
Advances in Water Resources 141 (2020) 103599 

Contents lists available at ScienceDirect 

Advances in Water Resources 

journal homepage: www.elsevier.com/locate/advwatres 

A compressible viscous three-phase model for porous media flow based on 

the theory of mixtures 

Yangyang Qiao 

∗ , Steinar Evje 

University of Stavanger, Stavanger 4036, Norway 

a r t i c l e i n f o 

Keywords: 

Multiphase flow in porous media 

Three-phase flow 

Viscous coupling 

Mixture theory 

Compressible model 

Water alternating gas (WAG) 

Waterflooding 

a b s t r a c t 

In this paper we focus on a general model to describe compressible and immiscible three-phase flow in porous 

media. The underlying idea is to replace Darcy’s law by more general momentum balance equations. In particular, 

we want to account for viscous coupling effects by introducing fluid-fluid interaction terms. In [Qiao, et al. 

(2018) Adv Water Resour 112: 170–188] a water-oil model based on the theory of mixtures was explored. It 

was demonstrated how the inclusion of viscous coupling effects could allow the model to better capture flow 

regimes which involve a combination of co-current and counter-current flow. In this work we extend the model 

in different aspects: (i) account for three phases (water,oil,gas) instead of two; (ii) deal with both the compressible 

and incompressible case; (iii) include viscous terms that represent frictional forces within the fluid (Brinkman 

type). A main objective of this work is to explore this three-phase model, which appears to be more realistic than 

standard formulation, in the context of petroleum related applications. We first provide development of stable 

numerical schemes in a one-dimensional setting which can be used to explore the generalized water-oil-gas model, 

both for the compressible and incompressible case. Then, several numerical examples with waterflooding in a 

gas reservoir and water alternating gas (WAG) experiments in an oil reservoir are investigated. Differences and 

similarities between the compressible and incompressible model are highlighted, and the fluid-fluid interaction 

effect is illustrated by comparison of results from the generalized model and a conventional model formulation. 
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. Introduction 

enerally 

The processes of multiphase flow in porous media occur in many

ubsurface systems and have found many applications of practical in-

erest, such as hydrology, petroleum engineering, geothermal energy

evelopment and carbon storage ( Bakhshian et al., 2019; Bakhshian and

osseini, 2019; Wu, 2016 ). The immiscible three-phase flow is always

ncountered in waterflooding for oil reservoirs with gas cap, in immis-

ible CO 2 storage in depleted oil and gas reservoirs, and steam floods

nd water-alternating-gas (WAG) processes ( Bentsen and Trivedi, 2012;

uanes, 2008 ). Darcy’s law was originally developed for single-phase

ow ( Darcy, 1856 ). Conventional modeling of multiphase flow is nor-

ally based on Darcy’s extended law ( Rose, 2000 ) by incorporation of

elative permeabilities ( Muskat et al., 1937 ). However, recent experi-

ental observations indicate that the flow mode (co-current or counter-

urrent) can have a strong impact on the flowing phase mobilities. That

s to say, the relative permeabilities are not only function of saturation

ut are also related to the effect of how the fluids flow relatively to each

ther ( Bentsen and Manai, 1992; Bourbiaux and Kalaydjian, 1990 ). 
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iscous coupling 

Viscous coupling (i.e., fluid-fluid interaction) was firstly mentioned

y Yuster (1951) by using theoretical analysis to derive that relative per-

eability is a function of both saturation and viscosity ratio. In addition,

apillary number was also proposed to be a factor affecting relative per-

eabilities ( Ehrlich, 1993; Avraam and Payatakes, 1995 ). In general,

omentum transfer due to differences in interstitial velocities induces

cceleration of the slower and deceleration of the faster moving fluid

hen the fluids are moving co-currently. Deceleration of both fluid ve-

ocities will occur if they are moving counter-currently ( Ayodele, 2006;

entsen and Manai, 1993; Dullien and Dong, 1996; Li et al., 2004 ). 

In order to extend the single-phase Darcy’s law to multiphase flow,

e la Cruz and Spanos (1983) derived theoretically Darcy’s empirical

xtended law by applying the method of volume averaging to Stokes

quation. In Kalaydjian (1987, 1990) , Kalaydjian developed flow equa-

ions using the concepts of irreversible thermodynamics ( Katchalsky and

urran, 1975 ) from a macroscopic understanding of two-phase flow

n porous media. In addition, some researchers tried to gain insight

nto how two immiscible phases flow through a porous medium by

sing simple analogous models such as tubular flow ( Yuster, 1951;

acri et al., 1990 ). In Langaas and Papatzacos (2001) Langaas and Pa-
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m  
atzacos used the Lattice Boltzmann (LB) approach to investigate ef-

ects of viscous coupling and concluded that counter-current relative

ermeabilities caused partly by viscous coupling are always less than

he corresponding co-current curves under different levels of capillary

orces. Using the same method, Li et al. (2005) showed that their model

as able to capture main experimental effects caused by viscous cou-

ling. They also mentioned that the interfacial area between the fluids

s a key variable for relative permeability functions for two immisci-

le fluids flow in porous media. A generalized model was developed in

iao et al. (2018) for two-phase flow with viscous coupling effect. Nu-

erical investigations showed a better agreement with the experimental

ests ( Bourbiaux and Kalaydjian, 1990 ) compared to the conventional

odeling. The authors in Bentsen and Trivedi (2012) constructed mod-

fied transport equations for both co-current and counter-current three-

hase flow through a vertical incompressible model based on partition

oncepts. Their equations are used to estimate the amount of model er-

or because of a failure to account for the effect of interfacial coupling

hich has two types: viscous coupling and capillary coupling. Moreover,

herafati and Jessen (2017) investigated the effect of mobility changes

ue to flow reversals from co-current to counter-current flow on the

isplacement of WAG injection processes. 

omplex multiphase flow in porous media and use of the theory of mixtures

Motivated by petroleum related applications various attempts to

olve the three-phase porous media flow model have been reported dur-

ng the past decade ( Falls and Schulte, 1992; Guzmán and Fayers, 1997a;

997b; Juanes and Patzek, 2004 ). An interesting investigation was car-

ied out in Lie and Juanes (2005) where a front-tracking algorithm was

roposed for constructing very accurate solutions to one-dimensional

roblems (for example WAG test therein). This was explored in the con-

ext of streamline simulation which decouples the three-dimensional

roblem into a set of one-dimensional problems along streamlines. This

ork is limited to three-phase immiscible, incompressible flow and also

ravity and capillarity were ignored. Different numerical methods have

een implemented to simulate three-phase flow in porous media. A finite

olume method was used in Lee et al. (2008) for solving compressible,

mmiscible flow with gravity in heterogeneous formations by using the

lack oil formulation. A hybrid-upwinding scheme for phase flux was

roposed in Lee and Efendiev (2016) for a finite difference approxi-

ation to solve the three phase transport equations in the presence of

iscous and buoyancy forces. A finite element method was applied to

imulate fluid injection and imbibition processes in a deformable porous

edia ( Gajo et al., 2017 ). Moreover, ( Dong and Rivière, 2016 ) applied

 semi-implicit method with discontinuous Galerkin (DG) discretization

o solve the incompressible three-phase flow in two dimensions. Addi-

ional physical effects are also discussed and explored for three-phase

orous media flow, such as hysteresis effects of relative permeabilities

 Ranaee et al., 2019 ) and elliptic regions ( Juanes and Patzek, 2004;

uanes, 2008; Lee and Efendiev, 2016 ). In Juanes (2008) Juanes pre-

ented a nonequilibrium model of incompressible three-phase flow in

orous media. The nonequilibrium effects by introducing a pair of ef-

ective water and gas saturations into the formulations have the ability

o smear saturation fronts from numerical simulations. 

The theory of mixtures offers a general framework for developing

odels for complex multiphase flow systems ( Rajagopal, 2007 ). More

ately, biomedical applications have been a driver for the development

f various models relying on this approach. For example, the study how

ancer cells are able to break loose from a primary tumor involves a solid

atrix (the so-called extracellular matrix), different type of cells (can-

er cells, stromal cells, immune cells), and interstitial fluid ( Evje, 2017;

vje and Waldeland, 2019 ). A recent example of this is described in

aldeland and Evje (2018b) ; Urdal et al. (2019) where, respectively, a

ell-fluid two-phase model and a cell-fibroblast-fluid three-phase model

re developed to shed light on the experimentally observed tumor cell

ehavior reported in Shieh et al. (2011) . The model that is derived
elies on replacing Darcy’s law by more general momentum balance

quations which incorporate both the cell-matrix resistance force and

he cell-fibroblast interaction. The latter is understood as a ”viscous

oupling ” effect caused by a mechanical coupling that can occur be-

ween tumor cells and fibroblasts and has been reported in experimental

tudies ( Labernadie, 2017 ). Another example how generalized momen-

um equations can be used to capture non-standard multiphase behav-

or in the context of aggressive tumor cells is explored in Waldeland

nd Evje (2018a) . In Polacheck et al. (2011) two competing migration

echanisms were observed, one in the upstream direction and another

n the downstream direction. The use of generalized momentum equa-

ions allowed us to account for both this fluid-stress generated upstream

igration and a chemotactive migration in the direction of increasing

oncentration of chemical concentrations ( Waldeland and Evje, 2018a ).

he aim of this work 

The objective of this paper is to investigate a mixture theory ap-

roach to simulate three immiscible fluids flowing in a 1D reservoir.

e shall consider both the case with compressible and incompressible

uids. The model which is introduced is quite general since it can au-

omatically capture flow that involves a combination of co-current and

ounter-current flow. The current work represents extension of previous

ork in two ways: 

• Extend the incompressible two-phase model that was explored in

Qiao et al. (2018) ; Andersen et al. (2019) to include three phases.
• Extend the compressible two-phase model studied in

Qiao et al. (2019a) to include three phases. 

In addition, the models we study in the current work are more gen-

ral than those studied in Qiao et al. (2018) ; Andersen et al. (2019) since

e consider Stokes like momentum equations which involve viscous

erms that account for internal friction due to viscosity. In particular,

ppropriate numerical schemes are introduced to investigate compress-

ble and incompressible three-phase flow scenarios that are motivated

y injection-production flow scenarios. 

Main observations from our numerical experiments with two and

hree-phase flow scenarios where the flow dynamics are generated by

njection of water or gas in the center of the domain and production

f fluids at the left and right boundary are: (i) The simulation cases in-

olve competition between pressure driven co-current flow and counter-

urrent gravity driven flow; (ii) Both the incompressible and compress-

ble discrete version of the model appear to have good stability prop-

rties. The numerical experiments indicate that the numerical schemes

an be useful as a tool to deepen the insight into the relation between the

ncompressible and compressible version of the model. The model and

ts discrete approximate counterparts appear to be a good starting point

or extending to more complex flow systems, as mentioned above, that

nvolve competition between different distinct, non-standard transport

echanisms. 

The rest of this paper is organized as follows. In Section 2 we

riefly describe the mixture flux approach in a three-phase setting.

n Section 3 we summarize the generalized three-phase porous me-

ia model, both a compressible and an incompressible version of it.

ection 4 is devoted to numerical simulations to demonstrate three-

hase dynamics and verify basic features of the numerical schemes.

he details of the compressible and incompressible scheme are given

n Appendix A –Appendix D . 

. Mixture theory framework 

.1. Conventional model based on Darcy’s law 

We firstly describe the traditional formulation of incompressible

ultiphase flow model without source terms. Transport equations for
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ncompressible and immiscible phases oil ( o ), water ( 𝑤 ) and gas ( g ) in

orous media are normally given by: 

 𝑡 ( 𝜙𝑠 𝑖 ) + ∇ ⋅ 𝐔 𝑖 = 𝑄 𝑖 , (2.1)

 𝑖 = 𝜙𝑠 𝑖 𝐮 𝑖 , ( 𝑖 = 𝑤, 𝑜, 𝑔) , (2.2)

here 𝜙 is porosity, s i is phase saturation, Q i is the source term, and

 i and u i are the Darcy velocity and interstitial velocity of each phase

 = 𝑜, 𝑤, 𝑔, respectively. For simplicity the irreducible (immobile) phase

aturation ( s ir ) is not considered in the equations by assuming it is equal

o 0. Hence, the normalized phase saturation ( = 

𝑠 𝑖 − 𝑠 𝑖𝑟 
1− 𝑠 𝑤𝑟 − 𝑠 𝑜𝑟 − 𝑠 𝑔𝑟 

) equals the

hase saturation value s i . The traditional macroscopic formulation of

arcy’s law that relates the volumetric flux of a phase to the pressure

radient of that phase is given by: 

 𝑖 = − 

𝐾𝑘 𝑟𝑖 

𝜇𝑖 
(∇ 𝑝 𝑖 − 𝜌𝑖 𝐠 ) , ( 𝑖 = 𝑤, 𝑜, 𝑔) , (2.3)

here K is the absolute permeability of porous media, p i is phase pres-

ure, g is the acceleration of gravity and k ri , 𝜌i and 𝜇i are phase relative

ermeability, density and viscosity, respectively. 

.2. A generalized multiphase flow model based on mixture theory 

For our investigations, the mass balance equations with source terms

n the case of compressible water-oil-gas transport can be given by: 

 𝜙𝑛 𝑤 ) 𝑡 + ∇ ⋅ ( 𝜙𝑛 𝑤 𝑢 𝑤 ) = − 𝑛 𝑤 𝑄 𝑝 + 𝜌𝑤 𝑄 𝐼𝑤 , 𝑛 𝑤 = 𝑠 𝑤 𝜌𝑤 

( 𝜙𝑛 𝑜 ) 𝑡 + ∇ ⋅ ( 𝜙𝑛 𝑜 𝑢 𝑜 ) = − 𝑛 𝑜 𝑄 𝑝 , 𝑛 𝑜 = 𝑠 𝑜 𝜌𝑜 

( 𝜙𝑛 𝑔 ) 𝑡 + ∇ ⋅ ( 𝜙𝑛 𝑔 𝑢 𝑔 ) = − 𝑛 𝑔 𝑄 𝑝 + 𝜌𝑔 𝑄 𝐼𝑔 , 𝑛 𝑔 = 𝑠 𝑔 𝜌𝑔 (2.4) 

here u i , ( 𝑖 = 𝑤, 𝑜, 𝑔) represents the interstitial velocity of phase i in

he porous media. In addition, Q p is the production rate and 𝑄 𝐼𝑤 , Q Ig 

epresent the injection rate of water and gas, respectively. 

The starting point for developing our model that can account for

ore detailed physical mechanisms for water-oil-gas porous media flow

han conventional modeling, is the theory of mixtures. This is a theory

ased on balance laws and conservation principles, which is well known

n continuum mechanics ( Bowen, 1976; Rajagopal and Tao, 1995; Byrne

nd Preziosi, 2003; Ambrosi and Preziosi, 2002; Preziosi and Farina,

002 ), and has been widely applied to the biological tumor-growth sys-

ems which can be characterized as a mixture of interacting continua. 

Neglecting inertial effects (acceleration effects), as is usual when

ealing with creeping flow in porous materials, the mechanical stress

alance is given by Ambrosi and Preziosi (2002) : 

 = ∇ ⋅ ( 𝑠 𝑖 𝜎𝑖 ) + 𝑚 𝑖 + 𝐺 𝑖 , ( 𝑖 = 𝑤, 𝑜, 𝑔) , (2.5)

here 𝜎i refers to the Cauchy stress tensor, m i represents the interaction

orces exerted on the constituents by other constituents of the mixture,

nd 𝐺 𝑖 = 𝑠 𝑖 𝜌𝑖 𝑔 is the external body force due to gravity. The standard

xpression for the stress terms 𝜎i , is given by 

𝑖 = − 𝑝 𝑖 𝛿 + 𝜏𝑖 , ( 𝑖 = 𝑤, 𝑜, 𝑔) , (2.6)

here 𝛿 is the unitary tensor and 

𝑖 = 2 𝜇𝑖 𝑒 𝑖 , 𝑒 𝑖 = 

1 
2 
(∇ 𝑢 𝑖 + ∇ 𝑢 𝑇 

𝑖 
) , ( 𝑖 = 𝑤, 𝑜, 𝑔) . (2.7)

he viscous part 𝜏 i reflects that the water, oil and gas behave as a vis-

ous fluid. According to general principles of the theory of mixtures, the

nteraction forces m i between the constituents appearing in (2.5) may be

escribed as in Preziosi and Farina (2002) ; Ambrosi and Preziosi (2002) ;

yrne and Preziosi (2003) : 

𝑚 𝑜 = 𝑝 𝑜 ∇ 𝑠 𝑜 + 𝐹 𝑤𝑜 − 𝐹 𝑜𝑔 + 𝑀 𝑜𝑚 , 

 𝑤 = 𝑝 𝑤 ∇ 𝑠 𝑤 − 𝐹 𝑤𝑜 − 𝐹 𝑤𝑔 + 𝑀 𝑤𝑚 , 

𝑚 𝑔 = 𝑝 𝑔 ∇ 𝑠 𝑔 + 𝐹 𝑤𝑔 + 𝐹 𝑜𝑔 + 𝑀 𝑔𝑚 , (2.8) 
here F ij ( 𝑖, 𝑗 = 𝑜, 𝑤, 𝑔), denotes the force (drag) that the i phase exerts

n the j phase. The j phase exerts an equal and opposite force − 𝐹 𝑖𝑗 .

imilarly, M om 

, 𝑀 𝑤𝑚 and M gm 

represent interaction forces (drag forces)

etween fluid and pore walls (solid matrix), respectively, for oil, water

nd gas. The term p i ∇ s i is related to interfacial force exerted by other

hases on phase i , arising from mathematical derivation of averaged

quations ( Drew and Segel, 1971 ). To close the system we must specify

he drag force term 𝐹 𝑤𝑜 , 𝐹 𝑤𝑔 , and F og and the stresses 𝜎i ( 𝑖 = 𝑜, 𝑤, 𝑔)

nd interaction force terms M im 

between fluid ( 𝑖 = 𝑤, 𝑜, 𝑔) and matrix.

rag force represents the interaction between one phase and another

hase and is modelled as Rajagopal (2007) ; Preziosi and Farina (2002) ;

mbrosi and Preziosi (2002) : 

𝐹 𝑤𝑜 = 𝑘̂ 𝑤𝑜 ( 𝑢 𝑤 − 𝑢 𝑜 ) , 

 𝑤𝑔 = 𝑘̂ 𝑤𝑔 ( 𝑢 𝑤 − 𝑢 𝑔 ) , 

𝐹 𝑜𝑔 = 𝑘̂ 𝑜𝑔 ( 𝑢 𝑜 − 𝑢 𝑔 ) , (2.9) 

here 𝑘̂ 𝑖𝑗 ( 𝑖, 𝑗 = 𝑜, 𝑤, 𝑔), remains to be determined. Typically, 𝑘̂ 𝑖𝑗 ∼ 𝑠 𝑖 𝑠 𝑗 
o reflect that this force term will vanish when one of the phases van-

shes. Similarly, the interaction force between fluid and pore wall (ma-

rix, which is stagnant) is naturally expressed then as ( Rajagopal and

ao, 1995; Rajagopal, 2007; Preziosi and Farina, 2002; Ambrosi and

reziosi, 2002 ): 

 𝑖𝑚 = − ̂𝑘 𝑖 𝑢 𝑖 , ( 𝑖 = 𝑜, 𝑤, 𝑔) . (2.10)

he coefficients 𝑘̂ 𝑖𝑗 and 𝑘̂ 𝑖 (dimension Pa · s/m 

2 ), that characterize the

agnitude of interaction terms, can be chosen such that the model re-

overs the classical porous media model based on Darcy’s law. At the

ame time the approach used here will open for development of reser-

oir models where more detailed physics can be taken into account. 

. A summary of the general three-fluid model for porous media 

ow 

.1. The compressible case 

We are interested in studying a 1-D model for three compressible im-

iscible fluids moving in a porous media. After combining (2.4) - (2.10)

he model takes the following form: 

 𝜙𝑛 𝑤 ) 𝑡 + ( 𝜙𝑛 𝑤 𝑢 𝑤 ) 𝑥 = − 𝑛 𝑤 𝑄 𝑝 + 𝜌𝑤 𝑄 𝐼𝑤 , 𝑛 𝑤 = 𝑠 𝑤 𝜌𝑤 , 

( 𝜙𝑛 𝑜 ) 𝑡 + ( 𝜙𝑛 𝑜 𝑢 𝑜 ) 𝑥 = − 𝑛 𝑜 𝑄 𝑝 , 𝑛 𝑜 = 𝑠 𝑜 𝜌𝑜 , 

( 𝜙𝑛 𝑔 ) 𝑡 + ( 𝜙𝑛 𝑔 𝑢 𝑔 ) 𝑥 = − 𝑛 𝑔 𝑄 𝑝 + 𝜌𝑔 𝑄 𝐼𝑔 , 𝑛 𝑔 = 𝑠 𝑔 𝜌𝑔 

𝑠 𝑤 ( 𝑃 𝑤 ) 𝑥 = − ̂𝑘 𝑤 𝑢 𝑤 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑤 − 𝑢 𝑜 ) − ̂𝑘 𝑤𝑔 ( 𝑢 𝑤 − 𝑢 𝑔 ) 

+ 𝑛 𝑤 𝑔 + 𝜀 𝑤 ( 𝑛 𝑤 𝑢 𝑤𝑥 ) 𝑥 , 

𝑠 𝑜 ( 𝑃 𝑜 ) 𝑥 = − ̂𝑘 𝑜 𝑢 𝑜 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑜 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑜 − 𝑢 𝑔 ) 

+ 𝑛 𝑜 𝑔 + 𝜀 𝑜 ( 𝑛 𝑜 𝑢 𝑜𝑥 ) 𝑥 , 

𝑠 𝑔 ( 𝑃 𝑔 ) 𝑥 = − ̂𝑘 𝑔 𝑢 𝑔 − ̂𝑘 𝑤𝑔 ( 𝑢 𝑔 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑔 − 𝑢 𝑜 ) 

+ 𝑛 𝑔 𝑔 + 𝜀 𝑔 ( 𝑛 𝑔 𝑢 𝑔𝑥 ) 𝑥 , 

Δ𝑃 𝑜𝑤 ( 𝑠 𝑤 ) = 𝑃 𝑜 − 𝑃 𝑤 , Δ𝑃 𝑔𝑜 ( 𝑠 𝑔 ) = 𝑃 𝑔 − 𝑃 𝑜 (3.11) 

ith capillary pressure Δ𝑃 𝑜𝑤 defined as the pressure difference between

he oil and water and capillary pressure ΔP go defined as the pressure

ifference between the gas and oil. We may choose to use the following

xpressions for capillary force 

𝑃 𝑜𝑤 = 𝑃 𝑜 − 𝑃 𝑤 = Δ𝑃 𝑜𝑤 ( 𝑠 𝑤 ) = − 𝑃 ∗ 
𝑐1 ln ( 𝛿1 + 

𝑠 𝑤 

𝑎 1 
) and 𝛿1 , 𝑎 1 > 0 , 

Δ𝑃 𝑔𝑜 = 𝑃 𝑔 − 𝑃 𝑜 = Δ𝑃 𝑔𝑜 ( 𝑠 𝑔 ) = 𝑃 ∗ 
𝑐2 𝑠 

𝑎 2 
𝑔 and 𝑎 2 > 0 (3.12) 

ith non-negative constants 𝑃 ∗ 
𝑐𝑖 

representing interfacial tension. This

llows us to mimic capillary pressure functions that previsously have

een proposed for three-phase reservoir flow ( Chen and Ewing, 1997;



Y. Qiao and S. Evje Advances in Water Resources 141 (2020) 103599 

O  

t

𝑠  

T  

f  

r

𝜌  

w  

t

 

w

R  

w  

p  

h  

f

3

3

 

i  

a  

c

3

 

s  

m  

m  

D

𝑈

 

a

𝜆

 

w

𝑅

 

 

t

𝑈

 

 

H  

𝜆

B  

i

𝑈

w

𝜆  

T

𝑃

w

𝑓  

I

𝑈

w

𝑊

I  

(

4

 

w  

T  

t  

i

Fig. 1. Reservoir model with injection and production. 
dd and David, 2010 ). In addition, we have the fundamental relation

hat the three phases fill the pore space 

 𝑜 + 𝑠 𝑤 + 𝑠 𝑔 = 1 . (3.13)

he above model must be combined with appropriate closure relations

or 𝜌𝑖 = 𝜌𝑖 ( 𝑃 𝑖 ) . We represent the three phases by linear pressure-density

elations of the form 

𝑤 − 𝜌̃𝑤 0 = 

𝑃 𝑤 

𝐶 𝑤 
, 𝜌𝑜 − 𝜌̃𝑜 0 = 

𝑃 𝑜 

𝐶 𝑜 
, 𝜌𝑔 = 

𝑃 𝑔 

𝐶 𝑔 
(3.14)

here 𝐶 𝑤 , C o and C g represent the inverse of the compressibility of wa-

er, oil and gas, respectively. 

We refer to Appendix B for a semi-discrete approximation of (3.11) as

ell as a fully discrete scheme. 

emark 3.1. We may also study a higher dimensional case (e.g., 2D)

here the model consists of three mass balance equations for three

hases (water, oil and gas) and six momentum equations (each phase

as two directions such as x and y). The scheme has been tested in 2D

or two phases and shows similar properties as in 1D. 

.2. The incompressible case 

.2.1. Viscous flow 

We may let 𝐶 𝑤 , 𝐶 𝑜 , 𝐶 𝑔 go to infinity in (3.14) . Then we obtain the

ncompressible version of the model (3.11) . We refer to Appendix C for

 semi-discrete as well as a fully discrete scheme for this incompressible

ase. 

.2.2. Inviscid flow 

Moreover, in order to relate this incompressible version to the clas-

ical Darcy-based formulation we ignore the viscosity terms in the mo-

entum equations by setting 𝜀 𝑖 = 0( 𝑖 = 𝑤, 𝑜, 𝑔) in (3.11) 4,5,6 . Solving

omentum equations with respect to interstitial phase velocities u i , the

arcy velocities of fluid phase are expressed as follows based on (2.2) : 

 𝑤 = 𝜙𝑠 𝑤 𝑢 𝑤 = − 𝜆𝑤𝑤 ( 𝑃 𝑤𝑥 − 𝜌𝑤 𝑔 ) − 𝜆𝑤𝑜 ( 𝑃 𝑜𝑥 − 𝜌𝑜 𝑔 ) − 𝜆𝑤𝑔 ( 𝑃 𝑔𝑥 − 𝜌𝑔 𝑔 ) , 

𝑈 𝑜 = 𝜙𝑠 𝑜 𝑢 𝑜 = − 𝜆𝑤𝑜 ( 𝑃 𝑤𝑥 − 𝜌𝑤 𝑔) − 𝜆𝑜𝑜 ( 𝑃 𝑜𝑥 − 𝜌𝑜 𝑔) − 𝜆𝑜𝑔 ( 𝑃 𝑔𝑥 − 𝜌𝑔 𝑔) , 

𝑈 𝑔 = 𝜙𝑠 𝑔 𝑢 𝑔 = − 𝜆𝑤𝑔 ( 𝑃 𝑤𝑥 − 𝜌𝑤 𝑔) − 𝜆𝑜𝑔 ( 𝑃 𝑜𝑥 − 𝜌𝑜 𝑔) − 𝜆𝑔𝑔 ( 𝑃 𝑔𝑥 − 𝜌𝑔 𝑔) , (3.15)

nd the following relations are defined: 

𝑤𝑤 = 

𝜙𝑠 2 
𝑤 

𝑅 

( 𝑅 𝑜 𝑅 𝑔 − ̂𝑘 2 
𝑜𝑔 
) , 𝜆𝑤𝑜 = 𝜆𝑜𝑤 = 

𝜙𝑠 𝑤 𝑠 𝑜 

𝑅 

( ̂𝑘 𝑤𝑜 𝑅 𝑔 + ̂𝑘 𝑜𝑔 𝑘̂ 𝑤𝑔 ) , 

𝜆𝑜𝑜 = 

𝜙𝑠 2 
𝑜 

𝑅 

( 𝑅 𝑤 𝑅 𝑔 − ̂𝑘 2 
𝑤𝑔 

) , 𝜆𝑤𝑔 = 𝜆𝑔𝑤 = 

𝜙𝑠 𝑤 𝑠 𝑔 

𝑅 

( ̂𝑘 𝑤𝑔 𝑅 𝑜 + ̂𝑘 𝑜𝑔 𝑘̂ 𝑤𝑜 ) , 

𝜆𝑔𝑔 = 

𝜙𝑠 2 
𝑔 

𝑅 

( 𝑅 𝑤 𝑅 𝑜 − ̂𝑘 2 
𝑤𝑜 
) , 𝜆𝑜𝑔 = 𝜆𝑔𝑜 = 

𝜙𝑠 𝑜 𝑠 𝑔 

𝑅 

( ̂𝑘 𝑜𝑔 𝑅 𝑤 + ̂𝑘 𝑤𝑔 𝑘̂ 𝑤𝑜 ) , (3.16)

here 

 𝑤 = 𝑘̂ 𝑤 + ̂𝑘 𝑤𝑔 + ̂𝑘 𝑤𝑜 , 

𝑅 𝑜 = 𝑘̂ 𝑜 + ̂𝑘 𝑤𝑜 + ̂𝑘 𝑜𝑔 , 

𝑅 𝑔 = 𝑘̂ 𝑔 + ̂𝑘 𝑤𝑔 + ̂𝑘 𝑜𝑔 , 

𝑅 = 𝑘̂ 𝑤 𝑘̂ 𝑜 𝑘̂ 𝑔 + ( ̂𝑘 𝑤 + ̂𝑘 𝑜 + ̂𝑘 𝑔 )( ̂𝑘 𝑤𝑔 𝑘̂ 𝑤𝑜 + ̂𝑘 𝑜𝑔 𝑘̂ 𝑤𝑜 + ̂𝑘 𝑤𝑔 𝑘̂ 𝑜𝑔 ) 

+ 𝑘̂ 𝑔 𝑘̂ 𝑤𝑜 ( ̂𝑘 𝑤 + ̂𝑘 𝑜 ) + ̂𝑘 𝑤 𝑘̂ 𝑜𝑔 ( ̂𝑘 𝑜 + ̂𝑘 𝑔 ) + ̂𝑘 𝑜 𝑘̂ 𝑤𝑔 ( ̂𝑘 𝑤 + ̂𝑘 𝑔 ) . (3.17)

Using capillary pressure relations (3.12) it follows that (3.15) take

he following equivalent form: 

 𝑤 = − ̂𝜆𝑤 𝑃 𝑤𝑥 − ( 𝜆𝑤𝑜 + 𝜆𝑤𝑔 )Δ𝑃 𝑜𝑤𝑥 − 𝜆𝑤𝑔 Δ𝑃 𝑔𝑜𝑥 
+ ( 𝜆𝑤𝑤 𝜌𝑤 + 𝜆𝑤𝑜 𝜌𝑜 + 𝜆𝑤𝑔 𝜌𝑔 ) 𝑔, 

𝑈 𝑜 = − ̂𝜆𝑜 𝑃 𝑤𝑥 − ( 𝜆𝑜𝑜 + 𝜆𝑜𝑔 )Δ𝑃 𝑜𝑤𝑥 − 𝜆𝑜𝑔 Δ𝑃 𝑔𝑜𝑥 + ( 𝜆𝑤𝑜 𝜌𝑤 + 𝜆𝑜𝑜 𝜌𝑜 + 𝜆𝑜𝑔 𝜌𝑔 ) 𝑔,

𝑈 𝑔 = − ̂𝜆𝑔 𝑃 𝑤𝑥 − ( 𝜆𝑔𝑔 + 𝜆𝑜𝑔 )Δ𝑃 𝑜𝑤𝑥 − 𝜆𝑔𝑔 Δ𝑃 𝑔𝑜𝑥 
+ ( 𝜆𝑤𝑔 𝜌𝑤 + 𝜆𝑜𝑔 𝜌𝑜 + 𝜆𝑔𝑔 𝜌𝑔 ) 𝑔. (3.18)
ere we define the following notation for generalized phase mobilities
̂
𝑖 : 

𝜆̂𝑤 = 𝜆𝑤𝑤 + 𝜆𝑤𝑜 + 𝜆𝑤𝑔 , 

𝜆̂𝑜 = 𝜆𝑜𝑜 + 𝜆𝑤𝑜 + 𝜆𝑜𝑔 , 

𝜆̂𝑔 = 𝜆𝑔𝑔 + 𝜆𝑤𝑔 + 𝜆𝑜𝑔 . 

(3.19) 

y summing 𝑈 𝑤 , U o and U g in (3.18) and using the notation introduced

n (3.19) , the total Darcy velocity can be expressed as follows: 

 𝑇 = − ̂𝜆𝑇 𝑃 𝑤𝑥 − ( ̂𝜆𝑜 + 𝜆̂𝑔 )Δ𝑃 𝑜𝑤𝑥 − 𝜆̂𝑔 Δ𝑃 𝑔𝑜𝑥 + ( ̂𝜆𝑤 𝜌𝑤 + 𝜆̂𝑜 𝜌𝑜 + 𝜆̂𝑔 𝜌𝑔 ) 𝑔 

(3.20) 

here we have used 

̂
𝑇 = 𝜆̂𝑤 + 𝜆̂𝑜 + 𝜆̂𝑔 . (3.21)

herefore, the water pressure gradient can be derived from (3.20) : 

 𝑤𝑥 = − 

1 
𝜆̂𝑇 

𝑈 𝑇 − ( 𝑓 𝑜 + 𝑓 𝑔 )Δ𝑃 𝑜𝑤𝑥 − 𝑓 𝑔 Δ𝑃 𝑔𝑜𝑥 + ( 𝑓 𝑤 𝜌𝑤 + 𝑓 𝑜 𝜌𝑜 + 𝑓 𝑔 𝜌𝑔 ) 𝑔 

(3.22) 

ith generalized fractional flow function: 

 ̂𝑖 = 𝜆̂𝑖 ∕ ̂𝜆𝑇 , ( 𝑖 = 𝑤, 𝑜, 𝑔) . (3.23)

nserting (3.22) into (3.18) we get: 

 𝑤 = 𝑓 𝑤 𝑈 𝑇 + ( 𝑊 𝑜 + 𝑊 𝑔 )Δ𝑃 𝑜𝑤𝑥 + 𝑊 𝑔 Δ𝑃 𝑔𝑜𝑥 − ( 𝑊 𝑤 𝜌𝑤 + 𝑊 𝑜 𝜌𝑜 + 𝑊 𝑔 𝜌𝑔 ) 𝑔, 

𝑈 𝑜 = 𝑓 𝑜 𝑈 𝑇 + ( 𝑂 𝑜 + 𝑂 𝑔 )Δ𝑃 𝑜𝑤𝑥 + 𝑂 𝑔 Δ𝑃 𝑔𝑜𝑥 − ( 𝑂 𝑤 𝜌𝑤 + 𝑂 𝑜 𝜌𝑜 + 𝑂 𝑔 𝜌𝑔 ) 𝑔, 

𝑈 𝑔 = 𝑓 𝑔 𝑈 𝑇 + ( 𝐺 𝑜 + 𝐺 𝑔 )Δ𝑃 𝑜𝑤𝑥 + 𝐺 𝑔 Δ𝑃 𝑔𝑜𝑥 − ( 𝐺 𝑤 𝜌𝑤 + 𝐺 𝑜 𝜌𝑜 + 𝐺 𝑔 𝜌𝑔 ) 𝑔, (3.24) 

here 

 𝑖 = 𝜆̂𝑤 𝑓 𝑖 − 𝜆𝑤𝑖 , 

𝑂 𝑖 = 𝜆̂𝑜 𝑓 𝑖 − 𝜆𝑜𝑖 , 

𝐺 𝑖 = 𝜆̂𝑔 𝑓 𝑖 − 𝜆𝑔𝑖 , ( 𝑖 = 𝑤, 𝑜, 𝑔) . (3.25) 

t should be noted that 𝑊 𝑖 + 𝑂 𝑖 + 𝐺 𝑖 = 0 ( 𝑖 = 𝑤, 𝑜, 𝑔) in light of (3.16),

3.21) , and (3.23) . 

. Numerical examples 

We mainly focus on a reservoir model where there are one injection

ell at the center and two production wells distributed at two sides.

he injection rate is equal to the total production rate and the rates of

wo production wells are also same (See Fig. 1 ). In addition, reservoir

nclination 𝜃 is also accounted for in the model. 
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Fig. 2. Left: Capillary pressure between water 

and oil. Right: Capillary pressure between oil 

and gas. We refer to (3.12) for their expressions 

and Table 1 for the input parameters. 

Fig. 3. Water fractional flow function 𝑓 𝑤 ( 𝑠 𝑤 , 𝑠 𝑜 ) (defined in (4.27) ) with effects of model inclination 𝜃 and total flow direction of U T . (A): 𝑠𝑖𝑛𝜃 = 0 , 𝑈 𝑇 = 𝑄 𝑝 ∕2 ; (B): 

𝑠𝑖𝑛𝜃 = 1 , 𝑈 𝑇 = − 𝑄 𝑝 ∕2 ; (C): 𝑠𝑖𝑛𝜃 = 1 , 𝑈 𝑇 = 𝑄 𝑝 ∕2 . 
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nteraction terms 

The model (3.11) 4,5,6 should be armed with appropriate functional

orrelations for fluid-rock resistance force ̂𝑘 𝑤 , ̂𝑘 𝑜 , ̂𝑘 𝑔 and fluid-fluid drag

orce 𝑘̂ 𝑤𝑜 , 𝑘̂ 𝑤𝑔 , 𝑘̂ 𝑜𝑔 . Here we use the interaction terms suggested in the

ecent works ( Standnes et al., 2017; Qiao et al., 2018; Andersen et al.,

019 ): 

𝑘̂ 𝑤 ∶= 𝐼 𝑤 𝑠 
𝛼
𝑤 

𝜇𝑤 

𝐾 

𝜙, 𝑘̂ 𝑜 ∶= 𝐼 𝑜 𝑠 
𝛽
𝑜 

𝜇𝑜 

𝐾 

𝜙, 𝑘̂ 𝑔 ∶= 𝐼 𝑔 𝑠 
𝛾
𝑔 

𝜇𝑔 

𝐾 

𝜙, 

̂
 𝑤𝑜 ∶= 𝐼 𝑤𝑜 𝑠 𝑤 𝑠 𝑜 

𝜇𝑤 𝜇𝑜 

𝐾 

𝜙, 𝑘̂ 𝑤𝑔 ∶= 𝐼 𝑤𝑔 𝑠 𝑤 𝑠 𝑔 

𝜇𝑤 𝜇𝑔 

𝐾 

𝜙, 𝑘̂ 𝑜𝑔 ∶= 𝐼 𝑜𝑔 𝑠 𝑜 𝑠 𝑔 

𝜇𝑜 𝜇𝑔 

𝐾 

𝜙. 

(4.26) 

ll the interaction terms ̂𝑘 𝑖 and ̂𝑘 𝑖𝑗 have dimension Pa · s/m 

2 . The param-

ters 𝛼, 𝛽 and 𝛾 are dimensionless exponents whereas 𝐼 𝑤 , I o and I g are

imensionless friction coefficients characterizing the strength of fluid-

olid interaction. Finally, 𝐼 𝑤𝑜 , 𝐼 𝑤𝑔 and I og are coefficients characterizing

he strength of the fluid-fluid drag force with dimension (Pa · s) −1 . 
nput data 

The input parameters used in the simulations are listed in Table 1 .

e use 101 grid cells for a 100-meter reservoir layer. We refer to

ppendix D for a convergence test. The magnitude of the interaction

oefficients 𝐼 𝑤𝑜 , 𝐼 𝑤𝑔 , and I og are chosen as in Qiao et al. (2018) where

e applied a generalized two-phase model to match the experimentally

easured relative permeability curves and obtained values for the input

arameters such as 𝐼 𝑤𝑜 whose magnitude is around several thousands.

n order to avoid too many complicating effects at the same time in

he subsequent discussion, we have set the viscosity terms to zero, i.e.,

 𝑤 = 𝜀 𝑜 = 𝜀 𝑔 = 0 . 
We use the similar capillary pressure relations as

iao et al. (2019b) for water and oil and Lewis and Pao (2002) for oil

nd gas (see Fig. 2 ). The expression of an effective water fractional flow

unction 𝑓 𝑤 ( 𝑠 𝑤 , 𝑠 𝑜 ) in the conventional water-oil-gas model (assuming

o capillary pressure, i.e., Δ𝑃 𝑜𝑤 = Δ𝑃 𝑔𝑜 = 0 ) is 

 𝑤 ( 𝑠 𝑤 , 𝑠 𝑜 ) 
def 
∶= 

𝑈 𝑤 

𝑈 

= 

𝜆̂𝑤 

𝜆̂𝑇 
𝑈 𝑇 − ( 𝑊 𝑤 𝜌𝑤 + 𝑊 𝑜 𝜌𝑜 + 𝑊 𝑔 𝜌𝑔 ) 𝑔 sin 𝜃

𝑈 

(4.27)

𝑇 𝑇 
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Fig. 4. Results of the horizontal compressible three-phase model during a 400-day waterflooding period. The source term effects can be seen clearly in all plots 

where production wells are located at 10 m and 90 m and injection well at 50 m. (A) Water pressure plot shows a strong pressure gradient region at the early stage 

(before 130 days). (B) Water velocity profile. It can be seen that water—- front reaches the production well after around 100 days. (C) Normalized water saturation 

shows that the water front is fast whereas the other phases (oil and gas) are produced slowly (takes almost 300 days). (D) Oil pressure profile gives a similar result 

as water pressure. (E) Oil velocity behavior is similar to water velocity. (F) Normalized oil saturation plot illustrates that oil is displaced quite slowly. (G) The gas 

pressure gradient is very low in the gas-displaced region at the early stage due to the high mobility of gas. (H) There is no gas advancing front since gas flows easily. 

(I) Gas is displaced fastly and a lot of gas is recovered before 130 days. 

Table 1 

Reference input parameters in the simulations. 

Parameter Dimensional value Parameter Dimensional value 

L 100 m 𝐼 𝑤 2.5 

𝜙 0.25 I o 1.8 

𝜌̃𝑤 0 1 g/cm 

3 I g 1.1 

𝜌̃𝑜 0 0.8 g/cm 

3 𝐼 𝑤𝑜 3000 (Pa · s) −1 

𝜌̃𝑔0 0.018 g/cm 

3 𝐼 𝑤𝑔 3000 (Pa · s) −1 

𝑠 𝑤𝑟 0 I og 3000 (Pa · s) −1 

s or 0 𝛼 0.01 

s gr 0 𝛽 0.01 

𝜇𝑤 1 cP 𝛾 0.01 

𝜇o 1.5 cP 𝑃 ∗ 
𝑐1 4 ∗ 10 4 Pa 

𝜇g 0.015 cP a 1 2 

K 1000 mD 𝛿1 0.08 

𝑘 max 
𝑟𝑤 

0.4 𝑃 ∗ 
𝑐2 10 5 Pa 

𝑘 max 
𝑟𝑜 

0.5556 a 2 2 

𝑘 max 
𝑟𝑔 

0.9091 𝐶 𝑤 10 6 m 

2 /s 2 

𝑄 𝐼𝑤 0.125 m 

3 /day C o 5 ∗ 10 5 m 

2 /s 2 

𝑄 𝐼𝑔 0.125 m 

3 /day C g 10 5 m 

2 /s 2 

𝑄 𝑝 0.0625 m 

3 /day 𝜀 𝑤 0.0 cP 

N x 101 𝜀 o 0.0 cP 

A 1 m 

2 𝜀 g 0.0 cP 

𝑃 𝑤𝐿 10 6 Pa x I 50 m 

△t 1570 s x P (1,2) 10 (1) &90 (2) m 

w  

i  

i  

r  

i

I

 

m

𝑠  

F  

o

𝑠  

F  

o

𝑃  

B

 

i

𝑢  

F  

b

𝑃 ( 𝑥 = 0 , 𝑡 ) = 10 Pa . (4.32) 
here we have used (3.24) and (3.25) where 𝑈 𝑇 = ∫ 𝑥 

0 ( 𝑄 𝐼 − 𝑄 𝑝 ) 𝑑𝑥 . Sim-

larly, f o and f g can also be expressed in the same manner. In order to

llustrate the phase flow fraction 𝑓 (see Fig. 3 ) we represent U by a
𝑤 T 
eference total velocity 𝑈 𝑇 ∈ [− 

𝑄 𝑝 

2 , + 

𝑄 𝑝 

2 ] . We refer to Table 1 for other

nput data that are used. 

nitial conditions 

For the waterflooding case, we assume the reservoir initially is

ostly filled with gas (90%) and some oil (10%): 

 𝑔 ( 𝑥, 𝑡 = 0) = 0 . 9 , 𝑠 𝑜 ( 𝑥, 𝑡 = 0) = 0 . 1 . (4.28)

or the WAG injection case, the reservoir is assumed initially filled with

il (90%) and some extra water (10%): 

 𝑜 ( 𝑥, 𝑡 = 0) = 0 . 9 , 𝑠 𝑤 ( 𝑥, 𝑡 = 0) = 0 . 1 . (4.29)

or the compressible case, a reference pressure 𝑃 𝑤𝐿 at the left boundary

f the layer is given at initial state, 

 𝑤𝐿 ( 𝑥 = 0 , 𝑡 = 0) = 10 6 Pa . (4.30)

oundary conditions 

We assume a closed boundary for both compressible and incompress-

ble models, which means that 

 𝑖 ( 𝑥 = 0 , 𝑡 ) = 0 , 𝑢 𝑖 ( 𝑥 = 𝐿, 𝑡 ) = 0 , 𝑖 = 𝑤, 𝑜, 𝑔. (4.31)

or the incompressible case, we give a reference pressure 𝑃 𝑤𝐿 at the left

oundary of the layer, 

6 

𝑤𝐿 
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ource terms 

For WAG experiments, gas and water are injected at different time

eriods during the whole oil recovery process. We assume that Q I ( x ) and

 p ( x ) take the form 

 𝐼 𝑤 ,𝐼 𝑔 
( 𝑥 ) = 

𝑄 𝐼 𝑤 ,𝐼 𝑔 

𝜎

{ 

1 , if |𝑥 − 𝑥 𝐼 | ≤ 𝜎∕2; 
0 , otherwise. 

, 

𝑄 𝑝 ( 𝑥 ) = 

𝑄 𝑝 

𝜎

{ 

1 , if |𝑥 − 𝑥 𝑝,𝑖 | ≤ 𝜎∕2; 
0 , otherwise. 

(4.33) 

here ( 𝑖 = 1 , 2) and 𝑄 𝐼 𝑤 ,𝐼 𝑔 
= 0 . 125 m 

3 ∕ day and 𝑄 𝑝 = 0 . 0625 m 

3 ∕ day . The

idth of the small region associated with the injector and producer is

. In the numerical scheme 𝜎 = Δ𝑥 . 

.1. Waterflooding in a gas reservoir 

We first test the proposed compressible three-phase model applied to

 gas reservoir development. In this example, water is injected at 50 m

nto a gas reservoir layer of length 100 m with a little proportion of oil

10%). Two cases, respectively, for the horizontal ( Fig. 4 ) and vertical

eservoir ( Fig. 5 ) are shown below. 
ig. 5. Results of the vertical compressible three-phase model during a 400-day wa

aturation plots where production wells are located at 10 m and 90 m and injection w

he bottom and by that greatly increases the pressure in that region. (B) Due to the 

he water displacement in the upper layer. (C) Normalized water saturation shows 

o efficiently displace the upper part of the layer. (D) Oil pressure follows the simil

enter. However, at early time some oil in the upper part of the layer will move dow

he oil advancing front behaves similar as the water front. (G) Gas pressure behaves 

roduction well from the center. After the water front has reached the bottom produc

I) Gas is recovered slowly in the upper part whereas gas recovery in the lower part co

ell. Then, gas in the lower zone starts flowing upwardly. 
The results of the horizontal compressible three-phase model with

ater injection for a total period of 400 days are shown in Fig. 4 where

ressures (first column), velocities (middle column) and saturations

right column) are symmetric with the injection well located at the cen-

er of reservoir layer. The gas is mostly recovered during the first 130

ays, see (I), whereas oil recovery takes place over more than 300 days,

ee (F), due to its lower mobility than gas. It is also observed that at

arly stage gas pressure along the reservoir layer has less gradient than

oth the water’s and the oil’s (see first column in Fig. 4 ). The injected

ater displaces both oil and gas in the reservoir near the injection well

egion where a high pressure gradient is necessary for both water and

il to flow, see panel (A) and (B), because of their low mobilities. After

ater has arrived the production wells at around 100 days (see C), wa-

er and oil pressures drop owing to the fact that water then can find an

asy flow path to the production wells. 

In Fig. 5 , we show the results (phase pressures, velocities and sat-

rations) of a compressible vertical three-phase model with a 400-day

aterflooding displacement. Water is injected to displace oil and gas at

oth sides of the reservoir layer. It quickly fills the bottom part, then

tarts accumulating, see panel (C). Correspondingly, gas is displaced

aster in the lower part than in the upper part because the reservoir

ayer is vertical. Gravity segregation is seen in the lower part where gas
terflooding period. The source term effects are identified in the velocity and 

ell at 50 m. (A) Water pressure plot indicates that a lot of water flows toward 

strong gravity effect water flows faster towards the bottom of layer compared 

that water flows fastly to the bottom where it is accumulated before it begins 

ar behavior as water. (E) Water displaces the oil towards both sides from the 

nwardly due to gravity. Later, the water front will displace oil upwardly. (F) 

similar to the water pressure. (H) At an early stage gas is displaced towards the 

tion well the whole bottom part of gas (50 m to 100 m) starts moving upwards. 

nsists of two stages: initially, gas is displaced by water to the bottom production 
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Fig. 6. Comparison between the compressible and incompressible model with vertical three-phase flow. (A,D) Phase velocity 𝑢 𝑤 and u g for water and gas, respectively. 

(B,E) Pressure 𝑃 𝑤 and P g for water and gas, respectively. The compressible model accounts for the fact that gas is significantly compressed and stores energy which 

is removed from the system as gas is produced. This gives rise to lower pressure profiles for the compressible case as compared to the incompressible case. This gives 

rise to a lower pressure level for the compressible model as compared to the incompressible. (C,F) Saturation 𝑠 𝑤 and s g for water and gas, respectively. 
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I  
s squeezed upwardly, see (H) and (I). In contrast to what is shown in

ig. 4 G , gas pressure distribution shows a similar behavior as water and

il (higher at bottom and lower at top), see first column in Fig. 5 . We

efer to the figure text for more details. 

.1.1. Comparison of the compressible and incompressible models 

We continue the discussion of the case shown in Fig. 5 . In particular,

e want to compare the behavior of the compressible and incompress-

ble model. Constant density values 𝜌𝑤 = 1000 kg ∕ m 

3 , 𝜌𝑜 = 800 kg ∕ m 

3 

nd 𝜌𝑔 = 18 kg/m 

3 are used in the incompressible model. 

Fig. 6 shows a comparison between the compressible and incom-

ressible model after 30 and 120 days. (A) shows that at early stage

he injected water in the compressible model prefers to displace gas in

he lower part (high positive value) since water leads to higher pressure

t the bottom such that the gas is compressed there. With compressed

as produced at the bottom and gas expanding in the upper part, gas

ill only slowly migrate towards the upper part resulting in compa-

ably lower velocity (negative) in the compressible model. The velocity

ifference shown in (D) fits well with the saturation difference after 120

ays. At the early time (30 days) the saturation differences are not dis-

inct, see (C). However, after a long time (120 days) the differences are

ore significant, especially, in the water displacing part, see (F). This

s due to the increasing phase pressure difference between compressible

nd incompressible model, see (B) and (E). The removal of compressed

as from the gas reservoir as (almost incompressible) water is injected

learly generates additional space for the water to fill which gives rise

o a lower pressure. 
.2. The compressible three-phase model with a WAG experiment 

In WAG processes, the injected water will migrate towards the bot-

om of the formation while the injected gas will flow upwardly. There-

ore, counter-current flow occurs in the vertical direction of the reser-

oir due to the gravity segregation of water, oil and gas. Significant

ifferences in terms of saturation distribution and producing GOR (gas-

il-ratio) have been reported between a conventional model and models

hat better can account for the mix of different flow regimes (co-current

nd counter-current). For example, in Sherafati and Jessen (2017) an

xplicit representation of flow transitions between co-current and

ounter-current flow was used to improve the design of WAG injection

rocesses. 

In this part, we conduct a water alternating gas (WAG) injection in a

D reservoir (250 mD) layer which initially contains 90% oil and 10%

ater. The water and gas injection well is located at 50 m and two pro-

uction wells are set at 10 m and 90 m. Gas is injected for the first 10

ays followed by the water injection the next 10 days. Fluids can be pro-

uced in both production wells. The whole WAG experiment continues

ith an injection circulation of water and gas (each for 10 days). 

Fig. 7 shows the result for a WAG injection process produced by the

ompressible three-phase vertical model where gravity segregation has

 significant effect. From the simulation we see that pressure increases

ith time (first column in Fig. 7 ). Moreover, pressure values at the lower

art of the layer are larger than at the upper part. Due to the density

ifference, water displaces oil faster in the bottom part, see (B) and (C).

n addition, gas flows quickly towards the upper part of the reservoir
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Fig. 7. Results of the vertical compressible three-phase model for a 400-day WAG injection process. The source term effects are visible in the velocity and saturation 

plots where production wells are located at 10 m and 90 m and injection well at 50 m. (A) A high pressure region in the layer center due to the water or gas injection 

and gravity effect. (B) Water advancing front implies that water flows faster towards the bottom of layer compared the water displacement in the upper layer due 

to gravity segregation. (C) Water prefers to flow towards the bottom of layer where the edge region (90 m- 100 m) is also swept by water. (D) Oil pressure follows 

similar behavior as water pressure. (E) The upper part of oil is recovered faster than the lower part. (F) Due to the large density difference between oil and gas, the 

upper part oil is recovered very quickly, even for the edge region (0 m- 10 m). (G) Gas pressure. (H) Gas advancing front is fast in the upper part of layer because of 

the strong gravity segregation. (I) Gas reaches the bottom production well whereas a lot of gas is accumulated in the top region. 
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t  
ayer, see the saturation plots. In the upper part oil is recovered faster

han in the lower part because of the larger density difference between

as and oil than the one between water and oil, see the second column in

ig. 7 . We also observe that gas reaches the bottom production well but

oes not move further. This can be explained by the fact that gravity

egregation effect overcomes the capillarity. However, a lot of gas is

ccumulated in the upper edge region (0 m- 10 m) due to the buoyancy

orce, see (I). 

.3. Comparison of compressible and incompressible three-phase models 

ith WAG experiments 

In this part, we compute solutions from incompressible three-phase

odels with same WAG injection process and compare the relevant re-

ults with those from the compressible three-phase model. Constant den-

ity values 𝜌𝑤 = 1000 kg ∕ m 

3 , 𝜌𝑜 = 800 kg ∕ m 

3 and 𝜌𝑔 = 18 kg/m 

3 are used

n the incompressible model 

Fig. 8 shows a comparison between the compressible and incom-

ressible model of the vertical three-phase reservoir with a WAG pro-

ess. Similar to what was observed in Fig. 6 , differences are seen for
hase velocity, pressure and saturation. With increasing time, this dif-

erence will be enhanced, especially for the pressure. This is mainly due

o the gas compressibility. See (B) and (E) and the figure text for more

xplanation. Because of the density difference water prefers to flow to-

ards the bottom of the layer whereas gas moves faster towards the

pper part of layer, see (C) and (F). 

.3.1. Effect of fluid-fluid interactions 

Here we want to illustrate the impact from fluid-fluid interaction

erms on the compressible model with a WAG process. Two situations

re compared below: one with 𝐼 𝑤𝑜 = 𝐼 𝑤𝑔 = 𝐼 𝑜𝑔 = 0 ( 𝑃 𝑎 ⋅ 𝑠 ) −1 and one

ith 𝐼 𝑤𝑜 = 𝐼 𝑤𝑔 = 𝐼 𝑜𝑔 = 5000 ( 𝑃 𝑎 ⋅ 𝑠 ) −1 . 
Fig. 9 compares the results for the horizontal model for a WAG pro-

ess with and without fluid-fluid interaction effect at 60 and 120 days.

n (B) and (E), we observe that due to the fluid-fluid interaction, pres-

ure is elevated compared with the case with no fluid-fluid interaction.

he water velocity (A) and saturation profiles (C) show that water to

 less extent displaces oil and instead flows through the original wa-

er channels when fluid-fluid interaction is included. The difference in

he water saturation profiles between (C) and (F) is enhanced with time
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Fig. 8. Comparison between the compressible and incompressible model of the vertical three-phase reservoir with a WAG process. Results are shown after 60 and 

120 days. (A) Gravity segregation results in a fast advancing front of gas in the upper part of layer and a fast advancing front of water in the lower part of layer. 

(B) Phase pressure in the compressible model is higher since the compressed gas wants to expand when it moves to a region with lower pressure but cannot expand 

due to the constrained space for gas. (C) Gas prefers to move towards the upper part of layer and water prefers to flow towards the lower part. (D) At 120 days, gas 

reaches the upper production well and water arrives at the bottom well. (E) Phase pressure in the compressible model increases with time compared with (B). (F) 

The difference between the two models is enhanced with time. 

Fig. 9. Comparison for the horizontal compressible model for a WAG process with and without fluid-fluid interaction effects. The situation after 60 and 120 days 

are plotted. (A) Phase velocity at 60 days. (B) Phase pressure at 60 days. (C) Normalized saturation at 60 days. (D) Phase velocity at 120 days. (E) Phase pressure at 

120 days. (F) Normalized saturation at 120 days. 
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Fig. 10. Comparison of the vertical compressible model for a WAG process with and without fluid-fluid interaction effect at 60 and 120 days. (A) Phase velocity 

at 60 days. (B) Phase pressure at 60 days. (C) Normalized saturation at 60 days. (D) Phase velocity at 120 days. (E) Phase pressure at 120 days. (F) Normalized 

saturation at 120 days. Water tends to flow towards the lower part of layer due to the gravity segregation, resulting in a strong fluid-fluid interaction in the lower 

part of layer where the water saturation profiles clearly are affected, see (D) and (F). 
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ue to the additional resistance force from the fluid-fluid interaction

erm. 

Fig. 10 compares the results for the vertical model for a WAG process

ith and without fluid-fluid interaction effect at 60 and 120 days. Due

o the density difference a large proportion of gas flows to the upper part

f layer, see (C) and (F), and more of the water flows towards the bottom

art of layer. As a result, differences are seen for the water velocity (A,D)

nd saturation (C,F) for the case with and without fluid-fluid interaction.

imilar to Fig. 9 , the build-up of the water front is less efficient for the

ase with fluid-fluid interaction since a larger portion of water tends to

ove through the original water channels (A). 

. Concluding remarks 

We have presented a three-phase compressible and incompressible

iscous model based on the mixture theory approach. The formula-

ion represents an extension of the conventional Darcy-type formula-

ions by including fluid-fluid viscous coupling effects. The three-phase

ow model consists of a set of mass balance equations which are cou-

led to a set of momentum balance equations that involve both fluid-

atrix, fluid-fluid interactions, and internal viscosity effects. Numeri-

al schemes have been developed for both the compressible and incom-

ressible model. Moreover, various waterflooding displacement scenar-
os in a gas reservoir and WAG injection in an oil reservoir have been

nvestigated to illustrate the effects of fluid compressibility and fluid-

uid viscous coupling. Main findings are: 

(i) The numerical schemes proposed in this paper appear to be ro-

bust and stable for simulation of various three-phase flow scenar-

ios, both for the incompressible and compressible case; 

(ii) Comparison of the results for the compressible and incompress-

ible model show that the differences between these two models

can be significant, especially in the vertical case where the effect

of gravity segregation is rather strong (see (F) in Fig. 6 ); 

(iii) The viscous coupling (fluid-fluid interaction) can have a signif-

icant effect on the results. A strong fluid-fluid viscous coupling

results in a large resistance force for the flow of displacing fluid

(water) such that: (a) Water prefers to move through the origi-

nal water channels rather than displacing oil (see (A) and (C) in

Figs. 9 and 10 ); (b) Water front is slow and builds up (see (F) in

Figs. 9 and 10 ). 
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A

oil mass balance with 𝜌𝑤 𝜌𝑔 , the water mass balance with 𝜌o 𝜌g and the c mass 

b

⎧⎪⎨⎪⎩
 𝜙, 

(5.34) 

a

𝑓 (5.35) 

w

𝑓

𝑓

𝑓

𝑓 + 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝐼𝑔 ∕ 𝜙

𝑓 (5.36) 

𝑃

 Δ𝑃 ′
𝑜𝑤 
𝑠 𝑤𝑡 ) 

)
. (5.37) 

T

𝑓 (5.38) 

w

𝜅 (5.39) 

C

𝑠

C

𝑓 𝑃 ′
𝑔𝑜 

)
( 𝑠 𝑤 𝜌𝑤 𝑢 𝑤 ) 𝑥 

𝑜 

 

Δ𝑃 ′
𝑔𝑜 

)
(5.40) 

[
𝑃 ′
𝑜𝑤 

)
( 𝑠 𝑤 𝜌𝑤 𝑢 𝑤 ) 𝑥 

 𝜙 + 

𝑠 𝑔 𝜌𝑤 

𝐶 𝑔 
𝑠 𝑜 𝜌𝑜 𝑄 𝑝 ∕ 𝜙

(5.41) 

𝑃  (5.42) 
ppendix A 

From the three mass balance equations we get after multiplying the 

alance with 𝜌𝑤 𝜌𝑜 , 

 

 

 

 

 

( 𝑠 𝑤𝑡 𝜌𝑤 + 𝑠 𝑤 𝜌𝑤𝑡 ) 𝜌𝑜 𝜌𝑔 + 𝜌𝑜 𝜌𝑔 ( 𝑠 𝑤 𝜌𝑤 𝑢 𝑤 ) 𝑥 = − 𝑠 𝑤 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝑝 ∕ 𝜙 + 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝐼𝑤 ∕
( 𝑠 𝑜𝑡 𝜌𝑜 + 𝑠 𝑜 𝜌𝑜𝑡 ) 𝜌𝑤 𝜌𝑔 + 𝜌𝑤 𝜌𝑔 ( 𝑠 𝑜 𝜌𝑜 𝑢 𝑜 ) 𝑥 = − 𝑠 𝑜 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝑝 ∕ 𝜙, 
( 𝑠 𝑔𝑡 𝜌𝑔 + 𝑠 𝑔 𝜌𝑔𝑡 ) 𝜌𝑤 𝜌𝑜 + 𝜌𝑤 𝜌𝑜 ( 𝑠 𝑔 𝜌𝑔 𝑢 𝑔 ) 𝑥 = − 𝑠 𝑔 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝑝 ∕ 𝜙 + 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝐼𝑔 ∕ 𝜙, 

nd summing the three resulting equations 

 1 + 𝑓 2 + 𝑓 3 = 𝑓 4 , 

here 

 1 = 𝑠 𝑤𝑡 𝜌𝑤 𝜌𝑜 𝜌𝑔 + 𝑠 𝑜𝑡 𝜌𝑤 𝜌𝑜 𝜌𝑔 + 𝑠 𝑔𝑡 𝜌𝑤 𝜌𝑜 𝜌𝑔 = 𝜌𝑤 𝜌𝑜 𝜌𝑔 ( 𝑠 𝑤𝑡 + 𝑠 𝑜𝑡 + 𝑠 𝑔𝑡 ) = 0 , 

 2 = 𝑠 𝑤 𝜌𝑤𝑡 𝜌𝑜 𝜌𝑔 + 𝑠 𝑜 𝜌𝑜𝑡 𝜌𝑤 𝜌𝑔 + 𝑠 𝑔 𝜌𝑔𝑡 𝜌𝑤 𝜌𝑜 , 

 3 = 𝜌𝑜 𝜌𝑔 ( 𝑠 𝑤 𝜌𝑤 𝑢 𝑤 ) 𝑥 + 𝜌𝑤 𝜌𝑔 ( 𝑠 𝑜 𝜌𝑜 𝑢 𝑜 ) 𝑥 + 𝜌𝑤 𝜌𝑜 ( 𝑠 𝑔 𝜌𝑔 𝑢 𝑔 ) 𝑥 , 

 4 = − 𝑠 𝑤 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝑝 ∕ 𝜙 + 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝐼𝑤 ∕ 𝜙 − 𝑠 𝑜 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝑝 ∕ 𝜙 − 𝑠 𝑔 𝜌𝑤 𝜌𝑜 𝜌𝑔 𝑄 𝑝 ∕ 𝜙

= 𝜌𝑤 𝜌𝑜 𝜌𝑔 ( 𝑄 𝐼𝑤 + 𝑄 𝐼𝑔 − 𝑄 𝑝 )∕ 𝜙. 

Here we want to focus on dealing with expression f 2 . 

 2 = 𝑠 𝑤 𝜌𝑜 𝜌𝑔 
𝑃 𝑤𝑡 

𝐶 𝑤 
+ 𝑠 𝑜 𝜌𝑤 𝜌𝑔 

𝑃 𝑜𝑡 

𝐶 𝑜 
+ 𝑠 𝑔 𝜌𝑤 𝜌𝑜 

𝑃 𝑔𝑡 

𝐶 𝑔 
, 

𝑃 𝑜𝑡 = ( 𝑃 𝑤 + Δ𝑃 𝑜𝑤 ) 𝑡 = 𝑃 𝑤𝑡 + Δ𝑃 ′
𝑜𝑤 
𝑠 𝑤𝑡 , 

 𝑔𝑡 = ( 𝑃 𝑤 + Δ𝑃 𝑜𝑤 + Δ𝑃 𝑔𝑜 ) 𝑡 = 𝑃 𝑤𝑡 + Δ𝑃 ′
𝑜𝑤 
𝑠 𝑤𝑡 + Δ𝑃 ′

𝑔𝑜 
𝑠 𝑔𝑡 𝑎𝑛𝑑 

𝑠 𝑔𝑡 = −( 𝑠 𝑤𝑡 + 𝑠 𝑜𝑡 ) = − 

(
𝑠 𝑤𝑡 + 

𝑛 𝑜𝑡 

𝜌𝑜 
− 

𝑛 𝑜 

𝐶 𝑜 𝜌
2 
𝑜 

𝑃 𝑜𝑡 

)
= − 

(
𝑠 𝑤𝑡 + 

𝑛 𝑜𝑡 

𝜌𝑜 
− 

𝑛 𝑜 

𝐶 𝑜 𝜌
2 
𝑜 

( 𝑃 𝑤𝑡 +

herefore we have 

 2 = 

( 

𝜅𝜌𝑤 + 

𝑠 𝑤 𝜌𝑜 𝜌𝑔 

𝐶 𝑤 

) 

𝑃 𝑤𝑡 + 𝜅𝜌𝑤 Δ𝑃 ′𝑜𝑤 𝑠 𝑤𝑡 − 

𝑠 𝑔 𝜌𝑤 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 
𝑠 𝑤𝑡 − 

𝑠 𝑔 𝜌𝑤 

𝐶 𝑔 
𝑛 𝑜𝑡 ; 

here 

= 

𝑠 𝑜 𝜌𝑔 

𝐶 𝑜 
+ 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
+ 

𝑠 𝑔 𝑠 𝑜 

𝐶 𝑜 𝐶 𝑔 
. 

learly, 

 𝑤𝑡 = 

( 𝑛 𝑤 
𝜌𝑤 

)
𝑡 
= 

1 
𝜌𝑤 

𝑛 𝑤𝑡 − 

𝑚 

𝜌2 
𝑤 

𝜌𝑤𝑡 = 

1 
𝜌𝑤 

𝑛 𝑤𝑡 − 

𝑚 

𝐶 𝑤 𝜌
2 
𝑤 

𝑃 𝑤𝑡 . 

onsequently, 

 2 = 

[
𝜅𝜌𝑤 + 

𝑠 𝑤 𝜌𝑜 𝜌𝑔 

𝐶 𝑤 
− 

𝑠 𝑤 

𝐶 𝑤 

(
𝜅Δ𝑃 ′

𝑜𝑤 
− 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 

)]
𝑃 𝑤𝑡 − 

(
𝜅Δ𝑃 ′

𝑜𝑤 
− 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ

+ 

𝑠 𝑔 𝜌𝑤 

𝐶 𝑔 
( 𝑠 𝑜 𝜌𝑜 𝑢 𝑜 ) 𝑥 − 

𝑠 𝑔 𝜌𝑤 

𝐶 𝑔 
𝑠 𝑜 𝜌𝑜 𝑄 𝑝 − ( 𝜌𝑤 𝑠 𝑤 𝑄 𝑝 − 𝜌𝑤 𝑄 𝐼𝑤 ) 

(
𝜅Δ𝑃 ′

𝑜𝑤 
− 

𝑠 𝑔 𝜌

𝐶 𝑔

Since that 𝑓 1 = 0 , (5.35) will have the following form: 

𝜅𝜌𝑤 + 

𝑠 𝑤 𝜌𝑜 𝜌𝑔 

𝐶 𝑤 
− 

𝑠 𝑤 

𝐶 𝑤 

(
𝜅Δ𝑃 ′

𝑜𝑤 
− 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 

)]
𝑃 𝑤𝑡 + 

(
𝜌𝑜 𝜌𝑔 + 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 
− 𝜅Δ

+ 

(
𝜌𝑤 𝜌𝑔 + 

𝑠 𝑔 𝜌𝑤 

𝐶 𝑔 

)
( 𝑠 𝑜 𝜌𝑜 𝑢 𝑜 ) 𝑥 + 𝜌𝑤 𝜌𝑜 ( 𝑠 𝑔 𝜌𝑔 𝑢 𝑔 ) 𝑥 = 𝜌𝑤 𝜌𝑜 𝜌𝑔 ( 𝑄 𝐼𝑤 + 𝑄 𝐼𝑔 − 𝑄 𝑝 )∕

+( 𝜌𝑤 𝑠 𝑤 𝑄 𝑝 ∕ 𝜙 − 𝜌𝑤 𝑄 𝐼𝑤 ∕ 𝜙) 
(
𝜅Δ𝑃 ′

𝑜𝑤 
+ 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 

)
. 

The upper equation can be reformulated to be 

 𝑤𝑡 + ̃𝜂1 ( 𝑛 𝑤 𝑢 𝑤 ) 𝑥 + ̃𝜂2 ( 𝑛 𝑜 𝑢 𝑜 ) 𝑥 + ̃𝜂3 ( 𝑛 𝑔 𝑢 𝑔 ) 𝑥 = 𝜂̃4 𝑄 𝑝 ∕ 𝜙 + ̃𝜂5 𝑄 𝐼𝑤 ∕ 𝜙 + ̃𝜂6 𝑄 𝐼𝑔 ∕ 𝜙;



Y. Qiao and S. Evje Advances in Water Resources 141 (2020) 103599 

w

𝜂

𝜂

𝜂

𝜂

𝜂

𝜂 (5.43) 

R

A

el in a 1D setting. The proposed numerical methods are described separately 

f le (Appendix C) model. 

B

e use of the pressure evolution Eq. (5.42) . This will be convenient to account 

f uations through the pressure terms. It also makes the discretization of the 

c takes the form with ( 𝑛 𝑤 , 𝑛 𝑜 , 𝑛 𝑔 , 𝑢 𝑤 , 𝑢 𝑜 , 𝑢 𝑔 ) as the main variables: 

(

 

𝑢 𝑤𝑥 ) 𝑥 , 

 

) 𝑥 , 

𝑥 ) 𝑥 , 

(5.44) 

N ith ( 𝑛 𝑤 , 𝑛 𝑜 , 𝑃 𝑤 , 𝑢 𝑤 , 𝑢 𝑜 , 𝑢 𝑔 ) as the main variables 

𝑃 , 

 

− 𝑢 𝑔 ) − 𝑛 𝑤 𝑔 + 𝜀 𝑤 ( 𝑛 𝑤 𝑢 𝑤𝑥 ) 𝑥 , 

 𝑢 𝑔 ) − 𝑛 𝑜 𝑔 + 𝜀 𝑜 ( 𝑛 𝑜 𝑢 𝑜𝑥 ) 𝑥 , 

− 𝑢 𝑜 ) − 𝑛 𝑔 𝑔 + 𝜀 𝑔 ( 𝑛 𝑔 𝑢 𝑔𝑥 ) 𝑥 , 

 𝑔 − 𝑃 𝑜 . (5.45) 

H

𝑛

(5.46) 

w  𝑤 ) . We may solve (5.45) on our domain Ω with boundary conditions 

𝑢 (5.47) 

a

𝑛

(5.48) 

ith nodes x j placed at the center of the cells 

𝑥  𝑥 − 

1 )Δ𝑥 
here 

𝜂 = 𝜅𝜌𝑤 + 

𝑠 𝑤 𝜌𝑜 𝜌𝑔 

𝐶 𝑤 
− 

𝑠 𝑤 

𝐶 𝑤 

(
𝜅Δ𝑃 ′

𝑜𝑤 
− 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 

)
̃1 = 

1 
𝜂

(
𝜌𝑜 𝜌𝑔 + 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 
− 𝜅Δ𝑃 ′

𝑜𝑤 

)
̃2 = 

1 
𝜂

(
𝜌𝑤 𝜌𝑔 + 

𝑠 𝑔 𝜌𝑤 

𝐶 𝑔 

)
̃3 = 

1 
𝜂
𝜌𝑤 𝜌𝑜 

̃4 = 

1 
𝜂

[ 𝑠 𝑔 𝜌𝑤 
𝐶 𝑔 

𝑠 𝑜 𝜌𝑜 + 𝜌𝑤 𝑠 𝑤 

(
𝜅Δ𝑃 ′

𝑜𝑤 
− 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 

)
− 𝜌𝑤 𝜌𝑜 𝜌𝑔 

]
̃5 = 

1 
𝜂

[
𝜌𝑤 𝜌𝑜 𝜌𝑔 − 𝜌𝑤 

(
𝜅Δ𝑃 ′

𝑜𝑤 
− 

𝑠 𝑔 𝜌𝑜 

𝐶 𝑔 
Δ𝑃 ′

𝑔𝑜 

)]
̃6 = 

1 
𝜂
𝜌𝑤 𝜌𝑜 𝜌𝑔 . 

emark 5.1. Δ𝑃 ′
𝑜𝑤 

is always non-positive and Δ𝑃 ′
𝑔𝑜 

non-negative. 

ppendix B. Numerical discretization of compressible version 

We develop a numerical scheme for this general three-fluid flow mod

or the compressible (Appendix B) and dummyTXdummy-(incompressib

1. A semi-discrete scheme for the compressible model 

We consider a slight reformulation of the model where we shall mak

or the highly nonlinear coupling between the mass and momentum eq

ompressible and incompressible model consistent. The original model 

 𝜙𝑛 𝑤 ) 𝑡 + ( 𝜙𝑛 𝑤 𝑢 𝑤 ) 𝑥 = − 𝑛 𝑤 𝑄 𝑝 + 𝜌𝑤 𝑄 𝐼𝑤 , 𝑛 𝑤 = 𝑠 𝑤 𝜌𝑤 

( 𝜙𝑛 𝑜 ) 𝑡 + ( 𝜙𝑛 𝑜 𝑢 𝑜 ) 𝑥 = − 𝑛 𝑜 𝑄 𝑝 , 𝑛 𝑜 = 𝑠 𝑜 𝜌𝑜 

( 𝜙𝑛 𝑔 ) 𝑡 + ( 𝜙𝑛 𝑔 𝑢 𝑔 ) 𝑥 = − 𝑛 𝑔 𝑄 𝑝 + 𝜌𝑔 𝑄 𝐼𝑔 , 𝑛 𝑔 = 𝑠 𝑔 𝜌𝑔 

𝑠 𝑤 ( 𝑃 𝑤 ) 𝑥 = − ̂𝑘 𝑤 𝑢 𝑤 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑤 − 𝑢 𝑜 ) − ̂𝑘 𝑤𝑔 ( 𝑢 𝑤 − 𝑢 𝑔 ) + 𝑛 𝑤 𝑔 + 𝜀 𝑤 ( 𝑛 𝑤
𝑠 𝑜 ( 𝑃 𝑜 ) 𝑥 = − ̂𝑘 𝑜 𝑢 𝑜 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑜 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑜 − 𝑢 𝑔 ) + 𝑛 𝑜 𝑔 + 𝜀 𝑜 ( 𝑛 𝑜 𝑢 𝑜𝑥
𝑠 𝑔 ( 𝑃 𝑔 ) 𝑥 = − ̂𝑘 𝑔 𝑢 𝑔 − ̂𝑘 𝑤𝑔 ( 𝑢 𝑔 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑔 − 𝑢 𝑜 ) + 𝑛 𝑔 𝑔 + 𝜀 𝑔 ( 𝑛 𝑔 𝑢 𝑔

Δ𝑃 𝑜𝑤 ( 𝑠 𝑤 ) = 𝑃 𝑜 − 𝑃 𝑤 , Δ𝑃 𝑔𝑜 ( 𝑠 𝑔 ) = 𝑃 𝑔 − 𝑃 𝑜 . 

ote that we may rewrite the model in the following equivalent form w

( 𝜙𝑛 𝑤 ) 𝑡 + ( 𝜙𝑛 𝑤 𝑢 𝑤 ) 𝑥 = − 𝑛 𝑤 𝑄 𝑝 + 𝜌𝑤 𝑄 𝐼𝑤 , 

( 𝜙𝑛 𝑜 ) 𝑡 + ( 𝜙𝑛 𝑜 𝑢 𝑜 ) 𝑥 = − 𝑛 𝑜 𝑄 𝑝 , 

 𝑤𝑡 + ̃𝜂1 ( 𝑛 𝑤 𝑢 𝑤 ) 𝑥 + ̃𝜂2 ( 𝑛 𝑜 𝑢 𝑜 ) 𝑥 + ̃𝜂3 ( 𝑛 𝑔 𝑢 𝑔 ) 𝑥 = 𝜂̃4 𝑄 𝑝 ∕ 𝜙 + ̃𝜂5 𝑄 𝐼𝑤 ∕ 𝜙 + ̃𝜂6 𝑄 𝐼𝑔 ∕ 𝜙

𝑠 𝑤 ( 𝑃 𝑤 ) 𝑥 = − ̂𝑘 𝑤 𝑢 𝑤 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑤 − 𝑢 𝑜 ) − ̂𝑘 𝑤𝑔 ( 𝑢 𝑤
𝑠 𝑜 ( 𝑃 𝑤 + Δ𝑃 𝑜𝑤 ) 𝑥 = − ̂𝑘 𝑜 𝑢 𝑜 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑜 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑜 −

𝑠 𝑔 ( 𝑃 𝑤 + Δ𝑃 𝑜𝑤 + Δ𝑃 𝑔𝑜 ) 𝑥 = − ̂𝑘 𝑔 𝑢 𝑔 − ̂𝑘 𝑤𝑔 ( 𝑢 𝑔 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑔 
Δ𝑃 𝑜𝑤 ( 𝑠 𝑤 ) = 𝑃 𝑜 − 𝑃 𝑤 , Δ𝑃 𝑔𝑜 ( 𝑠 𝑔 ) = 𝑃

ere n g is determined by 

 𝑔 = 𝑠 𝑔 𝜌𝑔 ( 𝑃 𝑔 ) = (1 − 𝑠 𝑤 − 𝑠 𝑜 ) 𝜌𝑔 ( 𝑃 𝑔 ) 

= 

(
1 − 

𝑛 𝑤 

𝜌𝑤 ( 𝑃 𝑤 ) 
− 

𝑛 𝑜 

𝜌𝑜 ( 𝑃 𝑜 ) 

)
𝜌𝑔 ( 𝑃 𝑔 ) = 𝑛 𝑔 ( 𝑛 𝑤 , 𝑛 𝑜 , 𝑃 𝑤 ) , 

here 𝑃 𝑜 = 𝑃 𝑜 ( 𝑠 𝑤 , 𝑃 𝑤 ) = 𝑃 𝑜 ( 𝑛 𝑤 , 𝑃 𝑤 ) and 𝑃 𝑔 = 𝑃 𝑔 ( 𝑠 𝑤 , 𝑠 𝑜 , 𝑃 𝑤 ) = 𝑃 𝑔 ( 𝑛 𝑤 , 𝑛 𝑜 , 𝑃

 𝑤 |𝜕Ω = 𝑢 𝑜 |𝜕Ω = 𝑢 𝑔 |𝜕Ω = 0 

nd initial condition 

 𝑤 ( 𝑥, 𝑡 = 0) = 𝑛 𝑤 0 ( 𝑥 ) , 𝑛 𝑜 ( 𝑥, 𝑡 = 0) = 𝑛 𝑜 0 ( 𝑥 ) . 

𝑛 𝑔 ( 𝑥, 𝑡 = 0) = 𝑛 𝑔0 ( 𝑥 ) , 𝑃 𝑤 ( 𝑥 = 0 , 𝑡 = 0) = 𝑃 𝑤𝐿 . 

System of ODEs 

We consider the domain Ω = [0 , 1] and introduce a grid of N x cells w

 1 = 

1 Δ𝑥, 𝑥 2 = 

(
1 + 

1 )Δ𝑥, … , 𝑥 𝑗 = 

(
𝑗 − 

1 )Δ𝑥, … , 𝑥 𝑁 𝑥 
= 

(
𝑁

2 2 2 2 
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a

𝑥  , 

w { 𝑛 𝑜 𝑗 ( 𝑡 )} 
𝑁 𝑥 

𝑗=1 , and { 𝑛 𝑔 𝑗 ( 𝑡 )} 
𝑁 𝑥 

𝑗=1 associated with the nodes { 𝑥 𝑗 } 
𝑁 𝑥 

𝑗=1 whereas the 

a associated with the cell interfaces { 𝑥 𝑗+1∕2 } 
𝑁 𝑥 

𝑗=0 . 

phase, 

𝑛 𝑛 𝑤 = 𝑠 𝑤 𝜌𝑤 (5.49) 

w

[ (5.50) 

T

[

f

𝑛 (5.51) 

w

[ (5.52) 

R (where j refers to a grid cell which contains a producer/injector) due to the 

f alue at a point location. The width of the small region associated with the 

i s for Q Ig , j in (5.53) , that is to say, 𝑄 𝐼𝑔,𝑗 = 

𝑄 𝐼𝑔 

𝜎
. 

considering the following ODE system: 

1∕2 ) 

,𝑗 ∕ 𝜙 (5.53) 

w

𝑠 1∕2 

)
− ̂𝑘 𝑤𝑔,𝑗+1∕2 

(
𝑢 𝑤,𝑗+1∕2 − 𝑢 𝑔,𝑗+1∕2 

)
∕2 ] − 𝑛 𝑤,𝑗 [ 𝑢 𝑤,𝑗+1∕2 − 𝑢 𝑤,𝑗−1∕2 ] 

)

2 

)
− ̂𝑘 𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑜,𝑗+1∕2 − 𝑢 𝑔,𝑗+1∕2 

)
 − 𝑛 𝑜,𝑗 [ 𝑢 𝑜,𝑗+1∕2 − 𝑢 𝑜,𝑗−1∕2 ] 

)
Δ𝑃 𝑔𝑜,𝑗 ) 

∕2 

)
− ̂𝑘 𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑔,𝑗+1∕2 − 𝑢 𝑜,𝑗+1∕2 

)
− 𝑔𝑐 𝑔,𝑗+1∕2 

1∕2 − 𝑢 𝑔,𝑗−1∕2 ] 
)

(5.54) 

 relatively 𝑢 𝑤,𝑗+1∕2 

𝑠 (5.55) 

S 𝑗+1∕2 and 𝑘̂ 𝑔,𝑗+1∕2 . For 𝑘̂ 𝑤𝑜,𝑗+1∕2 , 𝑘̂ 𝑜𝑔,𝑗+1∕2 and 𝑘̂ 𝑤𝑔,𝑗+1∕2 we use the following 

m

𝑘 (5.56) 

𝑘 e other hand, [ 𝑛 𝑤 𝑢 𝑤 ] 𝑗+1∕2 , [ 𝑛 𝑜 𝑢 𝑜 ] 𝑗+1∕2 and [ 𝑛 𝑔 𝑢 𝑔 ] 𝑗+1∕2 appearing in (5.53) em- 

p

del. 
nd cell interfaces 𝑥 𝑗+1∕2 at the cell interfaces 

 1∕2 = 0 , 𝑥 3∕2 = Δ𝑥, … , 𝑥 𝑗+1∕2 = 𝑗Δ𝑥, … , 𝑥 𝑁 𝑥 +1∕2 = 𝑁 𝑥 Δ𝑥 = 1

here Δ𝑥 = 1∕ 𝑁 𝑥 . We introduce the approximate masses { 𝑛 𝑤 𝑗 ( 𝑡 )} 
𝑁 𝑥 

𝑗=1 , 

pproximate velocities { 𝑢 𝑤,𝑗+1∕2 } 
𝑁 𝑥 

𝑗=0 , { 𝑢 𝑜,𝑗+1∕2 } 
𝑁 𝑥 

𝑗=0 , and { 𝑢 𝑔,𝑗+1∕2 } 
𝑁 𝑥 

𝑗=0 are 

Step 1: Mass transport 

We solve for 𝑛 𝑤𝑗 ( 𝑡 ) by considering the following ODE: for the water 

⋅
 𝑤,𝑗 + 

1 
Δ𝑥 ([ 𝑛 𝑤 𝑢 𝑤 ] 𝑗+1∕2 − [ 𝑛 𝑤 𝑢 𝑤 ] 𝑗−1∕2 ) = − 𝑛 𝑤𝑗 𝑄 𝑝,𝑗 ∕ 𝜙 + 𝜌𝑤𝑗 𝑄 𝐼𝑤,𝑗 ∕ 𝜙, 

here 

 𝑛 𝑤 𝑢 𝑤 ] 𝑗+1∕2 = 

{ 

𝑛 𝑤𝑗 𝑢 𝑤,𝑗+1∕2 , if 𝑢 𝑤,𝑗+1∕2 ≥ 0; 
𝑛 𝑤𝑗+1 𝑢 𝑤,𝑗+1∕2 , if 𝑢 𝑤,𝑗+1∕2 < 0 . 

his can also be expressed as 

 𝑛 𝑤 𝑢 𝑤 ] 𝑗+1∕2 = 

𝑛 𝑤𝑗 + 𝑛 𝑤,𝑗+1 

2 
𝑢 𝑤,𝑗+1∕2 − 

1 
2 
( 𝑛 𝑤,𝑗+1 − 𝑛 𝑤𝑗 ) |𝑢 𝑤,𝑗+1∕2 |

or the oil phase, 

⋅
 𝑜,𝑗 + 

1 
Δ𝑥 

([ 𝑛 𝑜 𝑢 𝑜 ] 𝑗+1∕2 − [ 𝑛 𝑜 𝑢 𝑜 ] 𝑗−1∕2 ) = − 𝑛 𝑜 𝑗 𝑄 𝑝,𝑗 ∕ 𝜙, 𝑛 𝑜 = 𝑠 𝑜 𝜌𝑜 

here 

 𝑛 𝑜 𝑢 𝑜 ] 𝑗+1∕2 = 

{ 

𝑛 𝑜 𝑗 𝑢 𝑜,𝑗+1∕2 , if 𝑢 𝑜,𝑗+1∕2 ≥ 0; 
𝑛 𝑜 𝑗+1 𝑢 𝑜,𝑗+1∕2 , if 𝑢 𝑜,𝑗+1∕2 < 0 . 

emark 5.2. It should be pointed out that 𝑄 𝑝,𝑗 = 

𝑄 𝑝 

𝜎
and 𝑄 𝐼𝑤,𝑗 = 

𝑄 𝐼𝑤 

𝜎

act that production Q p or injection 𝑄 𝐼𝑤 in (5.44) is interpreted as a v

njector and producer is 𝜎 = Δ𝑥 consistent with (4.33) . This also applie

Step 2: Computation of velocities and pressure 

Next, we solve for 𝑃 𝑤,𝑗 ( 𝑡 ) and 𝑢 𝑤,𝑗+1∕2 ( 𝑡 ) , 𝑢 𝑜,𝑗+1∕2 ( 𝑡 ) and 𝑢 𝑔,𝑗+1∕2 ( 𝑡 ) by 

⋅
𝑃 𝑤,𝑗 + ̃𝜂1 ,𝑗 

1 
Δ𝑥 

([ 𝑛 𝑤 𝑢 𝑤 ] 𝑗+1∕2 − [ 𝑛 𝑤 𝑢 𝑤 ] 𝑗−1∕2 ) + ̃𝜂2 ,𝑗 
1 
Δ𝑥 

([ 𝑛 𝑜 𝑢 𝑜 ] 𝑗+1∕2 − [ 𝑛 𝑜 𝑢 𝑜 ] 𝑗−

+ 𝜂̃3 ,𝑗 
1 
Δ𝑥 

([ 𝑛 𝑔 𝑢 𝑔 ] 𝑗+1∕2 − [ 𝑛 𝑔 𝑢 𝑔 ] 𝑗−1∕2 ) = 𝜂̃4 ,𝑗 𝑄 𝑝,𝑗 ∕ 𝜙 + ̃𝜂5 ,𝑗 𝑄 𝐼𝑤,𝑗 ∕ 𝜙 + ̃𝜂6 ,𝑗 𝑄 𝐼𝑔

hich is combined with the momentum balance equations 

 𝑤,𝑗+1∕2 
1 
Δ𝑥 

( 𝑃 𝑤,𝑗+1 − 𝑃 𝑤,𝑗 ) = − ̂𝑘 𝑤,𝑗+1∕2 𝑢 𝑤,𝑗+1∕2 − ̂𝑘 𝑤𝑜,𝑗+1∕2 

(
𝑢 𝑤,𝑗+1∕2 − 𝑢 𝑜,𝑗+

− 𝑔𝑛 𝑤,𝑗+1∕2 + 𝜀 𝑤 
1 

Δ𝑥 2 
(
𝑛 𝑤,𝑗+1 [ 𝑢 𝑤,𝑗+3∕2 − 𝑢 𝑤,𝑗+1

𝑠 𝑜,𝑗+1∕2 
1 
Δ𝑥 

( 𝑃 𝑤,𝑗+1 − 𝑃 𝑤,𝑗 ) = − 𝑠 𝑜,𝑗+1∕2 
1 
Δ𝑥 

(Δ𝑃 𝑜𝑤,𝑗+1 − Δ𝑃 𝑜𝑤,𝑗 ) 

− ̂𝑘 𝑜,𝑗+1∕2 𝑢 𝑜,𝑗+1∕2 − ̂𝑘 𝑤𝑜,𝑗+1∕2 

(
𝑢 𝑜,𝑗+1∕2 − 𝑢 𝑤,𝑗+1∕

− 𝑔𝑛 𝑜,𝑗+1∕2 + 𝜀 𝑜 
1 

Δ𝑥 2 
(
𝑛 𝑜,𝑗+1 [ 𝑢 𝑜,𝑗+3∕2 − 𝑢 𝑜,𝑗+1∕2 ]

𝑠 𝑔,𝑗+1∕2 
1 
Δ𝑥 

( 𝑃 𝑤,𝑗+1 − 𝑃 𝑤,𝑗 ) = − 𝑠 𝑔,𝑗+1∕2 
1 
Δ𝑥 

(Δ𝑃 𝑜𝑤,𝑗+1 − Δ𝑃 𝑜𝑤,𝑗 + Δ𝑃 𝑔𝑜,𝑗+1 − 

− ̂𝑘 𝑔,𝑗+1∕2 𝑢 𝑔,𝑗+1∕2 − ̂𝑘 𝑤𝑔,𝑗+1∕2 

(
𝑢 𝑔,𝑗+1∕2 − 𝑢 𝑤,𝑗+1

+ 𝜀 𝑔 
1 

Δ𝑥 2 
(
𝑐 𝑔,𝑗+1 [ 𝑢 𝑔,𝑗+3∕2 − 𝑢 𝑔,𝑗+1∕2 ] − 𝑛 𝑔,𝑗 [ 𝑢 𝑔,𝑗+

Here we note that the average 𝑠 𝑤,𝑗+1∕2 in (5.54) is based on upwind

 𝑤,𝑗+1∕2 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑠 𝑤,𝑗 , if 𝑢 𝑤,𝑗+1∕2 > 0; 
𝑠 𝑤,𝑗 + 𝑠 𝑤,𝑗+1 

2 , if 𝑢 𝑤,𝑗+1∕2 = 0; 
𝑠 𝑤,𝑗+1 , if 𝑢 𝑤,𝑗+1∕2 < 0 . 

imilarly, for 𝑠 𝑜,𝑗+1∕2 , 𝑠 𝑔,𝑗+1∕2 and for the interaction terms 𝑘̂ 𝑤,𝑗+1∕2 , 𝑘̂ 𝑜,
ethod: 

̂
 𝑤𝑜,𝑗+1∕2 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑘̂ 𝑤𝑜,𝑗 , if 𝑢 𝑤,𝑗+1∕2 > 0&𝑢 𝑜,𝑗+1∕2 > 0; 
𝑘̂ 𝑤𝑜,𝑗 + ̂𝑘 𝑤𝑜,𝑗+1 

2 , if 𝑢 𝑤,𝑗+1∕2 𝑢 𝑜,𝑗+1∕2 ≤ 0; 
𝑘̂ 𝑤𝑜,𝑗+1 , if 𝑢 𝑤,𝑗+1∕2 < 0&𝑢 𝑜,𝑗+1∕2 < 0 . 

̂
 𝑤𝑔,𝑗+1∕2 and ̂𝑘 𝑜𝑔,𝑗+1∕2 are also approximated using the similar way. On th

loy upwind as described in (5.50) . 

Now, we are in a position where we can describe a fully discrete mo
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B

e then compute the approximate solution at time 𝑡 𝑘 +1 expressed by 

(

(5.57) 

w

(5.58) 

(5.59) 

w

[ (5.60) 

H ration 𝑠 
𝑘 +1∕2 
𝑤,𝑗 

and 𝑠 
𝑘 +1∕2 
𝑜,𝑗 

given by 

𝑠 (5.61) 

aluate coefficients in the next step. 

1 
+1∕2 by considering the following algebraic system 

 

𝑘 +1 
𝑜 

𝑢 𝑘 +1 
𝑜 

] 𝑗+1∕2 

𝜂 (5.62) 

w

𝑠
∕2 
1∕2 

)
− ̂𝑘 

𝑘 +1∕2 
𝑤𝑔,𝑗+1∕2 

(
𝑢 
𝑘 +1∕2 
𝑤,𝑗+1∕2 − 𝑢 

𝑘 +1∕2 
𝑔,𝑗+1∕2 

)
1∕2 ] − 𝑛 𝑘 +1 

𝑤,𝑗 
[ 𝑢 𝑘 +1 
𝑤,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑤,𝑗−1∕2 ] 
)

∕2 

)
− ̂𝑘 

𝑘 +1∕2 
𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑜,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑔,𝑗+1∕2 

)
2 ] − 𝑛 

𝑘 +1∕2 
𝑜,𝑗 

[ 𝑢 𝑘 +1 
𝑜,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑜,𝑗−1∕2 ] 
)

 

 

− Δ𝑃 𝑘 +1∕2 
𝑔𝑜,𝑗 

) 

1∕2 

)
− ̂𝑘 

𝑘 +1∕2 
𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑔,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑜,𝑗+1∕2 

)
2 ] − 𝑛 

𝑘 +1∕2 
𝑔,𝑗 

[ 𝑢 𝑘 +1 
𝑔,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑔,𝑗−1∕2 ] 
)

(5.63) 

E aturation 

𝑠 (5.64) 

f ecessary, we may repeat step 2 to improve the accuracy before we proceed 

t

R  𝑗+1∕2 and [ 𝑛 𝑘 +1∕2 𝑔 𝑢 𝑘 +1 
𝑔 

] 𝑗+1∕2 appearing in (5.62) are based on ”old ” velocities 

𝑢

R .1 , we can use a similar way to solve two mass equations as step 1 for the 

1 volution equation similar to the one derived for the 1D case in Appendix A 

t

2. A fully discrete scheme 

We assume that we have given ( 𝑛 𝑘 
𝑤,𝑗 
, 𝑛 𝑘 

𝑜,𝑗 
, 𝑃 𝑘 

𝑤,𝑗 
, 𝑢 𝑘 

𝑤,𝑗 
, 𝑢 𝑘 

𝑜,𝑗 
, 𝑢 𝑘 

𝑔,𝑗 
) . W

 𝑛 𝑘 +1 
𝑤,𝑗 

, 𝑛 𝑘 +1 
𝑜,𝑗 

, 𝑃 𝑘 +1 
𝑤,𝑗 

, 𝑢 𝑘 +1 
𝑤,𝑗 

, 𝑢 𝑘 +1 
𝑜,𝑗 

, 𝑢 𝑘 +1 
𝑔,𝑗 

) as follows: 

Step 1: Mass transport 

𝑛 𝑘 +1 
𝑤,𝑗 

− 𝑛 𝑘 
𝑤,𝑗 

Δ𝑡 + 

1 
Δ𝑥 ([ 𝑛 𝑤 𝑢 𝑤 ] 

𝑘 
𝑗+1∕2 − [ 𝑛 𝑤 𝑢 𝑤 ] 𝑘 𝑗−1∕2 ) = − 𝑛 𝑘 

𝑤,𝑗 
𝑄 

𝑘 
𝑝,𝑗 
∕ 𝜙 + 𝜌𝑘 

𝑤𝑗 
𝑄 

𝑘 
𝐼𝑤,𝑗 

∕ 𝜙

here 

[ 𝑛 𝑤 𝑢 𝑤 ] 𝑘 𝑗+1∕2 = 

{ 

𝑛 𝑘 
𝑤,𝑗 
𝑢 𝑘 
𝑤,𝑗+1∕2 , if 𝑢 𝑘 

𝑤,𝑗+1∕2 ≥ 0; 

𝑛 𝑘 
𝑤,𝑗+1 𝑢 

𝑘 
𝑤,𝑗+1∕2 , if 𝑢 𝑘 

𝑤,𝑗+1∕2 < 0 . 

𝑛 𝑘 +1 
𝑜,𝑗 

− 𝑛 𝑘 
𝑜,𝑗 

Δ𝑡 
+ 

1 
Δ𝑥 

([ 𝑛 𝑜 𝑢 𝑜 ] 𝑘 𝑗+1∕2 − [ 𝑛 𝑜 𝑢 𝑜 ] 𝑘 𝑗−1∕2 ) = − 𝑛 𝑘 
𝑜,𝑗 
𝑄 

𝑘 
𝑝,𝑗 
∕ 𝜙

here 

 𝑛 𝑜 𝑢 𝑜 ] 𝑘 𝑗+1∕2 = 

{ 

𝑛 𝑘 
𝑜,𝑗 
𝑢 𝑘 
𝑜,𝑗+1∕2 , if 𝑢 𝑘 

𝑤,𝑗+1∕2 ≥ 0; 

𝑛 𝑘 
𝑜,𝑗+1 𝑢 

𝑘 
𝑜,𝑗+1∕2 , if 𝑢 𝑘 

𝑤,𝑗+1∕2 < 0 . 

aving computed 𝑛 𝑘 +1 
𝑤,𝑗 

and 𝑛 𝑘 +1 
𝑜,𝑗 

we can compute an updated water satu

 

𝑘 +1∕2 
𝑤,𝑗 

= 

𝑛 𝑘 +1 
𝑤,𝑗 

𝜌𝑤 ( 𝑃 𝑘 𝑤,𝑗 ) 
, 𝑠 

𝑘 +1∕2 
𝑜,𝑗 

= 

𝑛 𝑘 +1 
𝑜,𝑗 

𝜌𝑜 ( 𝑃 
𝑘 +1∕2 
𝑜,𝑗 

) 
= 

𝑛 𝑘 +1 
𝑜,𝑗 

𝜌𝑜 ( 𝑃 𝑘 𝑤,𝑗 + Δ𝑃 𝑜𝑤 ( 𝑠 
𝑘 +1∕2 
𝑤,𝑗 

)) 
. 

Similarly, we compute updated mass 𝑛 
𝑘 +1∕2 
𝑔,𝑗 

and 𝑃 
𝑘 +1∕2 
𝑔,𝑗 

needed to ev

Step 2: Computation of velocities and pressure 

Next, we solve simultaneously for 𝑃 𝑘 +1 
𝑤,𝑗 

and 𝑢 𝑘 +1 
𝑤,𝑗+1∕2 , 𝑢 

𝑘 +1 
𝑜,𝑗+1∕2 and 𝑢 𝑘 +

𝑔,𝑗

𝑃 𝑘 +1 
𝑤,𝑗 

− 𝑃 𝑘 
𝑤,𝑗 

Δ𝑡 
+ ̃𝜂

𝑘 +1∕2 
1 ,𝑗 

1 
Δ𝑥 

([ 𝑛 𝑘 +1 
𝑤 

𝑢 𝑘 +1 
𝑤 

] 𝑗+1∕2 − [ 𝑛 𝑘 +1 
𝑤 

𝑢 𝑘 +1 
𝑤 

] 𝑗−1∕2 ) + ̃𝜂
𝑘 +1∕2 
2 ,𝑗 

1 
Δ𝑥 

([ 𝑛

−[ 𝑛 𝑘 +1 
𝑜 

𝑢 𝑘 +1 
𝑜 

] 𝑗−1∕2 ) + ̃𝜂
𝑘 +1∕2 
3 ,𝑗 

1 
Δ𝑥 

([ 𝑛 𝑘 +1∕2 𝑔 𝑢 𝑘 +1 
𝑔 

] 𝑗+1∕2 − [ 𝑛 𝑘 +1∕2 𝑔 𝑢 𝑘 +1 
𝑔 

] 𝑗−1∕2 ) 

̃
𝑘 +1∕2 
4 ,𝑗 𝑄 

𝑘 
𝑝,𝑗 
∕ 𝜙 + ̃𝜂

𝑘 +1∕2 
5 ,𝑗 𝑄 

𝑘 
𝐼𝑤,𝑗 

∕ 𝜙 + ̃𝜂
𝑘 +1∕2 
6 ,𝑗 𝑄 

𝑘 
𝐼𝑔,𝑗 

∕ 𝜙

hich is combined with the momentum balance equations 

 

𝑘 +1∕2 
𝑤,𝑗+1∕2 

1 
Δ𝑥 

( 𝑃 𝑘 +1 
𝑤,𝑗+1 − 𝑃 𝑘 +1 

𝑤,𝑗 
) = − ̂𝑘 

𝑘 +1∕2 
𝑤,𝑗+1∕2 𝑢 

𝑘 +1 
𝑤,𝑗+1∕2 − ̂𝑘 

𝑘 +1∕2 
𝑤𝑜,𝑗+1∕2 

(
𝑢 
𝑘 +1∕2 
𝑤,𝑗+1∕2 − 𝑢 

𝑘 +1
𝑜,𝑗+

− 𝑛 𝑘 +1 
𝑤,𝑗+1∕2 𝑔 + 𝜀 𝑤 

1 
Δ𝑥 2 

(
𝑛 𝑘 +1 
𝑤,𝑗+1 [ 𝑢 

𝑘 +1 
𝑤,𝑗+3∕2 − 𝑢 𝑘 +1 

𝑤,𝑗+

𝑠 
𝑘 +1∕2 
𝑜,𝑗+1∕2 

1 
Δ𝑥 

( 𝑃 𝑘 +1 
𝑤,𝑗+1 − 𝑃 𝑘 +1 

𝑤,𝑗 
) = − 𝑠 

𝑘 +1∕2 
𝑜,𝑗+1∕2 

1 
Δ𝑥 

(Δ𝑃 𝑘 +1∕2 
𝑜𝑤,𝑗+1 − Δ𝑃 𝑘 +1∕2 

𝑜𝑤,𝑗 
) 

− ̂𝑘 
𝑘 +1∕2 
𝑜,𝑗+1∕2 𝑢 

𝑘 +1 
𝑜,𝑗+1∕2 − ̂𝑘 

𝑘 +1∕2 
𝑤𝑜,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑜,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑤,𝑗+1

− 𝑛 𝑘 +1 
𝑜,𝑗+1∕2 𝑔 + 𝜀 𝑜 

1 
Δ𝑥 2 

(
𝑛 
𝑘 +1∕2 
𝑜,𝑗+1 [ 𝑢 

𝑘 +1 
𝑜,𝑗+3∕2 − 𝑢 𝑘 +1 

𝑜,𝑗+1∕

𝑠 
𝑘 +1∕2 
𝑔,𝑗+1∕2 

1 
Δ𝑥 

( 𝑃 𝑘 +1 
𝑤,𝑗+1 − 𝑃 𝑘 +1 

𝑤,𝑗 
) = − 𝑠 

𝑘 +1∕2 
𝑔,𝑗+1∕2 

1 
Δ𝑥 

(Δ𝑃 𝑘 +1∕2 
𝑜𝑤,𝑗+1 − Δ𝑃 𝑘 +1∕2 

𝑜𝑤,𝑗 
+ Δ𝑃 𝑘 +1∕2

𝑔𝑜,𝑗+1

− ̂𝑘 
𝑘 +1∕2 
𝑔,𝑗+1∕2 𝑢 

𝑘 +1 
𝑔,𝑗+1∕2 − ̂𝑘 

𝑘 +1∕2 
𝑤𝑔,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑔,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑤,𝑗+

− 𝑛 
𝑘 +1∕2 
𝑔,𝑗+1∕2 𝑔 + 𝜀 𝑔 

1 
Δ𝑥 2 

(
𝑛 
𝑘 +1∕2 
𝑔,𝑗+1 [ 𝑢 

𝑘 +1 
𝑔,𝑗+3∕2 − 𝑢 𝑘 +1 

𝑔,𝑗+1∕

quipped with ( 𝑃 𝑘 +1 
𝑤,𝑗 

, 𝑢 𝑘 +1 
𝑤,𝑗+1∕2 , 𝑢 

𝑘 +1 
𝑜,𝑗+1∕2 , 𝑢 

𝑘 +1 
𝑔,𝑗+1∕2 ) we can now update the s

 

𝑘 +1 
𝑤,𝑗 

= 

𝑛 𝑘 +1 
𝑤,𝑗 

𝜌𝑤 ( 𝑃 𝑘 +1 𝑤,𝑗 
) 
, 𝑠 𝑘 +1 

𝑜,𝑗 
= 

𝑛 𝑘 +1 
𝑜,𝑗 

𝜌𝑜 ( 𝑃 𝑘 +1 𝑜,𝑗 
) 
= 

𝑛 𝑘 +1 
𝑜,𝑗 

𝜌𝑜 ( 𝑃 𝑘 +1 𝑤,𝑗 
+ Δ𝑃 𝑘 +1 

𝑜𝑤,𝑗 
( 𝑠 𝑘 +1 
𝑤,𝑗 

)) 

rom which we also compute the updated gas mass 𝑛 𝑘 +1 
𝑔,𝑗 

via (5.46) . If n

o next time level. 

emark 5.3. The upwind discretization of [ 𝑛 𝑘 +1 
𝑤 

𝑢 𝑘 +1 
𝑤 

] 𝑗+1∕2 , [ 𝑛 
𝑘 +1∕2 
𝑜 𝑢 𝑘 +1 

𝑜 
]

 

𝑘 
𝑤,𝑗+1∕2 , 𝑢 

𝑘 
𝑜,𝑗+1∕2 and 𝑢 𝑘 

𝑔,𝑗+1∕2 . 

emark 5.4. For the higher dimensional case mentioned in Remark 3

D case. Then compute pressure and velocities by using a 2D pressure e
ogether with six momentum equations for three phases in x and y direction. 
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A

le version of model (3.11) . 

C

(

𝜌𝑤 ( 𝑠 𝑤 𝑢 𝑤𝑥 ) 𝑥 , (5.65) 

 𝑜 𝑢 𝑜𝑥 ) 𝑥 , 

 𝑠 𝑔 𝑢 𝑔𝑥 ) 𝑥 , 

𝑠 (5.66) 

w

[ (5.67) 

(5.68) 

w

[ (5.69) 

considering the following ODE system: 

 

] 𝑗+1∕2 − [ 𝑠 𝑔 𝑢 𝑔 ] 𝑗−1∕2 ) = 𝑄 𝐼𝑤,𝑗 ∕ 𝜙 + 𝑄 𝐼𝑔,𝑗 ∕ 𝜙 − 𝑄 𝑝,𝑗 ∕ 𝜙 (5.70) 

w

𝑠 1∕2 

)
− ̂𝑘 𝑤𝑔,𝑗+1∕2 

(
𝑢 𝑤,𝑗+1∕2 − 𝑢 𝑔,𝑗+1∕2 

)
+1∕2 ] − 𝑠 𝑤,𝑗 [ 𝑢 𝑤,𝑗+1∕2 − 𝑢 𝑤,𝑗−1∕2 ] 

)
, 

2 

)
− ̂𝑘 𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑜,𝑗+1∕2 − 𝑢 𝑔,𝑗+1∕2 

)
2 ] − 𝑠 𝑜,𝑗 [ 𝑢 𝑜,𝑗+1∕2 − 𝑢 𝑜,𝑗−1∕2 ] 

)
, 

Δ𝑃 𝑔𝑜,𝑗 ) 

∕2 

)
− ̂𝑘 𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑔,𝑗+1∕2 − 𝑢 𝑜,𝑗+1∕2 

)
∕2 ] − 𝑠 𝑔,𝑗 [ 𝑢 𝑔,𝑗+1∕2 − 𝑢 𝑔,𝑗−1∕2 ] 

)
. (5.71) 

H tively 𝑢 𝑤,𝑗+1∕2 

𝑠 (5.72) 

S 1∕2 , and 𝑘̂ 𝑔,𝑗+1∕2 . 
ppendix C. Numerical discretization of incompressible version 

We first describe a semi-discrete approximation of the incompressib

1. A semidiscrete scheme for the incompressible model 

When fluids are incompressible the model (5.45) takes the form 

( 𝑠 𝑤 ) 𝑡 + ( 𝑠 𝑤 𝑢 𝑤 ) 𝑥 = − 𝑠 𝑤 𝑄 𝑝 ∕ 𝜙 + 𝑄 𝐼𝑤 ∕ 𝜙, 

( 𝑠 𝑜 ) 𝑡 + ( 𝑠 𝑜 𝑢 𝑜 ) 𝑥 = − 𝑠 𝑜 𝑄 𝑝 ∕ 𝜙, 

 𝑠 𝑤 𝑢 𝑤 + 𝑠 𝑜 𝑢 𝑜 + 𝑠 𝑔 𝑢 𝑔 ) 𝑥 = − 𝑄 𝑝 ∕ 𝜙 + 𝑄 𝐼𝑤 ∕ 𝜙 + 𝑄 𝐼𝑔 ∕ 𝜙, 

𝑠 𝑤 ( 𝑃 𝑤 ) 𝑥 = − ̂𝑘 𝑤 𝑢 𝑤 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑤 − 𝑢 𝑜 ) − ̂𝑘 𝑤𝑔 ( 𝑢 𝑤 − 𝑢 𝑔 ) + 𝑛 𝑤 𝑔 + 𝜀 𝑤 

𝑠 𝑜 ( 𝑃 𝑜 ) 𝑥 = − ̂𝑘 𝑜 𝑢 𝑜 − ̂𝑘 𝑤𝑜 ( 𝑢 𝑜 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑜 − 𝑢 𝑔 ) + 𝑛 𝑜 𝑔 + 𝜀 𝑜 𝜌𝑜 ( 𝑠

𝑠 𝑔 ( 𝑃 𝑔 ) 𝑥 = − ̂𝑘 𝑔 𝑢 𝑔 − ̂𝑘 𝑤𝑔 ( 𝑢 𝑔 − 𝑢 𝑤 ) − ̂𝑘 𝑜𝑔 ( 𝑢 𝑔 − 𝑢 𝑜 ) + 𝑛 𝑔 𝑔 + 𝜀 𝑔 𝜌𝑔 (

Δ𝑃 𝑜𝑤 ( 𝑠 𝑤 ) = 𝑃 𝑜 − 𝑃 𝑤 , Δ𝑃 𝑔𝑜 ( 𝑠 𝑔 ) = 𝑃 𝑔 − 𝑃 𝑜 . 

Step 1: Mass transport 

⋅
 𝑤,𝑗 + 

1 
Δ𝑥 

([ 𝑠 𝑤 𝑢 𝑤 ] 𝑗+1∕2 − [ 𝑠 𝑤 𝑢 𝑤 ] 𝑗−1∕2 ) = − 𝑠 𝑤,𝑗 𝑄 𝑝,𝑗 ∕ 𝜙 + 𝑄 𝐼𝑤,𝑗 ∕ 𝜙

here 

 𝑠 𝑤 𝑢 𝑤 ] 𝑗+1∕2 = 

{ 

𝑠 𝑤,𝑗 𝑢 𝑤,𝑗+1∕2 , if 𝑢 𝑤,𝑗+1∕2 ≥ 0; 
𝑠 𝑤,𝑗+1 𝑢 𝑤,𝑗+1∕2 , if 𝑢 𝑤,𝑗+1∕2 < 0 . 

⋅
𝑠 𝑜,𝑗 + 

1 
Δ𝑥 

([ 𝑠 𝑜 𝑢 𝑜 ] 𝑗+1∕2 − [ 𝑠 𝑜 𝑢 𝑜 ] 𝑗−1∕2 ) = − 𝑠 𝑜,𝑗 𝑄 𝑝,𝑗 ∕ 𝜙

here 

 𝑠 𝑜 𝑢 𝑜 ] 𝑗+1∕2 = 

{ 

𝑠 𝑜,𝑗 𝑢 𝑜,𝑗+1∕2 , if 𝑢 𝑜,𝑗+1∕2 ≥ 0; 

𝑠 𝑜,𝑗+1 𝑢 𝑜,𝑗+1∕2 , if 𝑢 𝑜,𝑗+1∕2 < 0 . 

Step 2: Computation of velocities and pressure 

Next, we solve for 𝑃 𝑤,𝑗 ( 𝑡 ) and 𝑢 𝑤,𝑗+1∕2 ( 𝑡 ) , 𝑢 𝑜,𝑗+1∕2 ( 𝑡 ) and 𝑢 𝑔,𝑗+1∕2 ( 𝑡 ) by 

1 
Δ𝑥 

([ 𝑠 𝑤 𝑢 𝑤 ] 𝑗+1∕2 − [ 𝑠 𝑤 𝑢 𝑤 ] 𝑗−1∕2 ) + 

1 
Δ𝑥 

([ 𝑠 𝑜 𝑢 𝑜 ] 𝑗+1∕2 − [ 𝑠 𝑜 𝑢 𝑜 ] 𝑗−1∕2 ) + 

1 
Δ𝑥 

([ 𝑠 𝑔 𝑢 𝑔

hich is combined with the momentum balance equations 

 𝑤,𝑗+1∕2 
1 
Δ𝑥 

( 𝑃 𝑤,𝑗+1 − 𝑃 𝑤,𝑗 ) = − ̂𝑘 𝑤,𝑗+1∕2 𝑢 𝑤,𝑗+1∕2 − ̂𝑘 𝑤𝑜,𝑗+1∕2 

(
𝑢 𝑤,𝑗+1∕2 − 𝑢 𝑜,𝑗+

− 𝑔𝑠 𝑤,𝑗+1∕2 𝜌𝑤 + 𝜀 𝑤 
𝜌𝑤 

Δ𝑥 2 
(
𝑠 𝑤,𝑗+1 [ 𝑢 𝑤,𝑗+3∕2 − 𝑢 𝑤,𝑗

𝑠 𝑜,𝑗+1∕2 
1 
Δ𝑥 

( 𝑃 𝑤,𝑗+1 − 𝑃 𝑤,𝑗 ) = − 𝑠 𝑜,𝑗+1∕2 
1 
Δ𝑥 

(Δ𝑃 𝑜𝑤,𝑗+1 − Δ𝑃 𝑜𝑤,𝑗 ) 

− ̂𝑘 𝑜,𝑗+1∕2 𝑢 𝑜,𝑗+1∕2 − ̂𝑘 𝑤𝑜,𝑗+1∕2 

(
𝑢 𝑜,𝑗+1∕2 − 𝑢 𝑤,𝑗+1∕

− 𝑔𝑠 𝑜,𝑗+1∕2 𝜌𝑜 + 𝜀 𝑜 
𝜌𝑜 

Δ𝑥 2 
(
𝑠 𝑜,𝑗+1 [ 𝑢 𝑜,𝑗+3∕2 − 𝑢 𝑜,𝑗+1∕

𝑠 𝑔,𝑗+1∕2 
1 
Δ𝑥 

( 𝑃 𝑤,𝑗+1 − 𝑃 𝑤,𝑗 ) = − 𝑠 𝑔,𝑗+1∕2 
1 
Δ𝑥 

(Δ𝑃 𝑜𝑤,𝑗+1 − Δ𝑃 𝑜𝑤,𝑗 + Δ𝑃 𝑔𝑜,𝑗+1 − 

− ̂𝑘 𝑔,𝑗+1∕2 𝑢 𝑔,𝑗+1∕2 − ̂𝑘 𝑤𝑔,𝑗+1∕2 

(
𝑢 𝑔,𝑗+1∕2 − 𝑢 𝑤,𝑗+1

− 𝑔𝑠 𝑔,𝑗+1∕2 𝜌𝑔 + 𝜀 𝑔 

𝜌𝑔 

Δ𝑥 2 
(
𝑠 𝑔,𝑗+1 [ 𝑢 𝑔,𝑗+3∕2 − 𝑢 𝑔,𝑗+1

ere we note that the average 𝑠 𝑤,𝑗+1∕2 in (5.71) is based on upwind rela

 𝑤,𝑗+1∕2 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑠 𝑤,𝑗 , if 𝑢 𝑤,𝑗+1∕2 > 0; 
𝑠 𝑤,𝑗 + 𝑠 𝑤,𝑗+1 

2 , if 𝑢 𝑤,𝑗+1∕2 = 0; 
𝑠 𝑤,𝑗+1 , if 𝑢 𝑤,𝑗+1∕2 < 0 . 

imilarly, for 𝑠 𝑜,𝑗+1∕2 , 𝑠 𝑔,𝑗+1∕2 and for the interaction terms 𝑘̂ 𝑤,𝑗+1∕2 , 𝑘̂ 𝑜,𝑗+
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1∕2 

𝑘 (5.73) 

𝑘 e other hand, [ 𝑠 𝑤 𝑢 𝑤 ] 𝑗+1∕2 , [ 𝑠 𝑜 𝑢 𝑜 ] 𝑗+1∕2 and [ 𝑠 𝑔 𝑢 𝑔 ] 𝑗+1∕2 appearing in (5.70) em- 

p

C

(5.74) 

w

(5.75) 

(5.76) 

w

[ (5.77) 

H  simultaneously at time level 𝑘 + 1 . 

e following algebraic system 

1∕2 ) + 

1 
Δ𝑥 

([ 𝑠 𝑘 +1 
𝑔 

𝑢 𝑘 +1 
𝑔 

] 𝑗+1∕2 − [ 𝑠 𝑘 +1 
𝑔 

𝑢 𝑘 +1 
𝑔 

] 𝑗−1∕2 ) = 𝑄 

𝑘 
𝐼,𝑗 

∕ 𝜙 − 𝑄 

𝑘 
𝑝,𝑗 
∕ 𝜙 (5.78) 

w

𝑠
∕2 
1∕2 

)
− ̂𝑘 

𝑘 +1∕2 
𝑤𝑔,𝑗+1∕2 

(
𝑢 
𝑘 +1∕2 
𝑤,𝑗+1∕2 − 𝑢 

𝑘 +1∕2 
𝑔,𝑗+1∕2 

)
1 
,𝑗+1∕2 ] − 𝑠 𝑘 +1 

𝑤,𝑗 
[ 𝑢 𝑘 +1 
𝑤,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑤,𝑗−1∕2 ] 
)

∕2 

)
− ̂𝑘 

𝑘 +1∕2 
𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑜,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑔,𝑗+1∕2 

)
1∕2 ] − 𝑠 

𝑘 +1∕2 
𝑜,𝑗 

[ 𝑢 𝑘 +1 
𝑜,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑜,𝑗−1∕2 ] 
)

 

 

− Δ𝑃 𝑘 +1∕2 
𝑔𝑜,𝑗 

) 

1∕2 

)
− ̂𝑘 

𝑘 +1∕2 
𝑜𝑔,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑔,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑜,𝑗+1∕2 

)
 

1∕2 ] − 𝑠 
𝑘 +1∕2 
𝑔,𝑗 

[ 𝑢 𝑘 +1 
𝑔,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑔,𝑗−1∕2 ] 
)

(5.79) 

R +1∕2 and [ 𝑠 𝑘 +1 
𝑔 

𝑢 𝑘 +1 
𝑔 

] 𝑗+1∕2 appearing in (5.78) are based on ”old ” velocities 

𝑢

A

sented numerical scheme in Appendix C for the incompressible three-phase 

fl ells to compare the water saturation profiles for the same case as shown in 

F e test. 
In addition, 𝑘̂ 𝑤𝑜,𝑗+1∕2 is based on upwind relatively 𝑢 𝑤,𝑗+1∕2 and 𝑢 𝑜,𝑗+

̂
 𝑤𝑜,𝑗+1∕2 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑘̂ 𝑤𝑜,𝑗 , if 𝑢 𝑤,𝑗+1∕2 > 0&𝑢 𝑜,𝑗+1∕2 > 0; 
𝑘̂ 𝑤𝑜,𝑗 + ̂𝑘 𝑤𝑜,𝑗+1 

2 , if 𝑢 𝑤,𝑗+1∕2 𝑢 𝑜,𝑗+1∕2 ≤ 0; 

𝑘̂ 𝑤𝑜,𝑗+1 , if 𝑢 𝑤,𝑗+1∕2 < 0&𝑢 𝑜,𝑗+1∕2 < 0 . 

̂
 𝑤𝑔,𝑗+1∕2 and ̂𝑘 𝑜𝑔,𝑗+1∕2 are also approximated using the similar way. On th

loy upwind as described in (5.72) . 

2. A fully discrete scheme for the incompressible model 

Step 1: Mass transport 

𝑠 𝑘 +1 
𝑤,𝑗 

− 𝑠 𝑘 
𝑤,𝑗 

Δ𝑡 
+ 

1 
Δ𝑥 

([ 𝑠 𝑤 𝑢 𝑤 ] 𝑘 𝑗+1∕2 − [ 𝑠 𝑤 𝑢 𝑤 ] 𝑘 𝑗−1∕2 ) = − 𝑠 𝑘 
𝑤,𝑗 
𝑄 

𝑘 
𝑝,𝑗 
∕ 𝜙 + 𝑄 

𝑘 
𝐼𝑤,𝑗 

∕ 𝜙

here 

[ 𝑠 𝑤 𝑢 𝑤 ] 𝑘 𝑗+1∕2 = 

{ 

𝑠 𝑘 
𝑤,𝑗 
𝑢 𝑘 
𝑤,𝑗+1∕2 , if 𝑢 𝑘 

𝑤,𝑗+1∕2 ≥ 0; 

𝑠 𝑘 
𝑤,𝑗+1 𝑢 

𝑘 
𝑤,𝑗+1∕2 , if 𝑢 𝑘 

𝑤,𝑗+1∕2 < 0 . 

𝑠 𝑘 +1 
𝑜,𝑗 

− 𝑠 𝑘 
𝑜,𝑗 

Δ𝑡 
+ 

1 
Δ𝑥 

([ 𝑠 𝑜 𝑢 𝑜 ] 𝑘 𝑗+1∕2 − [ 𝑠 𝑜 𝑢 𝑜 ] 𝑘 𝑗−1∕2 ) = − 𝑠 𝑘 
𝑜,𝑗 
𝑄 

𝑘 
𝑝,𝑗 
∕ 𝜙

here 

 𝑠 𝑜 𝑢 𝑜 ] 𝑘 𝑗+1∕2 = 

{ 

𝑠 𝑘 
𝑜,𝑗 
𝑢 𝑘 
𝑜,𝑗+1∕2 , if 𝑢 𝑘 

𝑜,𝑗+1∕2 ≥ 0; 

𝑠 𝑘 
𝑜,𝑗+1 𝑢 

𝑘 
𝑜,𝑗+1∕2 , if 𝑢 𝑘 

𝑜,𝑗+1∕2 < 0 . 

aving computed 𝑠 𝑘 +1 
𝑤,𝑗 

and 𝑠 𝑘 +1 
𝑜,𝑗 

we can compute pressure and velocities

Step 2: Computation of velocities and pressure 

We solve for 𝑃 𝑘 +1 
𝑤,𝑗 

and 𝑢 𝑘 +1 
𝑤,𝑗+1∕2 , 𝑢 

𝑘 +1 
𝑜,𝑗+1∕2 and 𝑢 𝑘 +1 

𝑔,𝑗+1∕2 by considering th

1 
Δ𝑥 

([ 𝑠 𝑘 +1 
𝑤 

𝑢 𝑘 +1 
𝑤 

] 𝑗+1∕2 − [ 𝑠 𝑘 +1 
𝑤 

𝑢 𝑘 +1 
𝑤 

] 𝑗−1∕2 ) + 

1 
Δ𝑥 

([ 𝑠 𝑘 +1 
𝑜 

𝑢 𝑘 +1 
𝑜 

] 𝑗+1∕2 − [ 𝑠 𝑘 +1 
𝑜 

𝑢 𝑘 +1 
𝑜 

] 𝑗−

hich is combined with the momentum balance equations 

 

𝑘 +1∕2 
𝑤,𝑗+1∕2 

1 
Δ𝑥 

( 𝑃 𝑘 +1 
𝑤,𝑗+1 − 𝑃 𝑘 +1 

𝑤,𝑗 
) = − ̂𝑘 

𝑘 +1∕2 
𝑤,𝑗+1∕2 𝑢 

𝑘 +1 
𝑤,𝑗+1∕2 − ̂𝑘 

𝑘 +1∕2 
𝑤𝑜,𝑗+1∕2 

(
𝑢 
𝑘 +1∕2 
𝑤,𝑗+1∕2 − 𝑢 

𝑘 +1
𝑜,𝑗+

− 𝑠 𝑘 +1 
𝑤,𝑗+1∕2 𝜌𝑤 𝑔 + 𝜀 𝑤 

𝜌𝑤 

Δ𝑥 2 
(
𝑠 𝑘 +1 
𝑤,𝑗+1 [ 𝑢 

𝑘 +1 
𝑤,𝑗+3∕2 − 𝑢 𝑘 +

𝑤

𝑠 
𝑘 +1∕2 
𝑜,𝑗+1∕2 

1 
Δ𝑥 

( 𝑃 𝑘 +1 
𝑤,𝑗+1 − 𝑃 𝑘 +1 

𝑤,𝑗 
) = − 𝑠 

𝑘 +1∕2 
𝑜,𝑗+1∕2 

1 
Δ𝑥 

(Δ𝑃 𝑘 +1∕2 
𝑜𝑤,𝑗+1 − Δ𝑃 𝑘 +1∕2 

𝑜𝑤,𝑗 
) 

− ̂𝑘 
𝑘 +1∕2 
𝑜,𝑗+1∕2 𝑢 

𝑘 +1 
𝑜,𝑗+1∕2 − ̂𝑘 

𝑘 +1∕2 
𝑤𝑜,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑜,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑤,𝑗+1

− 𝑠 𝑘 +1 
𝑜,𝑗+1∕2 𝜌𝑜 𝑔 + 𝜀 𝑜 

𝜌𝑜 

Δ𝑥 2 
(
𝑠 
𝑘 +1∕2 
𝑜,𝑗+1 [ 𝑢 

𝑘 +1 
𝑜,𝑗+3∕2 − 𝑢 𝑘 +1 

𝑜,𝑗+

𝑠 
𝑘 +1∕2 
𝑔,𝑗+1∕2 

1 
Δ𝑥 

( 𝑃 𝑘 +1 
𝑤,𝑗+1 − 𝑃 𝑘 +1 

𝑤,𝑗 
) = − 𝑠 

𝑘 +1∕2 
𝑔,𝑗+1∕2 

1 
Δ𝑥 

(Δ𝑃 𝑘 +1∕2 
𝑜𝑤,𝑗+1 − Δ𝑃 𝑘 +1∕2 

𝑜𝑤,𝑗 
+ Δ𝑃 𝑘 +1∕2

𝑔𝑜,𝑗+1

− ̂𝑘 
𝑘 +1∕2 
𝑔,𝑗+1∕2 𝑢 

𝑘 +1 
𝑔,𝑗+1∕2 − ̂𝑘 

𝑘 +1∕2 
𝑤𝑔,𝑗+1∕2 

(
𝑢 𝑘 +1 
𝑔,𝑗+1∕2 − 𝑢 𝑘 +1 

𝑤,𝑗+

− 𝑠 
𝑘 +1∕2 
𝑔,𝑗+1∕2 𝜌𝑔 𝑔 + 𝜀 𝑔 

𝜌𝑔 

Δ𝑥 2 
(
𝑠 
𝑘 +1∕2 
𝑔,𝑗+1 [ 𝑢 

𝑘 +1 
𝑔,𝑗+3∕2 − 𝑢 𝑘 +1

𝑔,𝑗+

emark 5.5. The upwind discretization of [ 𝑠 𝑘 +1 
𝑤 

𝑢 𝑘 +1 
𝑤 

] 𝑗+1∕2 , [ 𝑠 𝑘 +1 𝑜 
𝑢 𝑘 +1 
𝑜 

] 𝑗
 

𝑘 
𝑤,𝑗+1∕2 , 𝑢 

𝑘 
𝑜,𝑗+1∕2 and 𝑢 𝑘 

𝑔,𝑗+1∕2 . 

ppendix D. The convergence of numerical scheme 

Here we illustrate one example to show the convergence of the pre

ow. A sensitivity test is conducted by using different number of grid c

ig. 6 , panel F. We refer to Fig. 11 for an illustration of the convergenc
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Fig. 11. Water saturation 𝑠 𝑤 profiles using different number 

of grid cells in the model for the case as shown in Fig. 6 , panel 

F. 
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