis consists of seven chapters. Chapter 1 reviews the history 
of two different kinds of X-ray sources, conventional X-ray tubes and 
synchrotron radiation (SR) light sources, including their principles of 
operation and the novel development of SR sources. Followed by that, 
Chapter 2 primarily focuses on X-ray optical devices and more emphasis 
is given to the X-ray beam conditioning devices (including both 
monochromators and X-ray focusing elements). Among a variety of 
focusing devices, CRLs turn out to be a huge success since the invention 
in 1990s and have been investigated in the aspect of focusing effect. 
However, a phenomenon that several significant intensity drops have 
been captured in the energy spectrum and are vividly termed as ‘glitch 
effects’, which call for a more rigorous treatment both experimentally 
and theoretically. Chapter 3 gives an overview of two experimental 
setups at BM31 (ESRF), France. As a good starting point, an energy scan 
was set up to investigate the influence of some possible experimental 
features on the glitches while sweeping through a range of photon 
energies, namely, the beam divergence, 𝜒𝜒-angle of the goniometer and 
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different scanning positions. Besides, the energy spectrum also serves as 
a good reference for the second experiment, which was set up under 
almost the same configuration so that we can compare our simulation 
with the retrieved energy spectrum. The glitches appearing in the 
spectrum are mainly contributed by Bragg diffraction, which is strongly 
dependent on the orientation of single–crystal diamond. Then the major 
task became the prediction of both the ‘strengths’ and positions of 
glitches, and the established 𝜔𝜔 -scan setup was to calculate the 
misalignment of the single crystal with respect to the assumed ideal beam 
direction. This is usually achieved via the orientation matrix by analysing 
the collected diffraction patterns. In this sense, the latter 𝜔𝜔 -scan is 
regarded as a continuation of the former energy scan. The experimental 
results, together with the theoretical investigation on the basis of 
orientation matrix, form the backbone of the current thesis. Chapter 4 
mainly discusses the intensity distribution on the exit surface of a single 
2D diamond half lens in the symmetrical Laue case using an X-ray lab 
source because it may provide useful hints when one want to deal with a 
more complicated case - biconcave lenses. This chapter includes both 
detailed theoretical derivations and the corresponding simulations. The 
intensity distribution on the exit surface is studied provided that a certain 
type of Bragg reflection occurs. Additionally, this is achieved by 
replacing the curved parabolic entrance with a bunch of staircase crystals 
with various thickness. Chapter 5 lists all the publications during the PhD 
period. Chapter 6 wraps up the whole project and points out some 
possible applications based on the research results. Furthermore, we 
specify some possible subjects of future investigations. An outline of 
some other contributions I have made is given in Chapter 7. In the end 
of this thesis, one can refer to Appendices for the wavelength calibration 
process and the procedure on how to calculate the orientation matrix in 
two different cases.  
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1 Introduction 

 The nature of X-rays 
In 1895, the Nobel Prize-winning scientist Wilhelm Röntgen discovered 
a type of radiation with a lot of peculiar properties and simply named it 
“X-ray radiation” to signify its unknown nature. To honour his 
outstanding contribution, X-ray radiation is also called “Röntgen 
radiation”. At that time, the lack of understanding of its nature did not 
hinder X-ray’s rapid application and it was soon used to detect the 
internal structure of materials owing to its very strong penetrating ability. 
It was not until 1912 when Max von Laue proposed in a conversation 
with Paul Peter Ewald that X-rays should be diffracted, if a crystal indeed 
were constructed like 3D periodic lattices with the inter-atomic distance 
of 0.5-2.5Å, which should be in the same order of the wavelength of the 
incident X-ray radiation. In other words, the crystal forms an ideal 
optical grating for X-rays. To verify this idea, he set up an experiment 
with the help of two experienced X-ray experimentalists - Friedrich and 
Knipping like this: an X-ray beam was confined to go through a cooper 
sulfate crystal and a photographic plate was placed right after the sample 
to record the result. It was shown on the plate that a central spot induced 
by the primary transmitted beam was surrounded by a cluster of 
diffraction spots. In fact, the experiment justified two facts at the same 
time: the wave nature of X-rays and the periodic lattice structure of the 
crystal. Two years later, Laue was also awarded the Nobel Prize in 
Physics for his tremendous contributions to X-ray diffraction theory. For 
a more detailed description of X-ray’s historical development, the recent 
paper by Authier [1] should be consulted.  

Within X-rays’ regime, the scientists further classify into two categories 
according to the penetrating ability: hard X-rays (≲ 2Å) and soft X-rays 
(> 2Å). Literally, hard X-rays can penetrate through relatively thicker 
objects without losing much intensity and are often used to perform 

https://en.wikipedia.org/wiki/Wilhelm_R%C3%B6ntgen
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crystallographic analysis and non-destructive detection; whereas the 
scientists are able to use soft X-rays to see extremely small features of 
the sample.  

The mechanism underlying X-rays’ numerous applications is based on 
the interaction of light with the matter and Fig. 1 shows the physical 
phenomena that may occur when an X-ray beam illuminates a sample. 

 

Figure 1 – A variety of physical phenomena when shining X-ray radiation onto a sample. 

1.1.1 The wave nature of X-rays 
Since X-rays are a kind of electromagnetic waves, they certainly display 
wave nature. The electric field vector and magnetic field vector are 
always perpendicular to each other, and both lie in the plane 
perpendicular to the propagation direction of X-rays. As is depicted in 
Fig. 2, for unpolarized X-rays, the electric 𝑬𝑬  and the magnetic field 
vector 𝑯𝑯 can point to any direction within 𝑦𝑦𝑦𝑦𝑦𝑦 plane, but they are still 
perpendicular to each other; a special case is if the electric field of X-
rays is confined to 𝑥𝑥𝑦𝑦𝑦𝑦 plane, they are so-called plane waves.  
 



Introduction 

3 

Figure 2 – The relationship between the electrical field and the magnetic field of a plane wave. 

In the classical theory, electromagnetic waves can give rise to a series of 
different phenomena, such as refraction, reflection, scattering, 
interference and diffraction, so do X-rays. 

1.1.2 The particle nature of X-rays 
In the light of quantum theory, the electromagnetic wave is considered 
as a kind of particle flow composed of light quanta or photons. Therefore, 
X-rays possess the same wave-particle duality as other electromagnetic
waves. For each photon with the energy 𝜀𝜀  in the unit of keV and
momentum 𝑝𝑝, the following relations are satisfied:

⎩
⎨

⎧𝜀𝜀[keV] = ℎ𝜐𝜐 = ℎ
𝑚𝑚
𝜆𝜆

=
12.398
𝜆𝜆[Å]

𝑝𝑝 =
ℎ
𝜆𝜆

In this equation, ℎ is Planck constant, 𝜐𝜐 is the frequency, 𝑚𝑚 is the speed 
of light and 𝜆𝜆 is the wavelength. 

Due to the particle characteristics of X-rays, the photons can only be 
absorbed or re-emitted entirely when exchanging energy with the matter. 
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In a word, the wave-particle duality is the objective attribute of X-rays. 
One should note that under certain conditions, it is possible that only one 
aspect may behave more obviously; however, when the condition 
changes, the other aspect may be observed. 

 X-ray sources 
By now, several mechanisms have been employed to produce X-rays, for 
instance, electronic process (X-ray tubes), synchrotron radiation (SR) or 
free electron lasers (FEL). In this thesis, we focus primarily on 
synchrotron radiation facilities since they are commonly used nowadays. 
Moreover, the novel development of SR will also be briefly introduced.  

It is known that an ideal point source can be described by measuring the 
radiant flux within a small solid angle, but it is not applied for 
synchrotron radiation because it is seen as a complex light source ranging 
from infrared to hard X-rays. In order to evaluate X-ray sources, 
especially SR, a bunch of factors should be taken into account, they are 
the number of photons produced per second, the angular divergence, the 
cross-section of the beam and the photons falling within a bandwidth of 
0.1% of the central frequency ω , respectively. These four factors 
together, define the brilliance (also called spectral brightness) of 
synchrotron radiation and the resulting unit is denoted as photons/(s ∙
mm2 ∙ mrad2 ∙ 0.1%BW) . In other words, “brilliance” is a term that 
describes both the brightness and the angular spread of the beam and 
greater brilliance means more photons of a given wavelength and 
direction are concentrated on a spot per unit of time. That is why 
brilliance is a common beam characteristic when comparing different X-
ray sources and Fig. 3 shows how the brilliances of various X-ray sources 
are increasing with the time. 

https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
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Figure 3 – The brilliances of different X-ray sources as a function of years (reproduced from 
https://www.esrf.eu). 

In addition, another commonly used parameter is the flux, which is 
defined as the number of photons emitted by the X-ray source per second 
per 0.1%BW (photons/(s ∙ 0.1%BW)). This parameter will be used in 
the following simulations because it may also evaluate the quality of the 
generated radiation. 

1.2.1 Conventional X-ray tubes 
The X-ray tube is the simplest and most versatile X-ray source and has 
been widely used in various X-ray instruments, such as CT scanners, 
airport luggage scanners, X-ray crystallography, material and structure 
analysis.  

https://www.esrf.eu/
https://en.wikipedia.org/wiki/CT_scan
https://en.wikipedia.org/wiki/X-ray_crystallography
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An X-ray tube is a controllable source and the fundamental principle is: 
when a bunch of high speed electrons in the X-ray tube bombard the 
anode, their motions change immediately, thereby generating 
electromagnetic waves. Based on the quantum physics theory, when 
electrons collide with atoms of the anode target, the electrons lose 
energies after colliding with the atoms constituting the anode, and the 
loss of energy is radiated in the form of photons. During the entire 
process, some of these electrons may exhaust whole energy after a single 
process and this leads to the radiation having the maximum frequency, 
while most electrons have to undergo multiple collisions before their 
energies are totally consumed. As a result, in addition to the continuous 
spectrum (“Bremsstrahlung” in German, i.e., “brake radiation”), there 
exist two discrete characteristic lines (Kα and Kβ radiation), which result 
from the decay of excited states of the element of the tube. For a given 
target, the characteristic spectral wavelength has a certain value and 
change of the tube voltage and current can only affect the intensity of the 
spectrum. One should note that only when the tube voltage is above the 
critical voltage (referred to as “excitation voltage”), characteristic lines 
may appear on the basis of a continuous spectrum. 

 

Figure 4 – The flux of a tungsten X-ray tube. 
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This explains why the emitted spectrum is a superposition of a 
continuous spectrum and characteristic lines, as is shown in Fig. 4. 
Therefore, the radiation produced by an X-ray tube is completely 
unpolarized and can be considered as a collection of incoherent point 
sources which can generate incoherent spherical waves. This is a very 
useful assumption and will be used in our simulations (Chapter 4). 

However, for X-ray tubes, only a very small portion of electrical input 
power (1%) is converted into X-rays, and the remaining into heat. 
Therefore, heat dissipation is an issue of great concern and many efforts 
have already been made. According to different heat dissipation 
methods, X-ray tubes can be further classified into two kinds, the sealed 
tube and rotating anode, respectively. As their names indicate, the anode 
of the sealed tube is stationary with water being employed as a coolant, 
while the other aims to improve the efficiency of heat dissipation by 
rotating the anode at a high speed (3000 to 9000 rpm). It turns out that 
the output power of a rotating anode tube can reach up to 120 kW and is 
much higher than that of a sealed tube (in the order of 1 kW). In 
consequence, we can come to the conclusion that heat dissipation 
efficiency affects the output power significantly. 

1.2.2 Synchrotron radiation (SR) 
Apart from conventional X-ray tubes, synchrotron radiation is treated as 
an irreplaceable X-ray source and has greatly pushed forward the 
boundaries of basic research and high-tech applications owing to many 
fascinating features. With the increase of energy in the storage rings, the 
wavelength of the synchrotron radiations shifts from ultraviolet, soft X-
rays to the range of hard X-rays. In other words, the SR facility is a 
comprehensive light source with a rather wide spectrum. 

Rigorously speaking, the scientific definition of synchrotron radiation is 
electromagnetic radiation emitted by a relativistic charged particle when 
it moves along a circular orbit under the influence of a magnetic field. 

https://en.wikipedia.org/wiki/X-ray
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As a matter of fact, two conditions should be fulfilled simultaneously to 
produce synchrotron radiation: one is a charged particle travelling at a 
high speed that is comparable to that of light; the other is existence of a 
magnetic field that changes the motion of the charged particles. In 
principle, all charged particles (such as electrons, positrons and ions) can 
be injected into the storage rings. However, electrons are exclusively 
used in practical situation because they are easily attainable using an 
electron gun and it takes much less energy to accelerate them compared 
with other heavier ions.  

Before synchrotron radiation was discovered, it is already known that 
that high-speed electrons emit radiation when their velocities change. In 
1873, Maxwell proved that the variation of charge density and circuit can 
radiate electromagnetic waves; 14 years later, Hertz proved the existence 
of the electromagnetic wave in 1887, which formed a complicated 
theoretical basis for synchrotron radiation; in 1897, Sir Joseph Larmor 
derived an expression from classical electrodynamics for the power 
radiated by an accelerated charged particle; only one year later, A. 
Liénard derived the equation of radiated power by the electrons 
undergoing centripetal acceleration in a circular trajectory. Followed by 
that, Schott gave the expressions for the angular distribution of the 
radiation as a function of the harmonic of the orbital frequency in 1907. 
In 1940s, the synchrotron radiation became a reality. D. Iwanenko and I. 
Pomeranchuk [2] made predictions of synchrotron radiation in 1944, and 
the first indirect observation of synchrotron radiation (SR) was made by 
Blewett [3] in 1945. The year of 1947 witnessed a milestone in the 
history of artificial light sources - synchrotron radiation was visually 
observed for the first time at the 70-MeV synchrotron source of General 
Electric Company (GE) (Fig. 5) in Chicago, USA.  
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Figure 5 – A 70-MeV synchrotron source built by General Electric Company (GE) [4]. 

The systematic theory on the emission of electromagnetic radiation by a 
charged particle moving along a circular orbit at relativistic velocity was 
proposed by Julian Schwinger [5] in 1949. In 1956, early utilization of 
synchrotron radiation was achieved by D. H. Tomboulian [6] at 300 MeV 
Cornell Synchrotron at Cornell University. In 1965, SR utilization 
started at DESY, Germany. In 1968, the first SR light source 
(“Tantalus”) was constructed at Wisconsin University and it was actually 
converted from a colliding machine prototype to SR light source, 
namely, parasitic use. It was soon realized that the first-generation 
synchrotron radiation was a comprehensive light source with excellent 
performance, but was severely constrained by the original design. To 
make full use of this excellent source, the second-generation radiation 
source (also known as “bending magnet”) started to appear in late 1970s 
and it was considered as a dedicated source because it no longer served 
for high-energy physics experiments. As time went by, the current SR 
facilities could not meet the increasing demands for higher quality X-
rays and this led to the advent of optimized SR sources by introducing 
the so-called “insertion devices”. In fact, the insertion devices are 
periodic magnetic arrays which force the injecting electrons to move on 
sinusoidal or elliptical trajectories. In 1990s, quite a few large third-
generation sources began to spring up worldwide, among which the 
European Synchrotron Radiation Facility (ESRF) in France, Advanced 
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Photon Source (APS) in the USA and SPring-8 synchrotrons in Japan 
were three typical examples and some of their key parameters are listed 
in Table 1. 

Table 1 – Some parameters of the above mentioned SR sources: ESRF, APS and Spring-8. 

SR 

source 

Energy 

(GeV) 

Current 

(mA) 

Circumference 

(m) 

Emittance 

(nm.rad) 

Straight 

section 

(m) 

ESRF 6.0 200 844.4 3.7 32×6.3 

APS 7.0 100 1104 3.0 40×6.7 

SPring-

8 

8.0 100 1436 2.8 44×6.4, 

4×30 

 
The third-generation synchrotron sources were constructed with long 
straight sections to house the insertion devices (wigglers and undulators) 
to maximize the intensity of the generated radiation. One should note that 
the spectrum of wigglers is similar to that of a bending magnet but with 
higher brilliance, and the wavelength of the radiation is shifted towards 
the shorter wavelength. This is owing to alternating polarity of several 
dipole magnets and the total beam can be regarded as an incoherent sum 
of each independent beam emitted by the dipoles. Nevertheless, when it 
comes to the undulator scheme, the beam is considered as a coherent sum 
due to the periodic structure of dipole magnets. By comparing these two 
types of insertion devices, we find that undulators can deliver a narrower 
radiation cone with a more intense beam by using smaller and lower field 
bending and selected wavelengths, or alternatively, harmonics can be 
tuned by manipulating the magnetic field of the device by means of 
changing the gap. Fig. 6 depicts three different mechanisms of producing 

https://en.wikipedia.org/wiki/Dipole_magnet
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SR (bending magnet, wiggler and undulator) and Fig. 7 shows their 
corresponding flux versus photon energy by using XOP 2.4 [7]. 

 

Figure 6 – The flux (F) of synchrotron radiation produced by three different mechanisms. γ =
𝐸𝐸 𝑚𝑚𝑚𝑚2⁄  and equals 1957𝐸𝐸[GeV] for electrons and N is the number of magnetic periods. 

 

(a) the flux of a bending magnet (cone radiation). 
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(b) the flux of a wiggler. 

 

(c) the flux of an undulator. 

Figure 7 – The flux of synchrotron radiation produced under three different mechanisms; (a) the 
flux of a bending magnet, (b) the flux of a wiggler and (c) the flux of an undulator. 

In order to make the readers have an intuitive understanding of the 
internal structure of synchrotron radiation facility, we simply choose 
ESRF as an example given in Fig. 8.  
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Figure 8 – A schematic drawing of ESRF (before the upgrade programme-EBS) labelled with 
some key elements. Note that BM denotes the beamline generated under a bending magnet 
mechanism, while ID denotes that produced by the undulator (reproduced from 
https://www.esrf.eu and has been modified). 

In general, four key components make up a complete synchrotron 
facility: a linear accelerator (LINAC), a booster ring, a synchrotron ring, 
synchrotron radiation beamlines and their affiliated experimental 
workstations. The LINAC is used to accelerate the electrons to 20000 
keV before being injected into the booster ring; a booster ring is where 
the electrons are accelerated up to the order of GeV (for instance, the 
energy of ESRF storage ring is 6 GeV); a storage ring in which the 
electrons are further accelerated close to the speed of light and X-rays 
are then produced tangential to the plane of orbit. To make full use of 
this valuable resource, the synchrotron elicited from a storage ring is 

https://www.esrf.eu/
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filled in the experimental hall and the scientists from different groups are 
able to perform a variety of experiments at the same time. 

The notable characteristics of synchrotron radiation are summarized 
here:  

(1) Extremely high brilliance; as has been demonstrated in Fig. 3, the 
brilliance of SR facilities is more than a billion times higher than 
laboratory X-ray tubes. Brilliance is a term that describes both the 
brightness and the angular spread of the beam. Higher brilliance makes 
it possible to see more detail in the material under investigation. That is 
why the request for increased brilliance is so crucial. 

(2) A wide and tunable spectrum; SR generated by both bending magnets 
and wigglers has a wide and continuous spectrum within X-ray’s range, 
by contrast, the radiation emitted by the undulator can be seen as sharp 
quasi-monochromatic peaks.  

(3) Pulsed time structure in the order of nanoseconds; a relativistic 
electron is usually characterized by the following relativistic factor 𝛾𝛾 =

1

�1−�𝑣𝑣𝑐𝑐�
2 = 1

�1−𝛽𝛽2
, where 𝛽𝛽 is the factor of velocity 𝑣𝑣 normalized by the 

speed of light in vacuum 𝑚𝑚 (𝛽𝛽 = 𝑣𝑣
𝑐𝑐
). The Lorentz force for a relativistic 

electron in a constant magnetic field is given:  

                                           𝐅𝐅 =  𝑑𝑑𝐏𝐏
𝑑𝑑𝑡𝑡

= −𝑒𝑒𝐯𝐯 × 𝐔𝐔                                 (1.1) 

where 𝐏𝐏 =  𝛾𝛾𝑚𝑚𝐯𝐯, 𝐔𝐔 is the magnetic field.  
In a constant magnetic field, the change rate of the electron’s energy 
should be equal to 0, namely,  
                                  𝑑𝑑𝐸𝐸𝑒𝑒

𝑑𝑑𝑡𝑡
= 𝐯𝐯 ∙ 𝐅𝐅 = −𝑒𝑒𝐯𝐯 ∙ (𝐯𝐯 × 𝐔𝐔) ≡ 0                         (1.2) 

By substituting 𝐸𝐸𝑒𝑒 = 𝛾𝛾𝑚𝑚𝑚𝑚2 into above Eqn. (1.2), we can obtain 
                                          𝑑𝑑𝐸𝐸𝑒𝑒

𝑑𝑑𝑡𝑡
= 𝑑𝑑

𝑑𝑑𝑡𝑡
(𝛾𝛾m𝑚𝑚2) = 0                                 (1.3) 
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It can be inferred that 𝛾𝛾 = constant  and the force equation in (1.1) 
becomes:  
                                   𝐅𝐅 = 𝑑𝑑𝐏𝐏

𝑑𝑑𝑡𝑡
= 𝛾𝛾m 𝑑𝑑𝐯𝐯

𝑑𝑑𝑡𝑡
= −𝑒𝑒𝐯𝐯 × 𝐔𝐔                                  (1.4) 

By rewriting the equation in the scalar form as: 

                                            𝛾𝛾m(−𝑣𝑣
2

𝑅𝑅
) = −𝑒𝑒𝑣𝑣𝑒𝑒                                    (1.5) 

with 𝑒𝑒 = m𝛾𝛾𝑐𝑐
𝑅𝑅𝑒𝑒

 and 𝑅𝑅 being the radius of the orbit. 
The duration of the radiation pulse is equal to the time difference 
between the time required for the electron to pass through the arc and for 
the light to go through its corresponding chord. The duration of the 
radiation pulse is thus denoted as: 
                         ∆𝑛𝑛 = arc length

𝑣𝑣
− chord length

𝑐𝑐
≈ 𝑅𝑅∙2𝜃𝜃

𝑣𝑣
− 2𝑅𝑅∙sin𝜃𝜃

𝑐𝑐
            (1.6) 

The two approximations of 𝜃𝜃 ≈ 1
2𝛾𝛾

 and sin𝜃𝜃 ≈ 𝜃𝜃 are applied here due to 

the smallness of 𝜃𝜃 angle. Then by substituting 𝑣𝑣 =  𝛽𝛽𝑚𝑚 into the above 
equation, we can deduce the duration of the pulse as: 
                                            ∆𝑛𝑛 ≈ 𝑅𝑅

𝛾𝛾𝛽𝛽𝑐𝑐
(1 − 𝛽𝛽)                                    (1.7) 

By substituting (1 − 𝛽𝛽) ≈ 1
2𝛾𝛾2

 and 𝑅𝑅 ≈ 𝛾𝛾𝛾𝛾𝑐𝑐
𝑒𝑒𝑒𝑒

 into Eqn. (1.7), it is 

transformed into: 
                                                ∆𝑛𝑛 ≈ m

2𝑒𝑒𝑒𝑒𝛾𝛾2
                                         (1.8) 

By substituting the values for electrons, the duration the pulse is between 
0.01-1 nanosecond or even shorter. 

(4) Low emittance as a result of the smallness of both the source size and 
angular distribution of the beam; the emittance of the synchrotron 
radiation, 𝜖𝜖, which is defined as the product of both the horizontal and 
vertical emittance. It is known that the intensity is inversely proportional 
to the cross section area of the beam, a small extension in space means 
large intensity and is desirable. For the second-generation SR, the 
emittance is of the order of several hundred nm rad, but the emittance of 
the third-generation SR sources is significantly reduced to 5-20 nm rad. 
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(5) A high level of polarization; the radiation is plane polarized in the 
plane of orbit. As the direction of observation deviates from the plane of 
the orbit, the radiation becomes elliptically polarized. Recently, a planar 
undulator [8] has been designed to generate variably polarized radiation 
and a helical undulator [9] has been employed to produce circularly 
polarized radiation. 

(6) High coherence due to the smallness of the source size and very long 
source-to-sample distance in the third-generation facilities; coherence is 
another key parameter that reflects the degree to which SR can produce 
detectable wave-like effects like diffraction and interference. Good 
coherence allows to observe very weak perturbations of X-ray’s 
wavefront and turns out to be useful in some practical techniques, in 
particular, phase contrast imaging [10]. It becomes a reality that 
coherence-enhanced SR sources have been built and it is important to 
note that coherence includes both temporal (or longitudinal) and spatial 
(or lateral) coherence. Temporal coherence usually refers to the 
coherence of the electromagnetic disturbances at two points along the 
propagation direction and can be characterized by the coherence length. 
In fact, temporal coherence is usually achieved simply by making the 
beam monochromatic with a common optical device called 
“monochromator”, which will be introduced in detail in the following 
chapter and it is thus estimated by the energy resolution of the 
monochromator (∆𝜆𝜆/𝜆𝜆). Correspondingly, spatial or lateral coherence 
refers to the disturbance perpendicular to the propagation direction and 
is described by the spatial extension 𝛥𝛥𝑦𝑦 of the beam (Fig. 9).  
Here we assume two emitting point sources with 𝛥𝛥𝑦𝑦 apart for illustration 
and the condition for coherence is then given by 𝛥𝛥𝑦𝑦 ∙ 𝛺𝛺𝑦𝑦 < 2𝜆𝜆 , 
where 𝛺𝛺𝑦𝑦 =  𝑑𝑑/𝐷𝐷 . Since the sample-to-detector for synchrotron 
facilities may reach more than one hundred meters, it may significantly 
decrease 𝛺𝛺𝑦𝑦  and thus has a positive effect on the increase of spatial 
coherence. 
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Figure 9 – Definition of spatial coherence (http://photon-science.desy.de). 

 Current development of synchrotron radiation 
In spite of these prominent features that the current synchrotron radiation 
facilities possess, the scientists are still in pursue of delivering even 
higher quality beams. The ESRF, as a pioneer in synchrotron radiation 
and synchrotron-based technologies, launched an ambitious upgrade 
programme - the Extremely Brilliant Source (EBS) in 2015 to maintain 
its lead in this field. The main focus of EBS project is the design and 
implementation of a new low-emittance storage ring to be built in the 
existing tunnel and the brilliance of the upgraded synchrotron ring is 
expected to be at least 100 times more brilliant than the current one. In 
addition, this programme also involves in constructing four brand new 
EBS flagship beamlines and refurbishing three existed beamlines. In 
addition, new platforms of cryo-EM (for structure determination purpose 
of biological macromolecules without crystallization) and high-power 
laser facility (for the purpose of creating exotic states of the sample at 
ultra-high temperatures and pressures) will be developed, conducting 
currently unavailable experiments. In parallel, proper exploiting the 

http://photon-science.desy.de/
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EBS’s outstanding X-ray properties calls for advanced instrumentation, 
such as more powerful detector systems and robust X-ray optical 
devices. Besides, data processing efficiency should be enhanced, which 
includes real-time data visualization, data storage and rapid data 
processing. 

However, the well-planned upgrade projects is still not counted as a cut-
edge innovation. The development of the brand new fourth-generation 
synchrotron radiation is an inevitable trend and will be of great use in 
revealing physical and chemical characterizations at even smaller scale 
(down to nano-scale). At present, diffraction-limited storage rings 
(DLSR) [11, 12] and X-ray free electron laser (XFEL) [13-15] make up 
two mainstreams of the fourth-generation light sources. Diffraction-
limited storage rings (DLSR), also called “ultra-low emittance storage 
rings”, refer to the synchrotron facilities where the emittance of the 
electron-beam in the storage ring is smaller or at least comparable to the 
emittance of the X-ray photon beam they produce at the end of 
their insertion devices. An already existing DLSR is MAX IV located in 
Lund, Sweden and other facilities such as Sirius (Campinas, Brazil) and 
Advanced Photon Source (Argonne, USA) are also under construction. 
It turns out that the brilliance of DLSR is increasing by several orders 
compared with the third-generation SR but they still cannot compete with 
XFEL, especially in the aspect of peak brightness. The extremely high 
peak brightness and femtosecond pulse duration of XFEL make it ideal 
for ultra-fast resolution and single-shot experiments, for example, 
German scientists [16] have already conducted crystallography 
experiments at the European XFEL (Germany) to reconstruct three 
different protein molecules by taking thousands of pictures. 

 Introduction to Takagi-Taupin (T-T) equations  
After a brief review of the experimental part, we should turn our eyes 
upon the corresponding theoretical investigations, such as how waves 
propagate inside the crystal.  

https://en.wikipedia.org/wiki/Synchrotron_light_source
https://en.wikipedia.org/wiki/Beam_emittance
https://en.wikipedia.org/wiki/Insertion_devices
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The Takagi-Taupin equations play a dominant role in the dynamical 
theory of X-ray diffraction. Before introducing the Takagi-Taupin 
equations, let us briefly review the history of the dynamical theory. The 
first dynamical theory was formulated by Darwin in 1914 [17], then 
Ewald extended this theory to X-rays’ case in 1916 [18]; Followed by 
that, Laue [19, 20] solved Maxwell’s equations in a periodic medium 
(crystal) in the form of what now is known as Bloch-waves (wavefields) 
in 1931. Since X-rays are essentially electromagnetic waves, their 
propagation in the continuous medium is to be governed by the 
celebrated Maxwell’s equations [21]: 

∇  × 𝐇𝐇 = ∂𝐃𝐃
∂t

+ 𝐣𝐣, 

                                             ∇  ×  𝐄𝐄 = −∂𝐔𝐔
∂t

,                                     (1.9) 

∇  ∙  𝐄𝐄 = 𝜌𝜌, 

∇  ∙  𝐔𝐔 = 0. 

The Maxwell equations of SI units are used. In this equation set, 𝜌𝜌 is the 
density of current; the electric field 𝐄𝐄, the magnetic induction 𝐔𝐔, the 
electric displacement 𝐃𝐃 and the magnetic field 𝐇𝐇 are related. 𝐃𝐃 and 𝐔𝐔 
are related to the electric field 𝐄𝐄 and the magnetic induction 𝐔𝐔 by the 
material relations: 𝐃𝐃 = 𝜖𝜖𝐄𝐄  and 𝐔𝐔 = 𝜇𝜇𝐇𝐇  with 𝜖𝜖  being the dielectric 
constant and 𝜇𝜇 being the magnetic permeability.  

The basic assumption made by Laue is the positive and negative charges 
are distributed continuously throughout the entire crystal. Globally, due 
to the neutrality of the crystal, the local electric charge and density of 
current equal zero, and the Maxwell’s equations are reduced to: 

∇  × 𝐇𝐇 = ∂𝐃𝐃
∂t

, 

                                             ∇  ×  𝐄𝐄 = −∂𝐔𝐔
∂t

,                                   (1.10) 
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∇  ∙  𝐄𝐄 = 0, 

∇  ∙  𝐔𝐔 = 0. 

The medium is polarized induced by the electric field and 𝐄𝐄 = 𝐃𝐃/𝜖𝜖, with 
𝜖𝜖 being denoted as 𝜖𝜖 = 𝜖𝜖0(1 + 𝜒𝜒), where 𝜒𝜒 characterizes the continuous 
dielectric susceptibility, or polarizability, and can be expanded in a 
Fourier series because it is triply periodic. By eliminating 𝐃𝐃, 𝐇𝐇 and 𝐔𝐔 in 
(1.10), a wave equation for the electrical field can be obtained: 

                            ∇  × (∇  × 𝐄𝐄) − 4𝜋𝜋2𝑘𝑘2(1 + 𝜒𝜒)𝐄𝐄 = 0                       (1.11) 

where 𝑘𝑘 is the wave number, given by 𝑘𝑘 = 1/𝜆𝜆. It is worth mentioning 
that in the case of hard X-rays, 𝜒𝜒 is much smaller than 1, the electric field 
can be approximated as: 

                                      𝐄𝐄 = 𝐃𝐃
𝜖𝜖0(1+𝜒𝜒)

≃ 𝐃𝐃
𝜖𝜖0

(1 − 𝜒𝜒)                            (1.12) 

Using this expression and eliminating 𝐇𝐇 in the first two equations of 
Maxwell’s equations (Eqn. (1.10)), one can obtain: 

                             ∆𝐃𝐃 + ∇  × ∇  × (𝜒𝜒𝐃𝐃) + 4𝜋𝜋2𝑘𝑘2𝐃𝐃 = 0                    (1.13) 

This equation is simply named the “propagation equation” as it describes 
the propagation of an electromagnetic wave in the crystalline medium. 

Combining the Fourier series of the polarizability, the wavevectors 
relation: 𝐾𝐾0 + ℎ = 𝐾𝐾ℎ (𝐾𝐾0 being the refracted wavevector and 𝐾𝐾ℎ being 
the diffracted wavevector) and the Bloch’s theorem: 𝐷𝐷 =
∑ 𝐷𝐷ℎ exp(−2𝜋𝜋𝜋𝜋 𝐊𝐊h ∙ 𝐫𝐫) = 0ℎ , we can obtain the relation for all the 
Fourier coefficients:  

  ∑ [4𝜋𝜋2(𝐾𝐾2 − 𝐾𝐾ℎ2)𝐃𝐃𝐡𝐡 − 4𝜋𝜋2 ∑ 𝜒𝜒ℎ−ℎ′[𝐾𝐾ℎ × (𝐾𝐾ℎ × 𝐃𝐃𝐡𝐡′)]ℎ′ ] = 0ℎ  (1.14) 

When all the Fourier coefficients are equal to zero, the equation 
satisfying all the wavevectors 𝐾𝐾ℎ becomes:   
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                  (𝐾𝐾2 − 𝐾𝐾ℎ2)𝐷𝐷ℎ − ∑ 𝜒𝜒ℎ−ℎ′[𝐾𝐾ℎ × (𝐾𝐾ℎ × 𝐷𝐷ℎ′)] = 0ℎ′        (1.15) 

This is the fundamental equation of the dynamical theory of X-ray 
diffraction.  

One should be aware that the Darwin’s, Ewald’s and Laue’s dynamical 
theories are only valid for plane waves and applied to perfect crystals 
with the crystal geometry of plane parallel slab. However, the rigorous 
plane wave does not exist since all the current X-ray sources are 
considered to produce spherical waves and real crystals may have 
imperfections as well. Therefore, this theory had to be developed in order 
to extend to the case of spherical waves. This led to birth of the well-
known Takagi-Taupin equations (T-T equations), which is considered as 
a big milestone in the dynamical theory of X-ray diffraction.  

It has been common knowledge that numerous laws, especially in the 
field of natural science and economics, can be formulated as differential 
equations that relates one or more functions and their derivatives. In 
general, differential equations can be classified to ordinary differentials 
equations, partial differential equations and nonlinear partial differential 
equations. In real applications, the functions represent physical 
quantities, and the derivatives represent their rates of change and 
differential equations define the relationship between them. The 
principle also applies to the dynamical theory of X-ray diffraction. 
Initially, T-T equations was formulated by Takagi [22, 23] who aimed to 
generalize the dynamical theory for any type of beam incident onto 
imperfect crystals with arbitrary deformation. In 1964, Taupin [24] 
independently derived equations which are quite similar to Takagi’s 
equations, and it turns out that these two equations are equivalent except 
a minor difference in the choice of wavevectors. In honour of their 
outstanding contributions, these equations are then named as “T-T 
equations”. The T-T equations are derived on the basis of the classical 
Maxwell’s and are generally considered to possess a solid basis. With 
regard to the sample geometry, a typical geometry discussed by 
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Borrmann & Lehmann [25] is semi-infinite flat crystal with lateral 
surfaces taken into account. 

In fact, T-T equations consist of two partial differential equations (PDEs) 
and can be expressed in the following form: 

                                    ∂𝐷𝐷0(𝐫𝐫)
∂𝑥𝑥𝑜𝑜

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ�𝐷𝐷ℎ(𝐫𝐫);                                 (1.16a) 

                     ∂𝐷𝐷ℎ(𝐫𝐫)
∂𝑥𝑥ℎ

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ𝐷𝐷0(𝐫𝐫) + i ∙ 2𝜋𝜋𝑘𝑘𝛽𝛽ℎ𝐷𝐷ℎ(𝐫𝐫)                 (1.16b) 

In this equation,𝐷𝐷0(𝐫𝐫)  and 𝐷𝐷ℎ(𝐫𝐫)  represent the amplitudes for the 
refracted and diffracted beams, 𝐫𝐫 is the position vector in real space, 𝑥𝑥𝑜𝑜 
and 𝑥𝑥ℎ represent the unit vectors along the direction of the transmitted 
and diffracted beams, respectively. 𝜋𝜋 stands for the polarization factor 
and equals 1 for σ polarization and cos 2𝜃𝜃𝑒𝑒 for π polarization with 𝜃𝜃𝑒𝑒 
being the exact Bragg angle, 𝜒𝜒ℎ and 𝜒𝜒ℎ� are the Fourier coefficients of 
dielectric susceptibility, 𝛽𝛽ℎ  is the resonance error describing the 
deviation from the exact Bragg condition for a specific lattice plane. 

As for the solutions to this equation set, the T-T equations do not usually 
have analytical solutions, instead, they can be solved by using the 
Riemann-Green method [26]. Nevertheless, there are still two special 
cases where analytical solutions are obtained: one is that the incident X-
ray radiation impinges onto a perfect crystal and the X-rays are produced 
by a spherical source; the other case is that the crystal is deformed but 
with a constant strain gradient.  

If a sample used in an experiment is highly perfect, as a good reference, 
we consider the perfect crystal case. Based on this assumption
the term i ∙ 2𝜋𝜋𝑘𝑘𝛽𝛽ℎ𝐷𝐷ℎ(𝐫𝐫) in Eqn. (1.16b) can be omitted because 𝛽𝛽ℎ can 
be put to zero after a proper choice of the wavevectors. The two 
equations are then transformed to Eqn. (1.17) and it is easily recognized 
that they possess the intrinsic hyperbolic nature.  
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                                      ∂𝐷𝐷0(𝐫𝐫)
∂𝑥𝑥𝑜𝑜

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ�𝐷𝐷ℎ(𝐫𝐫),                         (1.17a) 

                                      ∂𝐷𝐷ℎ(𝐫𝐫)
∂𝑥𝑥ℎ

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ𝐷𝐷0(𝐫𝐫).                         (1.17b) 

These equations are also consistent with both the experimental and 
theoretical results, i.e., the characteristic lines of these two equations are 
completely overlapped with the refracted beam and reflected beam 
which constitute the so-called “Borrmann triangle” (also referred to as 
Borrmann fan) and this explains the formation of the Borrmann triangle 
in a mathematical sense [27]. 

The T-T equations have some practical applications where the 
deformation within the crystal is not negligible. In these cases, 
researchers usually take advantage of the computational method to solve 
the T-T equations and this may provide insight into X-ray optical 
devices, for instance, Mocella [28] resolved the Takagi-Taupin equations 
for X-ray optics and applies to a thermally deformed crystal 
monochromator with an assumption of incoherent X-ray source 
illumination; Honkanen [29] developed a computationally efficient 
method to calculate the reflectivity curve of a large deformed crystal and 
it turns out that the theoretical and experimental reflectivity curves show 
profound agreement. 

 Summary 
It has been well demonstrated that synchrotron sources have many 
fascinating advantages. The most important advantage of synchrotron 
radiation over a lab X-ray source is its brilliance. In general, the 
brilliance of synchrotron sources is more than a billion times higher than 
conventional X-ray lab sources. Higher brilliance makes it possible to 
‘see’ more detail in the sample under investigation. That is why the 
request for increased brilliance is so crucial. In addition, some other 
useful properties of synchrotron radiation are: high energy X-ray beams 
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may well penetrate into the sample and are suitable for digging into tiny 
features; synchrotron beams can be highly coherent, which is appropriate 
for permitting specific experiments; pulsed time structure can unlock the 
secret of chemical reactions on a very short time scale, etc. Until now, 
SR has been widely used for a diversity of advanced research: biology 
(macromolecular/protein crystallography [30]), chemistry (the operation 
of catalysts in large chemical engineering processes [31]), materials 
science (high resolution imaging [32] with the aim of nanoscale-imaging 
of surfaces, thin films and porous materials), environmental sciences and 
agriculture [33], industry (synchrotron X-ray imaging of industrial 
processes for industrial applications [34, 35]) and engineering (LIGA 
process [36]). Despite this, one still needs to focus the beam in cases of 
small sample, weak scattering objects and the possibility of imaging.  
The background for, and details of X-ray’s focusing devices will be 
discussed in detail in Chapter 2. 

In order to understand the physics of wave propagation in such devices, 
the diffraction theories have to be applied. We have thus also, in the last 
subchapter reviewed the development of the dynamical theory of X-ray 
diffraction and derived the fundamental equations of the dynamical 
theory. Followed by that, the T-T equations are discussed in detail 
because they extend the previously formulated theory to more general 
cases. 
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2 X-ray beam conditioning devices 

As has been reviewed in Chapter 1, the newly built SR sources are 
capable of producing high-quality X-ray beam with lots of desired 
properties, such as high brilliance, low emittance and good coherence. 
There was once a heated argument “no optics is the best optics”, it was 
in principle true but the required experimental conditions (a non-
modified “pink beam” which has the bandwidth on the order of ∆𝐸𝐸/𝐸𝐸 ⋍
5 × 10−2 and all should be in vacuum to avoid any contamination) are 
too harsh to be satisfied for the time being. 

Based on this, X-ray optical devices are still needed in order to deliver 
an even more optimized X-ray beam for experiments, which directly 
leads to the revival of X-ray optics - a branch of optics that aims to 
manipulate X-rays in analogy to visible light, or more specifically, the 
beam impinging on the sample should be properly conditioned to achieve 
maximum intensity, well-defined spectral and angular widths, a very 
wide but still tunable energy range, etc.  

In general, conditioning of the beam is optimized for experimental 
setups, which is usually fulfilled by a combination of monochromators 
and focusing devices. Monochromators will select a specific single 
wavelength (or energy) beam by tuning automatically, and focusing 
devices will provide a focused beam with higher intensity for the 
investigation of very small samples and trace elements in the materials. 
Both of these two types will be introduced in this chapter. 

 Monochromators 
As a matter of fact, a majority of experimental arrangements at a SR 
source require a monochromatic beam. However, SR sources produce 
polychromatic X-ray radiation and this leads to the proposal of so-called 
“monochromator” [1] (Fig. 10). 

https://en.wikipedia.org/wiki/Optics
https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Visible_light
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Figure 10 – A schematic drawing of a typical monochromator in the so-called (+,−) setting. The 
notation (+,−) means that the incident beam on the first crystal and the reflected beam from the 
second crystal are on the different side of the crystals and is depicted in the figure above; in 
comparison, the (+, +) monochromator arrangement represents that the incident and reflected 
beams come from the same sides of the crystals. Besides, one should note that the widely used 
nomenclatures (+𝑛𝑛, +𝑛𝑛) and (+𝑛𝑛,−𝑛𝑛) represent the reflections come from identical reflections 
of the same order lattice planes (𝑛𝑛𝑛𝑛ℎ order). 

The word “monochromator” originally comes from Greek, which 
literally means a device capable of separating light having different 
colours into one. In the early days, monochromatization of the incident 
beam could only be done by choosing appropriate absorbing filters; later 
on, it was realized that a better way was taking advantage of Bragg 
reflection of the incident beam on a crystal since the atoms in the crystal 
are arranged periodically in three-dimensional space and each of them is 
considered as a scatterer. Under the excitation of the incoming X-ray 
beam, these independent scatterers are then forced to vibrate and emit 
scattered waves that have the same wavelength as the source but differ 
in directions. In other words, it is elastic scattering essentially. As a 
result, destructive interference may occur in most directions; however, 
in some specific directions, constructive interference may be produced 
because of phase interference. Based on this mechanism, the crystal 
monochromator is able to select radiation of a single wavelength or 
energy from a wider range of wavelengths. 



X-ray beam conditioning devices 

31 

Since most monochromators work in Bragg geometry, Bragg’s law will 
be briefly reviewed here. In 1913, Bragg diffraction was proposed by 
Lawrence Bragg and his father William Henry Bragg [2] in order to 
interpret Laue’s diffraction pattern that crystalline solids produce sharp 
peaks of reflected X-rays at some specific wavelengths and incident 
angles. In essence, Bragg's law is equivalent to the interference equation 
and is a special case of Laue diffraction. In fact, Bragg's law transforms 
the problem from the reciprocal space to the direct space and accounts 
for the result of X-ray interference without involving the physical 
process of diffraction. Bragg's law can be directly derived from the 
concept of crystal reflection, as is shown in Fig. 11. When the scattered 
waves interfere constructively, they remain in phase since the optical 
path of the two waves (𝑃𝑃𝑦𝑦′𝑄𝑄) between the adjacent lattice planes is equal 
to an integer multiple of the wavelength (Fig. 11), expressed as: 

                                             2𝑑𝑑ℎ𝑘𝑘𝑘𝑘sin𝜃𝜃𝑒𝑒 = 𝜆𝜆                                       (2.1) 

where 𝑑𝑑 is interplanar distance of the lattice planes and its subscripts ℎ𝑘𝑘𝑘𝑘 
represent the corresponding Miller indices of the lattice planes, 𝜃𝜃𝑒𝑒 is the 
angle between the incident beam and the planes, 𝜆𝜆 is the wavelength of 
the incident radiation. 

 

Figure 11 – A schematic diagram of Bragg’s law. 

https://en.wikipedia.org/wiki/Interference_(wave_propagation)
https://en.wikipedia.org/wiki/Integer
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One should pay attention to the fact that the refraction effect indeed 
occurs when the radiation is incident onto the entrance surface (vacuum-
to-crystal), however, when the reflected (diffracted) beam exits from the 
same interface (crystal-to-vacuum), the refraction effect takes place 
again and these two cancel out each other. In consequence, we can 
neglect the refraction effect in this case. In addition, it is worth 
mentioning that Bragg’s law is also applied to the cases of neutron and 
electron diffraction. In spite of its simple form, Bragg’s law plays a vital 
role in determining the structure of crystals by analysing the diffraction 
patterns recorded on films or detectors. 

When evaluating the performance of monochromators, it is necessary to 
study its bandwidth and this is usually done by differentiation the 
Bragg’s law in Eqn. (2.1): 

                                        ∆𝜆𝜆 = 2𝑑𝑑ℎ𝑘𝑘𝑘𝑘 cos𝜃𝜃𝑒𝑒 ∙ ∆𝜃𝜃                                (2.2) 

where ∆𝜆𝜆  characterizes the range of the reflected wavelength, ∆𝜃𝜃 
characterizes the angular divergence of the beam diffracted by the crystal 
and other parameters have their usual meanings.                                                 
The bandwidth is then denoted as: 
 
                                  ∆𝜆𝜆

𝜆𝜆
= ∆𝐸𝐸

𝐸𝐸
= cos𝜃𝜃𝐵𝐵∙∆𝜃𝜃

sin𝜃𝜃𝐵𝐵
= cot𝜃𝜃𝑒𝑒 ∙ ∆𝜃𝜃                     (2.3) 

The divergence of the beam diffracted by the crystal depends on both the 
‘full width at half maximum’ (FWHM) or Darwin width (2𝛿𝛿𝑜𝑜𝑜𝑜) of the 
rocking curve and the natural divergence of the incident beam, 𝛺𝛺. The 
so-called “rocking curve” [3, 4] (a plot of experimental data which 
depicts the relationship between X-ray intensity VS rocking angles and 
the  rotational direction is along 𝜔𝜔-axis shown in Chapter 3) is usually 
used to reveal broadening of diffraction peaks caused by imperfections 
of the crystal, such as mosaicity, strain, etc.). Here one should distinguish 
the experimentally obtained rocking curve from the theoretical 
reflectivity curve, in fact, the former can be seen as a convolution of the 
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theoretical reflectivity curve, apparatus function and broadening due to 
various kinds of defects [5]. 

The energy resolution can then be expressed as a quadratic sum of these 
two terms: ∆𝜃𝜃 = �𝛺𝛺2 + (2𝛿𝛿𝑜𝑜𝑜𝑜)2. In general, the monochromator works 
in the ( +𝑛𝑛,−𝑛𝑛 ) non-dispersive setting (Fig. 12), which means the 
reflecting planes of the two crystals are parallel. More specifically, if ray 
1 (black) satisfies Bragg’s condition on the crystal and ray 2 (red) for 
another wavelength, both of them will satisfy Bragg’s condition on the 
second crystal, the setting is said to be non-dispersive.  

 

Figure 12 – Experimental arrangement of a monochromator in (+𝑛𝑛,−𝑛𝑛) non-dispersive setting. 

It is to be noted that in this special case, the energy resolution of the 
monochromator is solely dependent on the width of the rocking curve. 
Based on the dynamical theory of X-rays, the FWHM of highly perfect 
crystals is smaller than that of imperfect crystals and that is why a 
monochromator is often fabricated out of perfect crystals, such as 
germanium (Ge), silicon (Si) and even locally dislocation free diamond 
(C). Most monochromators work in the reflection or Bragg geometry and 
the key parameter - Darwin width (2𝛿𝛿𝑜𝑜𝑜𝑜) [6] is used and given by:                    

                               2𝛿𝛿𝑜𝑜𝑜𝑜 = 2𝑅𝑅𝜆𝜆2

𝜋𝜋 𝑉𝑉 sin2𝜃𝜃𝐵𝐵
�|𝛾𝛾||𝜋𝜋|�𝐹𝐹ℎ𝐹𝐹ℎ�                        (2.4) 

In this equation, 𝑅𝑅 is the classical radius of the electron and reflects the 
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strength of the interaction process, 𝜆𝜆  is the wavelength of incoming 
beam, 𝑉𝑉 is the volume of the unit cell, 𝛾𝛾 is the asymmetry ratio, 𝜋𝜋 is the 
polarization factor, the structure factor 𝐹𝐹ℎ  is used to describe the 
amplitude and phase of a wave diffracted from lattice planes of Miller 
indices ℎ, 𝑘𝑘, 𝑘𝑘 while 𝐹𝐹ℎ� corresponds to those with negative ℎ,𝑘𝑘, 𝑘𝑘. 
By substituting Eqn. (2,1) and (2.4) into (2.3), and using the “double-
angle” identity of sin(2𝜃𝜃𝑒𝑒) = 2sin(𝜃𝜃𝑒𝑒)cos(𝜃𝜃𝑒𝑒), the bandwidth of the 
monochromator can be written as: 

 ∆𝜆𝜆
𝜆𝜆

= cos𝜃𝜃𝐵𝐵
sin𝜃𝜃𝐵𝐵

∙ 2𝑅𝑅(2𝑑𝑑ℎ𝑘𝑘𝑘𝑘sin𝜃𝜃𝐵𝐵)2

𝜋𝜋 𝑉𝑉 2sin𝜃𝜃𝐵𝐵cos𝜃𝜃𝐵𝐵
�|𝛾𝛾||C|�𝐹𝐹ℎ𝐹𝐹ℎ� 

                             = 4𝑅𝑅𝑑𝑑ℎ𝑘𝑘𝑘𝑘2

𝜋𝜋 𝑉𝑉
�|𝛾𝛾||C|�𝐹𝐹ℎ𝐹𝐹ℎ�                                       (2.5) 

It has been textbook knowledge that the lattice spacing 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 for higher 
order reflections is smaller and the corresponding Bragg angle 𝜃𝜃𝑒𝑒  is 
larger. In other words, high order reflections have narrower bandwidths 
compared with lower order reflections, but this is at the cost of loss of 
intensity. 

As for the selection of monochromator crystal, two parameters should be 
taken into consideration carefully when evaluating its performance: one 
is the energy resolution (or bandwidth) and the other is the resistance to 
the strong heat load. Now let us move on to the second one. When a 
monochromator is heated, thermal gradients are to set up across the 
crystal and then may cause distortions, which severely deteriorate its 
optical performance. Therefore, these undesired effects should be 
minimized by taking advantage of cooling methods. By now, two 
methods have been commonly used, they are water-cooling and 
cryogenic cooling, respectively. Either can be chosen in real experiment 
depending on the heat load needs to be dissipated and other specific 
experimental requirements. In comparison, Cryogenic cooling is 
considered more efficient than water-cooling because for the most 
common monochromator material-silicon, the ratio of the thermal 
conductivity coefficient 𝑘𝑘  to the thermal expansion coefficient 𝛼𝛼 
(characterized by 𝑘𝑘/𝛼𝛼) is far smaller at liquid nitrogen temperature than 

http://reference.iucr.org/dictionary/Miller_indices
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room temperature. Likewise, the crystals with high 𝑘𝑘/𝛼𝛼 are suitable for 
manufacturing monochromators because they are still very stable even 
though bathed in strong synchrotron radiation. In general, 
monochromators can be divided into two types: channel-cut 
monochromators (CCM) and double-crystal monochromators (DCM). 

2.1.1 Channel-cut monochromator 
A channel-cut monochromator can be used for experiments with hard X-
rays and it simply employs a crystal to be slotted in the middle and the 
beam is then diffracted by two opposite sides of the groove. Since the 
two diffractive crystals are from a single piece of crystal, they are 
integrated and this ensures good parallelism between the planes. CCM 
do not have the drawback of being instable that DCM have and can 
achieve fast tuning, high transmission efficiency and a narrow energy 
band. However, the main disadvantage is the exit beam deviate from the 
direction of the incident beam and this results in the proposal of so-called 
“four-crystal monochromator” [7] to get a fix-exit beam. 

It employs a crystal to be slotted in the middle and the beam is diffracted 
by two opposite sides of the groove. Since the two diffractive crystals 
are integrated, this type of monochromator can achieve fast tuning, 
meanwhile, the transmission efficiency is high, the energy band is 
narrow, and the structure is relatively simple. Nevertheless, when 
selecting or scanning the wavelength, the position of the output beam 
changes as the incident angle changes. 

2.1.2 Double crystal monochromators 
The double-crystal monochromator is suitable for use for all the current 
SR sources. Literally, the double crystal monochromator consists of two 
separate crystals in (+,−) configuration (Fig. 10) that are arranged in 
parallel to produce a monochromatic exit beam which is running parallel 
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to the incident white X-ray beam. By means of coaxial rotation, the 
alignment is adjusted to perform dynamic scanning. 

In fact, these two types are kind of similar and CCM can be seen as a 
simple construction of DCM and both of them are used in the 
experimental setups introduced in Chapter 3. 

 X-ray focusing devices 
A lot of useful X-ray techniques such as X-ray crystallography, small-
angle X-ray scattering, wide-angle X-ray scattering, X-ray 
fluorescence, X-ray spectroscopy and X-ray photoelectron spectroscopy 
etc., require high X-ray flux densities shining onto the sample under 
investigation and this is usually achieved by using a focusing optical 
element to focus the divergent beam from the X-ray source. What’s 
more, it turns out that focused X-ray beam is also preferred for scanning 
probe techniques such as scanning transmission X-ray microscopy and 
scanning X-ray fluorescence imaging. All these techniques benefit a lot 
from focused X-ray beam with high flux densities, which in turn, drives 
the development of X-ray focusing devices. Looking back upon the 
history, no one had been able to figure out an efficient way to focus X-
rays even 50 years after their discovery because they interact with matter 
so weakly that they are almost unable to focus. As a matter of fact, the 
pioneer of X-ray focusing optics was the discoverer - Röntgen himself, 
who had tried to focus X-rays with a prism but unfortunately, he failed 
in the end. Due to the recent progress of material science and high-
precision microfabrication technology, it has become possible to 
manufacture high-efficiency X-ray focusing components, such as X-ray 
mirrors (K-B mirrors), Fresnel zone plates (FZPs) and compound 
refractive lenses (CRLs). These will be reviewed in the following 
section. 

https://en.wikipedia.org/wiki/Wide-angle_X-ray_scattering
https://en.wikipedia.org/wiki/X-ray_spectroscopy
https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
https://en.wikipedia.org/wiki/X-ray_generator
https://en.wikipedia.org/wiki/Scanning_probe_microscopy
https://en.wikipedia.org/wiki/Scanning_probe_microscopy
https://en.wikipedia.org/wiki/Scanning_transmission_X-ray_microscopy
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2.2.1 X-ray mirrors (K-B mirrors) 
X-ray mirrors, are also usually referred to as “K-B mirrors” in honour of 
Kirkpatrick and Baez (also known as “fathers” of X-ray microscope) [8] 
who designed the prototype. It is worth mentioning that this big invention 
marks the real beginning of X-ray optics.  

In the light of geometrical optical theory, reflecting light with a single 
curved mirror may produce a severe astigmatism, focusing rays from a 
point source to a line. Since a line focus is always more desired, 
Kirkpatrick wisely proposed to place a second curved mirror at a right 
angle to squeeze the line focus from the first mirror down to a point. In 
consequence, a K-B mirror system typically consists of a pair of metal 
bars placed at right angles to each other (each with one side polished to 
a brilliant shine). In general, two geometric shapes are chosen for the 
curved surfaces: a parabolic mirror shape [9] will focus a well collimated 
beam to a point, while an elliptical mirror shape [10] will focus a point 
to another point. Fig. 13 is a sketch of K-B mirrors which are under the 
vertical configuration. 

 

Figure 13 – X-ray mirror setting; S: the source; 𝜃𝜃: the glancing angle; F: the focusing spot. 

Since K-B mirrors work by reflecting X-rays off a curved surface, one 
side of each mirror (metal bar) should be polished to a very brilliant shine 
to ensure sufficient mirror reflection and the surface roughness is thus a 
key criterion to evaluate their performance. As the grazing incidence 
angle lies in the order of several milliradians, even tiny flaw in optical 
precision will lead to unacceptable consequences. For this reason, low-
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level polishing and metal-coating techniques in 1940s largely postponed 
the mirrors’ fast application. It was not until 1970s when the scientists 
were able to make ultra-smooth surfaces; nowadays, the modern and 
advanced fabrication technology [11] is capable of polishing the material 
exquisitely, enabling to decrease the surface roughness down to 
nanometer scale (the roughness of the world’s best K-B mirrors has been 
decreased to sub-nanometer scale [12, 13]); otherwise, the rough surface 
may scatter the photons out of the focus, which significantly deteriorate 
the focusing effect. To pursue better performance in experiments, larger 
apertures are ideal and so is the critical angle. The maximum aperture of 
the mirrors does not exceed the value of the critical angle 𝜔𝜔𝑐𝑐  and its 
expression is given by Authier [6]: 

                                              𝜔𝜔𝑐𝑐 = 𝜆𝜆�𝑅𝑅𝐹𝐹0
𝜋𝜋𝑉𝑉

                                         (2.6) 

where 𝐹𝐹0 is the structure factor and the other symbols have their usual 
meanings (refer to Eqn. (2.4)). From Eqn. (2.6), it can be easily inferred 
that the critical angle increases with the atomic number, and the material 
with a heavier element is thus more suitable. Regarding the potential 
materials, the first K-B mirrors were made of glass or quartz coated with 
a reflective metal film, but today’s mirrors are typically made from 
silicon crystals polished to near-atomic smoothness and then coated with 
a very thin layer of gold or platinum down to atomic-level precision. In 
addition to functioning as an efficient focusing device for various 
experimental setups, K-B mirrors can also be implemented as an energy 
filter to select X-rays below a certain cut-off energy, for instance, they 
can remove higher-order harmonics arising from Bragg reflections from 
the monochromators. 

To conclude, compared with other focusing elements, the main 
advantage of K-B mirrors is that they are able to reflect X-rays with 
different energies uniformly and they have been installed for advanced 
coherent X-ray imaging systems. The disadvantage is also quite obvious: 
K-B mirrors are so sensitive that even a tiny roughness on the surface or 
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temperature fluctuations may deviate the beam from the focus. Besides, 
K-B mirrors are off-axis focusing elements from their operating principle 
and the calibration process is deemed to be both time-consuming and 
complicated. 

2.2.2 Fresnel zone plates (FZPs) 
A Fresnel zone plate [14] (Fig. 14) is constituted by a set of radially 
symmetric rings, which alternate between opaque and transparent. The 
zones can be spaced such that the optical path difference between the 
source and the focal point varies by 𝜆𝜆/2 from one zone to the next. 𝑺𝑺 
represents the source, 𝑭𝑭 the focal point and pn is a point on the nth zone. 
In other words, the difference between the optical paths should be 
integral multiples of 𝜆𝜆/2, denoted as: 

                        �𝑑𝑑2 + 𝑟𝑟𝑛𝑛2 + �𝑓𝑓2 + 𝑟𝑟𝑛𝑛2 − (𝑑𝑑 + 𝑓𝑓) = n𝜆𝜆/2                (2.7) 

where 𝑟𝑟𝑛𝑛 is the radius of the nth zone and n is an integer.  

 

Figure 14 – Fresnel zone plates. 

It is obvious that the Fresnel zone plates operate in the transmission 
mode, then Aristov et al. [15] proposed a new type called “Bragg-Fresnel 
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lenses” by combining the principle of Fresnel zone plates and Bragg 
diffraction, which means they work in the reflection geometry. The 
prominent advantage of the Bragg-Fresnel lenses is the beam coherence 
is preserved and thus they have been applied in many experiments 
requiring high coherence, like micro-diffraction and small-angle 
scattering. 

2.2.3 Compound refractive lenses (CRLs) 
It has been discussed that X-rays possess wave-particle duality, which 
practically means they may behave like light and some phenomena like 
refraction and reflection will also take place. As we know, refraction is 
a common physical phenomenon that describes the bending of light when 
it enters a different medium from one to another and is always described 
by the celebrated Snell’s law: 𝑛𝑛1sin𝜃𝜃1 = 𝑛𝑛2sin𝜃𝜃2 , where light enters 
medium 2 from medium 1 and the refractive index of medium 1 and 
medium 2 are 𝑛𝑛1 and 𝑛𝑛2, respectively. 𝜃𝜃1 is the angle of incidence, 𝜃𝜃2 is 
the angle of refraction. The physical interpretation for this phenomenon 
is: light is an electromagnetic wave with a high frequency and there are 
two components perpendicular to the direction of propagation, the 
electric field component 𝑬𝑬 and the magnetic field component 𝑯𝑯. When 
the electric field component 𝑬𝑬  interacts with each atom during the 
propagation, electrons in the atoms will be polarized, causing the 
electron clouds and the nucleus to be relatively displaced. As a result, 
part of the energy is absorbed, in the meantime, the speed of light slows 
down and the propagation direction changes, resulting in the occurrence 
of the well-known refraction phenomenon. It is the fundamental law that 
forms the basis of traditional lenses aiming for modifying visible light 
and the refractive indexes of most materials for visible light usually lie 
in the range from 1.2 to 2 and vary with the frequency of light. 

However, for X-rays, it is a totally different case [16]. The refraction 
index for electromagnetic waves displays resonant behavior at 
frequencies corresponding to electronic transitions in atoms and 
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molecules. On the low frequency side of a resonance, 𝑛𝑛 increases with 
the frequency and this is known as normal dispersion. Once the 
frequency reaches to the resonance frequency, more and more 
resonances will pass through, causing the magnitude of the refraction 
index to decrease. In general, the frequencies of X-rays are higher than 
all transition frequencies. In other words, the refractive index 𝑛𝑛 for X-
rays turns out to slightly smaller than unity and is always denoted as:  

𝑛𝑛 = �1 + 𝜒𝜒0 ≈ 1 +
1
2
𝜒𝜒0  = 1 +

1
2

Re[𝜒𝜒0] + i 
1
2

Im [𝜒𝜒0] 

                                               = 1 − 𝛿𝛿 − i 𝛽𝛽                                     (2.8) 

with 𝜒𝜒0 = − 𝑟𝑟𝑒𝑒𝜆𝜆2

𝜋𝜋𝑉𝑉𝑐𝑐
𝐹𝐹0  and 𝐹𝐹0 = 𝑁𝑁(𝑍𝑍 + 𝑓𝑓′ + 𝑓𝑓′′) , 𝑁𝑁  is the number of 

atoms in the unit cell with 𝑉𝑉𝑐𝑐 being its volume, 𝑍𝑍 is the atomic number 
of the element, 𝑓𝑓′ and 𝑓𝑓′′ are the so-called anomalous dispersion factors. 
In the above expression, 𝛿𝛿  represents the refractive decrement and 𝛽𝛽 
characterizes the absorption coefficient. 

At first glance, one might wonder that the conclusion seems 
unreasonable because the speed of light in the medium (𝑚𝑚 𝑛𝑛⁄ ) is faster 
than that in vacuum with the refractive index 𝑛𝑛 being smaller than 1. In 
reality, it should be pointed out that 𝑚𝑚 𝑛𝑛⁄  is the phase velocity, not the 
group velocity characterized by 𝑑𝑑𝜔𝜔 𝑑𝑑𝑘𝑘⁄ . 

As the index of refraction of matter for X-rays is very close to unity, it is 
in principle impossible to fabricate a refractive lens in the usual way. 
Due to the very tiny refractive decrement (𝛿𝛿 is usually in the order of 
10−6), the focusing effect of one single lens is extremely weak and the 
focal length is hard to fulfill in real experiments. It was not until in 1996 
that Snigirev et al. [17, 18] proposed the prototype simply by drilling up 
to 31 cylindrical holes in a row out of an aluminum bulk to accumulate 
the refractive effect and achieve optimal focusing effect, which is 
schematically drawn in Fig. 15. In the meantime, Tomie [19] had almost 
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the same idea on focusing X-rays by means of the refraction effect. It is 
worth noting that CRLs are able to focus and collimate neutron sources, 
which have been used at neutron-related experiments [20, 21]. 

 

Figure 15 – The prototype of compound refractive lenses (CRLs). 

It can be seen from Fig. 15 that every hole corresponds to a biconcave 
lens and the width of one lens 𝑑𝑑 is strictly limited to several tens of 
microns in order to minimize the absorption effectively. Based on thin-
lens approximation, the focal length for a lens can be denoted as:       

                                             𝑓𝑓 = 𝑅𝑅
2𝛿𝛿

= 𝑅𝑅
2(1−𝑛𝑛)

                                      (2.9) 

where 𝑅𝑅 represents the radius of the hole and 𝛿𝛿 = 1 − 𝑛𝑛 characterizes 
the refractive decrement of the material. In order to achieve an optimal 
better focusing effect, many lenses should be stacked together on the 
optical path of the X-ray beam and the focal length is easily deduced to 
be: 

                                           𝑓𝑓 = 𝑅𝑅
2(1−𝑛𝑛)

= 𝑅𝑅
2𝑁𝑁𝛿𝛿

                                   (2.10) 

Here 𝑁𝑁 stands for the number of holes the block and each hole actually 
corresponds to a biconcave lens. 

In practical applications, the spherical lenses turn out to induce unwanted 
spherical aberrations and researchers mainly adopt the parabolic shape 
CRLs now. 
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Two different focusing effects can be achieved: a line focus and a point 
focus, respectively. A line focus is obtained by employing planar lenses 
while a point focus is readily obtained by placing the lenses in crossed 
geometry [22]. 

As for the selection of potential materials, no ideal material is suitable 
for all cases and should be appropriately chosen depending on different 
scenarios. Since CRLs function as a type of transmission devices, the 
absorption has to be taken into consideration. The absorption is 
proportional to the atomic numbers and those elements with low atomic 
numbers are thus preferred. In addition to aluminum, potential materials 
include beryllium, nickel, poly (methyl methacrylate) (PMMA) and 
diamond, etc. Beryllium CRLs [23] undergo the lowest absorption, but 
the material is toxic and may also distort the radiation wavefront owing 
to the appearance of grain boundaries introduced by the production 
technique mainly bared on sintering; Nickel [24] is especially suitable 
for focusing high energy X-rays, but one main obstacle preventing its 
wide use lies in its low transmission efficiency because of larger atomic 
numbers; in case of PMMA [25] - a transparent thermoplastic often used 
as an alternative to glass, the biggest obstacle to overcome is its 
instability after being long being exposed to strong radiation because 
numerous bubbles may be generated in the material because of strong 
heat load. 

The extreme properties of diamond CRLs [26-28] outperform other 
candidate materials and it turns out they show great potentials because 
diamond possesses many exceptional physical characteristics. In a 
diamond, carbon atoms have a tetrahedral arrangement and each of them 
is connected to four other carbon atoms with a C-C-C bond angle of 
109.5° (cf. Fig. 16(a)). The crystalline structure of diamond is of cubic 
symmetry (cf. Fig. 16(b)). Although there are 18 atoms in the figure, each 
corner atom is shared by eight unit cells and each atom in the center of a 
face is shared by two, so there are eight atoms in total per unit cell. It is 

https://en.wikipedia.org/wiki/Transparency_(optics)
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a strong, rigid three-dimensional structure of diamond that results in an 
infinite network of atoms (cf. Fig. 16(c)).  

 

Figure 16 – (a) is the tetrahedral arrangement of carbon atoms, (b) is the unit cell of diamond at 
room temperature and (c) is its crystal packing [29]. 

Owing to this, diamond is incompressible and shows extreme hardness, 
which explains why researchers prefer to use diamond anvil cells (DAC) 
[30] to produce high pressure for scientific experiments. Besides, 
diamond has high thermal conductivity and very low thermal expansion, 
which means it can withstand strong heat load. Taking all these factors 
into account, diamond has become an indispensable material for some 
experimental techniques using synchrotron radiation as the source. 
Considering the extremely high cost and very limited availability of 
natural diamond, it is a necessity to fabricate synthetic diamonds to meet 
the growing demands. Synthetic diamonds can be grown from high-

https://en.wikipedia.org/wiki/Thermal_expansion
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purity carbon under high pressures and temperatures or 
from hydrocarbon gas by chemical vapor deposition (CVD). Nowadays, 
most industrial and scientific applications use CVD diamond and in the 
experimental setting at ESRF, a synthetic CVD diamond by the “Element 
Six” company was utilized to fabricate CRLs and the CRLs were tested 
at one of the beamlines at ESRF. The publications [31, 32] presented in 
Chapter 5 in this thesis will give more details about that. 

In addition to these unique properties, diamond has a low atomic number 
of 6 in the periodic table, which means the absorption coefficient is 
relatively low. Indeed, the extreme hardness may prohibit us from 
polishing to an ideal shape, but thanks to the advent of femtosecond laser 
micromachining process [33], it has become a reality to fabricate 
diamond lenses with high precision. Single-crystal diamond is 
considered advantageous over polycrystalline diamond because it will 
not cause any undesired diffuse scattering induced by crystalline 
boundaries and avoid the drawbacks when etching a polycrystalline 
diamond. This explains why single-crystal diamond CRLs is preferred in 
the real experiment. Fig. 17 is a plot of refractive decrement and 
absorption coefficient versus photon energy for the material of diamond. 

 

Figure 17 – The refractive decrement and absorption coefficient of diamond versus photon 
energy. 

https://en.wikipedia.org/wiki/Hydrocarbon
https://en.wikipedia.org/wiki/Chemical_vapor_deposition
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Based on the idea of CRLs, a more advanced version - the transfocator 
[34] (Fig. 18) has been proposed and then become an integral part of 
beamlines at modern synchrotron sources. It is comprised of several 
cartridges containing different numbers of lenses, such that the focal 
distance can be continuously adjusted by insertion or retraction of one or 
more of the lens cartridges in order to be compatible with the photon 
energy and achieve a variable focal length. It can be inferred from the 
context that the main advantage of transfocator lies in flexibility. In 
addition, this type of transfocator can be used together with 
monochromators and other X-ray focusing elements, leading to a 
significant increase in photon flux. In fact, the chromatic nature of the 
focusing means that the transfocator does not only naturally suppress 
harmonics, but it can also function as a broad-band pass monochromator 
which delivers extremely high flux. 

 

 

Figure 18 – (a) An example of implantation of the in-vacuum transfocator (IVT) from ESRF and 
(b) the design and mounting of the in-vacuum transfocator (www.esrf.eu). 
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In addition to the large transfocator mentioned above, a new type of 
“mini-transfocator” [35] with small dimensions and weight has been 
recently fabricated. For this reason, it is optimal for experimental 
techniques requiring compact and lightweight zoom-optics. What’s 
more, it can create a customizable software for some specific 
experimental setups and possibly adjust to fit any control systems. 

Focused X-rays can achieve high resolution in experiments and an even 
smaller focal spot is thus desired. In general, this is implemented by two 
methods: increasing the number of refractive units or decreasing the 
radius curvature, however, both may result in low transmission 
efficiency. To resolve this contradiction, the so-called “cascaded CRLs” 
[36] depicted in Fig. 19 has been proposed. The innovation behind the 
design lies in that it takes two factors into account simultaneously: large 
geometrical aperture and small radius curvature. 

 

 

Figure 19 – (a) shows the layout of cascaded CRLs and (b) is their wireframe model. The unit is 
in mm. 



X-ray beam conditioning devices 

48 

In this conjunction, we propose to introduce a type of composite CRLs 
on the basis of the former cascaded CRLs. The difference between them 
is the former one is made of the same material while the latter one has 
two different materials. By applying thin-lens approximation here, the 
focal length 𝑓𝑓 of the composite CRLs system can be written as:  

                                                  1
𝑓𝑓

= 1
𝑓𝑓1

+ 1
𝑓𝑓2

                                          (2.11) 

with 𝑓𝑓1 = 𝑅𝑅1
2𝑁𝑁1𝛿𝛿1

 and 𝑓𝑓2 = 𝑅𝑅2
2𝑁𝑁2𝛿𝛿2

. In this equation, 𝑅𝑅1 , 𝑁𝑁1 , 𝛿𝛿1  are the 

curvature radius, number of lenses and refractive decrement for the first 
set of lenses; 𝑅𝑅2, 𝑁𝑁2, 𝛿𝛿2 are the same parameters for the second set. 

Then the focal length of composite CRLs can be simplified to: 

                                        𝑓𝑓 = 𝑅𝑅1𝑅𝑅2
2𝑅𝑅1𝑁𝑁2𝛿𝛿2+2𝑅𝑅2𝑁𝑁1𝛿𝛿1

                                      (2.12) 

To sum up, CRLs and CRL-based innovative versions have played a 
significant role in many scientific experiments, like being used for the 
rejection of higher order harmonics [37], high-resolution imaging [38] 
and microscopy [39]. 
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3 Methodology 

In the preceding chapters, different types of X-ray sources and beam 
conditioning devices (including monochromators and focusing optical 
devices) have been discussed in detail. The combination of both 
monochromators and focusing optics has already been successfully used 
in almost all SR-experiments. In this chapter, emphasis will be put on 
CRLs which are implemented as a transmission device for a wide energy 
range. In that context, for single-crystal diamond CRLs, different dips of 
intensity are observed at some specific energies shown in Fig. 20. 

 

Figure 20 – “Glitch effects” as they appear in the transmission spectrum. 𝐼𝐼0  is the intensity 
recorded by the ionization chamber before the sample, while 𝐼𝐼1 refers to the intensity detected by 
the  chamber after X-rays pass through CRLs. For this particular example, it clearly shows that 
there exists an energy window between 13.2 keV and 13.8 keV that is free from any glitches. 

These drops of intensity resemble the hanging icicles on the branches of 
a tree and are simply named as “glitch effects”. In the current thesis, it is 
already shown the operational principles of CRLs and the other major 
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task is to gain a deeper insight into the promising CRLs, particularly the 
influence of the glitches. 

Previously, the research work done by Polikarpov et al. [1] reported to 
observe the occurrence of significant intensity drops in the spectrum 
when performing an energy scan experiment concluded that a call for a 
more rigorous treatment was necessary. The reason why this 
phenomenon should be investigated more thoroughly is that the loss of 
intensity will deteriorate the performance of some practical techniques, 
e.g. a poorer resolution for scanning transmission X-ray microscopy 
(STXM) [2] and scanning X-ray diffraction microscopy [3].  Therefore, 
it is imperative to deal with this issue as we want to avoid, minimize, or 
at least have an intuitive understanding of the mechanism of the glitches. 
In the first place, how some experimental factors, including those from 
the characteristics of the beam, sample stage, interactions of the beam 
and the sample deserve a comprehensive analysis. Secondly, owing to 
the use of single-crystal diamond, the glitches may be sensitive to the 
orientation. Information about the orientation of the sample with respect 
to the beam is extracted from the 𝐔𝐔𝐔𝐔 matrix (refer forward to Subchapter 
3.2) and the positions and “strengths” of the glitches can be predicted by 
applying some specific extinction rules for diamond structure. This will 
help us determine the “energy window” without any glitches. To achieve 
these purposes, two distinct experiments were designed: an energy 
scanning experiment and 𝜔𝜔-scan setup, respectively.  

Before setting up the experiments, priority should be given to the 
selection of beamlines among all the existed beamlines at ESRF. BM31, 
being one of the two Swiss-Norwegian beamlines (SNBL) at ESRF, is 
specialized in high resolution powder diffraction (HRPD). The beamline 
is designed in a flexible way to measure XAS and HRPD or even a 
combination of both techniques on the samples under different 
experimental conditions (heating, cooling, in situ catalytic conditions 
etc.). The main characteristics of BM31 are listed on its homepage [4]: 
(1) a very wide incident energy range, from 4.9 keV to 70 keV; (2) 13-

http://www.esrf.eu/fr/home/UsersAndScience/Experiments/CRG/BM01/bm31.html#2
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element Germanium detector with fast digital multi-channel analyser 
electronics for XAS measurements at extremely low concentrations; (3) 
step-by-step data collection with down to 1s acquisition time; (4) fast 
monochromator scans with 'on-the-fly' date collection for fast X-ray 
absorption near edge absorption spectroscopy (XANES) measurements; 
(5) feedback on the second crystal of the monochromator to minimize 
other kind of “glitches” which are associated with the monochromator 
and originate from multi-beam diffraction events; (6) very rapid 
switching between two different monochromator modes - Si(111) and 
Si(311) and the flux delivered by Si(111) is three times more than that 
by Si(311). In addition, determination of single-crystal orientation may 
also be simply handled by placing an image plate detector (MAR345 
detector [5]) in the downstream of an “add on” three-stage goniometer 
mounted at sample position. Combining the characteristics of the 
beamline and the requirements for the experiments, BM31 is suitable for 
performing XAS [6-8] experiments and determining the orientation of 
the single-crystal diamond lenses in alignment. A total of 9 shifts of 
beam time were granted for the proposed experiments and the 
backgrounds for the two experimental arrangements are given below:   

 The energy scan experimental setup 
Considering CRLs’ principle of operation, it is essential to study its 
transmission spectrum (a plot of normalized intensity versus energy). 
This involves the same overall principles as for X-ray absorption 
spectroscopy (XAS) technique that is aimed at determining the local 
geometric and/or electronic structure of the samples. By now, XAS has 
been exploited in different fields, such as amorphous solids [9], solid 
solutions [10], catalysis [11], etc.  

A schematic representation of XAS experiment is shown in Fig. 21 and 
its purpose is to measure the linear absorption coefficient as a function 
of X-rays’ incident energy by making use of the key components - 
ionization chambers [12]: one being placed before and the other being 
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installed right after the sample. As the name indicates, ionization 
chambers are gas-filled radiation detectors and the incident radiation 
may ionize the gas and create ion pairs within a gas. Then the charge 
from the number of ion pairs is captured and measured by the chamber 
and the intensity is recorded. 

 

Figure 21 – A typical example of XAFS experiment setup. “Ion. Chamber” in the figure refers to 
the ionization chamber used for detection and measurement of X-ray radiation. In general, XAS 
involves transmission, photoelectric absorption, scattering (Compton and Thomson scattering) 
and decay (fluorescence and Auger electrons) processes. 

Based on this, we can thus set up the energy scan experiment (Fig. 22) 
by mimicking that for XAFS. The energy range is set between 10 keV 
and 20 keV with an interval of 1eV by tuning the monochromator and it 
is achieved by taking advantage of piezo effect. 
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Figure 22 – (a) is an illustration of the experimental setup at BM31, ESRF to obtain the energy 
spectra of CRLs; (b) is a photo of the goniometer at the sample stage; (c) is the view of 𝜒𝜒-circle 
from the X-ray source in Eulerian geometry with 𝜔𝜔 = 0°: the 𝜔𝜔-angle, which rotates about an 
axis perpendicular to X-ray beam and the 𝜑𝜑-angle about the loop axis. 
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From the experimental setup point of view, a crucial question is to 
investigate to what extent experimental factors may influence the glitch 
patterns. First of all, the beam divergence may play a role. To study its 
effect, a condenser is placed in the very front end of the experimental 
hutch to change the beam divergence of the incident X-ray beam onto 
the sample. Secondly, the 𝜒𝜒-angle setting in the illustration could also be 
counted as an influential factor and varying 𝜒𝜒 -angle is done via a 
motorized sample stage. Lastly, X-rays are very sensitive to the thickness 
of CRLs. In that context, one should note that for glass lenses used to 
focus visible light, the parameter – effective aperture is the same as its 
physical aperture; however, attenuation plays a vital role within X-rays’ 
energy range and it is necessary to introduce the concept of effective 
aperture [13]. In the case of X-rays, the effective aperture is smaller than 
the physical aperture and is usually defined as the size of the aperture 
when the transmission function reduces to exp (−1). In other words, this 
means that the edges of CRLs absorb more intensity compared with the 
central part and different interacting positions of X-rays with the sample 
lenses are likely to affect the glitches, more accurately, strengths of the 
glitches.  

By comparing the spectra with various beam divergences, 𝜒𝜒-angles and 
interactive positions, we are capable of investigating the influence of the 
above mentioned experimental features on the glitches. These results 
will be presented in the forthcoming publications in Chapter 5.  

 The experimental setup of 𝝎𝝎-scan 
The aim of the second experimental arrangement is to deal with study of 
orientation of single-crystal diamond CRLs with respect to the beam, 
because the single-crystal orientation will significantly influence CRLs’ 
performance. As we know, the orientation of the single-crystal 
determines different physical properties, including optical (spectral 
transmission), thermal (conductivity, expansion, etc.), mechanical 
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(hardness, radiation resistance) and electrical properties (dielectric and 
piezoelectric), etc.  

The above mentioned glitch effects have a number of contributions, such 
as two-beam Bragg diffraction, multiple beam diffraction effects and 
beam divergence, etc.  As a first approach, we suppose that the presence 
of the glitches in the energy spectrum is mainly owing to the fact that 
Bragg condition is satisfied at some specific energies when the energy 
changes continuously, namely, standard “two-beam Bragg diffraction”. 
The description of sample orientation with respect to the incident X-ray 
radiation by means of the so-called “orientation matrix” or the “𝐔𝐔𝐔𝐔 
matrix” [14-16], is also of great importance because it may help us 
predict the positions of the glitches in terms of energy. Therefore, one 
needs to calculate the orientation matrix, which is in fact the product of 
two matrices, the orthogonal rotation matrix 𝐔𝐔  and the 
orthonormalization matrix 𝐔𝐔 , respectively. The 𝐔𝐔  matrix is an upper 
triangle matrix which contains information about the unit cell 
parameters. In a systematic scanning process, the most convenient way 
of constructing the orthonormal coordinate system is to let its 𝑥𝑥-axis 
coincide with the reciprocal unit cell vector 𝒂𝒂∗ . The 𝑦𝑦 -axis is then 
defined so that it lies in the 𝒂𝒂∗𝒃𝒃∗ plane and is perpendicular to 𝑥𝑥 -axis at 
the same time. The 𝑦𝑦-axis is chosen to complete a right-handed Cartesian 
system, which means it is perpendicular to 𝒂𝒂∗𝒃𝒃∗ plane. Essentially, the 
𝐔𝐔 matrix specifies the components of unit cell of reciprocal lattice in the 
Cartesian laboratory coordinate system and is expressed as: 

                 𝐔𝐔 = �
𝑎𝑎∗ 𝑏𝑏∗cos𝛾𝛾∗ 𝑚𝑚∗cos𝛽𝛽∗

0 𝑏𝑏∗sin𝛾𝛾∗ −𝑚𝑚∗sin𝛽𝛽∗ cos𝛽𝛽
∗cos𝛾𝛾∗−cos𝛼𝛼∗

sin𝛽𝛽∗sin𝛾𝛾∗

0 0 𝑚𝑚∗
�                (3.1) 

𝑎𝑎∗, 𝑏𝑏∗, 𝑚𝑚∗ are the conventional reciprocal lattice parameters and  𝛼𝛼∗, 𝛽𝛽∗, 
𝛾𝛾∗  are the included angles between 𝒃𝒃∗  and 𝒄𝒄∗ , 𝒄𝒄∗  and 𝒂𝒂∗ , 𝒂𝒂∗  and 𝒃𝒃∗ , 
respectively. The diamond has a cubic lattice structure in direct space, so 
it will certainly possess a cubic lattice in reciprocal space based on the 
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definition of reciprocity. Therefore, the 𝐔𝐔  matrix for diamond is 
simplified to: 

                                         𝐔𝐔 = �
𝑎𝑎∗ 0 0
0 𝑏𝑏∗ 0
0 0 𝑚𝑚∗

�                                          (3.2) 

The function of 𝐔𝐔  matrix is to transform from the reciprocal lattice 
vector, denoted as 𝐡𝐡, to the Cartesian coordinate system with respect to 
the crystal and could be described by the following formula: 𝐡𝐡𝐜𝐜 = 𝐔𝐔𝐡𝐡, 
where 𝐡𝐡𝐜𝐜  is the scattering vector in the crystal Cartesian system and 
characterizes a vector normal to a family of crystal lattice planes 𝐡𝐡. The 
relationship between the laboratory coordinate and the plane of the 
detector is given in Fig. 23. 

 

Figure 23 – The laboratory coordinate system and the plane of detector. In this case, the incoming 
beam intersects the plane of detector at the position of {𝑥𝑥0, 𝑦𝑦0} with 𝑑𝑑0 being the crystal-to-
detector distance. 

Moreover, for the purpose of finding the Bragg reflections induced by 
these planes, another rotation matrix, denoted as the 𝐔𝐔 matrix, is also 
needed. The 𝐔𝐔  matrix is an orthogonal rotation matrix (𝐔𝐔T = 𝐔𝐔−1 ), 
which transforms from the orthonormal coordinate system attached to 
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the crystal to another Cartesian coordinate attached to the laboratory 
system. 

In essence, the 𝐔𝐔𝐔𝐔 matrix acts on a reciprocal lattice vector 𝐡𝐡 and brings 
it to be coincident with the scattering vector: 

                                    𝐐𝐐𝑖𝑖 = 𝐔𝐔𝐡𝐡𝐜𝐜𝑖𝑖 = 𝐔𝐔𝐔𝐔𝐡𝐡𝑖𝑖, i=1,2                              (3.3) 

In this equation, the subscript 𝜋𝜋  is used to distinguish two classes of 
Bragg reflections that are produced by non-parallel lattice planes. 

Then it comes to the methodology of computing the 𝐔𝐔𝐔𝐔 matrix. As we 
know, the rotation of a crystal illuminated by a monochromatic X-ray 
beam forces its reciprocal lattice points to cross the surface of the so-
called “Ewald sphere” [17]. Whenever this happens, a diffracted beam is 
originated in the center of the Ewald sphere and passes through the 
reciprocal point that lies on the Ewald spherical surface. Under these 
circumstances, the Bragg’s law is fulfilled and the set of all diffracted 
beams will constitute the diffraction pattern, which can be captured and 
recorded by the detector. A 2D pixel detector provides a unique 
possibility to visual and record Bragg reflections from a crystalline 
system and thus we chose the well-known MAR345 area detector. In this 
way, a series of frames could be collected by mounting the sample lenses 
on the motorized sample stage (cf. Fig. 24). In this experimental setup, 
the usage of the area detector allows to collect diffracted X-ray beams 
over a wide solid angle. Due to the accessibility of the area detector, it is 
not necessary to choose a four-circle goniometer and a single rotating 
axis is enough. The 𝐔𝐔𝐔𝐔 matrix is obtained by setting up the systematic 
𝜔𝜔-scan with a positive 𝜔𝜔-rotation pointing outwards in Fig. 3.3(c) when 
viewed from the X-ray source. During the rotation process, the 
wavelength is kept fixed and the monochromator is thus tuned as a 
stationary mono.  

One may wonder that this setup is almost the same as that used for the 
wavelength calibration process (cf. Appendix 1). The only difference 

http://www.xtal.iqfr.csic.es/Cristalografia/parte_05-en.html#Ewald
http://www.xtal.iqfr.csic.es/Cristalografia/parte_05_5-en.html
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between these two lies in the samples: the wavelength calibration 
experiment employs a polycrystalline standard reference material (LaB6 
powder in this case) to produce a set of concentric lines, while in the 𝜔𝜔-
scan setup here the single-crystal diamond CRLs is mounted on the 
goniometer. One should realize that since an X-ray CCD camera is in the 
beam path, a limited angular range should be set with caution to avoid 
collision. By trial and error, the angular range for 𝜔𝜔-angle is set to start 
from −49° to 20° with an interval of ∆𝜔𝜔 = 1°. Thus we are able to 
collect a finite set of frames  and collection of each frame takes 
approximately 10 minutes, including collecting and reading out time by 
the laser. 

 

Figure 24 – The experimental setup of 𝜔𝜔-scan. The 3-circle goniometer is mounted at the sample 
stage to quantitatively measure the rotation angle. 

 Data processing 
The data obtained from the experiment should be processed for accurate 
analysis and a detailed description of the methods is given in the 
following: 

3.3.1 Data processing for the energy scan experiment 
When it comes to the data processing, XAS deals with measurement of 
absorption coefficient as a function of photon energy. The number of X-
ray photons that are transmitted through a sample (𝐼𝐼1) is equal to the 
number of X-ray photons that are incident onto the sample (𝐼𝐼0) multiplied 
by a decreasing exponential with a factor of 𝜇𝜇𝑛𝑛, usually expressed as: 
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ln(𝐼𝐼1/ 𝐼𝐼0) = −𝜇𝜇𝑛𝑛, 𝜇𝜇 and 𝑛𝑛 represent the absorption coefficient and the 
thickness of the sample, respectively. Likewise, data handling of the 
energy scan experiment can be done in a similar way, but one should 
note that the glitches from the multiple beam induced monochromator 
should be eliminated in the final glitch pattern of CRLs. The steps are 
summarized as follows: first, we divided 𝐼𝐼1 by  𝐼𝐼0 (𝐼𝐼1 / 𝐼𝐼0 ) as a function 
of the incident energy and mask all the glitches in this data column. Then 
a low order polynomial (1 or 2, max 3) was fitted through the remaining 
𝐼𝐼1 / 𝐼𝐼0 line to mark the 100% reference line and then the drops of the 
glitches are then given in percent with respect to that baseline. 

3.3.2 Data processing for 𝜔𝜔-scan setup 
Due to the actual sample-to-detector distance and the small unit cell 
dimensions, only a very small number of accessible reflections at such 
low 2𝜃𝜃 angles and we had to manually select those frames with relatively 
brighter diffraction spots in order to determine the orientation matrix as 
precisely as possible.  

The pixel positions of the incoming beam and the Bragg reflection spots 
were read out using the software – CrysAlis [18]. Special care should be 
taken as the pixels of the incoming beam (𝑥𝑥0, 𝑦𝑦0) and the diffracted spots 
(𝑥𝑥, 𝑦𝑦) are normally measured by pixel numbers, while the sample-to-
detector distance is measured in 𝑚𝑚𝑚𝑚 . In general cases, the distance 
between the transmitted beam centre and the Bragg reflections are 
obtained by multiplying the numbers of pixels in between and the size of 
the pixel, and the distance is then converted to the unit of 𝑚𝑚𝑚𝑚. It is also 
important to note that Bragg reflections are also represented by the frame 
numbers and they should be recorded with caution because a wrong 𝜔𝜔-
angle may bring in errors in calculating the 𝐔𝐔𝐔𝐔 matrix. By making use 
of the geometrical setting, the first task was to determine the classes these 
reflections belong to, as is shown in Fig. 25. 
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Figure 25 – An illustration on how to calculate the half cone angle, the red dot represents the 
Bragg spot. Here 𝑑𝑑 characterizes the distance from the beam stop to the diffracted spots and 𝑑𝑑0 
is the sample-to-detector distance. 

In the actual experimental setup, we retrieved the effective frames (cf. 
Fig. 26) with the calculated 2𝜃𝜃 angles as such: 

 

 

Figure 26 – The effective diffraction frames collected from 𝜔𝜔-scan. 
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To show explicit implications of the 𝐔𝐔𝐔𝐔 matrix, the concept of Ewald 
construction is useful. The wavevector of the incident X-ray radiation 𝐤𝐤0 
is parallel to 𝑥𝑥-axis and the outgoing wavevector is parallel to 𝐤𝐤f, the 
scattering vector 𝐐𝐐𝑖𝑖 is defined as: 𝐐𝐐𝑖𝑖 = 𝐤𝐤f − 𝐤𝐤0, shown in Figure 27. An 
arbitrary reciprocal lattice node is expressed as: 

                                     𝐇𝐇ℎ𝑘𝑘𝑘𝑘 = ℎ𝐚𝐚∗ + 𝑘𝑘𝐛𝐛∗ + 𝑘𝑘𝐜𝐜∗                                (3.4) 

where ℎ, 𝑘𝑘, 𝑘𝑘 are Miller indices. The Bragg condition is satisfied when 
the scattering vector is equal to the reciprocal lattice vector, i.e. 𝐇𝐇ℎ𝑘𝑘𝑘𝑘 =
𝐐𝐐𝑖𝑖 . For the convenience of further calculation, we will define an 
alignment vector, which is denoted as 𝐠𝐠𝟎𝟎  and is expressed as: 
𝐠𝐠𝟎𝟎 = −𝐤𝐤0 = [−1 0 0 ] in the ideal case. However, the actual incoming 
beam 𝐤𝐤′ may deviate slightly from the ideal unit vector of the incoming 
beam 𝐠𝐠0 under real experimental configuration, as is depicted in Fig. 27. 

 

Figure 27 – The illustration of Ewald sphere with the radius of 1 λ⁄  for the energy scan, where λ 
is the wavelength of X-ray radiation. According to the relation between the energy 𝐸𝐸 and the 
wavelength: 𝐸𝐸 = ℎ𝜈𝜈 = ℎ 𝑐𝑐

𝜆𝜆
, the radius of the Ewald sphere is proportional to the energy. 

Therefore, the internal circle corresponds to the minimum energy and the outer circle correspond 
to the maximum energy. −𝐤𝐤0 characterizes the direction of ideal alignment while 𝐤𝐤′ (the red 
arrow) characterizes the actual alignment and it happens that the real alignment deviates from the 
ideal case. 
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Before performing further calculations, let us recall the Bragg equation: 

                                             2𝑑𝑑ℎ𝑘𝑘𝑘𝑘sin𝜃𝜃 = 𝑛𝑛λ                                    (3.5) 

where 𝑛𝑛 is an integer (not to be confused with index of refraction), 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 
is the lattice spacing and is equal to 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 = 𝑎𝑎

√ℎ2+𝑘𝑘2+𝑘𝑘2
 for a cubic lattice, 

𝜃𝜃 is the angle between the incident beam and the family of lattice planes 
with Miller indices ℎ,𝑘𝑘, 𝑘𝑘. Diamond is in the Fd3m space group and has 
the face-centered cubic Bravais lattice. This means the allowed 
reflections should satisfy the condition that all Miller indices are odd, or 
even with ℎ + 𝑘𝑘 + 𝑘𝑘 = 4𝑚𝑚 (𝑚𝑚 is an integer); otherwise, they are the so-
called forbidden reflections due to extinction phenomenon. This 
selection principle is very useful for predicting the glitches because it 
removes the forbidden reflections. By inspecting the frames in this 
specific case, two types of reflections are observed and they should come 
from the lattice planes with two lowest 2𝜃𝜃-angles, namely, {111} and 
{220} respectively. However, this should be verified by comparing the 
theoretical and actual 2𝜃𝜃 -angles. The theoretical 2𝜃𝜃 -angles are 
completely determined from Bragg equation, recast in the form: 

                                         2𝜃𝜃 = 2sin−1 ( λ
2𝑎𝑎
‖𝐡𝐡‖)                              (3.6) 

where ‖𝐡𝐡‖  is the norm of 𝐡𝐡  and the other symbols have their usual 
meanings. In crystallography and materials science, the term “metric” is 
used to indicate that the metric tensor pertains to the measurement 
properties of the space. As mentioned before, the sample-to-detector 
distance and the pixel size of MAR345 detector are already known, we 
are able to define the measurement metric (denoted as 𝐌𝐌). Followed by 
that, the metric 𝐔𝐔  is then obtained by performing Cholesky 
decomposition on the metric 𝐌𝐌. Then we are able to construct the unit 
vector along the incoming beam 𝒔𝒔0 , as well as the diffracted beam 
directions 𝒔𝒔h(𝑥𝑥, 𝑦𝑦): 

𝒔𝒔0 = [−1 0 0], 

https://en.wikipedia.org/wiki/Space_group
https://en.wikipedia.org/wiki/Cubic_crystal_system
https://en.wikipedia.org/wiki/Bravais_lattice
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               𝒔𝒔h(𝑥𝑥,𝑦𝑦) =  𝐔𝐔∙[−𝑑𝑑0,   𝑥𝑥− 𝑥𝑥0,   𝑦𝑦 − 𝑦𝑦0]
�[−𝑑𝑑0,   𝑥𝑥− 𝑥𝑥0,   𝑦𝑦 − 𝑦𝑦0]∙𝐌𝐌∙[−𝑑𝑑0,   𝑥𝑥− 𝑥𝑥0,   𝑦𝑦 − 𝑦𝑦0]

          (3.7)           

where 𝑑𝑑0 represents the sample-to-detector distance, (𝑥𝑥0, 𝑦𝑦0) and (x, 𝑦𝑦) 
have the same meanings as that in Eqn. positions of the direct beam 
(beam center) on the pixel-detector screen. By substituting all the 
instrumental parameters into Eqn. (3.7), the actual 2𝜃𝜃 -angles can be 
computed and the types of reflections in principle can be determined. 
Another implication of 𝒔𝒔0 and 𝒔𝒔h(𝑥𝑥,𝑦𝑦) is to determine the coordinates 
of the reciprocal lattice nodes in the Cartesian coordinate system with 
respect to the crystal. 𝜔𝜔 -angles associated with the effective frames 
having sharp reflections are used here to compute 𝐔𝐔  matrix. An 𝜔𝜔 -
rotation matrix 𝐑𝐑 is also needed: 

                         𝐑𝐑(𝜔𝜔𝑖𝑖) = �
cos𝜔𝜔𝑖𝑖 −sin𝜔𝜔𝑖𝑖 0
sin𝜔𝜔𝑖𝑖 cos𝜔𝜔𝑖𝑖 0

0 0 1
�, i=1, 2                    (3.8)            

𝜔𝜔𝑖𝑖  represents the corresponding 𝜔𝜔-angles where the Bragg reflections 
are captured. Then the coordinates of the reciprocal lattice nodes are 
expressed as: 

                          𝐯𝐯𝑖𝑖 = 𝐑𝐑(𝜔𝜔𝑖𝑖) ∙ (𝒔𝒔h(𝑥𝑥,𝑦𝑦) −  𝒔𝒔0), i=1, 2                      (3.9) 

In general, two slightly different methods can be implemented to 
calculate the 𝐔𝐔𝐔𝐔  matrix (the codes for these two methods in 
Mathematica are given in Appendix 2): (i) two independent reflections 
with known parameters of the lattice structure, and (ii) three accessible 
non-parallel Bragg reflections with unknown lattice parameters. In the 
present case, we know all the lattice parameters to an adequate precision 
and that is why the approach (i) is exclusively used, but the approach (ii) 
is also very useful especially when one wants to deduce the lattice 
parameters of an unknown material from the metric tensor. It turns out 
that both two methods lead to very similar results, cf. Appendix 2. The 
combined use of these parameters will provide an estimation of the 𝐔𝐔𝐔𝐔 
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matrix for this sample. Here we briefly review the derivations. Ideally, 
Eqn. (3.3) should be satisfied. However, due to uncertainties in the 
angular measurements and lattice parameters, a right-handed set of 
orthogonal unit vectors, 𝐭𝐭c1 , 𝐭𝐭c2 , 𝐭𝐭c3 , in the Cartesian system with 
respect to the crystal are defined such that 𝐭𝐭𝐜𝐜1 is parallel to 𝐡𝐡c1; 𝐭𝐭c2 lies 
in the plane of  𝐡𝐡c1 and 𝐡𝐡c2, and can be seen as the normalized cross 
product of 𝐡𝐡c1  and 𝐡𝐡c2 ; 𝐭𝐭𝐜𝐜3  is perpendicular to the planes of 𝐭𝐭c1 , 𝐭𝐭c2 . 
Another triple, 𝐭𝐭φ1, 𝐭𝐭φ2 and  𝐭𝐭φ3, based on observations are defined in 
the same way as 𝐭𝐭c1, 𝐭𝐭c2, 𝐭𝐭c3, simply by replacing 𝐡𝐡𝑖𝑖  with 𝐯𝐯𝑖𝑖  (𝜋𝜋=1, 2). 
The orthogonal rotation matrix 𝐔𝐔 is defined such that: 

                                    𝐭𝐭φ𝑗𝑗 = 𝐔𝐔 𝐭𝐭c𝑗𝑗,    𝑗𝑗 = 1,2,3                               (3.10) 

Since 𝐭𝐭𝐜𝐜𝑗𝑗 are orthogonal, the 𝐔𝐔 matrix is deduced to be:                                                                

𝐔𝐔 = �𝐭𝐭φ1, 𝐭𝐭φ2, 𝐭𝐭φ3�
−1
∙ [𝐭𝐭c1, 𝐭𝐭c2, 𝐭𝐭c3] 

                                = [𝐭𝐭φ1, 𝐭𝐭φ2, 𝐭𝐭φ3]T ∙ [𝐭𝐭c1, 𝐭𝐭c2, 𝐭𝐭c3]                     (3.11) 

By multiplying the 𝐔𝐔 matrix with the 𝐔𝐔 matrix, the 𝐔𝐔𝐔𝐔 matrix is then 
readily obtained. 

The single-crystal diamond CRLs in this experiment has ± 3° miscut 
uncertainty, which means that the real alignment 𝐠𝐠  (differ from the 
assumed ideally perfect alignment 𝐠𝐠𝟎𝟎 ) should be introduced to 
characterize the orientation of [-1 0 0] in the laboratory system 
quantitatively and it is denoted as:  

                                            𝐠𝐠 =  𝐔𝐔𝐔𝐔∙[−1 0 0]
 ‖𝐔𝐔𝐔𝐔∙[−1 0 0]‖

                                  (3.12) 

The X-ray energy leading to Bragg diffraction is then expressed as: 

                      E[keV] = 12.398
𝜆𝜆[Å]

= 12.398 × � −2𝐠𝐠∙𝐆𝐆−𝟏𝟏∙𝐡𝐡
�𝐠𝐠∙𝐆𝐆−𝟏𝟏∙𝐠𝐠∙𝐡𝐡∙𝐆𝐆−𝟏𝟏∙𝐡𝐡

�
−1

     (3.13) 
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where 𝐡𝐡 = [ℎ 𝑘𝑘 𝑘𝑘]  represents the coordinate matrix, 𝐆𝐆−𝟏𝟏  is the 
reciprocal metric tensor. By taking into account the extinct reflections 
for diamond and at the same time neglecting negative energy solutions, 
we are capable of predicting the energy positions of the glitches. 
Regarding the prediction of the strengths of glitches, the kinematical 
diffraction theory [19] may in a first consideration be sufficient, and the 
glitch strengths can be obtained by multiplying the structure factor and 
the corresponding multiplicity factor (due to symmetry). 

The spectrum retrieved from the energy scan is used as a benchmark for 
comparison and the spectra with varying experimental factors have been 
presented and analyzed in the publications (Chapter 5). Moreover, the 
method on predicting the glitches based on the kinematical theory of X-
ray’s diffraction is also discussed in detail. To sum up, the combined use 
of these two experimental setups investigates CRLs from two aspects: 
the possible experimental characteristics and the sample itself based on 
crystallography. 
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4 Investigation of single-crystal diamond 
2D half lens in symmetrical Laue case 

Abstract 

A focused X-ray beam is always desired for almost all experiments. This 
has led to the revival of X-ray optics, or more specifically, focusing 
optics. Compound refractive lenses (CRLs), being a type of X-ray 
focusing elements, first proposed in 1990s by taking advantage of 
refractive effect and have been experimentally verified to effectively 
focus X-ray radiation. Soon after that, some advanced versions based on 
the prototype were fabricated, among which, a single 2D half lens made 
of single-crystal diamond. This is quite promising because it is generally 
believed to possess great potentials, especially being implemented as a 
front-end device. In the present analysis, however, we assume, for 
simplicity, an X-ray lab source and focusing element in terms of a perfect 
crystal. In the (reference) case of a flat crystal, the simulation shows that 
the intensity of the refracted and diffracted beams are complementary, 
and the intensity distribution is sensitive to the thickness as well. 
However, in terms of a concave entrance surface, we can replace the 
curved surface with staircase-like approximation. The results can be 
further classified into two cases: non-interference column propagation 
and incoherent addition of intensity. Literally, the former one is adopted 
for the case where the induced Borrmann triangle propagates 
independently along each column. This is provided that the lateral width 
of the triangle is narrow. In the case of wider Bormann triangles, the total 
intensity distribution may be added incoherently and the simulation 
result shows that the smaller the curvature radius is, the better the 
focusing effect is obtained. 
Key words: 

Single 2D half lens, symmetrical Laue case, intensity distribution. 
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  Introduction 
It is known that the most fascinating feature of X-ray radiation is the 
ability to make the “invisible” matter visible due to its extremely short 
wavelength, which is typically of the order of 10−10m. Nowadays, two 
mainstream mechanisms are often employed to generate X-ray radiation: 
one is conventional X-ray tubes (also referred to as X-ray lab source) 
owing to its ease of accessibility and portability; the other one is 
synchrotron radiation (SR) light source which can produce extremely 
brilliant X-rays (many orders higher than the former X-ray tube). Despite 
this, most of the current SR facilities belong to the third generation and 
the next generation source - X-ray free electron lasers (XFELs) [1-3] that 
pursues even better coherence and brilliance are already being under 
construction and in operation worldwide. 

In parallel to the continuous improvement of X-ray sources, a variety of 
X-ray optical devices are often implemented to modify X-ray beam as 
desired. For example, a quasi-monochromatic beam with higher intensity 
at the focal spot is always wanted for most experimental techniques. In 
consequence, this drives the development of X-ray beam conditioning 
devices, including both monochromators and focusing devices. Since the 
sample lens investigated in this paper is a type of X-ray focusing device, 
the emphasis of the description will thus be put there. Literally, the 
ultimate purpose of X-ray focusing devices is to obtain a smaller focus 
with higher intensity. In analogy with focusing visible light, the first 
attempt to focus X-rays was made by Röntgen himself using a prism, but 
he failed due to the extremely weak refraction effect. Afterwards, it was 
considered impossible to focus the radiation until Kirkpatrick & Baez 
designed the X-ray mirror (also known as “K-B mirrors” to honor their 
contribution) [4-6] for X-ray microscope in 1948. Nowadays, in addition 
to X-ray mirrors, Bragg-Fresnel lenses [7, 8], capillary lens [9, 10], 
multilayer Laue lenses (MLL) [11, 12] and compound refractive lenses 
(CRLs) [13, 14] are often used in different experimental setups. 
Compared with other focusing elements, CRLs have some prominent 
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advantages, such as compactness and ease of alignment, and they have 
thus been installed at almost all the synchrotron facilities for X-ray 
microscope [15] and high resolution X-ray imaging experiments [16]. 
Regarding the selection of suitable materials, those with low atomic 
elements are favored in order to minimize the absorption effect, but other 
aspects of the material should also be taken into consideration: beryllium 
[17], for instance, may cause diffuse scattering because it is available 
mainly in the form of a sintered structure and may also arouse 
environmental concerns because of its toxicity. Nickel [18] is 
particularly ideal for relatively high energy X-rays (above 100 keV); 
diamond is considered suitable owing to very stable physical properties 
especially when the lenses are expected to be exposed to intense 
synchrotron radiation for a long time. In general, diamond CRLs can be 
classified into two categories: polycrystalline and single-crystal diamond 
CRLs. Comparatively speaking, the focusing effect of polycrystalline 
lenses turns out to be worse than theoretical estimations [19]. This is 
because the actual shape of the entrance surface may deviate from the 
ideal parabolic surface during the femtosecond laser machining process 
and the grain boundaries can also yield diffuse scattering, leading to a 
poorer focusing performance. However, single-crystal or 
monocrystalline diamond [20] is free from this negative effect and has 
thus been chosen as an alternative to fabricate CRLs. 

Recently, a new type 2D half lens with a rotational symmetric 
geometrical structure has been proposed and it is predicted to have a 
promising future, especially in front-end applications, such as being 
installed as a pre-collimating and beam-shaping optics [21]. The desired 
2D half lens profile of the paraboloid can achieve higher revolution 
compared with the planar lenses [22]. The investigation on the dynamical 
transmission in CRLs will help us gain insight into the interplay between 
the transmitted and diffracted beams. The intensity distribution of the 
transmitted beam is of particular interest because it can describe the 
focusing effect, which is a key factor in evaluating CRLs’ performance. 
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In addition, 2D half lens has only one curved surface and is deemed to 
be a very good starting point when one wants to obtain insight into a 
more complicated case – biconcave lenses in the future. Therefore, this 
2D half lens deserves a rigorous treatment.  

  The sample - 2D half lens 
The 2D half lens was polished out of a high-quality synthetic single-
crystal diamond plate using laser micro-machining technique [23]. Based 
on the theory of geometrical optics, the entrance surface of this lens is 
chosen to be parabolic in order to avoid spherical aberration as much as 
possible, as is shown in Fig. 28. 

 

 

(a) 
 

 

 

 

 

 

Figure 28 – (a) is a scanning electron microscopic (SEM) image taken at ESRF and (b) is a 
schematic drawing of the sample half lens. It has been marked that the geometrical aperture of 
the half lens is 1 𝑚𝑚𝑚𝑚, the curvature radius at the parabola is 200 𝜇𝜇𝑚𝑚, the thickness of the plate 
is 500 𝜇𝜇𝑚𝑚 and the center thickness is 30 𝜇𝜇𝑚𝑚 [22]. 

After setting up the energy scan experiment [24] at BM31 station, 
European Synchrotron Radiation Facility (ESRF), the energy spectrum 
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(cf. Fig. 29) of the 2D half lens between 10 keV and 20 keV is retrieved 
and for better inspection, the energy spectrum range from 16 keV to 18 
keV with finer step width is also attached. 

 

Figure 29 – The energy spectrum for a single 2D half lens obtained from the energy scan 
experiment set up at ESRF; top: the energy spectrum with a range from 10 keV to 20 keV, bottom: 
the spectrum between 16 keV and 18 keV with a finer step width. 

It can be seen from Fig. 29 that some drops of intensity (vividly called 
‘glitches’) appear at certain specific energies in the spectrum and the 
most significant one can even reach up to approximately 20 percent. As 
a matter of fact, many factors contribute to this glitch phenomenon with 
the most important one being Bragg diffraction. Prediction of ‘energy 
positions’ of glitches based on Bragg’s law has been discussed in detail 
in the previously published papers [24] and the intensity is estimated, in 
principle, by the kinematical theory. It is however of general / principal 
interest to investigate beam propagation through lenses also using the 
dynamical theory of X-ray diffraction. This may serve as a ‘reference’ 
for ideal perfect samples in the CRL-context. Theoretical treatments of 
dynamical diffraction for convex-type samples (like cylinders and 
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spheres) have been undertaken of, among others, Olekhnovich & 
Olekhnovich [25]; Saldin [26]; Thorkildsen & Larsen [27], but to our 
knowledge, works related to concave-type samples are scarce.  

However, general / principal interest in such a lens is based on the 
dynamical theory of X-ray’s diffraction. The purpose of this paper is to 
simulate the intensity distribution for a half lens in the two-beam case 
for a situation where a conventional X-ray tube is used. Its simulation 
tool is Mathematica 11.3 [28]. 

 Theoretical basis for the experiments using an 
X-ray lab source 

In general, for those experiments using an X-ray tube as the source, the 
source-to-sample distance is usually in the order of several tens of 
centimetres and the source is still considered to be located in the vicinity 
of the sample’s incident surface. Based on this approximation, X-ray lab 
source is reduced to an ideal point source which emits spherical waves. 
On top of that, the material of the sample lens is supposed to be high-
quality diamond, meaning that the sample lens is treated as a perfect 
crystal. When these two conditions are satisfied at the same time, it is 
assumed that the perfect sample is illuminated by a point source. This 
case, for a slab (semi-infinite) geometry, has been fully investigated by 
Kato for both absorbing [29] and non-absorbing cases [30].  

The total wave in the crystal is obtained by performing the double 
integration over the so-called “dispersion surface” and expressed as 
below: 

              𝐃𝐃 = i
4𝜋𝜋∬𝐾𝐾z−1 ∑ �𝐃𝐃𝐨𝐨𝐣𝐣 + 𝐃𝐃𝐡𝐡𝐣𝐣exp[i𝜑𝜑𝑗𝑗(𝐊𝐊, 𝐫𝐫)]� d𝐾𝐾xd𝐾𝐾y𝒋𝒋           (4.1) 

where 𝐃𝐃  represents the total wavefield inside the crystal, 𝐊𝐊  is a 
wavevector with the magnitude of 𝑘𝑘with its components:  



Investigation of single-crystal diamond 2D half lens in symmetrical Laue case 

79 

𝐾𝐾x = 𝐾𝐾y = 𝐾𝐾z = �𝑘𝑘2 − [𝐾𝐾x2 + 𝐾𝐾y2], 𝑗𝑗 (𝑗𝑗=1, 2) denotes the branches of 

the two dispersion surfaces and hence should be summed over,  
𝜑𝜑𝑗𝑗(𝐊𝐊, 𝐫𝐫) = −2𝜋𝜋�𝐡𝐡 ∙ 𝐫𝐫 + 𝐊𝐊 ∙ 𝐫𝐫𝐬𝐬 + 𝐊𝐊𝐨𝐨𝐣𝐣 ∙ (𝐫𝐫 − 𝐫𝐫𝐬𝐬)� , 𝐊𝐊𝐨𝐨𝐣𝐣  is the refracted 
wavevector, 𝐫𝐫 is the position vector where the wave is investigated and 
𝐫𝐫𝐬𝐬 is the position vector of a point on the crystal surface. The derivation 
has been given in Authier’s work [31]. 

In order to apply the stationary phase method [32] as shown in Appendix 
A, the integrand should be pre-manipulated such that it is of the form of 
the standard integrand. It should also be noted that the incident spherical 
wave is usually approximated as a cylindrical wave that is normal to the 
plane of incidence.  

By applying the stationary phase method, the reflected amplitude is then 
written as:     

                                           𝐷𝐷ℎ = −𝜋𝜋𝜋𝜋ℬℎ 𝐽𝐽0(𝜍𝜍)                                     (4.2)  

In this equation, ℬℎ  is a proportional factor; 𝜍𝜍 = 𝜋𝜋𝑡𝑡
Λ𝐿𝐿
√1 − 𝜏𝜏2 , where 

𝑛𝑛 reflects the thickness of the slab, Λ𝐿𝐿 is the Pendellösung distance in 
Laue geometry which can be calculated by the expression:  

                                  Λ𝐿𝐿 = 𝜋𝜋𝑉𝑉�𝛾𝛾0|𝛾𝛾ℎ|  𝑅𝑅𝜆𝜆𝜋𝜋�𝐹𝐹ℎ𝐹𝐹ℎ��                        (4.3)          
where 𝛾𝛾0 and 𝛾𝛾ℎ being the cosines of the angles between the normal to 
the crystal surface and the incident and reflected beams, and the other 
symbols having usual meanings; 𝜏𝜏 is used to represent the position of the 
moving point M (Fig. 30). The abscissa 𝑚𝑚 of a moving point M can be 

written 𝜏𝜏 = 𝐸𝐸𝐸𝐸
𝐸𝐸𝐸𝐸

 and 𝑚𝑚 = (𝜏𝜏 − 1) 𝑡𝑡∙sin2𝜃𝜃𝐵𝐵
2𝛾𝛾ℎ

. It is important to note that in 

most geometries that have been dealt with, the path length 𝑛𝑛 is a constant, 
but for the present case it varies from point to point and is written as: 

                                                𝑛𝑛 = 𝑧𝑧2

2𝑅𝑅
+ 𝑑𝑑                                         (4.4) 
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This equation describes a parabolic variation of 𝑛𝑛 with 𝑦𝑦. 

In analogy to the expression for the diffracted amplitude, the refracted 
amplitude on the side of Borrmann triangle is denoted as: 

                                         𝐷𝐷0 = −𝜋𝜋ℬ0�
1+𝜏𝜏
1−𝜏𝜏

𝐽𝐽1(𝜍𝜍)                                   (4.5) 

where ℬ0  is the proportional factor for the refracted beam. The 
intensities for the refracted and diffracted beams are obtained simply by 
squaring the corresponding amplitude functions.  

As is indicated in Fig. 30, the line segments PB and PA represent the 
refracted and reflected beams, respectively. By connecting the ends of 
these two lines with a line segment, the closed area intersected by the 
two beams is referred to as “Borrmann triangle” (△ PAB).  

 
Figure 30 – The Borrmann triangle △ PAB within the half lens is schematically shown and a 
Cartesian coordinate is also established for the convenience of calculation. Note that PB is the 
propagation of transmitted beam and PA corresponds to the diffracted beam. 
 
In order to interpret the so-called “Borrmann triangle”, it is essential to 
introduce the Takagi-Taupin equations [33-35] (refer to Subsection 1.4):  

                                      ∂𝐷𝐷0(𝐫𝐫)
∂𝑥𝑥𝑜𝑜

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ�𝐷𝐷ℎ(𝐫𝐫)                             (4.6a)    
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                          ∂𝐷𝐷ℎ(𝐫𝐫)
∂𝑥𝑥ℎ

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ𝐷𝐷0(𝐫𝐫) + i ∙ 2𝜋𝜋𝑘𝑘𝛽𝛽ℎ𝐷𝐷ℎ(𝐫𝐫)             (4.6b) 

In this equation,𝐷𝐷0(𝐫𝐫)  and 𝐷𝐷ℎ(𝐫𝐫)  represent the amplitudes for the 
refracted and diffracted beams, 𝐫𝐫  is the position vector, 𝑥𝑥𝑜𝑜  and 𝑥𝑥ℎ 
represent the unit vectors along the direction of the transmitted and 
diffracted beams, respectively. 𝜋𝜋 stands for the polarization factor and 
equals 1 for σ polarization and cos 2𝜃𝜃𝑒𝑒 for 𝜋𝜋 polarization with 𝜃𝜃𝑒𝑒 being 
the exact Bragg angle, 𝜒𝜒ℎ  and 𝜒𝜒ℎ�  are the Fourier coefficients of 
dielectric susceptibility, 𝛽𝛽ℎ  is the resonance error describing the 
deviation from the exact Bragg condition for a specific lattice plane. As 
can be seen from Eqn. (4.6), T-T equations are constituted by two 
coupled partial differential equations which describe the wavefields 
inside the crystal for both deformed and perfect crystals. Generally, T-T 
equations do not have analytical solutions and they are always solved by 
using the Riemann-Green method. However, there are two special cases: 
one is the incident X-ray radiation shining onto a perfect crystal is 
generated by a spherical source; the other case is the crystal is deformed 
but with a constant strain gradient. Besides, one should be aware that for 
perfect crystals, the term i ∙ 2𝜋𝜋𝑘𝑘𝛽𝛽ℎ𝐷𝐷ℎ(𝐫𝐫) in Eqn. (4.6 b) can be omitted 
because 𝛽𝛽ℎ can be put to zero after a proper choice of the wavevectors. 
The equations are reduced to Eqn. (4.7): 

                                     ∂𝐷𝐷0(𝐫𝐫)
∂𝑥𝑥𝑜𝑜

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ�𝐷𝐷ℎ(𝐫𝐫);                            (4.7a)    

                                     ∂𝐷𝐷ℎ(𝐫𝐫)
∂𝑥𝑥ℎ

= −i𝜋𝜋𝑘𝑘𝜋𝜋𝜒𝜒ℎ𝐷𝐷0(𝐫𝐫)                             (4.7b)                                                                                                                                                           

In other words, the hyperbolic quasi-linear partial differential equations 
can be transformed into two ordinary differential equations under 
specific circumstances. The researcher Sun [36] pointed out that the 
characteristic lines of these two equations are completely overlapped 
with the refracted beam (PB) and reflected beam (PA) (cf. Fig. 30), and 
this well explains the formation of the Borrmann triangle in a 
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mathematical sense. Besides, one should bear in mind that the amplitudes 
are also obtained by adopting the iterative method discussed in 
Subsection 11.6.1 (Transmission geometry) by Authier [31]. 

Due to the rotational symmetry of the “lens geometry”, the intensity 
distribution along the horizontal direction is supposed to follow the same 
trend as that along the vertical direction. Hence, it is more than sufficient 
to study the intensity pattern in one direction.  

In the case of the slab or flat crystal and the incident X-ray is assumed to 
be produced by an ideal point source, the simulation results are presented 
as a reference. When considering the curvature of the entrance surface, 
we have chosen an approximation approach by replacing the curved 
surface with several “columns” of different depths. A similar but not 
equivalent, column approximation is often applied [37]. It has been 
experimentally verified that a column approximation is a valid 
approximation in electron transmission microscopy and the prerequisite 
is that electrons are limited to propagate through the specimen along 
independent columns and each of these columns are treated as the picture 
elements of the diffraction contrast image; in other words, the condition 
should be met that each independent column is so narrow that it will not 
be interfered even by its neighbouring columns. The column 
approximation used in electron transmission microscopy has been 
proven useful when one wants to compute and interpret the images of 
defects.  

Likewise, this approximation may also be extended to the X-ray’s case 
but the width of Borrmann triangle should be small enough and this 
requires a small Bragg angle. As we know, lower order Bragg reflections 
excited by relatively higher energy X-rays satisfy the condition and a 
small Borrmann triangle may thus be anticipated. However, for those 
high-order Bragg reflections induced by low energy X-ray beams, the 
approximation is no longer valid because the column is not assumed 
independent since the constituting columns are likely to be interfered by 
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other columns. The main reason is a wider Borrmann triangle is spanned. 
Based on this assumption, we should limit our simulations to the cases 
of low-order Bragg diffraction (220) and (440) caused by relatively 
higher energy X-rays. In these cases, each column possibly diffracts X-
rays independently and the lateral spread is only associated with the 
corresponding depth. In the rest of other cases, the curved surface is 
mimicked by dividing it into separate crystal columns with constant 
thickness, but they are deemed to be influenced by other columns and 
the total intensity should be added incoherently. This method is used 
when one aims to investigate the influence of curvature radius on the 
refracted intensity. 

 Simulation results and discussions 

4.4.1 Simulations for the flat (slab) crystal as a 
reference 

As derived in the preceding section, an important parameter for the 
simulation results is the Pendellösung distance (Λ𝐿𝐿) which reflects the 
periodic exchange of energy between the refracted and diffracted beams 
and the wavelength of X-ray radiation is set to be 1 Å without loss of 
generality. Assuming it is a symmetrical Laue transmission case, which 
means the asymmetry ratio is equal to 0 and the base of Borrmann 
triangle can be easily computed by the relation: 2𝑛𝑛 ∙ tan𝜃𝜃B = 25.8 𝜇𝜇𝑚𝑚. 
In this case, (220) Bragg reflection of diamond is chosen as a basis.  

To start with, we demonstrate how 𝐽𝐽0(𝜍𝜍)2 (solid line) and 𝐽𝐽1(𝜍𝜍)2 (dashed 
line) vary with 𝑡𝑡

Λ𝐿𝐿
 at the mid-point (𝜏𝜏 = 0) of the base AB (Fig. 31) of 

Borrmann triangle. This reproduces the curves from Authier’s work. 
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Figure 31 - Variations of 𝐽𝐽0(𝜍𝜍)2  (solid line) and 𝐽𝐽1(𝜍𝜍)2  (dashed line) with 𝑡𝑡

Λ𝐿𝐿
 at the center of 

Borrmann triangle (𝜏𝜏=0) for the slab case. The solid line represents the diffracted or reflected 
intensity while the dashed line represents the refracted beam. 
 
Neglecting the damping trend, the intensities for the reflected and 
refracted beams are complementary for a given 𝑡𝑡

Λ𝐿𝐿
. Moreover, it can be 

concluded that the period of the oscillation effect is approximately equal 
to the Pendellösung distance as 𝑛𝑛/Λ𝐿𝐿  is approximately equal to 1. 
Followed by that, we simulate the flat diamond case with different 
thickness (cf. Fig. 32). 
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(a) 

 
(b) 

 
(c) 

 
 
Figure 32 - The intensity distribution on the exit surface of diamond slab for three different cases: 
𝑡𝑡
Λ𝐿𝐿

 is an integer (top); 𝑡𝑡
Λ𝐿𝐿

 is half integer (middle); t=30 𝜇𝜇𝑚𝑚 in the case of real sample lens (bottom). 
The horizontal axis denotes the reduced coordinate for a moving point M in Fig. 30. The solid 
curve represents the diffracted or reflected intensity while the dashed curve represents the 
refracted beam. 



Investigation of single-crystal diamond 2D half lens in symmetrical Laue case 

86 

By comparing Fig. 32(a) and 32(b), we come to the conclusion that at 
the center of Borrmann triangle, the reflected beam reaches its maximum 
and the refracted beam reaches its minimum if 𝑡𝑡

Λ𝐿𝐿
 is an integer while it is 

the opposite trend when 𝑡𝑡
Λ𝐿𝐿

 is half integer. These simulations retrieve the 

well-known published results in the textbook [28], for instance, direct 
comparisons with Fig. 10.4 (a) and Fig. 10.4 (b) in the literature. Besides, 
all the three figures in Fig. 32 show the same trend that the diffracted and 
refracted intensities are complementary for every point on the side of 
Borrmann triangle. On top of that, a “margin effect”, that the wavefields 
are more densely distributed at the edges compared to the central region 
on the side of the excited Borrmann triangle is also observed and the 
physical interpretation is given in Appendix B. 

In fact, what arouses the researchers’ interest is the distribution of the 
refracted or transmitted intensity on the focal plane. Fig. 33 demonstrates 
the intensity (a.u.) of the refracted beam when it comes to various classes 
of Bragg reflections caused by the same X-ray energy or the same 
reflection but induced by different X-ray energies. 

 
Figure 33 - Three different cases: (220) reflection by X-ray radiation with the wavelength of 1Å, 
(440) reflection induced by X-ray radiation (1Å) and (220) reflection induced by high energy X-
rays (40 keV or 0.31Å ) are plotted. 
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It can be concluded that different combinations of the X-rays’ 
wavelengths and Bragg reflections may yield Borrmann triangles with 
different areas. By comparing the curves of (220) reflections and its 
higher order reflection (440) induced by X-rays with the same 
wavelength, we can find that the lower order reflections give rise to a 
relatively smaller Borrmann triangle. On top of that, for the same class 
of reflection, it can be seen that X-rays with a larger wavelength give rise 
to a Borrmann triangle with a larger area. 

4.4.2 Non-interference propagation along each 
independent columns 

Before doing simulations for the 2D half lens, we can start with flat 
crystals which have a constant thickness. If five point sources are 
assumed to be aligned along the entrance surface, the intensity pattern is 
shown in Fig. 34. 

 
Figure 34 - The intensity patterns in the slab case are simply formed by translating the intensity 
of one single point source for diamond (220) reflection and the coordinate has been converted 
from relative coordinate. 
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The “height distributions” of the columns is calculated based on the 
“parabolic equation” introduced earlier (Eqn. (4.4)) When the curved 
entrance surface should be treated seriously, it can be modelled by using 
staircases with different thicknesses, as is shown in Fig. 35. 

 

Figure 35 - A sketch of “staircase approximation” to model the concave entrance surface. 

By applying the column approximation here, the intensity distribution on 
the exit surface of the 2D diamond half lens is seen as a repetition of each 
Borrmann triangle. A minor difference shows when comparing the 
intensity induced by the source point (the middle one) at the origin and 
the two point sources located 30 𝜇𝜇𝑚𝑚 from the origin (left and right ones). 
One can refer to Fig. 36. 

 
Figure 36 - The intensity distribution along the exit surface of the 2D diamond half lens when 
each Brorrmann triangle is assumed to propagate independently along its own column. 
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4.4.3 The influence of curvature radius on the 
refracted intensity 

In some cases, the “columns approximation” is no longer applicable 
when the included Bragg angle between the refracted and refracted 
beams is large. In spite of this, we can also deal with curvature by 
dividing the curved entrance surface into several columns with 
corresponding thicknesses, and the difference lies in that the columns 
here are not independent, instead, they can be influenced by other 
columns. This can be used to study how the curvature radius may affect 
the refracted intensity. 

 
Figure 37 - The refracted intensity along the exit surface for diamond impinged by X-rays at 1Å 
in four different cases for comparisons: (1) the slab case; (2) the curved entrance surface with the 
radius of R=500 𝜇𝜇𝑚𝑚; (3) the curved entrance surface with the radius of R=200 𝜇𝜇𝑚𝑚; (4) the curved 
entrance surface with the radius of R=100 𝜇𝜇𝑚𝑚. 
At a first glance of Fig. 37, we can easily come to the conclusion that the 
intensity distributions for the curved entrance surfaces have higher peaks 
than the slab case in the central regions of the exit surface by comparing 
the slab case and three curved cases (treated as a whole set), which 
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actually demonstrates that a curved concave surface can lead to a better 
focusing effect. Moreover, all the four curves are almost overlapping and 
this phenomenon is owing to the fact that the focusing effect of single 
lens is weak and that is why in real experiments, many lenses are usually 
stacked together to achieve optimal focusing effect and reasonable focal 
length. Lastly, it can be inferred from the curves for three curved surfaces 
with different radii that the smaller the curvature radius is, the sharper 
the peak will be in the central region of the exit surface. This also 
complies with previous experimental finding that the radius at the apex 
of the parabola should be polished down to as small as possible but it is 
severely limited by currently available etching technique. On top of that, 
it also shows that by further increasing the radius, the intensity pattern 
for the curved surface will tend towards that for the slab case and the 
most extreme case is: provided that the curvature radius is increased to 
infinity (exactly the slab case), the intensity pattern for the slab case is 
expected to be retrieved. It is important to note that these simulations are 
based on non-absorbing crystals and in the case of absorbing crystals, 
both the Pendellösung distance Λ𝐿𝐿 and the Bessel functions should be 
complex. 

 Conclusions 
This paper studies the case where a Bragg reflection is induced by a point 
source. This corresponds to those experiments using an X-ray lab source. 
For the single point source approximation, the amplitudes of the 
diffracted and refracted beams are proportional to the Bessel function of 
zeroth order and first order, respectively. This can be derived by taking 
advantage of the stationary phase method. The simulation results for the 
flat case show these two beams are always complementary and the 
intensity patterns are quite sensitive to thickness.  

To deal with the concave curvature, the concept of ‘column 
approximation’ is introduced and applied in certain circumstances and 
we are able to replace the curved 2D half lens with several staircases with 
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different heights. The result shows that the refracted and Bragg reflected 
beams which constitute the spanned Borrmann triangles propagate along 
their own columns without getting any interference from the other 
columns. 

Lastly, we primarily focus on the refracted intensity and investigate to 
what extent the curvature radius may influence the focusing effect. 
Lower energy X-rays may yield wider Borrmann triangles, which means 
these divided columns may be affected by neighboring columns and the 
refracted intensity distribution is thus added incoherently. The 
simulation result shows that the smaller the curvature radius is, the better 
focusing effect is obtained. This is in line with real experimental results. 

To sum up, this paper investigates the intensity distribution (mainly the 
refracted intensity) along the exit surface of the 2D half lens in two 
different cases and the simulations may help the researchers have a better 
understanding of CRLs, which may lead to further improving their 
performance. More importantly, this simulation will also provide insight 
into a more cumbersome case - biconcave CRLs. In addition, one should 
note that this method is not only limited to CRLs but can also be applied 
to other X-ray optical devices where Bragg diffraction is expected to 
appear. However, the limitation of this approximation method is to deal 
with those experiments using conventional X-ray lab sources and for 
those having SR as sources will be a subject of future investigation.  
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 Appendices 

Appendix A - Stationary phase method 
This method is an approximation method based on Taylor series. Now 
let us assume to have an integral in the form of  

𝐼𝐼 = � 𝑓𝑓(𝑥𝑥) exp[𝜋𝜋𝑖𝑖(𝑥𝑥)] d𝑥𝑥
∞

−∞
 

First of all, 𝑥𝑥0 is assumed to be a root of the first derivative of 𝑖𝑖(𝑥𝑥) and 
𝑓𝑓(𝑥𝑥) is a slowly varing function in the neighbourhood of 𝑥𝑥0, the integral 
is then evaluated by expanding 𝑖𝑖(𝑥𝑥) in Talyor series around 𝑥𝑥0: 

𝑖𝑖(𝑥𝑥) = 𝑖𝑖(𝑥𝑥0) + 𝑖𝑖′′(𝑥𝑥0)
(𝑥𝑥 − 𝑥𝑥0)2

2
+ ⋯ 

The integral 𝐼𝐼 is then equal to:  

𝐼𝐼 = 𝑓𝑓(𝑥𝑥0) exp[𝜋𝜋𝑖𝑖(𝑥𝑥0)]� exp �𝜋𝜋𝑖𝑖′′(𝑥𝑥0)
(𝑥𝑥 − 𝑥𝑥0)2

2
�d𝑥𝑥

∞

−∞
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Appendix B - Interpretation of “margin effect” 
It has been mentioned that the intensity distribution for the Bragg 
reflected beam reaches its minimum in the central region and increases 
significantly at both two edges of the Borrmann triangle. As a matter of 
fact, this phenomenon can be explained by considering that the intensity 
distribution is a multiplication of density of wavefields and diffracted or 
reflected power. For example, the wavefields reaching the base of 
Borrmann triangle close to the triangle apex B (𝜏𝜏 = −1), the reflecting 
power is small but on the contrary, the density of the wavefields is large, 
leading to a densed intensity distribution; However, when it comes to the 
center of Borrmann triangle (𝜏𝜏 = 0), the density of wavefields is the 
sparsest and so is the intensity distribution; Similarly, at the other edge 
of the Borrmann triangle, the triangle apex C (𝜏𝜏 = +1), intensities for 
the refracted beam are also very small, but due to the large density of 
wavelfields, the intensity distribution is also very large.
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