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Abstract

Repair and replacement of offshore wind turbine blades are necessary for current and future

offshore wind turbines. To date, repair activities are often conducted using huge jack-up crane

vessels and by applying a reverse installation procedure. Because of the high costs associated

with installation and removal of offshore wind turbine components and the low profit margin

of the offshore wind industry, alternative methods for installation and removal are needed. This

paper introduces a novel concept for replacement or installation of offshore wind turbine blades.

The concept involves a medium-sized jack-up crane vessel and a tower climbing mechanism.

This mechanism provides a stable platform for clamping, lowering, and lifting of a blade. A case

study of a 5-MW offshore wind turbine is shown, where common engineering practices were

applied and numerical simulations of the marine operations were carried out using finite element

and multibody simulation tools. Operational limits for wave and wind actions were established

to demonstrate the technical feasibility of the proposed concept.

KEYWORDS

blade replacement, numerical simulation, offshore wind turbine, tower climbing mechanism,

wind and waves

1 INTRODUCTION

The operation and maintenance phase plays an important role in the life cycle of an offshore wind turbine (OWT). Maintenance activities should be

well-planned to avoid unexpected failures of OWT components and to reduce unnecessary downtime of OWTs. Common maintenance activities

include inspection or replacement of electrical components and scheduled maintenance of key mechanical components like gearboxes. These

activities are currently done by personnel who periodically access and inspect critical components of OWTs. Access to an OWT can be achieved

using a catamaran vessel or more specialized vessels equipped with actively compensated crew transfer systems.1 Despite maintenance plans and

improved designs of OWTs, major OWT components such as blades, gearboxes, and generators still have relatively high failure rates.2 Recently,

wind turbine blades of the Anholt offshore wind farms off Denmark were brought ashore for repair of leading-edge erosion damage less than

5 years after the wind farm was commissioned in 2013.3 As the longest announced wind turbine blade has a length close to 200 m, challenges

arise when major OWT components such as blades need to be removed and replaced, as these components cannot be easily handled offshore.

Major repair and replacement of these OWT components are often conducted using specialized jack-up crane vessels and by following a

reverse procedure of installation. For major repair activities, huge and expensive crane vessels need to be mobilized to the offshore sites. Take

the Teesside offshore wind farm for example. In a recent effort to replace the gearbox of an OWT, the marine operation was scheduled for 5

to 6 days, and the Wind Server jack-up crane vessel was employed.4 Even without considering the time for mobilizing and installing the jack-up

vessel, the installation of a single 7-MW OWT blade can take between 4 to 8 h.5 Moreover, installations of OWT blades and gearboxes are

challenging during a mating phase, where shafts and bolts are inserted into holes or guides with only a few millimeters installation gaps. The

mating phase during installation of other wind turbine components such as transition pieces onto monopile foundations and float-over operations

present similar challenges.6,7

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2020 The Authors. Wind Energy published by John Wiley & Sons Ltd.

wileyonlinelibrary.com/journal/weWind Energy. 2020;23:1673–1692. 1673

https://doi.org/10.1002/we.2509
https://orcid.org/0000-0002-8778-0999
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fwe.2509&domain=pdf&date_stamp=2020-04-22


GUACHAMIN-ACERO ET AL.

FIGURE 1 A novel blade installation concept using a floating crane vessel, adapted from de Groot 17

For safe planning and execution of a blade installation using jack-up crane vessels, numerical simulations of related marine operations are

necessary. Ren et al.8 developed a modularized blade installation simulation toolbox for the purpose of control design. Zhao et al.9 analyzed the

installation of an OWT blade considering hydrodynamic and aerodynamic loading on the system and flexibility of structural members. Other

recent studies dealt with numerical analysis of OWT blade installation under rough environmental conditions.10,11 These works investigated the

influence of wind parameters on various configurations of the lifting system and set working limits for the wind speed. Moreover, Jiang12 studied

the effect of a tuned mass damping system for monopile foundations in order to reduce the relative motion between the hub and the blade root

of an OWT during the installation procedure. In addition to the numerical methods, Maes et al.13 developed a method for actual motion tracking

of a 6-MW OWT blade using a combination of a real-time kinematic global positioning system and the data obtained from an inertial navigation

system. The motion tracking is necessary for making decisions on board during critical operations. As shown above, recent developments of new

tools and methodologies for better assessment of OWT blade responses during installation using a jack-up crane vessel have been conducted.

However, in practice, rental of large crane vessels for such activities is not ideal because of their low availability and high day rate.5,14 Thus,

technically feasible and economically viable alternatives for installation and replacement of major OWT components need to be developed.

Previously, novel procedures for installation of fully assembled OWTs have been proposed by researchers. 6,15,16 However, these procedures

are not applicable to installation or decommissioning of a single blade. De Groot17 proposed an alternative OWT blade installation method; see

Figure 1. This method consists of installing an adjustable ring and a structural frame onto the OWT tower using a floating heavy lift vessel. This

structural frame includes a stable working platform and a gripper to hold the blade during its positioning and bolting operations. The crane vessel

needs to be huge in terms of working height because the frame is clamped to the tower just below the nacelle.

A review of existing literature shows very limited work on developing novel concepts for installation or replacement of blades. Because of

the construction of large-scale offshore wind farms in the world, blade replacement is envisaged to be a common activity in future, and thus,

this topic needs further research. This paper first introduces a novel procedure for blade replacement. Numerical simulations of potentially

critical installation activities are conducted. Finally, the feasibility of the proposed concept is evaluated by assessing the operational limits of the

installation activities.

2 SYSTEM COMPONENTS AND BLADE REPLACEMENT PROCEDURE

The main components of the novel blade replacement concept, the decommissioning procedure, and other practical operational aspects are

discussed in this section.

Figure 2A shows main components of the system. These components are the OWT, a medium-sized jack-up crane vessel, and a tower climbing

mechanism. The jack-up vessel is required for installing the tower climbing mechanism, transferring of personnel, and lifting or lowering of a blade.

Figure 2B shows a schematic of the climbing mechanism. It consists of a lower and and an upper deck, which allocate a gripping system composed

of rotating arms, a braking system with friction pads, and two hydraulic cylinders. A hydraulic power pack, winches, and other mechanical drives

are located on the upper deck.

2.1 Tower climbing mechanism

The tower climbing mechanism is inspired by the work developed by Lorber and Pampalov18 and Sadeghi and Moradi.19 These concepts have

been designed and tested for climbing poles, which are cylindrical structures that resemble wind turbine towers.

1674



GUACHAMIN-ACERO ET AL.

FIGURE 2 A, Main components of a novel blade replacement procedure; B, isometric view of the tower climbing mechanism

FIGURE 3 Top view of the gripper mechanism. A, Opened position; B, closed position

FIGURE 4 Side view of the tower climbing mechanism. A, Retracted condition; B, extended condition

The tower climbing mechanism is intended for climbing the tower, and the mechanism is powered by means of hydraulic and mechanical

drives. Figure 3 A,B illustrates the gripper of the lower deck in opened and closed positions, respectively. The rotating arms can be opened or

closed by extending or retracting the piston rod of the hydraulic cylinder.

For climbing the tower, the mechanism uses a power screw; see Figure 4A. The drive system for this screw can be either placed on the upper

or lower deck. There is also a hinged and sliding bar that adjusts the separation between the lower and upper decks. The hydraulic power pack,

hoisting structure, and control systems can be placed on the upper deck. Figure 4A,B shows the mechanism in extended and retracted conditions,

respectively.
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FIGURE 5 Upper deck and blade root gripper. A, Upper deck and blade gripper; B, blade root gripper components

The mode of operation is simple. First, the gripper from the lower deck closes by contracting the piston rod from the hydraulic cylinder.

Afterwards, the drive system from the power screw lifts the upper deck, while the hinged and sliding bar rotates and moves. Once the mechanism

is in an extended condition, the gripper from the upper deck closes. Then, the gripper from the lower deck opens, and the power screw lifts the

deck. Such a process is repeated until the desired elevation of the mechanism is reached. Two guide columns ensure that the mechanism cannot

tilt over when only one gripper is secured.

2.2 Replacement procedure of an OWT blade

The replacement of an OWT blade can be summarized in the following activities:

Positioning of the jack-up crane vessel: A jack-up vessel arrives at the designated offshore site, selects the heading, lowers the legs, and elevates

the hull. Figures 2 and 6 illustrate a jack-up vessel already in the operational mode. It can be observed that an installation deck or table

can be used to install the tower climbing mechanism on the tower.

Installation of the tower climbing mechanism: The movable installation deck on the vessel can be used to install the tower climbing mechanism;

see Figure 2A. After that, the gripper from the lower deck is locked, and the mechanism is ready to climb the tower by following the

sequence indicated in Section 2.1.

Tower climbing and blade clamping: The mechanism starts climbing the tower, and at a certain height, it stops and locks itself against the

tower; see Figure 6A. This action is necessary for clamping a blade tip gripper that later will be picked up by the crane on board. The

mechanism will continue climbing until it reaches a position close to the top of the tower; see Figure 6B, and the mechanism is above

the center of gravity (COG) of the blade. At this stage, the hinged and sliding beam from Figure 4A and the gripper arm shown in

Figure 5A have to be locked. Once again, a gripper for the blade root (Figure 5B) will be clamped on the blade.

Lowering of the blade: Lifting wires are connected to the lower and upper lifting tools, offshore personnel unbolt the turbine blade from inside

the nacelle, and the the blade is lowered onto the deck of the jack-up vessel; see Figure 6C,D.

Change of the blade and departure of the vessel: A reverse procedure can be applied to installation of a new blade. After this procedure is

completed, the tower climbing mechanism is lowered and sea-fastened on the deck of the vessel, and the legs of the jack-up crane

vessel are lifted up. Finally, the crane vessel can sail away.

A summary of the installation activities and subactivities with the corresponding required installation time is provided in Table 1. The durations

of the installation activities are estimated based on industrial experiences of the authors on similar offshore lifting operations. It can be observed

that approximately 17 h are required to replace an OWT blade. From this required time, 6 h are spent on the leg lowering and lifting operations

of the jack-up vessel, and 11 h are spent on the blade replacement process.

3 METHODOLOGY FOR FEASIBILITY ASSESSMENT OF THE BLADE REPLACEMENT CONCEPT

This section provides the methodology and necessary information for a numerical feasibility assessment of the proposed blade replacement

procedure. This methodology is based on the work of Guachamin Acero,21 which has been applied to assessment of other types of marine

operations.22,23

Figure 7 shows that Step 1 corresponds to the development of the blade replacement procedure; see Section 2.2. This procedure is necessary

for identifying potentially critical activities (Step 2). The identification can be done using qualitative risk assessment tools like root cause diagrams

and meetings with personnel experienced in marine operations. Critical activities are addressed in details in Section 3.1. Step 3 shows that these

potentially critical installation activities are selected for numerical modeling; see Section 3.2. A numerical model of each activity is used for
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FIGURE 6 Blade replacement. A, Installation of the blade tip gripper using an on-board crane; B, installation of the blade root gripper; C,
lowering an offshore wind turbine (OWT) blade; D, blade on deck

TABLE 1 Summary of installation activities and duration

No. Installation activity Main subactivities Duration

1 Positioning/moving jack-up Leg lowering 3 hours based on a leg lowering speed of

vessel to location 0.4 m/min and other related operations20

2 Installing tower mechanism Lifting climbing mechanism, 1 h

connect power supply

3 Climbing of mechanism Install blade root and blade 3 h given that the climbing speed

tip grippers and lifting lines of 0.05 m/s; see Section 3.2.3

4 Lowering the damaged blade Unbolt and lower the blade 2 h

to the deck of the ship

5 Installing a new blade Connect lifting lines, lift the 2 h

blade, bolt the blade

6 Lower the climbing mechanism Remove grippers and lifting lines 3 h

7 Moving jack-up vessel from location Lifting legs 3 h20

FIGURE 7 Methodology for feasibility assessment of a novel blade replacement procedure [Colour figure can be viewed at wileyonlinelibrary.com]

analysis of critical response parameters, which can be stresses, forces, velocities, displacements, and so forth. Some responses are obtained as

results of dynamic action of environmental parameters that could be expressed in terms of environmental parameters including the significant

wave height (Hs), wave spectral peak period (Tp) and the mean wind speed (Uw). The relation can be established by comparing the responses

with their corresponding allowable limits. The limits of the environmental parameters that cause the responses to reach the same level as the

allowable limits are known as operational limits (Step 4), which are derived in Section 4. Based on the operational limits and level of stresses in

structural components, an assessment of the feasibility of the proposed concept can be provided (Step 5).

3.1 Potentially critical installation activities

The proposed blade replacement concept is novel, and thus, some involved operations are not routine activities executed at sea. Nonstandard or

new operations that can lead to catastrophic consequences are considered as potentially critical activities.
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FIGURE 8 Root cause diagram for the novel offshore wind turbine (OWT) blade replacement procedure [Colour figure can be viewed at
wileyonlinelibrary.com]

Based on the blade replacement procedure described in Section 2.2, potentially critical installation activities can be identified.21 Figure 8

presents a root cause diagram, where the OWT blade replacement or installation failure is the main event. This event is a result of other failure

events related to installation activities. The cause events occur because response parameters such as stresses and impact velocities can exceed

their allowable limits. These responses reach high levels because the environmental parameters including Hs , Tp , and Uw reach unacceptable

levels. To reduce the risk of of such failure events, the leftmost column of the diagram gives possible mitigation actions. These actions can help

to set limits on the responses or environmental parameters and to avoid failure events.

According to Figure 8, potentially critical activities, corresponding failure events, and response parameters are summarized in Table 2. As

mentioned above, these response parameters can be expressed in terms of environmental parameters.

Positioning of the jack-up vessel: Although this is a routine activity, when a jack-up vessel is moving onto a location, a critical scenario occurs

when the legs touch the seabed and undergo impact loads. To avoid structural damage, the maximum impact forces that occur must

be within allowable limits. These forces depend on impact mass, impact velocity, and mechanical properties of the soil. The impact

force is not a practical parameter for onboard decision making, and the environmental parameters or measurable vessel responses are

normally desired.24 A significant wave height of around 1.5 m is a practical value used by the industry,25 although the origin of such

limits is not clear. The Hs limit is not sufficient for floating structures, and Tp and wave direction need be considered.

Climbing of mechanism and clamping to the OWT tower: This activity can be deemed critical, because the tower climbing mechanism can exert

large reaction forces on the tower walls. Considering that the tower climbing mechanism is properly designed, one can verify the

structural integrity of the tower for a realistic load case that includes the weights of the tower climbing mechanism, equipment on its

deck, and the OWT blade. A critical event can be the buckling of the tower due to contact or reaction forces.

Lifting or lowering of the OWT blade: During the blade lifting or lowering operation, the blade can experience large motions because of the

action of wind loading and the tugger line system used. In addition, the natural frequencies of the system will continuously change
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TABLE 2 Potentially critical activities and limiting parameters

No. Installation activity Failure event Response parameter

1 Positioning/moving jack-up vessel to location Structural failure of jack-up vessel Impact velocity between the jack-up leg and the seabed

2 Climbing of mechanism Structural damage of tower Stresses or reaction forces on the tower wall

3 Lowering the OWT blade Structural damage of blade Impact velocity between the tower and the blade

Abbreviation: OWT, offshore wind turbine.

TABLE 3 Main particulars of the jack-up vessel28

Parameter Symbol Value Units

Displacement ▽ 6.81× 104 Ton

Length overall LV 60 m

Breadth BV 33 m

Draught TV 3.6 m

Heave natural period Tn3
7.1 s

Roll natural period Tn4
7.5 s

Pitch natural period Tn5
8.2 s

Leg diameter DiaL 1.25 m

Leg length submerged LenL 29 m

TABLE 4 Main particulars of structural components of the tower climbing mechanism; refer to Figure 4

Structural member Description Maximum service load stress Weight Observations

Climbing mechanism

Frame structure Square tube W = 0.6 m,
H = 0.6 m, t = 0.02 m

𝜎= 230 MPa 43 kN W = width, H = height,
t = thickness

Gripper structure Square tube W= 0.8 m,
H= 0.8 m, t= 0.05 m

𝜎= 183 MPa 20 kN Member DEF
Figure 11B

Power screw D = 0.2 m stress at thread root 𝜎= 121 MPa 15 kN D = nominal diameter,
pitch = 0.08 m

Other equipment

Blade, gripper, wire ropes 200 kN Refer to Table 5

Working deck 100 kN Assumed

Equipment 100 kN Assumed

during this process. A critical event can be damage of the composite laminates of a new blade, which can be caused by the impact

between the blade root and the tower or between the blade tip and the jack-up crane vessel. Allowable impact velocities can be

established based on structural analysis of the impact problem.26,27

3.2 Numerical analysis of marine operations

This section describes the numerical methods for modeling the critical activities listed in Table 2. Responses obtained from numerical analysis of

these activities are applied during assessment of operational limits described in Section 4.

3.2.1 Main particulars of installation system components

In this case study, dynamic analysis of a jack-up vessel under various sea states are performed. The main particulars of the vessel are listed in

Table 3. For a detailed description of the jack-up vessel, refer to Jiang et al.28 The numerical model of the jack-up vessel is described in Section

3.2.2.

Sizing of the main climbing mechanism structural components is prerequisite for assessment of the stresses in the OWT tower. Structural

analysis was conducted during the preliminary design of the climbing mechanism. A summary of the main particulars of these structural

components is summarized in Table 4 and their details are provided in Section 3.2.3.

The blade-tugger line model includes the NREL 5-MW blade29 with realistic yoke and tugger line properties. The tugger lines have constant

lengths and varying tensions. Table 5 lists key parameters of the system. For the blade structure, the leading edge is parallel to the global x-axis;

see Figure 9A. The numerical model of the OWT blade lifting system is addressed in Section 3.2.4.

3.2.2 Positioning of the jack-up vessel

The numerical model of the vessel is established in the SIMO program.30 The vessel coordinate system and wave directions in the numerical

model are defined in Figure 10. The first- and second-order hydrodynamic coefficients of the barge are obtained using the potential flow theory.31

The second-order loads in surge, sway, and yaw are calculated based on Newman's approximation, and only the difference-frequency part is
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TABLE 5 Parameters of the blade and the lifting system

Parameter Symbol Value Units

Blade mass Mbd 17.3 Ton

Blade length Lbd 61.5 m

Blade root diameter Dbd 3.54 m

Distance of blade center of gravity (COG) from root xbCOG 20.57 m

Stiffness of lifting line blade-climbing mechanism kw 2×105 N/m

Yoke mass Myk 50 Ton

FIGURE 9 Blade configurations for numerical analysis of the decommissioning operation. A, Configuration No. 1 for initial decommissioning
phase; B, Configuration No. 2 for final decommissioning phase

considered. Due to the viscous loads on the barge and mooring lines, there exists damping for barge motions. These damping coefficients are

represented as linear ones and are selected according to DNV-OS-E301.32 The barge viscous damping in roll is estimated using the Ikeda formula

for barges.33 The linear damping coefficient is calculated as 1.52×108 Nm/(rad/s) at the roll natural period. The viscous effects on the legs are

considered by modeling the legs as circular tubes with Morison-type hydrodynamic loading. Because of the capabilities of the SIMO program,

no structural mass or entrapped water is considered. Each leg and spudcan is treated as one slender element, which is divided into a number

of strips. The horizontal wave force fW,s per unit length on each strip of a vertical moving circular cylinder can be determined using Morison's

equation in Equation (1).

fw,s = 𝜌wCM
𝜋D2

4
· 𝜁s − 𝜌w(CM − 1)𝜋D2

4
· ẍs +

1
2
𝜌wCDD ||| .

𝜁 s −
.
xs
||| · ( .

𝜁 s −
.
xs). (1)

In this equation, the positive force direction is the wave propagation direction. 𝜁s and
.
𝜁 s are fluid particle acceleration and velocity at the center

of the strip, respectively; ẍs and ẍs are the acceleration and velocity at the center of the strip due to the body motions; D is the outer diameter of

the cylinder. CM and CD are the nondimensional mass and quadratic drag force coefficients, respectively, and the values of 2 and 0.9 are applied

in the analysis according to DNV-RP-H103.34

Time-domain simulations are carried out under various combination of Hs , Tp by solving the equations of motions for the jack-up vessel as

shown in Equation (2).

(M + A(∞)) · ẍ + D1
.
x + D2f( .

x) + Kx + ∫
t

0
h(t − 𝜏) .

x(𝜏)d𝜏 = q(t, x,
.
x), (2)

where M is the mass matrix of the jack-up; x is the rigid-body motion vector with six DOFs; A(∞) is the added mass matrix for infinite frequency;

D1 and D2 are the linear and quadratic damping matrices; K is the hydrostatic stiffness matrix; h is the retardation function of the vessel,
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FIGURE 10 Vessel coordinate system and wave directions for numerical analysis of the jack-up vessel under wave conditions

which is calculated from the frequency-dependent added mass or potential damping; q is the external force vector that includes the first- and

second-order wave excitation forces on the vessel, as well as the wave forces on the legs based on Equation (1).

Four wave directions of 180◦, 165◦, 150◦, and 135◦ are considered to account for the uncertainties in the wave direction forecast. In practice,

operations can also be planned for wave directions different from head seas. Under each condition, six simulations of 500 s are run using different

wave seed numbers. In practice, the actual lowering phase during which the jack-up legs touch the seabed normally lasts less than 8 min. Thus,

the total simulation length of 3000 s is considered sufficient for assessment of response statistics for a stationary process. Short-crested waves

are generated for all sea states using the JONSWAP spectrum and the cosine spreading function.35

3.2.3 Structural assessment of the tower climbing mechanism

As part of the assessment of the novel OWT blade replacement concept, it is necessary to carry out a preliminary design of the mechanism.

Moreover, this design is important for the assessment of structural integrity of an OWT tower; see Section 4.2. In the following, a sizing is

provided of the structural members and equipment to power the tower climbing mechanism. As shown in Figure 4B, one critical condition is

considered of the tower climbing mechanism.

Figure 11A shows a free body diagram for the structure of the tower climbing mechanism. This diagram corresponds to the climbing mechanism

configuration shown in Figure 4A. The external load applied at joint C is conservatively estimated as FC= 500 kN based on the parameters listed

in Table 4. It can be inferred that the reaction forces at joint B are as follows: RBx= 1000 kN, and RBy= 500 kN. This means that the horizontal

reaction force at joint A is RAx= 1000 kN, and this force is transmitted to the upper deck gripper friction pads in D and H. For the member DEF

shown in Figure 11B, the maximum bending moment in the horizontal plane at point E is ME= 5700 kNm, and the corresponding force on the

locking pin at point F is FF= 1425 kN.

Based on load-resistance factor design equations recommended by the American Society of Civil Engineers,36 semiprobabilistic structural

design of the climbing mechanism can be conducted using design codes. For the beam DEF, the nominal factored moment strength, 𝜙bMn , has to

be larger than the factored service load moment, Mu , and the limit-state function can be described by Equation (3) as below:

𝜙bMn ≥ Mu, (3)

where 𝜙b is the reduction factor for the moment strength. For elastic design, Mn depends on the yield strength Fy and the elastic section modulus

Zx; see Equation (4):

Mn = FyZx (4)

Mu can be calculated from Equation (5), where MD is the dead load bending moment and ML is the live load bending moment, both affected

with the corresponding load factors.36

Mu = 1.2MD + 1.6ML. (5)

Rotation of member DEF occurs in the horizontal plane, and ME is due to contributions from MD=1425 kNm and ML= 4275 kNm, and thus,

Equation (5) gives Mu= 8550 kN. Based on Equation (4), and considering structural steel A572-Gr50, Fy= 345 MPa and Zx= 3.1×10−2m3, we

obtain Mn= 11 000 kNm, which is larger than Mu . Note that tubular sections and 𝜙b= 0.9 are selected36; see Table 4. This table also shows the

maximum service load stresses in other structural members.

The power required by the screw to move the upper platform in climbing condition (without the weight of the blade) is calculated from

Equation (6),37 where P is the required power, F is the load to raise, dc is the mean diameter of the collar, dm is the mean diameter of the screw, fc

is the friction coefficient on the collar, f is the friction coefficient on the threads, v is the climbing velocity, and p is the pitch of the screw. The

first term on the right-hand side of the equation corresponds to the torque to overcome the friction in the collar and the thread, and the second
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FIGURE 11 Free body diagram. A Frame structure; B, gripper mechanism

term corresponds to the angular velocity of the screw.

P =
(

Ffcdc

2
+ Fdm

2
(𝜋fdm + l)
(𝜋dm − fl)

)
2𝜋v

p
. (6)

Further, considering F= 250 kN, dc= 0.25 m, dm= 0.2 m, v= 0.05 m/s, fc , f= 0.1, and p= 8 mm, the minimum required power to raise the

mechanism is approximately P= 250 kW, and the maximum stress at the thread root is 121 MPa.

The fully extended mechanism configuration shown in Figure 4B is critical for the power screw when the mechanism is climbing, and the

power screw has a buckling load of 1400 kN, which is much larger than the weight of the tower climbing structure without the weight of the

blade, and thus, the designed power screw will satisfy the buckling check. The reaction forces shown in Figure 11A are applied as pressure loads

from the friction pads on a section of the OWT tower, for which the stresses are assessed applying the finite element method; see Section 4.2

for a detailed description.

3.2.4 Numerical modeling of the blade lowering process

The proposed blade lowering procedure is new, and feasibility of the related operations should be demonstrated. As state-of-the-art numerical

tools can be used to simulate and represent actual operations, we use numerical simulations to demonstrate the feasibility.

The blade lowering process is nonstationary, and therefore, the dynamic responses should be analyzed by modeling the actual operation.38,39

In this study, the nonstationary operation is represented by two stationary configurations of the blade lowering lifting system for simplicity. The

Configuration No. 1 (Figure 9A) corresponds to the initial phase of the blade lowering operation, whereas the Configuration No. 2 (Figure 9B)

represents the final phase. It can be observed that a lifting line (A) is used to connect the tower climbing mechanism to the blade root, whereas two

lifting lines (B,C) are used to connect the lifting point on the blade to the crane tip. In the numerical analyses, the lifting points (B,C) on the blade

are considered to be close to the COG of the blade, and one end of the lifting lines A, B, or C is rigidly fixed to the ground, ignoring vibrations of the

tower climbing mechanism or the crane boom. This simplification applies to jacket support structures subjected to small wave-induced motions.

The horizontal axis wind turbine simulation code 2nd generation (HAWC2), is an aeroelastic code developed by DTU Wind Energy.40 This

code is used to model the blade and lifting lines for the rigging configurations shown in Figure 9. The structural modeling of HAWC2 is based on

multibody formulation, in which the floating frame of reference formulation is applied to develop the dynamic formulation of the equations of

motion of deformable bodies that have large displacements. 41

Developed from the Lagrange's equation, the general system differential equations of motion of the multibody system can be written in a

matrix form as

Mq̈ + Kq + CT
q𝛌 = Qe + Qv , (7)

where q is the total vector of the system generalized coordinates. M and K are, respectively, the system mass and stiffness matrices, Cq is the

constraint Jacobian matrix, 𝝀 is the vector of Lagrange multipier, Qe is the vector of generalized externally applied forces, and Qv is the quadratic

velocity vector that contains the gyroscopic and well as Coriolis components and results from differentiating the kinetic energy with respect to
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FIGURE 12 Blade structural model and coordinate system. A, Top view of global coordinate system and wind directions; B, simplified blade
decommissioning model in HAWC2, comprising the blade, lifting lines, and a gripper or yoke weight located at the COG of the blade

time and with respect to the system generalized coordinates. Details of the multibody formulation and computational algorithms can be found in

Shabana.42

In structural modeling of HAWC2, the structures are divided into a few independent coupled elements. These elements are connected by joints

that allow large translations and rotations. In this work, the structures include the blade, the lifting lines, and a yoke structure, and the system

mass and stiffness matrices include these components. Figure 12 illustrates the simplified structural model with the global coordinate system

and wind directions. One end of the lifting line (A) is connected to the tower climbing mechanism hoisting system, and the other lifting lines are

connected to the crane boom. The externally applied forces, Qe , correspond to the aerodynamic forces on the blade. The system constraints are

the fixed joints at the end of lifting lines and the spherical joints between the lifting line segments. The spherical joints make it possible for the

lines to exhibit noncompressible behavior.10

The aerodynamic model in HAWC2 uses both deterministic and stochastic wind conditions. The deterministic part of the wind condition

includes features such as mean wind velocity, a linear trend, and special shears. The stochastic wind refers to the turbulence model, and in this

work, the Mann's turbulence model is applied. Mann's model is based on isotropic turbulence in neutral atmospheric conditions but accounts for

nonisotropic turbulence by using the rapid distortion theory.43 A length scale factor (Lf), an eddy lifetime constant (𝛤 ), and a spectral multiplier

(𝛼𝜖2/3) are used to generate a turbulence box, which moves across the hanged blade during the simulation.

For the blade decommissioning scenarios, the blade is hindered from rotating, and the steady aerodynamic lift and drag coefficients are used

to determine the wind loads on each blade section. The lift (L) and drag (D) force per length can be calculated from Equations (8) and (9):

L = 1
2
𝜌airV2

relcCl, (8)

D = 1
2
𝜌airV2

relcCd, (9)

where 𝜌air is the air density, Vrel is the relative wind velocity seen from the blade, c is the local chord length, and Cl and Cd are the lift and drag

coefficients, respectively. According to Gaunaa et al.,44 computational fluid dynamics methods can be applied to complement this engineering

approach.

Time-domain simulations are performed with a time step of 0.01 s. The Newmark-beta method is applied in order to advance the numerical

integration and solve for the state vector at each time step. It is assumed that either configuration lasts no more than 10 min. For each case, six

10-min simulations with random wind seeds were carried out to reduce the statistical uncertainties, and the statistical average of the maximum

response of each 10-min simulation is used. These number of simulations gave a good representation of response statistics of the system at

reasonable computation efforts. 10 Each simulation lasted 1200 s, and the start-up transients 600 s were discarded in the postprocessing.

To investigate the limiting conditions for the blade decommissioning process, a range of wind conditions between 6 and 14 m/s are selected.

Two representative wind directions 𝛽wind of 0◦ and 90◦ for the incoming wind are considered. These directions are chosen because they will

produce lift- and drag-dominated conditions, which are of interest to this research. The normal turbulence model (NTM) is considered according

to the IEC standard.45 Based on the NTM, the turbulence standard deviation (STD) for the standard wind turbine class is given by

𝜎1 = Iref(0.75Uhub + b), (10)

where Iref is the expected value of the turbulence intensity (TI) at 15 m/s, Uhub is the hub-height mean wind speed over 10 min, and b is a constant

of 5.6 m/s. An Iref of 0.12 is chosen for the wind turbine class C with lower turbulence characteristics in this study. The TI is the ratio of 𝜎1 and
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Uhub . Although TI is inversely proportional to Uhub , it has a stochastic nature, and a probability distribution of TI was considered in Larsen et al.46

Here, different combinations of TI and Uhub were considered, and TI ranges between 0.06 and 0.26. Moreover, a wind shear exponent of 0.1 that

accounts for the vertical wind profile was applied.

4 RESULTS AND DISCUSSIONS

This section calculates the operational limits for the potentially critical activities and assesses the structural integrity of an OWT tower. In

addition, an overall assessment is provided of the feasibility of the proposed OWT blade replacement concept.

4.1 Analysis of the jack-up vessel

4.1.1 Dynamic response of the jack-up legs

Dynamic analysis of the jack-up vessel under different wave conditions are performed, and the velocities at the tip of the legs before touching

down the seabed are obtained. Figure 13 shows the time series of the velocity components of the Leg1 tip; refer to Figure 10) for two sea states.

These two sea states were selected only to compare the influence of wave directions on time histories of dynamic responses. The responses

of two wave directions are compared. Because of the roll and pitch resonance motions (refer to the natural periods in Table 3), all the velocity

components are higher when Tp is 8 s compared with those when Tp is 6 s. The velocity components in the Y-direction (Vy) increase significantly

when the wave direction changes from 180◦ to 135◦ due to the increase of the vessel roll motions. To further compare the contributions of the

different velocity components, Figure 14 presents the STDs of the three velocity components for different Tp conditions. While the Z-component

(Vz) is less sensitive to wave direction, the X- and Y-components (Vx and Vy) are influenced greatly by the wave direction. Vx and Vy are induced by

the pitch and roll motions of the vessel, respectively, and both motions are sensitive to the wave direction. The most critical condition is observed

when Tp is close to 8 s, and the Vy velocity component is dominant when the wave direction is 135◦. The velocities of the leg tips determine the

allowable sea states for the lowering operation of the jack-up legs.

FIGURE 13 Time series of the velocity components of the jack-up leg tip under different conditions [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 14 Standard deviations of the velocity components of the jack-up leg tip (Hs = 1.5m). For each Tp , the left column stands for the wave
direction of 180◦, and the right column stands for the wave direction of 135◦ [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 Limiting sea states for positioning the jack-up vessel [Colour figure can be viewed at wileyonlinelibrary.com]

4.1.2 Limiting wave conditions for the jack-up vessel

From the dynamic responses of the jack-up legs under each wave condition, the expected maximum tip velocity of each leg can be obtained. The

largest total relative velocity among the four legs is used to find the limiting sea states. The allowable limit of the impact velocity of the leg can

be determined by a leg-soil impact analysis.47 In this case study, this velocity was not derived but reasonably estimated based on information

available from Smith et al.25 For a specific allowable limit of the impact velocity and its corresponding characteristic value, a backward derivation

of the corresponding Hs (Tp) limit was performed.21

Figure 15 presents the operational limits in terms of allowable sea states for allowable impact velocities of 1.6 and 2.0 m/s, respectively. In the

figure, the maximum Hs is limited to 2.5 m. Regardless of the wave direction and load cases, the curves reach a valley near Tp=9 s, which is close

to the natural periods of the vessel's roll and pitch. For a fixed wave period, the limiting Hs is lowest at the 135◦ direction. This is because the

vessel experiences more roll motions in quartering seas than in oblique and head seas, and the roll motions are closely related to leg motions. It

is possible to further increase the operational limits when waves are coming from the side of the vessel by reducing the roll motions via a passive

compensation system.28

To position a jack-up vessel at the working site, normally head waves are selected. For the jack-up model selected in this study, Figure 15

shows that the Hs limits vary between 1 and 2.5 m, which are in agreement with an Hs limit of 2.0 m used in industrial practice.14 Thus, this

routine installation activity is feasible because the operational limits are within expected values.
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FIGURE 16 Von Mises stresses in the offshore wind turbine (OWT) tower [Colour figure can be viewed at wileyonlinelibrary.com]

4.2 Structural integrity of the OWT tower

Based on the force analysis conducted in Section 3.2.3, a finite element model of a section of the OWT was established in ANSYS Structural.48

Figure 16 shows a stress contour of the deformed tower structure after the analysis. The finite element model consists of 24 380 solid elements,

and the number of elements are sufficient to achieve convergence. The bottom nodes of the model are fixed, and the external forces exerted

by the friction pads of the tower climbing mechanism were applied as pressure loads with a magnitude of 1 MPa, which corresponds to the

forces obtained for the configuration shown in Figure 11 and by considering a friction pad with an assumed contact area of 1 m2. This pressure

magnitude will decrease if the contact area is increased. Figure 16 shows that the maximum combined stress is approximately 314 MPa, which

is lower than the yield strength of an S355 steel (355 MPa). Such a steel is often used in the construction of OWT towers.49 Similarly, the

maximum deflection of the tower wall is approximately 1.3 mm. Based on these results, it can be concluded that the climbing mechanism will not

compromise the structural integrity of the OWT tower.

4.3 Analysis of the blade system in a lowering process

The two blade configurations shown in Figure 9 are the foci here. First, representative time series of the dynamic responses are shown. Then,

the limiting wind conditions derived based on the response maxima are presented.

4.3.1 Dynamic response of the blade system

During the lowering process, the blade position experiences continuous changes because of the action of the lifting lines and turbulent wind

loads. Figures 17 and 18 show the time series of selected responses under the same wind conditions. For Configuration No. 1, at the blade has

just been lowered from the hoisting system, the blade orientation is almost vertical, and the lifting line A takes most of the weight of the blade

(17.3 tonnes) and yoke (50 tonnes). As illustrated in Figure 17, regardless of the incoming wind direction, the tension in line A is significantly

greater than those in the other two lines, and dynamic tension is relatively small compared with the weight. The tensions in lines B and C are

at the same level due to the symmetric line configuration. Comparing the two wind directions, we observe that when 𝛽wind=0◦, the wind speed

in the Yg-component is dominant. Hence, the wind is almost flat to the blade, and the angle of attack fluctuates around 90◦ in the simulation.

This leads to drag-dominated aerodynamic loads, which is preferred during blade installation/decommissioning because of the stability in force

directions. In contrast, when 𝛽wind=90◦, the wind speed is dominant in the Xg-direction, and the angle of attack fluctuates around 0◦, leading to a

lift-dominated loading situation. In this case, aerodynamic forces will be primarily in the horizontal plane, and the vertical force component and

hence the blade response is expected to be small. For this configuration, the blade-root velocity in the Zg-direction is a primary concern. If this

velocity component is too high, the winch may not be able to immediately release the lifting lines and pose risks to the operation. Therefore, the

maximum blade-root velocities (red markers) are further used to derive the limiting wind conditions.

The results of Configuration No. 2 are presented in Figure 18. As the blade approaches the end of the lowering process, the blade orientation

is more horizontal, and the three lifting lines tend to share the load more evenly. As shown, the mean tension in line A is much reduced compared

with that in Configuration No. 1, but the dynamic tension appears to increase, particulary for 𝛽wind=90◦. The increase in dynamic tension is due

to the frequent change in the aerodynamic lift force directions and will lead to large blade responses in the vertical direction. For Configuration
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FIGURE 17 Time series of the dynamic responses of Configuration No. 1, Uhub= 12 m/s, and TI = 0.2, Seed 1. (AOA denotes angle of attack. The
coordinate system is shown in Figure 12) [Colour figure can be viewed at wileyonlinelibrary.com]

No. 2, the mean tension in lifting lines B and C rise considerably, indicating the more important role of the jack-up crane at this moment. For this

configuration, the blade-tip velocity in the Zg-direction is identified as a critical response variable, as a large blade tip velocity poses impact risks.

Damages on the blade composite structure during an impact scenario has been previously analyzed.26 As shown in the time series, the maximum

blade-tip velocity Vz becomes much higher when 𝛽wind changes from 0◦ to 90◦. This high velocity indicates that the blade decommissioning should

be carried out in a milder wind condition.

4.3.2 Limiting wind conditions

The flexible blade responses are used to derive the limiting wind conditions for the blade lowering operation. Note that the six individual

maxima were averaged to derive the limiting conditions. These curves were systematically derived and provide a more comprehensive format to

express the operational limits. For Configuration No. 1 shown in Figure 9A, only the blade root velocity is used to limit the operation. Velocity

thresholds (allowable impact velocities) of 0.1, 0.2, and 0.3 m/s are used to obtain the limiting wind conditions. Figure 19A shows that for a wind

direction corresponding to 𝛽wind=0◦, the blade-root velocity is always below the threshold levels in all considered turbulence conditions. Thus,

the decommissioning of the blade is deemed successful under the largest wind speed of 14 m/s considered in this study. When 𝛽wind=90◦, large

blade motions in the direction of the wind occur. As shown in Figure 19A , the limiting wind speed is 10.26 m/s when the maximum blade velocity

of 0.1 m/s and a TI of 0.26 is considered.

Based on the results shown in Figure 19A, it can be judged that the replacement of an OWT blade is practically plausible for all considered

wind speeds and turbulence intensity factors when 𝛽wind= 0◦, because both Configurations No. 1 and 2 shown in Figure 9 are exposed to low

risks during turbulent wind conditions. This observation indicates that if the blade orientation relative to the wind direction can be controlled,

installation or replacement of an OWT blade is possible.
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FIGURE 18 Time series of the dynamic responses of Configuration No. 2, Uhub= 12 m/s and TI = 0.2, Seed 1. (AOA denotes angle of attack. The
coordinate system is shown in Figure 12) [Colour figure can be viewed at wileyonlinelibrary.com]

For Configuration No. 2 shown in Figure 9B, the blade is approaching the deck level. Figure 19B shows that the limiting wind velocities for

allowable blade-root velocities of 0.1, 0.2, and 0.3 m/s and 𝛽wind=90◦ are lower than those of Configuration No. 1. This observation is because

the blade experiences change in the angle of attack between positive and negative values, leading to increased fluctuations in the direction of

the lift forces.

In addition to the blade-root velocity criterion and to avoid possible damage due to impact between the blade and the jack-up vessel, additional

threshold limits for the blade-tip velocity should be defined. In this work, allowable blade-tip velocities of 0.2, 0.4 and 0.6 m/s were considered.

As it can be observed in Figure 20B, for 𝛽wind=90◦ and especially under high turbulent conditions, for an allowable blade-tip impact velocity of

0.2 m/s, the blade decommissioning is only allowed at low mean wind speeds. Given an allowable impact velocity of 0.2 m/s, and for a TI of

0.15, the limiting wind speed is approximately 10 m/s. Compared with the blade root velocities, the blade tip velocities are larger for the same

wind conditions and configuration. The blade tip velocity can be an important parameter that limit the operation because of the risks of impact

between the blade tip and the vessel deck.

Despite the fact that a blade root or tip velocity governs the blade lowering operation, Figure 20B shows that even for the worst wind direction,

replacement of the OWT blade is feasible. In practice, operations such as mating between a blade and a hub can be performed when the wind

speed is up to 12 to 15 m/s.14 Furthermore, the wind direction information is often available before a lifting operation starts, and 𝛽wind=90◦ can

be avoided by the operators. Thus, this operation is feasible because operational limits such as the ones shown in Figure 20A can be obtained.

4.4 Feasibility assessment

A preliminary assessment of the operational limits for potentially critical installation activities has shown the technical feasibility of this novel

installation concept. By applying the current industrial practices, a single 7-MW OWT blade can be installed in 4 to 8 h, and a blade can be

replaced between 8 and 16 h.5 As shown in Table 1, the approximate required installation time is 11 h and similar to the one from the current
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FIGURE 19 Limiting wind velocities for various allowable blade root impact velocities Vallow . A, Allowable blade root velocity Vallow= 0.1 m/s for
𝛽wind= 0◦ and 90◦; B, various allowable blade root velocities for 𝛽wind= 90◦ and Configuration No. 2; refer to Figure 9 [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 20 Limiting wind velocities corresponding to various allowable blade tip velocities Vallow and Configuration No. 2; refer to Figure 9. A,
𝛽wind= 0◦; B, 𝛽wind= 90◦ [Colour figure can be viewed at wileyonlinelibrary.com]

industrial practices. Because the jack-up lowering and lifting leg operations are similar for the proposed approach and the conventional practices,

there is no reduction in the required time for the novel installation concept. However, this concept advocates the use of a small- to medium-sized

jack-up crane vessel. Considering the day rate of a medium- to large-sized jack-up barge lies between 100 000 and 180 000 USD,5,14 the cost

reduction of this concept can be significant if a large number of OWTs are to be repaired. A comprehensive cost analysis of the proposed blade

installation concept is out of the scope of this work.

5 CONCLUSIONS AND RECOMMENDATIONS

This paper studies a novel concept for blade installation or replacement of OWTs. The system is composed of a medium-sized jack-up crane

vessel and a tower climbing mechanism. The crane vessel is used to install the climbing mechanism and the wind turbine blade, and the mechanism

climbs the tower and lowers the blade to the deck of the vessel. Moreover, the same climbing mechanism can be reused for installation or

decommissioning of several blades.

Potentially critical installation activities of the novel blade replacement concept are identified. These activities are the positioning of the

jack-up vessel, climbing of the mechanism, and lowering of the OWT blade. For these activities, the corresponding response parameters that limit

the operations are used to assess the operational limits. These parameters are the impact velocity between the legs of the jack-up vessel and the

seabed, the stresses in the wind turbine tower due to contact with the climbing mechanism, and the impact velocities of the blade during the

lowering process.
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Technical feasibility of the proposed concept is demonstrated through numerical simulations, and operational limits are assessed of the

potentially critical marine operation activities. For positioning of the jack-up vessel, the operational limits are established in terms of significant

wave height and wave spectral peak period. Based on these results and common industrial practices, the installation activity is shown to

be feasible. Regarding the structural integrity of the OWT tower, the stresses caused by the tower climbing mechanism are lower than the

yield strength of most structural steels used in tower construction. Finally, for the blade lowering activity, a more comprehensive format for

systematically derived limiting curves of the wind speed are provided. These formats for operational limits can be useful to make an on-board

decision during execution of marine operations.

Operational limits of installation activities used in the numerical analyses are specifically for the structures considered in this study. In practice,

structures can have different dynamic and structural parameters, motion compensation systems can be employed, and blade decommissioning

configurations can be optimized. Thus, higher operational limits can be achieved.

To assess the feasibility of the blade lowering activity, steady-state time-domain simulations for two blade configurations are conducted. In

future, time-domain simulations of the nonstationary lowering operation are recommended to assess the dynamic responses of the blade and

thus to establish the operational limits.

Although several concepts for pole climbing robots exist and the proposed climbing mechanism concept has been tested, multibody simulation

of this mechanism including the actual size of structural members and payload should be conducted.

This work assumes a jacket support structure for the OWT and ignores vibrations of the support structure in waves. In future, if monopile

foundations are used, global motions of the wind turbine foundation should be considered during modeling of the blade lowering processes and

the limiting environmental conditions. The crane boom flexibility can be addressed as well.

Operability analyses of the proposed OWT blade replacement concept can be conducted and compared with those from actual industrial

practices.
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