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ABSTRACT Most of the literature on utility pattern mining (UPM) assumes that the particular patterns’
utility in known in advance. Concurrently, in frequent pattern mining (FPM) it is assumed that all patterns
take the same value. In reality, the information about the utility of patterns is not or hardly available in
most cases. Moreover, the utility and frequency of the particular pattern are not directly proportional.
An algorithm for estimating a generic pattern utility has been recently proposed, but the numeric results might
be difficult to interpret. In particular, in datasets with many independent instances or groups. In this paper,
we present an approach to generating utility bitmaps that provide visual representation of the numeric data
obtained using generic pattern utility algorithm. We demonstrate validity of this approach on two datasets:
PAMAP2Physical ActivityMonitoringData Set, an open dataset from theUCIMachine LearningRepository,
and an ECG dataset collected using Biopac Student Lab during Ruffier’s test. For PAMAP2 dataset, utility
bitmaps allow for immediate separation of various physical activities. Variation between participants are
present, but do not overshadow differences between the activity types. For the ECG dataset, utility bitmaps
immediately indicate age and fitness differences between the participants, even thought this information
was not available to the algorithm. In both cases, partial similarity in bitmaps can be traced back to partial
similarity in activities or participants generating the data. Based on these tests, the approach seems to be
promising for exploratory analysis of large collections of long time series and possibly other sequential
patterns such as distance series common in sports data analysis and depth series common in petroleum
engineering.

INDEX TERMS Data visualization, DTW, exploratory data analysis, intelligent icons, SAX, sequential
pattern, utility, utility visualization.

I. INTRODUCTION
Most of the literature on utility patterns (UPM) assumes a pri-
ori knowledge about the utility of given patterns. Research
works concentrate on the development of efficient algorithms
for detection of patterns with the highest utility [1]. On the
other hand not much attention is related to cases where there
is no a priori knowledge about the utility of the examined
dataset but the higher utility can be assumed for some partic-
ular (sequential) patterns. It can be considered as a frequent
pattern mining problem (FMP) but in this approach all types
of patterns take the same value [2]. Inmany cases, the patterns

The associate editor coordinating the review of this manuscript and
approving it for publication was Philippe Fournier-Viger.

of interest may appear not frequently enough in the examined
sequence or may be infrequent w.r.t. the set of sequences so
that in analysis based on the existing methods they would be
omitted.

An algorithm for estimating a generic pattern utility has
been proposed in [15], but the numeric results might be
difficult to interpret. In particular, in datasets with many
independent instances or groups. In this paper, we present
an approach to generating utility bitmaps that provide visual
representation of the numeric data obtained using generic
pattern utility algorithm.

Time-series bitmaps, also called intelligent icons, have
been proposed byKumar et al. in [16] andKeogh et al. in [17].
Such bitmaps provide an overview of general distribution of
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values and their sequence in the dataset in a relatively fix
amount of space. The size of a bitmap or an icon does not
depend on the length of time series, rather bigger bitmaps
provide greater level of detail. These methods are inspired
by fractal drawing algorithm Chaos Game [18]. The detailed
approach they use depends on reducing value span to only
four possible values. They proved to be useful for many
sequential datasets, such as DNA, ECG, and other.

However, the limited value span and focus on representing
the whole dataset might be a limitation in many applica-
tions. Sometimes small changes are of critical importance
to show difference between instances, but might be too
small to change value distribution statistics for the whole
datasets. One example is a difference in heart rate between
activities such as ascending stairs and Nordic walking in
PAMAP2 dataset. In earlier work, we demonstrated that it is
possible to identify a set of short heart rate subsequences that
separate such very similar (in terms of heart rate) activities.

While these subsequences show high utility they are sim-
ply a set of numbers and might be difficult to interpret at
first. Especially, in presence of large number of instances or
groups in the dataset. In this paper, we present an approach to
converting these numeric results to easy to interpret bitmaps,
that we call utility bitmaps. In contrast to earlier time-series
bitmaps and intelligent icons, utility bitmaps are based only
on representing themost useful subsequences and can use any
value span.

We provide a proof of the effectiveness of our approach
using PAMAP2 Physical Activity Monitoring Data Set [3],
[4], an open dataset from the UCI Machine Learning Reposi-
tory [13] and an ECG dataset collected using Biopac Student
Lab during Ruffier’s test.

The reminder of the paper is organized as follows.
In Section II, we provide a short overview of related work.
In Section III, we explain the core problem in details and
follow with specification of a solution in Section IV. We vali-
date the solution with PAMAP2 dataset in Section V and with
ECG dataset in Section VI. We conclude and outline future
work in Section VII.

II. RELATED WORK
A. TIME SERIES DATA REPRESENTATION
Wang et al. in [19] present an experimental comparison of
representation methods for time series data. Representation
methods can be divided into data adaptive and non-data
adaptive. Data adaptive methods include: piecewise polyno-
mials, Adaptive Piecewise Constant Approximation (APCA),
Singular Value Decomposition (SVD), symbolic, and trees.
Symbolic methods include commonly used SAX [11] and its
derivatives iSAX [21], 1D-SAX [12].

Non-data adaptive representation methods include:
wavelets, random mappings, spectral, and Piecewise
Aggregate Approximation (PAA). Spectral methods include
commonly used Discrete Fourier Transformation (DFT).

Authors report that methods such as SVD and PCA are
not feasible for large datasets. On the other hand, there are

multiple projects that use DFT, DWT, PAA, and SAX for
large datasets.

All representation methods are compared using Tightness
of Lower Band (TLB), which is a ratio of lower bound dis-
tance to true Euclidean distance. TLB has a value between 0
and 1. The lower the value the bigger reduction in number of
disk accesses can be expected, while preserving quality of the
representation.

Based on the experiments performed by authors of [19] on
80 different datasets from UCR Time Series Repository [20],
the differences on average were rather small. However, peri-
odic datasets favor spectral representations, such as DFT,
while bursty data favor APCA.

Due to small differences in performance, representation is
often selected based on specific needs of a particular use-case.
Sometimes, certain methods tend to be more popular in some
applications areas. DFT and wavelets are common in signal
processing, while SAX and other symbolic methods are com-
mon in generic and long time series analysis. To fit a partic-
ular use-case authors often create custom extension to one
of the main methods. A good example is ESAX [22], which
adapts SAX for financial applications. It allows for better
representation of minima and maxima that would otherwise
be omitted in the regular SAX.

B. UTILITY OF SEQUENTIAL PATTERNS
In recent years the topic of mining for patterns of high
importance has been widely explored. Patterns can be defined
as frequent subsequences (sequential patterns), ordered set
of elements or events, or can be characterized by more or
less complicated set of association rules in case of more
complex patterns. One of the properties of interest is a utility.
Utility can be considered as a subjective measure based on
expert knowledge or user preferences. It may be defined as
a performance metric or measure how much given pattern
contributes to a predefined objective function. Existing utility
pattern mining algorithms can be divided into four categories:
(1) apriori-based, (2) tree-based, (3) projection-based, and
(4) vertical-/horizontal-data-based. Overview and in-depth
analysis of existing algorithms can be found in [1].

Frequent pattern mining algorithms, such as Eclat,
TreeProjections, and FP-growth were discussed in a survey
by Aggarwal et al. in [2]. These algorithms have one main
limitation, namely they use only one measure of pattern’s
relevance, that is frequency. The occurrence frequency of
particular pattern may not be enough for decision mak-
ing and some other features or more information may be
required. Chan et al. in [23] presented high-utility itemset
mining (HUIM), where more factors important in mining
the high-utility patterns were considered, such as the unit
profit of the item or the quantity of items. The concept
of HUIM based on external information was proposed by
Yao et al. in [36] but this approach suffers the problem
of ‘‘combinational explosion’’. Transaction-weighted uti-
lization (TWU) model was defined by Liu et al. in [25]
to hold the downward closure property for mining the
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required information. A number of extensions based on TWU
model was developed, i.e. HUI-Miner [26], HUP-tree [27],
skyline HUIM [28], high-utility occupancy pattern mining
(HUOPM) [29], IHUP [33], or UP-growth+ [34].

The use of utility concept was extended to sequen-
tial pattern mining (SPM) [30], [31]. In the survey by
Fournier-Viger et al. [5] developments in SPM are discussed.
They consider high-utility sequential pattern mining as a
popular extension to SPM when frequency of occurrence
is not sufficient and utility metric is required. They also
assume that there exists prior knowledge about the utility
that is associated with particular elements of the dataset.
Application of utility concepts and uncertain sequence data in
mining the average-utility pattern was discussed by Lin et al.
in [32]. They proposed considering the size of the itemset as
a measure of utility.

Outlier detection is one of the real applications of the utility
concept, what is presented in the survey of algorithms for
detecting outliers in temporal data [7]. The authors include
the discussion on outliers subseries, however, the measures
used assume a comparison only with the remaining parts of
the particular time series. A similar approach is taken by
Keogh et al. [6] in their work on finding surprising patterns.
However, in the existing research the situation, where the
high-utility itemset does not differ significantly from its sur-
rounding, has not been given much attention yet.

C. VISUALIZATION OF TIME SERIES AND SEQUENTIAL
PATTERNS
Visualization of data makes people understand meaning
of data much quicker than a textual description. Visual-
ization techniques in [35] are classified into 7 categories:
3D/volumetric charts (3D brain maps, interactive geo-spatial
maps), icons, maps, multidimensional charts (area charts,
bar graphs, bipartite graphs, box plots, bubble charts, causal
network visualizations and heatmaps, key performance indi-
cators, line graphs, pie charts and scatter plots), tables, tempo-
ral/timeline graphs (simple time series graphs with or without
color coding) and textual descriptions. It has been found in
[36] that positional and colour visual encodings are recom-
mended for detection tasks and time series visualisations.
On the other hand, more effective for the task of compar-
ison are techniques using area visual encodings. Another
important aspect is coordinate system. In general Cartesian
coordinate system for time series visualizations is more
effective than Polar.

Visualization techniques for sequential patterns can
be divided into five types: individual representations,
flow diagrams, aggregated pattern visualizations, placement
strategies, and episode visualizations [37]. Each of these
types has its advantages and disadvantages. Individual rep-
resentations are characterized by poor scalability. On the
other hand using this technique the user is able to completely
identify all the pattern elements. Better scalability is achieved
using flow diagrams, this technique also provides relatively
good support for comparison of the patterns. Most types

of flow diagrams include also some kind of interestingness
measures. The greatest advantage of the aggregated pattern
visualization technique is the possibility to present many
missing events that are not included in the pattern itself. This
technique can be applied for visualization of maximal, closed
or generator patterns as it shows the amount of informa-
tion that is lost in the process of compression. The pattern
placement strategies are presenting the abstract visualiza-
tions of the patterns, what provides very good scalability
both in terms of alphabet size and the number of patterns.
Finally, the episode visualizations enable the identification
of periodic occurrence-patterns and show the occurrences of
patterns present in an event sequence.

III. BACKGROUND
This work focuses on visualization of sequential patterns.
Time series are the most common example of such patterns.
They can represent virtual variables (e.g. CPU load, network
traffic) or real variables (temperature changes, HR vari-
ations). Typical sequential patterns are a variation of a
single variable with time. However, more complex sequen-
tial patterns also exist, e.g. purchase patterns, while more
convoluted, have an underlying time component.

In order to present our visualization method, we repeat a
basic definition of a time series, following the original work
on generic utility of sequential patterns [15].

Time series S of a length T can be defined as a list of
values ordered by time, Eq. 1. Usually time distance between
consecutive values is uniform for the particular time series,
in such a case we say that the time series has a constant
sampling rate.

S = (s1, . . . , st , . . . , sT ), t ∈ N, st ∈ R (1)

Given a time series S, a subsequence Ssub of S of length L,
Eq. 2, is a series consisting of L contiguous elements from S.

Ssub = (sl, . . . , sl+L−1), l ∈ N and

1 6 l 6 T − L + 1, sl ∈ R (2)

A distance measure D, presented in Eq. 3, between two
time series S1 and S2 is a function that calculates the similarity
between the given time series. Depending on the particular
distance measure given, time series might have to be of the
same length.

D(S1, S2)→ [0,∞) (3)

A subsequence distance measure between time series S
and a shorter time series Q can be defined as the mini-
mum distance between the Q and any subsequence of S,
Eq. 4.

Dsub(S,Q) = min(D(Ssub,Q)) (4)

All data used further in the paper were z-normalized and
SAX [14] representation was obtained. Following parameters
were used, length reduction was 1 to 50, meaning 50 time
points of original time series were corresponding to each
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SAX symbol. Various alphabet sizeswere tested, but nomajor
difference in results was observed. Results presented further
in the paper use alphabet of size 4. Mostly, due to the same
alphabet size being used in the main related paper.

IV. METHOD SPECIFICATION
In this section, we first provide an overview of an approxi-
mate method to calculating generic utility of sequential pat-
terns, including some improvements we introduced with this
work. Thismethod is described in detail and evaluated in [15].
Next, we present an approach to generating a simple, yet
informative, visualization of such patterns in form of utility
bitmaps.

A. GENERIC UTILITY OF SEQUENTIAL PATTERNS
The generic utility of sequential patterns was proposed in [15]
as a utility measure for datasets that lack user-specified
utility values. The approach is on a surface similar to
term frequency, inverse document frequency method. How-
ever, the frequency is replaced with a separation calculated
using subsequence Dynamic Time Warping (DTW) similar-
ity. DTW is a widely used similarity measure for time series
and sequence data in general.

Since longer sequences might be naturally preferred as
more unique, the method compensates for that using a length
adjustment factor integrated in the utility formula. The factor
integrates both the typical length of a sequence in the dataset
and the length of the particular tested subsequence.

We define the utility of the subsequence Usseq in Eq. 5,
as a normalized difference of subsequence DTW distance in
the sample s and out in the population P, specified in Eq. 6.
In the original work the difference was calculated based on
the distance in the group and out of the group. Such approach
assumes that group information is known for at least part
of the dataset. In this work this limitation was lifted and
further results show that the method can produce expected
results without group information, at least for the purpose of
the visualization. In fact, as demonstrated later, it can reveal
existing groups. The difference in DTW distance is further
adjusted by length penalizing factor. Important to note is that
normalization is with a range of [−1, 1].
A high positive value is an indication that the tested subse-

quence is a good discriminator between a particular sequence
and the remaining sequences. It can be a good candidate to
use in learning algorithms or for visualization. Values around
zero imply that the tested subsequence is equally common for
the particular sequence and the remaining sequences. A high
negative values, on the other hand, means that the tested
subsequence is better represented in the remaining sequences.
It can be used as a form of negative feedback to learning
algorithms.

Usseq = ̂(DP − Ds) ∗ Ladj (5)

DP = S−DTW (sseq,P) (6a)

Ds = S−DTW (sseq, s) (6b)

To adjust for natural preference for longer subsequences
adjustment term Ladj is introduced in Eq. 7. It is particularly
important for scenarios when each sequence is considered
against the remaining corpus of sequences, rather than group
of sequences against another group. In the base the adjust-
ment terms we have length of the subsequence L, in the
exponent we have penalizing factor −pf is the exponent.
Such a function ensures that for a subsequence of length

equal 1 the value is 1 and the longer the subsequence gets the
closer the Ladj gets to 0. Factor pf can adjust how fast that
happens. In the earlier work that parameter was defined to be
a logarithm of a length of an average sequence in the corpus,
we follow the earlier definition here.

Ladj = L−pf (7a)

pf = log(Lavg) (7b)

B. UTILITY BITMAPS DEFINITION
Execution of the generic utility algorithm provides a list of
subsequences with highest utility. In a standard version all
subsequences are of the same length X, the amount of the
subsequences Y can also be defined by the user. Each element
x of each subsequence y has a discrete value in a range Z. Such
a list of subsequencesmy,x can be represented as a row-major
matrix My,x , as in Eq. 8.

My,x =

m1,1 m1,... m1,X
m...,1 m...,... m...,X
mY ,1 my,... mY ,X

 (8)

Eq. 9 presents an example utility list EUL of length Y = 3
seen as the amount of rows in the matrix, and subsequences
of length X = 4 seen as the amount of elements in each row
in the matrix, and value range Z = 5.

EUL =

5 3 1 1
1 3 3 1
5 3 3 1

 (9)

Both the generic utility numbers and the relatively highly
processed values of the subsequences can be difficult to
interpret. In particular, in datasets with many independent
instances or groups. However, converting such numeric data
to colors or shades of gray can have positive effects on
interpretability.
We define a color mapping function cm in Eq. 10. The

function maps from a domain of values V to a domain of
colors C, defined as standard additive color model consisting
of red R, green G, blue B components. Such color mapping
functions are available in most of data analytic tools.

cm : V 7→ C (10a)

where C = (R,G,B) (10b)

We apply a typical grayscale color mapping function to our
example utility list, it results in a new matrix presented in
Eq. 11. Value of 245 is the selectedmaximum and value of 0 is
the minimum. Since the color model is additive, the potential
maximum values of 255 for each RGB component would
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result in color white. The minimum values of 0 for each RGB
component result in color black.

In our experiments we noticed that some users misin-
terpreted color white as a lack of information instead of
low or high value. Therefore, we recommend limiting color
spectrum in a way that pure white is avoided. This is
why selected maximum value is 245 and medium value
becomes 123. Sometimes it might also be helpful to reverse
the colors, that is for dark shades to represent high values
and respectively light shade to represent low values. It can
be achieved by a simple reversed scaling. Such choice is
made in Sections V and VI, since it was preferred by users
during testing. At the same time, we do not recommend such
reversed scaling if full color mapping is used. This is the
reason why all the formulas and the algorithm use regular
scaling in (11), as shown at the bottom of this page.

Finally, we use list dimensions as x,y coordinates and
convert RGB values to actual shades of gray. Results are
visible in Figure 1. Pure white color was adjusted to a slight
shade of gray, as recommended.

FIGURE 1. Example utility bitmap.

Along the y axis we see 3 different subseries, where impor-
tance decreases from top to bottom, as marked by the ticks.
Along the x axis we see pattern progression along each of the
subseries. In this case, darker tones represent lower values
and lighter tones higher values. This can be adjusted with a
different color map.

Another element that can be adjusted is how scaling is
performed. It is possible to perform scaling for multiple
instances or groups. Data can be scaled for the whole dataset
or per individual or group. We found all strategies useful
when testing the approach for various datasets.

C. UTILITY BITMAPS ALGORITHM
After presenting a definition of utility bitmaps in the previous
subsection, we present a basic Algorithm 1 that transforms a
list of subsequences with highest utility to utility bitmaps.

The input list of sequences TS is identical to the output list
of the algorithms from [15]. The length of sequences X can
be either set by the user or optimized by the algorithm. The
amount of sequences Y is in principle selected manually, but

a simple threshold rule can also be established. The output of
the algorithm is a matrix BM with Y rows and X columns.

In lines 1-3 we define a simple grayscale color mapping
function gray_cm. It takes 5 arguments. First argument v is
the value to be scaled. Next two arguments min_v and max_v
are extrema of values present in the dataset to be scaled. In our
case it will be TS and these extrema are obtained in lines 5-6.
The last two arguments are the extrema of the output data
we want to achieve. In our case they correspond to extrema
of BM, we select them to be 0 and 245, what is visible in
line 9. 255 is the maximum range of a byte value, which is
a typical value for specifying maximum intensity of a color
component. However, we reduce this value by 10 to avoid
pure white color in the utility bitmaps. Such white color was,
in our experiments, misinterpreted by the users as lack of
information, instead of a maximum value. We recommend
such limitation to the colormap range for any colormap that
uses white for highest scalar values.

In lines 7 and 8 we iterate first over each high-utility
subsequence and then over each element of the subsequence.
For each element in line 9 we obtained a color representation
of the element.

The resulting matrix BM can be best represented as matrix
of squares filled by a color defined by the respective (r,g,b)
values from the BM matrix organized in a Cartesian coordi-
nate system. We recommend that x axis should be oriented,
as usual, to the right, but y axis should be oriented downwards,
which is the opposite of a typical orientation. The reason is
to place the most important subsequence to the top of the
bitmap.

V. VALIDATION WITH PAMAP2 DATASET
In this section, we apply the outlined approach to heart rate
data from PAMAP2 dataset collected during three different
physical activities for a number of subjects.

A. DATASET DESCRIPTION
The effectiveness of the proposed method was tested on two
use cases from the PAMAP2 dataset. For these use cases two
pairs of heart rate (HR) signals were selected: (1) signals
recorded during lying and ascending the stairs, and (2) sig-
nals recorded during ascending the stairs and during Nordic
walking.

The first use case is supposed to provide an initial proof that
the proposed method can provide a clear separation between
the activities in the generated visualisations. For this reason
selectedHR signals significantly differ from each other. Heart
rate patterns for the first use case are presented in Figure 2.
The difference between the two traces can be easily observed,
what should also be presented on the visualization produced

EULcm =

(245, 245, 245) (123, 123, 123) (0, 0, 0) (0, 0, 0)
(0, 0, 0) (123, 123, 123) (123, 123, 123) (0, 0, 0)

(245, 245, 245) (123, 123, 123) (123, 123, 123) (0, 0, 0)

 (11)
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Algorithm 1 Outline of the Proposed Algorithm
Data: TS := [Tsub1 , . . . , Tsuby , . . . , TsubY ] ≡ [[v1,1, v1,x,

v1,X], [vy,1, vy,x, vy,X] [vY,1, vY,x, vY,X]] a list of Y
subsequences with highest utility, each of length X

Result: BM := [[(r,g,b)1,1, (r,g,b)1,x, (r,g,b)1,X],
[(r,g,b)y,1, (r,g,b)y,x, (r,g,b)y,X] [(r,g,b)Y,1,
(r,g,b)Y,x, (r,g,b)Y,X]] a matrix of Y rows and X
columns, each element consisting of 3 (red,
green, and blue) scalar components of an
additive color model

1 Function gray_cm(v, min_v, max_v, lowest, highest):
2 scale = (highest − lowest) / (max_v − min_v);
3 tval := scale*v + lowest − min_v*scale;
4 return (tval, tval, tval);

5 minTS := min(TS);
6 maxTS := max(TS);
7 for y := 1 to Y do
8 for x := 1 to X do
9 BMy,x := gray_cm(TSy,x, minTS, maxTS, 0,

245);
10 end
11 end

by the proposed algorithm. However, we can see on the
plot that there are two parts of the HR traces close to each
other: in the first 5 instances, and later in time instants
between 15 and 18.

FIGURE 2. Heart rate trace during lying and ascending stairs.

The second use case is potentiallymore difficult as selected
HR signals are fairly similar. Small variations result from dif-
ferences in the exercise protocol followed by the test subjects.
The heart rate patterns during Nordic walking and ascending
the stairs are presented in Figure 3. Some differences are
visible on the plots, but they are not as significant as in case
of lying and ascending the stairs. The parts of the HR traces
for instances from 15 to 18 might at first seem very different
between the two activities. However, keeping in mind that in
the proposed method the direct time correspondence is not
considered, this part of the trace for ascending the stairs can

FIGURE 3. Heart rate trace during Nordic walking and ascending stairs.

be matched partially to the initial rise. Nevertheless, the pro-
posed algorithm should also produce visualisation providing
separation between the two examined activities, though it
might not be as clear as in the first example.

Presented figureswithHR trace show heart rate patterns for
one selected participant. The resulting utility bitmaps include
all the participants. Results produced by the proposed method
are based only on the heart rate signal. More clear separation
might be achieved with accelerometer data included.

The original method for finding most useful subse-
quences [15] does not assume that there is a direct time
correspondence between two compared time series. Such an
assumption would be simply too limiting. First of all, real-life
data would seldom be perfectly aligned. Even in cases where
alignment data could be available, it would require a sig-
nificant effort to make use of it, except for a small subset
of scenarios. Moreover, it would create issues with different
length of datasets. Either large portion of the data would have
to be discarded or multiple convolutions would have to be
considered adding to computational complexity. As a result,
we calculate the utility of a subsequence with respect to any
potential positioning in the dataset.

B. RESULTS AND DISCUSSION
Figure 4 presents utility bitmaps generated applying outlined
approach (first finding a set of most useful subsequences,
then visualizing them in form of a bitmap) to an HR trace
of 3 different subjects performing Nordic walking.

There is a clear similarity between between bitmap for each
subject. Top 3 subsequences for Subject 1 and Subject 2 are
identical and 4th subsequence for Subject 1 is the same as 5th
subsequences for 2. Subject 3 shares the top subsequencewith
other 2 subjects, 2nd most important subsequence is the same
as 4th most important for Subject 2, and 3rd most important
subsequence is the same as 5th most important for Subject 1.

Figure 5 presents utility bitmaps generated based on the
HR trace of 3 different subjects lying down.

For Subject 1 and 2 the whole utility bitmaps are in fact
identical. For subject 3 1st and 5th subsequence are also the
same. There are some small differences in 2nd, 3rd, and 4th
pattern when comparing Subject 3 with the other two.
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FIGURE 4. Utility bitmaps for Nordic walking.

FIGURE 5. Utility bitmaps for lying down.

When comparing to utility bitmaps for Nordic walking the
differences are clear and there is no doubt about grouping
of activities despite some differences in bitmaps between
subjects.

Figure 6 show utility bitmaps generated applying outlined
approach (first finding a set of most useful subsequences,
then visualizing them in form of a bitmap) to an hr trace
of 3 different participants ascending stairs.

In this case bitmaps for part 1 and 3 are identical. For 2 we
observe small differences on the right side of patterns 2 and 4,
but they are really minor.

FIGURE 6. Utility bitmaps for ascending stairs.

When comparing to utility bitmaps for lying the differences
are as clear as in the earlier case and there is no doubt about
grouping of activities despite some differences in bitmaps
between participants.

In a more difficult scenario, when comparing to utility
bitmaps for Nordic walking a clear separation is anyway vis-
ible. There is an overlap for some subsequences, in particular
1st subsequence, but the whole bitmap is noticeably different.
Both on individual and group level.

VI. VALIDATION WITH ECG DATASET
In this section a set of ECG data collected using Biopac
Student Lab during Ruffier’s test are analyzed. Unlike data
discussed in Section V here the signals were collected from
persons performing the same physical exercise, however the
subjects are characterized by different level of cardiovascular
fitness.

A. DATASET DESCRIPTION
The aim of the experiment performed at LUT was to deter-
mine heart rate changes in time on the basis of the recorded
signals (ECG) during the cardiac stress test. Data were
acquired from 5 male volunteers. Each participant showed
different tolerance to physical effort due to the type of work
performed. There were no contraindications for carrying out
performance/cardiac stress tests as none of the examined per-
sons had diagnosed cardiovascular diseases (and in particular
problems with heart activity). Before conducting the tests,
they were informed about the course and purpose of the
experiment, and signed the permission for analysis of their
registered signals.

Before the study, each person was assigned the appropriate
level of a 4-grade scale that determined physical condition
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based on the self-assessment, profession and performed inter-
view (1 - poor, 2-average, 3-good, 4-very good).
• Person 1: age 47, fireman, physical condition: 3;
• Person 2: age 22, physical/construction worker, physical
condition: 4;

• Person 3: age 19, student physically active before start-
ing studies, physical condition: 2

• Person 4: age 23, office worker, hobby: playing hand-
ball, physical condition: 2

• Person 5: age 30, computer scientist, physical
condition: 1

Performed experiment was based on the Ruffier’s test. The
subjects performed 30 sit-ups during one minute. Each of
the respondents was asked to wear appropriate clothing that
did not limit movements during exercise. The time of each
participants’ ECG signal registration lasted 210 seconds and
was divided into 3 stages:

1) Resting in a sitting position for 60 seconds (heart rate
measurement at the beginning of time measurement).

2) Effort (30 sit-ups) in 60 seconds.
3) Rest in a sitting position for 90 seconds (heart rate mea-

surement immediately after exercise and after 1 minute
of rest).

Additionally pulse measurement was performed by examined
person (they declared that they could measure their heart
rate).

The Biopac Student Lab (BSL) system was used for mea-
suring the pulse in specified time periods and for continuous
ECG signal recording. To monitor the heart activity, three
bipolar leads were used according to the Einthoven triangle,
in which the electrodes are placed on the limbs (2 on the
upper limbs and 1 on the lower left limb). This arrangement
of electrodes makes it possible to obtain a high-quality signal
at rest. However, during effort, when both the lower and
upper limbs move, such arrangement of the electrodes would
affect the signal quality due to the large amount of interfer-
ence in the recorded signal. For this reason, the electrodes
from the upper limbs were moved subclavian cavities, while
the electrode from the lower limb was moved below the
navel line. This allowed to limit the movement of the elec-
trodes, and thus reduce the amount of noise in the collected
signal.

During the conducted tests, electrical activity of the
heart (ECG) was recorded using Biopac Student Lab system.
Analog signals were converted to digital ones with a sampling
frequency of 200 Hz. The signal was amplified 1000 times
and preprocessed by using a low-pass filter with a cut-off
frequency of 150Hz. The recorded data was saved in the ‘.txt’
file. Each of the recorded signals has been analyzed according
to the following algorithm:

1) Removal of cardiac isoelectric line flow by using
median filter.

2) Determination of local minima and maxima (initial
detection of QRS complexes).

3) Limit the distance between detected maxima and min-
ima to less than 10 samples.

4) Limit the maximum and minimum amplitude (thresh-
old value selected directly for the registered signal).

5) Determination of RR intervals
6) Determination of HR changes in time according to the

equation HR = 60 / RR.
7) Median filtration of obtained signal.
Obtained waveforms are presented in Figure 7. For

person 1 it can be seen that after the start of exercise, there is
a rapid increase in heart rate, but it does not reach a very high
value. It means that the person has rather good cardiovascular
fitness. Even during exercise, the frequency of heart beats
gradually decreases, but during the minute of rest it does not
reach the initial value. For person 2, heart rate during exercise
increases with lower intensity than for person 1, however,
it reaches much higher values. After exercise, the maximum
value is maintained for about 5 seconds. After a minute of
rest the heart rate does not return to the initial value. The
interview conducted before the start of the study suggested
that this person has very good physical fitness. The results of
the study do confirm that. This person, being a construction
worker, regularly performs strength training, but it does not
improve cardiovascular fitness as opposed to aerobic training.
For person 3, a sharp increase in heart rate can be observed
after the start of exercise, after the end of exercise, for another
7 seconds, the heart rate continues to increase. Next we
observe a short, sharp drop of HR followed by the slow
decrease of the heart rate. In the case of person 4, during
the effort, the heart rate increases to about 120bpm and after
the exercise it falls quite rapidly. For person 5, it can be seen
that after the start of the exercise, the heart rate increases to
over 160 beats per minute, and after the end of the exercise,
the value decreases, however, it does not return to the value
at the beginning of the test.

FIGURE 7. Heart rate trace during the experiment.

B. RESULTS AND DISCUSSION
Utility bitmaps were generated for the examined persons in
the period of resting after the sit-ups session. We can observe
clear patters for 3 groups, what was not visible in the plots
in time domain. Results suggest that persons 2 and 5 are in
poor physical condition, while persons 1, 3 and 4 are in good
physical condition, however person 1 was significantly older
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than the rest of the participants what resulted in his qualifying
for a separate group.

In Figure 8 we can see utility bitmaps for persons 3 and 4.
The most significant elements show high values (light color
of elements) in both cases. It represents high HR right after
the exercise period. Next rows, in the order of importance,
show rather rapid transitions between the high and low HR
values. This is characteristic for persons with good overall
physical and cardiovascular fitness.

FIGURE 8. Utility bitmaps for participants three and four.

Figure 9 presents utility bitmaps for persons 2 and 5. They
are exactly the same, showing the pattern of relatively low
HR values being the most significant. It suggests a trend
of small changes of HR in the resting period after exer-
cise session. Other segments, apart from the elements in
the second row, also show minor changes what is a sign of
slow process of returning to the low heart rate values. Such
patter is characteristic for persons with poor cardiovascular
fitness.

FIGURE 9. Utility bitmaps for participants two and five.

Figure 10 shows the results for person 1. The most
significant components in the signal are those with very
low values as this person does not achieve high HR values
throughout the whole Ruffier’s test. In general there are no
high values present in this utility bitmap. It implies that the
person is in good physical shape and is characterized by high
efficiency of the circulatory system. Lower HR values are
characteristic for older persons, therefore we can see that
this utility bitmap, generated for person aged 47, is signifi-
cantly different than bitmaps obtained for fit persons in their
early 20s.

FIGURE 10. Utility bitmap for participant one.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed an approach to visualization of
generic utility of sequential patterns. Based on algorithm for
finding generic utility of sequential patterns and an approach
inspired by time series bitmaps.

We provided a proof of the effectiveness of our approach
using PAMAP2 Physical Activity Monitoring Data Set [3],
[4], an open dataset from the UCI Machine Learning Reposi-
tory and an ECG dataset collected using Biopac Student Lab
during Ruffier’s test.

For PAMAP2 dataset, utility bitmaps allow for immediate
separation of various physical activities. Variation between
participants are present, but do not overshadow differences
between the activity types.

For the ECG dataset, utility bitmaps immediately indicate
age and fitness differences between the participants, even
thought this information was not available to the algorithm.
In both cases, partial similarity in bitmaps can be traced back
to partial similarity in activities or participants generating the
data.

Based on these tests the approach seems to be promising
for exploratory analysis of large collections of long time
series and possibly other sequential patterns such as distance
series common in sports data analysis and depth series com-
mon in petroleum engineering.

Possible application of utility bitmaps is EEG signal analy-
sis for detection of various brain reactions to particular stimuli
among large groups of patients. People react in different
way to visual, auditory, olfactory or other sensory stimuli,
depending on their personal characteristics, experience or
associations. Changes of power spectral density of particular
brainwaves in time are often hard to detect and interpret when
presented in a form of waveforms in time. Utility bitmaps can
be helpful in detection of specific patterns and dependencies
between the type of stimuli and patients’ characteristics.

The proposed method can be extended to analysis of video
sequences, in everyday life applications, including object
detection and tracking, or in medical imaging involving
long sequences, such as videoendoscopy. One of the pos-
sible applications is videoplethysmography (VPG), where,
depending on the personal characteristics of the patient, cru-
cial information can be included in different color spaces,
channels or combinations of channels.
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