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ABSTRACT

In this paper we focus on a general model to describe compressible and immiscible three-phase flow in porous
media. The underlying idea is to replace Darcy’s law by more general momentum balance equations. In particular,
we want to account for viscous coupling effects by introducing fluid-fluid interaction terms. In [Qiao, et al.
(2018) Adv Water Resour 112: 170-188] a water-oil model based on the theory of mixtures was explored. It
was demonstrated how the inclusion of viscous coupling effects could allow the model to better capture flow
regimes which involve a combination of co-current and counter-current flow. In this work we extend the model
in different aspects: (i) account for three phases (water,oil,gas) instead of two; (ii) deal with both the compressible
and incompressible case; (iii) include viscous terms that represent frictional forces within the fluid (Brinkman
type). A main objective of this work is to explore this three-phase model, which appears to be more realistic than
standard formulation, in the context of petroleum related applications. We first provide development of stable
numerical schemes in a one-dimensional setting which can be used to explore the generalized water-oil-gas model,
both for the compressible and incompressible case. Then, several numerical examples with waterflooding in a
gas reservoir and water alternating gas (WAG) experiments in an oil reservoir are investigated. Differences and
similarities between the compressible and incompressible model are highlighted, and the fluid-fluid interaction
effect is illustrated by comparison of results from the generalized model and a conventional model formulation.

1. Introduction
Generally

The processes of multiphase flow in porous media occur in many
subsurface systems and have found many applications of practical in-
terest, such as hydrology, petroleum engineering, geothermal energy
development and carbon storage (Bakhshian et al., 2019; Bakhshian and
Hosseini, 2019; Wu, 2016). The immiscible three-phase flow is always
encountered in waterflooding for oil reservoirs with gas cap, in immis-
cible CO, storage in depleted oil and gas reservoirs, and steam floods
and water-alternating-gas (WAG) processes (Bentsen and Trivedi, 2012;
Juanes, 2008). Darcy’s law was originally developed for single-phase
flow (Darcy, 1856). Conventional modeling of multiphase flow is nor-
mally based on Darcy’s extended law (Rose, 2000) by incorporation of
relative permeabilities (Muskat et al., 1937). However, recent experi-
mental observations indicate that the flow mode (co-current or counter-
current) can have a strong impact on the flowing phase mobilities. That
is to say, the relative permeabilities are not only function of saturation
but are also related to the effect of how the fluids flow relatively to each
other (Bentsen and Manai, 1992; Bourbiaux and Kalaydjian, 1990).
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Viscous coupling

Viscous coupling (i.e., fluid-fluid interaction) was firstly mentioned
by Yuster (1951) by using theoretical analysis to derive that relative per-
meability is a function of both saturation and viscosity ratio. In addition,
capillary number was also proposed to be a factor affecting relative per-
meabilities (Ehrlich, 1993; Avraam and Payatakes, 1995). In general,
momentum transfer due to differences in interstitial velocities induces
acceleration of the slower and deceleration of the faster moving fluid
when the fluids are moving co-currently. Deceleration of both fluid ve-
locities will occur if they are moving counter-currently (Ayodele, 2006;
Bentsen and Manai, 1993; Dullien and Dong, 1996; Li et al., 2004).

In order to extend the single-phase Darcy’s law to multiphase flow,
de la Cruz and Spanos (1983) derived theoretically Darcy’s empirical
extended law by applying the method of volume averaging to Stokes
equation. In Kalaydjian (1987, 1990), Kalaydjian developed flow equa-
tions using the concepts of irreversible thermodynamics (Katchalsky and
Curran, 1975) from a macroscopic understanding of two-phase flow
in porous media. In addition, some researchers tried to gain insight
into how two immiscible phases flow through a porous medium by
using simple analogous models such as tubular flow (Yuster, 1951;
Bacri et al., 1990). In Langaas and Papatzacos (2001) Langaas and Pa-
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patzacos used the Lattice Boltzmann (LB) approach to investigate ef-
fects of viscous coupling and concluded that counter-current relative
permeabilities caused partly by viscous coupling are always less than
the corresponding co-current curves under different levels of capillary
forces. Using the same method, Li et al. (2005) showed that their model
was able to capture main experimental effects caused by viscous cou-
pling. They also mentioned that the interfacial area between the fluids
is a key variable for relative permeability functions for two immisci-
ble fluids flow in porous media. A generalized model was developed in
Qiao et al. (2018) for two-phase flow with viscous coupling effect. Nu-
merical investigations showed a better agreement with the experimental
tests (Bourbiaux and Kalaydjian, 1990) compared to the conventional
modeling. The authors in Bentsen and Trivedi (2012) constructed mod-
ified transport equations for both co-current and counter-current three-
phase flow through a vertical incompressible model based on partition
concepts. Their equations are used to estimate the amount of model er-
ror because of a failure to account for the effect of interfacial coupling
which has two types: viscous coupling and capillary coupling. Moreover,
Sherafati and Jessen (2017) investigated the effect of mobility changes
due to flow reversals from co-current to counter-current flow on the
displacement of WAG injection processes.

Complex multiphase flow in porous media and use of the theory of mixtures

Motivated by petroleum related applications various attempts to
solve the three-phase porous media flow model have been reported dur-
ing the past decade (Falls and Schulte, 1992; Guzman and Fayers, 1997a;
1997b; Juanes and Patzek, 2004). An interesting investigation was car-
ried out in Lie and Juanes (2005) where a front-tracking algorithm was
proposed for constructing very accurate solutions to one-dimensional
problems (for example WAG test therein). This was explored in the con-
text of streamline simulation which decouples the three-dimensional
problem into a set of one-dimensional problems along streamlines. This
work is limited to three-phase immiscible, incompressible flow and also
gravity and capillarity were ignored. Different numerical methods have
been implemented to simulate three-phase flow in porous media. A finite
volume method was used in Lee et al. (2008) for solving compressible,
immiscible flow with gravity in heterogeneous formations by using the
black oil formulation. A hybrid-upwinding scheme for phase flux was
proposed in Lee and Efendiev (2016) for a finite difference approxi-
mation to solve the three phase transport equations in the presence of
viscous and buoyancy forces. A finite element method was applied to
simulate fluid injection and imbibition processes in a deformable porous
media (Gajo et al., 2017). Moreover, (Dong and Riviere, 2016) applied
a semi-implicit method with discontinuous Galerkin (DG) discretization
to solve the incompressible three-phase flow in two dimensions. Addi-
tional physical effects are also discussed and explored for three-phase
porous media flow, such as hysteresis effects of relative permeabilities
(Ranaee et al., 2019) and elliptic regions (Juanes and Patzek, 2004;
Juanes, 2008; Lee and Efendiev, 2016). In Juanes (2008) Juanes pre-
sented a nonequilibrium model of incompressible three-phase flow in
porous media. The nonequilibrium effects by introducing a pair of ef-
fective water and gas saturations into the formulations have the ability
to smear saturation fronts from numerical simulations.

The theory of mixtures offers a general framework for developing
models for complex multiphase flow systems (Rajagopal, 2007). More
lately, biomedical applications have been a driver for the development
of various models relying on this approach. For example, the study how
cancer cells are able to break loose from a primary tumor involves a solid
matrix (the so-called extracellular matrix), different type of cells (can-
cer cells, stromal cells, immune cells), and interstitial fluid (Evje, 2017;
Evje and Waldeland, 2019). A recent example of this is described in
Waldeland and Evje (2018b); Urdal et al. (2019) where, respectively, a
cell-fluid two-phase model and a cell-fibroblast-fluid three-phase model
are developed to shed light on the experimentally observed tumor cell
behavior reported in Shieh et al. (2011). The model that is derived
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relies on replacing Darcy’s law by more general momentum balance
equations which incorporate both the cell-matrix resistance force and
the cell-fibroblast interaction. The latter is understood as a ”viscous
coupling” effect caused by a mechanical coupling that can occur be-
tween tumor cells and fibroblasts and has been reported in experimental
studies (Labernadie, 2017). Another example how generalized momen-
tum equations can be used to capture non-standard multiphase behav-
ior in the context of aggressive tumor cells is explored in Waldeland
and Evje (2018a). In Polacheck et al. (2011) two competing migration
mechanisms were observed, one in the upstream direction and another
in the downstream direction. The use of generalized momentum equa-
tions allowed us to account for both this fluid-stress generated upstream
migration and a chemotactive migration in the direction of increasing
concentration of chemical concentrations (Waldeland and Evje, 2018a).

The aim of this work

The objective of this paper is to investigate a mixture theory ap-
proach to simulate three immiscible fluids flowing in a 1D reservoir.
We shall consider both the case with compressible and incompressible
fluids. The model which is introduced is quite general since it can au-
tomatically capture flow that involves a combination of co-current and
counter-current flow. The current work represents extension of previous
work in two ways:

o Extend the incompressible two-phase model that was explored in
Qiao et al. (2018); Andersen et al. (2019) to include three phases.

e Extend the compressible two-phase model studied in
Qiao et al. (2019a) to include three phases.

In addition, the models we study in the current work are more gen-
eral than those studied in Qiao et al. (2018); Andersen et al. (2019) since
we consider Stokes like momentum equations which involve viscous
terms that account for internal friction due to viscosity. In particular,
appropriate numerical schemes are introduced to investigate compress-
ible and incompressible three-phase flow scenarios that are motivated
by injection-production flow scenarios.

Main observations from our numerical experiments with two and
three-phase flow scenarios where the flow dynamics are generated by
injection of water or gas in the center of the domain and production
of fluids at the left and right boundary are: (i) The simulation cases in-
volve competition between pressure driven co-current flow and counter-
current gravity driven flow; (ii) Both the incompressible and compress-
ible discrete version of the model appear to have good stability prop-
erties. The numerical experiments indicate that the numerical schemes
can be useful as a tool to deepen the insight into the relation between the
incompressible and compressible version of the model. The model and
its discrete approximate counterparts appear to be a good starting point
for extending to more complex flow systems, as mentioned above, that
involve competition between different distinct, non-standard transport
mechanisms.

The rest of this paper is organized as follows. In Section 2 we
briefly describe the mixture flux approach in a three-phase setting.
In Section 3 we summarize the generalized three-phase porous me-
dia model, both a compressible and an incompressible version of it.
Section 4 is devoted to numerical simulations to demonstrate three-
phase dynamics and verify basic features of the numerical schemes.
The details of the compressible and incompressible scheme are given
in Appendix A-Appendix D.

2. Mixture theory framework
2.1. Conventional model based on Darcy’s law

We firstly describe the traditional formulation of incompressible
multiphase flow model without source terms. Transport equations for
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incompressible and immiscible phases oil (0), water (w) and gas (g) in
porous media are normally given by:

d(¢ps))+V-U; =0, @.1)

U; = ¢s;u;, (i=w,o0,g), 2.2)

where ¢ is porosity, s; is phase saturation, Q; is the source term, and
U; and u; are the Darcy velocity and interstitial velocity of each phase
i = o,w, g, respectively. For simplicity the irreducible (immobile) phase
saturation (s;.) is not considered in the equations by assuming it is equal
to 0. Hence, the normalized phase saturation (= SiSir ) equals the

1=8,p =50y =S gr

phase saturation value s;. The traditional macroscopic formulation of
Darcy’s law that relates the volumetric flux of a phase to the pressure
gradient of that phase is given by:

Kkri
U, =- (Vp; — p;®),

1

(i=w,o,8), (2.3)
where K is the absolute permeability of porous media, p; is phase pres-

sure, g is the acceleration of gravity and k,;, p; and y; are phase relative
permeability, density and viscosity, respectively.

2.2. A generalized multiphase flow model based on mixture theory

For our investigations, the mass balance equations with source terms
in the case of compressible water-oil-gas transport can be given by:

(¢nw)t +V- (¢nwuw) = _anp + prIw’ Ny = SwhPw
(Pn,); + V- (¢nyu,) = —n,0,, Ny = S,P,
(Png) +V - (Pnguy) = —n O, + p, Oy, Ny = Sgpg (2.4)

where u;, (i = w,o0,g) represents the interstitial velocity of phase i in
the porous media. In addition, Q, is the production rate and Q,,,, Qj,
represent the injection rate of water and gas, respectively.

The starting point for developing our model that can account for
more detailed physical mechanisms for water-oil-gas porous media flow
than conventional modeling, is the theory of mixtures. This is a theory
based on balance laws and conservation principles, which is well known
in continuum mechanics (Bowen, 1976; Rajagopal and Tao, 1995; Byrne
and Preziosi, 2003; Ambrosi and Preziosi, 2002; Preziosi and Farina,
2002), and has been widely applied to the biological tumor-growth sys-
tems which can be characterized as a mixture of interacting continua.

Neglecting inertial effects (acceleration effects), as is usual when
dealing with creeping flow in porous materials, the mechanical stress
balance is given by Ambrosi and Preziosi (2002):

0=V-(s;0))+m; +G,, (i=w,o0,8), (2.5)

where o; refers to the Cauchy stress tensor, m; represents the interaction
forces exerted on the constituents by other constituents of the mixture,
and G; = s;p;g is the external body force due to gravity. The standard
expression for the stress terms o;, is given by

o; =—p;6+1;, (i=w,o0,g), (2.6)

where § is the unitary tensor and

e = %(Vui +Vul),
The viscous part z; reflects that the water, oil and gas behave as a vis-
cous fluid. According to general principles of the theory of mixtures, the
interaction forces m; between the constituents appearing in (2.5) may be
described as in Preziosi and Farina (2002); Ambrosi and Preziosi (2002);
Byrne and Preziosi (2003):

7; = 2u,e, (i=w,o0,g). 2.7)

m, = povso + Fwa - Fog + Mam’

my, = pwVSw - Fwo - ng + Mwm’

PeVsg + Fyg + Fog + Mg, (2.8)
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where F; (i,j = o, w, g), denotes the force (drag) that the i phase exerts
on the j phase. The j phase exerts an equal and opposite force —F;;.
Similarly, My, M, and M, represent interaction forces (drag forces)
between fluid and pore walls (solid matrix), respectively, for oil, water
and gas. The term p;Vs; is related to interfacial force exerted by other
phases on phase i, arising from mathematical derivation of averaged
equations (Drew and Segel, 1971). To close the system we must specify
the drag force term F,,,, Fige» and Fog and the stresses o; (i =0, w, g)
and interaction force terms M, between fluid (i = w, 0, g) and matrix.
Drag force represents the interaction between one phase and another
phase and is modelled as Rajagopal (2007); Preziosi and Farina (2002);
Ambrosi and Preziosi (2002):

Fw = ]A‘wo(uw - Mo)’
Frpg = kypgu, — 1),
Fop = kot —uy), (2.9)

where k;; (i,j = 0, w, g), remains to be determined. Typically, k;; ~ s;s;
to reflect that this force term will vanish when one of the phases van-
ishes. Similarly, the interaction force between fluid and pore wall (ma-
trix, which is stagnant) is naturally expressed then as (Rajagopal and
Tao, 1995; Rajagopal, 2007; Preziosi and Farina, 2002; Ambrosi and
Preziosi, 2002):

(i=o0,w,g). (2.10)

The coefficients k; ; and k; (dimension Pa-s/m?2), that characterize the
magnitude of interaction terms, can be chosen such that the model re-
covers the classical porous media model based on Darcy’s law. At the
same time the approach used here will open for development of reser-
voir models where more detailed physics can be taken into account.

3. A summary of the general three-fluid model for porous media
flow

3.1. The compressible case
We are interested in studying a 1-D model for three compressible im-

miscible fluids moving in a porous media. After combining (2.4)-(2.10)
the model takes the following form:

(@n) + (Pnyuy)y = =1y, 0, + 0O rips My = P
(@no); + (Pnyuy), = —n,Q,, Ry = SoPgs
(Pny), + (nguy), = —n,0, + p Oy, ng = 540

Sw(Py)y = —kyptty — Koty — ) — fcwg(uw — ug)

1,8 + €, (Nl ) o

s,(P,), = —lAcouD - lAcwa(uo —uy,) — lAcDg(uo - ug)
108 + €0 (Molloy)x

sg(Pg)X = —lAcgug - lAcwg(ug —u,) — I}og(ug —u,)
+ngg + € (ngug, )y,

AP, (s,) = P, — P, AP, (s;) = P, — P, @3.11)

with capillary pressure AP, defined as the pressure difference between
the oil and water and capillary pressure AP,, defined as the pressure

difference between the gas and oil. We may choose to use the following
expressions for capillary force

Sw
AP,, = P,— P, = AP, (s,)=—P;In6; + =) and &,a; >0,
a;

AP, = P,— P, = AP, (s,) = Phs® and a,>0 (3.12)
with non-negative constants P, representing interfacial tension. This
allows us to mimic capillary pressure functions that previsously have
been proposed for three-phase reservoir flow (Chen and Ewing, 1997;
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0dd and David, 2010). In addition, we have the fundamental relation
that the three phases fill the pore space

Sot s, +tsyg =1 (3.13)

The above model must be combined with appropriate closure relations
for p; = p;(P,). We represent the three phases by linear pressure-density
relations of the form

~ Pw ~ Po Pg
P = Pu0 = ¢ Po= P = & Pe= (3.14)
w 4 8

where C,,, C, and C, represent the inverse of the compressibility of wa-
ter, oil and gas, respectively.

We refer to Appendix B for a semi-discrete approximation of (3.11) as
well as a fully discrete scheme.

Remark 3.1. We may also study a higher dimensional case (e.g., 2D)
where the model consists of three mass balance equations for three
phases (water, oil and gas) and six momentum equations (each phase
has two directions such as x and y). The scheme has been tested in 2D
for two phases and shows similar properties as in 1D.

3.2. The incompressible case

3.2.1. Viscous flow

We may let C,,,C,, C, go to infinity in (3.14). Then we obtain the
incompressible version of the model (3.11). We refer to Appendix C for
a semi-discrete as well as a fully discrete scheme for this incompressible
case.

3.2.2. Inviscid flow

Moreover, in order to relate this incompressible version to the clas-
sical Darcy-based formulation we ignore the viscosity terms in the mo-
mentum equations by setting ¢; = 0(/ = w,0,g) in (3.11)4 5. Solving
momentum equations with respect to interstitial phase velocities u;, the
Darcy velocities of fluid phase are expressed as follows based on (2.2):

v, = ¢Swuw = _/Iww(wa - pwg) - }”wo(Pax - pog) - Awg(ng - ng),
Uo = ¢sou0 = _lwo(wa - pwg) - Aoo(Pox - pog) - Aog(ng - pgg)’

U, = ¢sguy = =2y (Pyy = P1p8) = Aog(Pox = Po8) — Agg(Po — pg8), (3.15)

and the following relations are defined:

¢s2, ~ GS,,Sy » N
Aww = Tw(RoRg - kog)’ Awo = Aow = ; o(kwaRg + kogkwé)’
¢52 R q.’)swsg . A
Apy = Ra (RyRy = ko) Ay = Agus = = Kuog Ro + Koghiy,),
¢s? . $5,5, . o
Agg = Tg(RwRD — K2 ). Ay = Ay, = }’; £ (kog Ry + kypgkyp).  (3.16)
where
Ry, =k + kg + ke
R, = ko + bk + kg
R, = kg + by + ko
R = kk,ky + (ky+ ky + k) gy + Koghipo + kipgkog)
+ hghohyy + ko) + kg (ky + ko) + kohyg (e + k). (3.17)

Using capillary pressure relations (3.12) it follows that (3.15) take
the following equivalent form:

Uy = =Py = Gipo + Apg) APy = Aipg AP,
+ (AwPuw + AwobPo + Auwghy)8s

Uy = =4y P = (oo + Ao) APy = Ao APy + (AoPiv + AooPo + Aoghg)8s

U, = =4y Py = (g + Apg)AP, = Ay AP,
+ (AgPuw t Aogho + AggPg)8-

(3.18)
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Here we define the following notation for generalized phase mobilities
A

i

i:M) = j'IA)M) + Awo + /‘ng’
/}D = Aoo T Ao F Aogs (3.19)
Ay = Agg F Aipg F Aog.

By summing U,,, U, and Ug in (3.18) and using the notation introduced
in (3.19), the total Darcy velocity can be expressed as follows:

Up = =dp Py — Ay + A)AP, = L AP+ (Aypyy + Aop, + Agp )8
(3.20)

where we have used

dp=A,+2,+ 1, (3.21)

Therefore, the water pressure gradient can be derived from (3.20):

1 N o N . o N
Py = —j—Ur = (fo+ fIAP, . — [ APy + (frpu + fobo + [oP)8

T
(3.22)

with generalized fractional flow function:

fi=4/Ar, (i=w,o0,g). (3.23)

Inserting (3.22) into (3.18) we get:

U, = fUr + (W, + WOAP,, + W AP, — Wyyp, + Wop, + Wyp,)s,
U, = f,Ur + (0, + O)AP,, + O,AP,, — (0,0, + Oyp, + Oyp, g,

Ug = ngTJ’_ (Go+ Gg)APowx+ GgAPgox_ (Gwpw+ Gopa+ Ggpg)gs (324)

where

VV,— = Zw Ai_ Awi’

Oi = iof:' - )”oi’

G, =y fi— Ay (i=w,o0p). (3.25)

It should be noted that W, + O, + G; = 0(i = w, 0, g) in light of (3.16),
(3.21), and (3.23).

4. Numerical examples

We mainly focus on a reservoir model where there are one injection
well at the center and two production wells distributed at two sides.
The injection rate is equal to the total production rate and the rates of
two production wells are also same (See Fig. 1). In addition, reservoir
inclination @ is also accounted for in the model.

Inclination ©

Fig. 1. Reservoir model with injection and production.
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Fig. 2. Left: Capillary pressure between water

and oil. Right: Capillary pressure between oil
and gas. We refer to (3.12) for their expressions
and Table 1 for the input parameters.
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Fig. 3. Water fractional flow function f,(s,, s,) (defined in (4.27)) with effects of model inclination 6 and total flow direction of U;. (A): sin =0, Uy = ap /2; (B):

sind = 1, Up = —Q,/2; (C): sinf = 1, Up = Q,/2.

Interaction terms

The model (3.11), 5 ¢ should be armed with appropriate functional
correlations for fluid-rock resistance force k,, k,, lAcg and fluid-fluid drag
force ki, kg, k,q. Here we use the interaction terms suggested in the
recent works (Standnes et al., 2017; Qiao et al., 2018; Andersen et al.,
2019):

5 Hy g Ho 2 He

kw = stﬁ;? s ku .—IOSgE(I), kg .—Igsggqﬁ,

2 . HwH 2 . HyHg P Holg
ko 1= TyoSwSo MI; 29, kg 2= Iwgswng¢s kog i= IagsongqﬁA

(4.26)

All the interaction terms k; and k; ; have dimension Pa-s/m?. The param-
eters a, ff and y are dimensionless exponents whereas 1, I, and I, are
dimensionless friction coefficients characterizing the strength of fluid-
solid interaction. Finally, I,,,, I,,, and I, are coefficients characterizing
the strength of the fluid-fluid drag force with dimension (Pa-s)~'.

Input data

The input parameters used in the simulations are listed in Table 1.
We use 101 grid cells for a 100-meter reservoir layer. We refer to
Appendix D for a convergence test. The magnitude of the interaction
coefficients 1,,, I,,,, and I, are chosen as in Qiao et al. (2018) where
we applied a generalized two-phase model to match the experimentally
measured relative permeability curves and obtained values for the input
parameters such as I,,, whose magnitude is around several thousands.
In order to avoid too many complicating effects at the same time in
the subsequent discussion, we have set the viscosity terms to zero, i.e.,
Ey=¢8,=€,=0.

We use the similar capillary pressure relations as
Qiao et al. (2019b) for water and oil and Lewis and Pao (2002) for oil
and gas (see Fig. 2). The expression of an effective water fractional flow
function f,,(s,,,s,) in the conventional water-oil-gas model (assuming
no capillary pressure, i.e., AP,, = AP,, =0) is

i .
def Uw ZUT - (Wwpw + W0, + W/gpg)g sin @
fw(sws SO) = =

— 4.27
U, U, “4.27)
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(A) Water Pressure, P (bar) (B) Water Velocity, u,, (m/d) (C) Normalized Water Saturation, s,
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Fig. 4. Results of the horizontal compressible three-phase model during a 400-day waterflooding period. The source term effects can be seen clearly in all plots
where production wells are located at 10 m and 90 m and injection well at 50 m. (A) Water pressure plot shows a strong pressure gradient region at the early stage
(before 130 days). (B) Water velocity profile. It can be seen that water—- front reaches the production well after around 100 days. (C) Normalized water saturation
shows that the water front is fast whereas the other phases (oil and gas) are produced slowly (takes almost 300 days). (D) Oil pressure profile gives a similar result
as water pressure. (E) Oil velocity behavior is similar to water velocity. (F) Normalized oil saturation plot illustrates that oil is displaced quite slowly. (G) The gas
pressure gradient is very low in the gas-displaced region at the early stage due to the high mobility of gas. (H) There is no gas advancing front since gas flows easily.

(D) Gas is displaced fastly and a lot of gas is recovered before 130 days.

Table 1
Reference input parameters in the simulations.

Parameter Dimensional value Parameter  Dimensional value
L 100 m 1, 2.5

] 0.25 I, 1.8

Puo 1g/cm? I, 1.1

P 0.8 g/cm? 1, 3000 (Pa-s)!
oo 0.018 g/cm? I, 3000 (Pa-s)™!
Sur 0 Log 3000 (Pa-s)!
Sor 0 a 0.01

Sgr 0 B 0.01

T 1cP v 0.01

Ho 1.5¢cP Py 4*10% Pa

Hg 0.015¢cP a; 2

K 1000 mD 84 0.08

kmax 04 Py 10° Pa

femax 0.5556 a, 2

ke 0.9091 C, 106 m?/s?
[ 0.125 m?/day C, 5+10° m?/s2
0y, 0.125 m3/day (o8 105 m2/s?

0, 0.0625 m3/day £ 0.0cP

N, 101 £ 0.0cP

A 1 m? £ 0.0cP

P, 10° Pa X, 50m

At 1570 s Xp(12) 10,&90, m

where we have used (3.24) and (3.25) where U = fox(QI - Q,)dx. Sim-
ilarly, f, and f, can also be expressed in the same manner. In order to
illustrate the phase flow fraction f,, (see Fig. 3) we represent U by a

reference total velocity UT S [—%, +%]. We refer to Table 1 for other
input data that are used.

Initial conditions

For the waterflooding case, we assume the reservoir initially is
mostly filled with gas (90%) and some oil (10%):

sg(x,1=0)=09, s,(x,t =0)=0.1. (4.28)

For the WAG injection case, the reservoir is assumed initially filled with
oil (90%) and some extra water (10%):

s,(x,t=0)=0.9, S,(x,t=0)=0.1. (4.29)

For the compressible case, a reference pressure P,,; at the left boundary
of the layer is given at initial state,

P, (x=0,1=0)=10Pa. (4.30)

Boundary conditions

We assume a closed boundary for both compressible and incompress-
ible models, which means that

u(x=0,1=0, ui(x=1L,1)=0, i=w,o,g. 4.31)

For the incompressible case, we give a reference pressure P,,; at the left
boundary of the layer,

P, (x=0,1) = 10Pa. (4.32)
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Source terms

For WAG experiments, gas and water are injected at different time
periods during the whole oil recovery process. We assume that Q;(x) and
Qp(x) take the form

Qlw'lg L

o 0,

0,(x) = %{1, if [x—x,;1 <0/2;
c

0, otherwise.

if |x —x;| <06/2;
otherwise.

>

Q]w,jg x) =

(4.33)

where (i = 1,2) and élw, I, = 0.125m*/day and Q, = 0.0625m’ /day. The
width of the small region associated with the injector and producer is
o. In the numerical scheme ¢ = Ax.

4.1. Waterflooding in a gas reservoir

We first test the proposed compressible three-phase model applied to
a gas reservoir development. In this example, water is injected at 50 m
into a gas reservoir layer of length 100 m with a little proportion of oil
(10%). Two cases, respectively, for the horizontal (Fig. 4) and vertical
reservoir (Fig. 5) are shown below.

(A) Water Pressure, Pw (bar) (B)
400

300

w
S
S

Water Velocity, u, (m/d)
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The results of the horizontal compressible three-phase model with
water injection for a total period of 400 days are shown in Fig. 4 where
pressures (first column), velocities (middle column) and saturations
(right column) are symmetric with the injection well located at the cen-
ter of reservoir layer. The gas is mostly recovered during the first 130
days, see (I), whereas oil recovery takes place over more than 300 days,
see (F), due to its lower mobility than gas. It is also observed that at
early stage gas pressure along the reservoir layer has less gradient than
both the water’s and the oil’s (see first column in Fig. 4). The injected
water displaces both oil and gas in the reservoir near the injection well
region where a high pressure gradient is necessary for both water and
oil to flow, see panel (A) and (B), because of their low mobilities. After
water has arrived the production wells at around 100 days (see C), wa-
ter and oil pressures drop owing to the fact that water then can find an
easy flow path to the production wells.

In Fig. 5, we show the results (phase pressures, velocities and sat-
urations) of a compressible vertical three-phase model with a 400-day
waterflooding displacement. Water is injected to displace oil and gas at
both sides of the reservoir layer. It quickly fills the bottom part, then
starts accumulating, see panel (C). Correspondingly, gas is displaced
faster in the lower part than in the upper part because the reservoir
layer is vertical. Gravity segregation is seen in the lower part where gas

(C) Normalized Water Saturation, s,
400

300

B B 3
S S S 06
“ 200 14 + 200 + 200
(o) [ o
£ £ 0 £ o4
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Fig. 5. Results of the vertical compressible three-phase model during a 400-day waterflooding period. The source term effects are identified in the velocity and
saturation plots where production wells are located at 10m and 90 m and injection well at 50 m. (A) Water pressure plot indicates that a lot of water flows toward
the bottom and by that greatly increases the pressure in that region. (B) Due to the strong gravity effect water flows faster towards the bottom of layer compared
the water displacement in the upper layer. (C) Normalized water saturation shows that water flows fastly to the bottom where it is accumulated before it begins
to efficiently displace the upper part of the layer. (D) Oil pressure follows the similar behavior as water. (E) Water displaces the oil towards both sides from the
center. However, at early time some oil in the upper part of the layer will move downwardly due to gravity. Later, the water front will displace oil upwardly. (F)
The oil advancing front behaves similar as the water front. (G) Gas pressure behaves similar to the water pressure. (H) At an early stage gas is displaced towards the
production well from the center. After the water front has reached the bottom production well the whole bottom part of gas (50 m to 100 m) starts moving upwards.
(I) Gas is recovered slowly in the upper part whereas gas recovery in the lower part consists of two stages: initially, gas is displaced by water to the bottom production

well. Then, gas in the lower zone starts flowing upwardly.
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Fig. 6. Comparison between the compressible and incompressible model with vertical three-phase flow. (A,D) Phase velocity u,, and u, for water and gas, respectively.
(B,E) Pressure P,, and P, for water and gas, respectively. The compressible model accounts for the fact that gas is significantly compressed and stores energy which
is removed from the system as gas is produced. This gives rise to lower pressure profiles for the compressible case as compared to the incompressible case. This gives
rise to a lower pressure level for the compressible model as compared to the incompressible. (C,F) Saturation s,, and s, for water and gas, respectively.

is squeezed upwardly, see (H) and (D). In contrast to what is shown in
Fig. 4G, gas pressure distribution shows a similar behavior as water and
oil (higher at bottom and lower at top), see first column in Fig. 5. We
refer to the figure text for more details.

4.1.1. Comparison of the compressible and incompressible models

We continue the discussion of the case shown in Fig. 5. In particular,
we want to compare the behavior of the compressible and incompress-
ible model. Constant density values p,, = 1000kg/m?, p, = 800kg/m?
and p, = 18 kg/m3 are used in the incompressible model.

Fig. 6 shows a comparison between the compressible and incom-
pressible model after 30 and 120 days. (A) shows that at early stage
the injected water in the compressible model prefers to displace gas in
the lower part (high positive value) since water leads to higher pressure
at the bottom such that the gas is compressed there. With compressed
gas produced at the bottom and gas expanding in the upper part, gas
will only slowly migrate towards the upper part resulting in compa-
rably lower velocity (negative) in the compressible model. The velocity
difference shown in (D) fits well with the saturation difference after 120
days. At the early time (30 days) the saturation differences are not dis-
tinct, see (C). However, after a long time (120 days) the differences are
more significant, especially, in the water displacing part, see (F). This
is due to the increasing phase pressure difference between compressible
and incompressible model, see (B) and (E). The removal of compressed
gas from the gas reservoir as (almost incompressible) water is injected
clearly generates additional space for the water to fill which gives rise
to a lower pressure.

4.2. The compressible three-phase model with a WAG experiment

In WAG processes, the injected water will migrate towards the bot-
tom of the formation while the injected gas will flow upwardly. There-
fore, counter-current flow occurs in the vertical direction of the reser-
voir due to the gravity segregation of water, oil and gas. Significant
differences in terms of saturation distribution and producing GOR (gas-
oil-ratio) have been reported between a conventional model and models
that better can account for the mix of different flow regimes (co-current
and counter-current). For example, in Sherafati and Jessen (2017) an
explicit representation of flow transitions between co-current and
counter-current flow was used to improve the design of WAG injection
processes.

In this part, we conduct a water alternating gas (WAG) injection in a
1D reservoir (250 mD) layer which initially contains 90% oil and 10%
water. The water and gas injection well is located at 50 m and two pro-
duction wells are set at 10 m and 90 m. Gas is injected for the first 10
days followed by the water injection the next 10 days. Fluids can be pro-
duced in both production wells. The whole WAG experiment continues
with an injection circulation of water and gas (each for 10 days).

Fig. 7 shows the result for a WAG injection process produced by the
compressible three-phase vertical model where gravity segregation has
a significant effect. From the simulation we see that pressure increases
with time (first column in Fig. 7). Moreover, pressure values at the lower
part of the layer are larger than at the upper part. Due to the density
difference, water displaces oil faster in the bottom part, see (B) and (C).
In addition, gas flows quickly towards the upper part of the reservoir
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Fig. 7. Results of the vertical compressible three-phase model for a 400-day WAG injection process. The source term effects are visible in the velocity and saturation
plots where production wells are located at 10 m and 90 m and injection well at 50 m. (A) A high pressure region in the layer center due to the water or gas injection
and gravity effect. (B) Water advancing front implies that water flows faster towards the bottom of layer compared the water displacement in the upper layer due
to gravity segregation. (C) Water prefers to flow towards the bottom of layer where the edge region (90 m- 100 m) is also swept by water. (D) Oil pressure follows
similar behavior as water pressure. (E) The upper part of oil is recovered faster than the lower part. (F) Due to the large density difference between oil and gas, the
upper part oil is recovered very quickly, even for the edge region (0 m- 10 m). (G) Gas pressure. (H) Gas advancing front is fast in the upper part of layer because of
the strong gravity segregation. (I) Gas reaches the bottom production well whereas a lot of gas is accumulated in the top region.

layer, see the saturation plots. In the upper part oil is recovered faster
than in the lower part because of the larger density difference between
gas and oil than the one between water and oil, see the second column in
Fig. 7. We also observe that gas reaches the bottom production well but
does not move further. This can be explained by the fact that gravity
segregation effect overcomes the capillarity. However, a lot of gas is
accumulated in the upper edge region (0 m- 10 m) due to the buoyancy
force, see (D).

4.3. Comparison of compressible and incompressible three-phase models
with WAG experiments

In this part, we compute solutions from incompressible three-phase
models with same WAG injection process and compare the relevant re-
sults with those from the compressible three-phase model. Constant den-
sity values p,, = 1000kg/m?, p, = 800kg/m> and p, = 18 kg/m? are used
in the incompressible model

Fig. 8 shows a comparison between the compressible and incom-
pressible model of the vertical three-phase reservoir with a WAG pro-
cess. Similar to what was observed in Fig. 6, differences are seen for

phase velocity, pressure and saturation. With increasing time, this dif-
ference will be enhanced, especially for the pressure. This is mainly due
to the gas compressibility. See (B) and (E) and the figure text for more
explanation. Because of the density difference water prefers to flow to-
wards the bottom of the layer whereas gas moves faster towards the
upper part of layer, see (C) and (F).

4.3.1. Effect of fluid-fluid interactions

Here we want to illustrate the impact from fluid-fluid interaction
terms on the compressible model with a WAG process. Two situations
are compared below: one with /,,, = I, =I,, =0 (Pa-s)"! and one
with I, = I,, = I,, = 5000 (Pa - 5)~".

Fig. 9 compares the results for the horizontal model for a WAG pro-
cess with and without fluid-fluid interaction effect at 60 and 120 days.
In (B) and (E), we observe that due to the fluid-fluid interaction, pres-
sure is elevated compared with the case with no fluid-fluid interaction.
The water velocity (A) and saturation profiles (C) show that water to
a less extent displaces oil and instead flows through the original wa-
ter channels when fluid-fluid interaction is included. The difference in
the water saturation profiles between (C) and (F) is enhanced with time
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Fig. 8. Comparison between the compressible and incompressible model of the vertical three-phase reservoir with a WAG process. Results are shown after 60 and
120 days. (A) Gravity segregation results in a fast advancing front of gas in the upper part of layer and a fast advancing front of water in the lower part of layer.
(B) Phase pressure in the compressible model is higher since the compressed gas wants to expand when it moves to a region with lower pressure but cannot expand
due to the constrained space for gas. (C) Gas prefers to move towards the upper part of layer and water prefers to flow towards the lower part. (D) At 120 days, gas
reaches the upper production well and water arrives at the bottom well. (E) Phase pressure in the compressible model increases with time compared with (B). (F)

The difference between the two models is enhanced with time.
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Fig. 9. Comparison for the horizontal compressible model for a WAG process with and without fluid-fluid interaction effects. The situation after 60 and 120 days
are plotted. (A) Phase velocity at 60 days. (B) Phase pressure at 60 days. (C) Normalized saturation at 60 days. (D) Phase velocity at 120 days. (E) Phase pressure at
120 days. (F) Normalized saturation at 120 days.
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Fig. 10. Comparison of the vertical compressible model for a WAG process with and without fluid-fluid interaction effect at 60 and 120 days. (A) Phase velocity
at 60 days. (B) Phase pressure at 60 days. (C) Normalized saturation at 60 days. (D) Phase velocity at 120 days. (E) Phase pressure at 120 days. (F) Normalized
saturation at 120 days. Water tends to flow towards the lower part of layer due to the gravity segregation, resulting in a strong fluid-fluid interaction in the lower
part of layer where the water saturation profiles clearly are affected, see (D) and (F).

due to the additional resistance force from the fluid-fluid interaction
term.

Fig. 10 compares the results for the vertical model for a WAG process
with and without fluid-fluid interaction effect at 60 and 120 days. Due
to the density difference a large proportion of gas flows to the upper part
of layer, see (C) and (F), and more of the water flows towards the bottom
part of layer. As a result, differences are seen for the water velocity (A,D)
and saturation (C,F) for the case with and without fluid-fluid interaction.
Similar to Fig. 9, the build-up of the water front is less efficient for the
case with fluid-fluid interaction since a larger portion of water tends to
move through the original water channels (A).

5. Concluding remarks

We have presented a three-phase compressible and incompressible
viscous model based on the mixture theory approach. The formula-
tion represents an extension of the conventional Darcy-type formula-
tions by including fluid-fluid viscous coupling effects. The three-phase
flow model consists of a set of mass balance equations which are cou-
pled to a set of momentum balance equations that involve both fluid-
matrix, fluid-fluid interactions, and internal viscosity effects. Numeri-
cal schemes have been developed for both the compressible and incom-
pressible model. Moreover, various waterflooding displacement scenar-

ios in a gas reservoir and WAG injection in an oil reservoir have been
investigated to illustrate the effects of fluid compressibility and fluid-
fluid viscous coupling. Main findings are:

(i) The numerical schemes proposed in this paper appear to be ro-
bust and stable for simulation of various three-phase flow scenar-
ios, both for the incompressible and compressible case;
Comparison of the results for the compressible and incompress-
ible model show that the differences between these two models
can be significant, especially in the vertical case where the effect
of gravity segregation is rather strong (see (F) in Fig. 6);

The viscous coupling (fluid-fluid interaction) can have a signif-
icant effect on the results. A strong fluid-fluid viscous coupling
results in a large resistance force for the flow of displacing fluid
(water) such that: (a) Water prefers to move through the origi-
nal water channels rather than displacing oil (see (A) and (C) in
Figs. 9 and 10); (b) Water front is slow and builds up (see (F) in
Figs. 9 and 10).
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From the three mass balance equations we get after multiplying the oil mass balance with p,,p,, the water mass balance with p,p, and the ¢ mass

balance with p,,p,,

(SwiPro T+ SwPuw)PoPy + PoPy(SwPultin)x = —SwPuwPoPygQp/® + PuPoPQriw/ s
(SorPo T+ SoPot) PPy + PPy (56Polo)x = —S5,P1PoPCp/ P,
(SgrPg + SgPgt)PisPo + PrwPo(SgPglie)x = —=SgPuPoPQp/® + PuPoPgQrg/bs

and summing the three resulting equations

fi+ ot f3=Fa

where

S1 = SuwiPuwPoPg t SotPuwPoPy + SgiPuwPoPsg = PuwPoPg(Swt + Sor + Sg1) =

2 = SwPuwiPoPg F SoPotProPg t SgPeiPiwPos

3 = PoPg(SuPittin)s + PuwPg(SoPolts)x + PuPo(SgPglty) s,

S4 = =5wPuwPoPgCp/ P+ P1PoPgCris/ D = 50PPoPgCp/ P — 5gP1PePgCp/ D+ PuPoPgQro/ b
= PuPobg(Qrp + Qg — Qp)/d.

Here we want to focus on dealing with expression f,.

Py,

fr=s,p +sp,oPm+sppg
2= - -
wFo ougca gwocg

P,
ch

P, = (P,+AP,,), =P, +AP s

ow S wt>
P,

ot = (P + APy + AP) = P+ APl s, + APLs,, and

ow"” wt
Mot ny
gt = _(Swr + Sot) = _<Swt +— - Pot) = _<Swr
Po Copy

o

N

w Wt))

o

Therefore we have

SwPoPg SgPuwPo S¢Pw
fr= <1<pw + >P +prAPo'wsw, C APg’o wr C—nm;
w 4 &
where
_ SoPg  SgPo . SgSo
T C  C o CC
Clearly,
s _(”_w)_in -, L, __mp
wt pw pw wt pzw wt pw wt pri’ wt*
Consequently,
SwPoPg Sy y_ Selo oy r_ SePo 0y
£ = [pr +e - C—W<KAP0w - C—gAPga)]Pw, - (vapy, - C—gAPga)(swpwuw)x

5, P
bt = 2 5,000y = (5@ = puCr) (KAP, — 5 roaly )
g

¢Puw
Cg

Since that f, = 0, (5.35) will have the following form:

SwPoly s P
Zwhofe _ —w(KAP’ s <2AP, )]Pw, + (popg +

!

gPo
[pr +
C

Sgh
gFhw
+(pwpg +-c )(s,,pgug)x + PuPo(SgPglig)x = PuPoly(Qruw + Qug = = 5,000,/ ¢
g

Po
+(pwsw p/qb_prlw/qb)(KAPo/w ég go)'

The upper equation can be reformulated to be

Pwt + i]l(nwuw)x + i’Z(nouo)x + i’3(”gug x = ﬁ4Qp/¢ + i’SQlw/¢ + ilﬁQ[g/¢;

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)
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where
SwPoPy S, 5¢P
n= pr+u__“<KAP’ _ 8 Ap! )
4 Cw Cw ow C‘g go
- 1 SgPo
i = E(popg + C—AP;G - KAPD’W>
g
_ 1 ( . sg/"v>
i G
. 1
M3 = Epwpo
~ 1 [SgPw / SgPo \ 1y
My = ;,[ C, So0Po +pw5w(KAPaw - C_gAPg") _pwpopg]
~ 1 / Sgpa /
fis = E[Pwﬂoﬂg - Pw(KAPow - C—gAPg0>]
- 1
N = ;lpu,'popg' (5.43)

;o . , .
Remark 5.1. AP) is always non-positive and AP, non-negative.
Appendix B. Numerical discretization of compressible version

We develop a numerical scheme for this general three-fluid flow model in a 1D setting. The proposed numerical methods are described separately
for the compressible (Appendix B) and dummyTXdummy-(incompressible (Appendix C) model.

B1. A semi-discrete scheme for the compressible model

We consider a slight reformulation of the model where we shall make use of the pressure evolution Eq. (5.42). This will be convenient to account
for the highly nonlinear coupling between the mass and momentum equations through the pressure terms. It also makes the discretization of the
compressible and incompressible model consistent. The original model takes the form with (n,,, n,, n,, u,,, u,, u,) as the main variables:

o
(@ny); + (Pnyuy) = =1, 0, + 0y Qrips Ny = SyPy
(@ny), + (dnouy), = =n,Q,, Ny = 5,P,
(ng) + (Pnguy), = —n,Q, + p, Oy, Ng = SgPyq
S(Py)y = —lAcwuw - lAcwo(uw —-u,) — lAcwg(uw — ug) + 1,8 + €,(n, U, )
$o(Py)x = —kotty = Kyt — 1) = g (11, — 1) + 1,8 + €5(1l1 )
$g(P)y = —kguty — ko g — 1) — kg — ;) + 1yg + £,(nguy,)..
AP, (s,) = P,— P, AP, (s)) = P, — P,. (5.44)
Note that we may rewrite the model in the following equivalent form with (n,,, n,, P,,, u,,, 4,, u,) as the main variables

(pny) + (D) = —nyQp + PuQris
(dn,); + (Pnyuy), = —n,0,,
Pt + 71 () + o (o) + 713 (ngtg)y = iiaQp /& +715Q 11/ & + 716 Q14 / P
Sw(Py)y = —I}wuu, - IAcwo(uw —u,) — IAcwg(uw —ug) = N8 + €, (Nl
s,(P, +AP,,), = —I}oua - lAcu,D(ua — Uy — lAcag(uo —uy) = n,g + €,(nylgy)y,
sg(Py+ APy, + AP, = —I}gug - IAcwg(ug —uy) — lAcDg(ug —U,) —ngg +e,(nguyy )y,
AP, (s,) = P,— P,, AP, (sg) = P, — P, (5.45)

Here n, is determined by

ng = $gpe(Pg) = (1 =5, —5,)p,(P,)

(1- ny _n_")p (P,) = n,(ny.ny, P,), (5.46)
pw(Pw) /){,(PO) 88 g\ w> o> T w

where P, = P,(s, P,,) = P,(n,, P,) and P, = P,(s,, Sy, P,y) = Py(n,, n,, P,). We may solve (5.45) on our domain Q with boundary conditions

Uy log = telag = "g|aQ =0 (5.47)

and initial condition

n,(x,t =0) = n,o(x), n,(x,t =0) = ny(x).

ny(x, 1 = 0) = Ny (), P, (x=0,t=0=P,;. (5.48)
System of ODEs

We consider the domain Q = [0, 1] and introduce a grid of N, cells with nodes x; placed at the center of the cells

m:%Ax, xz:<l+%)Ax, x/-:(j—%>Ax, xNX:(Nx—%)AX
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and cell interfaces x;,,, at the cell interfaces
x120=0, x3p=47x, ..., xjp=JjAx, ..., xy41p=NAx=1,
where Ax = 1/N,. We introduce the approximate masses {n,, j(t)};\]:xl, {n, j(t)};vle, and {ngj(t)};\r:*l associated with the nodes {x j};\]:*l whereas the
. - N, N, N, . . ; N,
approximate velocities {uw‘jﬂ/z}j:o, {”o,j+1/2}j=o’ and {”3J+1/2}j=o are associated with the cell interfaces {xj+l/2}j=0'
Step 1: Mass transport
We solve for n,,;(7) by considering the following ODE: for the water phase,

: 1
nw,j +E([”w”w j+1/2 7 [nw“w]j—l/Z) = _nwj p,j/¢ + pijlw,j/¢’ Ny = SwPw (549)
where
Nyl ifu, . > 0;
[m,,1,]; — { wj%tw,j+1/2> 3 w,j+1/2 =¥ (5.50)
R USRSy S Ty R ()
This can also be expressed as
Ryj+ Nyl 1
[(ntljryn = 5 Hwjr1/2 E(”w,j+l =y ji1 )2l
for the oil phase,
: 1
Ny j +E(["0uo]j+l/2 - [nouo]j—l/Z) = _noj p,j/¢s Ny = 54P0 (551)
where
Nl 41725 if uy 10 2 0
[1otts) 410 = { KA o (5.52)
O T ng g s iy <O

Remark 5.2. It should be pointed out that Q,,; = % and Q;,,; = % (where j refers to a grid cell which contains a producer/injector) due to the
fact that production Q, or injection Q,,, in (5.44) is interpreted as a value at a point location. The width of the small region associated with the

injector and producer is ¢ = Ax consistent with (4.33). This also applies for Qi in (5.53), that is to say, O, ; = %

Step 2: Computation of velocities and pressure

Next, we solve for P, ;(t) and uy, ;1 /(1) U, j412(t) and uy, ;.1 »(¢) by considering the following ODE system:

. ~ 1 ~ 1
Py j +iiy E([nwuw]j+l/2 = [npuyli12) + ”Z,jE([nauo 172 — [notsli1/2)

1 - - -
+ )13‘j§([ngug 12— ngugdi 1) =14 ;O /& + s j Qo /P + 76 jOrg i/ & (5.53)

which is combined with the momentum balance equations
1 N N N
Sw,j+1/2E(Pw,j+1 —Puj) = —ky i1t ji12 — kwo,j+1/2(“w,j+1/2 - Mo,j+l/2> — Kyg.jr1/2 (“w,j+1/2 - ”g,j+1/2)

1
~&uwjr2 tEw g ("w,j+1 (i jr372 = W jr1/2] = Ml jr12 — uw,j—l/Z])

1 1
Sa,j+1/ZE(Pw,j+1 - Py = —S(,J+1/2E(AP0W+1 APy, )

Ko jr1/2U0 1172 — kwo,j+l/2<uo,j+l/2 - uw,j+1/2) = Kogjr1/2 (uo,j+l/2 - ug,j+l/2)

1
8N +1/2 T €0 7 <no,j+1 [t j1372 = o jr1y2] = 1o il 12 — ”0,/’—1/2]>

1 1
sg.j+l/ZE(Pw.j+l - Pw,j) = _Sg,j+1/ZE(AP0w,j+l - APm,c,j + APgo,j+1 - Apgo,j)

K jr1y2tgjr1/2 = Kugjr1/2 <”g¢j+1/2 - “w,j+1/2) - kog,/‘+1/2(“g,/‘+1/2 - ”o,/+l/2> ~ 8Cj+1/2

1
tee g (Cg.j+1 [ug ja3/2 — g je1/2) = Mg jlttg jur/o = “g,j—l/zl) (5-54)

Here we note that the average s,, ;,/, in (5.54) is based on upwind relatively u,, ;,;/

Sw,j» ifuyji0 >0

_ ) SwitSwj+l s -0
Swjrp =y 5wy =0; (5.55)

S, j+1s ifuy 10 <0.

Similarly, for s, 4,2, s, j11/2 and for the interaction terms Ky, j11/2. ko172 and kg ;11 /0. FOr Ky 41720 kg j41/2 and kg 111/ We use the following
method:

Kio,js if w12 > 0&ty jy1 72 > 0;

5 _ S kot .

Ko jaryr = =222 if g oty 1412 < 03 (5.56)
kuvo,j+]’ if Mw,j+1/2 < O&M(J,j+l/2 <0.

IAcng j+1/2 and IAcag’ j+1/2 are also approximated using the similar way. On the other hand, [n,,u,,1;41 /2, [1,4,111 /> and [ngu,l;,, /, appearing in (5.53) em-
ploy upwind as described in (5.50).
Now, we are in a position where we can describe a fully discrete model.
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B2. A fully discrete scheme

We assume that we have given (n* .,n*  P* uk  uk u ) We then compute the approximate solution at time r**! expressed by

w,j’ o)’ T w,j’ T w,j’ To,j’
kbl kel phtl kel kdl kel
o Pt ut i+t uit!) as follows:

Step 1: Mass transport

k1 _yk

g L (U1, = I 1) ==t 05 b+ gk 0% 19

where

if uk < 0.

Kok
o k= Mg i, jr1/22 1f“w;+l/220
wholjep =4 0
w,j+1" w,j+1/2 w,j+1/2

0j ~ Toj 1 k k _ _k ok
—Q T E(["oua]jﬂ/z = [nouol;_y 1) = —n,;Q,,/9

where

k ok
Mo i%0j41/2° if ”w,+1/2 20;
(514, 1 i+1/2 =\ &
J n

k
a,j+1uo,j+1/2’ if MWJ+1/2 <0.

Having computed nj;! and n*' we can compute an updated water saturation s, +l/ % and skJ;. /% given by

k+1 k+1 k+1
k2 ey k12 _ Moy Mo.j

Y ePE) T g (B T (PE 1 AR (s

k+1/2))

k+1/2 k+1/2

Similarly, we compute updated mass e and P,
Step 2: Computation of velocities and pressure

Next, we solve simultaneously for P,f,j.l and u/;+j1+1 e u’;’;}r 12 and ug +] P by considering the following algebraic system

needed to evaluate coefficients in the next step.

k+1 k
Py = Pu, +~k+1/2 1 ([ k+1 k+l]
At g
k+1. k+1 ~k+|21 k+1/2 k41
—[”o+ ”o+ [y )+113] / Ax([ng / Uy * lis12 =

~k+1/2 l
k+1 k+l] +1/ ([ k+1 k+l]

12 — [y, j-172) iy j+1/2

k+1/2
/2, k+1

[rg e 1j-172)

2k jp+ it ok, Je+ gt ok, e

which is combined with the momentum balance equations

SEH12 ( pl+l _ phly _RRH2 ke _aktl/2 k1/2_ kE1/2 ) k)2 k+1/2 _ k+l/2
wj+1/2 Ay w.j+l w.j w/+1/2 w1+1/2 wo,j+1/2\ " w,j+1/2 0,j+1/2 wg.j+1/2\ " w,j+1/2 g.j+1/2

k] Lokl okl ket S e N o5

Pojr128 T E€w A2 ("w,j+1[”w,j+3/2 Ui y2] = M g i1 uw,j—l/2]>
k+1/2 K+l _ pk+ly _ _ k+1/2 1 k+1/2 k+1/2
0,j+1/2 Ax(Pw/+1 Pw,j ) = soj+l/2 Ax ow,j+1 APouj )
kk+|/2 kbl k12 kel ket 2 (et ke
0,j+1/2 01+l/2 wo,j+1/2\ "o,j+1/2 w,j+1/2 0g.j+1/2\ "o,j+1/2 g.j+1/2

ke Lo k1720 kbl _ kbl g k+1/2 k+1 s

0]+1/2g+8 Ax 2( Dj+1 [u aj+3/2 uo,j+l/2] n, J [u0j+1/2 o] 1/2]
k+1/2 ph+l kily . _ k172 k+1/2 k+1/2 k+1/2 k+1/2
g.j+1/2 Ax( w,j+1 Pw,' )= gj+1/2 Ax( Pow,j+l APow/ + APga]+l APgO/ )

_kk+l/2 k+1 _ k172 k+1 _ et _ k172 k+1 et
g.j+1/2 gj+l/2 wg.,j+1/2\ "g.j+1/2 w,j+1/2 og,j+1/2\ "g.j+1/2 0,j+1/2
k+1/2 L (172 ket k1 K+1/20 kel k1

Mg 41728 T Eg sz( gt W jaayn =g gurynl =gy Ul G~ o)
: ; fetl ket ukH! ukt
Equipped with (Py5 u 041720 %o 141720 e g +1 /2) we can now update the saturation
k+1 k1 k1
skt — w.j kel _ 0.J "o.j
wj k+1y’ oj k+1 k1 k1 k+1
/)w(Pw’j ) po(PD,j ) po(P,, +AP0wj(S )

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

from which we also compute the updated gas mass n’g";l via (5.46). If necessary, we may repeat step 2 to improve the accuracy before we proceed

to next time level.

Remark 5.3. The upwind discretization of [n%FukF], o, [nfj“/ 2ufj“] ;+1/2 and [n§+1/ 2ug“] ;+1/2 appearing in (5.62) are based on “old” velocities

k k
Uy 120 U 12 A0 “gj+1/2

Remark 5.4. For the higher dimensional case mentioned in Remark 3.1, we can use a similar way to solve two mass equations as step 1 for the
1D case. Then compute pressure and velocities by using a 2D pressure evolution equation similar to the one derived for the 1D case in Appendix A

together with six momentum equations for three phases in x and y direction.
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Appendix C. Numerical discretization of incompressible version

We first describe a semi-discrete approximation of the incompressible version of model (3.11).

C1. A semidiscrete scheme for the incompressible model
When fluids are incompressible the model (5.45) takes the form

(5u0)i + (Sutt)x = =5,Qp/ b + O/ b,
(50); + (Sotho)x = =5,0,/®,
(Sl F Sollg + Sgltg)y = =0, /P + Qp/d+ Oy /&,
Sw(Py)y = —lAcwuw - lAcwo(uw —-u,) — lAcwg(uw — ug) + 1,8 + €0, (S U)o
So(Po) = —kotty = ki ity = 1) = Kog ity = 1) + 1o8 + €405(S st )
5g(P)y = —kgy — kg — 1) = kog (U, —1,) + 1,8 + £,p, (5415 )

AP, (s,)=P,— P, AP, (sg) = P, — P,.

w>

Step 1: Mass transport
: 1
Sw,j +A_x([swuw]j+l/2 - [Swuw]j—l/Z) = _Sw,jQp,j/¢ + Qlw,j/¢
where

if uy 12 2 05

N1 j+1/2>

[s,ptp]; — w,j " w,j+ .
Hwlj+1/2

Swjitw 12 Af Uy iy <O

: 1
Sa,j +E([Souo]j+l/2 - [Souo]j—l/Z) = _So,jQp,j/d)

where

[sottoljr12 = {S”’f“”-/“ﬂ’ ifug 17220
o%olj+ -

So.j+140,j+1/25 if Uy jy1y2 <0.

Step 2: Computation of velocities and pressure

Next, we solve for P, ;(t) and uy, ;. /»(1), U, j412(t) and uy ;. »(¢) by considering the following ODE system:

1 1 1
E([Swuw]jJrl/Z = [swttwljm12) + B([souo]j+l/2 — [sotto)j12) + B([sgug]jJrl/Z —[squgli—1/2) = Qi j/ b+ Qg j/d—Op /b

which is combined with the momentum balance equations

1 . . A
Sw.j+1/2 E(Pw,jﬂ =Py ) = ~ku i1t = kwo,j+1/z(”w,j+1/2 - “a.j+1/2> ~kugjrif
P
—85y jr1/2Pw T SWA_;)Z (Sw,j+1 ly ja3r2 = U jy1y2] = Sw il jy12 = "w,j—l/z])a

1 1
So,j+1/2A_x(Pw,j+1 -P,)) = —So,/+1/2A_x(APow,j+l = APy

ko120 1172 = Ko jr1/2 (uo,j+l/2 - "w,j+1/z) - kog,j+1/2(uo,j+1/2 - ug,j+1/2>

Po
x2

—855,j+1/2P0 t €067 (So,j+l[ua,j+3/2 —tgjr1/2] = So4lUo jr1/2 — uo,j—l/Z])’

A

1 1
Sg 172 7y Pt = Puj) = =g jur1p - (BPoji1 = AP j + APy juy = APy, ;)

—Kg jr1/2Ug 172 = Kug ja12 (“g,j+1/2 - uw,j+l/2) = Kog j+1/2

Pg
~8Sg+1/2Pg T E 3 3 (Sg,j+1 (g jr3/2 = Ug jw1 /2] = SglUg jarjo = ”g,/—l/zl)-

Here we note that the average s, ;. 52 in (5.71) is based on upwind relatively u,, ;. 2

sw’ji ifuy 10 >0
_ ) SwjTSw,j+1 : — 0
Swirlp = 5 Ay =0;

S 41> lfuwyj_,_]/z <0.

Similarly, for s, /5. 54 ;412 and for the interaction terms k,, ;2. ko j1/2- and kg ;1 /5.

(uw,j+l/2 - “g,j+1/2)

(ug,j+l/2 - ua,j+l/2>
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(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)
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In addition, I}m 412 18 based on upwind relatively u,, ;, 2 and u, 2

=

if i1 > 0&uU, 51172 > 0;

wo,j>

(5.73)

~ _ ) e ik i1
Ko j+1/2 = WTW

if uy, jy1 /2t 4172 < 05

kwo,j+l’ if uw,j+1/2 < O&uo,j+l/2 <0.

fcwg#,/z and lﬂc,,g,jﬂ/z are also approximated using the similar way. On the other hand, [s,,u,,1,41/2, [s,4,141/2 and [sgu, 154, /» appearing in (5.70) em-
ploy upwind as described in (5.72).

C2. A fully discrete scheme for the incompressible model

Step 1: Mass transport

k+1 k

N 0 — S J 1
ot ay Gt = Butoly ) = =5,,05 /6 + O/ (5.74)
where
k ok
SooU s if uk >0;
[suttlji1y = { c (5.75)
Swjrtw v 1 “w1+1/2 <0
skl _ gk |
0,j 0,j
ot ar Ul — ool 0) = =5,,0,,/9 (5.76)
where
k ok )
o]k = Sotoj+1/2 lf”oj+1/2 20; 57
SO T sk gk if u* <0 :
0,j+1 " 0,j+1/2° 0,j+1/2 .
Having computed s"+1 and sk“ we can compute pressure and velocities simultaneously at time level & + 1.

Step 2: Computatlon of velocltles and pressure

We solve for P! and ”k+1+1 Py ';j 41/, and “g . 1, by considering the following algebraic system
1 1 1
LR TRV e EARTAR TV R el (EA T PRRYE Rl ATl TRVA R el (El i IVl Cal s IRV R GV R L (5.78)

which is combined with the momentum balance equations

k+1/2 (P"“ _ Pk“) o Q2 el gkl K+1/2 k12 ) pkl/2 kH1/2 k)2
wj+1/2 Ax " w.j+l w,j+1/2 7w, j+1/2 wo,j+1/2\ "w,j+1/2 0,j+1/2 wg.j+1/2\ " w,j+1/2 g.j+1/2
_ kel Pw [ k+1 [ k+l U .
Sw,+1/2”wg+€wA 2( Sw it M jasy2 = w/+l/2] Sunj My 412 uw,j—l/Z])
k+1/2 ( phel _ phely _ k)2 ( A prt1/2 _APk+1/2)
0,j+1/2 Ax © w.j+l w,j 0J+l/2 Ax ow,j+1 ow,j
_ k12 k1 pk+1/2 I o _ pk+1/2 k+1 yktl
0,j+1/2%0,j+1/2 ~ “wo,j+1/2\"o,j+1/2 w,j+1/2 og.j+1/2\ "o j+1/2 g/+1/2
_ k1 Po_( k+1/2 k+l K+ _ k+1/2 k1 ke
So,j+l/2p0g & Ax2 ( a]+l [u oj+3/2 uoj+l/2] 5o [uoj+l/2 uo,jfl/Z]
k+1/2 k121 k+1/2 k+1/2 k+1/2 k+1/2
w2 L phet _phety k12 L (\pkHZ2 g pheI g pRHI2 g phH2)
8Jj+1/2 Ax wj+1 w, 8.J+1/2 Ax ow,j+1 ow,j go,j+1 go,j
_pkH1/2 k4 _ pk+1/2 k. _ okt _ qk+1/2 s _ k!
g.j+1/27 g, j+1/2 wg.j+1/2 g/+1/2 w,j+1/2 0g.j+1/2\"g.j+1/2 0,j+1/2
k+1/2 pg k+1/2 k+1 k+] k+1/2 k+1
Sgjr1/2Pe8 Tt gAx2< P Ly e Y B P Ly g, 1/2] (.79

Remark 5.5. The upwind discretization of [si'ul!]; o, S5+ ul*!;,, /o and [s§+'uf*!];,, » appearing in (5.78) are based on “old” velocities

k k
Upjr12 Yo jv1)2 and ”gj+1/2
Appendix D. The convergence of numerical scheme

Here we illustrate one example to show the convergence of the presented numerical scheme in Appendix C for the incompressible three-phase
flow. A sensitivity test is conducted by using different number of grid cells to compare the water saturation profiles for the same case as shown in
Fig. 6, panel F. We refer to Fig. 11 for an illustration of the convergence test.
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Fig. 11. Water saturation s,, profiles using different number

0.9 I T I I of grid cells in the model for the case as shown in Fig. 6, panel
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