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Introduction

Fatigue can be defined as an overwhelming sense of tired-
ness, lack of energy, and a feeling of exhaustion.1 It is a fre-
quent and often disabling phenomenon that occurs in patients 
with chronic immunological diseases, cancer, neurological 
diseases, and several other conditions in which inflammation 
and/or cellular stress occurs.2 Nevertheless, chronic fatigue 
has a substantial impact on the patient’s quality of life and is 
a major cause of sick leave and disability.

It is a common view that inflammation and disease activ-
ity directly influence the severity of fatigue, and several 
studies have reported associations between fatigue and 
inflammatory markers such as C-reactive protein, pro-
inflammatory cytokines, and other variables.3,4 However, 
some authors question these observations and argue that 
studies using fatigue instruments that do not capture ele-
ments of disease activity (generic fatigue instruments) do not 
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confirm these associations.5,6 Another seemingly contradic-
tory observation is that instead of experiencing relief, fatigue 
worsens during chemotherapy or radiation treatment in can-
cer patients.7 In chronic fatigue syndrome (CFS)—a much-
debated condition in which no specific underlying disease 
can be revealed—several inconsistent disturbances in 
genetic, immunological, and molecular markers have been 
described over the years, so far with no definite and uniform 
overarching theory and conclusion reached.8,9

The biological mechanisms that cause fatigue are largely 
unknown, the hypotheses are conflicting, and it is important to 
uncover the pathophysiology and identify signaling pathways 
that generate and regulate this important phenomenon.2,10,11

Primary Sjögren’s syndrome

Primary Sjögren’s syndrome (pSS) is an autoimmune dis-
ease clinically characterized by inflammation of the exocrine 
glands, leading to dry eyes and dry mouth, and with fatigue 
as a prevalent feature.12,13 As no effective treatment is avail-
able today, pSS is an optimal disease to investigate fatigue 
mechanisms as molecular pathways can be considered “pure 
and undisturbed” in most patients, in contrast to other rele-
vant diseases in which cytostatics and immunomodulating 
drugs are widely used.

Present study

In this study, we examined the cerebrospinal fluid proteome 
of 20 pSS patients—10 with high and 10 with low fatigue—
using shotgun proteomics with the aim to identify proteins 

potentially involved in the pathogenesis of fatigue. The pro-
tein content of the cerebrospinal fluid comprises approxi-
mately 80% plasma-derived and 20% brain-derived proteins 
and contains several high abundant proteins, which are 
important to remove prior to proteomic analysis to minimize 
abundant proteins masking the detection of less abundant 
proteins.14,15

Identification of proteins expressed in cerebrospinal fluid 
that differentiate patients with high and low fatigue was the 
feasibility objective of the present pilot study. Furthermore, 
the clinical relevance of these proteins in relation to sickness 
behavior/fatigue was a criterion for the success of the study. 
Usually, a difference in fatigue of 20 or more in fatigue vis-
ual analog scale (fVAS) scores is considered clinically mean-
ingful. In this study, the high fatigue group had a median 
fVAS score five times higher than the median of the low 
fatigue group, well above this limit (Table 1).

Methods

Patients and fatigue measures

Seventy-two Caucasian patients fulfilling the American-
European Consensus Group (AECG) criteria for pSS16and 
followed at the Department of Internal Medicine at Stavanger 
University Hospital participated in a clinical study in which 
patients were investigated during a two-day stay in the hos-
pital for research purposes only.12 Fatigue was measured 
with the fVAS, a widely used and accepted generic and uni-
dimensional fatigue instrument.17 Fifty-five (76%) of the 72 
pSS patients underwent lumbar puncture. To increase the 

Table 1.  Selected clinical data for 20 patients with primary Sjögren’s syndrome.

Variables High fatigue (n = 10) Low fatigue (n = 10) p

Age, yearsa 61 (42–78) 56 (36–68) 0.16
Gender (male/female) 1/9 2/8 0.54
Disease duration, yearsa 10 (1–15) 4 (2–11) 0.09
Hgb, g/dLa 13 (12–14) 13 (12–15) 0.51
ESR, mm/ha 17 (6–31) 7 (2–28) 0.04
CRP (mg/L)a 3 (0–9) 0 (0–4) 0.05
Anti-SSA/La abs
  (Pos/neg) 8/2 6/4 0.34
Anti-SSB/Ro abs
  (Pos/neg) 4/6 4/6 1
  BDI scorea 12 (8–27) 7 (0–18) 0.01
  Fatigue VAS scorea 79 (76–91) 13 (3–29)  < 0.001
Medication
  Prednisolone (%) 3 (30) 0  
  Antimalarials (%) 2 (20) 3 (30)  
  Prednisolone and 
antimalarial (%)

0 1  

BDI: Beck depression inventory; CRP: C-reactive protein; ESR: erythrocyte sedimentation rate; Hgb: hemoglobin; SSA/La abs: Sjögren’s syndrome A 
antibodies; SSB/Ro abs: Sjögren’s syndrome B antibodies; VAS: visual analog scale.
aResults presented as median and range (Mann–Whitney U test).
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probability of finding discriminatory proteins, the 10 patients 
with the lowest fVAS scores (between 3 and 29) and the 10 
patients with the highest fVAS scores (between 76 and 91) 
were selected for study, regardless of other clinical charac-
teristics. Selected demographic and clinical data are summa-
rized in Table 1, and fVAS data for all 55 patients are present 
in Supplementary Table 1.

Sample collection

All lumbar punctures were performed at a fixed time 
(between 01:00 and 02:00 p.m.). A specialist in internal med-
icine using aseptic technique performed all punctures, and 
all patients tolerated the procedure well without serious 
adverse events. Results of routine cerebrospinal fluid (CSF) 
analyses such as cells and glucose were not recorded except 
albumin and IgG levels for assessment of blood-brain barrier 
function (Supplementary Table 2). Tests for autoimmune 
encephalitis or pathogens were not performed. CSF was col-
lected in cooled glass tubes and immediately placed on ice. 
Samples were centrifuged at 2500 g for 10 min at 4°C and the 
supernatant distributed in 200 µL aliquots. Samples were 
stored at −80°C until analysis.

Sample preparation

All CSF samples were subjected to a high abundant protein 
depletion system consisting of the following components: an 
Agilent Human 14 Multiple Affinity Removal Column 
(MARS-human 14, Agilent Technologies, USA), which is 
designed to remove 14 high abundant proteins from human 
body fluids (albumin, IgG, antitrypsin, IgA, transferrin, hapto-
globin, fibrinogen, alpha-2-macroglobulin, alpha-1-acid gly-
coprotein, IgM, apolipoprotein Al, apolipoprotein AII, 
complement C3, and transthyretin); a liquid chromatography 
instrument (Waters 2795, USA); a switch valve (IDEX ® 
Health & Science LLC, USA) connected downstream of the 
column; and a fraction collector (Kromatek CHF100SA, UK).

Two hundred microliters of CSF from each patient was 
loaded onto the MARS column. The non-retained proteins 
were eluted with a flow rate of 0.2 mL/min for 6 min in 
MARS Buffer A (Agilent Technologies, USA), resulting in a 
1.2 mL fraction per sample injected.

The column was cleaned using MARS Buffer B (Agilent 
Technologies, Santa Clara, USA) and re-equilibrated with 
MARS Buffer A before the next sample was injected.

The 1.2 mL fractions were transferred to a 3 kDa spin fil-
ter (Merck KGaA, Germany) for up-concentration and buffer 
exchange, according to the manufacturer’s protocol. The 
retentate was dissolved in 200 µL of 20% ammonium car-
bonate and 80% acetonitrile (ACN).

Protein digestion

Two hundred nanograms of trypsin (Promega, USA) was 
added to each sample, incubated for 1 h at 37°C and dried in 

a vacuum centrifuge (Concentrator 5301, Eppendorf, 
Germany) for 1 h at 60°C. One hundred microliters of 0.1% 
formic acid (FA, mobile phase A) was then added to each 
sample.

LC-MS/MS analysis

Liquid chromatography with tandem mass spectrometry 
(LC-MS/MS) analysis was performed using an UltiMate3000 
dual-pump nanoflow HPLC system (Dionex USA) con-
nected to a linear ion trap-orbitrap mass spectrometer (LTQ-
Orbitrap XL, Thermo Fischer Scientific, USA). Two columns 
were used in series: a Nanoviper monolithic PS-DVB precol-
umn (PepSwift 200 µm × 5 mm) and a monolithic PS-DVB 
PepSwift® analytical column (100 µm ID, 25 cm length; 
Nano Viper, Thermo Fischer Scientific, USA). The separa-
tion mobile phase A was 2.5% ACN in 0.1% FA, and separa-
tion mobile phase B was 80% ACN in 0.1% FA. The injection 
volume was 5 µL and the analytical flow was set at 300 nL/
min. An optimized multistep linear gradient was used: 
0–10 min, 100% A; 10–175 min, 100%–70% A; 175–
185 min, 70%–0% A; 185–215 min, 0%–0% A; 215–220 min, 
0%–100% A; and 220–250 min, 100%–100% A. The MS 
method was data dependent, using dynamic exclusion-based 
MS/MS analysis on peptides with two or more charges.

Samples were randomized during sample preparation and 
instrumental analysis in order to eliminate the potential of 
systematic error, such as drift in instrument response.

Data analysis

All patients’ raw data files were analyzed using Proteome 
Discoverer 2.0 (Thermo Fischer Scientific, USA) to search 
against the Homo sapiens database (UNIPROT, downloaded 
on 07 September 2016, 70367 sequences). Peptide and frag-
ment ion mass tolerance was set at 10 ppm and 0.6 Da. 
Trypsin was set as the digestion enzyme, allowing for up to 
two missed cleavages. Oxidation of methionine was set as 
the dynamic modification. Peptide identification was per-
formed by correlating the experimental MS/MS spectra with 
theoretical spectra predicted for each peptide in the protein 
sequence database. The best scoring peptide-spectrum match 
(PSM) was considered to be the peptide identification, and 
PSMs were filtered using Percolator18 at a false discovery 
rate (FDR) of 1% (strict) and 5% (relaxed). Only peptides 
identified with high confidence (X correlation 1.9 (z = 2), 2.3 
(z = 3), and 2.6 (z ⩾ 4)) were considered in this study.19

Relative protein quantitation was performed using a 
label-free approach based on spectral counts. This method 
counts the total number of PSMs for a protein, including 
those redundantly identified.20 The PSMs were normal-
ized by multiplying each variable by the ratio of total 
spectral counts for a sample and the average spectral 
counts for the corresponding group. The output value was 
then divided by the number of amino acids of the corre-
sponding protein.

https://journals.sagepub.com/doi/suppl/10.1177/2050312119850390
https://journals.sagepub.com/doi/suppl/10.1177/2050312119850390
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To examine potential differences in protein profiles 
derived from patients with low fatigue versus patients 
with high fatigue, a multivariate approach using two pat-
tern recognition methods was performed on the normal-
ized data set using SIRIUS 8.1 software (Pattern 
Recognition System AS, Norway). Compared to the clas-
sical univariate approaches, where each variable (i.e. 
protein) is considered as independent from each other, 
multivariate methods take into consideration the correla-
tion structure and the potential interactions between the 
proteins and should thus be the preferred statistical 
approach for proteomic studies.21 Principal components 
analysis (PCA) is an unsupervised statistical procedure 
that reduces the dimensionality of a data set by finding a 
new set of variables that is smaller than the original set of 
variables but nonetheless retains most of the sample’s 
information.22 Partial least square–discriminant analysis 
(PLS-DA) is a supervised statistical classification analy-
sis method that uses the information from the group 
membership of objects to find the maximal variation 
between the groups.23 Most proteomic studies (including 
this one) are characterized by a large number of variables 
characterizing each sample, accompanied by a small set 
of samples available, increasing the risk of identification 
of false positive protein candidates. However, as both 
PCA- and PLS-based methods can provide a dimension-
ality reduction by considering few latent variables or 
principal components rather than a large number of origi-
nal variables, both of these approaches have become 
quite widespread in proteomics in recent years, to reduce 
the risk of identification of false positive protein candi-
dates.21 Residual standard deviation versus Hotelling’s 
T-square resulted in three outliers for the PLS-DA and the 
PCA, respectively. To determine which proteins contrib-
uted the most to the separation of the two groups, a target 
projection–based selectivity ratio was used for discrimi-
natory protein selection. A discriminatory variable plot 
was used to obtain probability boundaries.24,25 Selecting 
a mean correct classification rate of 80% for a non-para-
metric Mann–Whitney test resulted in a discriminatory 
selectivity ratio of 0.23.

QIAGEN’s Ingenuity Pathway Analysis (IPA, Ingenuity 
Systems, Inc., USA, September 2016) was used for func-
tional interpretation of the differentially regulated proteins 
based on the Ingenuity Knowledge Base. The differentially 
expressed proteins with their PSM ratios were uploaded for 
pathway and network analysis to find relevant biological 
interactions between the molecules.

All analyses were performed in 2013 and 2014.

Ethics.  This study was carried out in compliance with the 
Helsinki Declaration and approved by the Regional Commit-
tee for Medical and Health Research, West (2010/1455). All 
subjects gave informed written consent to participate in the 
study.

Results

The patient cohort consisted of 17 (85%) women and three 
(15%) men. The median (range) age of the cohort was 59 
(36–78) years, disease duration 6 (0–24) years, Beck depres-
sion inventory (BDI) score 9 (0–27), and fVAS score 53 (3–
91). Hemoglobin was 13 (12–15) g/dL, C-reactive protein 
(CRP) 1 (0–9) mg/L, and erythrocyte sedimentation rate 
(ESR) 12 (2–31) mm/h. Sixteen patients (80%) had a posi-
tive anti-nuclear antibody (ANA) test; 14 of these (70%) had 
anti-SSA (Sjögren’s syndrome A) antibodies, and eight 
(40%) anti-SSB (Sjögren’s syndrome B) antibodies. Seven 
(35%) out of these had both anti-SSA/Ro and anti-SSB/La 
antibodies. Three (15%) patients were on prednisolone, five 
(25%) on antimalarials (hydroxychloroquine), and one on 
combined prednisolone and antimalarials. Two patients had 
a well-regulated hypothyroidism and one a substituted vita-
min-B12 deficiency. Selected demographic and laboratory 
variables for the individual groups with high and low fatigue 
are shown in Table 1.

There was no association between fatigue and any con-
ventional disease-associated variable (e.g. hemoglobin, 
ESR, CRP, ANA test), age, or gender.

A total of 828 proteins were identified in one or more of the 
20 CSF samples analyzed (Supplementary Table 3). No single 
protein had a statistically significant influence on fatigue using 
univariate analysis. However, because multiple variables often 
work together, changes may occur in the interactions between 
variables that cannot be detected by analyzing one variable at 
a time. A multivariate approach was therefore applied, and to 
reveal trends and outliers, a PCA was performed for the nor-
malized data set. Based on the plot and outlier testing, three 
samples were removed from the analysis, one from the high 
fatigue group and two from the low fatigue group. A super-
vised partial least square discriminant model was then calcu-
lated using the 828 proteins as the explanatory variables and 
group classification as the response variable. The aim was to 
identify a protein pattern that was differentially expressed by 
the two groups and yielded optimal classification accuracy. 
Since PLS-DA can often lead to chance classifications, that is, 
models that by chance give a good classification of two groups 
in data sets where the number of samples are much smaller 
than the number of variables, double cross validation was used 
to validate the model and only statistically significant compo-
nents were included. A two-dimensional partial least square 
discriminant scoring plot is reported in Figure 1, showing a 
separation between the two groups along component 1. To 
determine which proteins contribute the most to the separation 
of the two groups, a target projection–based selectivity ratio 
was used for discriminatory protein selection. Of the 828 pro-
teins identified in total, only 15 proteins had a selectivity ratio 
of 0.23 or higher (Table 2) and these proteins were selected as 
the most important variables involved in the class discrimina-
tion observed. A new PCA, including only information from 
the 15 selected proteins, was then performed to confirm that 

https://journals.sagepub.com/doi/suppl/10.1177/2050312119850390
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the set of selected protein candidates could separate most of 
the patients into two groups based on their level of fatigue 
(Figure 2).

To understand the potential biological relevance of the 
observed protein pattern, the possible interactions between 
the 15 selected proteins were examined by use of ingenuity 
pathway analysis. All of the selected proteins were included 
in the analysis, except for the uncharacterized protein 
H0YJW9. The top network generated included all 14 pro-
teins and proteins that are directly connected to several of the 
proteins in our analysis (Figure 3).

Discussion

In this study, a CSF protein pattern associated with the level 
of fatigue in pSS patients was identified, with many novel 
protein candidates detected. Several of these proteins have 
important functions in the central nervous system and add 
evidence to the concept of fatigue as a cerebral phenomenon. 
Of special interest is that some of the proteins are associated 
with severe depression (hemopexin, apolipoprotein A4, pig-
ment epithelium-derived factor, and secretogranin-3) and/or 
loss of appetite (apolipoprotein A4, selenium-binding pro-
tein 1, and secretogranin-3), which are cardinal findings of 
sickness behavior, in which fatigue constitutes a major ele-
ment. In addition, three of the 15 proteins have previously 
been identified in the CSF of patients with CFS (hemopexin, 
pigment epithelium-derived factor, and secretogranin-3).

Proteins with important functions in the innate immune 
system were also revealed as discriminatory proteins. Several 
of these play roles in downregulation of inflammation and in 
cellular stress defense (hemopexin, pigment epithelium-
derived factor, clusterin, osteopontin, and selenium-binding 
protein 1). These observations strengthen our hypothesis that 
some fatigue signaling pathways are associated with “cellu-
lar protection and defense” and are not directly related to 
pro-inflammatory factors.26 This is in line with several well-
designed studies in various inflammatory diseases that were 
not able to verify an association between disease activity or 
the degree of inflammation and the severity of fatigue.5,6 The 
origin of the proteins are multiple with some obviously origi-
nating from activated neurons or different types of glial cells. 
Others involved in innate immunity and cellular stress 
responses may have been produced by brain-resident micro-
glia, astroglia, or even been produced in the periphery and 
transported across the blood-brain barrier.

In general, our findings correspond to an increasing 
understanding of fatigue as part of the “sickness behavior 
response” observed during damage, cellular stress, infection, 
or chronic inflammation.2,12 Sickness behavior is character-
ized by fatigue, sleepiness, depression, social withdrawal 
and loss of appetite, thirst and grooming, and is hypothesized 
to be an automated and non-conscious survival enhancing 
strategy that is deeply conserved during evolution.27 In the 
individual, the protective molecular processes of cellular life 
are complemented by an element of survival behavior. In 
states of chronic inflammation and autoimmunity, these 
mechanisms are constantly active and fatigue is chronic.

The significance of our findings is strengthened by the 
associations with other highly relevant proteins in the path-
way analysis (Figure 3), which illustrates the interplay 
between pro-inflammatory signals, downregulation of 
inflammation, and cellular protection against oxidative stress 
and other cellular stressors. In line with this, we recently 
showed that heat shock protein 90 in blood is strongly asso-
ciated with increased fatigue in patients with pSS.26 Only a 
few previous studies have investigated the CSF proteome in 
states with chronic fatigue, such as post-treatment Lyme dis-
ease,28 multiple sclerosis,29 Persian Gulf War syndrome, 
fibromyalgia, and CFS.30

In detail, the following proteins collectively separated 
pSS patients with high and low fatigue:

Inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1), 
also known as inter-alpha-trypsin inhibitor complex com-
ponent III or serum-derived hyaluronan-associated pro-
tein, belongs to a family of protease inhibitors induced 
during the acute phase response. One genome-wide asso-
ciation study found an association between bipolar disor-
ders and a variant of the ITIH1 gene.31

Complement factor B (CFB), also known as C3/C5 con-
vertase, glycine-rich beta glycoprotein or properdin factor 

Figure 1.  Supervised partial least square–discriminant analysis 
(PLS-DA) based on peptide-spectrum matches (PSMs) shows a 
clear separation of primary Sjögren’s Syndrome (pSS) patients 
with high (square) and low (circle) fatigue. Three patients (one 
in the high fatigue group and two in the low fatigue group) were 
categorized as outliers and were therefore removed from the 
statistical analysis.
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B, is a component in the alternative pathway of comple-
ment activation by innate immunity and acts as a down-
stream effector of Toll-like receptor signaling pathways. 
A number of other components in the complement cas-
cade, such as Complement subcomponent 1, Complement 
C4A/B, and Complement subcomponent C1q were iden-
tified in the CSF of patients with CFS and Persian Gulf 
War Illness,28,30 indicating that the innate immune system 
has a role in fatigue generation.

Hemopexin (HPX), or beta-1B-glycoprotein, is an acute 
phase protein that binds heme with high affinity. HPX 
provides neuroprotection in mouse models of stroke and 
intracerebral hemorrhage and protects neurons in vitro 
against heme or reactive oxygen species toxicity via heme 
oxygenase-1 activity. Several studies have observed that 
HPX is associated with depression, with higher levels 
found in depressed than in non-depressed subjects.32 HPX 
was also identified as one of the 19 CFS-related proteins 
discovered by Baraniuk et al.30

Apolipoprotein A4 (ApoA-IV), in the brain, strongly sup-
presses food intake by inhibiting specific neurons in the 
hypothalamus.33 Loss of appetite and thirst is one of the 
fundamental characteristics of chronic fatigue, and thus 
the differential expression of ApoA-IV represents a highly 
relevant finding. A polymorphism of the APOA4 gene is 

Table 2.  Fold change, peptide-spectrum match selectivity ratio, and biological function of the 15 proteins in cerebrospinal fluid highly 
contributing to separation of primary Sjogren’s Syndrome patients with high versus low fatigue.

Accession Gene names Protein names Fold change Total peptide-
spectrum match

Biological function

High Low

H7C5I0 ITIH1 Inter-alpha-trypsin inhibitor 
heavy chain H1

4.25 ↑ 17 4 Protease inhibitor, mood

H0YJW9 Uncharacterized protein 1.77 ↑ 39 22  
H7C5H1 CFB Complement factor B 1.7 ↑ 104 61 Innate immunity
P02790 HPX Hemopexin 1.54 ↑ 188 122 Depression, cellular stress 

defense
P06727 APOA4 Apolipoprotein A-IV 1.37 ↑ 183 134 Depression, loss of appetite
P36955 SERPINF1 Pigment epithelium-derived 

factor
1.2 ↑ 415 346 Cellular stress defense, innate 

immunity, depression
E5RJZ5 CLU Clusterin 1.13 ↑ 61 54 Cellular stress defense
P10451 OPN Osteopontin 0.98 ↓ 352 360 Cell adhesion, wound healing
A0A0A0MT66 CHGB Secretogranin-1 0.91 ↓ 307 338 Depression
C9JP35 FAM3C Protein FAM3C 0.59 ↓ 17 29 Expressed in neurons, unknown 

function
H3BQ34 PKM Pyruvate kinase 0.58 ↓ 49 85 Cell metabolism
C9J8J8 CDH2 Cadherin-2 0.5 ↓ 26 52 Neuronal signaling
F8WCR4 SELENBP1 Selenium-binding protein 1 0.16 ↓ 3 19 Cellular stress defense, loss of 

appetite
P40925 MDH1 Malate dehydrogenase, 

cytoplasmic
0.14 ↓ 4 29 Cellular metabolism

H0YKC2 SCG3 Secretogranin-3 0.14 ↓ 1 7 Loss of appetite, depression

Figure 2.  Unsupervised principal components analysis (PCA) 
based on normalized peptide-spectrum matches (PSMs) from the 
15 top discriminatory proteins shows a separation along principal 
component 1 between most of patients in the two groups 
with high (square) and low fatigue (circle). Three patients were 
categorized as outliers (one in the high fatigue group and two 
in the low fatigue group) and were therefore removed from the 
PCA analysis.
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associated with depression,34 and upregulation of APOA4 
gene expression was significantly associated with post-
stroke depression.35 In addition, in a recent plasma prot-
eomic study of late-life depression, ApoA-IV protein was 
one of a panel of three proteins that could discriminate 
depressive from non-depressive elderly subjects.36 
Depression and loss of desire to eat are hallmarks of 
fatigue, and these observations indicate that ApoA-IV may 
be of importance for generation of chronic fatigue.

Pigment epithelium-derived factor (PEDF), also known 
as cell-proliferation-inducing gene 35 protein, EPC-1, 
serpin F1, or serpin-1, is a multifunctional protein that 
inhibits lipopolysaccharide-driven macrophage activation 
and induces peroxisome proliferator-activated receptor 
gamma.37 Thus, this protein suppresses inflammation and 
contributes to the regulation of wound healing.38 It pro-
tects neurons in vitro against oxidant injury and has been 
postulated to represent a biomarker for major depres-
sion.39,40 Of special interest is a CSF proteomic study in 
CFS, in which PEDF was one of the five proteins that 
separated subjects with CFS or Persian Gulf War syn-
drome from healthy control subjects.30

Clusterin (CLU), also known as apolipoprotein J, aging-
associated gene 4 protein, complement cytolysis inhibi-
tor, complement-associated protein SP-40, KU70-binding 

protein 1, NA1/NA2 or testosterone-repressed prostate 
message 2, is a secreted small heat shock protein that can, 
under stress conditions, be found in the cell cytosol. CLU 
is involved in many diseases related to oxidative stress, 
including neurodegenerative diseases, cancers, inflam-
matory diseases, and aging. Plasma levels of CLU corre-
late with the severity of Alzheimer’s disease.41

Secretogranin-1 (SCG1), or chromogranin B, is a cal-
cium-binding neuroendocrine secretory granule protein 
that may be a precursor for other biologically active pep-
tides. Its functions are largely unknown, but one recent 
proteomic study of CSF found an increase of SCG1 in the 
early phase of multiple sclerosis.42 We observed a low 
fold change in our study, and interestingly an animal 
study reported that mice lacking SCG1 exhibited 
increased depressive-like behavior.43 SCG1 was also 
identified as one of the 19 CFS-related proteins discov-
ered by Baraniuk et al.30

Osteopontin (OPN), also known as bone sialoprotein 1, 
nephropontin, secreted phosphoprotein 1, urinary stone 
protein, or uropontin, is an organic component of bone 
but is also synthesized in a variety of tissues and cells. It 
is produced after stimulation with tumor necrosis factor 
alpha and interleukin 1 beta, and it influences autoim-
mune demyelinating disease.44 OPN also functions as an 

Figure 3.  Top network from ingenuity pathway analysis with 14 of the differentially expressed proteins (red = upregulated, 
green = downregulated) and proteins that are directly associated with them (white molecules). The different lines correspond as follows: 
only line = binding, filled closed arrow = acts on, closed arrow = translocation, open arrow = reaction, and butt line = inhibition.
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adhesion protein and is involved in cell attachment and 
wound healing.

Protein FAM3C (FAM3C), or interleukin-like EMT 
inducer, shows widespread expression in neurons, espe-
cially in the presynaptic terminals, but its function is not 
completely understood.45

Pyruvate kinase (PKM), also known as cytosolic thyroid 
hormone-binding protein, Opa-interacting protein 3, 
pyruvate kinase 2/3, thyroid-hormone binding protein or 
p58, catalyzes the final step of glycolysis. This enzyme is 
inhibited by reactive oxygen species.46

Cadherin-2 (CHD2), also known as neural cadherin or 
CdW325, is a transmembrane protein primarily found in 
neurons. It is of importance for signaling across neuronal 
synapses, thus playing roles in learning and memory 
consolidation.47

Selenium-binding protein 1 (SELENBP1), also known as 
56-kDa selenium binding protein, has an inverse relationship 
with the ubiquitously expressed glutathione peroxidase 
(GPX1) enzyme such that low levels of SELENBP1 are 
accompanied by high levels of GPX1. GPX1 detoxifies lipid 
and hydrogen peroxides during oxidative stress conditions 
and is a cellular protector.48 SELENBP1 is upregulated in the 
brain and blood of patients with schizophrenia.49 However, 
even more interestingly, in mice with cancer, the lack of desire 
to eat has been associated with changes in the hypothalamic 
proteome, in which SELENBP1 has been identified.50

Malate dehydrogenase (MDH1), also known as cytosolic 
malate dehydrogenase or diiodophenylpyruvate reduc-
tase, is a ubiquitous enzyme that catalyzes the NAD/
NADH-dependent conversion of oxaloacetate and malate. 
This reaction is important for mitochondrial function and 
thus for cellular metabolism in general.

Secretogranin-3 (SCG3) belongs to a family of neuroen-
docrine secretory proteins that may serve as precursors of 
biologically active peptides. Studies have shown that 
SCG3 mRNA is expressed in areas of hypothalamus with 
important functions for appetite regulation, and the pro-
tein may interact with appetite-regulating neuropeptides 
such as orexin (hypocretin), indicating a role for the 
involvement of SCG3 in appetite regulation.51 In addi-
tion, increased gene expression of SCG3 has been 
described in patients with major depressive disorder.52

There are important weaknesses of this study: First, it 
needs to be replicated in another pSS cohort, as well as in a 
non-pSS cohort. The sample size is small and a healthy control 
cohort is lacking. It was not possible to stratify completely for 
all clinical variables in the two groups. These shortcomings 
are partly due to the difficulties of obtaining relevant biologi-
cal material (CSF) in a high enough number of subjects. Many 
countries do not permit spinal tap for research purposes only, 

and few studies have been performed of the CSF proteome 
that can enlighten fatigue signaling mechanisms. Our study is 
therefore a pilot study in this context. It should be noted that 
the high abundance protein depletion step also most likely has 
removed proteins bound to these proteins, which could have 
been relevant for this study. However, removal of high abun-
dance proteins is a necessary step to minimize abundant pro-
teins masking the detection of less abundant proteins in the 
CSF.

It is necessary to validate the present findings in CSF of 
other diseases characterized by fatigue, as well as in blood, a 
much more easily accessible fluid than CSF. Whether some 
of the proteins may represent consistent biomarkers of 
fatigue for future research and routine diagnostics, therefore, 
remains to be seen.

In conclusion, the present findings give further support to 
the concept of fatigue as a sickness behavior phenomenon 
that has been strongly conserved during evolution, generated 
and regulated through a redundancy of molecular signaling 
pathways to the brain. The findings also support the hypoth-
esis that fatigue signaling is in part associated with cellular 
stress defense mechanisms, wound healing, and both up- and 
downregulation of innate immunity. This can explain the fre-
quent finding of lack of association between severity of 
fatigue and disease activity in several studies.
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