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Preface
This thesis is submitted as partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Stavanger, Norway. The
research has been carried out at the Department of Electrical Engineering
and Computer Science (IDE) in collaboration with the Centre for Organelle
Research (CORE), both at the University of Stavanger. A period of ten
months (from September 2017 through June 2018) was spent as a visiting
research scholar at the Systems Biology and Cancer Metabolism Laboratory,
directed by Prof. Fabian V. Filipp, at the University of California, Merced.
The research has resulted in four scientific papers, three of which are

published and one is submitted for review. The work and results in these
papers are presented as a coherent narrative in this thesis. Thus, the thesis
takes a form that is closer to the coherent monograph. The thesis consists
of six chapters, where the main part (chapters 3–5) presents the research
results in a logical progression. The chapters are written so that the reader
can fully understand the work and results without having to carefully read
each individual paper. For completeness, the full papers are included at
the end of the thesis.

Daniel Myklatun Tveit, June 2020
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Abstract
Cells are exposed to a range of external and internal disturbances that
may influence the function of cellular processes. The ability of cells to
self-regulate and adapt to disturbances enable them to maintain essen-
tial variables within narrow limits for proper biological function. This
phenomenon is known as homeostasis, and is achieved through certain
structural properties of cellular control processes. In particular, negative
feedback and integral action play crucial roles in the regulation within cells.

Many cellular processes are tightly regulated, and display so-called per-
fect adaptation to stepwise perturbations. It has been shown that integral
feedback control achieves perfect adaptation in a variety biological systems.
These observations have motivated researches to investigate cellular control
processes from the perspective of robust control in recent years. It is clear
that concepts from control theory, more commonly applied to the automa-
tion of engineered systems, are applicable to the analysis and construction
of biological control networks.
Whereas cellular control processes have been extensively studied with

regards to stepwise perturbations in a regulated variable, less attention has
been given to disturbances that affect cellular constituents globally, such as
growth-induced dilution, and time-varying perturbations. In this thesis, we
aim to take a bottom-up approach to investigate cellular control processes
and characterize structural properties that give rise to homeostatic behav-
iors. In particular, we investigate a class of eight two-component control
motifs, described by nonlinear saturation kinetics, to show asymptotic
stability and robustness. We go on to show how parameters related to
molecular and kinetic mechanisms influence set-point tracking and dis-
turbance rejection properties of the two-component control motifs, and
investigate how nonlinearities affect these properties. We also characterize
certain constraints and trade-offs associated with the control motifs, and
study their performance for time-varying perturbations.

In the last part of the thesis, we investigate disturbances in the form of
growth-induced dilution of cellular constituents and stochastic fluctuations.
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Especially for cancer cells is it expected that dilution poses a significant
challenge for the effective regulation of metabolism, due to increased gly-
colytic and proliferative activity leading to cell swelling and growth-induced
dilution. Based on the reported rewiring of glycolysis in cancer, and dif-
ferential gene expression data from the Expression Atlas database, we
construct a simplified mathematical model of glucose uptake. We show how
cancer cells can regulate and maintain an increased uptake and metabolism
of glucose during growth. In particular, a nested feedback architecture of
the two-component control motifs is crucial to this end. To incorporate the
effects of uncertainty and noise, we also present a stochastic version of the
glucose uptake model, and show stochastic simulations relate to simulations
of the deterministic version.
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Chapter 1

Introduction
1.1 Cybernetics: The convergence of control en-

gineering and biology

Modern systems and synthetic biology lie at the interface of engineering
and biology [38, 164, 3, 200]. Systems biology seeks to understand the
complexities of natural biological networks, and importantly, attempts to
elucidate the mechanisms of regulation and signaling that govern cellular
behavior [79, 82]. Systems biology employs a holistic approach to molecular
and cell biology, in the hopes of gaining insights that can only be learned
by taking multiple components into account simultaneously [190, 96]. In
contrast, synthetic biology seeks to design and construct new biological
circuits, with the goal of controlling cellular behavior and engineering new
functionalities [79, 36]. Synthetic biology has the potential to address a
number of problems facing modern society, with applications in energy,
environment, and medicine [36, 82]. Whereas systems biology makes use
of concepts from control theory to uncover principles about the function
of biochemical reaction networks, and utilize methods from system identi-
fication for parameter estimation, synthetic biology makes use of design
principles from control theory to guide the construction of optimized and
robust biological circuits [190, 38, 164]. These are just a few areas of
research at the interface of engineering and biology, and are examples of the
ongoing movement for the unification of biology and engineering, referred
to as convergence [39]. Inspired by the molecular biology revolution of
the 1950s–1970s, which enabled a cellular-level understanding of disease
state; and the genomic revolution of the 1980s–1990s, which enabled a
deeper level of understanding through genome sequencing; it is argued
that convergence will be the third revolution, and will further our ability
to understand and treat disease [39]. Early indications of convergence
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CHAPTER 1. INTRODUCTION

go back to the 1940s and individuals like Norbert Wiener and Arturo
Rosenblueth. Influenced by the work of Rosenblueth’s colleague, Walter
Cannon, they proposed cybernetics as a term for the study of control and
communication theory in the animal and the machine, which they viewed
as a unifying theme in engineering and biology [198, 162, 38]. In contrast to
simple interdisciplinary collaborations, the aim of convergence is not only
to advance our understanding of biology, but also to push the boundaries
of the theoretical foundation of engineering [39]. Evolution has resulted in
systems that are highly optimized and fault-tolerant, and could serve as
inspiration for innovative solutions to engineering problems [162].
Control theory is aimed at improving the stability, robustness, and

performance of physical systems, with applications in mechanical and
electrical devices, space and air systems, and chemical processes [36, 155, 44].
An important abstraction used in control theory is the separation of a system
into a process and a controller. In this abstraction, the process represents the
basic function of the system, while the controller implements manipulations
to improve stability, robustness, and performance of this function [40]. By
stability, it is usually meant that a system tends towards a certain steady-
state, known as an equilibrium point, as time approaches infinity [92, 160].
Robustness, on the other hand, refers to the ability of the system to
resist disturbances [93, 92, 160]. In engineered systems, the presence of
model uncertainty, coupled with system perturbations and environmental
disturbances, means that a lack of robustness will likely result in a system
that is unable to deliver reliable functionality [93, 92, 160]. The principles
of stability and robustness also apply to biological systems, and are required
for proper biological function under varying conditions [93]. Compared to
control engineering, however, the theory for biological robustness remains
largely lacking [93].

Negative feedback if often associated with stability and robustness, mainly
due to the opposing action this structure produces in response to deviations
from its steady-state [92, 198]. For example, a thermostat regulates the
heating of a room by turning on a heater if the temperature in the room is
below the desired temperature set on the thermostat. If the temperature
is greater than the desired room temperature, the thermostat turns off
the heater to bring the room temperature down. Hence, the action of the
thermostat is negatively related to the deviation of the room temperature
from the desired temperature, which is called negative feedback. Note,
however, that the thermostat must be designed to respond proportionately,
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CHAPTER 1. INTRODUCTION

as a poorly designed thermostat may send the room temperature into
violent oscillations [198].

Process

Figure 1.1: Proportional negative feedback. The process output y is fed back and
compared to the reference r to produce the regulation error e = r− y. The control action
u (the process input) is computed as the regulation error multiplied by the controller gain
G. The negative feedback connection functions to counteract deviations in process output
from the desired reference value, thereby minimizing the impact of the uncontrolled
disturbance w.

In negative feedback (e.g. Figure 1.1), the process output y is measured
and compared to a reference r, producing the regulation error e = r − y.
The controller acts on the process through the input u, which is computed
based on the regulation error, so that the difference between reference and
process output is reduced [36, 155, 92]. Whether the closed-loop system
is able to achieve and maintain the reference value is related to stability,
whereas robustness is related to the ability of the system to compensate for
the unwanted disturbance w. Consider the process of transcription, where
y is the concentration of mRNA, u is the concentration of a transcription
factor, and w is some unwanted disturbance (e.g. transcription that happens
without the transcription factor). Production of mRNA is proportional
to the concentration of transcription factor, and degradation of mRNA is
proportional to its own concentration. This process is described by the
linear differential equation ẏ = −c1 ·y+ c2 ·u+w [36]. Here, dot notation is
used to represent the time derivative. The open-loop (i.e. without feedback)
steady-state of this system is given by y = (c2 ·u+w)/c1, which shows that
the open-loop output is very much dependent on the disturbance. If we
apply the proportional negative feedback in Figure 1.1, u = G · (r− y), the
closed-loop steady-state is given by y = (c2 ·G · r+w)/(c1 + c2 ·G). In this
case, if the controller gain G is large enough, the steady-state expression
is reduced to y ≈ r. Hence, the steady-state output of the closed-loop

3



CHAPTER 1. INTRODUCTION

system with high-gain negative feedback is made largely independent of
the disturbance (i.e. the control system is robust to w).
This example demonstrates how biological processes can be described

by ordinary differential equations (ODEs). Mathematical models have for
the longest time been important for our intuition in many fields of science,
including biology, where they are used to aid our understanding of phenom-
ena and predict emergent properties [61]. In biology, detailed large-scale
models attempt to incorporate as much as possible of the available data
from a system, with the premise that all components and interactions of
the system may be needed to reproduce its quantitative behavior [61, 48].
Complementary to large-scale models are small-scale models, that seek to
model a system using only the essential components and interactions neces-
sary to reproduce its qualitative behavior [61, 190, 48]. Although large-scale
models are undeniably closer to biological reality than simplified small-scale
models, large-scale models suffer from a large number of parameters that
are poorly determined, which makes it difficult to differentiate predictions
that are dependent on certain parameter choices, and those that are general
to the system [61]. On the other hand, small-scale models benefit from a
small number of components and parameters, which facilitates interpreta-
tion and makes it possible to discern generality of conclusions, and hence,
small-scale models are often associated with uncovering principles rather
than quantitative predictive power [61].
Systems of ODEs are the natural language for describing biological

networks in a mass action approximation, which simply states that a
reaction rate is given by a constant multiplied by the product of the reactant
concentrations [28, 31]. The mass action approximation holds for a well-
mixed reaction compartment, when the number of molecules is great enough
that the inherent stochastic fluctuations of chemical reactions become small
enough that a deterministic description is sufficient [28, 60]. In general,
deterministic models provide a good description for reactions having more
than 102–103 molecules per reactant in all reaction compartments, which
holds true for eukaryotic metabolism and signal transduction [28, 169].
Thus, cellular reaction networks can often be investigated by considering
deterministic models, which facilitates simulation and analysis efforts.

1.2 Scientific contributions
The scientific contributions of this thesis is made up of three published
papers, and one unpublished paper submitted for review. In the thesis we
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CHAPTER 1. INTRODUCTION

also expand upon some results, which were not published in the papers,
primarily due to space constraints. In addition, the thesis contains results
from an as-of-yet unpublished review and perspective on principles and
motifs for feedback and homeostatic control in biological systems. A
summary of the scientific contributions of the individual papers are provided
in the following.

1.2.1 Paper 1: Passivity-based analysis of biochemical net-
works displaying homeostasis

In Paper 1 (Tveit and Thorsen [186]), we looked at stability and robustness
of a class of eight two-component negative feedback motifs. Notably,
we considered negative feedback motifs described by nonlinear saturation
kinetics. Using a general mathematical framework, a stability analysis of the
entire class of eight two-component negative feedback motifs was performed.
We described the two-component motifs as negative feedback connections
of two subsystems. Using a passivity-based approach, we showed that
the two subsystems are output strictly passive and zero-state observable.
This implies that the negative feedback connection is asymptotically stable,
despite highly nonlinear interactions of saturation kinetics. Furthermore,
we showed that the stability result is global. We also showed that robustness
to disturbances is ensured, due to the presence of integral feedback, and
characterized the condition necessary for perfect adaptation.

1.2.2 Paper 2: Tuning of physiological controller motifs

In Paper 2 (Thorsen et al. [181]), we showed how parameters related to
molecular and kinetic mechanisms influence set-point tracking and distur-
bance rejection properties of the same two-component negative feedback
motifs considered in Paper 1. We employed a tuning procedure based on
linearization, in a similar way to the tuning of industrial control processes.
The tuning procedure enabled us to define a desired dynamical response for
the negative feedback motifs, using tuning parameters related to the step
response of the systems. These tuning parameters define the response time
and overshoot of the step response. We showed analytically and through
simulations how i) the level of disturbances and ii) the values of various rate
constants influence set-point tracking and disturbance rejection properties
of the negative feedback motifs.

5



CHAPTER 1. INTRODUCTION

1.2.3 Paper 3: Homeostatic controllers compensating for
growth and perturbations

In Paper 3 (Ruoff et al. [147]), we described the performance of selected
negative feedback control motifs (including those considered in Papers 1 and
2) in response to different growth laws and time-dependent perturbations.
We considered controllers with ideal behavior, in the sense that they for
stepwise perturbations show perfect adaptation. We applied growth kinetics
that reflect experimentally observed growth laws, ranging from surface-
to-volume ratio growth to linear and exponential growth. Our results
showed that the kinetic implementation of integral control and the structure
of the negative feedback loop are two properties that affect controller
performances. Best performance was observed for controllers based on
derepression kinetics and controllers with an autocatalytic implementation
of integral control, both of which were able to defend exponential growth
and perturbations. Controllers with activating signaling using zero-order
or bimolecular (antithetic) kinetics for integral control performed less well.
Our results provide a guide to what type of feedback structures and integral
control kinetics are suitable to oppose dilution by different growth laws
and time-dependent perturbations.

1.2.4 Paper 4: Exploring mechanisms of glucose uptake reg-
ulation and dilution resistance in growing cancer cells

In Paper 4 (Tveit et al. [185]), we reviewed the literature on cancer cell
metabolism and glucose uptake, and employed mathematical modeling to
examine control mechanisms in cancer cell metabolism that show robust
homeostatic control in the presence of dilution. Using public gene expres-
sion data from the Expression Atlas database, we showed that cancer cells,
on average, shift towards glucose transporter 1-mediated glucose uptake,
predominant expression of the pyruvate kinase M2 isoform, and overexpres-
sion of hexokinase 2. Based on this information, we constructed a simplified
mathematical model of glucose uptake in cancer, which we used to inves-
tigate structural properties of the system. By simulations we found that
in a worst-case scenario, in which all components of the protein synthetic
machinery of the cell dilute as the cell grows, partial dilution resistance to
a linearly increasing cellular volume is achieved. Notably, we found the
presence of a nested feedback architecture of the negative feedback motifs
studied in Papers 1–3. We showed that negative feedback regulation of

6



CHAPTER 1. INTRODUCTION

intermediary glycolytic enzymes, in addition to negative feedback from
downstream glycolytic metabolites to glucose transporters (i.e. nested feed-
back), is sufficient in order to achieve homeostatic control during growth.
We related our simulation results on dilution resistance to structural prop-
erties of the mathematical description, and showed how the two-component
negative feedback motifs can be tuned to achieve near-perfect dilution
resistance.

1.3 Thesis aims and outline

The main aim of this thesis is to take a bottom-up approach to investigate
cellular control processes and to:

• Characterize the structural properties of cellular control processes
that give rise to homeostatic behaviors.

• Investigate a class of eight two-component negative feedback motifs,
and extend prior analysis to account for highly nonlinear interactions.

• Characterize conditions for ideal and near-ideal behaviors (e.g. perfect
adaptation, dilution resistance), and highlight limitations and trade-
offs inherent to the negative feedback motifs.

• Show how parameters related to molecular and kinetic mechanisms
influence set-point tracking and disturbance rejection properties of
the negative feedback motifs.

• Present a model for glucose uptake in cancer, and demonstrate the
presence of negative feedback motifs. Show that dilution resistance in
the glucose uptake model is achieved by nested feedback regulation,
and investigate its behavior subject to disturbances and extrinsic
noise.

Before we present the main results, Chapter 2 introduces the negative
feedback motifs considered in Papers 1–4 in a historical context, and
presents some important concepts in chemical kinetics that will be used
throughout the thesis. The chapter is meant to give the reader insight into
the approach researchers took to cellular control processes in the latter
half of the 20th century, and why a new perspective on cellular control has
revitalized the interest of researchers on the topic of feedback mechanisms

7



CHAPTER 1. INTRODUCTION

in recent years. The results from Paper 1 are presented in Chapter 3, in
addition to a short summary on integral feedback motifs in general, based
on an unpublished review on the topic. Chapter 4 presents the results from
Paper 2, which are expanded upon with some unpublished results that
reinforce the main results in the paper. These extended results also relate
the results on time-dependent perturbations in Paper 3 to the results in
Paper 2. Chapter 5 includes results from both Papers 3 and 4. Because there
is significant overlap between the two papers, Chapter 5 focuses primarily
on the results of Paper 4. In addition, the chapter includes some extended
results on stochastic fluctuations, based on feedback received on the two
papers. In Chapter 6 we summarize and discuss the results obtained on
stability (Chapter 3), tuning (Chapter 4), and dilution resistance and noise
(Chapter 5). We also discuss some limitations inherent to the modeling
approach taken in the thesis.
Throughout this thesis, we will use dot notation to represent the time

derivative. State variables represent concentrations of compounds, except
when variables ni are used, in which case the state variables represent
amounts. For the purpose of demonstration, and because we focus on
structural or qualitative properties, parameter values and simulation results
are given in arbitrary units (arb. unit). Genes are written in italic, and
protein products in normal text.

8



Chapter 2

Background
In this chapter we look back at the history and discovery of feedback
mechanisms in cellular control processes. We start with the discovery of
some important phenomena that lead to the understanding of metabolic
regulation by negative feedback. We describe the different, and often
complementary, negative feedback strategies employed by cells, based on
regulation of enzyme synthesis and activity. We go on to introduce some
important concepts in chemical kinetics, such as allostery, saturation, and
cooperativity, that we will use throughout the thesis. Finally, we take a
look at various negative (and some positive) feedback mechanisms by which
biochemical oscillations can occur. Oscillations in cellular control processes
were extensively studied in the latter half of the 20th century. However,
it is only fairly recently that regulatory mechanisms in biological systems
have been studied from the perspective of robust control. It is from this
new perspective that we investigate cellular control processes in the main
part of the thesis. This chapter serves to introduce some central concepts
and themes that will set up our investigation of negative feedback motifs
in the following chapters.

2.1 Enzyme adaptation

Enzyme adaptation is the phenomenon where microorganisms synthesize
enzymes for the metabolism of a particular substrate, only when the
substrate is available [13, 111, 188]. The term was coined by Henning
Karström in 1938 when he rediscovered the phenomenon, which had first
been discovered by Émile Duclaux in the late 1890s [13, 111, 120]. The
first clear evidence of enzyme adaptation, however, was given by Frédéric
Dienert, a student of Duclaux, as early as 1900 [13, 120, 188, 111]. Dienert
studied the “enzyme” galactozymase, today known to be the collection of
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CHAPTER 2. BACKGROUND

enzymes of the Leloir pathway, necessary for the metabolism of galactose
in yeast [156, 13, 111]. He found that cells grown on glucose were unable
to ferment galactose, whereas cells grown on galactose could ferment both
glucose and galactose [188, 13, 111]. Interestingly, when cells were grown
on a mixture of glucose and galactose, an inhibitory effect on galactose
metabolism was observed; glucose was metabolized first, and after a certain
time delay, galactose could be metabolized [188, 13, 111]. Dinert named this
inhibitory effect by glucose, the glucose effect [120, 111, 188]. Importantly,
Dienert also showed that the process of adapting to galactose occurred
without cell division, and hence, was not due to the selection of mutants [111,
13].

In the beginning of 1940, Jacques Monod made some interesting ob-
servations on the growth of bacteria. He found that cultures grown on
certain mixtures of carbohydrates displayed the phenomenon of diauxie;
that growth consisted of two exponential phases, separated by a complete
cessation of growth (Figure 2.1) [119, 120, 188, 111, 13]. It was André
Lwoff who directed Monod to the work of Marjory Stephenson and her
students, John Yudkin and Ernest Gale, who had published several papers
on enzyme adaptation at the time [120, 111]. Monod’s diauxie was closely
related to enzyme adaptation, and was in fact a case of Dienert’s glucose
effect [120, 111, 188, 13]. Like Dienert, Monod interpreted the cessation of
growth to be an induction period necessary for the bacteria to adapt to a
new substrate, having used up the first substrate in the initial exponential
phase [111, 188, 13]. Monod and others ruled out the selection of mutants
and, like Dinert before them, proved that the adaptation process was a
physiological response [111, 13]. Monod proposed that the first carbohy-
drate to be metabolized was attacked by constitutive enzymes, whereas the
second carbohydrate was attacked by adaptive enzymes, in accordance with
the terminology put forth by Karström [111, 188, 13]. This hypothesis ex-
plained diauxie, or the glucose effect, by the inhibition of forming adaptive
enzymes as long as the first carbohydrate was present [111, 188].

2.2 Control by feedback repression

In order to understand enzyme adaptation, Monod sought it necessary to
understand how certain carbohydrates induce the formation of adaptive
enzymes, and whether this induction entailed the synthesis of new enzymes,
or rather the activation or conversion of existing enzyme precursors [120,
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CHAPTER 2. BACKGROUND

Figure 2.1: Growth of Escherichia coli in the presence of different carbohydrate pairs
serving as the only carbon source in the medium. Whereas certain mixtures (e.g. glucose
and mannose) show a single exponential growth phase, other mixtures (e.g. glucose
and xylose) show two exponential phases separated by a complete cessation of growth
(diauxie). From Monod [120]. Reprinted with permission from AAAS.

111]. In collaboration with Melvin Cohn, Alvin Pappenheimer, Germaine
Cohen-Bazire, and several others1, Monod was able to establish that enzyme
adaptation involved synthesis of enzymes de novo [120, 13]. In 1953, Monod
and Cohen-Bazire proved that biosynthesis of the enzyme tryptophan
synthase is inhibited by the reaction product, tryptophan [120]. This was
the first known example of control by repression; that a substance, called a
repressor, inhibits the biosynthesis of a particular enzyme [120, 196, 13]. The
term was proposed by Henry Vogel when it was discovered that the enzyme
acetylornithinase (acetylornithine deacetylase), involved in the formation of
arginine and believed to be induced by its substrate, was instead shown to
be repressed by arginine [120, 196]. In the following years, repression was
observed in several different organisms with a wide variety of substances [196,
120]. Commonly, the repressors are end products of pathways in which the
enzymes they repress occur [196]. And hence, is was understood that enzyme
adaptation does not need to entail induction of enzymes by substrates, but

1Madeleine Jolit, Anne-Marie Torriani, and David Hogness [120].
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could also be explained by repression of enzymes by their end products [196,
120]. Boris Magasanik made the important observation that characteristic
of glucose-sensitive enzymes is their repressibility by compounds that can
efficiently serve as intermediary metabolites and a source of energy [188, 196].
Therefore, in 1961, he renamed the glucose effect to catabolite repression,
reasoning that metabolites formed more readily from glucose accumulate
in the cell, thereby repressing the formation of glucose-sensitive enzymes
that less efficiently produce the same metabolites [188, 13, 120]. Repressors
usually have a high specificity for the enzymes they repress, and with often
being end products of pathways, have properties important in controlling
cellular functions, such as biosynthesis [196, 120].

In 1946, together with Alice Audureau, Monod studied lactose-negative
bacteria, which is to say bacteria unable to grow on media where lactose
is the only carbon source [111, 120]. They showed that an apparently
spontaneous mutation allowed the originally lactose-negative bacteria to
become lactose-positive [120, 111]. Interestingly, the growth curve of these
lactose-positive bacteria were typical of diauxie, implying that an adaptive
enzyme was involved [111]. Monod and Audureau showed that the lactose-
negative and lactose-positive strains did not differ from each other in the
presence of the enzyme system necessary to grow on lactose, but rather
in the ability to produce this system in the presence of lactose [120, 111].
This implied that the process of enzyme adaptation had a genetic basis,
and Monod noted that “the mutation affected a truly genetic property
that became evident only in the presence of lactose” [120, 111]. This
observation later motivated the operon model, in which the expression of a
group of structural genes is under the control of a single DNA sequence,
called the operator [120, 111, 83, 84, 13, 17]. The operator is in turn under
the influence of a regulator gene coding for a protein that can bind to
the operator [83, 84, 13, 17]. The affinity of the regulator protein to the
operator is influenced by an effector that can bind to the regulator protein,
thereby controlling the expression of the structural genes [83, 84, 13, 17].
The operon model provided a mechanism by which catabolite repression
and activation occurs in prokaryotes, examples of both can be found in
Escherichia coli (Figure 2.2): The catabolite repressor/activator protein
(Cra), encoded by the cra gene, activates transcription of genes coding for
biosynthetic and oxidative enzymes, while inhibiting transcription of genes
coding for glycolytic enzymes [148]. Cra activates transcription by binding
to operator regions of target operons where the operator is situated upstream
of the RNA polymerase (RNAP) binding site, and inhibits transcription
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by binding to operator regions of target operons where the operator is
overlapping or downstream of the RNAP binding site [148]. Accumulation
of glycolytic catabolites (e.g. due to uptake and catabolism of exogenous
glucose) results in binding of the catabolites to the Cra protein, causing
it to dissociate from the DNA, thereby reversing the activating effect of
Cra in the case of genes coding for biosynthetic and oxidative enzymes,
and reversing the inhibiting effect of Cra in the case of genes coding for
glycolytic enzymes [148].

O

RNAPO pckA

pykF

Cra-inhibited 
transcription

Cra-activated 
transcription

Cra

RNAP
(a) Cra-activated/inhibited transcription.

O

O

Catabolite

pckA

pykF

Derepression

Deactivation

Cra

RNAP

RNAP

(b) Catabolite repression/activation.

Figure 2.2: Cra binds to operator regions (O) of target operons (panel (a)). When the
Cra operator is situated upstream of the RNAP binding site, activation of transcription
is seen. When the Cra operator is overlapping or downstream of the RNAP binding
site, inhibition of transcription is seen. Uptake and catabolism of exogenous sugars
result in accumulation of glycolytic catabolites (panel (b)). The catabolites bind to
the Cra protein and cause it to dissociate from the DNA. This reverses the activating
and inhibiting effects of Cra (catabolite repression and activation, respectively). In
Escherichia coli, catabolite repression is seen for biosynthetic and oxidative enzymes,
such as phosphoenolpyruvate carboxykinase (encoded by the pckA gene), and catabolite
activation is seen for glycolytic enzymes, such as pyruvate kinase (encoded by the pykF
gene) [148].

Control by repression is a common regulatory strategy in a wide variety
of bacteria and mammalian cells [196, 120, 82, 17]. Much attention has been
given to the characterization of cellular control processes utilizing this strat-
egy, and in 1965, the Nobel Prize in Physiology or Medicine was awarded
jointly to François Jacob, André Lwoff, and Jacques Monod “for their
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discoveries concerning genetic control of enzyme and virus synthesis” [130].

2.3 Control by feedback inhibition

Similar to repression by end products is the phenomenon of feedback in-
hibition, also called end product inhibition or retroinhibition, in which
end products are inhibitors of early enzymatic steps in their own path-
ways [196, 163, 121, 30]. An important distinction, however, is that feedback
inhibition occurs at the level of enzyme action, whereas feedback repression
affects enzyme formation [196, 163]. In 1941, Zacharias Dische published a
paper in which he described the inhibition of glucose phosphorylation by
diphosphoglyceric acid, and how this leads to the automatic regulation of
its formation [30]. It was not until 1954, however, that Aaron Novick and
Leo Szilard discovered feedback inhibition as a regulatory mechanism in
microorganisms, followed by Edwin Umbarger in 1956, and Richard Yates
and Arthur Pardee in the same year, who published conclusive evidence
that end products inhibit the activity of early enzymes in their own path-
way [30, 121, 132, 189, 204]. Later, it has become clear that regulation by
feedback inhibition is present in most biosynthetic systems [30, 121, 17, 82].

Monod, together with Jean-Pierre Changeux and François Jacob, found
that feedback inhibition entailed a conformational change of the regulatory
enzyme, i.e. the enzyme subject to feedback inhibition [121, 120]. This con-
formational change is induced or stabilized by the binding of an allosteric
effector to an allosteric site of the regulatory, or allosteric, enzyme [121, 120].
The term allosteric was used to indicate that the effector binds to a regula-
tory site which is different from the catalytic, or active, site [121, 120, 17].
The allosteric enzyme undergoing a conformational change is called an
allosteric transition (Figure 2.3), and changes the properties of the active
site, thereby changing the kinetic parameters of the enzyme [121, 120, 17].
Since the allosteric site is distinct from the active site, the allosteric effector
does not directly participate in the reaction catalyzed by the allosteric
enzyme. That is to say, the reaction does not depend on the structure
or the chemical reactivity of the effector itself, and therefore the effector
does not need to bear any particular chemical or metabolic relation to the
substrate [121, 120, 17]. The specificity of the allosteric effector is entirely
due to the structure of the allosteric enzyme, and hence, allosteric enzymes
are signal transducers of allosteric effectors [121, 120, 17]. The indirect
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nature of allosteric interactions is of extreme biological significance; the pre-
cise regulation of cellular metabolism with its overlapping and interlocking
metabolic pathways leading to diverse end products would not be possible
with only direct interactions between metabolites and enzymes [120, 121].
Such interactions would be severely limited by metabolites possessing the
chemical reactivity necessary to be physiologically beneficial, whereas in-
direct interactions depending exclusively on the structure of the enzyme
itself, does not have this limitation [120]. Thus, a clear distinction is made
between allosteric interactions and actions of coenzymes, secondary sub-
strates, and substrate analogues, all of which react with the substrate or
substitute for the substrate [121].

Figure 2.3: In the symmetry model (or allosteric model), Monod, Changeux, and Jeffries
Wyman postulated that allosteric proteins could exist in two (or more) conformations; a
relaxed state and a stressed (or tense) state [120, 31]. In this model, allosteric effects
are mediated by allosteric effectors binding preferentially to one of the conformational
states, thereby increasing (for allosteric activators) or decreasing (for allosteric inhibitors)
the availability of molecules in the conformation that binds the substrate [31]. From
Monod [120]. Reprinted with permission from AAAS.

Control by feedback inhibition is rapid, affecting susceptible enzymes as
soon as end products build up in sufficient concentrations [196, 31, 63]. This
type of control is said to be part of the metabolic system of cells, in which the
major activities are the diffusion, interaction, and transformation of small
molecules such as metabolites [63, 31]. Interactions between small molecules
and macromolecules, such as allosteric interactions, are included in this
system, but the synthesis of macromolecules is excluded, concentrations
of which are regarded as constant or slowly changing [63, 31]. Different is
the epigenetic system, in which the major activities are the biosynthesis,
diffusion, and interactions of macromolecules [63, 31]. This distinction is
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made due to the difference in relaxation time of the two systems, i.e. the
time it takes for a system to return to steady-state when subjected to a
“small” disturbance [63, 31]. The metabolic and epigenetic systems are said
to be operating on different timescales. Control by repression is part of the
epigenetic system, as it affects the synthesis of new enzyme molecules, but
does not affect existing enzyme molecules, whose concentration decrease
through degradation and dilution [196, 31, 63]. Interestingly, feedback
inhibition and repression frequently appear together in the control of
metabolic pathways, as is the case in the glyoxylate cycle of the bacterium
Paracoccus denitrificans in which succinate (or some derivative of succinate),
formed by the cleaving of isocitrate to succinate and glyoxylate by the
enzyme isocitrate lyase, represses the formation of isocitrate lyase and
simultaneously inhibits its activity (Figure 2.4) [196, 98, 134]. Hence, the
coordinated action of feedback inhibition and repression enables an effective
response across timescales (metabolic and epigenetic systems), without the
limitations of a single negative feedback type (e.g. the response of feedback
inhibition is limited to the enzyme molecules already present).

Inhibition

Isocitrate lyase

Isocitrate

Succinate

Glyoxylate

Repression

Figure 2.4: The coordinated action of feedback inhibition and repression controlling the
cleaving of isocitrate to succinate and glyoxylate by isocitrate lyase in the glyoxylate cycle
of the bacterium Paracoccus denitrificans [196, 98, 134]. Feedback repression reduces
the formation of isocitrate lyase, whereas feedback inhibition reduces the activity of the
enzyme [98].
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2.4 Saturation and cooperativity

Many allosteric enzymes have a sigmoidal saturation curve, as opposed to
the rectangular hyperbola given by the Michaelis–Menten equation [31, 17,
120, 13]. This is called cooperativity, because it arises from the “cooperation”
of active sites; binding reactions at individual sites affect the likelihood of
binding at other sites [31, 17]. The Michaelis–Menten equation describes
the reaction rate of an enzyme-catalyzed reaction, assuming steady-state
of the enzyme-substrate complex (Briggs–Haldane treatment) [31]

v = Vmax · S
KM + S

(2.1)

where Vmax = kcat · E0 is the limiting rate, kcat is the catalytic constant,
or turnover number, and E0 is the concentration of total enzyme, free and
substrate-bound. S is the concentration of substrate, and KM is called the
Michaelis constant, which can be defined as the substrate concentration at
which v = 0.5 · Vmax. In contrast, cooperative enzymes have a sigmoidal
saturation curve, and it is convenient to describe such enzyme in terms of
the Hill equation [31]

v = Vmax · Sh

Kh
0.5 + Sh

(2.2)

where Vmax, like in the Michaelis–Menten equation, is the limiting reaction
rate, K0.5 defines the substrate concentration S at which v = 0.5 ·Vmax, and
h is the Hill coefficient, an index of the degree of cooperativity. With h = 1
(non-cooperative), the Hill equation is the same as the Michaelis–Menten
equation, while h > 1 corresponds to positive cooperativity [31].
Although many allosteric enzymes are cooperative, it is important to

note that they are different properties that should be distinguished [31]. For
example, the binding of oxygen to hemoglobin was known to be cooperative
for more than 60 years before 2,3-bisphosphoglycerate was demonstrated to
be an allosteric effector for hemoglobin (decreasing its oxygen affinity) [31,
16]. Nevertheless, both properties play a crucial role in metabolic regulation,
and often appear together [31, 17]. The importance of cooperativity in
metabolic regulation is demonstrated by comparing the saturation curves of
Michaelis–Menten and Hill kinetics. This is shown in Figure 2.5, where it is
seen that an enzyme following Michaelis–Menten kinetics requires a much
larger change in substrate concentration to achieve the same change in
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activity as an enzyme following Hill kinetics. Because cooperative enzymes
are much more sensitive to changes in substrate concentration (near the
K0.5 value), they are more effective at regulating metabolites within small
tolerances [17, 31].

Figure 2.5: Comparison of the saturation curves of Michaelis–Menten kinetics (solid
blue line) and Hill kinetics (dashed red lines).

2.5 Dynamical models of cellular processes and
the occurrence of oscillations

Feedback inhibition and repression are common control strategies in cells,
and although functionally different, work based on the same principle of
negative feedback, long familiar to control engineers in the automation of
industrial processes [189, 63, 169, 82]. The central importance of negative
feedback as a mechanism for control in organisms was first brought to the
attention of biologists by Norbert Wiener in 1948 with the publication of
his book “Cybernetics: or Control and Communication in the Animal and
the Machine” [63, 198]. Wiener reasoned that for humans to effectively
perform an action, it is not only essential to have good effectors, but
that these effectors are monitored back to the central nervous system and
combined with information from other sense organs to produce a properly
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proportioned output to the effectors [198]. Such feedback gives a measure
by which an action, such as motion, has not yet been accomplished, and
it is by this measure the action is regulated [198]. The basis of negative
feedback in cellular control processes is the existence of a closed causal
circuit of molecular or macromolecular species, resulting in a self-regulating
structure [63, 62, 82]. The consequence of such feedback structures can be
seen at all levels of organization in an organism, from the the regulation
of biosynthetic pathways and control of cell growth, to the regulation
of body temperature and maintenance of a blood glucose level within
a relatively narrow range [189, 63, 62, 143, 17]. However, qualitative
descriptions of cellular control processes do not tell us about their dynamical
properties [63, 82, 169]. To investigate these properties, it is necessary to
construct dynamical models based on the kinetics of molecular reactions
involved in the qualitative descriptions [82, 169].

In his 1963 book, “Temporal Organization in Cells; a Dynamic Theory of
Cellular Control Processes,” Brian Goodwin proposed a model for metabolic
feedback control based on repression [63, 62]. Figure 2.6 shows the system
he considered, where mRNA (X) transcribed from DNA (L) is translated
by ribosomes (R) to form an enzyme (Y ) catalyzing the formation (C) of a
metabolite (M) with the ability to repress production of the mRNA [63, 64,
62]. This represents probably the simplest conceivable example of feedback
repression, and although necessarily rather approximate, includes essential
features of the real system [64, 62]. The dynamical model is given by the
system of ODEs [63, 64, 62]

Ẋ(t) = a

A+ k · Y (t) − b (2.3)

Ẏ (t) = α ·X(t)− β (2.4)

where X is the concentration of mRNA, whose synthesis is competitively
inhibited by the metabolite M2. The metabolite belongs to the metabolic
system, which operates on a timescale much faster than the epigenetic
system, to which the enzyme Y belongs. Therefore, it is assumed that the
metabolite is always in steady-state in relation to the enzyme (so that Y can
be treated as the repressor for X). The constants a, A, and k are comprised
of more elementary constants of reactions involving the metabolite, mRNA,

2Under the assumption that mRNA precursors are present in constant concentra-
tions, the expression for competitive inhibition is of the same form as non-competitive
inhibition [63].
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and enzyme. The parameter b represents the degradation of mRNA, which is
assumed to be constant. The expression α ·X represents the rate of mRNA-
controlled enzyme synthesis, with α being a composite parameter containing
the rate constant for enzyme synthesis and amino acid concentrations
(assumed to be constant). The degradation rate of the enzyme is assumed
to be constant, given by β.

RL C

Figure 2.6: In the Goodwin model, mRNA (X) is transcribed from DNA (L) and
translated by ribosomes (R) to form an enzyme (Y ) catalyzing the formation (C) of
a metabolite (M) with the ability to repress production of the mRNA. This forms a
negative feedback connection based on repression.

Goodwin was interested in biochemical mechanisms that produce oscilla-
tions, as it had become clear that biochemical activities underlying cellular
functions do not occur simultaneously at fixed rates. Rather, there is a
rhythm to these activities, whereby one after another the activities rise
to a maximum and then fall off again [63, 62]. Goodwin worked from the
assumption that the occurrence of oscillations in macromolecular concen-
trations, arising as a consequence of negative feedback, give rise to a time
structure in cells [63, 62]. The system in (2.3)–(2.4), known as the Goodwin
model, served as an initial mechanism by which oscillations could occur,
and in his book, Goodwin went on to study more complex circuits, using the
simple Goodwin model as an elementary unit of function [63, 64, 62]. Later,
Goodwin also proposed a more general three-variable model in which the
degradation terms followed first-order reaction kinetics, regarded to be more
realistic than the constant degradation rates in (2.3)–(2.4), but brought
about damping in the system such that oscillations would eventually die
out [64, 65, 62].

Independently of Goodwin, Manuel Morales and David McKay proposed
another mechanism by which oscillations could occur, based on feedback
inhibition and cooperativity [124]. This model, strikingly similar to the
Goodwin model, differed only in the kinetics of end product feedback and
the number of intermediates involved in the pathway [124, 63, 64]. The
model proposed by Morales and McKay consisted of a linear pathway in
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which the formation of substance Si from Si−1 is catalyzed by enzyme Ei−1
(Figure 2.7) [124]. The concentration of S0 is constant, due to replenishment
or availability in large amounts, and E0 is inhibited cooperatively by p
molecules of the end product Sn [124]. The model is given by the system
of ODEs [124]

Ṡ1(t) = k0 · S0
1 + α · Sn(t)p − k1 · S1(t) (2.5)

Ṡi(t) = ki−1 · Si−1(t)− ki · Si(t), i = 2, 3, . . . , n (2.6)

where ki are first-order rate constants3, α is the affinity constant of Sn and
E0, and (1 + α · Spn)−1 is the fraction of active E0.

Figure 2.7: The model proposed by Morales and McKay is based on feedback inhibition
and cooperativity, and consists of a linear pathway where the formation of substance Si
from Si−1 is catalyzed by enzyme Ei−1. It is assumed that the concentration of S0 is
constant, due to replenishment or availability in large amounts, and that E0 is inhibited
cooperatively by the end product Sn (n = 4 in the figure).

The number of intermediates, together with cooperative feedback in-
hibition, would prove to be important for the occurrence of sustained
oscillations (i.e. limit cycles) [124, 65, 71, 187]. The model proposed by
Morales and McKay, although formulated to describe a process different
from that of Goodwin’s model, served as an extension of the Goodwin
model. The same framework was used to model a variety of systems where
some form of negative feedback is present, such as the control of tissue
growth or feedback regulation of genes for circadian oscillations [71, 62].
These models relied on the generalized Goodwin model [71]

ẋ1(t) = f0(xn, x1)− f1(x1) (2.7)
ẋi(t) = fi−1(xi−1)− fi(xi), i = 2, 3, . . . , n (2.8)

where f0 describes the synthesis of the initial compound x1, which can
depend on the initial compound itself (e.g. autocatalysis), and is inhibited

3It is assumed that the reactions driven by enzymes Ei follow Michaelis–Menten
kinetics, and that the concentrations of Si are negligible compared to the correspond-
ing Michaelis constants KM,i. These assumptions imply first-order rate constants
ki = Vmax,i/KM,i [124].
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in some way by the end product xn. The functions fi describe the trans-
formation of compound xi into xi+1, for example by Michaelis–Menten
kinetics, first-order kinetics, or by a constant rate.

2.6 Feedback by cross-coupling

There was considerable interest in control mechanisms involving protein
synthesis and the regulation of mRNA production at the time, and in par-
ticular two questions were considered: One asked under what circumstances
stable oscillations could occur, and the other asked what arrangements lead
to more than one stable equilibrium point [65, 63, 64]. The latter question
was thought to be especially important in relation to the mechanisms of
differentiation, which are stable and persistent once induced, and could
be explained by mechanisms involving positive feedback [122, 66]. How-
ever, over a decade prior, in 1948, Karl-Friedrich Bonhoeffer proposed a
set of two-component negative feedback systems in which chemical oscil-
lations could occur [19, 51]. These systems relied on the cross-coupling
(cross-catalysis, cross-inhibition) of two simultaneous reactions in order
to achieve negative feedback, rather than end product feedback in the
Goodwin model [19, 50, 51]. The systems are governed by the ODEs [19]

Ẋ(t) = BX(t)− ZX(t) (2.9)
Ẏ (t) = BY(t)− ZY(t) (2.10)

where the chemical species X is coupled to species Y through its synthesis
BY or degradation ZY, and Y is coupled to X in a similar way (through
BX or ZX). However, only certain couplings produce negative feedback.
For example, negative feedback is achieved if X activates the synthesis
of Y , while Y inhibits the synthesis of X (Figure 2.8) [19]. Interestingly,
this is a nearly direct interpretation (albeit simplified) of the mechanism
for genetic-metabolic control, proposed by Jacob and Monod4 (the operon
model) [76, 84, 83].

If the inhibitory action of Y in Figure 2.8 is instead activating, positive
feedback is obtained [76, 50, 51]. In fact, there are sixteen possible ways to

4X is an enzyme produced (BX) from a structural gene under the control of an
operator. The enzyme catalyzes the conversion (BY) of a substrate into the metabolite
Y . In turn, the metabolite can increase the affinity of a regulator protein to the operator,
which inhibits synthesis of the enzyme [76, 84, 83].
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Figure 2.8: Cross-coupling of two simultaneous reactions. Negative feedback is achieved
since the inhibition of reaction BX opposes any change in the concentration of X. For
example, if X increases, the synthesis of Y (BY) is increased due to activation by X.
This increases the level of Y , which in turn increases inhibition of the synthesis of X
(BX).

couple two simultaneous reactions, half of which produce positive feedback,
and the other half produce negative feedback [51, 41]. Figure 2.9 shows all
of these cross-couplings, indicating the type of feedback formed in each case.
The two-component systems can be imagined as simplified versions of larger
cross-coupled pathways [76]. This way, the generation and removal reactions
of the two components represent net fluxes of combined pathways, and cross-
coupling is achieved through activating or inhibitory effects modulating
the net fluxes of these combined pathways [76]. In a similar way to how
the Goodwin model describes the basic structure of feedback repression,
the two-component systems describe the basic structures of interacting
pathways or reactions, and how these interactions form positive or negative
feedback connections [76, 50, 51].

Biological processes that realize feedback connections, such as the Good-
win model or the two-component systems in Figure 2.9, have been exten-
sively studied from the perspective of oscillations [76, 50, 65, 71, 62, 177].
And as recently as 2017 was the Nobel Prize in Physiology or Medicine
awarded jointly to Jeffrey Hall, Michael Rosbash, and Michael Young “for
their discoveries of molecular mechanisms controlling the circadian rhythm,”
a mechanism that relies on negative feedback by repression [131]. However,
the existence of periodic solutions often require system parameters to be
conveniently chosen, or ideal conditions to be assumed [195, 65, 179, 62].
A much more common property of such systems is the existence of a
stable equilibrium point [65, 195, 187, 186]. It is only fairly recently
that regulatory mechanisms in biological systems have been comprehen-
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Figure 2.9: There are sixteen possible ways to couple of two simultaneous reactions,
half of which produce positive feedback, and the other half produce negative feedback.

sively studied in terms of robust control, in which stability plays a crucial
role [152, 205, 45, 129, 41, 21]. The reason for this new focus on robustness
of biological control processes is the observation that many physiological
processes are tightly regulated and show perfect adaptation to environ-
mental disturbances [129, 41]. The ability of organisms to resist external
disturbances is essential for the maintenance of stable internal conditions
and the proper function of physiological processes [41, 25]. It is from the
perspective of robust control that we will consider the negative feedback
structures in Figure 2.9 in this thesis. And although stability can be
achieved with positive feedback connections, we will see in the following
that negative feedback plays a crucial role in achieving robust perfect
adaptation to disturbances [41, 186, 92, 66, 187].
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Homeostatic controller
motifs
In this chapter, we will look at so-called homeostatic controller motifs, which
are variants of the cross-coupled negative feedback structures discussed
in the previous chapter. Notably, the homeostatic controller motifs are
stable regulatory mechanisms that show robust control, as opposed to the
oscillatory behavior of many feedback mechanisms studied in the past. We
start by defining a mathematical model for the homeostatic controller motifs.
We then use this model to show global asymptotic stability. Because the
homeostatic controller motifs are stable, and because they form negative
feedback connections with integral action, robustness to disturbances is
ensured. However, realizing a constant steady-state for the regulated
variable is not always possible, resulting in only partial adaptation to
disturbances. We show what condition must be satisfied to achieve near-
perfect adaptation. In the last part of this chapter we present some
alternative negative feedback motifs in which integral action and robust
control are realized.

3.1 Homeostatic controller motifs defined

Homeostasis refers to the ability of organisms and cells to maintain a stable
internal environment, even in the presence of disturbances from the external
environment. On the cellular level, many chemical species, such as ions,
metabolites, and proteins, are tightly regulated [45, 178, 205, 41, 17]. The
term homeostasis was coined by Walter Cannon, who defined it as a system
subjected to external disturbances, causing system-internal disturbances
that are compensated for by bringing automatic adjustments into action,
thereby keeping the internal conditions fairly constant [25]. Although

25



CHAPTER 3. HOMEOSTATIC CONTROLLER MOTIFS

Cannon emphasized that homeostasis does not imply perfect adaptation
to disturbances, but rather involves some variability in the steady-state,
homeostasis is often associated with the maintenance of constant conditions
by negative feedback regulation [125, 25, 143].
Homeostatic controller motifs are variants of the cross-coupled two-

component structures discussed in the previous chapter. In the homeostatic
controller motifs, the two species are generated and turned over in synthesis
and degradation reactions, and are coupled together through reactions that
activate or inhibit these synthesis and degradation reactions. Through these
coupling reactions, the two species form a negative feedback connection.
For the homeostatic controller motifs, a deviation in steady-state of one
species, called the controlled or regulated species, results in an action that
opposes the deviation. This compensatory action is mediated through the
compensatory flux, which is controlled by the second species, called the
controller species. The compensatory flux represents either the synthesis
or degradation reaction of the regulated species. The controller species
“measures” the regulated species through the so-called measurement flux,
which represents the synthesis or degradation of the controller species. The
measurement and compensatory fluxes are either activated or inhibited
by the regulated and controller species, respectively, giving eight possible
combinations that produce negative feedback (Figure 3.1) [41]. These struc-
tures are identical to the eight cross-coupled negative feedback structures
discussed in the previous chapter (see Figure 2.9), however, the homeo-
static controller motifs show robust homeostatic control, as opposed to the
oscillatory behavior of the cross-coupled two-component systems discussed
so far [41, 51].
Based on whether the compensatory flux represents the synthesis or

degradation of the regulated species, the homeostatic controller motifs are
classified as inflow or outflow controllers, respectively. Additionally, the
way in which the controller species affects the compensatory flux, i.e. by
activation or inhibition, decides whether the controller motifs are classified
as activating or inhibiting [41]. The complete set of all eight homeostatic
controller motifs are shown in Figure 3.1, grouped by inflow and outflow
controllers, indicating compensatory (blue) and measurement (red) fluxes,
as well as controller type (activating or inhibiting) for each controller.
The homeostatic controller motifs are described by the flux balance
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Figure 3.1: (Caption on the following page)
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Figure 3.1: Complete set of all eight homeostatic controller motifs, where x1 represents
the regulated species and x2 represents the controller species. Inflow controllers are
shown in the top panel (white background), and outflow controllers in the bottom panel
(gray background). Activating controllers are grouped in the left column, and inhibiting
controllers are grouped in the right column. The x2-mediated compensatory fluxes are
indicated by blue coloring, while the x1-mediated measurement fluxes are indicated by
red. The type of cross-coupling reactions between x1 and x2 are indicated by dashed lines
with arrowhead for activation and flat head for inhibition (α, β, γ, and δ). The small
vertical arrows indicate perturbations in the regulated species, outflow perturbations
(kout

p ) for inflow controllers, and inflow perturbations (kin
p ) for outflow controllers.

equations

ẋ1(t) = ±jb,1(x1)∓ jcomp(x1, x2)± jpert(x1) (3.1)
ẋ2(t) = ±jb,2(x2)∓ jmeas(x1, x2) (3.2)

where x1 and x2 are concentrations of the regulated and controller species,
respectively, jb,i are fluxes for basal synthesis or degradation of the species,
jcomp is the compensatory flux, and jmeas is the measurement flux. The flux
jpert represents an uncontrolled perturbation in the regulated species. Plus-
minus signs indicate generation or removal reactions1 (plus for generation
and minus for removal). The basal fluxes (jb,i) are not involved in cross-
coupling of the two species. Depending on whether these fluxes represent
synthesis or degradation, we let jb,i follow either zero-order kinetics or
Michaelis–Menten kinetics with respect to xi

jb,i(xi) =

ks,i, for synthesis
kd,i·xi(t)
KM,i+xi(t) , for degradation

(3.3)

where ks,i is a rate constant for the basal synthesis of xi, the constant kd,i
represents the limiting degradation rate (Vmax), and KM,i is the Michaelis
constant for the degradation reaction. Note that we consider the synthesis
reaction to be enzyme catalyzed, however, it is assumed that the concen-
tration of substrate is constant (e.g. due to replenishment), such that the
rate expression is reduced to a constant (ks,i).
The compensatory flux jcomp consists of two parts. Like jb,i, the first

part is given by a zero-order reaction if representing a synthesis reaction,
1Note that there is a connection between the various plus-minus signs in the flux

balance equations. For example, if jb,1 is positive (basal synthesis), then jcomp is negative
(outflow controller).
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and the Michaelis–Menten equation if representing a degradation reaction.
The second part depends on whether the compensatory flux is activated or
inhibited by the controller species x2

jcomp(x1, x2) =

jb,1(x1) · fact(x2), for activation
jb,1(x1) · finh(x2), for inhibition

(3.4)

where jb,1 is given by (3.3), and fact and finh are expressions for activation
and inhibition, respectively. We let the activation reaction to be given by
allosteric activation (using a special case of mixed activation) [31, 91]

fact(xi) = xi(t)
KA,i + xi(t)

(3.5)

where the degree of activation is determined by the level of xi, with acti-
vation constant KA,i. Similarly, we let the inhibition reaction be given by
allosteric inhibition (using a special case of mixed inhibition) [31, 91]

finh(xi) = KI,i
KI,i + xi(t)

(3.6)

where the level of xi determines the degree of inhibition, and KI,i is an
inhibition constant. Figure 3.2 shows how the activation and inhibition
reactions in (3.5) and (3.6) affect the reaction rate of an enzyme catalyzed
reaction. Note that both fact and finh saturates as xi increases. That
is, the relative increase in activation/inhibition is reduced as xi grows.
Furthermore, both fact and finh take values in the range [0, 1], where 0
represents no activation (or maximum inhibition) and 1 represents maximum
activation (or no inhibition)2.

The measurement flux is given in a similar way to the compensatory flux,
but the regulated species and the controller species have swapped roles.
The measurement flux is given by

jmeas(x1, x2) =

jb,2(x2) · fact(x1), for activation
jb,2(x2) · finh(x1), for inhibition

(3.7)

2Using saturable functions with the same normalized range for both activation and
inhibition makes it possible to evaluate activating and inhibiting controller motifs in an
objective manner. Several previous works from our group ([41, 182, 176]) and others
([46, 21, 23]) have used linear (non-saturating) activation.
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Figure 3.2: Effect of the activation (solid blue line) and inhibition (dashed red line)
reactions in (3.5) and (3.6), respectively, on the reaction rate of an enzyme catalyzed
reaction. At activator concentration equal to KA and inhibitor concentration equal to
KI, the limiting rate of the enzyme reaction is half of its maximum value.

where jb,2 is given by (3.3), and fact and finh are given by (3.5) and (3.6),
respectively.
Finally, the perturbation flux jpert is given by zero-order kinetics if

representing an inflow disturbance, and first-order kinetics if representing
an outflow disturbance (with respect to x1)

jpert(x1) =

kinp , for inflow
koutp · x1(t), for outflow

(3.8)

where kinp and koutp are rate constants for the inflow and outflow disturbance
reactions.

We insert the reaction kinetic expressions described above into the flux
balance equations in (3.1)–(3.2), and can then express a mathematical
model for the homeostatic controller motifs

ẋ1(t) = ks,1 · α(x2)− fd,1(x1) · β(x2) (3.9)
ẋ2(t) = ks,2 · γ(x1)− fd,2(x2) · δ(x1) (3.10)
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where ks,i are rate constants for the basal synthesis of xi and fd,i are
expressions for the basal degradation of xi, given by (3.3), and α, β, γ, δ
are expressions for activating or inhibiting reactions, given by (3.5) and
(3.6).

For now, we disregard the disturbance jpert given by (3.8), and look at
the stability of the unperturbed system. However, we will return to the
effect of disturbances in our discussion on integral action and robustness in
Section 3.4. As shown in Figure 3.1, only one of the expressions α and β,
and one of γ and δ, are present for a given controller motif. For example,
inflow controller 1 achieves negative feedback using cross-coupling reactions
α and δ, while the other two cross-coupling reactions are considered to
be constant (β = γ = 1). The reaction associated with the regulated
species that is affected by α or β is the compensatory flux (jcomp), while
the other reaction is the x1-associated basal flux (jb,1). Similarly, the
reaction associated with the controller species that is affected by γ or δ is
the measurement flux (jmeas), while the other reaction is the x2-associated
basal flux (jb,2). The mathematical model in (3.9)–(3.10) describes the
dynamical behavior of the system shown in Figure 3.3, which is a general
description for the homeostatic controller motifs.

Figure 3.3: General description of the two-component homeostatic controller motifs.
The two components are generated and turned over in synthesis and degradation reactions.
These reactions are activated or inhibited by the other component through cross-coupling
reactions (α, β, γ, δ). For each controller motif, there are only two such cross-coupling
reactions, one from the regulated species (x1) acting on the synthesis or degradation of
the controller species (x2), and one from the controller species acting on the synthesis or
degradation of regulated species.

We have chosen to consider saturation kinetics for most of the reactions
involved in the homeostatic controller motifs. In this way, we aim to extend
prior analyses of the controller motifs to highly nonlinear interactions [41,
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182, 176]. And although we have chosen to consider certain expressions for
the reactions involved, there are of course other reaction kinetic expressions
we could have used. For example, the cross-coupling reactions could
follow Hill kinetics (i.e. cooperative activation/inhibition) instead of mixed
activation/inhibition. In this chapter, we will consider the homeostatic
controller motifs as specified above, however, throughout this thesis we
will look at other variants of the homeostatic controller motifs, and try
to indicate how general conclusions can be extended to include different
reaction kinetic expressions as well.

3.2 Homeostatic controller motifs in cellular con-
trol processes

Homeostatic controller motifs have been identified as possible control mech-
anisms in a wide variety of cellular control processes [41, 178, 81, 2, 185].
For example, in mammalian iron homeostasis, a combination of inflow
and outflow controllers have been identified (Figure 3.4a) [41]. At low
iron concentrations, iron-responsive element-binding protein 1 and 2 (IRP1
and IRP2) stabilize mRNAs of iron-utilizing proteins by binding to iron-
responsive elements, thereby decreasing iron sequestration, and activating
the import of iron via transferrin receptors. In turn, as the iron level
increases, the F-box protein FBXL5 is stabilized and mediates the proteaso-
mal degradation of IRP2. This forms a negative feedback connection for the
import of iron which is similar to inflow controller 1 (see Figure 3.1), where
IRP2 (together with IRP1) functions as the controller species, and iron as
the regulated species [41]. At high iron concentrations, active IRP levels
are low due to the proteasomal degradation of IRP2 and a transformation
of IRP1 to an aconitase. Iron is then exported out of the cell by the
iron-induced transporter ferroportin, which is regulated by the binding of
hepcidin, leading to internalization and degradation of ferroportin. This
forms another negative feedback connection, but for the export of iron,
which is similar to outflow controller 5, where ferroportin functions as the
controller species, and iron as the regulated species [41].

Homeostatic controller motifs have also been identified in the regulatory
mechanisms for Na+/K+ homeostasis in enterocytes (Figure 3.4b) [178].
Active uptake of glucose via the SGLT1 cotransporter in intestinal epithelial
enterocytes imports two Na+ ions for every glucose molecule, and hence,
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Figure 3.4: The combined inflow and outflow controller structure found in mammalian
iron homeostasis is shown in panel (a). At low iron concentrations, IRP2 (together with
IRP1) activates iron import via the production of transferrin receptors (compensatory
flux). As the iron level increases, FBXL5 is stabilized and mediates the proteasomal
degradation of IRP2 (measurement flux). This forms a controller for the inflow of iron at
low concentrations (blue background). At high iron concentrations, active IRP levels are
low due to degradation of IRP2 and a transformation of IRP1 to an aconitase. Iron is then
exported out of the cell by the iron-induced (measurement flux) transporter ferroportin
(compensatory flux). The binding of hepcidin leads to internalization and degradation
of ferroportin, and interestingly, hepcidin has a relatively strong binding affinity for
ferroportin, suggesting a possible near zero-order degradation of ferroportin [41]. This
forms an outflow controller for iron at high concentrations (red background). Panel (b)
shows the mechanism for ionic Na+/K+ homeostasis in enterocytes. While Na-K-ATPase
exports excess intracellular Na+ (compensatory flux), it has been suggested that the
amount of active Na-K-ATPase is directly controlled by the concentration of intracellular
Na+ (measurement flux). This forms an outflow controller for intracellular Na+ (top
figure, red background). Increased ATP usage by Na-K-ATPase causes a reduction
in intracellular ATP (measurement flux), relieving the inhibition of basolateral ATP-
sensitive K channels (compensatory flux). This forms an outflow controller regulating
the export of K+ (bottom figure, red background). Intracellular K+ is considered the
regulated species due to the dependency of Na-K-ATPase pump rate on serosal membrane
potential [178].
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enterocytes require a regulatory mechanism that responds to excess intra-
cellular Na+ [178]. The Na-K-ATPase membrane protein plays a major
role in this regulation by exporting Na+ ions, coupled to uptake of K+

ions, thereby maintaining the Na+ gradient that drives active uptake of
glucose [178]. It has been proposed that the amount of active Na-K-ATPase
in enterocytes is directly controlled by the concentration of intracellular
Na+, and that this regulation, together with a regulation of basolateral K
permeability by intracellular ATP, gives enterocytes the ability to maintain
ionic Na+/K+ homeostasis [178]. This mechanism establishes a negative
feedback connection for the export of Na+, similar to outflow controller 5,
where Na+ is regulated by adjusting the number of Na-K-ATPase trans-
porter proteins. Increased Na-K-ATPase pump activity during nutrient
uptake is accompanied by an increase in the basolateral K permeability,
believed to be caused by a reduction in intracellular ATP due to increased
ATP usage by Na-K-ATPase, which relieves inhibition of basolateral ATP-
sensitive K channels [178]. Thus, another negative feedback connection is
formed, where ATP functions as a controller regulating the export of K+,
in a structure similar to outflow controller 6 [178].

3.3 Stability of homeostatic controller motifs

Mathematical models of biochemical networks play an important role in
elucidating the mechanisms behind homeostatic behaviors. Of particular in-
terest is the characterization of control theoretic properties such as stability
and robustness [43, 41, 42, 186]. These properties imply the inclusion of a
subsystem that can recreate and compensate for certain exogenous signals,
known as the internal model principle (IMP) [161, 176, 92]. In particular,
adaptation to constant exogenous signals (stepwise changes) implies the
presence of integral feedback [161, 176, 92]. However, in order to establish
robustness for the homeostatic controller motifs, we first need to establish
stability.

3.3.1 Notes on existence and uniqueness

In the mathematical model for the homeostatic controller motifs, given by
(3.9)–(3.10), the system states x1 and x2 represent physical concentrations
of compounds. Since concentrations are non-negative quantities, a global
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result corresponds to non-negative values for the states. To show this, we
note that the degradation expressions satisfy fd,i(0) = 0 and

fd,i(xi), α(xi), β(xi), γ(xi), δ(xi) ≥ 0 ∀ xi ≥ 0 (3.11)

which ensures invariance of the non-negative orthant R2
≥0 (first quadrant) [9].

The equilibrium point (x∗1, x∗2) is found by setting ẋ1 = ẋ2 = 0, and solving
for the states. The existence of a non-negative equilibrium point requires a
balance between inflow and outflow reactions. We illustrate this point with
an analogy to a couple of water tanks with drains at the bottom, arranged
such that one tank is drained into the other, shown in Figure 3.5 [195]. The
topmost tank is filled by a constant source of water, through a valve whose
position is determined by the water level in the bottom tank. For a low
water level in the bottom tank, the valve is opened, and for a high water
level the valve is closed. This realizes a negative feedback structure similar
to the homeostatic controller motifs. If the drain in the topmost tank is
too small compared to the drain of the bottom tank, the bottom tank will
not fill, resulting in an open valve and a large inflow of water into the top
tank. If the drain in the top tank is also too small compared to the inflow
of water, the top tank will overflow. For the homeostatic controller motifs,
this corresponds to a situation where the regulated species accumulates,
while the controller species is removed entirely. In this case, the system
parameters have values such that an equilibrium point does not exist. Just
like the water tanks need a balance between inflow and outflow to avoid
overflowing or emptying, the homeostatic controller motifs need a balance
between inflow and outflow reactions of the two species for an equilibrium
point to exist.

We assume that a positive equilibrium point for the system in (3.9)–(3.10)
exists. Then, it can be shown that the equilibrium point is also unique.
We separate the system into a process and a controller, where the process
represents the basic function of the system, while the controller implements
manipulations to improve stability, robustness, and performance of this
function [40]. Hence, the process is given by the differential equation
describing the dynamics of the regulated species (x1), and the controller is
given by the differential equation describing the dynamics of the controller
species (x2). This separation is shown in Figure 3.6, where the control
action is the process (P) input, and the process output is the controller (C)
input.
By characterizing the steady-state input-output relationships for the

process and controller, we find the equilibrium point of the closed-loop
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Sink

Closed
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Constant 
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Figure 3.5: A couple of water tanks with drains at the bottom, arranged such that the
topmost tank is drained into the bottom tank. The water levels in the top and bottom
tanks are represented by the states x1 and x2, respectively. The top tank is filled by
a constant source, through a valve whose position is determined by the water level in
the bottom tank. For a low water level, the valve is in an open position, and for a high
water level the valve is in a closed position. Thus, the inflow of water into the top tank
is analogous to the compensatory flux (jcomp) in the homeostatic controller motifs. The
water drained from the top tank into the bottom tank is analogous to the measurement
flux, in the special case where the measurement flux happens to be equal to the basal
degradation of the regulated species (jb,1 = jmeas). Finally, the water drained from the
bottom tank into the sink is analogous to the basal degradation of the controller species
(jb,2). For the example illustrated in this figure, the drain hole in the top tank is too
small compared to the drain hole in the bottom tank, resulting in the bottom tank being
drained. In turn, this leaves the valve in an open position, filling the top tank. Since the
drain hole in the top tank is also too small compared to the inflow of water, this results
in overflowing of the top tank. This illustrates the balance of system parameters that is
necessary for an equilibrium point to exist.
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Control 
action

Output
P

C
Figure 3.6: Separation of the homeostatic controller motifs into a process (P, blue)
and a controller (C, red). The process output is fed into the controller, which produces
a control action that is fed back into the process. Negative feedback is realized by
having the process output negatively affect the controller output, which in turn positively
affects the process output, or by having the process output positively affect the controller
output, which in turn negatively affects the process output. The intersection of the
steady-state input-output response curves (nullclines) for the process and controller gives
the steady-state (equilibrium point) of the closed-loop system.

system as the intersection of these steady-state response curves [6, 82].
Such response curves are known as nullclines, which we will take a closer
look at in Chapter 4. Here, we simply note that the nullclines for the
homeostatic controller motifs in general take the form

xss1 = f−1
d,1

(
ks,1 · α(xss2 )
β(xss2 )

)
(3.12)

xss2 = f−1
d,2

(
ks,2 · γ(xss1 )
δ(xss1 )

)
(3.13)

and, for each individual homeostatic controller motif, it can be verified
that these steady-state response curves will only intersect at most in one
point for non-negative steady-states. This fact comes from the property
that the functions fd,i, α, β, γ, and δ are strictly monotone (either strictly
increasing or strictly decreasing), and that the homeostatic controller motifs
are arranged in a negative feedback connection [6, 82]. Figure 3.7 shows
the process and controller nullclines for outflow controller 7, indicating the
intersection that represents the equilibrium point for the closed-loop system.
The following stability result implies that if a non-negative equilibrium
point exists, it must also be unique. Therefore, instead of explicitly showing
that the equilibrium point is unique, we will assume that it is, and let
uniqueness be implied by the stability result obtained.
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Figure 3.7: Process (solid blue line) and controller (dashed red line) nullclines for outflow
controller 7, given by system parameters defined in Section 3.3.3. Since the process
nullcline is strictly decreasing and the controller nullcline is strictly increasing, only one
intersection of the nullclines is possible (for non-negative steady-states). Therefore, the
equilibrium point (x∗

1, x
∗
2) must be unique.

3.3.2 Global asymptotic stability

To show stability of the homeostatic controller motifs, we consider the
general system in (3.9)–(3.10), and start by performing the change of
variables: z1 = x1 − x∗1 and z2 = x2 − x∗2, where (x∗1, x∗2) is the equilibrium
point of the system. This way, the equilibrium point is shifted to the origin,
giving the system

ż1(t) = −f1(z1) + h2,α(z2)− g1(z1) · h2,β(z2) (3.14)
ż2(t) = −f2(z2) + h1,γ(z1)− g2(z2) · h1,δ(z1) (3.15)

where we use the following definitions

f1(z1) = (fd,1(z1 + x∗1)− fd,1(x∗1)) · β(x∗2) (3.16)
f2(z2) = (fd,2(z2 + x∗2)− fd,2(x∗2)) · δ(x∗1) (3.17)
g1(z1) = fd,1(z1 + x∗1) (3.18)
g2(z2) = fd,2(z2 + x∗2) (3.19)
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h1,γ(z1) = (γ(z1 + x∗1)− γ(x∗1)) · ks,2 (3.20)
h1,δ(z1) = δ(z1 + x∗1)− δ(x∗1) (3.21)
h2,α(z2) = (α(z2 + x∗2)− α(x∗2)) · ks,1 (3.22)
h2,β(z2) = β(z2 + x∗2)− β(x∗2) (3.23)

and relationships

α(x∗2) = fd,1(x∗1) · β(x∗2)
ks,1

(3.24)

δ(x∗1) = ks,2 · γ(x∗1)
fd,2(x∗2) (3.25)

Note that fi(0) = 0 and that fi are strictly increasing for the interval
[−x∗i ,∞). Additionally, h1,γ(0) = h1,δ(0) = h2,α(0) = h2,β(0) = 0, and if
we define (3.20)–(3.23) to be negative if the corresponding α, β, γ, δ are
inhibiting, then (3.20)–(3.23) are also strictly increasing for the interval
[−x∗i ,∞)3. The functions gi ≥ 0 for the same interval. As mentioned
before, only one of the functions α and β, and one of the functions γ and
δ, are present for a given controller motif (the remaining two are set equal
to 1). This means that only one of the functions h2,α and h2,β , and one of
the functions h1,γ and h1,δ, are non-zero for a given controller motif. Thus,
the shifted system in (3.14)–(3.15) can be reduced to

ż1(t) = −f1(z1)± g1(z1) · h2(z2) (3.26)
ż2(t) = −f2(z2)∓ g2(z2) · h1(z1) (3.27)

where h1(z1) = ±h1,γ(z1) ∨ ±h1,δ(z1) and h2(z2) = ±h2,α(z2) ∨ ±h2,β(z2),
depending on the particular controller motif. For inhibiting cross-coupling
reactions, we define the corresponding functions (3.20)–(3.23) to be nega-
tive. Thus, for the system in (3.26)–(3.27) the signs of the last terms are
determined from the system in (3.14)–(3.15) (plus for inflow and minus for
outflow), with a change of sign if hi represents inhibition (see Section 3.3.3
for an example). The functions fi and gi are given as above, however, for
controller motifs that use cross-coupling reactions α or γ, we define the
associated gi = 1, so that the reduced system in (3.26)–(3.27) encompasses
these controller motifs as well. Note that since all the homeostatic controller

3For example, if δ is inhibiting, then h1,δ is strictly decreasing. However, the negative
function −h1,δ is strictly increasing.
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motifs form negative feedback connections, the sign of the last term in
(3.26) will always be opposite to the last term of (3.27).

We can now express the system in (3.26)–(3.27) as a negative feedback
connection of the two subsystems

H1 :

ż1(t) = −f1(z1) + g1(z1) · u1(t)
y1(t) = h1(z1)

(3.28)

H2 :

ż2(t) = −f2(z2) + g2(z2) · u2(t)
y2(t) = h2(z2)

(3.29)

where negative feedback is formed by having

u1 = −y2, u2 = y1 or u1 = y2, u2 = −y1 (3.30)

depending on the particular controller motif. This gives a similar separation
of the homeostatic controller motifs into a process (H1) and a controller
(H2) as shown in Figure 3.6.

Next, we consider the two subsystems H1 and H2 individually, to show
that they are output strictly passive. We use the storage function Si for
subsystem Hi

Si(zi) =
∫ zi

0

hi(σ)
gi(σ) dσ (3.31)

which has a derivative along trajectories given by

Ṡi(zi) = hi(zi)
gi(zi)

· żi = −fi(zi) ·
hi(zi)
gi(zi)

+ ui · yi (3.32)

where we use that yi = hi(zi). Subsystem Hi is said to be output strictly
passive if the following inequality is satisfied [92, 158]

Ṡi(zi) ≤ −yi · ρi(yi) + ui · yi (3.33)

where yi · ρi(yi) > 0 ∀ yi 6= 0. A system is said to be passive if the energy
stored in the system over a period of time is not greater than the energy
supplied to the system over the same period [92, 158]. For (3.33), this
means that the input “power” to the system, ui · yi, is greater than or equal
to the rate of change of the stored “energy” in the system, Ṡ. Additionally,
(3.33) contains an “excess” of passivity due to the term −yi ·ρi(yi), meaning
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that the energy supplied to the system over a period of time will always be
greater than the increase in stored energy, unless the output yi is identically
zero [92]. For the homeostatic controller motifs, we choose yi ·ρi(yi) = pi ·y2

i ,
where pi is a positive constant. The inequality in (3.33) is then satisfied if

0 < pi ≤
fi(zi)

hi(zi) · gi(zi)
(3.34)

for the interval [−x∗i ,∞). From the definition of the system in (3.26)–(3.27),
it can be seen that the right-hand side expression of (3.34) is positive for
this interval, and that it is monotone. Then, (3.34) is satisfied by finding
pi as the lower bound of the right-hand side expression, which is given
by [186]

pi = min
−x∗

i≤zi<∞

fi(zi)
hi(zi) · gi(zi)

= min
{

lim
zi→−x∗

i
+

fi(zi)
hi(zi) · gi(zi)

, lim
zi→∞

fi(zi)
hi(zi) · gi(zi)

}
(3.35)

Thus, (3.33) is satisfied, showing that subsystems (3.28) and (3.29) are
output strictly passive with storage functions given by (3.31).
It has been shown that a negative feedback connection of two output

strictly passive subsystems is asymptotically stable if the subsystems are
zero-state detectable [158]. Let us consider the general system

H :

ż(t) = f(z, u)
y(t) = h(z, u)

(3.36)

and set u = 0. H is said to be zero-state detectable if the origin is
asymptotically stable conditionally to Z, where Z is the largest positively
invariant set contained in {z ∈ Rn | y = h(z, 0) = 0} [158]. For the special
case when Z = {0}, the systemH is said to be zero-state observable [158, 92].
For subsystems H1 and H2 in (3.28) and (3.29), we let u1 = u2 = 0, and
see that

y1 = y2 = 0 =⇒ z1 = z2 = 0 (3.37)

Therefore, subsystems H1 and H2 are zero-state observable if the origins
of the unforced subsystems, given by system equations żi = −fi(zi), are
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locally asymptotically stable [92, 158]. Linearization at the origin gives

H1 : −∂f1
∂z1

(z1)
∣∣∣∣
z1=0

= − kd,1 ·KM,1

(KM,1 + x∗1)2 · β(x∗2) < 0 (3.38)

H2 : −∂f2
∂z2

(z2)
∣∣∣∣
z2=0

= − kd,2 ·KM,2

(KM,2 + x∗2)2 · δ(x
∗
1) < 0 (3.39)

which shows local asymptotic stability.
We now consider the full negative feedback connection of H1 and H2.

Negative feedback is formed by (3.30), which gives the derivative along
trajectories of the combined storage function S = S1 + S2

Ṡ(z1, z2) = Ṡ1(z1) + Ṡ2(z2) ≤ −p1 · y2
1 − p2 · y2

2 (3.40)

This implies that S is positive definite4 [92, 158, 160]

S(z1, z2) = S1(z1) + S2(z2) ≥
∫ T

0

(
p1 · y2

1 + p2 · y2
2

)
dt (3.41)

which can also be seen from (3.31) and the fact that if S1 and S2 are positive
definite, so is S. These properties of the combined storage function shows
that all bounded solutions converge to the set {(z1, z2) | y1 = y2 = 0} [158].
From (3.37), we know that this set corresponds to the origin. In (3.38)
and (3.39), we showed that the origin is locally asymptotically stable by
linearization, and hence, we conclude that the homeostatic controller motifs
are asymptotically stable [158]. Additionally, if the storage functions S1
and S2 are radially unbounded, so is S, and the homeostatic controller
motifs are globally asymptotically stable [158]. From the definition of S1
and S2 in (3.31), it is seen that S must be radially unbounded.
In the preceding analysis, we showed that a class of eight nonlinear

two-component systems, called homeostatic controller motifs, are globally
asymptotically stable. This was done by formulating the controller mo-
tifs as negative feedback connections of two individual subsystems. By
establishing output strict passivity and zero-state observability of these
subsystems, global asymptotic stability was shown for the negative feedback
connection of the subsystems. At this point, we note that the stability

4Positive definiteness is shown by assuming that there is a pair z̄1, z̄2 6= 0 such
that S(z̄1, z̄2) = 0, implying that the right-hand side of (3.41) is equal to zero. This
leads to a contradiction due to zero-state observability (see (3.37)), which implies that
z̄1, z̄2 = 0 [92].
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result obtained does not solely rely on the particular rate expressions
chosen for the homeostatic controller motifs. Instead, we see that it is
the nature of the expressions, i.e. strictly monotone, that enables us to
establish asymptotic stability. Therefore, we could easily perform the same
stability analysis on variations of the homeostatic controllers motifs with
different reaction kinetic expressions, e.g. cross-coupling reactions using
Hill-type kinetics5. The clue to the preceding analysis is to describe the
controller motifs as negative feedback connections of two output strictly
passive subsystems. Then, subject to the zero-state observability condi-
tion, the negative feedback connection is asymptotically stable [158]. This
demonstrates the potential for passivity theory as a tool to help us under-
stand cellular reaction networks, where individual processes are described in
terms of passivity, so that stability properties of the interconnection these
processes can be ascertained using fairly simple rules on the interconnection
of passive systems [158, 11, 9].

3.3.3 An example

We demonstrate the preceding stability analysis by considering outflow
controller 7, shown in Figure 3.8, given by the system of ODEs

ẋ1(t) = ks,1−fd,1(x1)·β(x2) = ks,1−
kd,1 · x1(t)
KM,1 + x1(t) ·

x2(t)
KA,2 + x2(t) (3.42)

ẋ2(t) = ks,2−fd,2(x2)·δ(x1) = ks,2−
kd,2 · x2(t)
KM,2 + x2(t) ·

KI,1
KI,1 + x1(t) (3.43)

With the change of variables zi = xi − x∗i , the equilibrium point is shifted
to the origin, which gives the system

ż1(t) = − (fd,1(z1+x∗1)−fd,1(x∗1)) ·β(x∗2)︸ ︷︷ ︸
f1(z1)

− fd,1(z1+x∗1)︸ ︷︷ ︸
g1(z1)

· (β(z2+x∗2)−β(x∗2))︸ ︷︷ ︸
h2,β(z2)

= −f1(z1)− g1(z1) · h2(z2) (3.44)

ż2(t) = − (fd,2(z2+x∗2)−fd,2(x∗2)) ·δ(x∗1)︸ ︷︷ ︸
f2(z2)

+ fd,2(z2+x∗2)︸ ︷︷ ︸
g2(z2)

· (δ(x∗1)−δ(z1+x∗1))︸ ︷︷ ︸
−h1,δ(z1)

= −f2(z2) + g2(z2) · h1(z1) (3.45)
5A variant of inflow controller 2, the Goodwin model (see (2.3)–(2.4) in Chapter 2),

shows oscillations of arbitrary amplitude [63, 65]. However, with degradation of the
controller species following Michaelis–Menten kinetics, no stable oscillations can exist,
even with Hill-type feedback [65].
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Figure 3.8: Outflow controller 7 with activating and inhibiting cross-coupling reactions
β and δ, respectively.

where h2(z2) = h2,β(z2) and h1(z1) = −h1,δ(z1)6. This system is described
by the two subsystems (3.28) and (3.29) in negative feedback connection
given by

u1 = −y2 = −h2(z2), u2 = y1 = h1(z1) (3.46)

We choose a set of arbitrary parameter values such that the equilibrium
point (x∗1, x∗2) is non-negative: ks,1 = 1.00, kd,1 = 3.00, KM,1 = 1.50,
ks,2 = 1.00, kd,2 = 4.00, KM,2 = 0.75, KI,1 = 1.50, and KA,2 = 2.00 (see
Figure 3.7 for the intersecting nullclines indicating (x∗1, x∗2)). Thereby, the
storage function for subsystem H1 is given by

S1(z1) =
∫ z1

0

h1(σ)
g1(σ) dσ =

∫ z1

0

(
0.114− 0.329

σ + 2.893

)
dσ (3.47)

with derivative along trajectories satisfying

Ṡ1(z1) ≤ −p1 · y2
1 + u1 · y1 (3.48)

where the constant p1 is determined by

0 < p1 ≤
f1(z1)

h1(z1) · g1(z1) = 0.506 + 0.759
z1 + 2.893 (3.49)

For the interval [−x∗1,∞), the right-hand side expression of (3.49) is always
greater than or equal to 0.506 (Figure 3.9a), so we choose this value for p1.

6Note that δ is inhibiting, and therefore h1,δ is negative (see (3.26)–(3.27)).
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Similarly, the storage function for subsystem H2 is given by

S2(z2) =
∫ z2

0

h2(σ)
g2(σ) dσ =

∫ z2

0

(
0.124− 0.095

σ + 2.050 −
0.313

σ + 4.050

)
dσ

(3.50)

with derivative along trajectories satisfying

Ṡ2(z2) ≤ −p2 · y2
2 + u2 · y2 (3.51)

where p2 = 0.185, determined by

0 < p2 ≤
f2(z2)

h2(z2) · g2(z2) = 0.185 + 0.370
z2 + 2.050 (3.52)

(a) Determination of p1. (b) Derivative of S along trajectories.

Figure 3.9: A plot of the right-hand side expression of (3.49) is shown in panel (a).
Dashed black line indicates the lower bound of the expression (i.e. the value chosen for
p1). Gray area indicates values of z1 outside the interval [−x∗

1,∞). Panel (b) shows
that the derivative of S along trajectories (Ṡ, blue) is upper bounded by the quadratic
right-hand side expression in (3.53) (red). Note that the surfaces are plotted in terms of
y1 and y2.

Because S1 and S2 are positive definite and radially unbounded (for the
interval [−x∗i ,∞)), so is the combined storage function S = S1 + S2. The
derivative of S along trajectories satisfies

Ṡ(z1, z2) ≤ −0.506 · y2
1 − 0.185 · y2

2 (3.53)
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which shows that Ṡ is negative definite (Figure 3.9b). The combined storage
function S and its derivative along trajectories Ṡ are shown in Figure 3.10.
Because S is positive definite and Ṡ is negative definite, all bounded
solutions converge to the set where the outputs y1 = y2 = 0. In general, this
set could correspond to a number of values (z1, z2), however, since the output
functions hi are strictly increasing and satisfy hi(0) = 0, the set corresponds
to the origin. This implies that the negative feedback connection of H1
and H2 is asymptotically stable if the unforced subsystems are locally
asymptotically stable at the origin. We verify this by linearization, according
to (3.38) and (3.39)

H1 : −∂f1
∂z1

(z1)
∣∣∣∣
z1=0

= −0.118 < 0 (3.54)

H2 : −∂f2
∂z2

(z2)
∣∣∣∣
z2=0

= −0.131 < 0 (3.55)

Thus, the subsystems are zero-state observable, and the negative feedback
connection of H1 and H2 is asymptotically stable. In addition, because the
combined storage function S is radially unbounded, the result is global7.

(a) Combined storage function S. (b) Derivative of S along trajectories.

Figure 3.10: The combined storage function S (panel (a)), and its derivative along
trajectories Ṡ (panel (b)) for the system in (3.44)–(3.45). Since S is positive definite and
Ṡ is negative definite (red grid), all bounded solutions converge to the origin (red line).

7Remember that a global result corresponds to non-negative values of the states (x1
and x2), since concentrations of substances are non-negative quantities.
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3.4 Integral action and robustness

We have shown that the homeostatic controller motifs are globally asymp-
totically stable due to the formation of a negative feedback connection.
However, it is not only important to know that the homeostatic controller
motifs tend towards some stable equilibrium point, but also to discern
whether the homeostatic controller motifs are able to maintain this equi-
librium point in the presence of uncontrolled environmental disturbances.
This is because negative feedback and stability alone are not sufficient for
robust homeostatic control [41]. It is robustness to disturbances that relate
the homeostatic controller motifs to Cannon’s definition of homeostasis [25].
Asymptotic regulation is the notion that a regulation error approaches

zero, i.e. the output perfectly reaches a desired reference, as time tends
to infinity [92]. If asymptotic regulation is achieved in the presence of
disturbances, asymptotic disturbance rejection (also called robustness) is
achieved [92]. In the case of a constant reference signal, where the goal is
to asymptotically regulate the output to a set-point, and a constant dis-
turbance, asymptotic regulation and disturbance rejection can be achieved
by integral action [92]. A block diagram of negative feedback with integral
action is shown in Figure 3.11. For a process subject to disturbance w, the
process output y is to be regulated to a desired set-point r. This is achieved
by comparing the process output to the set-point, giving the regulation
error e = r − y. Based on the regulation error, the controller produces a
control action u which acts on the process. For a controller with integral
action, the control action is given by the integral of the regulation error.
Thus, when the process output deviates from the set-point, the regulation
error is non-zero, which produces a change in the control action. Because
the feedback of the process output is negative, this change in control action
counteracts the deviation in process output from the set-point. Importantly,
with integral action, the process output can be maintained exactly at the
set-point, since the integrator of the controller functions as a “memory” ele-
ment that accumulates (i.e. integrates) the regulation error over time, such
that the control action corresponding to the desired process output can be
maintained, even when the regulation error is zero [142, 42, 155]. In other
words, the control action is dependent on the history of past regulation
errors, not just the present value, which enables the controller to adapt to
uncontrolled changes in the process, such as external disturbances [42, 92].

The mathematical description of an integral controller (with a constant
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Process

Integral controller

Figure 3.11: Block diagram of a process in negative feedback connection with an
integral controller. The process output y is fed back and compared to the set-point r to
produce the regulation error e = r − y. The regulation error is multiplied by an integral
gain Gi and integrated over time to produce the control action u. In the presence of an
uncontrolled disturbance w, a deviation in the process output from the set-point will
cause a non-zero regulation error. This produces a change in the control action, and
since the feedback is negative, this control action functions to counteract the deviation
in process output from the set-point.

set-point), called the integral control law, is given by

ė(t) = Gi · (r − y(t)) (3.56)

where Gi is the integral gain, r is the set-point, and y is the process
output. Figure 3.11 suggests a constant Gi, however, the integral gain
can be variable, often referred to as gain scheduling [41, 92, 155]. For the
homeostatic controller motifs, given by the system in (3.9)–(3.10), we use
the differential equation for the controller species to show that integral
action is included in the negative feedback connection. Depending on
the particular controller motif, this differential equation is either given by
cross-coupling with the regulated species through reaction γ or reaction
δ, corresponding to the two cases where the measurement flux (jmeas)
represents an inflow or outflow, respectively. Therefore, integral action has
to be shown for the two cases

case 1: ẋ2(t) = ks,2 · γ(x1)− fd,2(x2)

= −ks,2 ·
(
γ

(
γ−1

(
fd,2(x2)
ks,2

))
− γ(x1)

)
= −ks,2 ·

(
γ(xset1 )− γ(x1)

)
(3.57)
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case 2: ẋ2(t) = ks,2 − fd,2(x2) · δ(x1)

= fd,2(x2) ·
(
δ

(
δ−1

(
ks,2

fd,2(x2)

))
− δ(x1)

)
= fd,2(x2) ·

(
δ(xset1 )− δ(x1)

)
(3.58)

where xset1 = γ−1 (fd,2(x2)/ks,2) in (3.57), and xset1 = δ−1 (ks,2/fd,2(x2)) in
(3.58). Because γ and δ can represent activation or inhibition, there are four
possible expression for xset1 [145]. Additionally, the integral gain is different
for the two cases: In (3.57) the integral gain is constant Gi = −ks,2, whereas
in (3.58) the integral gain is variable Gi = fd,2(x2). Table 3.1 lists the
expressions associated with integral action for all the homeostatic controller
motifs.

Controller Motif Gi xset1 xmeas
1

1 and 6 fd,2(x2) KA,1·ks,2
fd,2(x2)−ks,2

x1
KA,1+x1

2 and 5 −ks,2
KA,1·fd,2(x2)
ks,2−fd,2(x2)

x1
KA,1+x1

3 and 8 −ks,2
KI,1·(ks,2−fd,2(x2))

fd,2(x2)
KI,1

KI,1+x1

4 and 7 fd,2(x2) KI,1·(fd,2(x2)−ks,2)
ks,2

KI,1
KI,1+x1

Table 3.1: There are four possible ways in which the homeostatic controller motifs
realize integral action. The table lists all expressions for integral gain Gi, set-point xset

1 ,
and measurement xmeas

1 (γ or δ, which can be activating or inhibiting).

It is seen from the expressions for xset1 in Table 3.1 that the set-point for
the regulated species (x1) is dependent on the level of the controller species
(x2). However, in the special case where KM,2 = 0, we have zero-order
degradation of the controller species (fd,2(x2) = kd,2), and the set-point is
constant. In this case, since the homeostatic controller motifs are globally
asymptotically stable, and since (3.57) and (3.58) show that the controller
motifs also include integral action, robustness to all constant parameter
perturbations that do not destroy the stability of the closed-loop system
is ensured [92]. The homeostatic controller motifs have a globally asymp-
totically stable equilibrium point, and hence, all trajectories converge to
this equilibrium point. At this point all signals must be constant. For the
integral controller to have a constant output, the regulation error e = r− y

49



CHAPTER 3. HOMEOSTATIC CONTROLLER MOTIFS

must be zero. Thus, the inclusion of integral action forces the regulation
error to zero at the equilibrium. Parameter perturbations may change
the equilibrium, but the condition e = 0 at the equilibrium point is main-
tained. Therefore, as long as the perturbed homeostatic controller motifs
remain globally asymptotically stable, asymptotic disturbance rejection
is achieved [92]. This holds true as long as the compensatory flux (jcomp)
does not reach its upper limit, at which point capacity related breakdown
occurs [41].

If we now reintroduce the perturbation flux, given in (3.8), to the home-
ostatic controller motifs (see the flux balance equations in (3.1)–(3.2)),
we can study how uncontrolled disturbances in the regulated species are
compensated for. For zero-order degradation of the controller species
(KM,2 = 0), the set-point remains unchanged for constant perturbations
(stepwise changes in kin/outp ) in the regulated species, such that x1 is always
regulated back to its pre-perturbed value. Perturbations in x1 are effectively
“absorbed” by x2, thereby maintaining a constant steady-state level for the
regulated species [4]. If the removal of the controller species follows the
Michaelis–Menten equation, and we assume that the enzyme driving the
reaction is saturated with substrate (i.e. KM,2 � x2), the degradation rate
can be approximated by zero-order [41, 6]. However, in the case where such
an approximation can not be made (KM,2 6� x2), the regulation error will
still go to zero, but as shown in Table 3.1, the set-point is now dependent
on the level of x2. Thus, perturbations in x1 will change the value of xset1
through changes in the level of x2, meaning that the controller species is
not able to fully absorb perturbations in the regulated species, resulting
in only partial adaptation to disturbances. Although partial adaptation
may seem less desirable than perfect adaptation8, it still represents better
regulation compared to no adaptation to disturbances (Figure 3.12). In
addition, it is likely that mechanisms for zero-order removal in biological
systems rely on saturation, rather than true zero-order kinetics, so that
near-perfect adaptation is likely the best achievable response [6].
Also note, that in the case of zero-order degradation of the controller

species (KM,2 = 0), the expressions for xset1 are given entirely by reaction
kinetic parameters associated with the synthesis and degradation of the
controller species. Therefore, the process of tuning the homeostatic con-
troller motifs for a desired set-point is achieved by manipulating reactions

8It has been demonstrated that a variable set-point may be a relaxing condition for
the controller, reducing the necessary control action, and representing a saving in energy
expenditure [145].
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Figure 3.12: The different adaptation responses shown by the homeostatic controller
motifs to constant disturbances. At one extreme, the regulated species is completely
decoupled from the controller species, and there is no adaptation to perturbations in the
regulated species (yellow line). At the other extreme, the degradation of the controller
species is zero-order (KM,2 = 0), and the homeostatic controller motifs show perfect
adaptation (blue line). In-between these extremes, the homeostatic controller motifs show
partial adaptation (red line), corresponding to unsaturated Michaelis–Menten kinetics
(KM,2 6� x2).

associated with the controller species only, a property which could see the
homeostatic controller motifs as useful building blocks in synthetic biolog-
ical networks [180, 176, 6]. For now, we leave the tuning of homeostatic
controller motifs to Chapter 4.

3.4.1 Integral control motifs

Aside from zero-order degradation, or saturated removal, of the controller
species, there are other reaction kinetic mechanisms that have been shown to
realize integral action [42, 21, 142]. A variant of the homeostatic controller
motifs, where the controller species is removed in a first-order reaction, has
been shown to to achieve integral action through autocatalytic generation
of the controller species [42]. Figure 3.13 shows an example of such a
control motif, where inflow controller 1 is augmented into an autocatalytic
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Autocatalysis
Figure 3.13: A variant of inflow controller 1, where the controller species x2 is generated
autocatalytically. Autocatalytic controllers achieve integral action by matching the
reaction orders for synthesis and degradation of the controller species, with respect to the
controller species. This way, perfect adaptation is achieved without requiring zero-order
degradation of the controller species.

controller. This system is given by the ODEs [42]

ẋ1(t) = ks,1 · α(x2)− fd,1(x1) (3.59)
ẋ2(t) = ks,2 · x2 − kd,2 · x2 · δ(x1) (3.60)

where the synthesis of x2 is activated by itself (autocatalysis), and the
degradation is first-order (fd,2(x2) = kd,2 · x2). To see that the controller
species implements integral action, we rewrite (3.60) into

ẋ2(t) = ks,2 · x2 − kd,2 · x2 · δ(x1)

= kd,2 · x2 ·
(
δ

(
δ−1

(
ks,2
kd,2

))
− δ(x1)

)
= kd,2 · x2 ·

(
δ(xset1 )− δ(x1)

)
(3.61)

where it is seen that the set-point xset1 = δ−1(ks,2/kd,2) is constant. In
comparison to the homeostatic controller motifs, the autocatalytic con-
trollers achieve perfect adaptation without requiring zero-order removal of
the controller species [42]. Notably, the autocatalytic controllers can also
achieve perfect adaptation for other reaction kinetic expressions for the
degradation of x2, as long as the autocatalytic generation of x2 is identical
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(up to multiplication by a positive constant) [42, 49]. It is apparent that the
autocatalytic controllers achieve integral action by matching the expressions
for synthesis and degradation of the controller species, with respect to the
controller species9 (i.e. the reaction orders with respect to x2) [49].

In terms of stability, the autocatalytic controllers have been demonstrated
to be asymptotically stable, however, they can not be globally asymptoti-
cally stable [42, 176]. This is due to the fact that trajectories on the line
x2 = 0 will never escape it. Depending on the particular autocatalytic
controller motif, it can be shown that x1 either grows to infinity, reaches
a positive steady-state, or depletes completely, for trajectories staring on
x2 = 0. This may pose difficulties for autocatalytic controllers with low
molecular counts, where the presence of biochemical noise could potentially
bring the controller species to zero [23].

Another way to realize integral action is the use of two controller species
that “annihilate” each other, in a so-called antithetic integral feedback
controller [21]. The antithetic controller has been shown to regulate the
output species of undefined reaction networks consisting of unimolecular
and bimolecular reactions, as shown in Figure 3.14. The reaction network
being controlled (the cloud in Figure 3.14) and the antithetic controller
are both described by mass-action kinetics. The antithetic controller
consists of two controller species, x2 and x3, and four reactions: One
reference reaction generating x2 at a constant rate, one measurement
reaction generating x3 via the network output species x1, one comparison
reaction that annihilates the controller species x2 and x3 in a bimolecular
reaction, and one actuation reaction that affects the controlled reaction
network via the controller species x2 [21, 22]. The antithetic controller
regulates the network output species x1 to a steady-state determined
by the rate constants for the production of the controller species, and
notably, achieves robust perfect adaptation in a stochastic setting (the
system converges to a unique stationary distribution) [21]. To see how
integral action is achieved, we take a look at the controller species of the
(deterministic) antithetic controller, given by the ODEs [21, 142]

ẋ2(t) = µ− η · x2(t) · x3(t) (3.62)
ẋ3(t) = θ · x1(t)− η · x2(t) · x3(t) (3.63)

9This is also true for the homeostatic controller motifs, where the synthesis and
degradation of the controller species are zero-order with respect to the controller species.
In this sense, the autocatalytic controllers are generalizations of the homeostatic controller
motifs.
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Controlled 
network Actuation 

reaction

Measurement 
reaction

Comparison 
reaction

Reference 
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Figure 3.14: The antithetic controller consists of two controller species x2 and x3 that
annihilate each other in a so-called comparison reaction. A reference reaction generating
x2 at a constant rate (partly) defines the set-point of the controller. The actuation
reaction affects some undefined reaction network (the cloud), with the goal of controlling
the network output x1, via the controller species x2. The output species is sensed in
a measurement reaction activating the generation of the controller species x3. The
antithetic controller implements integral action with the hidden variable χ = x2 − x3,
and defines a set-point for the network output species by the rate constants for the
production of the controller spices.

where µ is the constant production rate of x2, both controller species
are annihilated in the comparison reaction η · x2 · x3, and θ · x1 is the
measurement reaction producing x3. Then, the hidden variable χ = x2−x3
is given by

χ̇(t) = ẋ2(t)− ẋ3(t) = θ ·
(
µ

θ
− x1(t)

)
(3.64)

which has the same form as the integral control law (see (3.56)) [21, 142].
It has been shown that the antithetic controller is the minimal implemen-

tation that achieves robust perfect adaptation using mass-action kinetics,
with only two controller species and one annihilation reaction10 [8]. A

10Although the homeostatic controller motifs only consist of one controller species,
they are not described using mass-action kinetics.
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benefit of the antithetic controller is that tuning is done by manipulating
production rates only, whereas tuning of the homeostatic controller motifs
entails manipulation of degradation rates as well [181]. It is often easier to
manipulate production rates [5].
Enzyme reactions catalyzed by “one-way enzymes,” or coupled to ther-

modynamically favorable reactions, may be practically irreversible [31, 17].
However, we would expect that elementary reaction steps are reversible [31,
91]. For the comparison reaction in the antithetic controller, this does
not pose a problem, but for the reference, measurement, and actuation
reactions, reversibility could lead to disruption of the integral control law
in (3.64), resulting in only partial adaptation to disturbances.

Interestingly, if the reaction network controlled by the antithetic controller
is a single species x1 being generated and turned over, it is possible to
construct eight negative feedback connections, analogous to the homeostatic
controller motifs [147]. This way, the antithetic controller configurations
can be defined as inflow or outflow controllers, depending on whether the
actuation reaction is affecting the synthesis or degradation of the regulated
species x1, respectively. Thus, the antithetic controller configurations can
be used in a similar way to the homeostatic controller motifs, where inflow
controllers primarily compensate for outflow perturbations, and outflow
controllers primarily compensate for inflow perturbations [41]. In addition,
the antithetic controller configurations can be defined as activating or
inhibiting, depending on whether the actuation reaction is activating or
inhibiting. It should be noted, that the mechanism for inhibition is not
described by a simple elementary reaction step, leaving only two possible
configurations (one inflow and one outflow configuration) in accordance with
the original description of the antithetic controller by Briat et al. [21]. The
complete set of antithetic controller configurations are shown in Figure 3.15.
The various reaction kinetic mechanisms for realizing integral control

discussed so far (homeostatic controller motifs, autocatalytic controllers,
and the antithetic controller) are collectively referred to as integral control
motifs (ICMs) [142]. Functionally, these ICMs implement negative feedback
with integral action in different ways, but the objective is always the same;
an integral controller that works to counteract deviations in the regulated
variable from a desired set-point [41, 42, 21, 142]. In this way, ICMs are
effective mechanisms for mitigating the effects of unknowns in biological
systems, such as uncontrolled variations in the external environment or
unforeseen interactions within the system, and provide the ability to fine
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Figure 3.15: (Caption on the following page)
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Figure 3.15: Complete set of all eight antithetic controller configurations regulating
a single species x1 being generated and turned over. Like the homeostatic controller
motifs, these antithetic controller configurations can be classified as inflow (left column)
or outflow (right column) controllers, depending on whether the actuation reaction
affects the synthesis or degradation of the regulated species, respectively. Furthermore,
whether the actuation reaction is activating (top panel) or inhibiting (bottom panel), the
antithetic controller configurations are classified as activating or inhibiting. For a pure
mass-action kinetics description, however, there are only two possible configurations, one
inflow (blue) and one outflow (red), both of which are activating.

tune central parameters of the control system [142, 6, 181]. Even for wide-
ranging and unavoidable effects such as molecule dilution during cell growth
and division, general design principles for ICMs that perform well despite
the presence of dilution have been proposed [142]. We will take a closer
look at the homeostatic controller motifs in the presence of dilution and
environmental stochasticity in Chapter 5.
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Chapter 4

Tuning of homeostatic
controller motifs
In this chapter, we show how parameters related to molecular and kinetic
mechanisms influence set-point tracking and disturbance rejection properties
of the homeostatic controller motifs. We use a tuning procedure based
on linearization, which enables us to define a desired dynamical response
for the homeostatic controller motifs. We linearize the controller motifs
around a working point, and identify tuning parameters that relate system
parameters to the step response1 of the systems. We verify the tuning
procedure by simulations, and look at some constraints that limit the
achievable steady-state behaviors of the homeostatic controller motifs. We
also investigate trade-offs in relation to time-varying inputs, and how this
ultimately affects the tuning procedure. In the final part of this chapter, we
investigate how nonlinearities in the homeostatic controller motifs influence
the tuned response.

4.1 Tuning by linearization

Implementing control mechanisms, such as the homeostatic controller mo-
tifs, in living cells is an attractive prospect that could aid in the design of
cellular processes that are robust in the presence of changing and uncertain
environments, and could facilitate optimization or creation of novel reaction
networks [79, 6, 180, 181]. Aside from the practicalities of implementation
in living cells, great difficulties are faced with quantitatively tuning the
parameters of such control mechanisms in order to achieve some desired
function [79]. The ability to quantitatively tune individual components in
a biological network is central to synthetic biology, and is required for the

1The (dynamical) output response of a system to a step change in its input.
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engineering of complex reaction networks, where connected components
must be matched in terms of input and output levels, and internal dy-
namics must be tuned to guarantee stability and robustness [5]. Such a
tuning procedure can be facilitated by concepts from control theory, and
in particular, the characterization of set-point tracking and disturbance
rejection properties provide a theoretical foundation that can guide us in
achieving desired dynamical and steady-state behaviors [181, 6].

The dynamical properties of a two-component biochemical system (second-
order system) around a working point can be described in terms of the
undamped natural frequency ωn and the damping ratio ζ [181, 155, 72].
To illustrate this, we consider the homeostatic controller motifs shown in
Figure 4.1. As shown in Chapter 3, the homeostatic controller motifs consist
of two components, a regulated species x1, and a controller species x2, that
form a negative feedback connection through cross-coupling [41, 186]. In
order to describe the dynamical behaviors of the homeostatic controller
motifs in terms of the tuning parameters ωn and ζ, we need to linearize
the nonlinear system equations for the controller motifs (see (3.9)–(3.10)
in Chapter 3) around a working point. It is natural that this working point
coincides with the set-point for the controller motifs.
We use outflow controller 5 as an example to show how the tuning

parameters ωn and ζ relate to reaction kinetic parameters of the homeostatic
controller motifs. Outflow controller 5 is given by the system of nonlinear
ODEs

ẋ1(t) = jb,1(x1)− jcomp(x1, x2) = ks,1 − fd,1(x1) · β(x2)

= ks,1 − kd,1 · x1(t) · x2(t)
KA,2 + x2(t) (4.1)

ẋ2(t) = jmeas(x1, x2)− jb,2(x2) = ks,2 · γ(x1)− fd,2(x2)

= ks,2 · x1(t)− kd,2 · x2(t)
KM,2 + x2(t) (4.2)

where ks,i are basal rates of production of xi, the functions fd,i describe
the degradation or removal of xi, and β and γ describe the cross-coupling
between the two components. For this example we let the removal of x1
follow first-order kinetics (fd,1(x1) = kd,1 ·x1), activated by x2 in a way that
saturates (β(x2) = x2/(KA,2 +x2)). The generation of x2 is activated by x1
in a way that does not saturate (γ(x1) = x1), and the removal of x2 follows
Michaelis–Menten kinetics. In order to investigate the disturbance rejection
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Figure 4.1: (Caption on the following page)
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Figure 4.1: Complete set of all eight homeostatic controller motifs with inflow (kin
p )

and outflow (kout
p ) disturbances. The x2-mediated compensatory flux is shown in blue,

based on which the controllers are grouped into inflow (top, white background) and
outflow (bottom, gray background) controllers. If the compensatory flux is activated
by x2, the controllers are classified as activating (left column), and if the compensatory
flux is inhibited by x2, the controllers are classified as inhibiting (right column). The
measurement flux is shown in red. Note that we use a slightly different variant of
the controller motifs than previously. Namely, we let the degradation of x1 be first-
order (fd,1(x1) = kd,1 · x1), and use a non-saturating expression for the x1-activated
measurement flux (fact(x1) = x1).

properties of this system, we include disturbances in the dynamical model
(see perturbation flux in (3.8) in Chapter 3). We add an inflow perturbation
in the form of a small uncontrolled deviation in the basal synthesis of the
regulated species x1, such that kinp = ks,1 + ∆ks,1 (koutp is defined similarly
for inflow controllers). We also add an outflow perturbation in the form of
an uncontrolled first-order removal reaction of x1. Hence, the dynamical
model for controller motif 5 used in this example is given by

ẋ1(t) = kinp − koutp · x1(t)− kd,1 · x1(t) · x2(t)
KA,2 + x2(t) (4.3)

ẋ2(t) = ks,2 · x1(t)− kd,2 · x2(t)
KM,2 + x2(t) (4.4)

where kinp and koutp represent parameters with uncontrolled elements that
give rise to inflow and outflow disturbances.
As shown in Chapter 3, a constant set-point for the regulated species,

xset1 , is found by assuming zero-order removal of the controller species, that
is, fd,2(x2) = kd,2. This is achieved by assuming KM,2 = 0 (or KM,2 � x2),
which implies that the enzyme responsible for the removal of x2 is saturated
with substrate [6]. Because these ideal conditions are assumed, the set-point
is called ideal or theoretical, and is given by the ratio of rate constants
for the degradation and synthesis of the controller species xset1 = kd,2/ks,2.
Using this set-point, we rearrange (4.4) into the integral control law

ẋ2(t) = −ks,2 ·
(
γ

(
γ−1

(
fd,2(x2)
ks,2

))
− γ(x1)

)

= −ks,2 ·
x2(t)

KM,2 + x2(t)︸ ︷︷ ︸
Gi

·
(
kd,2
ks,2︸︷︷︸
xset

1

−x1(t) · KM,2 + x2(t)
x2(t)︸ ︷︷ ︸

xmeas
1

)
(4.5)
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which shows the expressions for integral gain Gi, set-point xset1 , and mea-
surement xmeas

1 .
In order to identify the tuning parameters ωn and ζ, the dynamical

model (4.3)–(4.4) is linearized around a working point (x∗, u∗), where
x∗ = [x∗1, x∗2]T is the steady-state solution (equilibrium point) of the system.
To have this working point coincide with the ideal set-point for x1, we set
KM,2 = 0, which guarantees that system trajectories pass through xset1 . The
second part of the working point, u∗ = [u∗1, u∗2]T, is a vector of system input
values corresponding to the steady-state x∗. We use these system inputs
to characterize set-point tracking and disturbance rejection properties of
the linearized system. To identify set-point tracking properties, we need to
make a change in the set-point xset1 = kd,2/ks,2, and observe the consequent
system response. Since the set-point is given by the ratio of two rate
constants, either of these parameters can be used to make changes in the
set-point. We choose kd,2 to be the parameter that changes the set-point,
such that u1 = kd,2, and u∗1 is the value of kd,2 before a set-point change
is made. To investigate disturbance rejection properties, it is natural to
look at the system’s response to changes in kinp . This is due to the fact
that controller motif 5 is an outflow controller that maintains homeostasis
through the removal of x1, and hence, is primarily suited to compensate
for perturbations that increase x1 [41]. Therefore, we use u2 = kinp as the
disturbance input, where u∗2 is the pre-perturbed value of kinp , i.e. the basal
synthesis of x1 (ks,1). The linearized model is then given by [43]

∆ẋ(t) = ∂f

∂x
(x∗, u∗) ·∆x(t) + ∂f

∂u
(x∗, u∗) ·∆u(t) = A ·∆x(t) +B ·∆u(t)

(4.6)

where ∆x = [∆x1,∆x2]T is a vector of deviations from steady-state values
x∗, and ∆u = [∆u1,∆u2]T is a vector of deviations in system inputs, with
pre-perturbed values u∗. f = [f1, f2]T is a vector of the right-hand side
expressions of the system equations in (4.3)–(4.4). The matrix A is the
system matrix, and B is the input matrix. We are investigating set-point
tracking and disturbance rejection properties of the linearized model, and
therefore are only interested in the regulated variable x1 as our output.
Hence, the system output is given by ∆y = C · ∆x, where C = [1, 0] is
the output matrix. By applying the Laplace transform to the linearized
model in (4.6), we find the transfer function matrix H, which describes the
connection between small changes in system inputs ∆u and the resulting
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changes in system output ∆y [43]

H(s) = L{∆y(t)}
L{∆u(t)} = ∆y(s)

∆u(s) = C(sI −A)−1B (4.7)

where L represents the Laplace transform, s is the complex-valued variable
introduced by the Laplace transform, and I is the identity matrix.
The elements of H are transfer functions characterizing the linearized

system from the input kd,2 to the output, and from kinp to the output. First,
we take a look at the set-point tracking properties of the linearized system,
that is, the element of H that describes the relationship between set-point
and output, given by

M(s) = ∆x1(s)
∆kd,2(s) = ∆y(s)

∆u1(s) = K · ω2
n

s2 + 2 · ζ · ωn · s+ ω2
n

=
((kout

p +kd,1)·kd,2−kin
p ·ks,2)2

KA,2·kd,1·ks,2·kd,2

s2 + kin
p ·ks,2
kd,2

· s+ ((kout
p +kd,1)·kd,2−kin

p ·ks,2)2

KA,2·kd,1·kd,2

(4.8)

By rearranging the expression for the set-point into kd,2 = xset1 · ks,2, we
can express the tuning parameters ωn and ζ in terms of the set-point

ωn =
√
ks,2 ·

((
koutp + kd,1

)
· xset1 − kinp

)
√
KA,2 · kd,1 · xset1

(4.9)

ζ =
kinp ·

√
KA,2 · kd,1

2 ·
√
ks,2 · xset1 ·

((
koutp + kd,1

)
· xset1 − kinp

) (4.10)

The transfer function gain is given by K = 1/ks,2, due to the fact that
we are manipulating kd,2 as a proxy for changing the set-point. We see
that there is a close relationship between the expressions for ωn and ζ, and
hence, it is not possible to specify both tuning parameters independently.

The other element of the transfer function matrix H in (4.7) describes the
relationship between the disturbance input kinp and the output. This is the
transfer function used to characterize the disturbance rejection properties
of the linearized system, given by

N(s) = ∆x1(s)
∆kinp (s) = ∆y(s)

∆u2(s)

= s

s2 + kin
p ·ks,2
kd,2

· s+ ((kout
p +kd,1)·kd,2−kin

p ·ks,2)2

KA,2·kd,1·kd,2

(4.11)
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Importantly, this transfer function has a zero at the origin, meaning that
N(0) = 0, and that the steady-state contribution of a constant distur-
bance input kinp to the system output is zero. This implies robust perfect
adaptation to a step change in the disturbance [43].
We linearize all eight homeostatic controller motifs (see Figure 4.1),

assuming ideal conditions, and identify the set-point xset1 , undamped natural
frequency ωn, and damping ratio ζ for each controller. The expressions for
these tuning parameters are summarized in Table 4.1.

Set-point
xset1

Undamped natural
frequency ωn

Damping ratio ζ
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flo
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rs

1 ks,2
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√
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p −kout
p xset

1 +ks,1)√
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√
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√
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Table 4.1: Expressions for the tuning parameters of all eight homeostatic controller
motifs in Figure 4.1, assuming ideal conditions (zero order degradation of the controller
species, KM,2 = 0). Bold text indicates parameters used as proxies for changing the
corresponding set-points. The disturbance input (u2) for each controller is determined
by the controller structure, kout

p for inflow controllers and kin
p for outflow controllers.

4.1.1 Tuning procedure

Tuning the homeostatic controller motifs for a desired response, that is, to
achieve certain values for the tuning parameters xset1 , ωn, and ζ, is done by
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manipulating values of the reaction kinetic parameters in the expressions in
Table 4.1. In the following, we demonstrate this tuning procedure, focusing
on manipulation of the rate constants for generation and removal of the
controller species, ks,2 and kd,2, respectively, and the constant associated
with the compensatory flux (ks,1 for inflow controllers, and kd,1 for outflow
controllers). We elect to focus on these parameters as it is more conceivable
that they are possible to tune from the perspective of synthetic biology,
and offer a greater tunable range than the parameters associated with
saturation (KM,i, KA,i, and KI,i) [5].
We start by considering the operational range of the controller motifs.

Although it is the job of the controller species to “absorb” perturbations
in the regulated species, we do not want the level of the controller species
to be unbounded. Therefore, we define an operational range for the com-
pensatory flux, and a corresponding operational range for the level of the
controller species. As an example, we let the maximum compensatory flux
be jmax

comp = 10.00. The maximum compensatory flux is achieved when the
controller species is at its maximum value, xmax

2 , for activating controllers
(controller motifs 1, 3, 5, and 7), and at its minimum value, xmin

2 , for inhibit-
ing controllers (controller motifs 2, 4, 6, and 8) [41]. We let the operational
range of the controller species be given by xmax

2 = 15.00 and xmin
2 = 0 for

this example. Furthermore, the reaction kinetic constants for activation
and inhibition are chosen to avoid saturation in the operational range:
KA,2 = 2.00, KI,1 = 0.10, and KI,2 = 1.00. We let the working point for
inflow and outflow perturbations be given by kinp = 2.00 and koutp = 5.00 for
inflow controllers, and kinp = 5.00 and koutp = 2.00 for outflow controllers2.
If we specify the desired set-point xset1 = 1.00, the tuning procedure is
reduced to finding the parameters ks/d,1 (ks,1 for inflow controllers and kd,1
for outflow controllers), ks,2, and kd,2, such that a certain value for ζ (or
ωn, but not both) is achieved.

We tune the controller motifs for two different dynamical responses to a
step change in set-point. One response is critically damped, corresponding
to ζ = 1.00 and no overshoot, and one underdamped response, correspond-
ing to ζ = 0.20 and 50% overshoot [155, 72]. A strongly underdamped
system overshoots when adapting to a step change in set-point, but has con-
siderably better disturbance rejection properties than a critically damped

2The difference in perturbation working point for inflow and outflow controllers is
due to the fact that the two controller structures are suited to primarily compensate for
different types of perturbations (outflow perturbations for inflow controllers, and inflow
perturbations for outflow controllers) [41].
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system. Tuning for better disturbance rejection properties may be more
compelling for many biological systems. For outflow controller 5, given by
(4.3)–(4.4), the compensatory flux is given by

jcomp(x1, x2) = kd,1 · x1(t) · x2(t)
KA,2 + x2(t) (4.12)

By setting jcomp = jmax
comp = 10.00 and inserting x2 = xmax

2 = 15.00,
x1 = xset1 = 1.00, and KA,2 = 2.00, we find that kd,1 = 11.33. Using the ex-
pressions for set-point and damping ratio for controller motif 5 in Table 4.1,
we find that ks,2 = 2.04 and kd,2 = 2.04 for ζ = 1.00, and ks,2 = 51.00
and kd,2 = 51.00 for ζ = 0.20. These values correspond to integral con-
troller gains of Gi = −2.04 and Gi = −51.00 (see (4.5) with KM,2 = 0),
and response times3 of Tr ≈ 0.8 (ωn = 2.50) and Tr ≈ 0.1 (ωn = 12.50),
respectively [155, 72]. The same tuning procedure is performed for the
complete set of homeostatic controller motifs in Figure 4.1. Table 4.2 lists
the resulting values for the reaction kinetic parameters for each individual
controller, tuned for the two different dynamical responses (ζ = 1.00 and
ζ = 0.20). In particular, we note the same absolute values of Gi for all
activating controllers (controller motifs 1, 3, 5, and 7), and all inhibiting
controllers (controller motifs 2, 4, 6, and 8), respectively, indicating that
the controllers are indeed tuned for the same response. We also note the
opposite sign of Gi for inflow and outflow controllers of the same type
(activating or inhibiting). This is due to the difference in function of inflow
and outflow controllers (inflow controllers regulate x1 by generation of the
species, whereas outflow controllers regulate x1 by its removal) [41].

Figure 4.2 shows simulation results of the nonlinear homeostatic controller
motifs, using the parameter values for critically damped and underdamped
responses in Table 4.2 (i.e. we are not simulating the linearized controller
motifs). Looking at disturbance rejection properties, we see that controller
responses cluster into two groups, one with activating controllers (controller
motifs 1, 3, 5, and 7), and one with inhibiting controllers (controller motifs
2, 4, 6, and 8), where the activating controllers show a slower adaptation
to perturbations than the inhibiting controllers. These differences in dy-
namical responses of equally tuned controllers is attributed to the fact that
linearization is only a good approximation of the nonlinear systems close
to the working point. And hence, for a relatively large change in set-point

3The time it takes for the step response to reach 63% of its steady-state value (from
the initial steady-state value) [72].
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Critically damped (ζ = 1.00)

ks,1 kd,1 ks,2 kd,2 Gi

In
flo

w
co
nt
ro
lle

rs

1 11.33 – 2.04 2.04 2.04

2 10.00 – 6.94 6.94 -6.94

3 11.33 – 24.68 2.24 2.04

4 10.00 – 7.64 84.03 -6.94

O
ut
flo

w
co
nt
ro
lle

rs

5 – 11.33 2.04 2.04 -2.04

6 – 10.00 6.94 6.94 6.94

7 – 11.33 2.24 24.68 -2.04

8 – 10.00 84.03 7.64 6.94

Underdamped (ζ = 0.20)

In
flo

w
co
nt
ro
lle

rs

1 11.33 – 51.00 51.00 51.00

2 10.00 – 173.61 173.61 -173.61

3 11.33 – 617.10 56.10 51.00

4 10.00 – 190.97 2100.69 -173.61

O
ut
flo

w
co
nt
ro
lle

rs

5 – 11.33 51.00 51.00 -51.00

6 – 10.00 173.61 173.61 173.61

7 – 11.33 56.10 617.10 -51.00

8 – 10.00 2100.69 190.97 173.61

Table 4.2: Parameter values for all eight homeostatic controller motifs, tuned for
critically damped (ζ = 1.00) and underdamped (ζ = 0.20) responses. Unspecified values
are given by the working point value of the corresponding disturbance input for each
controller (kout

p for inflow controllers and kin
p for outflow controllers). Bold text indicates

the resulting integral gain.
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(a) Inflow controllers.

(b) Outflow controllers.

Figure 4.2: (Caption on the following page)
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Figure 4.2: Simulation results of the homeostatic controller motifs in Figure 4.1 for
the two different dynamical responses specified in Table 4.2. The inflow controllers (1,
2, 3, 4; colored blue, red, yellow, green, respectively) are shown in panel (a), and the
outflow controllers (5, 6, 7, 8; colored blue, red, yellow, green, respectively) are shown
in panel (b). Dashed black lines indicate the set-point for x1. Controllers tuned for a
critically damped response (ζ = 1.00) are shown in the left column, and controllers tuned
for a underdamped response (ζ = 0.20) are shown in the right column. To investigate
set-point tracking properties, a 10% increase in xset

1 is made at t = 0 (from xset
1 = 1.00 to

xset
1 = 1.10). For disturbance rejection, a 20% increase is made in the disturbance input

(kout
p for inflow controllers and kin

p for outflow controllers) at t = 0 (from k
in/out
p = 5.00

to kin/out
p = 6.00).

(10%) or disturbance (20%), differences in the responses of equally tuned
controller motifs are expected. Overall, however, the controller motifs show
very similar responses, with set-point tracking and disturbance rejection
properties in accordance with the specified tuning parameters.
The tuning procedure used in this chapter relies on linearization of the

homeostatic controller motifs, in a similar way to the tuning of industrial
control processes. Of course, the controller motifs are nonlinear, meaning
that the tuning procedure can only guarantee a certain dynamical response
locally to the working point. However, linearization allows us to relate the
nonlinear homeostatic controller motifs to well-known concepts in linear
control analysis. From a synthetic biology point of view, such a tuning
procedure provides a basis for the determination of system parameters,
and gives insight into the relationship between parameter values and the
dynamical response of the system. Additionally, by performing the same
tuning procedure for several different working points, it is possible to
characterize the dynamical behavior of the controller motifs over a range
of inputs and steady-states, in a way similar to gain scheduling.

4.2 Constraints and trade-offs

In tuning the homeostatic controller motifs for a desired behavior, we are
faced with certain constraints and trade-offs, some of which we can control
(i.e. those related to the controller species), and others we have to work
around (i.e. those related to the regulated species). Steady-state constraints
arise from the fact that certain steady-state values are not attainable for
a given set of system parameter values. Steady-state constraints define
the tunable range of the homeostatic controller motifs. On the other
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hand, trade-offs are related to the differential amplification of frequency
components of an input signal during transmission through the system.
The presence of time-varying exogenous signals may restrict the type of
response we can tune the homeostatic controller motifs for in practice.

4.2.1 Steady-state constraints

In mathematical models of homeostatic controller motifs, the state variables
represent concentrations of species, which are non-negative quantities by
definition. And hence, we are faced with a constraint imposed by the
nature of the system itself: We may only tune the system for a set-point
constrained by xset1 > 0. Similarly, we also encounter constraints due to
saturation effects. Often, these constraints are difficult or even impossible
to circumvent, and as a result, any tuning is limited by these constraints.
As discussed in Chapter 3, it is useful to separate the homeostatic

controller motifs into a negative feedback connection of a process and a
controller. In this abstraction, the process represents the generation and
removal of the regulated species x1, whereas the controller represents the
generation and removal of the controller species x2. This is illustrated by
the block diagram in Figure 4.3. To investigate constraints associated with
this system, we consider the process and controller components individually,
and look at their steady-state input-output response curves. For the process,
we characterize the steady-state output xss1 for a range of steady-state values
of the control action (xss2 ) and disturbance input (kin/outp ). Similarly, we
characterize the steady-state controller output xss2 for a range of steady-
state controller inputs (xss1 ). These steady-state input-output relationships
are known as the process and controller nullclines, or in a biological context,
dose-response curves, from which we can determine the steady-state of the
closed-loop system, given as the intersection of the process and controller
nullclines [6, 82].
Figure 4.4 shows a general sketch of the process (P ) and controller (C)

nullclines for a two-component system (such as the homeostatic controller
motifs) in negative feedback connection. The nullclines experience upper
and lower saturation limits, as is generally the case for biological systems [6].
Disturbances can alter the shape and position of the process nullcline, and
hence, to guarantee an achievable set-point in the presence of disturbances,
the set-point must be defined within the saturation limits of the process
nullcline experiencing high (Phigh) and low (Plow) expected disturbance
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Control 
action

Output
P

C

Disturbance

Figure 4.3: Separation of the homeostatic controller motifs into a process (P, blue)
and a controller (C, red). The process output is fed into the controller, which produces
a control action that is fed back into the process. Negative feedback is realized by
having the process output negatively affect the controller output, which in turn positively
affects the process output, or by having the process output positively affect the controller
output, which in turn negatively affects the process output. The intersection of the
steady-state input-output response curves (nullclines) for the process and controller gives
the steady-state (equilibrium point) of the closed-loop system. Disturbances can alter
the shape and position of the process nullcline, potentially affecting the closed-loop
steady-state.

levels. From these process nullclines, it is seen that the saturation limits
constraint achievable set-point values to the range [Pmin, Pmax]. As these
constraints are imposed by the process, it is impossible to change them
without altering the process itself, and thus, it is not simply a matter of
tuning the controller [6].

Another important constraint is imposed by the controller, which we have
already discussed before, namely zero-order degradation of the controller
species. The degradation of the controller species is approximately zero-
order when the enzyme responsible for the removal of the controller species
is saturated with substrate, i.e. KM,2 � x2. Naturally, we should tune the
system for a steady-state such that this constraint holds, in order to achieve
near-perfect adaptation [41, 6]. Importantly, this constraint governs the
shape of the controller nullcline within the operational range of the controller
species ([xmin

2 , xmax
2 ]), which determines the deviation in steady-state of the

regulated species ([xmin
1 , xmax

1 ]) in the presence of disturbances [41, 6]. For
a perfect integrator (KM,2 = 0), the controller nullcline is completely flat,
such that no deviation in xss1 is seen [6]. Additionally, the saturation limits
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Figure 4.4: A sketch of general process (P , blue) and controller (C, red) nullclines for
a two-component system experiencing upper and lower saturation limits. The presence of
disturbances can alter the shape and position of the process nullcline, such that the range
of achievable steady-states for the regulated species, xss

1 , is given by the saturation limits of
the process nullcline experiencing high (Phigh) and low (Plow) expected disturbance levels
([Pmin, Pmax]). Similarly, saturation limits of the controller nullcline put constraints on
the range of possible steady-state values for the controller species xss

2 ([Cmin, Cmax]). The
shape of the controller nullcline determines the deviation in xss

1 for various disturbance
levels ([xmin

1 , xmax
1 ]). For the homeostatic controller motifs, a small deviation in xss

1
is achieved when KM,2 � x2, imposing yet another constraint on xss

2 . Note that no
deviation in xss

1 is seen for a completely flat controller nullcline (dashed black line, thick).

of the controller nullcline put constraints on the operational range of the
controller species ([Cmin, Cmax]), which if too narrow, could limit the range
of disturbances the controller can compensate for. The constraints imposed
by the controller are indicated in Figure 4.4.
To demonstrate this procedure for evaluating steady-state constraints

(nullcline analysis), we again consider outflow controller 5. We find the
process and controller nullclines by setting (4.3) and (4.4) to zero, and
solving for the steady-states. The nullclines are given by

xss1 = P (kinp , xss2 ) =
kinp

koutp + kd,1 · β(xss2 ) =
kinp

koutp + kd,1 ·
xss

2
KA,2+xss

2

(4.13)
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xss2 = C(xss1 ) = f−1
d,2 (ks,2 · γ(xss1 )) = ks,2 ·KM,2 · xss1

kd,2 − ks,2 · xss1
(4.14)

where P is the process nullcline, C is the controller nullcline, and kinp
is a steady-state inflow perturbation. We consider koutp to be constant,
since outflow controllers primarily compensate for inflow disturbances [41].
Figure 4.5 shows an example of the process and controller nullclines for
outflow controller 5, where the process nullcline is given for various steady-
state disturbance levels. The controller nullcline is given for various values
of KM,2, with the lowest value such that the degradation of the controller
species is close to zero-order. This produces a relatively flat controller
nullcline, and the intersections of the process nullclines with the controller
nullcline show little variation in the steady-state value of the regulated
species (xss1 ). This shows that the controller nullcline is tuned to give good
disturbance rejection over a range of expected disturbance levels4. Note
that the process and controller nullclines in Figure 4.5 do not share the
sigmoidal shape of the nullclines in Figure 4.4, and thus permit a larger
range of steady-state values for both the process and controller species.
However, we are still constrained by the lower saturation limit of the process
nullcline (Pmin).

4.2.2 Trade-offs for time-varying inputs

In the preceding analysis and tuning of the homeostatic controller motifs,
we looked at step responses to characterize set-point tracking and distur-
bance rejection properties. As discussed in Chapter 3, the inclusion of
integral action in the homeostatic controller motifs is crucial for asymptotic
regulation and disturbance rejection in the presence of constant exogenous
signals, i.e. constant disturbance and reference (set-point). However, we
should also consider the performance of the homeostatic controller motifs
for time-varying exogenous signals. To investigate how the controller motifs
respond to time-varying signals, we evaluate their response to sinusoidal5
input signals of various frequencies [105, 93]. This gives the frequency
response of the controller motifs, which tells us how various frequency

4However, we cannot say anything about the dynamical disturbance rejection proper-
ties of the controller motifs based on nullclines alone.

5Time-varying signals can be represented (or synthesized) by everlasting sinusoids,
such that slowly varying signals are made up of low frequency sinusoids, while fast signals
also contain high frequency sinusoids [105, 93].
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Figure 4.5: Process (solid blue lines) and controller (dashed red lines) nullclines for
outflow controller 5, using parameters for a critically damped response (ζ = 1.00 in
Table 4.2) with kin

p = {5.00, 6.00, 7.00} and KM,2 = {0.10, 0.25, 0.50}. Achievable steady-
state values for the regulated species xss

1 are constrained by the lower saturation limit
of the high disturbance process nullcline (Pmin). For the lowest value of KM,2, the
controller nullcline is relatively flat, such that intersections of the process nullclines with
the controller nullcline show little variation in steady-state of the regulated species xss

1
(black crosses). In comparison, a completely flat controller nullcline (dashed black line)
shows no deviation in xss

1 .

components (sinusoids) are modified during transmission of an input sig-
nal through the system [105]. For input signals of a certain frequency, it
is only necessary that the controller motifs have good set-point tracking
and disturbance rejection properties at this frequency [93]. In most cases,
however, input signals are not limited to single frequencies (or constant
values), and therefore it is crucial to achieve good set-point tracking and
disturbance rejection properties over a range of frequencies [93].

A large bandwidth (large range of frequencies) enables the homeostatic
controller motifs to respond quickly to set-point changes and attenuate
disturbances over a large frequency range. Let us consider the transfer
functions for the linearized outflow controller 5, given by (4.8) and (4.11).
The transfer functionM in (4.8) describes the relationship between a change
in set-point (using the parameter kd,2) and the resulting output response
(the regulated species x1). Hence, the frequency response of M describes
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the relationship between sinusoidal fluctuations in the set-point and the
resulting fluctuations in the output, for different frequencies. On the other
hand, the transfer function N in (4.11) describes the relationship between
a change in disturbance input kinp and the output response. Therefore,
the frequency response of N describes the resulting output fluctuations
in response to sinusoidal fluctuations in kinp , for different frequencies. For
outflow controller 5, the integral gain is given in (4.5), and assuming ideal
conditions (KM,2 = 0), the expression is reduced to Gi = −ks,2. We tune
outflow controller 5 for three different responses ζ = {1.00, 0.50, 0.20},
corresponding to integral gains Gi = {−2.04,−8.16,−51.00}. Because the
transfer function gain K = 1/ks,2 (see (4.8)) is different for the different
responses, we normalize the transfer functions to describe the relationship
between changes in xset1 and the output (as opposed to changes in kd,2 and
the output). Figure 4.6 shows the Bode magnitude plots6 of M and N ,
along with corresponding step responses.
From the plots in Figure 4.6 it is seen that an increased integral gain

|Gi| (absolute value) results in a faster step response, but also brings about
oscillations and overshoot [182]. From the Bode magnitude plots of M ,
we see the that increased |Gi| results in a larger bandwidth, that is, a
larger range of frequencies for the input signal for which the system has a
desirable response (unity gain). However, we also see the emergence of a
resonant peak, mid-frequencies for which the system produces an undesirable
amplification [93]. This is also illustrated by the Bode magnitude plots of
N , where low frequency disturbances are severely attenuated (and the zero
frequency is completely attenuated, implying perfect adaptation to constant
disturbances [43]), but less so are mid-frequencies at the resonant peak.
Hence, the controller species is not able to compensate for disturbances
fluctuating at these mid-frequencies. This demonstrates an important trade-
off encountered in tuning: The more robustness realized at lower frequencies,
the less robustness and more fragility is created at other frequencies [93].
Of course, a well tuned system is robust to disturbances of frequencies
commonly encountered, while fragile to disturbances of frequencies that
are uncommon or unnatural. Therefore, the presence of time-varying input
disturbances may limit the values of Gi that can be chosen in practice,
thereby limiting the response time we may tune the system for.

6A plot of the gain a sinusoidal input experiences during transmission through the
system, as a function of frequency [105].
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Figure 4.6: Bode magnitude plots of the transfer functionsM and N in (4.8) and (4.11),
respectively, with corresponding step responses (M is normalized as described in the main
text). Outflow controller 5 is tuned for three different responses ζ = {1.00, 0.50, 0.20},
corresponding to integral gains Gi = {−2.04,−8.16,−51.00} (solid blue line, dashed
red line, and dash-dotted yellow line, respectively). Increased (absolute value) integral
gain results in a faster response to step changes in set-point and disturbance input
(larger bandwidth), however, it also brings about more overshoot and oscillations. These
oscillations are reflected in the Bode magnitude plots as a resonant peak, mid-frequencies
for which the system produces an undesired amplification. The frequency response of
N illustrates an important trade-off in tuning: Realizing better disturbance rejection
properties for low frequencies results in more fragility at higher frequencies [93].

4.3 The impact of nonlinearities

It is important to note that the homeostatic controller motifs are nonlinear,
meaning that a tuning procedure based on linearization can only guarantee
a certain dynamical response locally to the working point. As we have
already seen, relatively large disturbance inputs have an influence on the
dynamical properties of the homeostatic controller motifs (Figure 4.2).
The relationship between (constant and time-varying) disturbance inputs
and the dynamical properties of the homeostatic controller motifs are
investigated in the last part of this chapter.
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4.3.1 Constant disturbance inputs

An important aspect of the expression for the tuning parameters ωn and ζ
in Table 4.1, is that they depend on the parameters for inflow and outflow
disturbances (kinp and koutp ). To visualize this dependency, Figure 4.7 shows
simulation results of inflow controller 3 for different working point values of
the outflow disturbance koutp = {3.00, 5.00, 7.00} (yellow, left), and outflow
controller 6 for different working point values of the inflow disturbance
kinp = {5.00, 7.00, 9.00} (red, right). The simulation results show dynamical
responses to step changes in set-point and disturbance input, for each of
the different working point values given for kinp and koutp . It is seen that
increasing the working point value of koutp for inflow controller 3 results
in slower dynamics with a more damped response. On the other hand,
increasing the working point value of kinp for outflow controller 6 results
in faster dynamics with a less damped response. These simulation results
demonstrate that changes in the perturbations kinp and koutp influence the
dynamical response of the nonlinear controller motifs, implying that the
linearized models (with a static working point) do not fully capture the
nonlinear dynamics of the homeostatic controller motifs.

The effect of various perturbation values on the tuning parameters ωn and
ζ are shown in Figure 4.8. Comparing the activating controllers (controller
motifs 1, 3, 5, and 7) to inhibiting controllers (controller motifs 2, 4, 6,
and 8), we see that the tuning parameters are altered in different ways as
the perturbation increases. Looking at activating controllers (red, left),
we see that an increase in perturbation results in a decreased undamped
natural frequency (ωn) and an increased damping ratio (ζ). On the other
hand, inhibiting controllers (blue, right) show an increase in undamped
natural frequency and a decrease in damping ratio as the perturbation
increases. Interestingly, the activating controllers are upper bounded (in
terms of perturbation magnitude) by the capacity related breakdown7 that
occurs when ωn → 0 (alternatively, ζ →∞). On the other hand, inhibiting
controllers are lower bounded by a similar capacity related breakdown.
Depending on the use case, it may be more desirable to choose one controller
type over the other. For example, a controller whose dynamical response
becomes more damped with increasing disturbance (activating controller)
may be more desirable over a controller whose response becomes faster,
and more unstable, with increasing disturbance (inhibiting controller).

7Capacity related breakdown occurs when the compensatory flux (jcomp) reaches its
upper limit, corresponding to the largest disturbance that can be compensated for [41].
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Figure 4.7: Simulation results of set-point tracking and disturbance rejection properties
of inflow controller 3 (yellow, left) and outflow controller 6 (red, right). For inflow
controller 3, three different trajectories are simulated using the outflow perturbation
values kout

p = {3.00, 5.00, 7.00}, and for outflow controller 6, three different trajectories
are simulated using the inflow perturbation values kin

p = {5.00, 7.00, 9.00}. The controllers
are simulated for a 10% increase in set-point at t = 0, and an increase in perturbation
values (kout

p for inflow controller 3 and kin
p for outflow controller 6) by 1.00 at t = 0.

Highlighted lines indicate dynamical responses corresponding to Figure 4.2 (with the
appropriate colors), and dashed black lines indicate the set-point for x1.

4.3.2 Time-varying disturbance inputs

In many control problems, it is required that all solutions of the closed-loop
system “forget” their initial conditions and converge to some steady-state
solution, which is determined only by the input of the system [136]. The
input can be, for example, a reference signal (asymptotic regulation) or
a disturbance (asymptotic disturbance rejection). For asymptotically sta-
ble linear systems excited by inputs, all solutions converge to each other
regardless of initial conditions, such that after transients, the dynamics
of the system are determined only by the input [136]. It is this property,
called convergent dynamics, that enables us to find the frequency response
functions of the linearized homeostatic controller motifs. Global asymptotic
stability of a nonlinear system with zero input does not generally guarantee
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Figure 4.8: The effect of various perturbation values on the tuning parameters ωn
and ζ given in Table 4.1. Black crosses show controllers tuned for a critically damped
response (ζ = 1.00 in Table 4.2) at kin/out

p = 5.00. The tuning parameters are then
plotted for various perturbation values (highlighted lines). Plots for controllers with
higher integral gain |Gi| (absolute value) are also shown. Based on the controller type
(activating or inhibiting), we see two distinct behaviors: For activating controllers,
increasing the perturbation value results in an increasingly damped response, and for
inhibiting controllers, increasing the perturbation value results in a less damped response.

that all solutions of the system with nonzero input converge [136]. In
fact, there are several examples of nonlinear globally asymptotically stable
systems that, when excited by a periodic input, have coexisting periodic
solutions [136]. Thus, extending frequency response functions to the non-
linear case is not straightforward. It is clear that for nonlinear systems,
convergent dynamics require additional conditions. Let us again consider
outflow controller 5, and rewrite the system equations in (4.3)–(4.4) using
vector notation

ż(t) = F (z, w) (4.15)

where z = [z1, z2]T are the system states with equilibrium point shifted to
the origin (zi = xi − x∗i , see Chapter 3), F is a vector of the (nonlinear)
right-hand side expressions with F (0, 0) = 0, and w represents deviations in
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kinp around its working point value (i.e. the same situation described by N
in (4.11) for the linearized system). We consider koutp to be constant. We
let KM,2 = 0 (i.e. perfect adaptation), and use parameters for a critically
damped response (ζ = 1.00 in Table 4.2).

The system in (4.15) is locally exponentially convergent (solutions expo-
nentially converge to each other) if the matrix ∂F/∂z(0, 0) is Hurwitz8 (see
Theorem 2.41 in Pavlov et al. [136]). Then, there exists a positive definite
matrix P = PT > 0 such that

J(0, 0) = P · ∂F
∂z

(0, 0) + ∂F

∂z

T
(0, 0) · P < 0 (4.16)

where J(z, w) = P ·∂F/∂z(z, w)+∂F/∂zT(z, w)·P . Since J(0, 0) is negative
definite, J(z, w) is negative definite for all small z and w. A neighborhood
of the origin z = 0 can be chosen such that J(z, w) < −Q for some Q > 0,
all z in the neighborhood, and all |w| bounded by some positive value [136].
It can then be shown that for every |w(t)| ≤ r̄ (r̄ > 0) there exists a
steady-state solution that lies in the neighborhood for all time, and that
any two solutions starting in the neighborhood exponentially converge to
each other [136]. Note that the use of “steady-state” in this case does not
necessarily imply that ż = 0, but rather that all solutions “forget” their
initial conditions and converge to some unique solution determined only by
the input, which can be called a steady-state solution [136].

From our discussion on stability in Chapter 3, we know that the homeo-
static controller motifs have a globally asymptotically stable equilibrium
point for zero disturbance input. This implies that the matrix ∂F/∂z(0, 0) is
Hurwitz for outflow controller 5. The level surface of the quadratic function
W (z) = zT ·P · z where J(z, w) < −Q is satisfied defines the neighborhood
of the origin where the system in (4.15) is locally exponentially convergent.
It is then possible to choose r̄ such that the neighborhood is invariant for
any disturbance input satisfying |w(t)| ≤ r̄ [136]. This neighborhood is
shown for outflow controller 5 in Figure 4.9a. Any solution stating in this
neighborhood, excited by a sinusoidal disturbance with amplitude a ≤ r̄,
will converge to each other (Figure 4.9b).

The dynamical properties shown in Figure 4.9b are similar to that of
asymptotically stable linear systems. In fact, the convergence property is
an extension of stability properties of asymptotically stable linear time-
invariant (LTI) systems to the nonlinear case [136, 137]. For a periodic

8A matrix is said to be Hurwitz when all eigenvalues satisfy Re(λi) < 0 [92].
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(a) Convergence region estimate. (b) Converging trajectories.

Figure 4.9: Estimate of the convergence region for outflow controller 5 (red ellipsis,
panel (a)), tuned for a critically damped response (ζ = 1.00 in Table 4.2). All solutions
starting in the convergence region exponentially converge to the same steady-state
solution (solid blue lines, panel (b)). This is true for any sinusoidal disturbance input
with amplitude a ≤ r̄ (dashed red line).

input, the steady-state solution of uniformly convergent9 systems is also
periodic, with the same period as the input [136, 137]. This enables us
to numerically find the nonlinear frequency response function for (4.15)
by simulating the system with disturbance input w(t) = a · sin(ω · t),
over a range of excitation amplitudes a and frequencies ω [137, 136]. The
nonlinear Bode magnitude plot for outflow controller 5, tuned for a critically
damped response with excitation amplitude a = r̄ is shown in Figure 4.10
(highlighted solid blue line). In comparison to the Bode magnitude plot
of the linearized version of outflow controller 5 (dashed red line), we see
virtually identical responses. However, for KM,2 > 0, we see discrepancies
at low frequencies, showing that only partial adaptation is achieved in this
case. For nonlinear convergent systems we may observe a non-proportional
change in amplitude of the steady-state solution with respect to a change in
the excitation amplitude [137]. However, we saw no appreciable difference
in the nonlinear Bode magnitude plot of outflow controller 5 for excitation
amplitudes a < r̄ compared to a = r̄.
It is evident from the Bode magnitude plots in Figure 4.10 that the

transfer functionN in (4.11) provides a good approximation to the nonlinear
system, at least for the estimated convergence region shown in Figure 4.9a
with excitation amplitudes a ≤ r̄ (see Figure 4.9b). This result demonstrates

9Exponentially convergent is a stronger sense of the convergence property than
uniformly convergent [136, 135].
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Figure 4.10: Bode magnitude plots for the disturbance sensitivity of the nonlinear
(solid blue lines) and linearized (dashed red line) versions of outflow controller 5, tuned
for a critically damped response (ζ = 1.00 in Table 4.2) with excitation amplitude a = r̄.
Nonlinear Bode magnitude plots are shown for KM,2 = {0, 0.01, 0.10}. It is apparent
that the linearized version (N in (4.11)) provides a good approximation of the nonlinear
system, for the convergence region in Figure 4.9a and excitation amplitudes a ≤ r̄ (see
Figure 4.9b). However, for increasing KM,2, discrepancies appear, particularly for low
frequencies.

that the tuning procedure presented for the homeostatic controller motifs,
despite relying on linearization, provides a set of system parameters that
produces the desired dynamical response in a reasonably large neighborhood
of the working point, and that the desired response also holds for time-
varying input signals. However, it is likely that our estimate for the
convergence region is rather conservative, which leaves r̄ fairly low. This
could be due to a suboptimal choice for the matrix P , or the fact that the
estimation procedure is based on quadratic Lyapunov functions analysis,
which is conservative by itself when applied to nonlinear systems [136].
It is possible that a better estimate for the convergence region could
be made using the combined storage function presented in Chapter 3.
Nevertheless, the results in Figure 4.10 give us a sense of how well the
linearized homeostatic controller motifs approximate the nonlinear systems
for time-varying disturbance inputs.
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Chapter 5

Dilution resistance and noise
In this chapter, we take a look at the homeostatic controller motifs under
non-ideal conditions. In particular, we consider some practical aspects in
living cells that may impact the performance of homeostatic mechanisms.
Namely, we will look at dilution of cellular constituents and stochastic
fluctuations in chemically reacting systems. Especially for cancer cells
is it expected that dilution poses a significant challenge for the effective
regulation of metabolism, due to increased glycolytic and proliferative
activity leading to cell swelling and growth-induced dilution. We start
with a brief recount of how mathematical modeling based on reaction
rate equations account for growth-induced dilution. We then review the
literature to give an overview of the rewiring of glycolysis in cancer. We
focus on the various signaling pathways involved in the regulation of glucose
uptake in cancer, and show that differential gene expression of cancer and
normal cells corroborate the reported rewiring in cancer. It is based on
this information that we construct a mathematical model of glucose uptake
in cancer, which we study in the presence of growth-induced dilution and
extrinsic noise in the final parts of this chapter.

5.1 Dilution of cellular constituents

In growing cells, dilution globally affects the concentrations of cellular
constituents [79, 104]. The protective mechanisms that maintain home-
ostasis also need to be in place during growth, meaning that homeostatic
mechanisms need the ability to compensate for growth-induced dilution, in
addition to perturbations of the type considered in Chapter 4 [147]. For
the homeostatic controller motifs, growth-induced dilution means that both
the regulated species and the controller species dilute as the cell grows. In
addition, the enzymes driving the synthesis and degradation reactions of
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these species are subject to dilution. Assuming that the cellular volume
increases exponentially, the effect of dilution is a first-order removal term in
the reaction rate equations of all cellular constituents [6, 4, 142]. The rate
constant, kdil, for this first-order removal term is related to the cell volume
doubling time (τ2) by kdil = ln(2)/τ2 [6, 4]. As we have already seen in
Chapter 4, homeostatic inflow controllers are capable of fully compensating
for such first-order outflow perturbations in the regulated species. However,
because dilution affects all cellular constituents, a first-order removal term
is also added to the controller species. Such a perturbation in the controller
species interferes with the ability of the homeostatic controller motifs to
achieve robust regulation. In fact, dilution leads to “leaky” integral action,
with the consequence that the adaptation property is diminished [142].
Dilution of the enzymes generating and turning over the controller species
will affect the Vmax value of these reactions (recall that Vmax = kcat · E0).
As we have seen in Chapter 3, these parameters define the set-point for the
controller motifs, and changes in these parameter values lead to changes in
the set-point. With a doubling time (τ2) of 20–30 min for Escherichia coli,
the rate of dilution becomes large enough to dominate the rate of proteolysis
and poses a significant challenge for transcriptional regulation [4, 6, 79]. In
mammalian cells, doubling can take hours to days, and hence, the effect of
growth-induced dilution is less severe in these cells [79].
Aside from dilution of cellular constituents due to growth and division,

dilution can also result from osmotic swelling [104, 73]. The membrane of
animal cells is highly permeable to water, and any imbalance of intracellular
and extracellular osmolarity results in movement of water across the cell
membrane [104]. The transport of nutrients, such as amino acids and glu-
cose, into the cell can lead to increased cellular volume [104, 73]. Especially
Na+-coupled transport processes can generate large chemical gradients
across the cell membrane, giving rise to an osmotic water shift into the
cell [104, 73]. A wide variety of metabolic pathways produce osmotically
active substances, such as the degradation of proteins to amino acids or
glycogen to glucose phosphate, which may lead to cell swelling [104]. The
accumulation of lactate, e.g. during muscle exercise, develops intracellular
acidosis and can lead to cell swelling [104].
It is well established that cell swelling and shrinkage affect important

cellular functions, in part by dilution and concentration of cellular com-
pounds [104, 29, 138, 73]. Such changes in concentration can markedly
influence the function of intracellular proteins, and cell swelling/shrinkage
affects the expression of a wide variety of genes [104, 110]. It has been
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Size dependent

Size independent

Figure 5.1: Most proteins and mRNAs are size dependent, meaning that their con-
centrations remain fairly constant during growth. Moreover, the size of organelles (e.g.
nucleus, nucleolus, mitochondria, vacuole) often scale with cell size. By contrast, the
amount of genomic DNA remains constant during growth, which is also true for some
proteins and mRNAs [153, 149].

demonstrated that dilution poses a significant challenge to enzyme reactions
in solitary vesicles, showing that there is a considerable impact on the dy-
namical and steady-state behaviors of such reactions [110]. In fact, a large
enough rate of dilution can effectively stop enzyme reactions [110]. Dilution
can also be exploited by cells. For example, in the budding yeast Saccha-
romyces cerevisiae, the concentration of a cell cycle activator is maintained
at a constant level during growth relative to a growth diluted inhibitor,
providing a measurement of cell volume and a molecular mechanism for cell
size control [154, 153]. Although most proteins are maintained at fairly con-
stant concentrations in growing cells, owing to mRNA amounts and number
of ribosomes increasing with cell size, some do not (Figure 5.1) [153, 149].
In order to understand how cell size differentially affects the concentra-
tion of certain proteins, it is necessary to understand how cells coordinate
biosynthesis to keep most macromolecules at constant concentrations [153].

5.2 Reaction rate equation models in a changing
volume

To describe changes in the concentrations of cellular constituents during
growth, we start by considering some compound (P) in a growing cell (Fig-
ure 5.2a). We let nP denote the amount (i.e. moles) of the compound, such
that the concentration is cP(t) = nP(t)/V (t), where V denotes the cellular
volume. Using the product rule, we express the change in concentration of

87



CHAPTER 5. DILUTION RESISTANCE AND NOISE

the compound as

nP(t) = cP(t) · V (t) (5.1)
ṅP(t) = ċP(t) · V (t) + cP(t) · V̇ (t) (5.2)

ċP(t) = ṅP(t)
V (t) − cP(t) · V̇ (t)

V (t) (5.3)

where the first term on the right-hand side of (5.3) is identical to the time
derivative of cP in a constant volume, while the second term represents the
dilution of cP, which we will call the dilution term [147, 110].

P

(a) Growth-induced dilution. (b) Dilution of P.

Figure 5.2: For a constant amount of some compound P (ṅP(t) = 0) in a growing
cell (panel (a)), the concentration cP will dilute according to −cP · V̇ /V . For the linear
growth equation V (t) = V0 +kV · t, where V0 is the initial cell volume and kV is a constant
growth rate, the concentration of P decays exponentially (panel (b)).

We use (5.3) as a “template” for formulating reaction rate equations for
cellular constituents in a growing cell. As an example, we consider the
formation of a product by an enzyme reaction in a growing cell (Figure 5.3a).
The reaction rate is described by the Michaelis–Menten equation

v = kcat · cE · cS
KM + cS

(5.4)

where v is the reaction rate, kcat is the catalytic constant (or turnover
number), KM is the Michaelis constant, cE is the (total) concentration of
enzyme, and cS is the concentration of substrate [31]. By inserting (5.4)
into (5.3), we get the differential equation describing the formation of a
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product by an enzyme reaction in a growing cell [110]

ċP(t) = kcat · cE(t) · cS(t)
KM + cS(t) − cP(t) · V̇ (t)

V (t) (5.5)

where cP denotes the concentration of the product. It is important to note
that dilution affects the concentrations of all constituents of the enzyme
reaction, i.e. product, enzyme, and substrate, not just the concentration
of product. This is indicated by the time-dependencies introduced in
(5.5), which come from the relationship cE/S(t) = nE/S(t)/V (t), where V is
time-dependent in a growing cell, even if nE/S may be constant.

E
P

S S

S

SS

(a) Cell-internal generation. (b) Dilution of P.

Figure 5.3: For an enzyme reaction in a growing cell (panel (a)), all constituents of the
reaction (substrate, enzyme, and product) are affected by dilution. Linear cell growth
results in a slowdown of the enzyme reaction (due to dilution of enzyme and substrate
concentrations), and dilution of the product concentration (panel (b), solid blue line).
However, because the enzyme reaction is not completely stopped, the rate of dilution
of cP is significantly reduced in comparison to the case in Figure 5.2 (dashed red line).
Unless cE and cS are replenished, the enzyme reaction will eventually stop, and cP will
dilute completely.

Whereas the case in Figure 5.3 considers a compound being produced
internally in a growing cell, another important case to consider is when the
compound is being generated by a transporter-based process (Figure 5.4a).
In this case, we express the transporter as a surface concentration at the
cell surface. Assuming that the transporter reaction can be approximated
by the Michaelis–Menten equation (which is often true if the intracellular
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P

Pext

T

(a) Transporter-based generation. (b) Dilution of P.

Figure 5.4: For transporter-based generation of P in a growing cell (panel (a)), the
extracellular concentration of P can be considered constant. In comparison to internally
generated P (panel (b), dashed red line), transporter-based generation of P results in
a steady-state concentration (solid blue line). Note that it is also possible to achieve
a steady-state for internally generated P if we let the intracellular concentration of
substrate be constant.

concentration of P is low [171, 165]), the system is given by

ċP(t) = kcat · cT(t) · cP,ext(t)
KM + cP,ext(t)

· A(t)
V (t) − cP(t) · V̇ (t)

V (t) (5.6)

ċT(t) = −cT(t) · Ȧ(t)
A(t) (5.7)

where cT is the surface concentration of the transporter, cP,ext is the
extracellular concentration of P, and A is the surface area of the cell. Note
that the import of P is multiplied by the conversion factor A/V . This
is because the transporter is localized in the cell membrane, such that
the import of P is a flux with respect to the surface area, which has to
be converted into a flux with respect to the cell volume. Notably, the
intracellular concentration of P and the surface concentration of T are
subject to different dilution terms. For a spherical cell, the equation

Ȧ(t)
A(t) = 2

3 ·
V̇ (t)
V (t) (5.8)

expresses the relationship between surface area and volume growth [185]. An
important difference between the cases in Figure 5.3 and Figure 5.4 is that
the external concentration of substrate can often be regarded as constant,
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whereas this may not be true for the internal substrate concentration. Since
the extracellular concentration of P in Figure 5.4 is not subject to dilution,
and because the dilution term vanishes as the cellular volume becomes large
(for linear growth), intracellular P reaches a steady-state concentration1.
Note, however, that this steady-state is not robust to perturbations in
cP [147].

5.3 Dilution resistance in growing cancer cells

Cancer cells show an increased uptake of glucose and a high rate of gly-
colysis and lactic acid fermentation, even in the presence of oxygen, and
a more glycolytic phenotype is persistent with a more aggressive cancer
cell type [57, 37, 150]. This is known as the Warburg effect, or aerobic
glycolysis, and is necessary in order to meet the increased demands of
rapid proliferation [191, 57]. Cancer cells have functional mitochondria,
and oxidative phosphorylation can occur at rates similar to that seen in
normal cells [74]. This is in contrast to most normal cells that maintain
a high rate of glycolysis at the expense of oxidative phosphorylation; a
phenomenon known as the Crabtree effect [74]. However, in the hypoxic
tumor microenvironment, cancer cells naturally show a decreased reliance
on oxidative phosphorylation [80, 74]. The increased glycolytic flux in
cancer supplies biosynthetic pathways with precursors, meets the increased
bioenergetic demand of proliferation, and contributes to tumor invasion
through the excretion of lactate and consequent acidification of the tumor
microenvironment [191, 74, 68, 35, 57].
The growth mode of cancer cells relies on a balanced production of

cellular components to avoid molecular crowding and solvent capacity con-
straints [194, 193]. The cell represents a tiny reagent reservoir and is reliant
on a balanced influx and efflux of compounds to support growth rates
corresponding to that seen in cancer. Thus, as the cell expands, its con-
stituents need to increase at the same rate to meet the growth requirements,
meaning a proportional increase in nucleic acids, polysaccharides, proteins,
and lipids [67]. Aside from biomass formation for the purpose of growth,
increased metabolic activity also affects the cell volume through uptake of
nutrients, creation of osmotically active substances, developing intracellular
acidosis, and depletion of available ATP [104, 52, 128]. In fact, increased

1This is also the case for the enzyme reaction in Figure 5.3 if the intracellular substrate
concentration can be considered constant [147].
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cellular volume appears to be required for proliferation, and hypertonic
shrinkage inhibits cell proliferation, whereas slight osmotic swelling has
the opposite effect [104]. In contrast, differentiation is followed by cell
shrinkage in a number of cells [104]. It is clear that control mechanisms
employed by cancer cells to maintain a highly glycolytic phenotype must
be robust to dilution.

5.3.1 Rewiring of glycolysis in cancer

The mechanisms that reprogram metabolism in cancer are often cancer-
specific; nevertheless, there are common hallmarks, notably a shift towards
protein isoforms that promote biosynthesis and proliferation [74, 191].
In the first step of glycolysis, glucose is transported into the cell. The
GLUT (gene symbol SLC2A) family of glucose transporters are membrane-
spanning proteins facilitating the transport of sugars across biological
membranes along the concentration gradient [26, 89]. GLUT1 is one of 14
currently identified GLUT proteins expressed in humans, and is expressed
in almost every tissue [175, 15, 174, 55]. Together with its high affinity
for glucose, this gives GLUT1 a clear role in the basal glucose uptake
of most tissues [15, 174, 26]. Elevated expression of GLUT1 has been
reported in most cancers, and the expression level correlates reciprocally
with the survival of cancer patients [55, 57, 68]. Hypoxia-inducible factor-1
(HIF-1), a dimer of HIF-1α and HIF-1β, is one of the factors responsible
for upregulating GLUT1 in tumor cells [157, 55, 74, 57, 207]. HIF-1β
is constitutively expressed, whereas HIF-1α is regulated through oxygen-
dependent and oxygen-independent mechanisms [157]. GLUT1 expression
is upregulated through hypoxia-response elements on the GLUT1 promoter
that bind HIF-1 [55]. HIF-1α has increased levels in most cancers, which
provides a mechanism by which cancer cells overexpress GLUT1 [55, 157, 57].
Other factors known to cause overexpression and translocation of GLUT1
to the cell membrane in cancer include the oncoprotein c-Myc, the protein
kinase Akt/PKB, and oncogenic KRAS and BRAF [55, 74, 57, 207].

Glycolysis consists of several reversible reactions and three (essentially)
irreversible reactions (Figure 5.5). Because they are irreversible, these
three reactions represent committed steps of glycolysis, and the enzymes
that drive these reactions are gatekeepers of glycolysis and have a key
role in regulating the glycolytic flux [74]. In the first irreversible reaction
of glycolysis, glucose is phosphorylated to glucose 6-phosphate (G6P) by
hexokinase, coupled to the dephosphorylation of ATP, thereby trapping
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glucose inside the cell2 [139, 115, 17]. Hexokinase 2 (HK2) is one of
four isoforms of hexokinase found in mammalian tissue [115]. HK2 has
a very high affinity for glucose, with a Michaelis constant (KM value) of
0.02–0.03 mm [139, 115]. Overexpression of HK2 in cancer occurs through
multiple mechanisms, and includes the involvement of HIF-1, c-Myc, and
Akt/PKB [74, 157, 207]. To support increased glucose uptake, HK2 is
bound to the outer mitochondrial membrane protein voltage-dependent
anion channel (VDAC) [139, 115, 74]. VDAC supplies HK2 with ATP by
recruiting help from ATP synthase and the adenine nucleotide translocator,
resulting in a mechanism that rapidly converts glucose to G6P [115]. HK2
is product inhibited by G6P, however, it is likely that this inhibition is
minimal due to rapid utilization of G6P in cancer cells, and diminished
(or possibly saturated) inhibition experienced by mitochondrial bound
HK2 [74, 139, 24, 127, 114]. In addition, the binding of HK2 to the outer
mitochondrial membrane via VDAC helps prevent apoptosis in cancer
cells [115, 139].
The second irreversible reaction of glycolysis is catalyzed by phospho-

fructokinase 1 (PFK1), and is the phosphorylation of fructose 6-phosphate
(F6P) to fructose 1,6-bisphosphate (F1,6BP) with the concomitant de-
phosphorylation of ATP [123, 74, 17]. PFK1 is a tetrameric enzyme that
exists in liver (PFKL), muscle (PFKM), and platelet (PFKP) isoforms in
mammalian cells [95, 123, 74]. PFK1 expression is upregulated in cancer
cells, and increased expression of the PFKP isoform is a characteristic fea-
ture of cancer [123, 95]. Krüppel-like factor 4 (KLF4), which has elevated
levels in certain cancer types, has been shown to activate transcription
of the PFKP gene by directly binding to its promoter [123]. In addition,
PFK1 is allosterically activated by fructose 2,6-bisphosphate (F2,6BP),
which shows increased generation associated with overexpression of the
phosphofructokinase 2 (PFK2) isoform PFKFB3 in cancer [74, 157].
The third irreversible reaction of glycolysis is the conversion of phos-

phoenolpyruvate (PEP) to pyruvate by the transfer of a phosphoryl group
to ADP [74, 17]. Cancer cells control this reaction by expressing the
low-affinity M2 isoform of pyruvate kinase (PKM2) [191, 74]. The PKM2
tetramer is allosterically regulated by various metabolites and responds to
nutritional and stress signals, whereas the normal M1 isoform of pyruvate
kinase (PKM1) is a constitutively active tetramer [74, 47]. The regulation
of PKM2 enables cancer cells to dictate the flow of carbon into biosynthetic

2G6P is not transported out of the cell, and cannot pass through the cell membrane [17].
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pathways and adapt to varying conditions of nutrient availability and an-
abolic demands [191, 74, 47]. Additionally, PKM2 is regulated between its
metabolically active tetrameric form and metabolically inactive dimeric
form, where the PKM2 dimer is imported into the nucleus and stimulates
transcription of glycolytic genes [47]. Interestingly, PKM2 expression is
under direct control of c-Myc and HIF-1, in a positive feedback connection
that promotes the Warburg effect in cancer [47, 112].

In addition to the key regulatory enzymes of glycolysis described above,
other important glycolytic enzymes are upregulated in cancer. For exam-
ple, of the lactate dehydrogenases (LDHs), LDHA is the predominantly
expressed isozyme in cancer [74]. Both HIF-1 and c-Myc increase the
expression of LDHA, which has a high affinity for pyruvate, and favors
the conversion of pyruvate to lactate [74, 157, 207]. Enolase 1 (ENO1) is
induced in cancer cells through HIF-1α overexpression [55, 157]. Aldolase A
(ALDOA), which is also induced by HIF-1α overexpression, is the predomi-
nant aldolase isoform expressed in hepatoma and gastric cancer tissues, and
favors the cleaving of F1,6BP [10, 74, 157]. Taken together, the glycolytic
isoforms expressed in cancer show a concerted effort to increase glycolytic
activity and promote production of biosynthetic precursors. The diagram of
glycolysis shown in Figure 5.5 highlights some of the key isoforms that are
commonly overexpressed in cancer, along with some key factors responsible
for overexpression.

5.3.2 Regulation of glucose uptake in cancer

We now focus our attention to glucose uptake and the initial steps of
glycolysis, and discuss the control mechanisms that regulate glucose uptake
in cancer. Although key glycolytic enzymes are upregulated in cancer, they
are still involved in metabolic regulation and respond to signals such as
nutritional and oxidative stress, however, this regulation changes to favor
proliferation [191, 74, 47, 206]. Regulation of nutrient transporters by the
availability of nutrients is a phenomenon observed in bacteria and yeast,
and similarly, an inhibitory effect of glucose on GLUT1 mRNA and protein
expression has been observed in several mammalian cell lines [97, 27]. To
study the effect of glucose on GLUT1 expression, cells have been subjected
to glucose deprivation experiments, with the common result that GLUT1
content at the cell surface is increased [97, 69, 70, 170, 18, 184]. This
is achieved by different mechanisms, including increased GLUT1 mRNA
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Figure 5.5: Diagram of glycolysis with some of the commonly overexpressed protein
isoforms in cancer highlighted in red. Dashed lines show some key factors responsible for
overexpression. Reactions highlighted in blue indicate the committed steps of glycolysis.
See main text for details. Abbreviations used for glycolytic metabolites: Extracellular
glucose (Glcext), glucose (Glc), glucose 6-phosphate (G6P), fructose 6-phosphate (F6P),
fructose 1,6-bisphosphate (F1,6BP), dihydroxyacetone phosphate (DHAP), glyceralde-
hyde 3-phosphate (G3P), 1,3-bisphosphoglycerate (1,3BPG), 3-phosphoglycerate (3PG),
2-phosphoglycerate (2PG), phosphoenolpyruvate (PEP), tricarboxylic acid cycle (TCA
cycle).

95



CHAPTER 5. DILUTION RESISTANCE AND NOISE

transcription and stability, increased protein synthesis or decreased protein
degradation, and translocation of the transporter to the cell membrane [97].
Extracellular glucose supply directly affects the levels of intracellular

glucose and early glycolytic metabolites [88, 69]. Thus, it is possible
that GLUT1 content at the cell surface is regulated in some way by the
intracellular level of glucose or G6P, as has been previously suggested [113,
69]. In fact, comparisons of mammary tumors and normal mammary
tissue in mice have shown that an increased GLUT1 level correlates with a
decreased level of intracellular glucose and increased glycolytic activity [206].
It is possible that this glucose-dependent regulation of GLUT1 functions
via AMP-activated protein kinase (AMPK) [86]. AMPK is comprised of
one catalytic α-subunit, and two regulatory subunits, β and γ [86, 32].
Glucose-induced regulation of AMPK activity happen in a few different
ways: An abundance of glucose will quickly be phosphorylated to G6P by
HK2. G6P is then used to supply glycolysis, lowering the AMP/ATP and
ADP/ATP ratios, keeping AMPK from being activated by the binding of
AMP and ADP [86]. High glucose levels and increased biomass generation
reduce the NAD+/NADH ratio, which indirectly inhibits AMPK through
silent information regulator T1 (SIRT1) and liver kinase B1 (LKB1) [86,
146, 192, 74]. Downstream of G6P, the accumulation of diacylglycerol
(DAG) and glycogen both lead to inhibition of AMPK. DAG inhibits
AMPK by activating protein kinase C (PKC), which in turn induces the
inhibitory phosphorylation of the AMPK α-subunit, while glycogen inhibits
AMPK by binding to the β-subunit [86]. In addition, activation of protein
phosphatase 2A (PP2A) as a result of high glucose levels inhibits AMPK [86,
54, 90].
AMPK in turn has been shown to affect GLUT1 expression [12, 86].

A mechanism by which this happens is by increasing the degradation of
thioredoxin-interacting protein (TXNIP) [201]. TXNIP can bind directly
to GLUT1 and induce internalization, as well as reduce the GLUT1 mRNA
level [201]. Another suggested mechanism is that downstream of AMPK,
p38 mitogen-activated protein kinase (p38 MAPK) activation leads to
enhancement of GLUT1-mediated glucose transport [203]. A suggested
nuclear sensor of G6P is the transcription factor complex MondoA-Mlx,
which induces the TXNIP gene [34, 166, 167]. Because TXNIP is a po-
tent negative regulator of GLUT1 activity, this forms a negative feedback
connection in which elevated G6P levels restrict GLUT1-mediated glucose
uptake through TXNIP [201, 34, 166, 167].
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Another important aspect of glucose uptake is the regulation of HK2,
as it drives the first committed step of glycolysis and maintains a high
glucose concentration gradient across the cell membrane, which drives the
facilitated diffusion of glucose by GLUT1 [74, 171, 165]. Activators of
the HK2 promoter include glucose, insulin, glucagon, p53, cAMP, and
hypoxic conditions [139, 106, 115]. Interestingly, it is glucose rather than
downstream glycolytic metabolites that activates the HK2 promoter [116,
144, 139, 106, 115]. Together with the fact that HK2 phosphorylates glucose
to G6P in a reaction that is essentially irreversible, a negative feedback
connection between glucose and HK2 is formed [115, 41].

These control mechanisms are summarized in Figure 5.6a. Here, glucose
uptake is regulated by pathways that inhibit GLUT1-mediated glucose
uptake via AMPK, and intracellular glucose forms a negative feedback
connection with HK2. The mechanisms that affect AMPK depend on the
production of G6P, and therefore, G6P represents the potential for these
mechanisms to ultimately affect GLUT1-mediated glucose uptake. Before
we can construct a mathematical model of the system in Figure 5.6a, acti-
vating and inhibiting pathways need to be translated into reactions that can
be described by reaction kinetic equations. To this end, parallel pathways
with similar overall effects are grouped together, shown in Figure 5.6b.
These combined pathways are then turned into activating or inhibiting
reactions affecting generation or removal reactions of the remaining species,
shown in Figure 5.6c. The conversion of the system in Figure 5.6b to the
system in Figure 5.6c preserves the effect one compound has on another,
however, this conversion is not unique. For example, a negative (or dimin-
ishing) effect of G6P on GLUT1 content at the cell surface could also be
achieved if G6P activates the degradation or internalization of GLUT1 [41].
Additionally, the activating and inhibiting reactions in Figure 5.6c do
not need to represent the same molecular mechanisms. For example, the
generation of G6P is driven by the phosphorylation of glucose by HK2,
whereas intracellular glucose induces HK2 generation by activating the HK2
promoter. We use the system in Figure 5.6c as a simplified representation
of glucose uptake in cancer, and as a basis for our mathematical model.
Notably, this model reveals the presence of negative feedback structures,
similar to the homeostatic controller motifs, in a nested configuration. This
is a commonly occurring regulatory architecture in metabolic networks [82].
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(a) Regulation of glucose uptake in cancer.
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Figure 5.6: The regulation of glucose uptake in cancer is summarized in panel (a). Line
marker-ends indicate the effect one species has on another, arrowhead for positive/acti-
vating and flat head for negative/inhibiting. Colored pathways indicate the overall effect
of that pathway, red for positive and blue for negative. For example, HK2 negatively
affects glucose since it phosphorylates glucose to G6P, and AMPK positively affects
GLUT1, since it increases the degradation of TXNIP, which induces internalization of
GLUT1. Black lines represent the flow of glucose metabolism. Panel (b) shows colored
pathways grouped together based on similar overall effects. Panel (c) shows the same, but
translated into a form where activating and inhibiting effects act on reactions generating
and turning over the species. This allows for the system to be described by a simplified
mathematical model using reaction kinetic equations.
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5.3.3 Modeling glucose uptake in cancer

Expression Atlas was used to collect differential gene expression data
comparing cancer cells with normal (i.e. non-cancerous) cells, across a
variety of tissues and cell types. Expression Atlas is an open science
resource that provides information on gene and protein expression in animal
and plant samples of different cell types, organism parts, developmental
stages, diseases, and other conditions [141]. Expression Atlas contains
thousands of selected microarray and RNA-sequencing datasets that are
manually curated, annotated, checked for high quality, and processed using
standardized analysis methods [141]. For genes of interest, users can view
baseline expression in tissues, and differential expression for biologically
meaningful pairwise comparisons [141].
Differential expression data for the SLC2A gene family, HK1-3, GCK,

PFKM, PFKP, PKM, and PKLR genes in human was gathered from the
Expression Atlas database. We curated the data to ensure only experiments
comparing cancer cells with corresponding normal cells were included.
Differential gene expression experiments with drug treatments were removed.
Average log2-fold changes for the key genes associated with glucose uptake
and glycolysis are shown in Figure 5.7. The differential gene expression data
largely corroborates the reported rewiring of glycolysis in cancer discussed
in Section 5.3.1. Namely, a shift towards glucose uptake mediated by
GLUT1 (SLC2A1 gene), predominant expression of the PKM2 (PKM1 and
PKM2 are different splicing products of the PKM gene [74]) isoform, and
overexpression of HK2. We also found a slight upregulation of the PFKP
gene in cancer, consistent with previous studies [123]. Hence, the model
proposed in Figure 5.6c appears to include the key components of glucose
uptake in cancer, and provides a good basis for mathematical modeling.

The results in Figure 5.7 also shows an increased HK3 transcript abun-
dance in cancer. This is not surprising, since it has been shown that
HK3 is upregulated by hypoxia, partially through HIF-dependent signal-
ing [202]. Whereas HK2 bind to the outer mitochondrial membrane, HK3
does not [115, 202]. A consequence of mitochondrial bound HK2 is the
prevention of cell death by inhibiting formation of the mitochondrial per-
meability transition pore (MPTP) complex [115, 202]. On the other hand,
HK3 overexpression promotes cell survival in response to oxidative stress,
decreases the production of reactive oxygen species (ROS), preserves mito-
chondrial membrane potential, and promotes mitochondrial biogenesis [202].
Therefore, it is likely that HK2 and HK3 serve different, but complementary,
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Figure 5.7: Differential expression data for the SLC2A gene family, HK1-3, GCK,
PFKM, PFKP, PKM, and PKLR genes in human was gathered from the Expression
Atlas database. Results are given as the average log2-fold change of several experiments.
Upregulation in cancer cells is indicated by red, and downregulation by blue. White
indicates no change.
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roles in maintaining a highly glycolytic phenotype and promoting cancer
cell survival. Notably, inhibition of glucose or G6P binding to the regulatory
half of HK3 (N-terminal domain) impairs catalysis in the catalytic half
(C-terminal domain), suggesting a cooperative effect of glucose binding
in the regulatory half to subsequent binding in the catalytic half [202].
Hence, HK3 interacts with glucose in a similar way to that of HK2 shown
in Figure 5.6. As a result, we will only consider HK2 in the following
mathematical modeling, but note that HK2 can be thought of as a pool of
both HK2 and HK3.

Our model of glucose uptake in cancer is shown in Figure 5.8. Assuming
low intracellular concentration of glucose due to rapid conversion by HK2,
facilitated diffusion of glucose by GLUT1 can be approximated by the
Michaelis–Menten equation [165, 171]. We model the phosphorylation of
glucose to G6P by the Michaelis–Menten equation, and the sink reaction to
metabolism by a first-order reaction with rate constant kmetabolism. GLUT1
is assumed to be generated and turned over in reactions driven by enzymes
E1 and E2, respectively. We assume the production of GLUT1 is propor-
tional to the concentration of E1, and that the degradation of GLUT1 by
E2 is given by a Michaelis–Menten-type process.
The feedback inhibition from G6P to GLUT1 production is based on

the many pathways that regulate GLUT1-mediated glucose uptake via
AMPK, summarized in Figure 5.6a. With this feedback, a reduction in
G6P level will reduce inhibition of GLUT1 production, thereby increasing
GLUT1-mediated glucose uptake, and providing a mechanism for regulating
the glycolytic flux. We model the feedback by allosteric inhibition (using a
special case of mixed inhibition) of the reaction producing GLUT1 [31, 91].
The activation of HK2 synthesis by intracellular glucose forms a nega-

tive feedback connection together with the phosphorylation of glucose to
G6P [41]. Activation of HK2 synthesis is modeled by allosteric activation3
(using a special case of mixed activation) [31, 91]. We assume the synthesis
and degradation of HK2 are driven by enzymes E3 and E4, respectively,
where the synthesis is proportional to the level of E3, and the degradation
by E4 follows a Michaelis–Menten-type process. The enzymes responsi-
ble for generating and removing GLUT1 and HK2 (Ei, i = 1, 2, 3, 4) are

3Note that we are simply using the expression for allosteric activation to model
saturation in HK2 promoter activation by glucose. In this sense, the transcriptional and
translational machinery are represented by the “enzyme” synthesizing HK2. In fact, a
similar abstraction is made for all the enzymes Ei (i = 1, 2, 3, 4).
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Figure 5.8: Our model for glucose uptake in cancer. GLUT1 transports extracellular
glucose into the cell, which is then phosphorylated to G6P by HK2. The sink reaction to
metabolism is modeled by a first-order reaction with rate constant kmetabolism. GLUT1
and HK2 are assumed to be generated and turned over in reactions driven by the enzymes
Ei (i = 1, 2, 3, 4). Feedback inhibition from G6P to GLUT1 production is modeled by
allosteric inhibition with inhibition constant KI,G6P, and activation of HK2 synthesis by
intracellular glucose is modeled by allosteric activation with activation constant KA,Glc.

assumed to be present in constant amounts only, meaning that their concen-
trations simply dilute with increasing volume. We believe this represents a
worst-case scenario in which dilution resistance can be achieved, where all
components of the protein synthetic machinery of the cell dilute as the cell
grows.
The glucose uptake model in Figure 5.8 is given by the flux balance

equations

ċGlc(t) = jGLUT1(t) ·
A(t)
V (t) − jHK2(t)− cGlc(t) ·

V̇ (t)
V (t) (5.9)

ċG6P(t) = jHK2(t)− jmet(t)− cG6P(t) · V̇ (t)
V (t) (5.10)
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ċGLUT1(t) = jE,1(t) · V (t)
A(t) − jE,2(t) · V (t)

A(t) − cGLUT1(t) ·
Ȧ(t)
A(t) (5.11)

ċHK2(t) = jE,3(t)− jE,4(t)− cHK2(t) ·
V̇ (t)
V (t) (5.12)

where cGlc, cG6P, and cHK2 are concentrations in the cellular volume V ,
whereas cGLUT1 is a concentration at the cell surface A. As a consequence,
the import of glucose (jGLUT1) is converted by the factor A/V to a flux
given with respect to the cellular volume. Similarly, the generation and
degradation of GLUT1 (jE,1 and jE,2) are converted by the factor V/A to
fluxes with respect to the cell surface area, since the enzymes generating
and turning over GLUT1 are situated inside the cell. Because we are
considering a growing cell, the dilution term from (5.3) must be added to
the reaction rate equations. The flux expressions in (5.9)–(5.12) are given
by

jGLUT1(t) = kcat,GLUT1 · cGLUT1(t) · cGlc,ext(t)
KM,GLUT1 + cGlc,ext(t)

(5.13)

jHK2(t) = kcat,HK2 · cHK2(t) · cGlc(t)
KM,HK2 + cGlc(t)

(5.14)

jmet(t) = kmetabolism · cG6P(t) (5.15)

jE,1(t) = kcat,1 · cE,1(t) ·
KI,G6P

KI,G6P + cG6P(t) (5.16)

jE,2(t) = kcat,2 · cE,2(t) · cGLUT1(t)
KM,2 + cGLUT1(t)

(5.17)

jE,3(t) = kcat,3 · cE,3(t) ·
cGlc(t)

KA,Glc + cGlc(t)
(5.18)

jE,4(t) = kcat,4 · cE,4(t) · cHK2(t)
KM,4 + cHK2(t)

(5.19)

The enzymes Ei (i = 1, 2, 3, 4) are not assumed to be generated and
turned over, and their concentrations simply dilute as the volume increases.
These concentrations are given by cE,i(t) = nE,i/V (t), where nE,i (the
amount of Ei) are constant quantities. KI,G6P is the inhibition constant
for the allosteric inhibition of GLUT1 production by G6P, and KA,Glc is
the activation constant for the allosteric activation of HK2 synthesis by
intracellular glucose.

We assume a spherical cell and simulate the system (5.9)–(5.12) in four
phases (Figure 5.9): In the first phase (white area, t = [0, 400]), the volume
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is constant. In the second phase (light gray area, t = [400, 800]), the volume
is increased linearly. In the third phase (dark gray area, t = [800, 1200]),
while the volume is still increasing, the extracellular glucose concentration
is increased 4-fold (at t = 800). Finally, in the last phase (white area,
t = [1200, 1600]), the volume increase is stopped. The simulation results
are shown in Figure 5.9, with initial values and parameters provided in
Table 5.1. The bottom right plot shows the increase in volume (solid black
line) and surface area (dashed black line) during the simulation.
In the first phase (white area), the system has settled at steady-state,

producing a constant glycolytic flux (represented by the phosphorylation of
glucose to G6P, jHK2). In the second phase (light gray area), despite growth-
induced dilution, a constant glycolytic flux is maintained. This shows that
the system is able to achieve dilution resistance under linear growth. Note,
however, that without active regulation of the HK2 level (negative feedback
between glucose and HK2), dilution resistance is not possible (see Paper 4
for more details). Hence, a nested feedback architecture appears to be
significant in achieving robustness to global effects such as dilution. In
comparison to steady-state values associated with constant volume (dashed
black lines in intracellular glucose and G6P plots), we see a shift in the
new steady-state values of the system during growth. Notably, there is a
(slight) reduction in the glycolytic flux, together with an increased level of
intracellular glucose, and a reduced G6P level. This suggests that glucose is
no longer being converted into G6P as efficiently, which is evident from the
reduction in HK2 level. It is important to note that the simulation results
show concentrations of species, and that molecular amounts scale with cell
size. This scaling is achieved by increasing the concentration of GLUT1
at the cell surface, made possible by the differential dilution experienced
by species in the cellular volume and at the cell surface, expressed by the
relationship in (5.8).
To investigate how dilution causes offsets in the steady-state values of

the system, we increased the extracellular glucose concentration at the start
of the third phase (dark gray area). Interestingly, the control mechanisms
attempt to bring the system back to steady-state values associated with
growth, and not to steady-state values associated with constant volume.
If the latter were true, we would not expect to see the regulatory action
in Figure 5.9 bringing intracellular glucose and G6P levels away from
steady-state values associated with constant volume (dashed black lines).
This suggests that the growth-induced offsets may be caused by set-point
changes, rather than breakdown of regulation. Finally, in the last phase,
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Figure 5.9: Simulation results of the glucose uptake model. The bottom right plot
shows volume (solid black line) and surface area (dashed black line) during the simulation.
A spherical cell is assumed. Initially, the cellular volume is kept constant, and the system
has settled at steady-state (white area, t = [0, 400]). In the second phase (light gray
area, t = [400, 800]), the cellular volume increases linearly. During growth, steady-state
metabolite levels are shifted compared to steady-state values associated with constant
volume (dashed black lines in intracellular glucose and G6P plots). At the start of
the third phase (dark gray area, t = [800, 1200]), as the volume is still increasing, the
concentration of extracellular glucose is increased 4-fold. Finally, the first phase is
repeated, and the volume is kept constant (white area, t = [1200, 1600]). Initial values
and parameters are given in Table 5.1.
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Initial Values

cGlc 0.9997
cG6P 2.0004
cGLUT1 0.8273
cHK2 0.8002

Parameters/expressions

V (t) 1.0000 + V̇ (t) · t

V̇ (t)

0.0500, 400 ≤ t < 1200
0, otherwise

cGlc,ext(t)

5.0000, t < 800
20.000, t ≥ 800

kcat,GLUT1 0.6000
KM,GLUT1 1.0000
kcat,HK2 5.0000
KM,HK2 1.0000
kmetabolism 1.0000
kcat,1 6.0000
nE,1 1.0000
kcat,2 2.0000
KM,2 0.0001
nE,2 1.0000
kcat,3 2.0000
nE,3 1.0000
kcat,4 1.0000
KM,4 0.0001
nE,4 1.0000
KI,G6P 1.0000
KA,Glc 1.0000

Table 5.1: Initial values and parameters for the simulation of the glucose uptake model
in Figure 5.9.
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volume growth is stopped, but the cellular volume has now grown much
larger than initially (white area). In this phase, metabolite levels, together
with the glycolytic flux, return back to steady-state values associated with
constant volume. Thus, the growth-induced offsets must be dependent on
the rate of volume increase, and not the total volume.

The simulation results in Figure 5.9 demonstrate that the glucose uptake
model (Figure 5.8, (5.9)–(5.12)) is able to achieve dilution resistance during
linear growth, and that dilution resistance is achieved by the formation
of a nested negative feedback structure. In fact, it appears that dilution
resistance in linear pathways require that intermediary enzymes are regu-
lated by negative feedback in a nested configuration, or that the generation
and removal reactions of theses enzymes already show dilution resistance.
Either way, our results demonstrate the need for regulation of intermediary
enzymatic steps in linear pathways in order to achieve dilution resistance.
Our simulation results also show the presence of growth-induced offsets
in steady-state values of the system, and that these offsets appears to
be caused by set-point changes that are dependent on the growth rate.
Interestingly, investigations into ICMs have shown that growth-induced
offsets become negligible if the kinetics of the controller species behave on a
timescale much faster than cell growth [147, 142, 6, 4, 8]. In the following,
we take a closer look at how growth-induced offsets can be minimized
for the glucose uptake model, and how this leads to near-perfect dilution
resistance.

5.3.4 Realizing dilution resistance with homeostatic con-
troller motifs

While ICMs cannot achieve perfect adaptation in the presence of dilution,
and their performance deteriorate with increasing dilution rate, it has been
shown that near-perfect adaptation can still be achieved by increasing
the rates of the controller reactions [142, 147]. ICMs with controller
reactions much faster than the rate of dilution are called quasi-ICMs, and
characteristically show small or negligible growth-induced offsets [142]. To
illustrate how quasi-ICMs achieve dilution resistance, we take a closer look
at the feedback inhibition by G6P to GLUT1-mediated glucose uptake in
Figure 5.8. The interaction between G6P and GLUT1 forms a structure
similar to that of the homeostatic controller motifs (inflow controller 3) [41].
As shown in Chapter 3, this constitutes a negative feedback connection with
integral action. Comparing an ideal integral controller, shown in Figure 5.10,
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with the feedback inhibition in Figure 5.8, we see that the output feedback
(y) corresponds to the inhibition of GLUT1 production by G6P (blue in
Figure 5.10 and Figure 5.8); the integral controller block corresponds to the
GLUT1 level; process input (u) corresponds to GLUT1-mediated glucose
uptake (red in Figure 5.10); and the process block corresponds to the level
of G6P. The disturbance input (w) corresponds to perturbations made in
extracellular glucose and cellular volume.

Process

Integral controller

Figure 5.10: Block diagram of a process in negative feedback connection with an integral
controller. The process output y is fed back (blue output feedback) and compared to the
set-point r to produce the regulation error e = r − y. The regulation error is multiplied
by an integral gain Gi and integrated over time to produce the control action u (red
process input). In the presence of an uncontrolled disturbance w, a deviation in the
process output from the set-point will cause a non-zero regulation error. This produces
a change in the control action, and since the feedback is negative, this control action
functions to contract the deviation in process output from the set-point.

By rewriting (5.11), we can show that GLUT1 functions as an integral
controller for G6P

ċGLUT1(t) = jE,1(t) · V (t)
A(t) − jE,2(t) · V (t)

A(t) − cGLUT1(t) ·
Ȧ(t)
A(t) (5.20)

≈ Gi(t) ·
(
cG6P,set − Ȧ(t) · oG6P(t)− cG6P(t)

)
(5.21)

where we assume zero-order degradation of GLUT1 (KM,2 � cGLUT1) [41].
The following definitions are made

Gi(t) = 1
A(t) ·

kcat,2 · nE,2
KI,G6P + cG6P(t) (5.22)

cG6P,set = kcat,1 · nE,1 − kcat,2 · nE,2
kcat,2 · nE,2

·KI,G6P (5.23)

oG6P(t) = KI,G6P + cG6P(t)
kcat,2 · nE,2

· cGLUT1(t) (5.24)
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In the case without growth, Ȧ = 0, (5.21) is reduced to the same form as the
integral control law (see (3.56) in Chapter 3). And since the set-point for
G6P level, cG6P,set, is given entirely by parameters associated with GLUT1
generation and removal, perfect adaptation to perturbations in G6P is
realized, as the set-point remains unchanged for such perturbations [6].
However, in the case with growth, the additional term Ȧ ·oG6P is introduced
in the integral control law, which causes a growth-induced offset in G6P
level. By comparing the above equations to the simulation results shown in
Figure 5.9, we can make a couple of observations: First, the growth-induced
offset is indeed dependent on the growth rate of the cell (Ȧ, or indirectly,
V̇ ), like our simulation results suggested. Second, (5.21) shows that the
offset can be interpreted as a change in set-point of the controller, i.e. the
set-point during growth is given by c∗G6P,set = cG6P,set − Ȧ(t) · oG6P(t). An
alternative interpretation is that the growth associated offset results in an
inaccuracy in the measurement of G6P level. However, because the offset
appears as an additional term in (5.21), this interpretation differs somewhat
from previous uses of controller accuracy in the context of homeostatic
controller motifs4 [41, 145].
If the reaction rates for the generation and removal of GLUT1 behave

on a timescale much faster than the rate of dilution, oG6P is small, and
the growth associated offset (Ȧ · oG6P) becomes negligible [147, 142]. For
example, increasing kcat,2 lowers the value of oG6P (see (5.24)). If kcat,1
is also increased such that cG6P,set remains unchanged (see (5.23)), the
impact of dilution can be arbitrarily reduced, resulting in a so-called quasi-
ICM [147, 142]. Tuning the reaction rate parameters of the controller
species in this manner is a way of increasing the “aggressiveness” of the
integral controller [147]. A way that GLUT1 and HK2 activity can be
regulated, is through translocation between biological membranes and the
cytosol, indicating that the activity of these species can respond quickly, and
that regulation of glucose uptake in cancer may achieve dilution resistance
through the formation of quasi-ICMs [97, 201, 87]. Similar to GLUT1, it is
possible to show that HK2 functions as an integral controller for the level
of intracellular glucose (see Paper 4).
In our model for glucose uptake in cancer (Figure 5.8, (5.9)–(5.12)),

enzymes responsible for generating and removing the controller species
4In the context of homeostatic controller motifs, accuracy usually refers to the

discrepancy between set-point and actual steady-state value of the regulated species
that appears if the removal of the controller species is not zero-order (see Figure 3.12 in
Chapter 3) [41, 145].
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(Ei, i = 1, 2, 3, 4) are present in constant amounts only, meaning that their
concentrations simply dilute with increasing volume. As mentioned before,
we view this as a worst-case scenario in which regulation in the presence
of dilution is possible. In this scenario, we found that dilution resistance
to a linearly increasing volume is possible. However, because most protein
and mRNA concentrations are independent of cell size, it is likely that the
concentrations cE,i should be considered constant [153, 149]. In this case, it
has been shown that dilution resistance can be achieved for an exponentially
increasing cellular volume [147, 142]. Note, however, that capacity limits
or exhaustion of the controller species may lead to breakdown and loss
of regulation entirely [147]. It is clear that to ensure robustness of the
homeostatic controller motifs to perturbations that affect the system locally
(i.e. perturbations in the regulated species) as well as globally (i.e. dilution),
it is necessary to satisfy two conditions; i) the degradation of the controller
species must be (close to) zero-order (KM,2 � x2), and ii) the controller
reactions must be much faster than the rate of dilution.

5.4 Stochastic fluctuations in reaction networks

Although continuous-state deterministic models of chemically reacting sys-
tems, such as the reaction rate equations for the homeostatic controller
motifs, are undeniably useful for describing and studying such systems (as
we have seen so far), it is clear that time-evolution of chemically react-
ing systems are neither continuous nor deterministic [58, 199]. Molecular
populations can only change by discrete integer amounts, implying that
chemically reacting systems are fundamentally discrete. Moreover, although
the time-evolution of a chemically reacting system of classical molecules5 is
deterministic in the position-momentum phase space, it is not determin-
istic in the subspace of population numbers, as implied by reaction rate
equations [58]. Continuous-state deterministic models fail to capture these
aspects, and as a consequence, the “missing detail” manifests itself as an
apparent unpredictability of the underlying system [199].

Due to the stochastic nature of chemical reactions, the dynamics within
cells are often noisy [8]. This stochasticity is more pronounced in reactions
involving low molecular counts, like gene transcription, where quantities
such as DNA transcripts and transcription factors participate in low copy
numbers [8, 168]. The randomness in intracellular reactions can lead to

5Classical in the sense that molecular motions are governed by classical mechanics.
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significant cell-to-cell heterogeneities, in which genetically identical cells
exposed to homogeneous environments can show remarkable phenotypic
differences [8, 168, 107, 199]. This is demonstrated by the bistable genetic
toggle switch, which is comprised of two repressors and two constitutive
promoters arranged in a mutually inhibiting feedback connection (Fig-
ure 5.11a) [56, 79]. Stochasticity lets the system flip between two stable
states, whereas the deterministic version will always stay in one of the
stable states6, determined by initial conditions (assuming no external in-
put) [56, 79]. Bistable mechanisms similar to the genetic toggle switch can
be exploited by cells to select one of two phenotypic traits at random, even
in uniform genetic and environmental conditions, which can have selective
advantages [199]. The genetic toggle switch is given by the deterministic
model [56, 79]

Ṙ1(t) = α1

1 +R2(t)β
−R1(t) (5.25)

Ṙ2(t) = α2
1 +R1(t)γ −R2(t) (5.26)

where R1 and R2 are concentrations of the repressors, α1 and α2 are
the effective rates of synthesis of R1 and R2, respectively, and β and γ
denote the cooperativity of repression of their respective promoter. For the
deterministic model, simulation trajectories are generated using a standard
ODE solver. In the stochastic model, each reaction is modeled as a discrete
event that occurs with a certain propensity, and sample paths can be
generated using a stochastic simulation algorithm [79, 58]. A comparison
of deterministic and stochastic simulations of the genetic toggle switch is
shown in Figure 5.11b.

5.4.1 Intrinsic noise

Because reactions occur when molecules collide according to random pro-
cesses, chemically reacting systems experience intrinsic noise [58, 199]. In
biochemical systems, intrinsic noise has many sources, including randomness
in DNA binding events, mRNA transcription and degradation processes,
translation and protein degradation, and other protein-protein and protein-
metabolite interactions [199, 168, 107]. If we consider a population of cells,

6With the exact initial conditions, the deterministic system can theoretically stay in
one additional unstable state. But in practice, like a pendulum balanced in the upwards
direction, this state cannot be maintained for long [56].
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(a) Bistable genetic toggle switch.
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(b) Simulation of the bistable genetic toggle switch.

Figure 5.11: The bistable genetic toggle switch consist of two repressors and two
constitutive promoters in a mutually inhibiting feedback connection (panel (a)). A
stochastic simulation of the genetic toggle switch shows a switching behavior between a
state with mostly repressor 1 (blue) being transcribed, and another state with mostly
repressor 2 (red) being transcribed (panel (b)). By contrast, deterministic simulations
will always settle at one of the two steady-states indicated by the dashed black lines,
depending on initial conditions. Sample paths are generated using parameter values
α1 = α2 = 2.25, and β = γ = 2.00.

112



CHAPTER 5. DILUTION RESISTANCE AND NOISE

the amount of protein produced from a particular gene will vary from cell to
cell and over time, even if the cells start out in exactly the same state [168].
This is due to the fact that reaction events leading to transcription and
translation of the gene occur at different times and in different orders, in
the different cells [168].
One way to approach modeling and simulation of stochastic systems

is to consider the differential equations for the statistical moments (e.g.
mean and variance) of the state variables [20, 21]. This method brings the
problem back to deterministic differential equations (statistical moments
evolve according to deterministic dynamics [21]). However, except for linear
systems and special cases of nonlinear systems, we encounter the so-called
moment closure problem, whereby the differential equations for moments of
a given order contain terms involving higher order moments [20, 21]. The
result is that an infinite set of deterministic differential equations is needed
to determine even the first two moments [20, 21].

Another approach is to define the states of a chemically reacting system,
assuming it is well stirred, as the current number of molecules of each species,
which are quantities that change discretely through reactions between the
different species [59, 199]. In doing so, we must accept that the states
cannot evolve according to a deterministic process. The reason is that
molecular counts alone do not specify the positions and momenta of every
single molecule, and hence, the timings of reaction events are essentially
unpredictable [59, 58, 199]. This stochastic chemical kinetics approach
implies that molecular populations evolve according to a Markov jump
process, whereby any population change happens discretely and after a
random time, where the change and time only depend on the previous state
of the system [60, 199]. Furthermore, by deriving a time-evolution equation
for the Markov jump process, we get the chemical master equation (CME),
which is a deterministic differential equation for the probability function
describing the distribution of molecular counts for the different species,
given some initial condition [60, 59, 58]. As in the deterministic case, some
simple reaction network models are analytically tractable, and an explicit
solution for the time-evolution of the probability function for the system
states can be found [60, 199]. However, the class of solvable models is small,
and in practice, exact solution of the CME is rarely obtained [60, 199].
In order to deal with intractable reaction network models, we can turn

to numerical simulation of the system [199]. The stochastic simulation
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algorithm (SSA, also known as the Gillespie algorithm) produces exact7
realizations of the underlying Markov jump process, and multiple runs
of the algorithm can be used to approximate the time-evolution of the
probability function for the system states, in what is equivalent to Monte
Carlo simulations of the CME8 [58, 60, 199, 208]. Like the CME, the SSA
correctly accounts for the inherent fluctuations and correlations that are
ignored in the deterministic case, and unlike procedures for numerically
solving deterministic reaction rate equations, the SSA never approximates
infinitesimal time increments by finite time steps [58]. The sample paths
for the genetic toggle switch shown in Figure 5.11b were generated using
the SSA.
The SSA can be computationally expensive, even for single runs, if the

reaction network of interest contains many fast-acting reactions or large
numbers of molecules [199, 101, 126]. In this case, it becomes infeasible
to approximate the CME by Monte Carlo simulations [126, 101]. Instead,
an approximation of the underlying Markov jump process can be used,
such as the chemical Langevin equation (CLE) [60, 199]. This approach is
based on approximating the dynamics of the Markov jump process by a
system of stochastic differential equations (SDEs) [60, 199]. Realizations
of the system of SDEs can then be generated using numerical integration
schemes similar to those used for ODEs (such as the Euler–Maruyama
method [77]), which significantly reduces simulation time compared to
the SSA [199]. However, whereas the underlying Markov jump processes
is discrete-state, the CLE is a continuous-state approximation, which
necessarily introduces approximation errors [60, 199]. Nevertheless, the CLE
is reasonably accurate, except in the case of systems with very low molecular
counts [60, 199]. In fact, large molecular populations9 for the reactant
species greatly facilitates the validity of the continuous approximation
underlying the CLE [60]. However, it is important to keep in mind that the
discrepancy between an “approximate” and “exact” model will typically
be substantially less than the discrepancy between the “exact” model and

7The SSA is “exact” in the sense that it, like the CME, is an exact consequence of
the fundamental premise of stochastic chemical kinetics [58, 60].

8Another strategy for dealing with intractable reaction kinetic models is to numerically
solve the CME, thereby directly computing the system probability function [208, 126, 101].

9In reality, it is not the size of the system in itself that determines the validity of the
CLE, but the existence of a domain of macroscopically infinitesimal time intervals, which
is defined such that during any time interval in that domain, no propensity function will
suffer a noticeable change in its value, yet every reaction channel can be expected to fire
many more times than once [60].

114



CHAPTER 5. DILUTION RESISTANCE AND NOISE

the real biological process [199]. Note that the CLE is derived from the
same fundamental premise that give rise to the CME, and so the CLE
also accounts for the inherent fluctuations of the chemical system, even
though similar SDE formulations are often used to account for extrinsic
noise sources [60]. Indeed, it is straightforward to add various sources of
extrinsic uncertainty, such as randomly time-varying parameters or input
perturbations, with a CLE model [199]. We take a look at extrinsic sources
of noise in the following.

5.4.2 Extrinsic noise

There are several sources of extrinsic noise that should be incorporated into
a mathematical model if we aim to most accurately represent a biological
process. For example, randomness in initial conditions can lead to different
behaviors, even if the system evolves according to a deterministic process
(e.g. the genetic toggle switch in Figure 5.11) [199]. There can also be
uncertainty in system parameters, or parameters that are randomly time-
varying due to some part of the system not being explicitly modeled [199].
The former can be dealt with by running different simulations of the
system with parameter values from a specified probability distribution,
while the latter can be dealt with by associating a diffusion process with the
parameters (i.e. an SDE model) [199]. Noise in one cellular component can
influence the whole system in some unpredictable way [107]. For example,
intrinsic noise in some unmodeled part of the system can manifest itself as
extrinsic noise in the model [168, 199]. Thus, extrinsic noise sources arise
independently, either from other cellular processes or from environmental
fluctuations, but affect the system of interest [168, 107]. A particular
system of interest will in general experience both intrinsic and extrinsic
sources of noise [168].

It is difficult to ascertain the relative magnitude of intrinsic and extrinsic
noise sources. However, a well-known rule-of-thumb in chemical kinetics is
that the relative magnitude of intrinsic noise scales as the inverse square root
of the reactant populations10 (1/

√
N for a single reaction, where N is the

number of molecules) [60, 28]. Thus, in eukaryotic metabolism and signal
transduction, it is likely that intrinsic noise becomes negligible [28, 169].
If we disregard intrinsic noise (due to large reactant populations), the

10In fact, this rule-of-thumb emerges as a direct consequence of the same fundamental
premise that gave rise to the CME and CLE, and gives a direct logical linking to
deterministic reaction rate equations in the thermodynamic limit [60].
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system of interest can be modeled by deterministic reaction rate equations
with added noise terms representing extrinsic noise [60, 28, 36, 75]. These
noise terms then function as random inflow and outflow perturbations,
for example due to unmodeled sink and source reactions in metabolic
pathways, or fluctuations in extracellular nutrient supply [36]. It is useful
to describe extrinsic noise in terms of a white noise process, based on a
great variety of physical phenomena (such as noise due to low copy number-
induced dynamics) that are met in many experimental situations [75, 1, 36].
White noise is a random variable with zero mean that is independent in
time, and is called so because of its constant spectrum, meaning that
all frequency components have the same weight [75, 77]. It is therefore
expected that homeostatic controller motifs subject to white extrinsic noise
will show a shift in the noise spectrum of the regulated species towards
the resonant peak observed in Chapter 4 [36]. In this way, the analysis
of deterministic systems in terms of their frequency response can still be
useful in understanding the behavior of their stochastic counterparts.

Without detailed knowledge of how the random perturbations represent-
ing extrinsic noise are distributed, we let the white noise random variable
be normally distributed11. Extrinsic noise is then given by the Wiener
process, which is a random variable W (t) that depends continuously on
t ∈ [0, T ] and has the following properties [77, 75]:

(i) W (0) = 0 (with probability 1).

(ii) For 0 ≤ s < t ≤ T , the random variable given by the increment
W (t)−W (s) (white noise) is normally distributed with zero mean
and variance t− s.

(iii) For 0 ≤ s < t < u < v ≤ T , the increments W (t) − W (s) and
W (v) −W (u) are independent (i.e. white noise is independent in
time).

Then, the time-evolution of the random variable X, subject to extrinsic
noise, can be modeled by the scalar stochastic differential (Itô) equation
(SDE) [75, 77]

dX(t) = a(X)dt+ b(X)dW (t) (5.27)
11Gaussian white noise emerges from the CLE approximation [1, 60].
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where a and b are deterministic functions, called the drift coefficient and
diffusion coefficient, respectively, and W is the Wiener process12 (the
increment dW (t) is white noise). White noise represents the only stochastic
element in this equation, and hence if b = 0, the noise term vanishes, and
the SDE is reduced to an ODE [77, 75]. The SDE in (5.27) can be simulated
using readily available numerical methods, such as the Euler–Maruyama
method [77, 78].
Taking a look at our model for glucose uptake in cancer, given by the

deterministic reaction rate equations in (5.9)–(5.12), the large molecular
populations of the species involved justifies the use of a deterministic model,
as intrinsic noise becomes negligible [60, 28]. However, in constructing the
model, we combined and simplified many of the signaling reactions that
form negative feedback, in order to investigate the structural properties of
the system (see Figure 5.6). In addition, we only considered the primary
components of glucose uptake in cancer, as determined by the differential
gene expression results shown in Figure 5.7. These are typical sources
of model uncertainty and extrinsic noise [199]. Whereas simplifying the
underlying system may result in uncertainty in system parameters, by
disregarding the downregulated components of glucose uptake (such as
GLUT2-14), we risk leaving out background reactions that affect the system.
To alleviate these concerns, we present a stochastic model for glucose uptake
in cancer according to the SDE in (5.27)

dcGlc(t) = fGlc(t)dt+ gGlc(t)dW1(t) (5.28)
dcG6P(t) = fG6P(t)dt+ gG6P(t)dW2(t) (5.29)

dcGLUT1(t) = fGLUT1(t)dt+ gGLUT1(t)dW3(t) (5.30)
dcHK2(t) = fHK2(t)dt+ gHK2(t)dW4(t) (5.31)

where fi (i = Glc,G6P,GLUT1,HK2) are the right-hand side expressions
of (5.9)–(5.12), respectively. The functions gi (i = Glc,G6P,GLUT1,HK2)
are diffusion coefficients which, in the absence of detailed knowledge of how
extrinsic noise affects the system, are set to be proportional to the system
states; gi(t) = σi ·ci(t), where σi are constants that take a similar role to the
perturbation constants used in Chapter 4 (kinp and koutp ). Wi (i = 1, 2, 3, 4)
are independent Wiener processes. Then, the system (5.28)–(5.31) can be
written using vector notation, which takes the form of (5.27), where X is

12Note that we do not write dW (t)/dt, because the paths of the Wiener process are
nowhere differentiable [75, 77].

117



CHAPTER 5. DILUTION RESISTANCE AND NOISE

now a vector of the states, a is a vector of drift coefficients, b is a diagonal
matrix of diffusion coefficients, and W is a vector of Wiener processes
(where dW (t) = [dW1(t), . . . ,dW4(t)]T) [133].

Figure 5.12 shows the mean of 100 sample paths generated from the
stochastic glucose uptake model (solid blue lines), along with a simulation
of the deterministic version of the model (dashed red lines). Dark blue
and light blue shaded areas indicate one and two standard deviations of
the sample paths. The bottom right plot of cellular volume (solid black
line) and surface area (dashed black line) is the same for all simulations. A
spherical cell is assumed. Initial values and parameters are identical to the
simulation of the deterministic glucose uptake model in Figure 5.9 (values
given in Table 5.1), except that the third phase (dark gray area in Figure 5.9)
is omitted. Sample paths are generated with random initial conditions,
uniformly distributed (±50%) around the values given in Table 5.1 (not
shown in Figure 5.12). We used the SDETools toolbox for MATLAB to
generate sample paths, using the Euler–Maruyama method [78].
Simulations of the deterministic and stochastic versions of the glucose

uptake model start at steady-state (in the mean) with a constant cellular
volume in the first phase (white area, t = [0, 400]). In the second phase
(light gray area, t = [400, 800]), the cellular volume starts to grow linearly.
Finally, in the third phase (white area, t = [800, 1200]), volume growth
is stopped, but the cellular volume has now grown much larger than in
the initial phase. Looking at the mean trajectory of the stochastic glucose
uptake model, we see good consistency with the deterministic model. An
interesting observation is that standard deviations increase as the cellular
volume grows. A possible explanation for this behavior is that the noise
terms scale proportionally with the states (gi(t) = σi · ci(t)), however,
simulations with constant diffusion coefficients (gi(t) = σi) display a similar
behavior, albeit less pronounced (simulations not shown). Hence, it appears
that this behavior is a structural property of the system. It is likely that
extrinsic noise, e.g. from unmodeled cellular reactions, scales in some way
with cell size [149, 154]. And therefore, increased variance with increasing
cell size is an expected behavior. However, a result of this behavior is
that, for the regulated species (intracellular glucose and G6P), we end up
with a situation where mean trajectories are regulated to constant values,
while standard deviations continue to grow with increasing cell size. It is
possible that this could pose a limitation on cell growth, or that additional
mechanisms must be in place to minimize the effect of extrinsic noise in
larger cells.
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Figure 5.12: Simulation results of the stochastic and deterministic versions of the
glucose uptake model. Solid blue lines show the mean trajectory of 100 sample paths
generated from the SDEs (5.28)–(5.31). Dark blue and light blue shaded areas show one
and two standard deviations of the sample paths. Dashed red lines show a simulation
of the ODEs (5.9)–(5.12). Bottom right plot of cellular volume (solid black line) and
surface area (dashed black line) is the same for all simulations (spherical cell assumed).
Cellular volume is constant in the first phase of the simulations (white area, t = [0, 400]).
In the second phase (light gray area, t = [400, 800]), cellular volume starts to grow
linearly. Small offsets can be seen in the regulated species during growth (dashed black
lines in intracellular glucose and G6P plots). Growth is stopped in the last phase (white
area, t = [800, 1200]). Initial values and parameters are given in Table 5.1 (third phase
omitted). Sample paths are generated with random initial values (±50%).
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Despite the fact that noise terms can drastically change the behavior
of the associated deterministic system (e.g. it is possible to construct an
unstable deterministic system that can be made stable by the introduction
of a noise term [94]), we see that the stability properties of the homeostatic
controller motifs (see Chapter 3) are maintained in the stochastic versions13
(i.e. asymptotic stability in the mean is preserved). Additionally, we see
that standard deviations converge to constant values for constant cellular
volume. If the joint probability distribution of the states of a stochastic
system converges to a unique stationary distribution regardless of initial
conditions, it is said to be ergodic [21]. Ergodicity has been shown for the
stochastic antithetic integral controller in a constant volume, and hence,
it is possible that ergodicity can be shown for stochastic versions of the
homeostatic controller motifs as well [21].
Regarding the general question of qualitative behavior and stability of

SDE models, there exists methods that use generalizations to stochastic
systems of Lyapunov’s direct method [94, 103, 183, 118]. Showing stability
properties, such as ergodicity, may be facilitated by stability results learned
from the associated deterministic system. If the system of interest can be
approximated by a stochastic process taking the form of (5.27), we can
make use of the well-developed theory on Itô diffusions [94, 103, 183, 118].
Notably, the CLE takes the form of (5.27) [60, 94, 199]. Therefore, in some
cases, it is possible to to model intrinsic and extrinsic noise as separate
noise terms in a system SDEs [107]. This is a convenient way to include
various noise sources, with the benefit that stochastic Lyapunov function
approaches can be used. When appropriate, this approach enables us to
circumvent certain difficulties encountered with stochastic systems, such
as the moment closure problem, to give a qualitative description of their
behavior [21].

13Note that we have not shown this in general for the homeostatic controller motifs, but
our simulations in Figure 5.12 indicate this to be true, at least for the system parameters
chosen.
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Chapter 6

Discussion and concluding
remarks
Cellular processes and biological motifs, or arrangements of biochemical
reactions, that can show and explain the mechanisms behind oscillations
were extensively studied in the latter half of the 20th century. However, it
is only fairly recently that regulatory mechanisms in biological systems have
been studied from the perspective of robust control. It is from this new
perspective that we have taken a bottom-up approach to cellular control
processes in this thesis. In broad strokes, the work in this thesis considers
the structural properties of a class of integral feedback structures, called
homeostatic controller motifs, and extends upon prior analysis of these
structures to encompass a range of non-ideal conditions. In this final chapter
we summarize and discuss the results obtained on stability (Chapter 3),
tuning (Chapter 4), and dilution resistance and noise (Chapter 5). We also
discuss some limitations inherent to the modeling approach used in our
work and in this thesis.

6.1 On stability

In Chapter 3, we looked at stability properties of the homeostatic con-
troller motifs. We considered the situation in which most reactions of
the homeostatic controller motifs are described by saturation kinetics. In
this case, we were able to show that the homeostatic controller motifs
are globally asymptotically stable, despite highly nonlinear interactions.
This stability result greatly reinforces prior studies into the homeostatic
controller motifs, that have investigate robustness and the presence of
integral action [43, 129, 41, 176]. Prior stability analyses of the homeostatic
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controller motifs have only considered autocatalytic variants with linear
cross coupling, or been limited to linearization and local results [42, 176].

We employed a passivity-based approach in which we described the home-
ostatic controller motifs as negative feedback connections of two individual
subsystems. We established output strict passivity and zero-state observ-
ability for the subsystems, and showed that this implies global asymptotic
stability for the negative feedback connection. Note that the stability result
obtained does not solely rely on the particular rate expressions chosen
for the homeostatic controller motifs. Instead, it is the nature of the ex-
pressions, i.e. strictly monotone, that enables us to establish asymptotic
stability. Therefore, we could easily perform the same stability analysis
on variations of the homeostatic controllers motifs with different reaction
kinetic expressions (e.g. cross-coupling reactions using Hill-type kinetics).
Still, the stability analysis only considered activation/inhibition expressions
that change the limiting rate (Vmax) of enzyme reactions. Such expressions
arise for special cases of mixed activation/inhibition (e.g. pure noncompeti-
tive inhibition), but a more common behavior is that activation/inhibition
changes both Vmax and KM values of enzyme reactions [31, 30, 5]. Hence,
the measurement (jmeas) and compensatory (jcomp) fluxes are likely more
complicated expressions in which activation/inhibition is not a simple mul-
tiplication by the functions fact/finh. It would be interesting to extend the
stability analysis to include more complex expressions.

Using the stability result obtained for the homeostatic controller motifs,
we showed that integral action ensures asymptotic disturbance rejection
to constant disturbances. This holds true as long as the compensatory
flux (jcomp) does not reach its upper limit, at which point capacity related
breakdown occurs [41]. However, perfect adaptation to disturbances in
the regulated species relies on zero-order degradation of the controller
species. It is likely that mechanisms for zero-order removal in biological
systems rely on saturation, rather than true zero-order kinetics, so that near-
perfect adaptation is likely the best achievable response [6]. Nevertheless,
partial adaptation to disturbances represents better regulation than no
adaptation, and in many cases living organisms are not concerned with
perfect regulation, but rather with the presence of some level of regulation.
In the final part of Chapter 3, we related the homeostatic controller

motifs to other reaction kinetic mechanisms, or motifs, that achieve integral
control. These mechanisms are collectively known as ICMs. Functionally,
ICMs implement negative feedback with integral action in different ways,
but the objective is always the same; an integral controller that works to
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counteract deviations in the regulated variable from a desired set-point [41,
42, 21, 142]. In this way, ICMs are effective mechanisms for mitigating the
effects of unknowns in biological systems, such as uncontrolled variations
in the external environment or unforeseen interactions within the system,
and provide the ability to fine tune central parameters of the control
system [142, 6, 181].

We believe that our application of passivity theory to biological processes
only scratches the surface of passivity theory as a tool to help us under-
stand cellular reaction networks. Passivity is defined as an input-output
property, and is particularly useful in stability analysis of interconnected
systems [11, 158, 92]. By characterizing the individual processes within
cells in terms of passivity, it is possible to describe large nonlinear cellular
networks as interconnections subsystems, and ascertain stability properties
of the network using fairly simple rules on the interconnection of passive
systems [158, 11, 9]. For example, the parallel connection of two pas-
sive systems, or the feedback connection of two passive system, are both
passive [158, 92]. And the shortage of passivity in one system can be
compensated for by the excess of passivity in another system [11, 158, 151].
It would be interesting to approach the analysis of large reaction networks
from a passivity-based perspective.

6.2 On tuning

In Chapter 4, we showed how parameters related to molecular and kinetic
mechanisms influence set-point tracking and disturbance rejection properties
of the homeostatic controller motifs. We used a tuning procedure based on
linearization, which enabled us to describe the dynamical behavior of the
homeostatic controller motifs in terms of the undamped natural frequency
(ωn) and the damping ratio (ζ). By specifying these tuning parameters,
along with the set-point (xset1 ), the tuning procedure involved calculating the
rate constants associated with the controller species and the compensatory
flux, based on transfer functions for set-point tracking and disturbance
rejection of the linearized controller motifs. We elected to focus on these
rate constants as it is more conceivable that they are possible to tune from
the perspective of synthetic biology, and offer a greater tunable range than
the parameters associated with saturation (KM,i, KA,i, and KI,i) [5]. For
example, the rate constant for the synthesis of a protein, acting as the
controller species, can in practice be modified by altering the promoter
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of the gene coding for the protein. One way to do this is a fixed tuning
of the promoter itself, e.g. the copper-dependent promoter of the CUP1
gene of Saccharomyces cerevisiae can be modified by mutations to show a
wide range of induction ratios [172]. Another possibility is to use a dual
mode promoter, a type of promoter whose regulation of protein production
depends on two activators. One activator would be the regulated species,
and the other would be a chemical compound that can be meticulously
added to the growth medium to achieve a certain level of gene transcription
and production of the controller species. One such promoter, controlled by
testosterone and IPTG, has demonstrated the ability to tune the promoter’s
output curve over a wide range [117].
We verified the tuning procedure by simulations, where the nonlinear

homeostatic controller motifs were shown to produce the expected dy-
namical behaviors. We used nullcline analysis to characterize constraints
associated with the steady-state behavior of the homeostatic controller
motifs, and looked at trade-offs associated with time-varying inputs. The
tuning procedure used relies on linearization of the homeostatic controller
motifs, in a similar way to the tuning of industrial control processes. Of
course, the controller motifs are nonlinear, meaning that the tuning proce-
dure can only guarantee a certain dynamical response locally to the working
point. However, linearization allows us to relate the nonlinear homeostatic
controller motifs to well-known concepts in linear control analysis. From
a synthetic biology point of view, such a tuning procedure provides a
basis for the determination of system parameters, and gives insight into
the relationship between parameter values and the dynamical response of
the system. Additionally, by performing the same tuning procedure for
several different working points, it is possible to characterize the dynamical
behavior of the controller motifs over a range of inputs and steady-states,
in a way similar to gain scheduling.
In the final part of Chapter 4, we investigated the mismatch between

the nonlinear dynamics of the controller motifs and the linearization used
in the tuning procedure. In particular, we observed a significant change
in set-point tracking and disturbance rejection properties with increasing
disturbance magnitude. To elucidate this relationship, we showed how
the tuning parameters (ωn and ζ) change with increasing perturbation
(kin/outp ). Importantly, we found that the homeostatic controller motifs are
divided into two groups based on how the tuning parameters are altered,
determined by the controller type (activating or inhibiting). For time-
varying disturbance inputs we were able to show that the Bode magnitude
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plot for the linearized outflow controller 5 provides a good approximation
to the nonlinear controller motif, at least for the estimated convergence
region indicated in Figure 4.9a with excitation amplitudes a ≤ r̄ (see
Figure 4.9b). However, it is likely that our estimate for the convergence
region is rather conservative, which leaves r̄ fairly low. This could be due
to a suboptimal choice for the matrix P , or the fact that the estimation
procedure is based on quadratic Lyapunov functions analysis, which is
conservative by itself when applied to nonlinear systems [136]. It is possible
that a better estimate for the convergence region could be made using the
combined storage function presented in Chapter 3.
There is a great effort going on in both academia and industry to

genetically manipulate organisms to create useful bioproducts. One of
the landmark studies published in Science in 2015 was the implementation
of the complete biosynthesis of opioids in yeast [53, 159]. Opioids like
morphine are the primary drugs used for treatment of severe pain and
pain management, and production depends on the cultivation of opium
poppies. While the implementation of opioid biosynthesis in yeast is a
tremendous achievement, it still requires an improvement in overall yield
by a factor of ∼ 7× 106 to compete with poppies [53]. Great improvements
are expected, but this will require an intricate tuning of the different parts
of the biosynthetic pathway.

6.3 On dilution resistance and noise

In Chapter 5 we investigated the homeostatic controller motifs under non-
ideal conditions. In particular, we considered some practical aspects in living
cells that may impact the performance of homeostatic mechanisms. Namely,
we looked at dilution of cellular constituents and stochastic fluctuations
in chemically reacting systems. We reasoned that increased glycolytic and
proliferative activity in cancer cells lead to cell swelling and growth-induced
dilution. This causes dilution of cellular constituents, which can markedly
influence cellular reactions and the function of proteins, and hence, control
mechanisms used by cancer cells to maintain a highly glycolytic phenotype
must be robust to dilution. We reviewed the literature to give an overview
of the rewiring of glycolysis in cancer, and looked at the various signaling
pathways involved in the regulation of glucose uptake in cancer. Using
public gene expression data from the Expression Atlas database, we showed
that cancer cells, on average, shift towards GLUT1-mediated glucose uptake,
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predominant expression of the PKM2 isoform, and overexpression of HK2.
With this information we constructed a simplified mathematical model
of glucose uptake in cancer, in order to investigate structural properties
of the system. By simulations we found that in a worst-case scenario, in
which enzymes for the generation and removal of the controller species
are subject to dilution, partial dilution resistance to a linearly increasing
cellular volume is achieved, and that a nested feedback architecture of
homeostatic controller motifs appears significant to this end. In fact, in
Paper 4, we showed that negative feedback regulation of intermediary
glycolytic enzymes, in addition to negative feedback from downstream
glycolytic metabolites to glucose transporters (i.e. nested feedback), is
sufficient in order to achieve homeostatic control during growth.
To investigate why only partial dilution resistance was achieved, we

performed simulations to show that growth-induced offsets in the regula-
tion of glucose uptake appear to be caused by set-point changes, rather
than breakdown of regulation, and that these growth-induced offsets are
dependent on the rate of volume increase, not the total volume. Based on
previous investigations into ICMs subject to dilution, we wanted to relate
our observations on dilution resistance to the mathematical description of
the system. We found that the growth-induced offsets can be represented
by offset terms in the integral control law for the controller species, and that
these offset terms are indeed dependent on the growth rate. We also showed
how the growth-induced offsets can be minimized by increasing the rate
constants associated with the controller species, such that near-perfect dilu-
tion resistance is achieved. Interestingly, a way in which GLUT1 and HK2
activity is regulated, is through translocation between biological membranes
and the cytosol, indicating that the activity of these species can respond
quickly, and that regulation of glucose uptake in cancer may achieve dilution
resistance through the formation of quasi-ICMs [97, 201, 87]. It is clear that
to ensure robustness of the homeostatic controller motifs to perturbations
that affect the system locally (i.e. perturbations in the regulated species)
as well as globally (i.e. dilution), it is necessary to satisfy two conditions;
i) the degradation of the controller species must be (close to) zero-order
(KM,2 � x2), and ii) the controller reactions must be much faster than the
rate of dilution.
While in many cases a chemically reacting system can be treated as a

continuous-state deterministic process, in other cases, particularly when
the number of reactant molecules becomes low, reactions may be better
described as discrete-state stochastic processes [58, 59]. For the glucose
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uptake model, we reasoned that the large molecular populations of the
species involved justified the use of a deterministic model. However, a
general problem of simple conceptual models, like the glucose uptake model,
is the unavoidable fact that some information is left out of the model.
This can be a source of model uncertainty and extrinsic noise [199]. In an
attempt to include the effects of uncertainty and noise in the model, we
presented a stochastic version of the glucose uptake model. By simulations
we found good agreement with the deterministic model in the mean. We
also found that increased cellular volume resulted in increased variance
of the system states. It is likely that noise, e.g. from unmodeled cellular
reactions, scales in some way with cell size [149, 154]. However, a result
of this behavior is that mean trajectories for the regulated species are
regulated to constant values, while standard deviations continue to grow
with increasing cell size. It is possible that this could pose a limitation on
cell growth, or that additional mechanisms must be in place to minimize
the effect of extrinsic noise in larger cells.
Despite the fact that noise can drastically change the behavior of a de-

terministic system (e.g. it is possible to construct an unstable deterministic
system that can be made stable by the introduction of a noise term [94]),
the stability properties of the homeostatic controller motifs were largely
preserved in the stochastic versions (i.e. asymptotic stability in the mean
is preserved). We also found that standard deviations converge to constant
values for constant cellular volume. If the joint probability distribution of
the states of a stochastic system converges to a unique stationary distribu-
tion regardless of initial conditions, it is said to be ergodic [21]. Ergodicity
has been shown for the stochastic antithetic integral controller in a constant
volume, and hence, it is possible that ergodicity can be shown for stochastic
versions of the homeostatic controller motifs as well [21].

Regarding the general question of qualitative behavior and stability of
SDE models, there exists methods that use generalizations to stochastic
systems of Lyapunov’s direct method [94, 103, 183, 118]. It is possible
that the stability result obtained in Chapter 3 could facilitate stability
analysis of stochastic versions of the homeostatic controller motifs. These
stochastic controller motifs would be based on SDEs, and could include
noise terms for both intrinsic and extrinsic noise [107]. This way, a more
rigorous investigation of stochastic homeostatic controller motifs could be
done.
We also mentioned some results on the performance of homeostatic

controller motifs for different types of volume increase. This is an important
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consideration, since cellular volume increase is not limited to linear growth,
e.g. both linear and exponential volume increase has been observed in
Escherichia coli [102, 197]. In Paper 3, we investigated the performance of
selected negative feedback controllers in response to dilution under different
growth laws. Based on a previous study (Fjeld et al. [49]), we chose to
look at four integral feedback mechanism: A motif 1 (inflow controller 1)
zero-order controller, a motif 2 (inflow controller 2) zero-order controller,
a motif 1 variant of the antithetic controller, and a motif 1 autocatalytic
variant. Table 6.1 gives an overview of the controller performances for
linear and exponential volume increases, and provides a guide to what type
of feedback structures and integral control kinetics are suitable to oppose
dilution by different growth laws. Note that in Paper 3 we did not consider
dilution of the generation and removal reactions for the controller species,
and hence, dilution resistance to exponential growth was possible.

Controller type Linear
volume increase

Exponential
volume increase

Motif 1, zero-order perfect resistance partial resistance
Motif 1, antithetic perfect resistance partial resistance
Motif 1, autocatalytic perfect resistance perfect resistance
Motif 2, zero-order perfect resistance partial resistance

Table 6.1: Summary of controller performances in linearly and exponentially increasing
volumes. Perfect resistance means that there is no offset in the steady-state value of the
regulated species during growth, whereas partial resistance means that there is an offset,
but that a steady-state is maintained (i.e. no breakdown). See Paper 3 for details.

Notably, we found that the autocatalytic controller performed well, even
with an exponential growth law. The occurrence of autocatalysis and posi-
tive feedback loops are becoming more and more recognized in signaling
and homeostatic regulation [14, 7]. For example, in cortisol homeostasis,
ACTH signaling from the brain-pituitary system to the cortisol producing
adrenals occurs by autocatalysis/positive feedback [140]. In blood sugar
homeostasis, insulin secretion is activated by several positive feedback/au-
tocatalytic signaling pathways to ensure an effective regulation in glucose
concentration [173, 108, 85]. These examples indicate the importance of
additional “helper kinetics” (such as autocatalysis/positive feedback) to
obtain homeostatic regulation with optimal response and precision prop-
erties. For synthetic biology this means that knowledge about controller
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structure and their inherent kinetics are important aspects in the design
and implementation of artificial regulatory units when trying to oppose the
dilution effects of growth or other time-dependent perturbations.

We should note that our review of cancer metabolism and glucose uptake
in Chapter 5 is not exhaustive, but meant to give and overview of key
aspects. In particular, we only mentioned some of the factors involved in
the rewiring of glycolysis in cancer. One potentially important factor that
we did not include is the mammalian target of rapamycin (mTOR), which
acts as a central activator of the Warburg effect under normoxic condi-
tions [207, 48]. mTOR is downstream of Akt/PKB in the PI3K-Akt-mTOR
pathway, which plays a crucial role in the regulation of aerobic glycolysis
and tumor growth [207, 35]. In tumorigenesis, overproduction or mutation
of growth factors lead to activation of the PI3K-Akt-mTOR pathway and
the downstream targets HIF-1α and c-Myc [207, 35]. Additionally, for
the regulation of GLUT1-mediated glucose uptake, we primarily focused
on feedback mechanisms that involve the main energy sensor of the cell
(AMPK) [207, 48]. Naturally, other control mechanisms may contribute
to the regulation of glucose uptake in cancer, without the involvement of
AMPK.

Further exploration of glucose uptake in cancer using the glucose uptake
model in Chapter 5 would likely require expanding the model, possibly
incorporating spatial aspects, and that experimental data be collected. A
possible experiment setup uses confocal microscopy to capture 3D images
of living cells expressing HK2 tagged with yellow fluorescent protein (YFP)
and GLUT1 tagged with green fluorescent protein (GFP) [87]. Then,
intracellular glucose can be measured with a genetically-encoded glucose
biosensor (FLIPglu-600µM) [87, 88]. This way, intracellular concentrations
can be measured, together with spatial information.

6.4 Limitations of simplified small-scale models

In this thesis we have investigated the structural properties of a class of
integral feedback mechanisms called homeostatic controller motifs. Most
of our modeling efforts are based on qualitative descriptions, with the
consequence that simulation results are given in arbitrary units, and that
parameter values are chosen arbitrarily for the purpose of demonstration.
Therefore, we do not expect that the simulation results provide any quanti-
tative predictive power. In the study of structural properties, we are more
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concerned with the range of possible behaviors a system can display (e.g.
adaptation to disturbances), and under what conditions these behaviors are
maintained (e.g. in the presence of dilution). Investigations of simplified
small-scale models aim to form an intuitive understanding of processes,
and to uncover principles of function [61, 82]. This is facilitated by the
small number components and parameters in small-scale models. However,
complex large-scale models are undeniably closer to biological reality than
simplified small-scale models [61, 82]. And although large-scale models
may suffer from a large number of parameters that are poorly determined,
it is important to remember that the qualitative nature of complex sys-
tems can be drastically altered by seemingly insignificant quantitative
differences [61, 82].
The work in this thesis is based on ODE/SDE modeling, which as-

sumes that the cellular volume is well-mixed and homogeneous. There
are situations where these assumptions are not appropriate, for instance
when dealing with transport and diffusion of metabolites between cellular
compartments [33, 147]. Spatial aspects can be dealt with using ODEs
in compartmentalized models (e.g. our glucose uptake model), however,
it is often more appropriate to construct spatial models using partial
differential equations (PDEs) [33]. Such models have been successfully
used to study mechanisms for gradient sensing and adaptation to spatial
disturbances [109, 99, 100, 48].
Finally, we must not lose sight of the fact that models are not only

measured by their correctness (in terms of quantitative predictive power),
but also by their ability to help us understand how and why a system
behaves in a certain way. In this thesis, we have taken a bottom-up
approach to modeling, in which systems are built up gradually from essential
components and interactions. Hence, the results in this thesis can serve
as a foundation to build more complex models, in which the knowledge
acquired (e.g. conditions for stability, adaptation, dilution resistance) can
guide model construction. In this way, construction of complex large-scale
models can be approached with some knowledge of what interactions are
conducive to certain behaviors, and what interactions are destructive. This
highlights an important complementary relation between small-scale and
large-scale models.
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Abstract
Homeostasis refers to the ability of organisms and cells to
maintain a stable internal environment even in the pres-
ence of a changing external environment. On the cel-
lular level many compounds such as ions, pH, proteins,
and transcription factors have been shown to be tightly
regulated, and mathematical models of biochemical net-
works play a major role in elucidating the mechanisms
behind this behaviour. Of particular interest is the con-
trol theoretic properties of these models, e.g. stability and
robustness. The simplest models consist of two com-
ponents, a controlled compound and a controller com-
pound. We have previously explored how signalling be-
tween these two compounds can be arranged in order for
the network to display homeostasis, and have constructed
a class of eight two-component reaction kinetic networks
with negative feedback that shows set-point tracking and
disturbance rejection properties. Here, we take a closer
look at the stability and robust control inherent to this
class of systems. We show how these systems can be
described as negative feedback connections of two non-
linear sub-systems, and show that both sub-systems are
output strictly passive and zero-state detectable. Using a
passivity-based approach, we show that all eight systems
in this class of two-component networks are asymptoti-
cally stable.
Keywords: Passivity, homeostasis, adaptation, stability,
robust control, integral control, negative feedback

1 Introduction
Control theoretic methods are useful when uncovering the
mechanism behind cellular control processes. Especially
properties such as stability and robust control are of in-
terest. One structure with these properties is the negative
feedback connection, which is employed in several bio-
chemical processes, such as the regulation of enzyme syn-
thesis and activity (Keener and Sneyd, 2009; Tyson and
Othmer, 1978). Other more complicated control systems,
such as the control of calcium in yeast cells, have also been
analysed in this manner (Liu, 2012). We have previously
investigated a class of simple two-component biochemical
networks displaying homeostasis. These networks have
been used in modelling ionic homeostasis in enterocytes
(Thorsen et al., 2014), the development of biochemical

controllers with robust control to perturbations changing
rapidly in time (Fjeld et al., 2017), and developing yeast
cells with an increased tolerance to high copper concen-
trations (Thorsen et al., 2016a). The networks consist of
a controlled compound x1 and a controller compound x2,
and through certain signalling reactions between these two
compounds, the systems form negative feedback connec-
tions with integral action, giving robust control of x1. We
have identified eight such two-component systems, termed
controller motifs (Drengstig et al., 2012). Figure 1 shows
the structure of these controller motifs. For the class of
two-component systems considered here, x1 acts on either
the synthesis or the degradation of x2, and x2 acts on ei-
ther the synthesis or the degradation of x1. This gives eight
controller motifs with two components, each acting on the
other through a single signalling reaction.

Figure 1. The controller motifs are formed by two compounds,
x1 and x2, with signalling reactions α , β , γ , δ between them.
For each controller motif, there is one signalling reaction from
x1 acting on x2, and one signalling reaction from x2 acting on x1.
These signalling reactions form a negative feedback connection
with the two compounds. There are in total eight such controller
motifs.

In general, the controller motifs take the form

ẋ1 = ks,1 ·α(x2)− fd,1(x1) ·β (x2) (1)
ẋ2 = ks,2 · γ(x1)− fd,2(x2) ·δ (x1) (2)

where ks,i are positive rate constants determining the basal
synthesis of xi, the functions fd,i determine the degra-
dation rate of xi following Michaelis–Menten kinetics
(Cornish-Bowden, 2012), and α , β , γ , δ are signalling
functions between the two chemical compounds. Only
one of the signalling functions α and β , and one of γ and
δ , will be non-constant for a given controller motif.
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The Michaelis–Menten equation models the reaction
rate of a compound xi by an enzyme reaction

fd,i(xi) =
kd,i · xi

KM,i + xi
(3)

where fd,i is the reaction rate, kd,i is a positive constant de-
termining the maximal reaction rate, and KM,i is a positive
constant called the Michaelis constant (Cornish-Bowden,
2012).

The signalling functions α , β , γ , δ can either be acti-
vating or inhibiting. Activating signalling follow the ex-
pression for mixed activation (Cornish-Bowden, 2012)

fact(xi) =
xi

KA,i + xi
(4)

where the activation of some reaction is determined by the
level of xi, and KA,i is a positive constant for the activation
reaction. Inhibiting signalling follow the expression for
mixed inhibition (Cornish-Bowden, 2012)

finh(xi) =
KI,i

KI,i + xi
(5)

where the amount of inhibition is determined by the level
of xi, and KI,i is a positive constant for the inhibition reac-
tion.

2 Stability
To show asymptotic stability of the controller motifs, we
first perform a change of variables, z1 = x1 − x∗1 and
z2 = x2 − x∗2, where (x∗1,x

∗
2) is the equilibrium point of

the system. The states x1 and x2 represent physical con-
centrations of compounds. Therefore, a global result cor-
responds to positive values of the states and the equilib-
rium point. The change of variables moves the equilib-
rium point to the origin. Using the fact that ks,1 ·α(x∗2) =
fd,1(x∗1) ·β (x∗2) and ks,2 · γ(x∗1) = fd,2(x∗2) · δ (x∗1), the sys-
tem is rewritten to the form

ż1 =− f1(z1)+h2,α(z2)−g1(z1) ·h2,β (z2) (6)

ż2 =− f2(z2)+h1,γ(z1)−g2(z2) ·h1,δ (z1) (7)

where these new functions are defined as follows

f1(z1) = fd,1(z1 + x∗1) ·β (x∗2)− fd,1(x∗1) ·β (x∗2) (8)
f2(z2) = fd,2(z2 + x∗2) ·δ (x∗1)− fd,2(x∗2) ·δ (x∗1) (9)
g1(z1) = fd,1(z1 + x∗1) (10)
g2(z2) = fd,2(z2 + x∗2) (11)

h1,γ(z1) = ks,2 · γ(z1 + x∗1)− ks,2 · γ(x∗1) (12)
h1,δ (z1) = δ (z1 + x∗1)−δ (x∗1) (13)
h2,α(z2) = ks,1 ·α(z2 + x∗2)− ks,1 ·α(x∗2) (14)
h2,β (z2) = β (z2 + x∗2)−β (x∗2) (15)

The functions fi and hi are strictly increasing and satisfy
fi(0) = hi(0) = 0 for the interval (−x∗i ,∞). The functions

gi > 0 for the same interval. As noted earlier, only one of
the signalling functions α and β , and one of γ and δ will
be non-constant for a given controller motif. This means
that only one of the output functions h2,α and h2,β , and
one of h1,γ and h1,δ will be non-zero. In addition, if the
signalling functions α,β ,γ,δ are inhibiting instead of ac-
tivating, the corresponding output functions hi are defined
to be negative. For example, the controller motif shown
in Figure 2 has non-constant signalling functions β and
δ , while α = γ = 1. Therefore, the corresponding output
functions h2,β and h1,δ are non-zero, while h2,α = h1,γ = 0.
In addition, the signalling function δ is inhibiting, and the
corresponding output function h1,δ is defined to be nega-
tive.

Figure 2. One of eight controller motifs that form a negative
feedback connection. In this case, x1 is acting on x2 by inhibit-
ing its degradation, and x2 is acting on x1 by activating its degra-
dation.

The system equations for this controller motif are given by

ẋ1 = ks,1− fd,1(x1) ·β (x2) = ks,1−
kd,1 · x1

KM,1 + x1
· x2

KA,2 + x2
(16)

ẋ2 = ks,2− fd,2(x2) ·δ (x1) = ks,2−
kd,2 · x2

KM,2 + x2
· KI,1

KI,1 + x1
(17)

and the transformed system equations are then

ż1 =− f1(z1)−g1(z1) ·h2(z2) (18)
ż2 =− f2(z2)+g2(z2) ·h1(z1) (19)

where h1 = h1,δ and h2 = h2,β .
To show that the controller motifs are asymptotically

stable, we think of them as negative feedback connections
of two sub-systems. In general, these sub-systems take the
form

H1 :

{
ż1 =− f1(z1)+g1(z1) ·u1

y1 = h1(z1)
(20)

H2 :

{
ż2 =− f2(z2)+g2(z2) ·u2

y2 = h2(z2)
(21)
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where the negative feedback connection can be formed ei-
ther by having

u1 =−y2, u2 = y1 (22)

or by

u1 = y2, u2 =−y1 (23)

This corresponds to which of H1 and H2 is in the negative
feedback.

2.1 Passivity
The next step is to determine if the two sub-systems are
output strictly passive. This is done by using the storage
function Si for sub-system Hi

Si =
∫ zi

0

hi(σ)

gi(σ)
dσ (24)

where hi and gi are the functions in (20) and (21). The
derivative of S along trajectories is then

Ṡi =
hi(zi)

gi(zi)
· żi =− fi(zi) ·

hi(zi)

gi(zi)
+ui · yi (25)

The sub-systems are output strictly passive if the follow-
ing inequality is satisfied (Khalil, 2002; Sepulchre et al.,
1997)

Ṡi ≤−yi ·ρi(yi)+ui · yi (26)

where yi ·ρi(yi) > 0 ∀ yi 6= 0. Systems whose stored en-
ergy can only increase through the supply of an external
source, are passive (Khalil, 2002). For inequality (26), the
“energy” absorbed by the system, ui ·yi, is greater than the
increase in stored “energy”, Ṡi. In addition, the system has
an “excess” of passivity from the term yi ·ρ(yi). For the
controller motifs, we choose yi ·ρi(yi) = pi · y2

i , where pi
is a positive constant. Inequality (26) is then satisfied by
choosing pi such that

0 < pi ≤
fi(zi)

hi(zi) ·gi(zi)
(27)

for the interval (−x∗i ,∞). For the same interval, the right-
hand side expression can be shown to be greater than zero,
and either strictly increasing, or strictly decreasing. In-
equality (27) is then satisfied by finding pi as the lower
bound of the right-hand side expression. The lower bound
is given by the minimum value of the right-hand side ex-
pression at the limits zi→−x∗i and zi→∞. Therefore, the
value of pi is determined by

pi = min

{
lim

zi→−x∗+i

fi(zi)

hi(zi) ·gi(zi)
, lim

zi→∞

fi(zi)

hi(zi) ·gi(zi)

}

(28)

Thus, the sub-systems (20) and (21) are output strictly pas-
sive.

It has been shown that the negative feedback connec-
tion of two output strictly passive systems is asymptot-
ically stable if the sub-systems are zero-state detectable
(Sepulchre et al., 1997). To show that H1 and H2 are zero-
state detectable, we consider the system

H :

{
ż = f (z,u)
y = h(z,u)

(29)

with u = 0. H is said to be zero-state detectable
if the origin is asymptotically stable conditionally to
Z, where Z is the largest positively invariant set in
{z ∈ Rn | y = h(z,0) = 0}. For the special case when Z =
{0}, we say that H is zero-state observable (Khalil, 2002;
Sepulchre et al., 1997). We now consider the sub-systems
H1and H2, with inputs u1 = u2 = 0. From the the output
functions (12)–(15), it can be seen that

y1 = y2 = 0 =⇒ z1 = z2 = 0 (30)

Therefore, the sub-systems H1 and H2 are zero-state ob-
servable if the origin is locally asymptotically stable. We
verify this by linearisation of the sub-systems at the ori-
gin. With ui = yi = 0, the system equations of (20) and
(21) are reduced to żi =− fi(zi), and linearisation gives

H1 :
∂ (− f1)

∂ z1

∣∣∣∣
z1=0

=− kd,1 ·KM,1

(KM,1 + x∗1)
2 ·β (x

∗
2)< 0 (31)

H2 :
∂ (− f2)

∂ z2

∣∣∣∣
z2=0

=− kd,2 ·KM,2

(KM,2 + x∗2)
2 ·δ (x

∗
1)< 0 (32)

where fi are the functions given by (8) and (9).
Finally, to show that the entire system is asymptotically

stable, we use the combined storage function

S = S1 +S2 (33)

Because S1 and S2 are positive definite, so is S. Since
the two sub-systems form a negative feedback connection
given by (22) or (23), the derivative of S along trajectories
is reduced to

Ṡ = Ṡ1 + Ṡ2 ≤−p1 · y2
1− p2 · y2

2 (34)

which is negative definite. This shows that all bounded so-
lutions converge to the set {(z1,z2) | y1 = y2 = 0}. From
(30), we know that this corresponds to the origin. Since
the origin has been shown to be locally asymptotically sta-
ble by linearisation, we conclude that the controller motifs
are asymptotically stable. If the storage functions S1 and
S2 are radially unbounded, so is S, and the controller mo-
tifs are globally asymptotically stable.

3 Integral Control
The system given by equations (1) and (2) can be shown
to include integral control. This is done by rewriting equa-
tion (2). For example, the controller motif given by equa-
tions (16) and (17), shown in Figure 2, can have equation
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(17) rewritten to

ẋ2 =−
ks,2

KI,1 + x1
·
(

x2

KM,2 + x2
· kd,2 ·KI,1

ks,2
−KI,1− x1

)

(35)

For KM,2 = 0, this is reduced to

ẋ2 =−
ks,2

KI,1 + x1
·
(

kd,2 ·KI,1

ks,2
−KI,1− x1

)
(36)

= Gi · (x1,set − x1) (37)

which has the form of the integral control law. This means
that for KM,2 = 0, or KM,2� x2, the system behaves as an
integral controller for x1 with a set-point given by

x1,set =
kd,2 ·KI,1

ks,2
−KI,1 (38)

For the case when KM,2 > 0, the set-point in (35) is defined
as

x1,set =
x2

KM,2 + x2
· kd,2 ·KI,1

ks,2
−KI,1 (39)

Thus, there is still integral action, however, the set-point
changes with perturbations. The effect of this is shown in
Figure 3, where the case with KM,2 = 0 results in perfect
adaptation to perturbations in the synthesis of x1, and the
case with KM,2 > 0 results in only partial adaptation.

Figure 3. The response to a step-wise perturbation in the synthe-
sis of x1. Dashed line shows no adaptation, grey line shows par-
tial adaptation, and black line shows perfect adaptation. These
three cases correspond to the controller motifs having no inte-
gral control (no signalling between x1 and x2), integral control
with KM,2 > 0, and integral control with KM,2 = 0, respectively.

It has previously been shown that the all the controller
motifs include integral control (Drengstig et al., 2012;

Thorsen et al., 2016b). The system equation of the con-
troller compound x2 is written to the form of the integral
control law

ẋ2 = Gi · (x1,set − x1,meas) (40)

Where Gi is the controller gain, x1,set is the set point of
the controlled compound x1, and x1,meas is a measurement
function of x1. Just like the system in Figure 2, the other
controller motifs show partial or perfect adaptation de-
pending on the value of KM,2 (Drengstig et al., 2012).

Because we are able to show that the controller motifs
are asymptotically stable, as well as incorporating integral
control, they must be robust to all parameter perturbations
that do not destroy the stability of the closed-loop system
(Khalil, 2002). An implication of asymptotic stability, is
that the error x1,set − x1,meas must be zero at the equilib-
rium point. With any parameter perturbation that does not
destroy the stability of the closed-loop system, the equilib-
rium point may change, however, the error must return to
zero. Thus, regulation will be achieved for as long as the
perturbed equilibrium point remains asymptotically sta-
ble.

4 Example
We demonstrate our approach by considering the con-
troller motif shown in Figure 2, given by the system equa-
tions (16) and (17). This system is transformed to the sys-
tem equations given by (18) and (19). The transformed
system can be represented as a negative feedback connec-
tion of two sub-systems H1 and H2, given by (20) and (21),
with

u1 =−y2 =−h2(z2), u2 = y1 = h1(z1) (41)

We use some arbitrary values for the constants ks,1 =
1, ks,2 = 1, kd,1 = 3, kd,2 = 4, KM,1 = 1.5, KM,2 = 0.75,
KI,1 = 1.5, and KA,2 = 2, such that x∗1,x

∗
2 > 0. Thereby, the

storage function for H1 is given by

S1 =
∫ z1

0

(
0.114− 0.329

σ +2.893

)
dσ (42)

and the derivative of S1 along trajectories satisfy the in-
equality

Ṡ1 ≤−p1 · y2
1 +u1 · y1 (43)

with the constant p1 determined by

0 < p1 ≤
f1(z1)

h1(z1) ·g1(z1)
= 0.506+

0.759
z1 +2.893

(44)

For the interval (−x∗1,∞), the right-hand side is always
greater than or equal to 0.506, and so we choose this value
for p1. This is illustrated in Figure 4. Similarly, for sub-
system H2, the inequality

0 < p2 ≤
f2(z2)

h2(z2) ·g2(z2)
= 0.185+

0.370
z2 +2.050

(45)
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Figure 4. To determine the value of p1 in inequality (44), we
find the lower bound of the right-hand side expression. The fig-
ure shows that the lower bound is given by the limit of the right-
hand side expression as z1→ ∞. In this case p1 = 0.506.

is satisfied by choosing p2 = 0.185, such that

Ṡ2 ≤−p2 · y2
2 +u2 · y2 (46)

where the storage function S2 is given by

S2 =
∫ z2

0

(
0.123− 0.095

σ +2.050
− 0.312

σ +4.050

)
dσ (47)

Thus, the combined storage function S = S1 + S2 is posi-
tive definite and radially unbounded, because S1 and S2 are
both positive definite and radially unbounded. In addition,
the derivative of S along trajectories satisfies

Ṡ≤−0.506 · y2
1−0.185 · y2

2 (48)

which implies that Ṡ is negative definite. S and Ṡ are shown
in Figure 5.

Figure 5. The storage function S = S1 +S2 is shown to the left,
and its derivative along trajectories is shown to the right. The
red surfaces are at zero. We see that S is positive definite, and
Ṡ is negative definite. Therefore, all bounded solutions must
converge to the set where y1 = y2 = 0. A trajectory converging
to the origin is shown as a red curve within the bowl formed by
S in the left figure.

Similarly to Lyapunov functions, we use the combined
storage function S, and its derivative along trajectories Ṡ
to draw conclusions about the stability of the system. The
difference being that although the combined storage func-
tion is positive definite, and its derivative along trajectories
negative definite, asymptotic stability is not implied. In-
stead it merely implies that all bounded solutions converge
to the set where the outputs y1 = y2 = 0. In general, this
set could correspond to a number of values (z1,z2), how-
ever, because the output functions (12)–(15) are strictly
increasing and satisfy hi(0) = 0, this set corresponds to
the origin. This implies that the sub-systems H1 and H2
are zero-state observable if the origin is locally asymptot-
ically stable. This is shown by linearisation at the origin,
using equations (31) and (32)

H1 :
∂ (− f1)

∂ z1

∣∣∣∣
z1=0

=−0.118 < 0 (49)

H2 :
∂ (− f2)

∂ z2

∣∣∣∣
z2=0

=−0.131 < 0 (50)

Thus, the sub-systems are zero-state observable, and the
entire system must be asymptotically stable. In addition,
as noted earlier, the combined storage function S is ra-
dially unbounded, and therefore the system is globally
asymptotically stable.

5 Conclusion
In this paper we have shown that a class of eight two-
component biochemical networks displaying homeostasis,
called controller motifs, are asymptotically stable. We
have shown that the general system equations for these
networks can be represented as negative feedback con-
nections of two individual sub-systems. Then, these sub-
systems are shown to be output strictly passive, and the
feedback connection in its entirety is shown to be asymp-
totically stable. In addition, it is shown that the controller
motifs are robust to perturbations because they incorporate
integral control.

When modelling cellular processes, it is beneficial to
know that uncertainties in parameters do not fundamen-
tally change the behaviour of the model. Because the con-
troller motifs are asymptotically stable with integral ac-
tion, processes which can be modelled within the frame-
work of the controller motifs will have a qualitative be-
haviour which aligns well with experimental measure-
ments, even with large uncertainties in parameter values.
On the other hand, processes which do not conform well to
the controller motifs can have wildly different qualitative
responses in the face of parameter uncertainties, and the
controller motifs can be excluded as models for such pro-
cesses. Thus, it is not a matter of parameter tuning. This
is a helpful property of the controller motifs, especially in
system identification.

Here we have chosen to focus on controller motifs
with zero-order synthesis, degradation by an enzyme reac-
tion, and signalling following mixed activation/inhibition.
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However, other functions could be used. For example, we
could use Hill kinetics for the degradation of the two com-
pounds, or we could use linear activation for the signalling
functions. In that case we would have to make sure that the
properties assumed still hold.
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Abstract
Genetic manipulation is increasingly used to fine tune or-
ganisms like bacteria and yeast for production of chemi-
cal compounds such as biofuels and pharmaceuticals. The
process of creating the optimal organism is difficult as
manipulation may destroy adaptation and compensation
mechanisms that have been tuned by evolution to keep
the organisms fit. The continued progress in synthetic bi-
ology depends on our ability to understand, manipulate,
and tune these mechanisms. Concepts from control the-
ory and control engineering are very applicable to these
challenges. From a control theoretic viewpoint, distur-
bances rejection and set point tracking describe how adap-
tation mechanisms relate to perturbations and to signaling
events. In this paper we investigate a set regulatory mech-
anisms in the form of biochemical reaction schemes, so-
called controller motifs. We show how parameters related
to the molecular and kinetic mechanisms influence on the
dynamical behavior of disturbance rejection and set point
tracking of each controller motif. This gives insight into
how a molecular controller motif can be tuned to a speci-
fied regulatory response.
Keywords: bioengineering, biological systems, adapta-
tion

1 Introduction
1.1 Homeostasis, Disturbance Rejection and

Set Point Tracking
Homeostasis is described as the mechanism behind the ob-
served adaptation of an organism in a changing environ-
ment (Cannon, 1929; Langley, 1973). From a control the-
oretic point of view homeostasis can be described by the
properties of disturbance rejection and set point tracking.

A physiological example of disturbance rejection is the
intravenous/oral glucose tolerance test (IVGTT/OGTT),
where the blood glucose concentration is measured at
regular intervals after injecting/eating large amounts of
glucose (Ackerman et al., 1964). If the blood glucose
level is above a predefined level after a certain amount
of time, the patient is often diagnosed as diabetic (Ame,
2014). Over the last half century, such disturbance re-
jection studies are reported in a vast number of publica-
tions, see e.g. (Larsen et al., 2003; Steele, 1959), and also
a large number of mathematical models are made with the

aim to capture the glucose and insulin dynamics, see e.g.
the comprehensive review of (Ajmera et al., 2013). Both
OGTT and IVGTT represent an impulse (or short time
pulse) disturbance perturbation, whereas the chronic in-
fusion of glucose (Topp et al., 2004) represent a stepwise
disturbance. Another physiological example of adaptation
to a stepwise perturbation change is the adaptation of light
sensitivity of the eye, which includes both a compensatory
change in pupillary size and an adaptation of the photo-
chemical system in the rods and cones (Guyton and Hall,
2006).

Physiological examples where set point tracking is
investigated are relatively rare, although set point de-
termining mechanisms with respect to body tempera-
ture and metabolism have beed discussed (Briese, 1998;
St Clair Gibson et al., 2005).

Regulatory mechanisms can today be synthetically
modified or added to make organism better suitable
for a specific job. Still, engineering of biochemical
networks has not yet achieved the status and robust-
ness as engineering of electrical and mechanical sys-
tems (Ang et al., 2010). From a synthetic biology per-
spective (Ang and McMillen, 2013; Ang et al., 2013), it is
thus of vital importance to have insight into the biochemi-
cal mechanisms behind physiological regulatory systems.
One possible way to gain such insight is to analyze both
the disturbance rejection and set point tracking dynamics
of such systems in vivo, as well as doing in silico stud-
ies based on different model candidates. The latter ap-
proach is a well known technique used in control engineer-
ing. We will in this paper start with the simplest form of
biochemical networks with regulatory function and iden-
tify by model analysis and simulation how the dynamic
response of such networks can be tuned.

1.2 Controller Motifs
A biochemical network with regulatory properties must
in its simplest form include at least two components,
i.e., state variables, one controlled component and a con-
troller component. The controller component acts on
the controlled component in a way that compensates
for external disturbances. We have earlier presented
a collection of simple two-component regulatory net-
works (Drengstig et al., 2012; Thorsen et al., 2013), and
we have used the name controller motifs to describe them.
These motifs consist of two chemical species, A and E,
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both of them being formed and turned over. A may repre-
sent an intracellular compound which is subject to distur-
bances in the form of e.g. uncontrolled diffusive transport
of A in and out of the cell, and E may represent a mem-
brane bound compound such as a transporter protein as
shown in Figure 1. Like many cellular compounds which
is subject to strict regulation (due to e.g. toxicity if present
in large amount), the concentration of A should not exceed
or be less than some limits. By connecting the compounds
A and E through cellular signaling events such as activa-
tion and inhibition, species A becomes the controlled vari-
able, while species E becomes the manipulated variable.

Based on the direction of the E-mediated flow, the
motifs fall into two categories termed inflow and out-
flow controllers. The complete set of possible inflow
and outflow controller motifs are shown in Figure 2, and
the steady state properties of these controllers were pre-
sented in (Drengstig et al., 2012). Based on the type of
E-mediated inflow or outflow, the controllers are further
divided into activating (inflow 1/3 and outflow 5/7) or in-
hibiting (inflow 2/4 and outflow 6/8) controller type, indi-
cated by grey and white background in Figure 2, respec-
tively.

In the following we will show how the parameters of the
controller motifs, i.e. rate constants, Michaelis-Menten
constants, activation constants and inhibition constants,
influence on the dynamic performance, and show how it
is possible to adjust the system’s response similar to the
tuning of industrial control systems.

2 Results
2.1 Dynamic Properties of Controller Motifs
The dynamic properties of a two component biochemical
system (second order system) can be described in terms
of the undamped natural frequency ωn and the damping
ratio ζ . To illustrate how these two parameters relate to
the regulatory mechanisms in Figure 2, we use outflow
controller 5 as an example. For unique identification, we
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Figure 1. Illustration of a cell with a compound A being un-
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pensate for outflow perturbations, kout
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adding more A through an E-mediated inflow (red line). Panel
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apply subscript 5 on the appropriate parameters and vari-
ables, and hence, the nonlinear rate equations for an out-
flow controller 5 are given as (Drengstig et al., 2012):

Ȧ = kin
pert − kout

pert ·A−V
Etr,5
max ·A·

E5(
KE5

a +E5
) (1)

Ė5 = kE5
s ·A− V

Eset,5
max ·E5(

K
Eset,5
M +E5

) (2)

As discussed in (Drengstig et al., 2012), the set point
Aout,5

set is found by assuming ideal (theoretical) conditions,

i.e. K
Eset,5
M =0 in (2), to give Aout,5

set =V
Eset,5
max

k
E5
s

. Once the theo-

retical set point is established, we re-assume realistic con-
ditions and reorganize (2) into the integral control law

EUROSIM 2016 & SIMS 2016

32DOI: 10.3384/ecp1714231         Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



equation Ė5=Gi,5·(Aout,5
set −Ameas). This allows us to iden-

tify the integral controller gain Gi,5 and the measurement
signal Ameas as:

Ė5 =−kE5
s · E5

K
Eset,5
M +E5

·
︸ ︷︷ ︸

(
V

Eset,5
max

kE5
s︸ ︷︷ ︸

−A·K
Eset,5
M +E5

E5︸ ︷︷ ︸

)

Gi,5 Aout,5
set Ameas

Note that the measurement signal Ameas actually includes
information about the control signal E5 which is not com-
mon in industrial control engineering. Note also that as
long as K

Eset,5
M >0, the actual value of A will be less than

the theoretical set point Aout,5
set . Nevertheless, the set point

tracking properties are good since the control error e, cal-
culated as:

e=(Aout,5
set −Ameas) (3)

is zero. The difference between the actual level of
A and the theoretical set point Aset is termed inaccu-
racy (Thorsen, 2015). A general result valid for all con-
troller motifs is that both rate constants for synthesis and
degradation of E, i.e. kE

s and V Eset
max , are a part of the set

point Aset (Drengstig et al., 2012). At the same time, one
of these rate constants is also a part of the integral con-
troller gain Gi.

In order to identify the parameters ωn,5 and ζ5, we once
again assume ideal conditions, i.e. K

Eset,5
M =0, and continue

by linearizing the model in (1) and (2) around an arbi-
trary working point Ass and E5,ss. Since the set point
consist of two individual parameters, i.e. kE

s and V Eset
max ,

we select V Eset
max to be our input. We then find the closed

looped transfer function from the Laplace transformed in-
put ∆V

Eset,5
max (s) to the Laplace transformed output ∆A(s)

as:

M(s)=

((
kout

pert+V
Etr,5
max

)
·V

Eset,5
max −kin

pert ·k
E5
s

)2

V
Eset,5
max ·KE5

a ·V
Etr,5
max ·kE5

s

s2+
kin

pert ·k
E5
s

V
Eset,5
max

·s+

((
kout

pert+V
Etr,5
max

)
·V

Eset,5
max −kin

pert ·k
E5
s

)2

V
Eset,5
max ·KE5

a ·V
Etr,5
max

Using that V
Eset,5
max =kE5

s ·Aout,5
set , we find ωn,5 and ζ5 as:

ωn,5 =

√
kE5

s ·
((

kout
pert +V

Etr,5
max
)
·Aout,5

set − kin
pert

)

√
KE5

a ·V Etr,5
max ·Aout,5

set

(4)

ζ5 =
kin

pert

√
KE5

a ·V Etr,5
max

2·
√

V
Eset,5
max ·

((
kout

pert+V
Etr,5
max
)
·Aout,5

set − kin
pert

) (5)

From (4) and (5) we see that, depending on the per-
turbation levels (inflow versus outflow perturbations), it
is possible to obtain negative values for ωn,5 and ζ5.

These negative values correspond to circumstances where
the perturbation levels are such that the controller breaks
down (Drengstig et al., 2012). Breakdown occurs when
the net inflow perturbation is larger than the capacity of the
outflow controller, i.e., greater than the maximum of the
compensatory flow. In this case there is no stable equilib-
rium in the system and A integrates towards infinity. Such
a state is unwanted and may very likely be toxic for the
cell. In this case the values of ωn,5 and ζ5 are invalid and
have no physical meaning. Table 1 gives a summary of
ωn and ζ for the four inflow and four outflow controllers,
together with the expression for each set point Aset .

Note that there is a close relationship between the ex-
pressions for ζ and ωn for each controller, and thus, it is
not possible to specify both ζ and ωn independently.

Since controller 5 is an outflow controller, the inflow
perturbation ∆kin

pert(s) is considered the main disturbance,
and the transfer function characterizing the disturbance re-
jection properties is:

N(s)=
s

s2+
kin

pert ·k
E5
s

V
Eset,5
max

·s+

((
kout

pert+V
Etr,5
max

)
·V

Eset,5
max −kin

pert ·k
E5
s

)2

V
Eset,5
max ·KE5

a ·V
Etr,5
max

As expected, this transfer function has a zero in the ori-
gin, implicating homeostatic behavior and perfect adapta-
tion (Drengstig et al., 2008).

2.2 Tuning of Individual Controllers
As shown in (Drengstig et al., 2012), the steady state per-
formance of the individual controllers were found to be
identical, given a certain set of parameter values. A re-
lated issue is to determine whether it is possible to tune
the controllers to obtain identical dynamical performance
using the theoretical design parameters in Table 1. Such
tuning will be useful in synthetic biology. Also on a more
fundamental level, if such tuning is possible it implies that
it is impossible to infer the underlining network structure,
i.e., the particular controller motif, responsible for an ob-
served adaptive process by measuring the dynamical prop-
erties of the controlled variable alone.

We have selected to use the rate constants of the synthe-
sis and degradation of the controller species, kE

s and V Eset
max ,

together with the rate constant of the E-mediated com-
pensatory flow V Etr

max, as our tunable parameters. These
parameters are relatively easy to tune from the perspec-
tive of synthetic biology and offer a greater tunable range
than the parameters associated with the nonlinearities in
the model (KE

a , KA
I , and KE

I ). To discuss one of the tun-
able parameters, the rate constant for synthesis of E, kE

s ,
can in practice be modified by altering the promoter of the
gene coding for E. One way to do this is a fixed tuning of
the promoter itself, e.g. the Cu-dependent promoter of the
CUP1-gene of Saccharomyces Cerevisiae can be modified
by mutations to show wide range of different induction ra-
tios (Thiele and Hamer, 1986). Another option is to use a
dual mode promoter, a type of promoter who’s regulation

EUROSIM 2016 & SIMS 2016

33DOI: 10.3384/ecp1714231         Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



Table 1. The set point Aset , natural undamped frequency ωn and damping ratio ζ for controller motifs 1-8 in Figure 2 under
theoretical conditions, i.e. KEset

M =0. For each controller we have added a subscript to the parameters for unique identification.

Ain,1
set =

k
E1
s

V
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max
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of protein production depends on two activators. One ac-
tivator would be the control variable A and another would
be a chemical compound that can be meticulously added to
the growth medium to achieve a certain level of gene tran-
scription and production of E, represented in the model as
the value of kE

s . One such promoter controlled by Testos-
terone and IPTG (isopropyl β -D-1-thiogalactopyranoside)
has recently been developed (Mazumder and McMillen,
2014).

In order to best tune the parameters we have to know
about the operational limits of the system. For this pur-
pose, we define as in (Drengstig et al., 2012) an upper
limit for the maximum compensatory flux, jA,max=10, cor-
responding to a maximum level of Emax=15 for the ac-
tivating controllers 1, 3, 5 and 7, and corresponding to
Emin=0 for the inhibiting controllers 2, 4, 6 and 8. We
assume further that the set point of A is Aset=1.0, the ex-
ternal concentration is Aext=2. The kinetic constants for
activation and inhibition are chosen to avoid saturation ef-
fects: KE

a =2, KA
I =0.1 and KE

I =1.0. Moreover, the work-
ing point of perturbations is specified as kin

pert=2/kout
pert=5

for inflow controllers and kin
pert=5/kout

pert=2 for outflow
controllers. Given these overall system parameters, the
tuning procedure of each individual controller motif is

based on specifying ζ (or ωn, but not both) in a similar
way as the pole placement method, and determine the last
three parameter values of each motif, i.e. V Etr

max, V Eset
max and

kE
s .

To illustrate, we specify two different dynamical re-
sponses in the concentration of A for a step in Aset , i.e. one
critically damped (ζ=1) and one underdamped (ζ=0.2
corresponding to 50% overshoot) response. A strongly
underdamped system overshoots when adapting a change
in set point, but shows considerably better disturbance re-
jection than a critically damped system. Thus, tuning for
the latter may be of interest in many biological systems.

We illustrate the procedure in detail by continuing on
the outflow controller 5 example, and start by considering
the rate expression for the compensatory flux, jA, from (1):

jA=V
Etr,5
max ·A·

E5(
KE5

a +E5
) (6)

By setting jA= jA,max=10 and inserting E5=E5,max=15,
A=Aout,5

set =1 and KE5
a =2 into (6), gives V

Etr,5
max =11.33. Us-

ing the mathematical expressions for Aout,5
set and ζ5 tabu-

lated in Table 1, we find V
Eset,5
max =2.04 and kE5

s =2.04 for
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ζ5=1 and V
Eset,5
max =51.0 and kE5

s =51.0 for ζ5=0.2, see Ta-
ble 2.

Table 2. The parameters V Etr
max, V Eset

max , kE
s and the integral con-

troller gain Gi (in grey) for each controller motif specified
for critical damped response ζ=1 and underdamped response
ζ=0.2. The other parameters are defined in the main text.

V Etr
max V Eset

max kE
s Gi

C
ri

tic
al

ly
da

m
pe

d,
ζ=

1

Inflow 1 5.67 2.04 2.04 2.04
Inflow 2 5.00 6.94 6.94 -6.94
Inflow 3 5.67 2.24 24.68 2.04
Inflow 4 5.00 84.03 7.64 -6.94

U
nd

er
-

da
m

pe
d,

ζ=
0.

2

Inflow 1 5.67 51.0 51.0 51.0
Inflow 2 5.00 173.6 173.6 -173.6
Inflow 3 5.67 56.1 617.1 51.0
Inflow 4 5.00 2100.7 191.0 -173.6

C
ri

tic
al

ly
da

m
pe

d,
ζ=

1

Outflow 5 11.33 2.04 2.04 -2.04
Outflow 6 10.00 6.94 6.94 6.94
Outflow 7 11.33 24.68 2.24 -2.04
Outflow 8 10.00 7.64 84.03 6.94

U
nd

er
-

da
m

pe
d,

ζ=
0.

2

Outflow 5 11.33 51.0 51.0 -51.0
Outflow 6 10.00 173.6 173.6 173.6
Outflow 7 11.33 617.1 56.1 -51.0
Outflow 8 10.00 191.0 2100.7 173.6

This corresponds to an integral controller gain of
Gi,5=−2.04 and Gi,5=−51.0, respectively, and a response
time of Tr≈0.8 seconds (ωn,5=2.5) and Tr≈0.1 seconds
(ωn,5=12.5). The simulation results shown as black
curves in panels c, and d in Figure 3, verify the tuning
specifications, both with respect to overshoot and response
time.

In order to compare the individual performance of each
controller, the above described tuning specifications are
applied for all controllers, and the results are shown in
Table 2 and verified by simulation in Figure 3.

Note the identical values for Gi (greyed out in Table 2)
for all the activating (inflow 1/3 and outflow 5/7) and all
the inhibiting (inflow 2/4 and outflow 6/8) controllers, re-
spectively. Note also the opposite signs for activating
and inhibiting inflow and outflow controllers, respectively,
which is due to the combination of controller type (acti-
vating/inhibiting) and controller configuration (inflow/out-
flow).

The responses in Figure 3 clusters into two groups,
where the first group is the E-activating inflow controllers
1/3 (black and red curves in Figures 3a and 3b) and the E-
inhibiting outflow controllers 6/8 (blue and green curves in
Figures 3c and 3d). The second group is the E-inhibiting
inflow controllers 2/4 (blue and green curves in Figures 3a
and 3b) and the E-activating outflow controllers 5/7 (black
and red curves in Figures 3c and 3d). The reason why
equally tuned controllers behaves slightly different is due
to the nonlinearity of each individual controller combined
with a relative large set point step change.
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Figure 3. Dynamic properties of inflow and outflow controllers
showing the response in concentration of species A. The color
codes for the different inflow controller are: 1=black, 2=blue,
3=red and 4=green, and the color codes for the different outflow
controllers are: 5=black, 6=blue, 7=red and 8=green. For the
set point tracking curves, the set point changes from Aset=1.0
to Aset=1.1 at t=0. For the disturbance rejection curves, the
disturbance is a unit step change from 5 to 6 at t=0 in kout

pert
for inflow controllers and in kin

pert for outflow controllers. Pan-
els a and b: Set point tracking (upper) and disturbance rejec-
tion (lower) responses for inflow controllers tuned for critically
damped (ζ=1) and underdamped (ζ=0.2) responses, using the
parameters shown in Table 2. Panels c and d: Set point tracking
(upper) and disturbance rejection (lower) responses for outflow
controllers tuned for critically damped (ζ=1) and underdamped
(ζ=0.2) responses, using the parameters shown in Table 2.

From Table 1 we see that the inflow and outflow pertur-
bations come into the expressions of ωn and ζ in different
ways. To visualize the effect of varying level of pertur-
bation, Figure 4 shows dynamic responses of inflow con-
troller 3 for kout

pert={3,5,7} (Figure 4a) and outflow con-
troller 6 for kin

pert={5,7,9} (Figure 4b). The effect of in-
creased kout

pert for inflow controller 3 is slower dynamics
with less damped response. On the other hand, outflow
controller 6 shows faster dynamics together with more un-
derdamped response at increased kin

pert levels.
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Figure 4. Set point tracking (upper) and disturbance rejection
dynamics (lower) of species A using inflow controller 3 (panel a)
and outflow controller 6 (panel b) at different level of outflow
and inflow perturbations, respectively. The set point change is
a step from Aset=1.0 to Aset=1.1 at t=0 and the disturbance is
a step increase of 1 from original value at t=0. In panel a the
labeling on the curves corresponds to outflow perturbations of
kout

pert∈{3,5,7}. In panel b the labeling on the curves corresponds
to inflow perturbation of kin

pert∈{5,7,9}.

3 Conclusions
We have shown how a set of homeostatic controller motifs
can be tuned, in a similar way as in industrial control sys-
tems, to exhibit a specified dynamic response with respect
to overshoot δ and response time Tr. We have also shown
analytically and through simulations how i) the level of
inflow/outflow disturbances and ii) the values of different
rate constants influence on the set point tracking proper-
ties. The corresponding disturbance rejection properties
is also studied through simulations using a unit step input
signal in the disturbance.

An important implication of the fact that all controller
motifs can show identical dynamic responses is that one
cannot postulate a specific controller motif based on mea-
surement of disturbance rejection and/or set point tracking
alone. The motif type, i.e. inflow or outflow, activating or
inhibiting, rest on how the molecular mechanisms behind
the controller interact and not on the system’s ability to
show a specific response. The specific response of physio-
logical regulatory system is a result of tuning the system’s
kinetic parameters and the strength of the perturbation.

There is a great effort going on in both academia and
industry to genetically manipulate organisms to produce
useful bioproducts. One of the landmark studies published
in Science last year was the implementation of the com-
plete biosynthesis of opioids in yeast (Galanie et al., 2015;
Service, 2015). Opioids like morphine are the primary
drugs used for treatment of severe pain and pain manage-

ment, and production depends on the cultivation of opium
poppies. While the implementation of opioid biosynthe-
sis in yeast is a tremendous achievement, it still requires
an improvement in overall yield by a factor of 7 · 106 to
compete with poppies (Galanie et al., 2015). Great im-
provements are expected (Galanie et al., 2015), but this
will require an intricate tuning of the different parts of the
biosynthesis pathway.

From a synthetic biology point of view, the work in
this paper creates a basis one can use to identify which
and how properties of a reaction and participating protein-
s/enzymes contributes to the dynamical response. For in-
stance, the natural undamped frequency ωn, which is im-
portant for the swiftness of a controller motif, will for out-
flow controller 5 increase if we by some means manage to
increase the production of E (increase kE

s ) by e.g. increas-
ing the expression of mRNA coding for E (as shown in
Table 1, a change in kE

s will also change the set point). A
related example of such is reported in (Ang et al., 2010),
where a two promotor network system is constructed
in silico from realizable parts within the bacterium Es-
cherichia coli. The network includes both basal rates and
activated/repressed regulatory inputs, and hence, the net-
work share similarities with inflow controller 2 in Fig-
ure 2. Two requirements were used as tuning criteria for
the network, i.e. ζ=1 (critically damped) and large ωn in-
dicating a response time Tr as short as possible. In order
to obtain the necessary approximate zero order degrada-
tion of the repressor R (corresponding to our species E),
two effectors I1 and I2 are included in order to force the re-
pressor to work at saturated conditions, i.e. corresponding
to the theoretical conditions, KEset

M =0, used in this paper.
An alternative approach to tuning is given in (Ang et al.,

2013), where the tuning is related to the so-called response
curves. These are steady state relationships between an
input and an output variable, e.g. the molecular concentra-
tion of a transcription factor protein and the expressed pro-
tein, respectively, and not time dependent tuning as dis-
cussed in this paper. However, variations in kinetic param-
eter values results in different steady state relationships.
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Abstract

Cells and organisms have developed homeostatic mechanisms which protect them against

a changing environment. How growth and homeostasis interact is still not well understood,

but of increasing interest to the molecular and synthetic biology community to recognize and

design control circuits which can oppose the diluting effects of cell growth. In this paper we

describe the performance of selected negative feedback controllers in response to different

applied growth laws and time dependent outflow perturbations of a controlled variable. The

approach taken here is based on deterministic mass action kinetics assuming that cell con-

tent is instantaneously mixed. All controllers behave ideal in the sense that they for step-

wise perturbations in volume and a controlled compound A are able to drive A precisely

back to the controllers’ theoretical set-points. The applied growth kinetics reflect experimen-

tally observed growth laws, which range from surface to volume ratio growth to linear and

exponential growth. Our results show that the kinetic implementation of integral control and

the structure of the negative feedback loop are two properties which affect controller perfor-

mance. Best performance is observed for controllers based on derepression kinetics and

controllers with an autocatalytic implementation of integral control. Both are able to defend

exponential growth and perturbations, although the autocatalytic controller shows an offset

from its theoretical set-point. Controllers with activating signaling using zero-order or bimo-

lecular (antithetic) kinetics for integral control behave very similar but less well. Their perfor-

mance can be improved by implementing negative feedback structures having repression/

derepression steps or by increasing controller aggressiveness. Our results provide a guide

what type of feedback structures and integral control kinetics are suitable to oppose the dilu-

tion effects by different growth laws and time dependent perturbations on a deterministic

level.
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Introduction

The term homeostasis was defined by Walter B. Cannon [1] to describe the coordinated ability

of organisms and cells to maintain an internal stability by keeping concentrations of cellular

components within certain tolerable limits [2]. Cannon’s emphasis on homeo indicates that he

considered the internal physiological state not as a constant, as suggested earlier by Bernard’s

concept of a fixed “milieu intérieur” [2, 3], but conceives homeostasis as a dynamic adaptable

system which allows variations within certain limits. Dependent on the controlled compo-

nents, the homeostatic limits in which one or several controllers operate can vary considerably.

For example, while the negative feedback regulation of cellular sodium shows an apparently

changing and less well-defined set-point [4, 5], the regulation of other metal ions have more

strict limits [6–8].

Growth, an essential aspect of all living beings is a highly regulated process. According to

Bertalanffy [9, 10], the different observed growth kinetics of organisms can be related to the

organisms’ metabolism. For example, when respiration is proportional to the surface of the

organism linear growth kinetics are obtained. On the other hand, if respiration is proportional

to the organism’s weight/volume, exponential growth occurs. Growth kinetics of bacteria [11,

12] appear closely related to the bacterial form or shape. Rod-shaped bacteria show exponen-

tial growth rates, i.e.

_V ¼ kV ; k > 0 ð1Þ

whereas spherical bacteria increase their cellular volume by a rate law related to the surface to

volume ratio, i.e.,

_V ¼ Z � V2
3 � x � V ð2Þ

where η and ξ are constants reflecting anabolism and catabolism, respectively [13].

Although the protective functions of homeostasis need to be in place during growth, the

interacting mechanisms between homeostasis and growth are not well understood. In princi-

ple, there are two aspects of growth to consider. The first one, which is focused on in this

paper is how homeostatic mechanisms can compensate for growth without affecting it. The

second aspect, which will be treated in another paper, is how homeostatic mechanisms can

influence growth. In this paper we consider growth as an increase of the cellular volume. As a

continuous process growth represents a time-dependent perturbation which would lead to the

dilution of cellular/cytosolic compounds unless other mechanisms counteract for it.

Integral control is a concept from control engineering [14], which enables robust regulation

for step-wise perturbations and has been implicated to occur in a variety of homeostatic regu-

lated systems [5, 15–17]. How different integral controllers will perform under (nonlinear)

time-dependent growth is little investigated. Based on a previous study [18] we have chosen

four controller motifs, which are shown in Fig 1. The most promising controllers which are

able to handle nonlinear time dependent growth are a motif 2 zero-order type of controller

based on derepression and a motif 1 first-order controller based on autocatalysis [19–21]. A

relatively new discovered integral feedback mechanism, the so-called antithetic motif [22], has

also been included. For comparison, we have also included a motif 1 zero-order type of con-

troller. The controllers were investigated with respect to their capabilities to compensate for

time-dependent outflow perturbations in A and in the presence of different growth laws

(increase in the reaction volume V) according to Bertalanffy’s classifications [9, 10]. The

growth kinetics that will be considered include linear (constant) as well as saturating and expo-

nential growth laws. We focus here primarily on outflow perturbations, because together with
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the diluting effects of the different growth laws these perturbations represent the most severe

conditions for testing the controllers.

Materials and methods

To arrive at controller candidates which can oppose various dilution and perturbation kinetics

a couple of simplifications have been made, which are discussed in more detail below. One is

the assumption that compounds in a growing cells undergo instantaneous and ideal mixing,

thereby ignoring the spatial organization of the cell. In addition, we ignore stochastic effects

due to diffusion or low molecule numbers (however, see Discussion). Deterministic computa-

tions were performed by using the Fortran subroutine LSODE [23]. Plots were generated with

gnuplot (www.gnuplot.info) and Adobe Illustrator (adobe.com). To make notations simpler,

concentrations of compounds are denoted by compound names without square brackets.

Time derivatives are generally indicated by the ‘dot’ notation. Concentrations and rate

Fig 1. The controllers investigated in this study. Reaction orders are with respect to E. The reaction between E1 and E2 in the

antithetic controller is an overall second-order process. The controllers behave ideal in the sense that they for step-wise changes in

A and/or V, are able to keep A precisely at their defined theoretical set-points Atheor
set .

https://doi.org/10.1371/journal.pone.0207831.g001
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parameter values are given in arbitrary units (au). Rate parameters are presented as ki’s (i = 1,

2, 3, . . .) irrespective of their kinetic nature, i.e. whether they represent turnover numbers,

Michaelis constants, or inhibition constants. A set of MATLAB (mathworks.com) calculations

with instructions are provided in the Supporting Information as a combined zip-file (S1

Matlab).

Overview of treated cases and analytical steady state expressions

The four controller motifs are studied for internal and transporter-based compensatory fluxes,

different growth laws, and different removal kinetics of the controlled variable A. In the fol-

lowing we give a brief summary how the paper is structured and under what conditions the

four motifs are tested. The paper divides into the following major parts.

In chapter “Reaction kinetics during volume changes” the rate equations during volume

changes are derived.

The results are divided into two major cases:

In Case A: “Controllers with transporter-based compensatory fluxes” the behaviors of the

four negative feedback motifs are shown when the compensatory fluxes are transporter based

and when systems are exposed to linear and exponential growth with corresponding removal

kinetics in A during growth. The transporter-based compensatory fluxes consist of an (by con-

troller molecule E activated or derepressed) zero-order inflow of A molecules with respect to

the transporter, _nA , which for each time point is divided by the volume to get the contribution

to the concentration of A due to the inflow.

In Case B: “Controllers with cell-internal compensatory fluxes” results are described when

the compensatory fluxes are generated cell-internally and when the systems are exposed to lin-

ear, exponential, and surface-to-volume ratio related growth. Also here, during growth, A is

subject to linear and exponential removal kinetics.

For most of the numerically studied control structures analytical steady state expressions

for A are derived in the Supporting Information. The analytical expressions in Ass are derived

by writing first down the rate equations for A and E (E1 and E2 for the antithetic controller),

while treating fluxes coming from precursor species as constants, i.e., rates are zero-order with

respect to these species. Then the second time-derivative Ä is calculated and the rate equation

of E (E2 for the antithetic controller) is inserted into the Ä equation which is set to zero. This

leads to an analytical expression for Ass showing how different parameters influence the steady

state.

In “Overview of results” the four motifs are ranked according to their abilities to oppose the

different growth laws and outflow perturbations. The motif 2 based controller with repression/

derepression kinetics clearly outperforms the other motifs, followed by the autocatalytic motif

1 controller. The performance of the four motifs is discussed in terms of the internal model

principle, which reflects the kinetic limits controllers can handle.

We also demonstrate the influence the feedback structure (termed motifs in [7]) has in rela-

tionship with the integral controller part. Using an antithetic integral controller together with

a motif 2 repression/derepression structure as an example, we show how the motif 2 structure

improves controller performance, but also point to the limitations which are caused by the

kinetics of the integral controller.

Reaction kinetics during volume changes

To describe concentration changes during cell growth we have to consider the concentration

changes due to the increasing reaction volume V. If A denotes the concentration of nA moles

of compound A in volume V, the overall change of concentration A is composed of two terms,
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one that describes the changes of A while V is kept constant, ð _AÞV , and of a second term,

Að _V=VÞ, which describes the influence of the volume changes on the concentration of A, i.e.,

_A ¼
_nA

V
� A

_V
V

� �

¼ ð _AÞV � A
_V
V

� �

ð3Þ

Eq 3 will be used as a “template” when formulating the rate equations of cellular com-

pounds in the presence of changing V. Before we turn to the actual controller examples we

show how growth ( _V ) affects the concentration of a given species A (which will be later our

controlled variable) when A is unreactive, being produced internally within the cell, or being

produced by a transporter-mediated process.

Unreactive A
In this example (Fig 2) nA is kept constant, but the volume V increases with rate _V .

As V increases the concentration of A will decrease, i.e.,

A ¼
nA

V
) _A ¼

_nA

V
þ nA �

d 1

V

� �

dt
¼

_nA

V
� nA �

_V
V2
¼

_nA

V
� A �

_V
V

ð4Þ

Since we assume that nA is constant, we have that _nA ¼ 0 and the concentration of A decreases

according to

_A ¼ � A �
_V
V
)

_A
A
¼ �

_V
V
)

d log ðAÞ
dt

¼ �
d log ðVÞ

dt
ð5Þ

Fig 2. A is present inside the cell with a constant amount of nA moles, while the cellular volume V increases with

rate _V .

https://doi.org/10.1371/journal.pone.0207831.g002
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Integrating Eq 5 leads to:

log ðAðtÞÞ � log ðA0Þ �
n
logVðtÞ � logV0

o
) log

AðtÞ
A0

� �

¼ log
V0

VðtÞ

� �

ð6Þ

which can be rewritten as

AðtÞ ¼ A0

V0

VðtÞ

� �

, AðtÞVðtÞ ¼ A0V0 ð7Þ

Eq 7 can also be derived by noting that A0 = nA/V0 and A(t) = nA/V(t). Solving for nA from one

of the equations and inserting it into the other leads to Eq 7.

Cell internal generated A
In order to counteract diminishing levels of a controlled compound A compensatory fluxes

can be generated by a cell internal compound (assumed here to be homogeneously distributed

inside V) or by the help of transporters from stores outside of the cell or from cell-internal

(organelle) stores. We will investigate both ways to generate compensatory fluxes.

To achieve a constant level of A from a cell internal source, despite increasing V, we con-

sider first a zero-order enzymatic reaction where enzyme E converts a species S (assumed to be

present in sufficiently high amounts) to A, where V is assumed to increase by a constant rate

(Fig 3).

Fig 3. A is formed by zero-order kinetics within the cell while the cellular volume increases with a constant rate
_V ¼ k1.

https://doi.org/10.1371/journal.pone.0207831.g003

Homeostatic controllers

PLOS ONE | https://doi.org/10.1371/journal.pone.0207831 August 12, 2019 6 / 39



We assume that E is not subject to any synthesis, but that during the increase of V, E
remains always saturated with S and produces A by zero-order kinetics with respect to A. The

initial production rate of A at time t = 0 is given as

_A0 ¼
vmax;0 � S0

KM þ S0

ð8Þ

Since E is considered to be saturated by S at all times we have that KM� S(t) leading to

_A0 ¼ vmax;0 ¼ k2 � E0 ð9Þ

where k2 is the turnover number of the enzymatic process generating A, and E0 is the enzyme

concentration at time t = 0. As volume V increases, the concentrations of E and A are subject

to dilution as described by the rate equations

_E ¼ � E �
_V
V

ð10Þ

_A ¼ k2 � E � A �
_V
V

ð11Þ

For _V = k1 = constant, E(t) and A(t) are described by the equations (S1 Text)

EðtÞ ¼ E0 �
a

t þ a
; a ¼

V0

k1

ð12Þ

AðtÞ ¼ k2 � E0 � a � k2 � E0 � a � A0ð Þ �
a

t þ a ð13Þ

From Eq 13 we see that A will approach a final concentration Afinal = k2�E0�α even when V con-

tinues to grow. The time needed of A to approach Afinal is determined by the term α/(t+α).

Fig 4 shows that Afinal is independent of the initial values of A. However, the system is not

stable against perturbations which remove A. In such a case A will go to zero (S1 Text).

Fig 4. A approaches Afinal independent of the initial concentration of A. (a) A0 = 8.0; (b) A0 = 0.0. All other rate parameters are: k1 ¼
_V ¼ 1:0, k2 = 2.0, E0 = 0.1, V0

= 20.0.

https://doi.org/10.1371/journal.pone.0207831.g004
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Transporter generated A
Alternatively, A may be imported into the cell by a transporter T (Fig 5).

Also here we consider that the transporter works under saturation (zero-order) conditions

adding _nA moles of A per time unit into the cellular volume V

_nA ¼
k2 � T � Aext

KT
M þ Aext

’ k2 � T ð14Þ

where T denotes the (surface/membrane) concentration of the transporter, KT
M is a dissociation

constant between external A (Aext) and T, and k2 is the turnover number of the transporter-

mediated uptake of A.

The change in the concentration of A inside an expanding cell is given by (see Eq 3)

_A ¼
_nA

V
� A

_V
V

� �

¼
k2 � T

V
� A

_V
V

� �

ð15Þ

For constant _V , k2, and T the steady state of A ( _A ¼ 0) is k2T= _V independent of the initial

concentration of A. However, also in the transporter-based inflow of A, the steady state in A is

not stable against perturbations removing A. Any reaction within the cell removing A while

Fig 5. A is imported into the cell by transporter T.

https://doi.org/10.1371/journal.pone.0207831.g005
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growth occurs will drive A to zero (S2 Text). To get a steady state that is stable against pertur-

bations a negative feedback controller needs to be included.

Case A.1: Controllers with transporter-based compensatory fluxes

and linear time-dependent perturbations

In this section the four controller motifs (Fig 1) are tested using a transporter-based compen-

satory flux with respect to constant growth, _V ¼ k1. In addition, an outflow perturbation with

a time-dependent rate parameter k3 is invoked, which removes A as a first-order reaction with

respect to A.

Motif 1 zero-order controller

Fig 6 shows the motif 1 controller with zero-order implementation of integral control [7]. A is

the controlled compound and E is the controller molecule which concentration (in the ideal

controller case) is proportional to the integrated error between A and Atheor
set . M is considered

as a store/precursor into which “consumed” E is recycled to. M is included to make it explicit

Fig 6. Motif 1 based zero-order integral controller with a transporter (T) generated compensatory flux. The

controller species E is produced by an enzymatic zero-order process from compound M. E is recycled by another zero-

order process (with respect to E) but the rate of E-removal is proportional to the concentration of A. Outflow

perturbations are represented by the rate r3 = k3�A, where k3 is either constant or increases linearly with time.

https://doi.org/10.1371/journal.pone.0207831.g006
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that even under recycling conditions the increasing demand for E under growth and other

time-dependent perturbations leads to a continuous reduction in M. This may lead to control-

ler breakdown once all M is consumed. A situation when this occurs will be shown below for

the motif 1 autocatalytic controller.

The rate equations for this system are:

_A ¼
_nA

V
� k3 � A � A

_V
V

� �

¼
k2 � E � T

V
Aext

KT
M þ Aext

� �

� k3 � A � A
_V
V

� �

ð16Þ

_E ¼
k4 �M

k5 þM
�

k6 � E
k7 þ E

� �

A � E
_V
V

� �

ð17Þ

_M ¼ �
k4 �M

k5 þM
þ

k6 � E
k7 þ E

� �

A � M
_V
V

� �

ð18Þ

For simplicity, T and Aext=ðKT
M þ AextÞ are set to 1 leading to an inflow rate in A of k2E/V.

When _k3 ¼
_V ¼ 0, the set-point of the controller is (Ref. [7], S3 Text)

Atheor
set ¼

k4

k6

ð19Þ

independent of the inflow rate constant k2 and the time-dependent outflow perturbation

parameter k3.

When _V = constant the zero-order controller maintains a steady state below Atheor
set (S3

Text):

Ass ¼
k4

k6 þ
2 _V k3

k2

ð20Þ

which is dependent of _V , and the rate constants k2 and k3.

In testing the performance of this controller we consider three phases (see Fig 7). During

the first phase the volume and the perturbation k3 are kept constant. The controller is able to

compensate for the perturbation rate k3�A and keeps A at its theoretical set-point Atheor
set . In the

second phase the volume increases linearly with time, while k3 remains constant. The zero-

order controller is now no longer able to maintain homeostasis at Atheor
set ¼ k4=k6, but shows

a _V -dependent offset below Atheor
set as described by Eq 20. When k3 increases linearly during

phase 3 along the increase in V the controller breaks down and A goes to zero.

Motif 1 antithetic controller

The antithetic controller [22] uses two controller molecules, E1 and E2 (Fig 8). Compound E1

is activated by A but is removed by compound E2 by a second-order process. E2 is formed by a

zero-order process which acts as a constant reference rate. In addition, E2 also acts as a signal-

ing molecule, which closes the negative feedback loop by activating the transporter-based com-

pensatory inflow of A.
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Assuming, as in the previous two examples that T and Aext=ðKT
M þ AextÞ are both 1, the rate

equations are

_A ¼
_nA

V
� k3 � A � A �

_V
V
¼

k2 � E2

V
� k3 � A � A

_V
V

� �

ð21Þ

_E1 ¼ A
k4 �M

k5 þM

� �

� k6 � E1 � E2 � E1

_V
V

� �

ð22Þ

_E2 ¼
k8 � O

k9 þ O
� k6 � E1 � E2 � E2

_V
V

� �

ð23Þ

_M ¼ � A
k4 �M

k5 þM

� �

� M
_V
V

� �

ð24Þ

_O ¼ �
k8 � O

k9 þ O
� O

_V
V

� �

ð25Þ

_Q ¼ k3 � A � Q
_V
V

� �

ð26Þ

_P ¼ k6 � E1 � E2 � P
_V
V

� �

ð27Þ

where k5�M and k9� O such that the generation of E1 and E2 are zero-order processes with

respect to M and O.

Fig 7. Performance of the motif 1 zero-order controller with transporter mediated compensatory flux (Eqs 16–18). Phase 1: constant volume V and constant k3.

Initial concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E0 = 0.0, M0 = 4 × 104, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 =

1 × 10−6. The controller keeps A at its theoretical set-point, Atheor
set ¼ k4=k6 ¼ 2:0 (Eq 19). Phase 2: rate constants remain the same as in phase 1, but V increases linearly

with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. In agreement with Eq 20, the controller shows an offset below Atheor
set with Ass = 1.11. Phase 3: V continues to

increase with the same speed while k3 starts to increase linearly with _k3 ¼ 1:0. As indicated by Eq 20 the controller now breaks down and A goes to zero as V and k3

increase.

https://doi.org/10.1371/journal.pone.0207831.g007
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In case _V ¼ 0 and _k3 ¼ 0 the set-point of the controller is given by setting Eqs 22 and 23 to

zero. Eliminating the second-order term k6�E1�E2 leads to

Atheor
set ¼

k8

k4

¼ 2:0 ð28Þ

which is shown in phase 1 of Fig 9. In phase 2 the volume increases linearly with _V ¼ 2:0 (Fig

9, left panel) while k3 remains to be constant at k3 = 2.0. The controller is no longer able to

keep A at its theoretical set-point (Eq 28). When _V and k3 are constant an analytical expression

of Ass can be derived in good agreement with the numerical calculations (S4 Text):

Ass ¼
k2k8

k2k4 þ 2k3
_V

ð29Þ

which is analogous to the Ass expression of the motif 1 zero-order controller (Eq 20). Finally,

in phase 3 k3 increases linearly with _k3 ¼ 1 together with _V ¼ 2:0. As indicated by Eq 29 and

shown by the numerical calculations (Fig 9) the antithetic controller, like the zero-order con-

troller, breaks down and A goes to zero (S4 Text).

Fig 8. Motif 1 based controller with second-order (antithetic) integral control. The controller species E2 is

produced by an enzymatic zero-order process from compound O. E2 activates the transporter-based compensatory

flux of A and is removed by E1 using second-order kinetics forming P.

https://doi.org/10.1371/journal.pone.0207831.g008
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Although not shown explicitly here, the following mass balances are obeyed:

nM;0 ¼ nMðtÞ þ nE1
ðtÞ þ nPðtÞ ð30Þ

nO;0 ¼ nOðtÞ þ nE2
ðtÞ þ nPðtÞ ð31Þ

where ni,0 and ni are respectively the initial number of moles and the number of moles at time

t of compound i.
As described above, when using a transporter mediated compensation in A the antithetic

and the motif 1 zero-order controllers have to increase their controller variables E2 or E in

order to keep Ass constant, as indicated by the equation

_A ¼ 0 )
k2 � Eð2ÞðtÞ

VðtÞ
¼ k3 � Ass ð32Þ

where E(2) represents E2 or E and ð _V=VÞAss becomes negligible.

Motif 1 autocatalytic controller

Similar to controllers based on double integral action [24] an autocatalytic design [19] is able

to keep the controlled species at its set-point even when perturbations become linearly time

dependent and rapid [18]. However, in contrast to double integral action the autocatalytic

controller is able to compensate for time-dependent perturbations of the form a�tn where n is

larger than 1.

Fig 10 shows the reaction scheme. The controller compound E is produced autocatalyti-

cally, i.e., its rate is proportionally to the concentration of E, while M, present in relative large

amounts, produces E by an enzyme-catalyzed reaction which is zero-order with respect to M.

E increases the activity of transporter T and leads to an increased import of external A into the

cell. The negative feedback is closed by an A-induced recycling of E to M. Rate constant k3 rep-

resents a perturbation which removes A by a first-order process with respect to A. The rate

Fig 9. Performance of the antithetic controller with transporter mediated compensatory flux (Eqs 21–27). Phase 1: constant volume V and constant k3. Initial

concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E1,0 = 0.0, E2,0 = 0.0, M0 = 1 × 105, O0 = 1 × 105, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 10.0, k5 =

1 × 10−6, k6 = 20.0, k7 not used, k8 = 20.0, k9 = 1 × 10−6. The controller keeps A at its theoretical set-point at Atheor
set ¼ k8=k4 ¼ 2:0 (Eq 28). Phase 2: rate constants remain

the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller shows an offset below Atheor
set with Ass = 1.11 in

agreement with Eq 29. Phase 3: V continues to increase while k3 increases linearly with _k3 ¼ 1:0. As indicated by Eq 29 the controller breaks down and A goes to zero.

https://doi.org/10.1371/journal.pone.0207831.g009
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equations are:

_A ¼
_nA

V
� k3 � A � A

_V
V

� �

¼
k2 � E � T

V
Aext

KT
M þ Aext

� �

� k3 � A � A
_V
V

� �

ð33Þ

_E ¼ E
k4 �M

k5 þM

� �

� k6 � E � A � E
_V
V

� �

þ kin
E � kout

E � E ð34Þ

_M ¼ � E
k4 �M

k5 þM

� �

þ k6 � E � A � M
_V
V

� �

ð35Þ

As in the previous cases, in Eq 33, the term T � Aext=ðKT
M þ AextÞ is set to 1. The last two

terms in Eq 34, kin
E � kout

E � E, represent required background reactions to keep E at a suffi-

ciently high level such that the autocatalysis in E can start at low/zero initial E concentrations

(see also Ref. [18] and Discussion there). In the calculations presented here, kin
E and kout

E are set

Fig 10. Motif 1 autocatalytic integral controller. The controller species E is produced by an enzymatic zero-order

process from compound M, but E activates its own production and the transporter-based compensatory flux. The

negative feedback is due to the inflow activation of A by E through transporter T, while A activates the (first-order)

recycling of E to M. Outflow perturbation in A is described by the rate k3�A, where k3 is either a constant or increases

linearly with time. kin
E and kout

E represent background reactions creating and removing E.

https://doi.org/10.1371/journal.pone.0207831.g010
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to 1×10−5. To show that in this case the controller can start from initial concentration E0 = 0,

see the corresponding calculation later in the paper when using a cell-internal compensatory

flux, or test it using S1 Matlab for Fig 11. When E0 is larger than 10−5 the kin
E � kout

E � E term is

not needed, but its presence will not affect controller dynamics or set-point as long as kin
E and

kout
E are kept low. In case the kin

E and kout
E values are higher, a change/reduction in the set-point

is observed, which the controller still defends (see later in this chapter).

To determine the controller’s set-point at constant V and k3 we set Eq 34 to zero. Neglecting

the kin
E � kout

E � E term and setting _V ¼ 0, we can solve for the steady state value of A, which

defines the controller’s theoretical set-point Atheor
set :

_E ¼ Ess
k4 �M

k5 þM

� �

� k6 � Ess � Ass ¼ Ess
k4 �M

k5 þM

� �

� k6 � Ass

� �

¼ 0 ð36Þ

Since M/(k5 + M) = 1 (ideal zero-order conditions), we get from Eq 36

k4 � k6 � Ass ¼ 0 ) Ass ¼ Atheor
set ¼

k4

k6

ð37Þ

For constant _V and _k3 values the set-point is calculated to be (S5 Text)

Ass ¼
k4

k6

�
_k3

k6 � k3

!
k4

k6

¼ Atheor
set as t !1 ð38Þ

According to previous findings on the autocatalytic controller [18], any time-dependent

function k3(t) = k3,0 + a�tn where a, n> 0 will lead to the set-point conditions described by Eq

38 (S5 Text).

The recycling scheme between E and M implies that E and M obey a mass balance of the

form

nEðtÞ þ nMðtÞ ¼ nE;0 þ nM;0 ð39Þ

with nE(t) = E(t)�V(t), nM(t) = M(t)�V(t), and where nE,0 and nM,0 are the initial number of

Fig 11. Performance of the motif 1 autocatalytic controller (Eqs 33–35). Phase 1: constant volume V and constant k3. Initial concentrations and rate constant

values (at the controller’s steady state): V0 = 25.0, _V ¼ 0:0, A0 = 2.0, E0 = 100.0, M0 = 1 × 106, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0,

kin
E ¼ kout

E ¼ 1� 10� 5. The controller keeps A at its set-point at Atheor
set ¼ k4=k6 ¼ 2:0. Phase 2: rate constants remain the same as in phase 1, but V increases linearly with

_V ¼ 1:0. Phase 3: V continues to increase with the same rate and k3 increases with rate _k3 ¼ 1:0. The controller moves A towards Atheor
set in both phase 2 and phase 3,

but breaks down when no additional E becomes available through M (indicated by the arrow in the right panel).

https://doi.org/10.1371/journal.pone.0207831.g011
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moles of respectively E and M. The rates how nE and nM change at a given time t are given as

(S5 Text)

_nE ¼
_E þ E

_V
V

� �� �

� V ¼ � _nM ¼ �
_M þM

_V
V

� �� �

� V ð40Þ

Fig 11 shows the results. During the first phase no volume change occurs and k3 is a constant.

The controller keeps A at Atheor
set ¼ 2:0 as described by Eq 37. During the second phase both V

and k3 increase linearly and the controller still keeps A at Atheor
set ¼ 2:0 according to Eq 38. To

keep A at its set-point during increasing V and/or k3 the concentration of E has to increase in

order to maintain the steady state condition given by Eq 33 when _A ¼ 0 and _V=V ! 0, i.e.,

EðtÞ ¼
k3ðtÞ � VðtÞ � Ass

k2

ð41Þ

From the initial conditions (see legend of Fig 11) we have that nE(t) + nM(t) = V0 �M0 = 2.5 × 107.

When kin
E and kout

E are significantly higher than 10−5, then the set-point of the controller

changes to the following steady state value in A:

Ass �
k4 � kout

E

k6

ð42Þ

The new set-point is defended by the controller for step-wise changes and for linearly

increasing values of k3 and V (for details, see S5 Text).

Motif 2 zero-order controller

The reaction scheme of this controller is shown in Fig 12. The transporter-based compensatory

flux is regulated by E through repression or derepression by E. E is removed by a zero-order

reaction creating M, which then is recycled in a A-dependent manner.

The rate equations are

_A ¼
_nA

V
� k3 � A � A

_V
V

� �

¼
k2k4

k4 þ E
T � Aext

KT
M þ Aext

� �

�
1

V
� k3 � A � A

_V
V

� �

ð43Þ

_E ¼
k8 �M

k11 þM

� �

� A �
k9 � E

k10 þ E
� E

_V
V

� �

ð44Þ

_M ¼ �
k8 �M

k11 þM

� �

� Aþ
k9 � E

k10 þ E
� M

_V
V

� �

ð45Þ

_P ¼ k3 � A � P
_V
V

� �

ð46Þ

Also here, we keep for the sake of simplicity, T � Aext=ðKT
M þ AextÞ ¼ 1. In presence of grow-

ing V and k3 the motif 2 zero-order controller successfully defends its theoretical set-point

given by (S6 Text)

Atheor
set ¼

k9

k8

ð47Þ
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However, since an increase of the compensatory flux is based on derepression by E
(decreasing E), the controller will break down when E� k4 or k4/(k4+E)�1. Neglecting the

A� _V=V term, the point when the breakdown occurs can be estimated by setting Eq 43 to zero

_A ¼
k2

V
� k3 � A

theor
set ¼ 0 ) k3 � V ¼

k2

Atheor
set

ð48Þ

Fig 13 shows that the motif 2 based controller is able to defend successfully against linear growth

in both V and k3 and keeping A at Atheor
set . Prolonged time intervals with increasing V and k3 will

lead to controller breakdown when the condition of Eq 48 is met. The condition k4/(k4+E)�1

also indicates that the capacity limit of the controller has been reached, because the compensa-

tory flux k2 k4/(k4+E) (Eq 43) has reached its maximum value k2 and can no longer be increased.

Case A.2: Controllers with transporter-based compensatory fluxes

and exponential time-dependent perturbations

Here we describe the performance of the four controller motifs (Fig 1) with transporter-based

compensatory fluxes when exposed to exponential growth, _V ¼ k � V, and an exponential

increase in the outflow perturbation rate parameter k3 (Fig 14).

Fig 12. Motif 2 based controller with zero-order integral control. An increase of the compensatory flux occurs by a

decrease of E (derepression of the compensatory flux).

https://doi.org/10.1371/journal.pone.0207831.g012
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There are three phases the controllers are exposed to. During the first phase the controllers

are at their steady states and V and k3 are kept constant at respectively 25.0 and 2.0. During the

second phase V increases exponentially according to _V ¼ kV (κ = 0.1), while k3 is kept con-

stant at 2.0. During phase 3, V continues to grow exponentially and k3 starts to increase

Fig 13. Performance of the motif 2 zero-order based controller with respect to linear increases in V and k3. The controller is able to defend Atheor
set successfully,

but breaks down when k3V reaches k2=Atheor
set (Eq 48). Rate parameters: k2 = 1 × 105, k4 = 1 × 10−3, k8 = 1.0, k9 = 2.0, k10 = k11 = 1 × 10−6. Initial conditions:

A0 ¼ Atheor
set ¼ 2:0, E0 = 1.0, M0 = 1 × 106, P0 = 0.0, V0 = 25.0, k3,0 = 2.0. _V ¼ 2:0 (phase 2 and phase 3), _k3 ¼ 1:0 (phase 3).

https://doi.org/10.1371/journal.pone.0207831.g013

Fig 14. The perturbation profile with exponential growth of V and k3. Due to presentation reasons V is plotted semi-logarithmically while the k3 scale is

linear.

https://doi.org/10.1371/journal.pone.0207831.g014
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according to

k3ðtÞ ¼ k3;p3 þ 0:2 e0:2ðt� tp3Þ � 1
� �

ð49Þ

where k3,p3 and tp3 are the values of respectively k3 and time t at the beginning of phase 3.

Fig 15 shows that only the motif 2 based controller with derepression kinetics (panel d) is

able to counteract both exponential increases in V and k3. However, due to the derepression

kinetics and due to the transporter based kinetics (see Eq 48) the controller breaks down when

the product of the perturbations, k3V reaches k6=Atheor
set . The motif 1 autocatalytic controller

(panel c) shows slight constant offsets below Atheor
set , as expected [18], both for the single expo-

nential increase of V during phase 2 and when both V and k3 increase exponentially in phase

3. These offsets increase when the values of kin
E and kout

E are large and cannot be neglected (S5

Text). Since E increases with increasing perturbation strengths the controller is limited by

the supply for E via M as indicated in Fig 11. Neither the motif 1 based zero-order controller

(panel a) nor the antithetic controller based on motif 1 (panel b) are able to compensate for

exponentially increasing perturbation strengths. They behave very similar, as already seen in

Figs 7 and 9 for linear time-dependent perturbations.

Fig 15. Performance of the (a) motif 1-zero-order, (b) -antithetic, (c) -autocatalytic, and (d) motif 2 zero-order controllers with transporter-based

compensatory fluxes in relation to the perturbation profile of Fig 14. For rate equations of the individual controllers, see the descriptions in the previous sections

dealing with linear time-dependent perturbations. Rate parameters and initial conditions: (a) see legend of Fig 7, (b) see Fig 9, (c) see Fig 11, but using M0 = 1×1010,

and (d) see Fig 13.

https://doi.org/10.1371/journal.pone.0207831.g015
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Growth related to surface to volume ratio and controllers with transporter-

based compensatory fluxes

We have investigated how the controllers with transporter-based compensatory fluxes behave

with respect to the growth law described by Eq 2 (η = 1 and ξ = 0.2) when k3 increases expo-

nentially in phase 3 according to Eq 49 (Fig 16a).

Fig 16b–16d show the results of the antithetic, motif 1 autocatalytic and motif 2 zero-order

controllers. The motif 1 zero-order controller’s behavior of A is identical to that of the anti-

thetic controller and only the result of the antithetic controller is shown. Typically for this type

of growth law is that the motif 1 based controllers gain successively control during phase 2

when _V decreases and approaches zero. During phase 3, when k3 increases exponentially, only

the motif 2 based is able to defend its theoretical set-point, but breaks down when E become

too low. The autocatalytic controller shows a constant offset below Atheor
set . Both the antithetic

and the motif 1 zero-order controllers break down during phase 3 and A goes to zero.

Fig 16. Performance of the motif 1 antithetic, motif 1 autocatalytic and motif 2 zero-order controllers with respect to surface to volume ratio related growth

and an exponential increase of k3. (a) Perturbation profile. Phase 1: constant V (25.0) and k3 (2.0); phase 2: V increases according to Eq 2 (η = 1 and ξ = 0.2) and k3

remains constant; phase 3: V continues to increase and k3 starts to increase exponentially as described by Eq 49. (b) Behavior of the antithetic controller (Eqs 21–27).

Rate constant values as in Fig 9. Initial concentrations: A0 = 2.0, E1,0 = 0.01, E2,0 = 100, M0 = O0 = 1 × 106. (c) Behavior of the autocatalytic controller (Eqs 33–35). Rate

constant values as in Fig 11. Initial concentrations: A0 = 2.0, E0 = 0.01, M0 = 1 × 106. (d) Behavior of the motif 2 zero-order controller (Eqs 43–46). Initial

concentrations: A0 = 2.0, E0 = 1.0, M0 = 1 × 103. Note the breakdown of the controller at the very end of phase 3 due to low E (arrow).

https://doi.org/10.1371/journal.pone.0207831.g016
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Case B.1: Controllers with cell-internal compensatory fluxes and

linear time-dependent perturbations

We consider here the four controllers, but the compensatory fluxes are now generated from

cell-internal and homogeneously distributed sources.

Motif 1 zero-order controller

Fig 17 shows the motif 1 zero-order controller using a cell-internal compensatory flux. The

homogenously distributed compound N serves as a source for A, which is activated by E. Com-

pound M serves as a source for E, while by the activation of A, M is recycled from E.

The rate equations are

_A ¼ k2 � E
N

k7 þ N

� �

� k3 � A � A
_V
V

� �

ð50Þ

_E ¼
k4 �M

k5 þM
�

k6 � E
k8 þ E

� �

A � E
_V
V

� �

ð51Þ

_M ¼ �
k4 �M

k5 þM
þ

k6 � E
k8 þ E

� �

A � M
_V
V

� �

ð52Þ

_N ¼ �
k2 � N

k7 þ N

� �

E � N
_V
V

� �

ð53Þ

Fig 17. Motif 1 zero-order controller with a cell-internal compensatory flux.

https://doi.org/10.1371/journal.pone.0207831.g017
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_P ¼ � k3 � A � P
_V
V

� �

ð54Þ

The steady state of A when both _V and _k3 are constant is given by the following expression

(S3 Text)

Ass ¼
k2k4

k2k6 þ
_k3

ð55Þ

When _k3 ¼ 0 and _V = constant Ass becomes Atheor
set ¼ k4=k6 and the motif 1 zero-order

controller is able to compensate for a constant growth rate (Fig 18, phases 1 and 2). However,

when k3 increases linearly, Ass is below Atheor
set and remains constant as long as sufficient M and

N are present (Fig 18, phase 3). Thus, in comparison with a transporter-mediated compensa-

tory fluxes, the motif 1 zero-order controller with an internally generated compensatory flux

shows an improved performance by being able to compensate for a constant growth rate in the

absence of other outflow perturbations in A.

Motif 1 antithetic controller

When the antithetic integral controller is equipped with an internally generated compensatory

flux (Fig 19) its performance towards constant growth and linearly increasing outflow pertur-

bations k3 is significantly improved in comparison with a controller having a transporter gen-

erated compensatory flux (Fig 9). The rate equation for A is now changed to

_A ¼
k2 � N

k7 þ N

� �

E2 � k3 � A � A
_V
V

� �

ð56Þ

while the other rate equations (Eqs 22–27) remain the same.

Fig 18. Performance of the motif 1 zero-order controller with internally generated compensatory flux (Fig 17; Eqs 50–54). Phase 1: constant volume V and

constant k3. Initial volume, concentrations, and rate constants: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E0 = 0.0, M0 = 4 × 104, N0 = 1 × 105, P0 = 0.0, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0,

k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 = 1 × 10−6, k8 = 1 × 10−6. The controller moves A to its set-point at Atheor
set ¼ ðk4=k6Þ ¼ 2:0 (Eq 55). Phase 2: rate constants remain

the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller is able to keep A at Atheor
set ¼ ðk4=k6Þ ¼ 2:0 in

agreement with Eq 55. Phase 3: V continues to increase with the same speed while k3 now linearly increases with _k3 ¼ 1:0. As indicated by Eq 55 Ass leads to a constant

offset below Atheor
set .

https://doi.org/10.1371/journal.pone.0207831.g018
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When _V is constant Ass becomes (S4 Text)

Ass ¼
k2k8

k2k4 þ
_k3

ð57Þ

As indicated by Eq 57 numerical results show (Fig 20, phase 2) that the antithetic controller

is now able to compensate for linear volume increases by moving A to Atheor
set ¼ ðk8=k4Þ. How-

ever, an offset in Ass below Atheor
set is observed when, in addition, k3 increases linearly with time,

i.e., when _k3 is constant.

Although not explicitly shown here, during the volume increase, the mass (mole) balances

described by Eqs 30 and 31 are obeyed in addition to the mass balance connecting N, A, and Q

nN;0 ¼ nNðtÞ þ nAðtÞ þ nQðtÞ ð58Þ

where nN,0 is the number of moles of initial N at t = 0 with nA,0 = nQ,0 = 0.

Motif 1 autocatalytic controller

Fig 21 shows the autocatalytic controller but now with an internally generated compensatory

flux. As for the motif 1 zero-order controller (Fig 17) the compensatory flux originates from

compound N and is activated by E. N is present in high concentration and forms A by a zero-

order process with respect to N.

Fig 19. The antithetic controller with an internal generated compensatory flux.

https://doi.org/10.1371/journal.pone.0207831.g019
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Fig 20. Performance of the antithetic controller when the compensatory flux is homogeneously generated within the cellular volume (Eqs 56 and 22–27). Phase

1: constant volume V and constant k3. Initial concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E1,0 = 0.0, E2,0 = 0.0, M0 = 2 × 105, N0 = 1 × 106, O0

= 2 × 105, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0, k4 = 10.0, k5 = 1 × 10−6, k6 = 20.0, k7 = 1 × 10−5, k8 = 20.0, k9 = 1 × 10−5. The controller moves A to Atheor
set ¼ ðk8=k4Þ ¼ 2:0 (Eq 57

when _k3 ¼ 0). Phase 2: rate constants remain the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller is able

to maintain A at Atheor
set ¼ k4=k6 ¼ 2:0 in agreement with Eq 57. Phase 3: V continues to increase with the same speed while k3 now linearly increases with _k3 ¼ 1:0. As

indicated by Eq 57 the controller is no longer able to keep A at Atheor
set but shows a constant steady state value below its theoretical set-point.

https://doi.org/10.1371/journal.pone.0207831.g020

Fig 21. Scheme of autocatalytic controller with an internally generated compensatory flux from compound N.

Otherwise the controller has the same structure as shown in Fig 10.

https://doi.org/10.1371/journal.pone.0207831.g021
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The rate equation for the controlled variable A is

_A ¼ k2 � E
N

k7 þ N

� �

� k3 � A � A
_V
V

� �

ð59Þ

while the rate equations for E and M remain the same as Eqs 34 and 35. Species P is included

with the rate equation

_P ¼ k3 � A � P
_V
V

� �

ð60Þ

to test that the mass (mole) balance between N, A, and P is preserved.

The controller’s steady state in A is also in this case described by Eq 38 (S5 Text). In contrast

to the other controllers, even when _V and _k3 are constant, the autocatalytic controller is able

to move A to Atheor
set ¼ ðk4=k6Þ (Fig 22).

When kin
E and kout

E are large and cannot be neglected the steady state in A is described by the

quadratic equation (S5 Text)

A2
ss � Ass

k4 � kout
E

k6

�
_k3

k3k6

 !

�
k2kin

E

k3k6

¼ 0 ð61Þ

In case only V increases linearly Ass is given by the solution of Eq 61, independent of V’s

growth rate. On the other hand, if k3 increases linearly, the terms _k3=k3k6 and k2kin
E =k3k5 go to

zero for large k3 and Ass is given by ðk4 � kout
E Þ=k6 as described by Eq 42 for the transporter-

based compensatory flux.

Fig 22. Performance of the autocatalytic controller when the compensatory flux is generated within the cellular volume (Eqs 34, 35, 59 and 60). Phase 1: constant

volume V and constant k3. Initial concentrations and rate constant values: V0 = 25.0, _V ¼ 0:0, A0 = 0.0, E0 = 0.0, M0 = 4 × 104, N0 = 1 × 106, k2 = 1.0, k3 = 2.0, _k3 ¼ 0:0,

k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 = 1 × 10−6, kin
E ¼ kout

E ¼ 1� 10� 5. The controller moves A to its theoretical set-point at Atheor
set ¼ ðk4=k6Þ ¼ 2:0 (Eq 37). Phase 2: rate

constants remain the same as in phase 1, but V increases linearly with _V ¼ 2:0, while k3 remains constant at k3 = 2.0. The controller is able to maintain A at Atheor
set in

agreement with Eq 37. Phase 3: V continues to increase with the same speed while k3 now linearly increases with _k3 ¼ 1:0. As indicated by Eq 38 the controller keeps A
at Atheor

set as k3 increases.

https://doi.org/10.1371/journal.pone.0207831.g022
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Motif 2 zero-order controller

The rate equations for the motif 2 controller using a cell-internal compensatory flux are (Fig 23):

_A ¼
k4 � k6

k4 þ E

� �

�
N

k7 þ N

� �

� k3 � A � A
_V
V

� �

ð62Þ

_E ¼
k8 �M

k11 þM

� �

� A �
k9 � E

k10 þ E
� E

_V
V

� �

ð63Þ

_M ¼ �
k8 �M

k11 þM

� �

� Aþ
k9 � E

k10 þ E
� M

_V
V

� �

ð64Þ

_N ¼ �
k4 � k6

k4 þ E

� �

�
N

k7 þ N

� �

� N
_V
V

� �

ð65Þ

_P ¼ k3 � A � P
_V
V

� �

ð66Þ

Fig 24 shows the performance of the motif 2 feedback structure with zero-order integral control.

The controller is able to defend successfully Atheor
set against a linear increase in V (phase 2) as well

Fig 23. Motif 2 type controller with integral control based on zero-order kinetics and a cell-internally generated

compensatory flux from compound N.

https://doi.org/10.1371/journal.pone.0207831.g023
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as against linear increase in V and a simultaneous linear increase in k3 (phase 3). For both cases

the controller will move A precisely to Atheor
set ¼ k9=k8 without any offset (see S6 Text for details).

Case B.2: Controllers with cell-internal compensatory fluxes and

exponential time-dependent perturbations

The controllers are exposed to the same exponential perturbation profiles as in Fig 14. The

exponential growth of V is written as _V ¼ k � V, where κ (>0) is a constant and related to the

doubling time of V given by ln 2/κ.

Fig 25a shows the performance of the motif 1 zero-order controller while Fig 25b shows the

responses of the motif 1 antithetic controller. During exponential growth and constant k3 the

motif 1 zero-order and the antithetic controller show slight offsets from the theoretical set-

point Atheor
set , while during phase 3 when both V and k3 increase exponentially, both controllers

break down. Besides their different kinetic implementation of integral control both the motif 1

zero-order and the motif 1 antithetic controller have analogous responses (for details, see S3

and S4 Texts).

Fig 25c shows the response of the autocatalytic controller when kin
E ¼ kout

E ¼ 1� 10� 5. The

controller is able to keep A at Atheor
set during exponential growth while k3 is kept constant. Only

when V and k3 both increase exponentially then there is an offset from Atheor
set , which can be esti-

mated as:

Ass ¼
k4

k6

�
k

k6

�
z

k6

ð67Þ

where the theoretical set-point Atheor
set ¼ k4=k6 and κ and z describe the doubling times ln 2/κ

and ln 2/z of the exponential increases for V and k3, respectively (see S5 Text).

In case kin
E and kout

E are large Eq 67 changes to (S5 Text):

Ass ¼
k4

k6

�
k

k6

�
z

k6

�
kout

E

k6

ð68Þ

The motif 2 based controller shows in phase 2 a significant overcompensation from Atheor
set

when exposed to exponential growth only. The overcompensated steady state in A at constant

Fig 24. Performance of the motif 2 feedback scheme with zero-order based integral control and a cell-internal compensatory flux. Rate constants and initial

conditions: k3 = 2.0, k4 = 1 × 10−3, k6 = 1 × 105, k7 = 1 × 10−6, k8 = 1.0, k9 = 2.0, k10 = k11 = 1 × 10−6, A0 = 2.0, E0 = V0 = 25.0, M0 = 1 × 106, N0 = 3 × 106. Phase 1: V and

k3 remain unchanged. Phase 2: V increases linearly with _V ¼ 2:0, while k3 remains constant. Phase 3: V continues to increase and k3 increases linearly with _k3 ¼ 1:0.

https://doi.org/10.1371/journal.pone.0207831.g024
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k3 and exponential growth can be expressed as

Ass ¼ Atheor
set þ

k

k8

Ess ð69Þ

where Atheor
set ¼ k9=k8 and (κ/k8)Ess is the overcompensated offset (S6 Text).

The response kinetics of the motif 2 based controller is mostly determined by k4, which

reflects the derepression property by E. For large k4 the derepression by E is observed to be

slow and less effective.

Remarkably, when both k3 and V increase exponentially in phase 3 the controller is able to

move A close to Atheor
set . For this case Ass can be written as (S6 Text)

Ass ¼
g0

1þ g0

� �

Aapp
set ð70Þ

Fig 25. Behaviors of the motif 1 zero-order, antithetic, autocatalytic and motif 2 zero-order controllers with internal compensatory fluxes in response to an

exponential increase in V and k3. Time/perturbation profiles of V and k3 are the same as in Fig 14. (a) Behavior of the motif 1 zero-order controller. Rate constant

values as in Fig 18. Initial concentrations: A0 = 2.0, E0 = 4.0, V0 = 25.0, M0 = 4 × 109, N0 = 1 × 106. (b) Behavior of the antithetic controller. Rate constants as in Fig 20.

Initial concentrations: A0 = 2.0, E1,0 = 0.25, E2,0 = 4.0, V0 = 25.0, M0 = N0 = O0 = 1 × 106, Q0 = P0 = 0.0. During phase 2 the controller shows a slight but constant offset

below Atheor
set . During phase 3 the controller breaks down when both V and k3 increase exponentially. (c) Behavior of the autocatalytic controller. Rate constants are as

described in Fig 22. Initial concentrations: A0 = 2.0, E0 = 4.0, V0 = 25.0, M0 = 4 × 109, N0 = 1 × 107. During autocatalytic growth only (phase 2) the autocatalytic

controller is able to move Ass precisely to Atheor
set , but shows an offset from Atheor

set when both k3 and V increase exponentially). (d) Behavior of the motif 2 based controller

(Eqs 62–66). Rate constants and initial conditions as in Fig 24. Note the significant overcompensation (offset above Atheor
set ) during phase 2, but the return to Atheor

set (=k9/

k8) when k3 starts to grow exponentially.

https://doi.org/10.1371/journal.pone.0207831.g025
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where

g0 ¼
k4k6k8

_k3ðk4 þ EðtÞÞ2
ð71Þ

and

Aapp
set ¼ Atheor

set þ
k

k8

EðtÞ ð72Þ

Note that during phase 3 E is not in a steady state, but decreases due to the controller’s dere-

pression, while _k3 increases exponentially. However, the derepression kinetics by E are faster

than the exponential increase of _k3 (Eq 71), such that γ0 increases and Aapp
set and Ass approach

Atheor
set (S6 Text).

Growth related to the surface to volume ratio and controllers with cell-

internal compensatory fluxes

Here we show how the four controllers having cell internal compensatory fluxes perform with

respect to a surface to volume ratio related growth law as found for spherical bacteria ([9, 10,

13], Eq 2). We consider again three phases as in the previous sections, but with the difference

that V now grows according to Eq 2 with η = 1 and ξ = 0.2 (Fig 26a). The values of η and ξ are

arbitrarily chosen. The outflow perturbation, described by k3, is kept constant during phases 1

and 2, but increases exponentially during phase 3 (Eq 49). The response behaviors of the con-

trollers towards increasing volume (when k3 is kept constant) is initially very similar to that

when V increases linearly. However, the motifs gain more and more control as _V decreases,

provided that there is sufficient material in the cell to generate enough E’s (for the motif 1

controllers) or that there is still sufficient E left (for the motif 2 controller) to keep the negative

feedback loop operating.

As an example, Fig 26 shows the behavior of the motif 1 antithetic and autocatalytic con-

trollers and the motif 2 zero-order controller when k3 in phase 3 increases exponentially as

described by Fig 14 and compensatory fluxes are generated cell internally. The motif 1 zero-

order controller’s behavior (not shown) is again very similar in comparison with the motif 1

antithetic controller.

Overview of results

Tables 1 and 2 gives an overview of controller performances by dividing perturbations into (i)

linear V only, (ii) linear V and k3, (iii) exponential V only, and (iv) exponential V and k3. Con-

troller performances are described by the four categories perfect adaptation, partial adaptation,

over-adaptation, and breakdown. Perfect adaptation means that the controller is able to keep A
at Atheor

set . A controller with partial adaptation can maintain a constant A value during an applied

outflow perturbation, but below Atheor
set . A controller showing over-adaptation keeps A above

Atheor
set even when the perturbation leads to a decrease in A. Controller breakdown means that

the controller is unable to withstand the perturbation and A goes to zero.

Concerning the results with respect to surface/volume related growth we group this growth

law together with the category of linear growth, because controllers behave initially quite simi-

lar towards these two growth laws (compare phases 2 in Fig 16b–16d with respective phase 2

behaviors of Figs 9, 11 and 13 and phases 2 in Fig 26b–26d with the phase 2 behaviors of Figs

20, 22 and 24, respectively).
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Clearly, motif 1 controllers based on zero-order or on antithetic integral control, cannot

oppose an exponential volume increase or when an additional exponential increase in k3 is

applied. When exponentially increasing perturbations are applied the motif 1 autocatalytic

controller shows good performances with a stable offset in A below Atheor
set , but requires the pres-

ence of sufficient controller species E to maintain autocatalysis. The motif 2 controller using

zero-order based integral control shows best performance, and is able to keep A at Atheor
set , even

when both V and k3 increase exponentially. However, the drawback of controllers based on

derepression, like motif 2, is that controller breakdown occurs when concentrations of the

derepressing control species is getting too low.

Fig 26. Performance of the antithetic, autocatalytic and motif 2 based controllers towards surface/volume related growth in V and exponentially increasing

outflow perturbation k3 with cell-internal compensatory flux. Rate constant values and initial conditions as in Fig 25.

https://doi.org/10.1371/journal.pone.0207831.g026

Table 1. Performance of controllers based on internal generated compensatory fluxes.

controller type linear V only linear V and k3 exponential V only exponential V and k3

m1—zero-order perfect adaptation partial adaptation breakdown breakdown

m1—antithetic perfect adaptation partial adaptation breakdown breakdown

m1—autocatalytic perfect adaptation perfect adaptation perfect adaptation partial adaptation

m2—zero-order perfect adaptation perfect adaptation over-adaptation perfect adaptation

https://doi.org/10.1371/journal.pone.0207831.t001
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Discussion

Internal model principle and the kinetic limit of controllers

From Tables 1 and 2 it is seen that the motif 2 controller outperforms the other controllers.

The derepression kinetics of the motif 2 controller is described by the term (Eqs 43 and 62):

finhibðEÞ ¼
k4

k4 þ E
ð73Þ

which is an essential part in generating the compensatory flux in A. For decreasing (derepress-

ing) E finhib(E) increases with hyperbolic response kinetics, i.e. having exponentially increasing

doubling times. The motif 2 controller is therefore able, as observed [18], to counteract hyper-

bolically decreasing concentrations in A. The balancing between a perturbation and the by the

perturbation induced compensatory flux reflects the Internal Model Principle [25–27], which

states that if a controller is able to oppose a perturbation, then the controller has the capability

to generate that kind of perturbation internally. For the motif 2 controller the hyperbolic

response kinetics represents the upper kinetic limit which the controller can handle. In addi-

tion, the motif 2 controller will handle any perturbing rate laws with doubling times lower

than an exponential (constant doubling times relate to an exponential rate law), although over-

compensation may occur as seen in Fig 25d.

Thus, as indicated in Tables 1 and 2 controllers group according to their kinetic limits,

where the motif 2 controller with hyperbolic response kinetics performs better than controllers

based on exponential/autocatalytic or linear responses.

Repression/derepression kinetics are ubiquitously used in homeostatic mechanisms (see

Supplementary Material in [7]), in gene on/off regulations [28–30] and as rhythm generators

[31, 32]. The fast response of derepression is also used in signaling [33], but may be needed to

be kept under additional control as indicated in a study of the nitrogenase switch [30] to avoid

overenhanced/overcompensated responses.

Breakdown of the motif 2 controller occurs when the compensatory flux has reached its

maximum value (described by rate constant k2 in Figs 12 and 23).

A somewhat surprising behavior of the motif 2 controller is its overcompensation when

growth increases exponentially at constant k3 (see phase 2 in Fig 25d). The overcompensation

can be described analytically (Eq 69). Its origin is due to the fact that with a cell-internal com-

pensatory flux an exponetial increase in V at constant k3 allows for steady states in A and E,

independent of V, where Ass is larger than Atheor
set (S6 Text).

Performance improvement by increased controller aggressiveness

Although the motif 1 zero-order and the antithetic controllers break down when exposed to

exponential growth and perturbations (Figs 15a and 15b and 25a and 25b), their performance

can be significantly improved at constant _V by increasing of what can be described as the

Table 2. Performance of controllers based on transporter based compensatory fluxes.

controller type linear V only linear V and k3 exponential V only exponential V and k3

m1—zero-order partial adaptation breakdown breakdown breakdown

m1—antithetic partial adaptation breakdown breakdown breakdown

m1—autocatalytic perfect adaptation perfect adaptation partial adaptation partial adaptation

m2—zero-order perfect adaptation perfect adaptation perfect adaptation perfect adaptation

https://doi.org/10.1371/journal.pone.0207831.t002
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controllers’ aggressiveness. By aggressiveness of a controller we mean loosely the controller’s

response to a perturbation in terms of (mainly) quickness and precision. Increasing the aggres-

siveness of a controller will generally lead to a quicker controller response and an improved

controller precision.

The aggressiveness of an integral controller can be varied by the controller’s gain. The gain

is a factor in front of the error integral. For an ideal motif 1 zero-order integral controller

(working at constant V and k3) _E is proportional to the error e ¼ ðAtheor
set � AÞ [7], i.e.,

_E ¼ k6

k4

k6

� A
� �

ð74Þ

where k6 is the controller gain and k4/k6 is the controller’s theoretical set-point, Atheor
set . As indi-

cated by Eq 74 the concentration of E is proportional to the integrated error with respect to

time. By increasing k6 and k4 such that Atheor
set remains unchanged the gain of the controller is

increased and the controller becomes more aggressive.

For constant _V and k3 the steady state of A for the motif 1 zero-order controller is given by

Eq 20

Ass ¼
k4

k6 þ
2 _V k3

k2

ð20Þ

where the offset in Ass below Atheor
set is due to the term 2 _Vk3=k2. This term indicates that for

increasing _V and/or increasing k3 values the controller will break down and A will go to zero

as observed in Fig 15a. There are two ways the controller’s aggressiveness can be increased.

One way, as indicated above, is by increasing k4 and k6 such that Atheor
set ¼ k4=k6 is preserved

with k6 becoming much larger than 2 _Vk3=k2. As a result the controller’s response kinetics

become quicker and Ass moves closer to Atheor
set ¼ k4=k6. The other way is to increase k2, which

means to increase the activity of the transporter. In a synthetic biology context this could be

done by over-expressing the genes which code for the transporter. On the other hand, “nor-

mal” cells may already have optimized controller aggressiveness or may change it in response

to environmental conditions.

Similar arguments apply also for the antithetic controller. Qian et al. [34] have shown that

when the controller dynamics become faster than growth this leads to an improved controller

performance.

Fig 27 shows the results of increasing the aggressiveness of the motif 1 zero-order and anti-

thetic controllers by increasing k2 from 1.0 to 1×103. The perturbation is divided into three

phases. During the first phase the volume V is kept constant at 25.0 and the controllers are at

their set-points. In phase 2 the volume increases with a constant rate ( _V ¼ 1:0). Finally, in

phase 3 V continues to grow with _V ¼ 1:0 but k2 is increased to 1×103. Both controllers show

improved precisions, but show different kinetics in their way to reach Atheor
set .

Similar is the situation when the compensatory flux is internally generated. Eq 55 shows the

steady state in A for the motif 1 zero-order controller. Also here increasing k2 values will move

Ass towards the theoretical set-point Atheor
set ¼ k4=k6.

Aggressiveness can also be increased for the autocatalytic controller by increasing k4 and k6

such that the k4/k6 ratio is maintained. This will move the steady state in A closer to its theoret-

ical set-point as offsets become smaller (Eqs S14 and S20 in S5 Text).
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Roles of kinetic implementations of integral control and negative feedback

structures

For the transporter-based cases the increased aggressiveness of the motif 1 zero-order and

antithetic controllers allows them to defend their theoretical set-points as long as (see Eqs 20

and 29)

k6 ðor k4Þ � 2 _V
k3

k2

� �

ð75Þ

However, for exponentially increasing V and _V this can be achieved only for a certain

(often short) time period. The motif 1 zero-order controller will break down when Eq 75 is no

longer fulfilled. On the other hand, as shown above, the autocatalytic motif 1 controller is able

to maintain a stable steady state in A, although with an offset from Atheor
set , when V and k3

increase exponentially (but also here dependent on the controller’s aggressiveness). As Eq 38

(for the transporter-based compensatory flux) indicates, any time-dependent perturbation of

the type k3(t) = k3,0 + a�tn (a, n> 0) will be successfully defended by the autocatalytic control-

ler, because _k3=k3 ! 0 (S5 Text) and thereby restoring the controller’s theoretical set-point.

However, breakdown may occur if no sufficient supply of E (for example via M, Fig 11) can be

maintained.

The sudden breakdown of a fully adapted controller due to capacity limits or exhaustion of

the controller variables E or E1/E2 has an interesting analogy in physiology described by Selye’s

General Adaptation Syndrome (GAS) [35]. When an animal is exposed to constant but severe

stress (for example cold temperatures) the animal can stay, after an alarm reaction, in a stage

of resistance, where the animal appears perfectly adapted to its environment. However, after a

certain time there appears the stage of exhaustion and the animal dies, despite of sufficient

food supplies. To understand the sudden and unexpected breakdown of adaptation, Selye

introduced the concept of adaptation energy [36]. In our analogous examples here, the

Fig 27. Increased transporter activity (k2 values) lead to increased aggressiveness and improved controller precision for transporter-based motif 1 zero-order

controller (left panel) and motif 1 antithetic controller (right panel) during constant growth (see Figs 6 and 8). Phase 1: controllers are at their steady state, no

growth, k2 = 1.0. Phase 2: constant growth ( _V ¼ 1:0) and k2 = 1.0. Both controllers show an offset in Ass below Atheor
set . Phase 3: constant growth continues but k2 is

increased to 1 × 103. Both controllers show improved precision and have their Ass close to Atheor
set , but show different adaptation kinetics during the transition from

phase 2 to phase 3. Rate parameters and initial concentrations, zero-order controller: k3 = 2.0, k4 = 20.0, k5 = 1 × 10−6, k6 = 10.0, k7 = 1 × 10−6, A0 = 2.0, E0 = 100.0, V0 =

25.0, M0 = 1 × 107. Rate parameters and initial concentrations, antithetic controller: k3 = 2.0, k4 = 10.0, k5 = 1 × 10−6, k6 = 10.0, k8 = 20.0, k9 = 1 × 10−6, A0 = 2.0, E1,0 =

1 × 10−2, E2,0 = 1 × 102, V0 = 25.0, M0 = O0 = 1 × 108.

https://doi.org/10.1371/journal.pone.0207831.g027
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adaptation energy can be associated with the amounts of precursors M, N, and O, and with the

maximum controller capacity, described by the maximum rate a compensatory flux can

deliver. Although our single loop controllers are a far cry from a physiologically regulated sys-

tem, the analogy to Selye’s GAS is thought-provoking.

Our results indicate that the type of kinetics realizing integral control and the structure of

the negative feedback loop play essential roles in how a controller will perform. The antithetic

integral controller has in the literature [22, 37, 38] so far only been considered in a motif 1 set-

ting based on activation (Fig 1). However, its second-order integral controller part can be

embedded into other feedback structures (S7 Text). Although the intension of this work was

not to consider novel implementations of the antithetic integral controller, it is illustrative to

see the controller’s improvement and limitations when considering the antithetic controller in

a motif 2 background. Fig 28 shows two such implementations, one with a transporter based

compensatory flux and the other with a cell internal one.

When merging the motif 2 structure with the antithetic integral controller, we keep the

antithetic controller’s rate constant values, but change the k2 and the inhibition constant (k10)

values to those used in the motif 2 controller calculations. For the transporter based motif 2

antithetic controller Eq 21 is now replaced by

_A ¼
k2 � k10

k10 þ E1

�
1

V
� k3 � A � A

_V
V

� �

ð76Þ

while for the controller with a cell internal compensatory flux, Eq 56 is replaced by

_A ¼
N

k7 þ N

� �

�
k2k10

k10 þ E1

� �

� k3 � A � A
_V
V

� �

ð77Þ

Fig 28. Antithetic integral controllers with motif 2 feedback structure and transporter based and cell internal compensatory fluxes.

https://doi.org/10.1371/journal.pone.0207831.g028
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The other rate equations (Eqs 22–27) remain unchanged. Fig 29 shows the results when linear

and exponential growth and k3 changes (see Figs 9a and 14) are applied to the controllers in

Fig 28.

In comparison with the motif 1 antithetic structure, the usage of the motif 2 negative feed-

back shows a clear improvement in the antithetic controllers’ performance (compare Fig 29a,

29b, 29c and 29d with Figs 9, 15, 20 and 25, respectively). The feedback design based on a cell

internal compensatory flux shows again a better performance in comparison when the com-

pensatory flux is transporter based. On the other hand, when both V and k3 increase exponen-

tially both motif 2 antithetic controllers are not able to keep A at a constant steady state. The

Fig 29. Performance of the antithetic controller in a motif 2 (m2) structural background (Fig 28). (a) The controller has a transporter mediated compensatory flux

and is exposed to linear growth and increase in k3 as in Fig 9a. Same rate constants and initial concentrations as in Fig 9 with the exception that k2 = 1 × 105, and k10 =

1 × 10−3. Note the minor offset in A during phase 2. (b) Same controller with rate constants as in (a), but exposed to exponential volume and k3 increases as in Fig 14.

Initial concentrations: A0 = 2.0, E1,0 = E2,0 = 1.0, M0 = O0 = 1 × 105. The controller is not able to oppose exponential growth. (c) Controller with a cell internal

compensatory flux (Fig 28) and exposed to the conditions as in Fig 20. Same rate constants as in (a). Initial concentrations: A0 = 2.0, E1,0 = E2,0 = 25.0, M0 = O0 =

2 × 105, N0 = O0 = 1 × 106. The controller is fully capable to oppose linear growth together with a linear increase in k3. (d) Same controller with rate constants as in (c),

but exposed to exponential volume and k3 increases as in Fig 14. Initial concentrations as in (c), but to avoid depletion of M and O initial concentrations of these

compounds were raised to 1 × 106. Note also here the overcompensation in the case growth occurs exponentially in phase 2. Despite the larger consumption rates of M
and O in comparison with (c) the controller is not able to counteract both exponential increases in V and k3. See S7 Text for more details.

https://doi.org/10.1371/journal.pone.0207831.g029
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reason for this is that the rate of derepression/removal in E1 is limited by its reaction with E2

and thereby is slower than the E removal in the motif 2 zero-order case.

From a biochemical perspective one may question how realistic a second-order removal of

E1 and E2 is. Since practically all physiological reactions within a cell are catalyzed by enzymes,

it appears to be an interesting alternative to study the performance of controllers when an

enzyme uses E1 and E2 as substrates.

With respect to the autocatalytic implementation to achieve integral control [19–21], the

occurrence of autocatalysis and positive feedback loops are becoming more and more recog-

nized in signaling and homeostatic regulation [39–41]. As an illustration, in cortisol homeosta-

sis ACTH signaling from the brain-pituitary system to the cortisol producing adrenals occurs

by autocatalysis/positive feedback [42]. In blood sugar homeostasis insulin secretion is acti-

vated by several positive feedback/autocatalytic signaling pathways [43–45] to ensure an effec-

tive regulation in glucose concentration. These examples indicate the importance of additional

“helper kinetics” (such as autocatalysis/positive feedback) to obtain a homeostatic regulation

with optimum response and precision properties. For synthetic biology this means that knowl-

edge about controller structure and their inherent kinetics are important aspects in the design

and implementation of artificial regulatory units when trying to oppose the dilution effects of

growth or other time-dependent perturbations.

Outlook

The approach taken here is based on ordinary mass action kinetics and thereby is purely deter-

ministic. In addition, we made the assumption that the cellular volume is well-mixed and

homogenous. Both assumptions are subject to certain criticism, when applied to biochemical

reactions within a cell. While in many cases a chemically reacting system can be treated as a

continuous deterministic process, in other cases, in particular when the number of reacting

molecules becomes low, reactions may better be described as discrete stochastic processes [46–

48]. However, many, if not most of the stochastic approaches to describe cellular processes still

treat (and require) that systems are treated as homogenous, thereby neglecting “recruiting” or

“funneling” mechanisms which occur, for example, on the surface of cellular membranes,

involve multiprotein complexes (“antenna”) in photon harvesting [49], or use substrate

channeling (“tunnels”) in enzyme-catalyzed reactions [50].

Ignoring these spatial aspects, it may be mentioned, that the controller motifs 1 and 2 (Fig

1) based on zero-order and first-order autocatalysis are well-described by the Gillespie algo-

rithm [46] and show an excellent correspondence between the stochastic and deterministic

approach (P. Ruoff, unpublished results). The motif 1 antithetic controller has been shown to

work well under stochastic conditions by exploiting noise, and achieves regulation where a

similar deterministic approach apparently fails [21]. How these controllers behave under time-

dependent perturbations and stochastic conditions is an interesting aspect which we would

like to investigate in a later work.

Nevertheless, we feel that the deterministic calculations presented here give a first ranking

between the various integral controllers when exposed to different growth laws and dilution

kinetics.

Supporting information

S1 Matlab. A set of Matlab files showing the results of Figs 4, 7, 9, 11, 13, 15, 18, 20, 22, 24,

25, 26 and 27.

(ZIP)
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S1 Text. Steady state of cell-internal-generated compound A without negative feedback.

(PDF)

S2 Text. Steady state of transporter-generated compound A without negative feedback.

(PDF)

S3 Text. Steady states and theoretical set-point for motif 1 zero-order controller.

(PDF)

S4 Text. Steady states and theoretical set-point for motif 1 second-order (antithetic) con-

troller.

(PDF)

S5 Text. Steady states and theoretical set-point for motif 1 autocatalytic controller.

(PDF)

S6 Text. Steady states and theoretical set-point for motif 2 zero-order controller.

(PDF)

S7 Text. Novel antithetic integral controller arrangements and steady states in a motif 2

background.

(PDF)
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Steady state of cell-internal-generated compound A without nega-
tive feedback

Integrating V̇=k1 from V0 to V (t) and from time zero to time t gives

V (t) = k1t+ V0 (S1)

Inserting Eq. S1 into the equation Ė = −EV̇ /V (Eq. 10), we get

Ė = −E

(
k1

k1t+V0

)
= −E

(
1

t+α

)
(S2)

where α = V0/k1. Separation of variables gives

dE

E
=

dt

t+α
(S3)

Integrating from time zero to t and from E0 to E(t) we get

ln

(
E

E0

)
= ln

(
α

α+t

)
⇒ E = E0

(
α

α+t

)
(S4)

Inserting E from Eq. S4 into the rate equation for A (Eq. 11)

Ȧ = k2·E − A· V̇
V

= k2·E − A· k1
V0+k1·t

= k2·E − A· 1

α+t
(S5)

we get the following rate equation for A

Ȧ+
A

α+t
= k2E0

(
α

α+t

)
(S6)

The solution of Eq. S6 is given by Eq. 11, i.e.,

A(t) = k2E0α + (A0 − k2E0α)

(
α

α+t

)
(S7)
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Steady state of transporter-generated compound A without nega-
tive feedback

We start with Eq. 15 where transporter T pumps external A (Aext) into a
constantly growing cell (V̇=constant)

Ȧ =
k2·T
V

− A

(
V̇

V

)
(S1)

We assume that the surface concentration of T is constant and that the pump
rate is zero-order with respect to the external A concentration.

The steady state of A is given by setting Eq. S1 to zero, which gives

Ȧ =
k2·T
V

− A

(
V̇

V

)
= 0 ⇒ Ass =

k2·T
V̇

(S2)

independent of the initial concentration of A.

In case there is a first-order removal of cellular A with respect to A the rate
equation becomes

Ȧ =
k2·T
V

− k3·A− A

(
V̇

V

)
= 0 (S3)

Setting Eq. S3 to zero leads to

Ass =
k2·T

k3V + V̇
→ 0 as V → ∞ (S4)

In case the removal of cellular A is zero-order with respect to A (for example
by an enzyme removing A at maximum velocity Vmax), then in this case the
steady state condition

Ȧ =
k2·T
V

− Vmax − A

(
V̇

V

)
= 0 (S5)

1



gives

Ass =
1

V̇
(k2·T − Vmax·V ) (S6)

As the volume V grows there will be a critical volume Vcrit=k2T/Vmax at
which Ass becomes zero.
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Steady states and theoretical set-point for motif 1 zero-order con-
troller

Transporter-based compensatory flux with constant values of V̇
and k̇3

The rate equations for A and E when the compensatory flux is transporter
based, are

Ȧ =
k2E

V
− k3·A− A

(
V̇

V

)
(S1)

Ė = k4 − k6·A− E

(
V̇

V

)
(S2)

with M
k5+M

= E
k7+E

=1 (see Eq. 16). For constant V (V̇=0) and k3 (k̇3=0),
Eq. S2 defines the theoretical set-point, i.e.

Ė = k4 − k6·A− A

(
V̇

V

)
= 0 ⇒ Ass = Atheor

set =
k4
k6

(S3)

As long as E
k7+E

=1 the controller will for any step-wise perturbation in k3 or

V move Ass to Atheor
set .

However, for constant V̇ and k̇3, Eq. S3 is no longer valid. In case the volume
V increases linearly, E needs to increase in order to oppose the dilution of
A. To get an estimate of Ass for constant V̇ and k̇3, we take the double time
derivative of A, and set Ä and Ȧ to zero

Ä =
k2Ė

V
− k2EV̇

V 2
− k̇3A+ A

(
V̇

V

)2

= 0 (S4)

Inserting Eq. S2 into Eq. S4 gives

k2
V

[
k4 − k6·A− E

(
V̇

V

)]
− k2·E

(
V̇

V 2

)
− k̇3A+ A

(
V̇

V

)2

= 0 (S5)
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Multiplying Eq. S5 with V leads to

k2k4 − k2k6·A− 2k2E

(
V̇

V

)
− k̇3A·V + A

(
V̇ 2

V

)

︸ ︷︷ ︸
→ 0

= 0 (S6)

Assuming steady state conditions in Eq. S1 and neglecting there the AV̇ /V
term we can approximately write

Ȧ =
k2E

V
− k3·A− A

(
V̇

V

)
= 0 ⇒ k2E

V
= k3·Ass (S7)

with E and V increasing. Inserting the right-hand side of Eq. S7 into Eq. S6
gives

k2k4 − k2k6·Ass − 2k3AssV̇ − k̇3Ass·V = 0 (S8)

Solving for Ass, we get

Ass =
k2k4

k2k6+2k3V̇+k̇3V
(S9)

In phase 2 of Fig. 7 we have k̇3=0. For k2=2.0, k3=2.0, k4=20.0, k4=10.0,
and V̇=2.0, Ass is calculated after Eq. S9 to be 1.25, while the numerical
value of Ass is 1.11. When in phase 3 (Fig. 7) k̇3=1.0, Eq. S9 indicates, as
observed, that Ass will go to zero as V increases.

Cell-internal compensatory flux with constant values of V̇ and k̇3

Rate equations for A and E (Eqs. 50 and 51) are written as

Ȧ = k3·E − k3·A− A

(
V̇

V

)
(S10)

Ė = k4 − k6·A− E

(
V̇

V

)
(S11)

2



by using N/(k7+N)=M/(k5+M)=1. In addition, E/(k8+E)=1 giving the
controller ideal behavior/precision for step-wise perturbations in k3 and V .
Calculating Ä and setting Ä and Ȧ to zero, gives

Ä=k2·Ė−k̇3A+A

(
V̇

V

)2

=k2

[
k4−k6·A−E

(
V̇

V

)]
−k̇3A+A

(
V̇

V

)2

= 0

(S12)
Neglecting the V̇ /V terms (steady state when time t and volume V become
large) leads to Eq. 53

k2k4 = k2k6Ass + k̇3Ass ⇒ Ass =
k2k4

k2k6+k̇3
(S13)

Model calculations at the end of phase 3 in Fig. 18 (k2=1.0, k4=20.0, k6=10.0,
and k̇3=1.0) show an Ass=1.75, while the estimated value from Eq. S13 gives
a value of 1.82.
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Steady states and theoretical set-point for motif 1 second-order
(antithetic) controller

Transporter-based compensatory flux with constant values of V̇
and k̇3

The rate equations (Eqs. 21-23) are written as

Ȧ =
k2E2

V
− k3·A− A

(
V̇

V

)
(S1)

Ė1 = k4·A− k6·E1·E2 − E1

(
V̇

V

)
with

M

k5+M
= 1 (S2)

Ė2 = k8 − k6·E1·E2 − E2

(
V̇

V

)
with

O

k9+O
= 1 (S3)

By setting Ė1=0 and neglecting the dilution term (considering V≫V̇ ) steady
state conditions require

k4·A = k6·E1·E2 (S4)

Calculating the double time derivative of A and setting it and Ȧ to zero gives

Ä =
k2Ė2

V
− k2E2V̇

V 2
− k̇3·A+ A

(
V̇

V

)2

= 0 (S5)

Inserting Ė2 from Eq. S3 into Eq. S5

Ä =
k2
V


k8 − k6·E1·E2︸ ︷︷ ︸

k4·A

−E2

(
V̇

V

)
− k2E2V̇

V 2
− k̇3·A+ A

(
V̇

V

)2

= 0 (S6)

1



Multiplying Eq. S6 by V yields

Ä = k2

[
k8 − k4·A− E2

(
V̇

V

)]
− k2E2

V
·V̇ − k̇3·A·V + A

(
V̇ 2

V

)

︸ ︷︷ ︸
≈0

= 0 (S7)

giving

k2k8 − k2k4·Ass − 2· k2E2

V︸ ︷︷ ︸
k3·Ass

·V̇ − k̇3·Ass·V = 0 (S8)

using the steady state condition from Eq. S1 that k2E2/V=k3Ass. Solving
for Ass gives

Ass =
k2k8

k2k4+2k3V̇+k̇3V
(S9)

which is analogous to the Ass expression for the motif 1 zero-order controller
(see S3 Text, Eq. S9). As for the motif 1 zero-order controller Ass will go to
zero for the antithetic controller when k̇3 6= 0 (Fig. 9, phase 3).

Cell-internal-based compensatory flux with constant values of V̇
and k̇3

The rate equation for A with an cell internal compensatory flux is given by

Ȧ = k2E2 − k3·A− A

(
V̇

V

)
(S10)

where in Eq. 56 N/(k7+N) is set to 1.0. The rate equations for E1 and E2

are as given by Eqs. S2 and S3, respectively.

Calculating Ä from Eq. S10 gives

Ä = k2Ė2 − k̇3·A+ A

(
V̇

V

)2

= 0 (S11)

2



Inserting Ė2 from Eq. S3 into Eq. S11 gives

k2


k8 − k6·E1·E2︸ ︷︷ ︸

k4·Ass

−E2


 V̇

V︸︷︷︸
→ 0





− k̇3·Ass + Ass


 V̇

V︸︷︷︸
→ 0




2

= 0 (S12)

Collecting the Ass terms and observing that V̇ /V → 0, we get

k2k8 = k2k4·Ass + k̇3Ass ⇒ Ass =
k2k8

k2k4+k̇3
(S13)

Note, that also in case of a cell-internal generated compensatory flux the
steady state expressions for A for the motif 1 zero-order and the antithetic
controllers show the same behaviors (compare S3 Text Eq. S13) with Eq. S13
above.
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Steady states and theoretical set-point for motif 1 autocatalytic
controller

Transporter-based compensatory flux with constant values of V̇
and k̇3 (kinE =koutE =1×10−5)

The rate equations Eqs. 33-34 are rewritten in the following form

Ȧ =
k2E

V
− k3·A− A

(
V̇

V

)
(S1)

Ė = k4·E − k6·A·E − E
(
V̇

V

)
(S2)

where in Eq. 34 M/(k5+M)=1.0 and the term kinE−koutE ·E is neglected. In
addition, sufficent M is present to avoid a controller breakdown as shown in
phase 3 of Fig. 11.

Calculating Ä from Eq. S1 gives

Ä =
k2Ė

V
− k2EV̇

V 2
− k̇3·A+ A

(
V̇

V

)2

= 0 (S3)

Note that V̈=0 since V̇=constant. In addition we assume steady state in A
such that Ȧ=0.

Inserting Eq. S2 into Eq. S3 gives

k2
V

[
k4E − k6·E·A− E

(
V̇

V

)]
− k2EV̇

V 2
− k̇3A+ A

(
V̇

V

)2

= 0 (S4)

1



Collecting terms gives

k2E

V︸︷︷︸
k3Ass

·k4 −
k2E

V︸︷︷︸
k3Ass

·k6·Ass −
2E

V


 V̇

V︸︷︷︸
→ 0


− k̇3Ass + Ass


 V̇

V︸︷︷︸
→ 0




2

= 0 (S5)

Rearranged we get

k3k4Ass−k3k6A2
ss− k̇3Ass = 0 ⇒ Ass =

k3k4 − k̇3
k3k6

= Atheorset −
k̇3
k3k6

(S6)

where Atheorset =k4/k6 for step-wise perturbations.
To show that the autocatalytic controller can manage a k3 perturbation of
the form

k3(t) = k3,0 + a·tn (S7)

we note that the ratio k̇3/k3 → 0 as t → ∞, i.e.

lim
t→∞

{
k̇3
k3

}
= lim

t→∞

{
n·atn−1
k3,0+atn

}
L′Hôpital

= n(n− 1) lim
t→∞

{
1

t

}
= 0 (S8)

such that the term k̇3/(k3k6) in Eq. S6 goes to zero.

Transporter-based compensatory flux with constant values of V̇
and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

Starting with rate equation 34 (now S9):

Ė = k4·E − k6·A·E + kinE − koutE ·E − E
(
V̇

V

)
(S9)

Inserting Eq. S9 into Eq. S3 gives:

Ä=
k2
V

[
k4E−k6·E·A+ kinE−koutE ·E−E

(
V̇

V

)]
−k2EV̇

V 2
−k̇3A+A

(
V̇

V

)2

(S10)

2



Looking for the steady state when V and k3 increase linearly (V̇ and k̇3 are
constant), the V̇ /V and V̇ /V 2 terms are neglected by assuming that V̇ � V .
For Ȧ this leads to

Ȧ =
k2E

V
− k3·A− A

(
V̇

V

)
≈ k2E

V
− k3·A (S11)

which, when setting Eq. S11 to zero, gives the relationship between the steady
state in A, Ass, and the changing E, V , and k3 values, i.e.,

E =

(
k3
k2

)
· V · Ass (S12)

Setting Eq. S10 to zero, neglecting the V̇ /V and V̇ /V 2 terms and inserting
E from Eq. S12 into Eq. S10, results in the expression for Ass

A2
ss − Ass

(
k4
k6
− koutE

k6
− k̇3
k3k6

+
k2k

in
E

V

)
= 0 (S13)

For increasing k3 and V the terms k̇3/k3k6 and k2k
in
E /V become small in

comparison with (k4−koutE )/k6 such that the new set-point is approximately

Ass ≈
k4−koutE

k6
(S14)

Fig. S1 illustrates the change in set-point for kinE =koutE =10.0, using the rate
constant values from Fig. 11. During the first phase the system is as in
Fig. 11, with kinE =koutE =1×10−5. In phases 2 and 3 the values of kinE and koutE

are changed 10.0. Eq. S14 predicts a set-point of 1.0. In phase 2 of Fig. S1
the numerically calculated Ass is 1.001, while in phase 3 this value is 0.9996,
indicating that Eq. S14 describes the new set-point quite well.

3
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Figure S1. Performance of the motif 1 autocatalytic controller (Eqs. 33-
35). Phase 1: constant volume V and constant k3. Initial concentrations and
rate constant values (at steady state) as in Fig. 11: V0=25.0, V̇=0.0, A0=2.0,
E0=100.0, M0=1 × 1012, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0, k5=1 × 10−6,
k6=10.0, and kinE =koutE =1×10−5. The controller keeps A at its set-point at
Atheorset =k4/k6=2.0. Phase 2: rate constants remain the same as in phase
1, but kinE =koutE =10.0 and V increases linearly with V̇=1.0. Phase 3: V
continues to increase with the same rate and k3 increases with rate k̇3=1.0.
The controller moves A towards the new set-point Atheorset =(k4−koutE )/k6=1.0
in both phase 2 and phase 3. In comparison to Fig. 11 no breakdown in
phase 3 occurs due to a high initial M concentration.

The set-point (Eq. S14) is also defended for step-wise perturbations in V or
k3. For kinE =koutE =10.0 a change of k3 from 2.0 to 8.0 (V kept constant at
25.0 and other rate constants remain as in Fig. S1) shows a numerical Ass
value of 1.005, while the same Ass value is observed for a step-wise change
of V from 25.0 to 100.0, while k3 is kept constant at 2.0.

Transporter-based compensatory flux with exponentially increas-
ing values of V̇ and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

The autocatalytic rate of V is described by the equation

V̇ = κV (S15)

where κ is a constant (=0.1) and related to the doubling time of V by ln 2/κ.
Similarly, the autocatalytic increase of k3 is described by

k̇3 = ζk3 (S16)

4



where ln 2/ζ is the doubling time of k3. In accordance with Eq. 48, ζ=0.2.

The rate equations for A and E take the form (assuming again that sufficient
M is always present and M/(k5+M)=1.0):

Ȧ =
k2E

V
− k3·A− κ·A (S17)

Ė = k4·E − k6·A·E + kinE − koutE ·E − κ·E (S18)

Setting Ȧ=0 and calculating Ä=0 gives

Ä =
k2Ė

V
− k2V̇

V 2
− k̇3Ass − κȦss︸︷︷︸

=0

= 0 (S19)

Inserting Eq. S18 into Eq. S19, and substituting the relationship between
growing E, V , k3 and the steady state in A (Ass from Eq. S17),

E =
V

k2
(k3 + κ)Ass , (S20)

into the equation of Ä, we get:

Ä = k4(k3+κ)Ass−k6(k3+κ)A2
ss+

k2k9
V
−koutE (k3+κ)Ass−κ(k3+κ)Ass−ζk3Ass−

k2κ

V
= 0

(S21)

Rearranging leads to a quadratic equation in Ass

A2
ss −



k4
k6
−k

out
E

k6
− κ

k6
− ζk3
k6(k3+κ)︸ ︷︷ ︸
→ ζ/k6


Ass −

k2
V

(k9−κ)
︸ ︷︷ ︸

→ 0

= 0 (S22)

For increasing k3 the term ζk3/(k6(k3+κ)) approaches ζ/k6, while for increas-
ing large V the last term in Eq. S22 vanishes.
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When both V and k3 increase exponentially the set-point becomes

Ass ≈
k4−koutE −κ−ζ

k6
(S23)

In comparison with linear growth (Eq. S14) exponential growth gives addi-
tional offsets in the set-point, which depend on κ and ζ, i.e., on how fast
the exponential growth in V or k3 occurs. This is shown in Fig. S2 where
the perturbation profile of Fig. 14 and the rate constant values from Fig. 11
(Fig. 15c) are applied, except that kinE and koutE are changed in phases 2 and
3 from 1×10−5 to 10.0.
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Figure S2. Performance of the motif 1 autocatalytic controller (Eqs. 33-35)
with transporter based compensatory flux applying the perturbation profile
from Fig. 14. Phase 1: constant volume V and constant k3. Initial concen-
trations and rate constant values (at steady state) as in Fig. 11: V0=25.0,
V̇=0.0, A0=2.0, E0=100.0, M0=1 × 1012, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0,
k5=1× 10−6, k6=10.0, and kinE =koutE =1×10−5. The controller keeps A at its
set-point at Atheorset =k4/k6=2.0. Phase 2: rate constants remain the same as
in phase 1, but kinE =koutE are both changed to 10.0 and V increases exponen-
tially with V̇=κV (κ = 0.1). Phase 3: V continues to increase exponentially
and k3 starts to increase exponentially with the rate law k̇3=ζk3 (ζ = 0.2).
The controller moves A towards a new steady state dependent on κ and/or ζ
as outlined by Eq. S23. For comparison the set-point k4−koutE /k6 (=1.0) for
linear growth is indicated as a dashed line showing the offset from k4−koutE /k6
due to exponential growth.

6



Cell-internal compensatory flux with constant values of V̇ and k̇3
(kinE =koutE =1×10−5)

Assuming that N and M are sufficiently high to avoid controller breakdown
by low N and M values, the rate equations for A and E are in this case
(neglecting the kinE−koutE ·E term with kinE = koutE = 1×10−5):

Ȧ = k2·E − k3·A− A
(
V̇

V

)
(S24)

Ė = k4·E − k6·A·E − E
(
V̇

V

)
(S25)

Calculating Ä and setting it to zero gives

Ä = k2Ė − k̇3A+ A

(
V̇

V

)2

= 0 (S26)

Inserting Eq. S25 into Eq S26

Ä = k2


k4 E︸︷︷︸

k3Ass/k2

−k6·A· E︸︷︷︸
k3Ass/k2

− E︸︷︷︸
k3Ass/k2

(
V̇

V

)
− k̇3Ass +Ass

(
V̇

V

)2

= 0

(S27)

From the steady state condition of Eq. S24, we use approximately (for large
V ) E = k3Ass/k2. Collecting terms in Eq. S27

k3k4Ass − k3k6A2
ss − k̇3Ass = 0 (S28)

Dividing by Ass gives

Ass =
k4
k6
− k̇3
k3k6

(S29)

where k4/k6=A
theor
set .
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Cell-internal compensatory flux with linearly increasing values of
V̇ and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

The rate equation for A is described by Eq. S24, while the rate equation for
E now includes the kinE−koutE ·E term:

Ė = k4·E − k6·A·E + kinE−koutE ·E − E
(
V̇

V

)
(S30)

Inserting Eq. S30 into the expression for Ä (Eq. S26) gives:

Ä = k2

[
k4E − k6·A·E + kinE−koutE ·E − E

(
V̇

V

)]
− k̇3Ass + Ass

(
V̇

V

)2

= 0

(S31)

Setting Ȧ=0 (Eq. S24), neglecting the AV̇ /V term, we get the (approximate,
for large V ) relationship between increasing E and k3 while A is kept at its
steady state, i.e.,

E =

(
k3
k2

)
Ass (S32)

Inserting E from Eq. S32 into Eq. S31, neglecting the terms containing V̇ /V
gives

k3k4Ass − k3k6A2
ss + k2k

in
E − k3koutE Ass − k̇3Ass = 0 (S33)

Rearranging Eq. S33 gives Eq. 61:

A2
ss − Ass

(
k4−koutE

k6
− k̇3
k3k6

)
− k2k

in
E

k3k6
= 0 (S34)

Fig. S3 shows the behavior for linearly increasing V and k3. When only V
increases in phase 2 the controller moves A to the Ass value described by
the solution of Eq. S34. Although this steady state in A is dependent on the
value of k3, it is independent of how fast V grows. Finally, in phase 3 k3
starts to grow and the controller moves Ass to the set-point (k4 − koutE )/k6
independent of the (linear) growth rate of k3 (see, however, the chapter below
when V and k3 grow exponentially and kinE =koutE =10.0).
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Figure S3. Performance of the motif 1 autocatalytic controller (Eq. 59
and Eqs. 34-35). Phase 1: constant volume V and constant k3. Ini-
tial concentrations and rate constant values: V0=25.0, V̇=0.0, A0=2.0,
E0=100.0, N0=M0=1× 1012, k2=1.0, k3=2.0, k̇3=0.0, k4=20.0, k5=1× 10−6,
k6=10.0, and kinE =koutE =1×10−5. The controller keeps A at its set-point at
Atheorset =k4/k6=2.0. Phase 2: rate constants remain the same as in phase
1, but kinE =koutE =10.0 and V increases linearly with V̇=1.0. The numerical
value of Ass is 1.3656 and independent of how fast V grows. This value is
in excellent agreement with the solution of the quadratic equation (1.3660).
Phase 3: V continues to increase with the same rate and k3 starts to grow
with rate k̇3=1.0. The controller moves A now towards the new set-point
(k4−koutE )/k6=1.0.

Cell-internal compensatory flux with exponential increase of V̇ and
k̇3 (kinE =koutE =1×10−5)

We have the same rate equations as above (Eqs. S24-S25) with kinE =koutE =1×10−5

(which we neglect in the analytical approach here). Since V and k3 both grow
exponentially we can write

V̇ = κV & k̇3 = ζk3 (S35)

where κ and ζ are constants. The rate equations are (assuming sufficient
amounts of N and M , and, for the sake of simplicity, we set N/(k7 +
N)=M/(k5 +M)=1.0)

Ȧ = k2·E − k3·A− κA (S36)
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Ė = k4·E − k6·A·E − κE (S37)

Assuming steady state in A (Ȧ=0) we can write from Eq. S36

E =

(
k3 + κ

k2

)
Ass (S38)

where E increases in relationship with k3 in order to keep A at its steady
state.

Calculating Ä and noting that Ȧ=0 and that ζ and κ are constants, gives

Ä = k2Ė − k̇3Ass = k2 [k4E − k6·Ass·E − E·κ]− k̇3Ass = 0 (S39)

Inserting the expression for Ess from Eq. S38 into Eq. S39 and collecting
terms gives

Ass =
k4
k6
− κ

k6
− k̇3
k6(k3+κ)

(S40)

In Eq. S40 k4/k6 is the theoretical set-point Atheorset the controller defends
when step-wise perturbations are applied. The term κ/k6 is the offset from
Atheorset due to the exponential increase of V , while the term k̇3/(k6(k3+κ))
is the offset due to the exponential increase of k3. This last term can be
reduced to the ratio ζ/k6 by using k̇3=ζk3 and observing that

lim
k3→∞

k̇3
k6(k3+κ)

= lim
k3→∞

ζk3
k6(k3+κ)

L′Hôpital
=

ζ

k6
(S41)

Referring to Fig. 25c, the numerical steady state is calculated at the end
of phase 2 to be 1.99. The same offset of 0.01 is obtained for κ/k6 from
Eq. S40 (rate constant values are found in Fig. 22). At the end of phase 3 in
Fig. 25c the numerical Ass value is 1.971, while the overall calculated offset
from Eq. S40 is 1.97 which includes the exponential increase of k3 (Eq. 48)
with a ζ of 0.2.
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Cell-internal compensatory flux with exponentially increasing val-
ues of V̇ and k̇3 and non-negligible kinE and koutE terms (kinE =koutE =10.0)

The rate equations and conditions are the same as in the previous section,
except that Ė now includes the term kinE−koutE ·E, i.e.,

Ȧ = k2·E − k3·A− κA (S36)

Ė = k4·E − k6·A·E + kinE − koutE ·E − κE (S42)

We calculate Ä, set Ȧ and Ä to zero, and then insert Eq. S37 into the Ä-
expression. Then all E’s are substituted with the expression from Eq. S38,
which gives the equation for Ä and Ass:

Ä =k2Ė − k̇3Ass = k2
[
k4E − k6·Ass·E + kinE − koutE ·E − E·κ

]
− k̇3Ass

= k2

[
k4

(
k3+κ

k2

)
Ass−k6·Ass·

(
k3+κ

k2

)
Ass+k

in
E−koutE ·

(
k3+κ

k2

)
Ass−κ

(
k3+κ

k2

)
Ass

]

− k̇3Ass
= k4(k3+κ)Ass−k6(k3+κ)A2

ss+k2k
in
E−koutE (k3+κ)Ass−κ(k3+κ)Ass−k̇3Ass

= −k6(k3+κ)A2
ss+Ass

[
k4(k3+κ)− koutE (k3+κ)−κ(k3+κ)−k̇3

]
+k2k

in
E

= 0
(S43)

Dividing the last expression in Eq. S43 by −k6(k3+κ) gives

A2
ss−Ass

[
k4
k6
−k

out
E

k6
− κ

k6
− ζk3
k6(k3+κ)

]
− k2k

in
E

k6(k3+κ)
=0 (S44)

where k̇3 has been substituted by ζk3 (see Eq. S35). When k3 becomes large
the term k3/(k3+κ) goes to 1 and k2k

in
E /k6(k3+κ) goes to 0, such that Eq. S44

can be written as:

A2
ss−Ass

[
k4
k6
−k

out
E

k6
− κ

k6
− ζ

k6

]
=0 (S45)

and Ass becomes:

Ass =
k4
k6
− κ

k6
− ζ

k6
−k

out
E

k6
(S46)
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Steady states and theoretical set-point for motif 2 zero-order con-
troller

Transporter-based compensatory flux with constant values of V̇
and k̇3

We refer to the rate equations for A and E (Eqs. 43-44), which are written
in the following form:

Ȧ =
k2k4

k4+E
· 1

V
− k3·A− A

(
V̇

V

)
(S1)

Ė = k8·A− k9 − E
(
V̇

V

)
(S2)

by setting in Eq. 44 M/(k11+M)=E/(k10+E)=1.

Calculating Ä gives

Ä = − k2k4

(k4+E)2
· Ė
V
−
(
k2k4

k4+E

)
V̇

V 2
− k̇3A+ A

(
V̇

V

)2

(S3)

Inserting Eq. S2 into Eq. S3 leads to

Ä = − k2k4

(k4+E)2
· 1

V

[
k8·A−k9−E

(
V̇

V

)]
−
(
k2k4

k4+E

)
V̇

V 2
−k̇3A+A

(
V̇

V

)2

(S4)

Multiplying Eq. S4 by V (k4+E)2/(k2k4) gives

Ä = −k8A+k9+E

(
V̇

V

)
−(k4+E)

(
V̇

V

)
−k̇3A·

V (k4+E)2

k2k4

+A

(
V̇

V

)2

·V (k4+E)2

k2k4

(S5)
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Setting the V̇ /V terms in Eq. S5 to zero we get

Ä = −k8A+ k9 − k̇3A·
V (k4+E)2

k2k4

(S6)

Setting Eq. S1 to zero and neglecting the V̇ /V terms gives the relationship
between decreasing E and increasing V and k3 to keep A at a constant steady
state Ass, i.e.

k2k4

(k4+E)·V = k3Ass ⇒ (k4+E)2 =
(k2k4)2

k2
3A

2
ssV

2
(S7)

Inserting (k2k4)2 from Eq. S7 into Eq. S6 and setting Ä=0 gives

Ass =
k9

k8︸︷︷︸
Atheor

set

− k̇3k2k4

k2
3AssV︸ ︷︷ ︸
offset

(S8)

For constant k̇3 and increasing values of V and k3 the offset term k̇3k2k4/k
2
3AssV

goes to zero and Ass is kept by the controller at its theoretical set-point
Atheorset =k9/k8 as clearly seen in Fig. 13. Since a constant Ass level by this
controller type is maintained by decreasing E values the negative feedback
loop will break when E becomes low and the controller reaches its capacity
limits (Eq. 48).

Cell-internal compensatory flux with constant values of V̇ and and
k̇3

In this case the rate equations (Eqs. 62-63) are written as

Ȧ =
k4k6

k4+E
− k3·A− A

(
V̇

V

)
(S9)

Ė = k8·A− k9 − E
(
V̇

V

)
(S10)
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by setting N/(k7+N)=E/(k10+E)=M/(k11+M)=1. Taking the second-time
derivative Ä gives

Ä = − k4k6

(k4+E)2
Ė − k̇3A+ A

(
V̇

V

)2

(S11)

Inserting Ė from Eq. S10 into Eq. S11

Ä = − k4k6

(k4+E)2

[
k8·A− k9 − E

(
V̇

V

)]
− k̇3A+ A

(
V̇

V

)2

(S12)

Setting Eq. S9 to zero and neglecting the V̇ /V term, we have the condition
how E has to decrease for increasing k3 to keep A constant at Ass, i.e.,

k4k6

(k4+E)
= k3Ass ⇒ (k4+E)2 =

(k4k6)2

k2
3A

2
ss

(S13)

Substituting (k4+E)2 in Eq. S11 by (k4k6)2/k2
3A

2
ss, setting the resulting equa-

tion to zero, and neglecting the V̇ /V terms, leads to

Ass =
k9

k8

− k̇3k4k6

k2
3k8Ass

(S14)

where Atheorset =k9/k8 and the offset term is zero for k̇3=0, and goes to zero
when k̇3 is constant and k3 increases.

Cell-internal compensatory flux with exponential increase of V̇ and
k̇3

i) Exponential increase in V and constant k3 (phase 2). We start again with
the rate equations

Ȧ =
k4k6

k4+E
− k3·A− A

(
V̇

V

)
(S9)
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Ė = k8·A− k9 − E
(
V̇

V

)
(S2)

In the case k̇3=0, but V increases exponentially, say V̇=κV , Ass and Ess show
constant value, where Ass shows an offset above Atheorset (overcompensation).
The steady state in A can be calculated by setting Eq. S2 to zero, i.e.,

Ass =
k9

k8︸︷︷︸
Atheor

set

+
κ

k8

Ess
︸ ︷︷ ︸

overcompensated offset

(S15)

ii) Exponential increase in V and k3 (phase 3). Assuming that V̇=κV and

k̇3=ζk3 with κ and ζ constants, we can calculate Ä

Ä = − k4k6

(k4+E)2
Ė − k̇3A (S16)

assuming that Ȧ=0. Inserting Eq. S2 (note that V̇ /V=κ) into Eq. S16 and
setting Eq. S16 to zero gives the expression for the steady state of A, Ass,

− k4k6

(k4+E)2
[k8·Ass − k9 − κ·E]− k̇3Ass = 0 (S17)

leading to

Ass = − k4k6

k̇3(k4+E)2
[k8·Ass − k9 − κ·E] (S18)

Note, that while A is in a steady state, E is decreasing (derepressing) in
order to increase the compensatory flux. Eq. S18 can be rewritten as
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Ass = − k4k6k8

k̇3(k4+E)2

︸ ︷︷ ︸
γ0


Ass −

Aapp
set︷ ︸︸ ︷

k9

k8︸︷︷︸
Atheor

set

− κ

k8

E
︸︷︷︸

overcompensated offset


 (S19)

where Aapparentset is an ”apparent set-point”. Thus, Eq. S19 can be written as

Ass = −γ0(Ass − Aappset ) ⇒ Ass =

(
γ0

1 + γ0

)
Aappset (S20)
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Figure S1. (a) Perturbation profile of V and k3 (same figure as Fig. 14).
(b) Response of controller (same results as in Fig. 25d). (c) Behaviors of
Ass and Aappset as a function of time (Eq. S20). (d) By the end of phase 3 E2

decreases more rapidly than the exponential increase of k̇3, which is indicated
by the product k̇3E

2 going to zero.
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Fig. S1c shows how γ0 and Aappset changes with respect to the controller’s
behavior when exposed to exponential increase in V and k3 with the re-
sponse shown in Fig. 25d. For convenience the perturbation profile and the
controller’s response are repeated in Figs. S1a and b. The derepression by
decreasing E leads to an increase in γ0 (Fig. S1c, curve outlined in blue).
The increase in γ0 is the result of E2 decreasing more rapidly than the expo-
nential increase of k̇3. This is indicated in Fig. S1 where the product k̇3E

2

during phase 3 decreases and Ass → Atheorset .

6



Supporting Material, File S7 Text

Homeostatic Controllers Compensating for
Growth and Perturbations

P. Ruoff1∗, O. Agafonov1, D. M. Tveit2, K. Thorsen2, T. Drengstig2

1Centre for Organelle Research
2Department of Electrical Engineering and Computer Science,

University of Stavanger, Stavanger, Norway

∗Corresponding author. Address: Centre for Organelle Research, University of
Stavanger, N-4036 Stavanger, Norway, Tel.: (47) 5183-1887, Fax: (47) 5183-1750,
E-mail: peter.ruoff@uis.no



Novel antithetic integral controller arrangements and steady states
in a motif 2 background

Novel antithetic integral controller arrangements
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Figure S1. (a) Color-coded representation of a negative feedback loop
containing an integral controller. (b) Molecular feedback schemes where the
antithetic integral controller (outlined in brown) is embedded within different
structural feedback loops which relate to the basic feedback motifs described
in Ref. (1). Colors indicate how the different kinetic and signaling processes
relate to the parts in the feedback loop in (a). Numbers define the different
motifs.
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Fig. S1a shows a generalized feedback loop containing an integral controller
outlined in brown color. In Fig. S1b eight basic molecular feedback arrange-
ments are shown in corresponding color code. The antithetic integral con-
troller (also outlined in brown) is due to the removal of E1 and E2 by second-
order kinetics. Activating and inhibitory signaling is shown by the dashed
lines. In the following we describe some of the steady state behaviors in
relation to the motif 2 antithetic controller.

Steady states and theoretical set-point for motif 2 antithetic con-
troller

Transporter-based compensatory flux with constant values of V̇
and k̇3

The rate equations (Eqs. 76, 22, and 23) are

Ȧ =
k2·k10
k10+E1

· 1
V
− k3 · A− A

(
V̇

V

)
(S1)

Ė1 = A

(
k4·M
k5+M

)
− k6 · E1 · E2 − E1

(
V̇

V

)
(S2)

Ė2 =
k8·O
k9+O

− k6 · E1 · E2 − E2

(
V̇

V

)
(S3)

In deriving an expression for the steady state in A, we assume that precursors
M and O are in sufficient amounts such that

M

k5+M
=

O

k9+O
= 1

We can get an expression for A directly when inspecting Eq. S2. Rewriting
Eq. S2 gives
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k4 · A = Ė1 + k6·E1·E2 + E1

(
V̇

V

)
(S4)

During the first phase in Fig. 29a, when V̇=k̇3=0, and A, E1, and E2 are in
a steady state, we get

Ass =
k6
k4
E1·E2 =

k8
k4

= Atheor
set (S5)

showing that E1·E2 is constant. In case V and k3 are linearly increasing the
E1V̇ /V term in Eq. S4 can be neglected, as E1 is getting low and the V̇ /V
term goes to zero. Ė1 is negative, but low. Ignoring Ė1 shows that A can be
described in term of E1E2

A =
k6
k4
E1·E2 (S6)

In fact, A and k6E1E2/k4 follow each other very closely (Fig. S2), even when
the controller is no longer able to cope with the linear increase of V and k3
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Figure S2. Same system as in Fig. 29a with k6E1E2/k4 (orange curve)
overlayed on A (blue curve), showing that k6E1E2/k4 describes the behavior
of A closely.
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Fig. S2 shows that in phase 3 the product E1E2 can no longer be kept con-
stant. Subtracting Eq. S2 from Eq. S3 and solving for A gives

A =
k8
k4︸︷︷︸

Atheor
set

−d(E2−E1)

dt
− (E2 − E1)

(
V̇

V

)
(S7)

indicating that the increase in E2 (Fig. 29a) cannot be matched by the dere-
pressing/decreasing E1, resulting in the decrease of A and the breakdown of
the controller.

Transporter-based compensatory flux with exponential increase of
V̇ and k̇3

In case V and k3 increase exponentially k6E1E2/k4 still describes the behavior
of A, but the controller is not able (in comparison with a linear increase in
V and k3) to keep E1E2 constant (see Fig. S3).
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Figure S3. Same system as in Fig. 29b with k6E1E2/k4 (orange curve)
overlayed on A (blue curve).
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The increasing E2 values cannot be balanced by the decreasing E1 concen-
tration leading to controller breakdown.

Cell-internal compensatory flux with constant values of V̇ and and
k̇3

When the compensatory flux is cell internal the rate equation for A (Eq. 76
with N/(k7+N) = 1) becomes

Ȧ =
k2·k10
k10+E1

− k3 · A− A
(
V̇

V

)
(S8)

while the rate equations for E1 and E2 remain as described by Eqs. S2 and
S3. Calculating Ä and setting it to zero leads to the following expression

Ä = − k2·k10
(k10+E1)2

Ė1 − k̇3·A− k3·Ȧ+ A

(
V̇

V

)2

= 0 (S9)

Considering first the case that k3 is kept constant (k̇3=0), while V increases
linearly, we observe (phase 2, Fig. 29c) that A attains a stable steady state
with Ȧ=0. Considering further that V̇ /V → 0, we arrive at the condition
that Ė1=0, i.e.

Ä = − k2·k10
(k10+E1)2

Ė1 = 0 (S10)

Since Ȧ = Ė1 = V̇ /V = 0, we arrive at Eq. S5 showing that in case of a
cell-internal compensatory flux the m2-antithetic controller is able to keep A
at Atheor

set as long as there is sufficient supply for A, E1, and E2 and that the
maximum compensatory flux k2 has not been reached.

When k3 increases linearly, the term k̇3·A in Eq. S9 cannot be ignored. In-
serting Eq. S2 into Eq. S9, observing from the numerical calculation that
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Ȧ=0, and approximating V̇ /V = 0, Eq. S9 is written as

k4Ass − k8 − E1

(
V̇

V

)

︸ ︷︷ ︸
→ 0


 = − k̇3(k10+E1)

2

k2k10
Ass (S11)

Dividing the left- and right-hand side of Eq. S11 by k4, observing that
k8/k4=A

theor
set , and rearranging the equation, gives

Ass

(
1 +

k̇3(k10+E1)
2

k2k4k10

)
= Atheor

set (S12)

or

Ass =
Atheor

set

1 + k̇3(k10+E1)2

k2k4k10

(S13)

Eq. S13 indicates that when both V and k3 increase linearly there should be
an offset in Ass below Atheor

set , but the ”offset term”

k̇3(k10+E1)
2

k2k4k10

is generally low, because k2 represents the maximum compensatory flux,
which in the calculations is 1×105. The ”offset term” can further be reduced
by increasing the aggressiveness of the controller when increasing k4 and k8
values, but maintaining the k8/k4 ratio, i.e., keeping Atheor

set constant.

Cell-internal compensatory flux with exponential increase of V̇ and
and k̇3

Fig. 29d shows that when only V increases exponentially during phase 2 with
V̇=κV (κ being a constant), and k3 is kept constant (k̇3 = 0), the controller
is able to maintain a constant steady state in A, as well as in E1 and E2.
The rate equations in this case are
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Ȧ =
k2·k10
k10+E1

− k3 · A− κA (S14)

Ė1 = k4A− k6·E1·E2 − κE1 (S15)

Ė2 = k8 − k6·E1·E2 − κE2 (S16)

Since A, E1, and E2 are during phase 2 in a steady state (Fig. 29d) we get
an expression for Ass, by setting Eq. S15 to zero and solving for Ass

Ass =
k6
k4
E1·E2 +

κ

k4
E1 (S17)

Another expression for Ass can be found by calculating Ė1−Ė2 and setting
the resulting expression to zero (E1 and E2 are in a steady state)

Ė1−Ė2 = k4·Ass − k8 + κ(E2 − E1) = 0 (S18)

which gives

Ass =
k8
k4︸︷︷︸

Atheor
set

+
κ(E1 − E2)

k4︸ ︷︷ ︸
overcompensation part

(S19)

which identifies the factors leading to the overcompensation. Interestingly,
increasing the controller aggressiveness by increasing k8 and k4, but keeping
their ratio (Atheor

set ) constant, the overcompensation can be reduced and Ass

will approach Atheor
set .

Setting Eqs. S19 and S17 equal, and solving for k6E1E2/k4 leads to the
relationship

k6
k4
E1·E2 = Atheor

set −
κE2

k4
(S20)
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showing that k6E1E2/k4 lies (under steady state conditions) slightly below
Atheor

set .

When in phase 3 k3 increases exponentially, E1 decreases. The resulting
derepression by E1 moves Ass towards Atheor

set , but when the E1 concentration
becomes too low due to the increasing E2 (which removes E1) homeostasis is
lost once E2 exceeds E1. For low E1 values Ė1 is also low, and, as Eq. S15 in-
dicates, the decreasing A concentrations is quite well described by k6E1E2/k4
(Fig. S4).
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ABSTRACT Most cancer cells rely on aerobic glycolysis and increased glucose uptake for the production of biosynthetic
precursors needed to support rapid proliferation. Increased glucose uptake and glycolytic activity may result in intracellular
acidosis and increase of osmotically active substances, leading to cell swelling. This causes dilution of cellular constituents, which
can markedly influence cellular reactions and the function of proteins, and hence, control mechanisms used by cancer cells to
maintain a highly glycolytic phenotype must be robust to dilution. In this paper, we review the literature on cancer cell metabolism
and glucose uptake, and employ mathematical modeling to examine control mechanisms in cancer cell metabolism that show
robust homeostatic control in the presence of dilution. Using differential gene expression data from the Expression Atlas database,
we identify the key components of glucose uptake in cancer, in order to guide the construction of a mathematical model. By
simulations of this model we show that while negative feedback from downstream glycolytic metabolites to glucose transporters
is sufficient for homeostatic control of glycolysis in a constant cellular volume, it is necessary to control intermediate glycolytic
enzymes in order to achieve homeostatic control during growth. With a focus on glucose uptake in cancer, we demonstrate a
systems biology approach to the identification, reduction, and analysis of complex regulatory systems.

SIGNIFICANCE Rapid proliferation and increased glycolytic activity in cancer cells lead to dilution of cellular constituents,
which can markedly influence cellular reactions and the function of proteins. Therefore, control mechanisms used by cancer
cells to maintain a highly glycolytic phenotype must be robust to dilution. We construct a mathematical model of glucose
uptake in cancer, and using a systems biology approach to the analysis of regulatory networks, identify the presence of
integral control motifs as a means for achieving dilution resistance. Furthermore, we show that while negative feedback from
downstream glycolytic metabolites to glucose transporters is sufficient for homeostatic control of glycolysis in a constant
cellular volume, it is necessary to control intermediate glycolytic enzymes to achieve homeostatic control during growth.

INTRODUCTION
It is well established that cell swelling and shrinkage affect important cellular functions, in part by dilution and concentration of
cellular compounds (1–4). Such changes in concentration can markedly influence the function of intracellular proteins (1). This
has been demonstrated in studies on the effect of volume change on enzyme reactions in solitary vesicles, showing that there
is a significant impact on the dynamical and steady state behavior of these reactions (5). The significance of dilution due to
growth is emphasized by the cell-size control mechanism employed in budding-yeast. In these cells, the concentration of a
cell cycle activator maintained at a constant level during growth relative to a growth diluted inhibitor provides a measurement
of cell volume and a molecular mechanism for cell-size control (6, 7). Although most proteins are maintained at constant
concentrations in growing cells, owing to mRNA amounts and number of ribosomes increasing with cell size, we lack an
understanding of the molecular mechanisms that coordinate biosynthesis to achieve constant protein concentrations during
growth (7, 8). Investigations into the performance of so-called integral control motifs (ICMs) have revealed mechanisms by
which robustness to dilution can be achieved (9, 10). In this paper, we look into homeostatic mechanisms regulating glucose
uptake in rapidly growing cancer cells. We identify the presence of ICMs as part of glucose uptake in cancer, and investigate
how homeostatic control of metabolite and protein concentrations is achieved in the presence of dilution due to growth.
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Most cancer cells show an increased uptake and metabolism of glucose, a phenotype that can be detected by 18fluoro-
deoxyglucose positron emission tomography (FDG-PET) (11–13). This growth mode relies on a balanced production of cellular
components to avoid molecular crowding and solvent capacity constraints (14, 15). The cell represents a tiny reagent reservoir
and is reliant on a balanced influx and efflux of compounds to support growth rates corresponding to that seen in cancer. Thus,
as the cell expands, its constituents need to increase at the same rate to meet the growth requirements, meaning a proportional
increase in nucleic acids, polysaccharides, proteins, and lipids (16). Aside from biomass formation for the purpose of growth,
metabolism also affects cell volume through uptake of nutrients, by creation of osmotically active substances, developing
intracellular acidosis, and by depletion of available ATP (1, 17, 18). In fact, increased cellular volume appears to be required for
proliferation, and hypertonic shrinkage inhibits cell proliferation, whereas slight osmotic swelling has the opposite effect (1). In
contrast, differentiation is followed by cell shrinkage in a number of cells (1).

In the following, we take a look at some key elements of the rewiring of glycolysis that produce the increased glycolytic
activity seen in cancer. Next, we look at the various control mechanisms in place that maintain this increased glucose uptake
and metabolic activity. We then focus our attention to glucose uptake, and show that differential gene expression of cancer
and normal cells corroborate the reported rewiring in cancer. With this information, we construct a mathematical model of
glucose uptake in cancer, formulated as a system of ordinary differential equations (ODEs). We construct the model in a
stepwise manner, where each step adds a layer of regulation to the model. This is done in order to investigate the role each
control mechanism serve. We show how dilution is incorporated into the model, and run simulations for each step of model
construction. Finally, we show how control mechanisms of glucose uptake in cancer form ICMs, and how this enables robust
homeostatic control of glycolysis, even in the presence of dilution.

Rewiring of Glycolysis in Cancer
Cancer cells show an increased reliance on glycolysis and lactic acid fermentation, even in the presence of oxygen, and a
more glycolytic phenotype is persistent with a more aggressive cancer cell type (12, 19, 20). This is known as the Warburg
effect, or aerobic glycolysis, and is necessary in order to meet the increased demands of rapid proliferation (11). In cancer
cells, the Warburg effect is in supplement to oxidative phosphorylation rather than a replacement (21). This is in contrast to
normal cells that maintain a high rate of glycolysis at the expense of oxidative phosphorylation; a phenomenon known as the
Crabtree effect (21). However, in the hypoxic tumor microenvironment, cancer cells naturally show a decreased reliance on
oxidative phosphorylation (21, 22). The increased glycolytic flux in cancer supplies biosynthetic pathways with precursors,
meets the increased bioenergetic demand of proliferation, and contributes to tumor invasion through the excretion of lactate and
consequent acidification of the tumor microenvironment (11, 12, 21, 23, 24). The mechanisms that reprogram metabolism
in cancer are often cancer-specific, nevertheless, there are common hallmarks, notably a shift towards protein isoforms that
promote biosynthesis and proliferation (11, 21).

In the first step of glycolysis, glucose is transported into the cell. The GLUT (gene symbol SLC2A) family of glucose
transporters are membrane-spanning proteins facilitating the transport of sugars across biological membranes along the
concentration gradient (25, 26). GLUT1 is one of 14 currently identified GLUT proteins expressed in humans, and is expressed
in almost every tissue (27–30). Together with its high affinity for glucose, this gives GLUT1 a clear role in the basal glucose
uptake of most tissues (25, 28, 29). Elevated expression of GLUT1 has been reported in most cancers, and the expression
level correlates reciprocally with the survival of cancer patients (12, 23, 30). Hypoxia-inducible factor-1 (HIF-1), a dimer
of HIF-1α and HIF-1β, is one of the factors responsible for upregulating GLUT1 in tumor cells (12, 21, 30, 31). HIF-1β is
constitutively expressed, whereas HIF-1α is regulated through oxygen-dependent and oxygen-independent mechanisms (31).
GLUT1 expression is upregulated through hypoxia-response elements on the GLUT1 promoter that bind HIF-1 (30). HIF-1α
has increased levels in most cancers, which provides a mechanism by which cancer cells overexpress GLUT1 (12, 30, 31). Other
factors known to cause overexpression and translocation of GLUT1 to the cell membrane in cancer include the oncoprotein
c-Myc, protein kinase Akt/PKB, and oncogenic KRAS and BRAF (12, 21, 30).

Glycolysis consists of several reversible reactions and three (essentially) irreversible reactions (see Figure 1). Because
they are irreversible, these three reactions represent committed steps of glycolysis, and the enzymes that drive these reactions
function as gatekeepers of glycolysis and have a key role in regulating the glycolytic flux (21). In the first irreversible reaction
of glycolysis, glucose is phosphorylated to glucose 6-phosphate (G6P) by hexokinase, coupled to the dephosphorylation of
ATP (13, 32, 33). Hexokinase 2 (HK2) is one of four isoforms of hexokinase found in mammalian tissue (13). HK2 has a very
high affinity for glucose, with a Michaelis constant ( M value) of 0.02–0.03 mm (13, 32). To support increased glucose uptake
in cancer, HK2 is overexpressed and bound to the outer mitochondrial membrane protein voltage-dependent anion channel
(VDAC) (13, 21, 32). VDAC supplies HK2 with ATP by recruiting help from ATP synthase and adenine nucleotide translocator,
resulting in a mechanism that rapidly converts glucose to G6P (13). HK2 is product inhibited by G6P, however, it is likely that
this inhibition is minimal due to rapid utilization of G6P in cancer cells (21, 32).
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The second irreversible reaction of glycolysis is catalyzed by phosphorfructokinase 1 (PFK1), and is the phosphorylation of
fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F1,6BP) with the concomitant dephosphorylation of ATP (21, 33, 34).
PFK1 is a tetrameric enzyme that exists in liver (PFKL), muscle (PFKM), and platelet (PFKP) isoforms in mammalian
cells (21, 34, 35). PFK1 expression is upregulated in cancer cells, and increased expression of the PFKP isoform is a
characteristic feature of cancer (34, 35). Krüppel-like factor 4 (KLF4), which has elevated levels in certain cancer types, has
been shown to activate transcription of the PFKP gene by directly binding to its promoter (34). In addition, PFK1 is allosterically
activated by fructose 2,6-bisphosphate (F2,6BP), which shows increased generation associated with overexpression of the
phosphofructokinase 2 (PFK2) isoform PFKFB3 in cancer (21).

The third irreversible reaction of glycolysis is the conversion of phosphoenolpyruvate (PEP) to pyruvate by the transfer of a
phosphoryl group to ADP (21, 33). Cancer cells control this reaction by expressing the low-affinity M2 isoform of pyruvate
kinase (PKM2) (11, 21). The PKM2 tetramer is allosterically regulated by various metabolites and responds to nutritional
and stress signals, whereas the normal M1 isoform of pyruvate kinase (PKM1) is a constitutively active tetramer (21, 36).
The regulation of PKM2 enables cancer cells to dictate the flow of carbon into biosynthetic pathways and adapt to different
conditions of nutrient availability and anabolic demands (11, 21, 36). Additionally, PKM2 is regulated between its metabolically
active tetrameric form and metabolically inactive dimeric form, where the PKM2 dimer is imported into the nucleus and
stimulates transcription of glycolytic genes (36).

In addition to the key regulatory enzymes of glycolysis described above, other important glycolytic enzymes are also
upregulated in cancer. For example, of the lactate dehydrogenases (LDHs), LDHA is the predominantly expressed isozyme
in cancer (21). LDHA has a high affinity for pyruvate, and favors the conversion of pyruvate to lactate (21). Enolase 1
(ENO1) is induced in cancer cells through HIF-1α overexpression (30, 31). Aldolase A (ALDOA) is the predominant aldolase
isoform expressed in hepatoma and gastric cancer tissues, and favors the cleaving of F1,6BP (21, 37). Taken together, the
glycolytic isoforms expressed in cancer show a concerted effort to increase glycolytic activity and promote production of
biosynthetic precursors. A schematic of glycolysis is shown in Figure 1, highlighting some of the key isoforms that are commonly
overexpressed in cancer.

Regulation of Glucose Uptake in Cancer
We now focus our attention to glucose uptake and the initial steps of glycolysis, and discuss the control mechanisms that
regulate glucose uptake in cancer. Although key glycolytic enzymes are upregulated in cancer, they are still involved in
metabolic regulation and respond to signals such as nutritional and oxidative stress, however, this regulation changes to favor
proliferation (11, 21, 36, 38). Regulation of nutrient transporters by the availability of nutrients is a phenomenon observed in
bacteria and yeast, and similarly, an inhibitory effect of glucose on GLUT1 expression has been observed in several mammalian
cell lines (39, 40). To study the effect of glucose on GLUT1 expression, cells have been subjected to glucose deprivation
experiments, with the common result that GLUT1 content at the cell surface is increased (39, 41–45). This is achieved by
different mechanisms, including increased GLUT1 mRNA transcription and stability, increased protein synthesis or decreased
protein degradation, and translocation of the transporter to the cell membrane (39).

Extracellular glucose supply directly affects the intracellular glucose level (46). Thus, it is possible that GLUT1 content at
the cell surface is regulated in some way by the intracellular level of glucose, as has been previously suggested (41, 47). In fact,
comparisons of mammary tumors and normal mammary tissue in mice have shown that increased GLUT1 level correlates
with decreased intracellular glucose level and increased glycolytic activity (38). One way in which intracellular glucose affects
GLUT1 expression is via AMP-activated protein kinase (AMPK) (48). AMPK is comprised of one catalytic α-subunit, and two
regulatory subunits, β and γ (48, 49). Intracellular glucose regulates AMPK activity in a few different ways: An abundance of
glucose will quickly be phosphorylated to G6P by HK2. G6P is then used to supply glycolysis, lowering the AMP/ATP and
ADP/ATP ratios, keeping AMPK from being activated by the binding of AMP and ADP (48). High glucose levels and increased
biomass generation also reduce the NAD+/NADH ratio, which indirectly inhibits AMPK through silent information regulator T1
(SIRT1) and serine-threonine liver kinase B1 (LKB1) (21, 48, 50, 51). Downstream of G6P, the accumulation of diacylglycerol
(DAG) and glycogen both lead to inhibition of AMPK. DAG inhibits AMPK by activating protein kinase C (PKC), which in turn
induces the inhibitory phosphorylation of the AMPK α-subunit, while glycogen inhibits AMPK by binding to the β-subunit (48).
In addition, activation of protein phosphatase 2A (PP2A) as a result of high glucose levels inhibits AMPK (48, 52, 53).

AMPK in turn has been shown to affect GLUT1 expression (54). One mechanism by which this happens is by increasing the
degradation of thioredoxin interacting protein (TXNIP). TXNIP can bind directly to GLUT1 and induce internalization, as well
as reduce GLUT1 mRNA level (48, 55). Another suggested mechanism is that downstream of AMPK, p38 mitogen-activated
protein kinase (MAPK) activation leads to enhancement of GLUT1 mediated glucose transport (56).

Another important aspect of glucose uptake is the regulation of HK2, as it drives the first committed step of glycolysis
and maintains a high concentration gradient of glucose across the cell membrane, thereby driving the facilitated diffusion
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Figure 1: Schematic of glycolysis with some of the commonly overexpressed isoforms in cancer highlighted in blue. Reactions
highlighted in red indicate the committed steps of glycolysis. Abbreviations: Extracellular glucose (Glcext), glucose transporter 1
(GLUT1), glucose (Glc), hexokinase 2 (HK2), glucose 6-phosphate (G6P), fructose 6-phosphate (F6P), phosphofructokinase 1
(PFK1), fructose 1,6-bisphosphate (F1,6BP), aldolase A (ALDOA), dihydroxyacetone phosphate (DHAP), glyceraldehyde 3-
phosphate (G3P), 1,3-bisphosphoglycerate (1,3BPG), 3-phosphoglycerate (3PG), 2-phosphoglycerate (2PG), enolase 1 (ENO1),
phosphoenolpyruvate (PEP), pyruvate kinase M2 (PKM2), lactate dehydrogenase A (LDHA), tricarboxylic acid cycle (TCA
cycle).

of glucose by GLUT1 (21, 57, 58). Activators of the HK2 promoter include glucose, insulin, glucagon, p53, cAMP, and
hypoxic conditions (13, 32, 59). Interestingly, it is glucose rather than downstream glycolytic metabolites that activate the
HK2 promoter (13, 32, 59–61). Together with the fact that HK2 phosphorylates glucose to G6P in a reaction that is essentially
irreversible, these two compounds form a stabilizing feedback connection (13, 62). Additionally, the binding of HK2 to the outer
mitochondrial membrane via VDAC helps prevent apoptosis in cancer cells (13, 32). Together with the diminished inhibition
(or possibly saturated inhibition) of HK2 by G6P that is associated with mitochondrial bound HK2, this gives a clear role for
HK2 in promoting a malignant phenotype (32, 63–65).

The control mechanisms discussed above are summarized in Figure 2A. Here, glucose uptake and supply to metabolism
includes regulatory pathways that inhibit GLUT1 mediated glucose uptake via AMPK, as well as the stabilizing feedback
connection formed by glucose and HK2. The mechanisms that affect AMPK depend on the production of G6P, and therefore,
G6P represents the potential for these mechanisms to ultimately affect GLUT1 mediated glucose uptake. Before we can construct
a mathematical model of the system in Figure 2A, activating and inhibiting pathways need to be translated into reactions that
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can be described by reaction kinetic equations. To this end, parallel pathways with similar overall effects are grouped together,
shown in Figure 2B. These combined pathways are then turned into activating or inhibiting reactions affecting generation or
removal reactions of the compounds considered, shown in Figure 2C. The conversion of the system in Figure 2B to the system
in Figure 2C preserves the effect one compound has on another, however, this conversion is not unique. For example, a negative
effect of G6P on GLUT1 content at the cell surface could also be achieved if G6P activates the degradation or internalization of
GLUT1 (62). Additionally, the activating and inhibiting reactions of Figure 2C do not need to represent the same molecular
mechanisms. For example, the generation of G6P is driven by the phosphorylation of glucose by HK2, whereas glucose induces
HK2 generation by activating the HK2 promoter. We use the system in Figure 2C as a simplified representation of glucose
uptake in cancer, and as a basis for our mathematical model.
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Figure 2: Panel A summarizes the control mechanisms of glucose uptake in cancer reported in the literature. Line marker-ends
indicate the effect one compound has on another, arrowhead for positive and flat head for negative. Colored pathways indicate
the overall effect of that pathway, blue for positive and red for negative. Black lines represent the flow of glucose to metabolism.
Panel B shows colored pathways grouped together based on similar overall effects. Panel C shows the system in panel B
translated into a form where activating and inhibiting effects act on reactions generating and turning over compounds. This
allows for the system to be described by a simplified mathematical model using reaction kinetic equations.
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METHODS
Differential Gene Expression
Expression Atlas was used to collect differential gene expression data comparing cancer cells with normal (i.e. non-cancerous)
cells, across a variety of tissues and cell types. Expression Atlas is an open science resource providing information on gene and
protein expression in animal and plant samples of different cell types, organism parts, developmental stages, diseases, and other
conditions (66). Expression Atlas contains thousands of selected microarray and RNA-sequencing datasets that are manually
curated, annotated, checked for high quality, and processed using standardized analysis methods (66). For genes of interest,
users can view baseline expression in tissues, and differential expression for biologically meaningful pairwise comparisons (66).

Differential expression data of the SLC2A gene family, HK1-3, GCK, PFKM, PFKP, PKM, and PKLR genes in human was
gathered from the Expression Atlas database. We curated the data to ensure only experiments comparing cancer cells with
normal cells were included. Differential gene expression experiments with drug treatments were removed. Expression Atlas
reports experiment results as log2-fold changes. In this paper, we report the arithmetic mean of log2-fold changes (i.e. log2 of
the geometric mean fold change) for each gene across all experiments. Additional genes were analyzed, but due to low number
of experiments (less than 5), are not included in the main results (see Section S1 in the Supporting Material).

Computational Methods
Systems of ODEs are solved numerically in initial value problems using Matlab R2018a and the ode45 ODE solver, based on
the Dormand-Prince (4, 5) pair (67). Initial values and parameters for all simulations are provided in the Supporting Material.
Simulation results are given in arbitrary units (arb. unit). Reaction rates are expressed as concentrations per unit of time.

RESULTS AND DISCUSSION
Corroborating the Reported Rewiring of Glycolysis in Cancer
Average log2-fold changes for key genes associated with glucose uptake and glycolysis, across a variety of tissues and cell types,
are shown in Figure 3. The differential gene expression data largely corroborates the reported rewiring of glycolysis in cancer
discussed above. Namely, a shift towards GLUT1 (SLC2A1 gene) mediated glucose uptake, predominant expression of the
PKM2 (PKM1 and PKM2 are different splicing products of the PKM gene (21)) isoform, and overexpression of HK2. We also
found a slight upregulation of the PFKP gene in cancer, consistent with previous studies (34). Hence, the model proposed in
Figure 2C appears to include the key components of glucose uptake in cancer, and provides a good basis for mathematical
modeling.

The results also shows an increased HK3 transcript abundance in cancer. This is not surprising, since it has been shown that
HK3 is upregulated by hypoxia, partially through HIF dependent signaling (68). Whereas HK2 bind to the outer mitochondrial
membrane, HK3 does not (13, 68). A consequence of mitochondrial bound HK2 is the prevention of cell death by inhibiting
formation of the mitochondrial permeability transition pore (MPTP) complex (13, 68). On the other hand, HK3 overexpression
promotes cell survival in response to oxidative stress, decreases the production of reactive oxygen species (ROS), perserves
mitochondrial membrane potential, and promotes mitochondrial biogenesis (68). Therefore, it is likely that HK2 and HK3 serve
different, but complementary, roles in maintaining a highly glycolytic phenotype and promoting cancer cell survival. Notably,
inhibition of glucose or G6P binding to the regulatory half of HK3 (N-terminal domain) impairs catalysis in the catalytic half
(C-terminal domain), suggesting a cooperative effect of glucose binding in the regulatory half to subsequent binding in the
catalytic half (68). Hence, it appears that HK3 interacts with glucose in a similar way to that of HK2 in Figure 2. As a result, we
will only consider HK2 in the following mathematical modeling, but note that HK2 can be thought of as a pool of both HK2
and HK3.

Modeling Rate Expressions in a Changing Volume
When modeling rate expressions in a changing volume, care must be taken so that concentrations are handled in the correct way.
As an example we show how this is done for a simple enzyme reaction. The Michaelis–Menten equation describes the rate of an
enzyme reaction, assuming steady state for the substrate-enzyme complex (69)

E =
:cat · 2E · 2S
 M + 2S

(1)

where E is the reaction rate, :cat is the catalytic constant (or turnover number),  M is the Michaelis constant, 2E is the (total)
concentration of enzyme, and 2S is the concentration of substrate. We start by considering some compound x in a changing
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Figure 3: Differential gene expression of key genes associated with glucose uptake and glycolysis. The differential gene
expression compares cancer cells with normal cells, across a variety of tissues and cell types, reported as the average log2-fold
change of several experiments. Upregulation in cancer cells is indicated by red, and downregulation by blue. White indicates no
change. The differential gene expression corroborates the reported rewiring of glycolysis in cancer. Namely, a shift towards
GLUT1 (SLC2A1 gene) mediated glucose uptake, overexpression of HK2, and a predominant reliance on PKM2 (PKM1 and
PKM2 are different splicing products of the PKM gene (21)). We also found upregulation of the HK3 and PFKP genes. See
Section S1 in the Supporting Material for information on the individual differential gene expression experiments.

volume. Using the product rule, we express the change in concentration of x as

=x (C) = 2x (C) · + (C) (2)
¤=x (C) = ¤2x (C) · + (C) + 2x (C) · ¤+ (C) (3)

¤2x (C) = ¤=x (C)
+ (C) − 2x (C) ·

¤+ (C)
+ (C) (4)

where =x is the amount of compound, 2x is the concentration of compound, and + is the volume. We use dot notation to indicate
time derivative. The first term of Eq. 4 is identical to the time derivative of 2x in a constant volume, while the second term
represents the dilution of 2x (10). We will call this the dilution term. Using Eq. 1, we express the differential equation of a
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product P being formed by an enzyme reaction in a changing volume by introducing the dilution term from Eq. 4 (5)

¤2P (C) = :cat · 2E (C) · 2S (C)
 M + 2S (C) − 2P (C) ·

¤+ (C)
+ (C) (5)

It is important to note that all constituents of the enzyme reaction, i.e. product, enzyme, and substrate, are diluted as the volume
increases. This means that even if an enzyme is present in constant amount, a large enough volume increase can effectively stop
the enzyme reaction by dilution of the enzyme concentration (5).

Modeling Glucose Uptake in Cancer
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Figure 4: The mathematical model of glucose uptake is constructed in three steps. Panel A shows the first step, with only the
uptake and supply of glucose to metabolism. The second step is shown in panel B, which includes feedback inhibition from
G6P to GLUT1 mediated glucose uptake. Panel C shows the final step, where the model also includes the stabilizing feedback
connection formed by HK2 and intracellular glucose.

We construct the mathematical model of glucose uptake in three steps, starting with glucose uptake and supply to metabolism
without any of the control mechanisms discussed above. This system is shown in Figure 4A. Assuming low intracellular
concentration of glucose due to rapid conversion by HK2, facilitated diffusion of glucose by GLUT1 can be approximated by
the Michaelis–Menten equation (57, 58). In this first step of model construction, we assume that HK2 is not being generated and
turned over (and therefore, HK2 synthesis is not activated by intracellular glucose), and that the concentration of HK2 simply
dilutes as the cellular volume increases. The phosphorylation of glucose to G6P is modeled by the Michaelis–Menten equation,
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and the sink reaction to metabolism is modeled by a first order reaction with rate constant :metabolism. GLUT1 is assumed to
be generated and turned over in reactions driven by enzymes E1 and E2, respectively, but feedback inhibition from G6P is
omitted for the time being. The enzymes E1 and E2 are themselves present in constant amounts only (i.e. their concentrations
simply dilute with increasing volume). We assume the production of GLUT1 is proportional to the concentration of E1, and that
the degradation of GLUT1 by E2 is given by a Michaelis–Menten-type process. We are considering a growing cell, which
introduces the dilution term from Eq. 4. The dynamical model is given by the following system of ODEs

¤2Glc (C) =
:cat,GLUT1 · 2GLUT1 (C) · 2Glc,ext (C)

 M,GLUT1 + 2Glc,ext (C) · �(C)
+ (C) −

:cat,HK2 · 2HK2(C) · 2Glc (C)
 M,HK2 + 2Glc (C) − 2Glc (C) ·

¤+ (C)
+ (C) (6)

¤2G6P (C) =
:cat,HK2 · 2HK2 (C) · 2Glc (C)

 M,HK2 + 2Glc (C) − :metabolism · 2G6P (C) − 2G6P (C) ·
¤+ (C)
+ (C) (7)

¤2GLUT1 (C) = :cat,1 · 2� ,1 (C) · + (C)
�(C) −

:cat,2 · 2E,2 (C) · 2GLUT1 (C)
 M,2 + 2GLUT1 (C) · + (C)

�(C) − 2GLUT1(C) ·
¤�(C)
�(C) (8)

where 2Glc and 2G6P are concentrations in the cellular volume + , whereas 2GLUT1 is a concentration at the cell surface �. As a
consequence, the import of glucose is converted by the factor �

+ to a flux given with respect to the cellular volume. Similarly,
the generation and degradation of GLUT1 are converted by the factor +� to fluxes with respect to the cell surface area, since the
enzymes generating and turning over GLUT1 are situated inside the cell. HK2, E1, and E2 are not assumed to be generated
and turned over, and their concentrations dilute from some initial concentrations as the cellular volume increases. These
concentrations are given by 2x (C) = =x/+ (C) (x = HK2, E1, E2), where =x is the amount of compound x (constant quantities).

We call the system of ODEs given by Eqs. 6–8 model A, corresponding to the system shown in Figure 4A. This model
only describes the uptake of glucose and supply to metabolism, without any control mechanisms in place. To examine the
regulatory mechanisms of glucose uptake, we build on this model, and add feedback inhibition from G6P to GLUT1 production.
This feedback is based on the many pathways that regulate GLUT1 mediated glucose uptake via AMPK, summarized in
Figure 2A. This way, a reduction in G6P level will reduce inhibition of GLUT1 production, thereby increasing GLUT1 mediated
glucose uptake. We model this feedback by allosteric inhibition (specifically, a special case of mixed inhibition) of the reaction
producing GLUT1 (69, 70). The model is shown in Figure 4B, and given by Eqs. 6–7, and the additional ODE

¤2GLUT1 (C) = :cat,1 · 2� ,1 (C) ·
 i,G6P

 i,G6P + 2G6P (C) ·
+ (C)
�(C) −

:cat,2 · 2E,2 (C) · 2GLUT1 (C)
 M,2 + 2GLUT1 (C) · + (C)

�(C) − 2GLUT1 (C) ·
¤�(C)
�(C) (9)

where  i,G6P is the inhibition constant for the allosteric inhibition of GLUT1 production by G6P. We call this model B.
We simulate models A and B in three phases (Figure 5): In the first phase (white area, C = [0, 50]), the cellular volume is

kept constant. In the second phase (light gray area, C = [50, 100]), we still maintain a constant cellular volume, and probe the
regulatory function of the feedback inhibition in model B by reducing the extracellular glucose concentration by 75% at the
start of the phase. In the third phase (dark gray area, C = [100, 150]), we investigate the effect of dilution on the two models
by increasing the cellular volume linearly. The simulation results are shown in Figure 5, with initial values and parameters
provided in Table S1 in the Supporting Material. Dashed red lines show the dynamical response of model A, and solid blue
lines show model B. The bottom right plot of cellular volume (solid black line) and surface area (dashed black line) is the same
for both simulations. In the first phase (white area), the cellular volume is constant and both systems have settled at steady
state, producing a constant glycolytic flux (represented by the phosphorylation of glucose). At the start of the second phase
(light gray area), extracellular glucose concentration is reduced while the cellular volume remains constant. Comparing the two
models, we see that model A shows no adaptation to such a perturbation in glucose supply, resulting in reduced metabolite
levels (intracellular glucose and G6P) and glycolytic flux. Model B, however, is able to fully compensate for the reduction
in glucose supply. This is achieved by increasing the surface concentration of GLUT1, thereby increasing GLUT1 mediated
glucose uptake to match the previous uptake rate of the system. In the final phase of the simulations (dark gray area), cellular
volume starts to increase linearly. Although neither of the models are able to compensate for dilution, in the case of model B,
GLUT1 production is increased in an attempt to mitigate the effect of dilution. However, this compensatory response is not
being effectuated as the level of HK2 is not being maintained, resulting in reduced glycolytic flux as the concentration of HK2
dilutes. The simulation results show that feedback inhibition from downstream glycolytic metabolites to glucose transporters
is sufficient for homeostatic control of glycolysis in a constant volume, consistent with principles of metabolic regulation by
negative feedback (71, 72). The regulation of glucose transporters by feedback inhibition is, however, not sufficient to maintain a
constant glycolytic flux during growth. It appears that control of HK2 may be necessary for homeostatic control during growth.

In order to compensate for dilution, we extend model B, and add activation of HK2 synthesis by intracellular glucose. As
mentioned earlier, this forms a stabilizing feedback connection together with the phosphorylation of glucose to G6P (62). This
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Figure 5: Simulation results of model A (dashed red lines) and model B (solid blue lines). The bottom right plot of volume
(solid black line) and surface area (dashed black line) is the same for the two simulations. Initially, the cellular volume is kept
constant and the systems have settled at steady state (white area, C = [0, 50]). At the start of the second phase (light gray area,
C = [50, 100]), extracellular glucose concentration is reduced by 75%. Whereas model A shows no adaptation in this phase,
model B is able to regulate intracellular glucose and G6P levels back to pre-perturbed values (dashed black lines), and maintain
homeostatic control of glycolysis (regulation of the glycolytic flux). In the last phase (dark gray area, C = [100, 150]), the
cellular volume starts to increase linearly. Neither of the models are able to compensate for dilution, however, GLUT1 mediated
glucose uptake is increased in model B, but due to dilution of HK2 this compensatory response is not being effectuated. Note
that due to dilution of HK2, intracellular glucose accumulates in the final phase. Such an accumulation can not go on forever,
and as the concentration of intracellular glucose approaches that of extracellular glucose, our assumption of GLUT1 mediated
glucose uptake following the Michaelis–Menten equation will break down. A similar limit for the surface concentration of
GLUT1 will also likely be approached. Nevertheless, the simulation results are able to show that models A and B do not achieve
homeostatic control of glysolysis in the presence of dilution. Initial values and parameters are provided in Table S1 in the
Supporting Material.

feedback connection stabilizes the level of HK2 in the presence of dilution, such that the concentration of HK2 remains more or
less constant during growth, providing robustness to dilution in the first irreversible step of glycolysis. In turn, this robustness
allows GLUT1 mediated glucose uptake to regulate the glycolytic flux during growth. With this addition it is necessary to add
reactions generating and turning over HK2, so that activation by intracellular glucose can be mediated through these reactions.
The activation of HK2 synthesis is modeled by allosteric activation (specifically, a special case of mixed activation) (69, 70).
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We assume the synthesis and degradation of HK2 are driven by enzymes E3 and E4, respectively, where the synthesis is
proportional to the level of E3, and the degradation by E4 follows a Michaelis–Menten-type process. The model is shown in
Figure 4C and given by Eqs. 6–7, 9, and the following ODE describing the change in HK2 concentration

¤2HK2(C) = :cat,3 · 2E,3 (C) · 2Glc (C)
 a,Glc + 2Glc (C) −

:cat,4 · 2E,4 (C) · 2HK2 (C)
 M,4 + 2HK2 (C) − 2HK2 (C) ·

¤+ (C)
+ (C) (10)

where  a,Glc is the activation constant for the allosteric activation of HK2 synthesis by intracellular glucose. The enzymes Ei
(i = 1, 2, 3, 4) are not assumed to be generated and turned over, and their concentrations dilute as the volume increases. These
concentrations are given by 2E,i (C) = =E,i/+ (C) (i = 1, 2, 3, 4), where =E,i (the amount of Ei) are constant quantities. We call this
model C.

We simulate model C in four phases (Figure 6): In the first phase (white area, C = [0, 400]), the volume is kept constant.
In the second phase (light gray area, C = [400, 800]), we increase the volume linearly to investigate whether model C is
able to maintain homeostatic control of glycolysis during growth. While the volume is still increasing, extracellular glucose
concentration is increased 4-fold at the start of the third phase (dark gray area, C = [800, 1200]). Finally, in the last phase (white
area, C = [1200, 1600]), volume increase is stopped. The simulation results are shown in Figure 6, with initial values and
parameters provided in Table S2 in the Supporting Material. The bottom right plot shows volume (solid black line) and surface
area (dashed black line) during the simulation. In the first phase (white area), the system has settled at steady state, producing
a constant glycolytic flux. In the second phase (light gray area), we see that model C is able to compensate for dilution and
produce a constant glycolytic flux, however, steady state values are shifted compared to steady state values without growth
(dashed black lines in intracellular glucose and G6P plots). These growth associated offsets could indicate the inability of
the control mechanisms to fully compensate for dilution. However, they could also represent set-point changes during the
growth phase. To investigate the cause of the growth associated offsets, we increase extracellular glucose concentration as
the cellular volume is growing. This is done at the start of the third phase (dark gray area). Due to the subsequent increase in
glucose uptake, a sudden reduction in the surface concentration of GLUT1 follows. Nevertheless, the surface concentration of
GLUT1 continues to increase throughout this phase in order to compensate for dilution. Interestingly, it seems that the control
mechanisms attempt to bring the system back to steady state values associated with growth, not steady state values associated
with constant volume. If the latter were true, we would not expect to see the regulatory action in Figure 6 bringing intracellular
glucose and G6P levels away from steady state values associated with constant volume (dashed black lines). This suggests
that the growth associated offsets may be caused by set-point changes, rather than the inability to maintain the glycolytic flux
during growth. Finally, the first phase is repeated and the volume is kept constant again, but is now much larger (white area). In
this phase, we see that metabolite levels and the glycolytic flux return to steady state values associated with constant volume.
This is achieved by the increase of surface concentration of GLUT1 during the growth phase, which is made possible due to
the relationship between cellular volume and cell surface area (see Section S2 in the Supporting Material). Thus, the growth
associated offsets appears to be dependent on the rate of volume increase, not the total volume.

Taken together, the simulation results of models A, B, and C in Figure 5 and Figure 6 show that while negative feedback
from downstream metabolites to nutrient transporters is sufficient for homeostatic control in a constant volume, it is necessary to
stabilize the concentrations of intermediate enzymes in order to achieve homeostatic control during growth. The simulations also
demonstrate that during the growth phase, growth associated offsets from steady state values associated with constant volume
are observed, and that these offsets appears to be caused by set-point changes that are dependent on the growth rate. Importantly,
investigations into control mechanisms similar to the ones identified in this paper, have shown that growth associated offsets
become negligible if the kinetics of the controller species behave on a timescale much faster than cell growth (9, 10, 73–75).
These control mechanisms, called ICMs, achieve robust homeostatic control due to a negative feedback structure that includes
integral action. In the following, we take a closer look at the function of such ICMs and show how the control mechanisms
discussed above realize integral action and dilution resistance.

A Closer Look at Integral Control Motifs
Asymptotic regulation is the notion that a regulation error approaches zero, i.e. the output perfectly reaches a desired reference,
as time tends to infinity (76). If asymptotic regulation is achieved in the presence of disturbances, asymptotic disturbance
rejection (also called robustness) is achieved (76). In the case of constant reference signal, or set-point, and constant disturbance,
asymptotic regulation and disturbance rejection can be achieved by integral action (76). A block diagram of negative feedback
with integral action is shown in Figure 7. For a system subject to disturbance F, the output H is to be regulated to a set-point A .
This is achieved by comparing the system output to the set-point, giving the regulation error 4 = A − H. The integral controller
integrates the regulation error, producing the control action input D to the system. Thus, when the system output deviates from
the set-point, the regulation error is non-zero, which produces a change in the control action. Because the feedback is negative,
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Figure 6: Simulation results of model C. The bottom right plot shows volume (solid black line) and surface area (dashed black
line) during the simulation. Initially, the cellular volume is kept constant, and the system has settled at steady state (white
area, C = [0, 400]). In the second phase (light gray area, C = [400, 800]), the cellular volume increases linearly. During this
phase, metabolite levels and the glycolytic flux are maintained at constant levels, however, with offsets from steady state values
associated with constant volume (dashed black lines in intracellular glucose and G6P plots). At the start of the third phase (dark
gray area, C = [800, 1200]), as the volume is still increasing, the concentration of extracellular glucose is increased 4-fold.
Interestingly, the system is regulated back to steady state values associated with growth, and away from steady state values
associated with constant volume. This suggests that the growth associated offsets are caused by set-point changes. Finally, the
first phase is repeated, and the volume is kept constant (white area, C = [1200, 1600]). In this phase we see that metabolite levels
and the glycolytic flux return to steady state values associated with constant volume. This indicates that the growth associated
offsets are dependent on the growth rate, rather than the total volume. Initial values and parameters are provided in Table S2 in
the Supporting Material.

this change in control action counteracts the deviation of the system output from the set-point. Importantly, when the system
output reaches the desired set-point, the output is maintained exactly at the set-point, as the “memory” element of the integral
controller stores the accumulated regulation error (9). The block diagram in Figure 7 suggests a constant integral gain � i,
though this gain can be variable, often referred to as gain scheduling (62, 76). The mathematical description of the integral
controller, called the integral control law, is given by

¤D(C) = � i · (A − H(C)) (11)
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Figure 7: Block diagram of negative feedback with integral action. The system output H is fed back (red output feedback)
and compared to the reference signal A to produce the regulation error 4 = A − H. The regulation error is multiplied by an
integral gain �8 and integrated over time to produce the control action D (blue system input). In the presence of an uncontrolled
disturbance F (black disturbance input), a deviation in system output from the reference will cause a non-zero regulation error.
This produces a change in the control action, and since the feedback is negative, this control action functions to contract the
deviation in system output from the reference.

Investigations into robust homeostatic systems have revealed several motifs that include negative feedback with integral
action (9, 62, 77, 78). The control mechanisms considered in this paper correspond to a class of ICMs called homeostatic
controller motifs (62). It has been shown that these homeostatic controller motifs are robust to all parameter perturbations that
do not destroy the stability of the system (79). For example, feedback inhibition from G6P to GLUT1 generation produces the
same structure as that of Figure 7. Red output feedback corresponds to the inhibition of GLUT1 generation by G6P, the integral
controller block corresponds to GLUT1 level, blue system input corresponds to GLUT1 mediated glucose uptake, and the
system block corresponds to the level of G6P. The black disturbance input corresponds to perturbations made in extracellular
glucose and cellular volume. By manipulating Eq. 9, we show that GLUT1 functions as an integral controller for G6P level

¤2GLUT1 (C) = :cat,1 · 2� ,1 (C) ·
 i,G6P

 i,G6P + 2G6P (C) ·
+ (C)
�(C) −

:cat,2 · 2E,2 (C) · 2GLUT1 (C)
 M,2 + 2GLUT1 (C) · + (C)

�(C) − 2GLUT1 (C) ·
¤�(C)
�(C) (12)

≈ :cat,1 · 2E,1 (C) ·
 i,G6P

 i,G6P + 2G6P (C) ·
+ (C)
�(C) − :cat,2 · 2E,2 (C) · + (C)

�(C) − 2GLUT1 (C) ·
¤�(C)
�(C) (13)

= � i (C) ·
(
2G6P,set − ¤�(C) · >G6P (C) − 2G6P (C)

)
(14)

where we make the simplification  M,2 � 2GLUT1. The following definitions are made

� i (C) = 1
�(C) ·

:cat,2 · =E,2

 i,G6P + 2G6P (C) (15)

2G6P,set =
:cat,1 · =E,1 − :cat,2 · =E,2

:cat,2 · =E,2
·  i,G6P (16)

>G6P (C) =
 i,G6P + 2G6P (C)
:cat,2 · =E,2

· 2GLUT1 (C) (17)

The set-point for G6P level, 2G6P,set, is given entirely by parameters associated with GLUT1 generation and degradation.
This means that perturbations in G6P are fully compensated for, as the set-point remains unchanged for such perturbations (73).
In the case without growth, ¤� = 0, Eq. 14 is reduced to the same form as the integral control law in Eq. 11. In the case with
growth, a growth associated offset, ¤� · >G6P, is introduced. However, if the reaction rates for the generation and degradation of
GLUT1 behave on a timescale much faster than the rate of dilution, >G6P is small, and the growth associated offset becomes
negligible. ICMs with controller reactions much faster than the rate of dilution are called quasi-ICMs, and characteristically
show small growth associated offsets (9). One mechanism of regulating GLUT1 and HK2 activity is through translocation
between biological membranes and the cytosol, indicating that the activity of these species can respond quickly, and that
regulation of glucose uptake in cancer may achieve dilution resistance through the formation of quasi-ICMs (39, 55, 80). Similar
to GLUT1, it is possible to show that HK2 functions as an integral controller for the level of intracellular glucose (See Section
S3 in the Supporting Material).
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CONCLUSION
In this paper, we have constructed a mathematical model of glucose uptake based on the reported rewiring of glycolysis in
cancer and differential gene expression of cancer and normal cells. With basis in the literature, we added control mechanisms to
the model in a stepwise manner, in order to investigate the role each regulatory mechanism serve. Expectedly, we found that
feedback inhibition from downstream glycolytic metabolites to glucose transporters is sufficient for homeostatic control of
glycolysis in a constant volume. However, in a growing volume, we found that regulation of intermediate glycolytic enzymes is
needed for homeostatic control of glycolysis. Cancer cells show a shift towards GLUT1 mediated glucose uptake and a reliance
on HK2. We found that these species form regulatory mechanisms for glycolysis through their interactions with glycolytic
metabolites. These regulatory mechanisms are a class of ICMs known as homeostatic controller motifs, and achieve robust
homeostatic control by negative feedback with integral action (9, 62). Our simulation results show that during growth, offsets
from steady state values associated with constant volume are observed. These growth associated offsets can be interpreted
as set-point changes, and are dependent on the growth rate of the cell, not the total volume. In his definition of homeostasis,
Cannon emphasized that homeostasis does not imply perfect adaptation to disturbances, but allows for some variability in
steady state (81). Similarly, rheostasis is defined as systems that show homeostatic control at any one instant, but over the span
of time show change in the regulated level (82). Living organisms are not necessarily concerned with perfect regulation, but
rather with the presence of some level of regulation. Thus, it is likely that sufficient regulation can be achieved even if the
growth associated offsets are fairly large. This variability in steady state can then be viewed as a relaxing condition on the
control mechanisms employed (83).

Investigations into ICMs have shown that growth associated offsets becomes negligible if the rates of the controller reactions,
i.e. the generation and degradation of GLUT1 and HK2, are much faster compared to the rate of dilution (9, 10, 73–75). In
our model, enzymes responsible for generating and removing the controller species (Ei, i = 1, 2, 3, 4) are present in constant
amounts only, meaning that their concentrations simply dilute with increasing volume. This is a worst-case scenario in which
regulation in the presence of dilution is possible. In this scenario, we found that model C is able to compensate for dilution in a
linearly increasing volume. However, most protein and mRNA concentrations are independent of cell size, and therefore it is
likely that the concentrations 2E,i (i = 1, 2, 3, 4) should be considered constant (7). In this case, it has been shown that regulation
is possible even in the presence of dilution in an exponentially increasing cell volume (9, 10).

Taking a closer look at feedback inhibition from downstream glycolytic metabolites to GLUT1 mediated glucose uptake, we
have shown how this control mechanism realizes integral action to regulate glycolysis. We have also shown how dilution affects
this ICM, and related the growth associated offset in G6P to a term dependent on the growth rate of the cell. In recent years,
ICMs have garnered much attention (9, 10, 62, 75, 77, 78). This paper uses glucose uptake in cancer to demonstrate a systems
biology approach to the analysis of complex regulatory systems, where control mechanisms are reduced into their essential
components, which can then be represented by ICMs. A benefit of this approach is simplifying the mathematical description of
the complex system, while retaining the essential behavior, such that a more manageable system can be considered and an
in-depth analysis of its function can be done.
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S1 Differential Gene Expression

Differential gene expression data collected from the Expression Atlas1 database are provided in the file
Differential expression.xlsx. The first sheet shows mean log2-fold change for the genes considered,
along with the number of experiments used to calculate the mean. The following sheets show log2-fold
change for each individual experiment, indicating the type of cells compared.

S2 Note on Cellular Volume and Surface Area

Assuming spherical cells, the surface area A and its rate of change Ȧ are calculated from the cellular volume
V and change in cellular volume V̇ as follows

A(t) = 4π

(
3V (t)

4π

) 2
3

(1)

Ȧ(t) =
2V̇ (t)

(
3V (t)
4π

) 1
3

(2)

This gives the relationship

V̇ (t)

V (t)
=

3

2
· Ȧ(t)

A(t)
(3)

which expresses the difference in dilution between concentrations in the cellular volume and at the cell
surface. This is the reason the surface concentration of GLUT1 does not settle at a constant level during
growth (see Figure 6 in the main paper). In Eq. 14 in the main paper, the offset Ȧ · oG6P does not fully
account for the difference in G6P set-point and observed level during growth. In fact, the offset is off by a
factor 3

2 , due to this difference in dilution of components. The same is not true for the negative feedback
connection formed by HK2 and intracellular glucose, as both components are concentrations with respect to
the cellular volume.

1https://www.ebi.ac.uk/gxa/home (see also reference (66) in the main paper)
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S3 Integral Control of Intracellular Glucose

Similar to how GLUT1 functions as an integral controller for G6P, HK2 functions as an integral controller
for intracellular glucose

ċHK2(t) = kcat,3 · cE,3(t) · cGlc(t)

Ka,Glc + cGlc(t)
− kcat,4 · cE,4(t) · cHK2(t)

KM,4 + cHK2(t)
− cHK2(t) · V̇ (t)

V (t)
(4)

≈ kcat,3 · cE,3(t) · cGlc(t)

Ka,Glc + cGlc(t)
− kcat,4 · cE,4(t) − cHK2(t) · V̇ (t)

V (t)
(5)

= Gi(t) ·
(
cGlc,set − V̇ (t) · oGlc(t) − cGlc(t)

)
(6)

where the simplification KM,4 � cHK2 is made. The following definitions are made

Gi(t) =
1

V (t)
· kcat,4 · nE,4 − kcat,3 · nE,3

Ka,Glc + cGlc(t)
(7)

cGlc,set =
kcat,4 · nE,4

kcat,3 · nE,3 − kcat,4 · nE,4
·Ka,Glc (8)

oGlc(t) =
Ka,Glc + cGlc(t)

kcat,4 · nE,4 − kcat,3 · nE,3
· cHK2(t) (9)

S4 Initial Values and Parameters

Initial Values

Name Model A Model B

cGlc 0.6669 0.6669
cG6P 2.0004 2.0004
cGLUT1 0.8273 0.8273

Parameters

nHK2 1.0000 1.0000

V f(t) = 1.0000 + V̇ · t f(t) = 1.0000 + V̇ · t

V̇ f(t) =

{
0, t < 100

0.1000 t ≥ 100
f(t) =

{
0, t < 100

0.1000 t ≥ 100

cGlc,ext f(t) =

{
5.0000, t < 50

1.2500, t ≥ 50
f(t) =

{
5.0000, t < 50

1.2500, t ≥ 50

kcat,GLUT1 0.6000 0.6000
KM,GLUT1 1.0000 1.0000
kcat,HK2 5.0000 5.0000
KM,HK2 1.0000 1.0000
kmetabolism 1.0000 1.0000
kcat,1 1.0000 6.0000
nE,1 1.0000 1.0000
kcat,2 2.0000 2.0000
KM,2 0.8273 0.0001
nE,2 1.0000 1.0000
Ki,G6P – 1.0000

Table S1: Initial values and parameters for the simulations of model A and B in Figure 5.
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Initial Values

Name Model C

cGlc 0.9997
cG6P 2.0004
cGLUT1 0.8273
cHK2 0.8002

Parameters

V f(t) = 1.0000 + V̇ · t

V̇ f(t) =

{
0.0500, 400 ≤ t < 1200

0, otherwise

cGlc,ext f(t) =

{
5.0000, t < 800

20.0000, t ≥ 800

kcat,GLUT1 0.6000
KM,GLUT1 1.0000
kcat,HK2 5.0000
KM,HK2 1.0000
kmetabolism 1.0000
kcat,1 6.0000
nE,1 1.0000
kcat,2 2.0000
KM,2 0.0001
nE,2 1.0000
kcat,3 2.0000
nE,3 1.0000
kcat,4 1.0000
KM,4 0.0001
nE,4 1.0000
Ki,G6P 1.0000
Ka,Glc 1.0000

Table S2: Initial values and parameters for the simulation of model C in Figure 6.
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