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Abstract. An analytical solution for the dynamic response of submerged slender circular 
cylindrical structure subjected to linear wave loads is presented. A double Laplace transform 
with respect to temporal and spatial variables is applied both to motion equation and boundary 
conditions. The dynamic deflection of the beam is obtained by inversion of the Laplace 
transform. The latter with respect to spatial variable is obtained analytically, while the one 
concerning the temporal variable is numerically calculated using Durbin numerical scheme. 
Results in the case of a representative example for a monopile foundation subjected to Airy 
waves are presented and discussed, and the analytical result is compared against numerical 
dynamic and static solutions. 

1. Introduction 
The analysis of dynamic response of circular cylindrical structures under wave loads has attracted 
attention by many investigators. The focus is mainly on the determination of dynamic deflection 
obtained through numerical methods, and experimental studies in wave tank, e.g., [1]. In the present 
work an analytical solution for the dynamic response of slender cylindrical structures under Airy waves 
is presented, which is obtained by using Laplace transform techniques. The proposed solution has the 
advantage that the solution of the PDE is analytic and could be easily extended to include the additional 
effect of current. Formulation of the problem is valid for rocky or stiff seabed. The waves encountered 
in the installation area are characterized by a small steepness ratio H/λ and as a result they can be 
considered as linear. The mono-pile foundation is assumed fixed on the seabed. This assumption The 
geometric characteristics of the pile remain constant throughout its length and the outer diameter (Dout) 
of the foundation is small with respect to the wavelength (λ) of the installation area. The small ratio H/λ 
allows the assumption that the flow disturbance is not significant due to the presence of the structure 
and as a result, the monopile can be considered as a slender structure. The origin (O) of the system is 
located on the center of the foundation base (Figure 1). 
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Figure 1. The origin system of the monopile. 

 
2. Analytical solution of the problem 
 
2.1 Boundary conditions 
The fixed end which is located on the seabed z = 0. Thus, slope and deflection are zero at z = 0. 

                               w(z, t)
w(0, t) 0

z z 0

∂
= =

∂ =
                                                                         (1) 

The upper end at z = L is free and as a result, both bending moment and shear force are zero at z = 
L. 

                     
2

2

w(z, t)
E I(z) 0

z z L

∂
⋅ ⋅ =

∂ =
                                                                                    (2) 
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w(z, t)
E I(z) 0

z z z L

∂ ∂
⋅ ⋅ =

∂ ∂ =

 
 
 

                                                                       (3) 

2.2 Equation of motion 
The dynamic displacement field is expressed by means of Euler-Bernoulli beam model [2]: 
 

4 2

4 2

w(z, t) w(z, t) w(z, t)
E I P A C q(z, t)

z t t
∂ ∂ ∂

⋅ ⋅ + ⋅ ⋅ + ⋅ =
∂ ∂ ∂

                                                            (4) 

 
The right hand side part of (4) is the hydrodynamic load is calculated by using potential wave theory 

[3, 4] and Morison Equation [5]. The circular cylinder is considered as a moving structure in waves. 
Thus, the relative formulation of Morison Equation is used. However, the structure represents a 
monopile offshore wind turbine, which has to be rigid enough for the safety of the rotor. The rigidity of 
the structure ensures that the maximum deflection amplitude is much smaller than the structure diameter 
(Dout), and as a result, the velocity of the structure could be neglected. The final form of the 
hydrodynamic load is given by (5). 

2

A M D out2

w(z, t) Du(t) 1
q(z, t) -ρ C A ρ C A + ρ C D u(t) u(t)

t Dt 2
¶

= × × × + × × × × × × × ×
¶

                      (5) 

The drag term of Eq. (5) is linearized and the final form of equation of motion is: 
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      (6) 

2.3 General solution of the motion equation 
For the solution of the boundary value problem, Laplace transform will be applied to the spatial and 
temporal variables. The definition of these transforms and their inverse forms used on the solution is 
given in the Appendix. Application of the Laplace transform with respect to time and introduction of 
w(n) (z,0)=0 for n=1,2,3,4 yield: 
 

( )
4 *

* 2
C A4

w (z, s)
E I w (z, s) P A ρ C A s C s

z
∂
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22
3out

M D2 2 2 2

D cosh(k z) 1 1 H cosh(k z) s
C ρ C D ω
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⋅ + ω ⋅ + ω

    
                

(7)
 

where 

{ }*

0

s tw (z, s) w(z, t); t s e w(z, t)dt
∞ − ⋅= → = ⋅∫L                                                                      (8) 

Application of the Laplace transform with respect to z and introduction of zero initial conditions into 
(7) yield: 
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(9) 
where 

           { }
_

* * *

0

q zw (q,s) w (z, s); z q e w (z,s) dz
∞ − ⋅= → = ⋅ ⋅∫L                                                               (10) 

For the simplification of (9), the Laplace transform is applied into the boundary conditions (2). Thus, 
the conditions at z=0 takes the following form: 

                           { }
_
w(0,s) w(0, t); t s 0= → =L                                                                                 (11) 

                      { }
_
w'(0, s) w '(0, t); t s 0= → =L                                                                                    (12) 
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Introducing Eqs. (11), (12) into Eq. (9) yields: 
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                                   (13) 

Solving (13) with respect to 
_

*w (q,s) , yields: 

             
_ _ _ _ __ _
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Application of the inverse Laplace transform with respect to q into Eq. (14) yields: 
 

              
_ _ _ _ _ _ _
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Equation (19) contains two unknown variables 
_
w''(0,s)  and 

_
w'''(0,s) . The first expresses the 

bending moment at the position z=0 and the second is equal with the shear force at the base of the 
foundation (z=0). The determination of those variables is achieved by the introduction of the boundary 
conditions of the beam at the position z=L. Application of the Laplace transform with respect to time 
into Eqs. (2) and (3) yields: 

               { }
_
w''(L,s) w ''(L, t); t s 0= → =L                                                                                      (22)    

                     

              { }
_
w'''(L,s) w '''(L, t); t s 0= → =L                                                                                     (23) 

Introduction of Eq. (25) and (26) into Eq. (19) yields: 

              

_ _ _ _ _ _

3 4 2 3 4 2
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''' ''M (L,s) M (L,s)

+ ⋅ − + ⋅
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⋅ ⋅ −

⋅
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''' ''''''

3 41
_ _

''' '''
2 2

M (L,s) M (L,s)M (L,s)
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+
−                                              (25) 

Application of the inverse Laplace transform with respect to s into (19) finally yields:                                                                                                               

          
_ _ _ _ _

1
1 2 3 4w(z, t) M (z,s) w''(0,s) M (z,s) w'''(0,s) M (z,s) M (z,s);s t−  = ⋅ + ⋅ + + → 

 
L        (26) 

where 
 

                                 
_

1w(z, t) w(z,s);s t−  = → 
 

L                                                                   (27) 

2.4 Linearization of the hydrodynamic load 
It is important to mention that the equation which describes the horizontal Drag load on strip is a non-
linear equation. The analytical calculation of the pylon response under the horizontal wave loads 
requires the formulation of the load equation as the addition of linear harmonic terms. It can be achieved 
by developing the Drag load into a Fourier series. The process of converting the Drag load into a sum 
of linear harmonic terms is described in detail as follows. Non-linear term could be written as an 
independent function named N. 
 

2 c cΝ = C cos(k x - ω t) cos(k x - ω t)× × × × × ×                                                                         (28) 
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where 

                                                                                 
By setting cθ = k x - ω t× × , (28) takes the following form: 

                              (29) 
Let as now consider the representation of N(θ) in a Fourier series as follows: 

        

          
In the case when a0=0 and |aj|<<|a1|, and |bj|<<|b1|, for j>1, as happens to be the ones considered here, 

the function N(θ) is approximated by using only the first term in the series as follows: 

            1 1
2 2

Ν(θ) Ν(θ)a cos(θ), with a = max
C C

» ×                                                                    (30) 

Using the above approximation in Eq. (5) we finally obtain: 

                                               (31) 

3. Numerical example of the analytical solution  
A vertical circular cylindrical structure, fixed in the seabed is considered, as described by Table 1. 

Table 1. Structural characteristics of the pile. 

Magnitude Name Value 
Height (m) h 30 
Outer Diameter (m) Dout 6 
Shell Thickness (m) thik 0.05 
Modulus of Elasticity (GPa) E 210 
Poisson’s Ratio v 0.30 
Density of Material (kg/m3) P 7820 
Damping Coefficient C 4398 
Added Mass Coefficient CA 1 
Drag Coefficient CD 0.65 

 
The wave characteristics of the installation area of the structure are given in Table 2. 
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Table 2. Wave characteristics of the installation area. 

Magnitude Name Value 
Wave Height (m) H 3.5 
Wave Period (sec) T 6 
Water Depth (m) d 30 
Wavenumber k 0.1121 
Wave Frequency (rad/sec) w 1.0472 
Density of Water (kg/m3) ρ 1024.7 

 
The comparison of the non-linear drag load at the top of the structure (z = h) and its linearized 

approximation by means of (31) is presented in Figure 2. 
 

 
Figure 2. Linear and non-linear drag load at z = h. 

 
Applying the Morison Equation for both linear and non-linear drag load, the total hydrodynamic load 

on the top of the structure (z = h) is presented in Figure 3. 

 
Figure 3. Linear and non-linear total load at z = h. 
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Applying (23), the deflection of the structure at z = h, during four periods, is given in Figure 4. 
 

 
Figure 4. Deflection of the structure at z = h. 

 
The response of the structure at z = h follows the form of the total hydrodynamic load. Deflection is 

equal with zero at t = 0 due to the zero initial conditions used during the analytical solution. Thus, the 
maximum dynamic deflection of the beam is equal to w(L)Dynamic = 0.0064 m. The calculated deflection 
of the pillar due to the hydrodynamic load is presented in Figure 5 for one period (T). 

 
Figure 5. Deflection of the structure during one period. 

 
4. Evaluation of the analytical solution 

4.1 Comparison between analytical dynamic and static solution  
To verify the reliability of the results, the dynamic maximum deflection of the structure due to the 
hydrodynamic load, is compared with the maximum static deflection. The solution of the static problem 
is achieved by using the finite element method (FEM). The maximum static deflection is w(L)Static = 
0.0064 m, and compared with the static maximum deflection, they are the equal. The dynamic deflection 
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of the beam with respect to the maximum static deflection due to the hydrodynamic load, is presented 
in Figure 6. 
 

 
Figure 6. Comparison between maximum static and the dynamic deflection. 

 

4.2 Comparison between analytical and numerical solution 
For the validation of the present analytical model, the problem is also solved numerically by a Finite 
Differential Method, and the comparison between the numerical and analytical solution is presented in 
Figure 7. The numerical solution with FDM, verifies that the analytical solution is characterized by high 
accuracy. 
 

 

Figure 7. Comparison between numerical and analytical solution. 
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5.  Conclusions 
In this work the calculation of wave loads on slender vertical cylindrical structures is presented, as 
obtained by application of Morison Equation, in conjunction with potential flow theory. Results of 
representative examples for a monopile foundation subjected to short waves are presented and discussed. 
Subsequently, the elastic response of the vertical pillar in waves is studied and an analytical solution 
concerning the dynamic response is also derived based on linearization.   For the validation of the present 
method, a numerical solution for the dynamic response of the monopile foundation subjected to general 
wave loads is derived, based on finite difference method (FDM). The numerical and the analytical 
solution give approximately the same result, verifying the accuracy of the analytical solution for waves 
of relatively small amplitude. Moreover, the calculation of the maximum static deflection of the structure 
subjected to the maximum wave loads is obtained by the finite element method (FEM) and is found 
compatible with the amplitude of analytical dynamic deflection.    

Future work includes the introduction of current effects and wind loads into the analytical and 
numerical model which is important for a more efficient and realistic estimation of the dynamic response 
of such structures.  Also, the developed analytical solution is realistic in the case of a seabed 
characterized by high stiffness due to the choice of fixed boundary condition at the base of the structure. 
For more realistic modelling of seabed material and foundation, enhanced boundary condition can be 
used.   
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Appendix 
 
The Laplace transform (with respect to z) of a function f(z) is defined as 

 { }
_

p t

0

f (z);z p f (p) f (z) e dp
∞

− ⋅→ = = ⋅ ⋅∫L
                                                           (A.1)

 

and its inverse is 
i_ _

1 p t

i

1f (z) f (p);p z f (p) e dp
2 i

γ+ ∞
− ⋅

γ− ∞

 = → = ⋅ ⋅  ⋅π ⋅  ∫L
                                           (A.2)

 

The Durbin method [8] for numerical inversion of Laplace transform approximates the time function 
f(t) by a periodic function of period T. In the present case the following representation is used 

 

,   (A.3)
 

 

where  
lnEa = a - ,
2T   

E is the error tolerance, for which the default value E = 1 x 10-8 has been assigned, 

and a is the real part of the leading pole of the function F(s). For functions without poles, the default 
value a = 0 has been set. 
The variables used in the paper are described in Table A1. 
 
 

Table Α1. Table of variables. 

Magnitude Symbol Units 
Outer Diameter Dout m 
Shell Thickness thick m 
Modulus of Elasticity E GPa 
Poisson Ratio v - 
Density of Material P kg/m3 
Damping Coefficient C  
Deflection of the Structure w m 
Added Mass Coefficient CA - 
Drag Coefficient CD - 
Wave Length λ m 
Wave Frequency ω rad/sec 
Wave Amplitude H m 
Wave Period T sec 
Water Depth d m 
Density of Water ρ kg/m3 

Wavenumber k - 
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