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Abstract 

Carbon Fibre Epoxy Composite is a relatively new material utilized in the subsea oil 

and gas industry. The fibre reinforced composite is competitive for its high strength-to-

weight ratio and good corrosion resistance. This thesis addresses the stochastic process 

applied to the CFEC flowline using response surface methodology. The material 

properties, geometries, and loadings are considered as the input parameters of the finite 

element model of the CFEC flowline, while failure criteria are output parameters. To 

have a better understanding of which parameter will affect the results, studies of 

correlation matrices are performed. Input parameters with higher correlation 

coefficients are identified and chosen to generate the response surfaces. A stochastic 

process which requires the large size of “measured results” can be substituted by 

approximate “response values”. The accuracy of the response surface is an essential 

issue that determines whether the approximate results are meaningful. Many factors 

that will affect the quality of the response surfaces, i.e. response surface type, number 

of selected parameters, size of the response surface, etc. Comparison studies about these 

possible factors are discussed in this thesis. 

 

It is found that parameters that have correlation coefficients larger than a level should 

be selected for response surface generation. More parameters selected will increase 

both the time of generating response surface and the accuracy, while if extremely few 

parameters are selected, i.e. five, the accuracy will be significantly affected. Larger 

response surface size will slightly reduce the accuracy of response values, so the use of 

larger size becomes available, which can be utilized by more design cases. It is noted 

that the sample populations should avoid centralized at the boundary of response 

surfaces. With these approaches, the efficiency of using the response surface 

methodology in composite flowline design can be improved, where the percentage 

differences of predicted exceeding probabilities are usually below 10%. Based on these 

findings, a safety factor can be defined and used to describe these uncertainties. 

 

Key words:  

Composite material, flowline, failure analysis, response surface, Kriging, optimization. 

 



2 

 

Acknowledgement 

I would like to thank Prof. Yihan Xing for his idea and suggestion of the project from 

the first day, which increased my interest in the topic. “Experience is the best teacher”, 

he always glad to share his experience with me whenever I meet problems. I appreciate 

him for his patience in the discussions in academic and common issues, which support 

me the most during the past year. 

 

I would like to thank Co-supervisor Valentina Buratti for her effort during the project. 

Her constructive suggestion and opinions on my work, which helped me improve it in 

an efficient way. I would also appreciate her technical supports when I met problems 

with the software.  

 

I also owe a debt of gratitude for all the faculty members and my friends, who support 

me spend an unforgettable study experience during these two years.



3 

 

Table of Contents 

Abstract ............................................................................................................................................. 1 

Acknowledgement ............................................................................................................................ 2 

Table of Contents .............................................................................................................................. 3 

List of Figures ................................................................................................................................... 5 

List of Tables ..................................................................................................................................... 7 

Nomenclature .................................................................................................................................... 8 

1 Introduction and Background .................................................................................................... 9 

1.1 Subsea Flowline ............................................................................................................ 9 

1.2 Polymer Composite ....................................................................................................... 9 

1.3 CFEC Flowline ........................................................................................................... 10 

1.4 Design Optimization. .................................................................................................. 12 

1.5 Thesis Outline ............................................................................................................. 12 

2 Literature Review .................................................................................................................... 15 

2.1 Classical Laminate Theory .......................................................................................... 15 

2.1.1 Assumptions .................................................................................................... 15 

2.1.2 Laminate Stacking ........................................................................................... 16 

2.2 Composite Failure Criterion ........................................................................................ 17 

2.2.1 Maximum Stress Failure Criterion .................................................................. 18 

2.2.2 Tsai-Wu Failure Criterion................................................................................ 19 

2.2.3 Hashin Failure Criterion .................................................................................. 20 

2.2.4 Failure Criteria Calculation ............................................................................. 21 

2.3 Probabilistic Analysis .................................................................................................. 23 

3 Design Optimization Method .................................................................................................. 25 

3.1 Parameter Correlation and Determination ................................................................... 25 

3.1.1 Pearson Correlation ......................................................................................... 25 

3.1.2 Spearman Correlation ...................................................................................... 26 

3.2 Response Surface Methodology .................................................................................. 27 

3.2.1 Kriging ............................................................................................................ 28 

3.2.2 Non-Parameter Regression .............................................................................. 29 

3.2.3 Neural Network ............................................................................................... 30 

3.2.4 Genetic Aggregation ........................................................................................ 31 

4 Preliminary study - Burst design correlation study of a subsea flowline ................................ 32 

4.1 General Properties ....................................................................................................... 32 

4.2 Nominal Load Values .................................................................................................. 33 

4.3 Finite Element Model .................................................................................................. 34 

4.3.1 Loads and Boundary Conditions ..................................................................... 34 



4 

 

4.3.2 Mesh Refinement Study .................................................................................. 35 

4.4 Parameter Correlation Study of the Base Case ........................................................... 37 

4.4.1 Influence of Sample Size on Correlation Matrix ............................................. 42 

4.4.2 Influence of Correlation Method on Correlation Matrix ................................. 43 

4.5 Response Surface for Base Case ................................................................................. 44 

4.5.1 Range of Selected Parameters ......................................................................... 45 

4.5.2 Response Value and Measured Value .............................................................. 45 

5 Stochastic Process Using Response Surface ........................................................................... 47 

5.1 Generation of Measured Values .................................................................................. 47 

5.1.1 Convergence Study on Population Size .......................................................... 50 

5.1.2 Fitting Statistical Models to Measured Values ................................................ 51 

5.1.3 Failure Rate Calculation .................................................................................. 53 

5.2 Using Response Surfaces for Prediction of Failure Rates ........................................... 54 

5.2.1 Comparison of Statistical Moments ................................................................ 55 

5.2.2 Comparison of Probability and Cumulative Distribution Plots ....................... 57 

5.2.3 Comparison of Failure Values ......................................................................... 59 

6 Optimising Response Surface Generation ............................................................................... 60 

6.1 Number of Input Parameters ....................................................................................... 60 

6.1.1 Number of Parameters - Effect on Statistical Moments .................................. 60 

6.1.2 Number of Parameters – Effect on Fitted Probability Distributions ............... 63 

6.1.3 Number of Parameters – Effect on Predicted Failure Values .......................... 66 

6.2 Size of Response Surface ............................................................................................ 68 

6.2.1 Size of Response Surface - Effect on Statistical Moments ............................. 69 

6.2.2 Size of Response Surface – Effect on Fitted Probability Distributions ........... 71 

6.2.3 Size of Response Surface – Effect on Predicted Failure Values ...................... 73 

6.3 Location of Sample Population ................................................................................... 75 

7 Conclusion and Future Work ................................................................................................... 78 

7.1 Conclusion .................................................................................................................. 78 

7.2 Recommendation for Future Work .............................................................................. 80 

References ....................................................................................................................................... 82 

Appendix I 

Appendix II 

 

 



5 

 

List of Figures 

Figure 1: Structure of fibre reinforced polymer lamina .................................................................. 11 

Figure 2: Flowchart of the thesis ..................................................................................................... 13 

Figure 3: Explanation of laminate sequence. .................................................................................. 16 

Figure 4: Laminate stacking sequences and their notation.............................................................. 17 

Figure 5: Illustration of the various failure modes in Hashin failure criterion ................................ 20 

Figure 6: Example of Tsai-Wu failure criterion plot –failure criterion ........................................... 22 

Figure 7: Example of Tsai-Wu failure values calculated at the middle of the flowline .................. 22 

Figure 8: Refinement of Kriging response surface (Base Case) ..................................................... 29 

Figure 9: Neural network mechanism ............................................................................................. 30 

Figure 10: Stacking sequence of [(θ, -θ)15] T ................................................................................... 33 

Figure 11: Loads and boundary conditions ..................................................................................... 35 

Figure 12: Results of mesh refinement study .................................................................................. 36 

Figure 13: Mesh details, 10 mm element Size, 6430 SHELL181 elements with 6432 nodes......... 37 

Figure 14: Correlation matrix of case studied, spearman, N=200 ................................................... 38 

Figure 15: Correlation scatter diagram, Tsai-Wu vs. Internal pressure, Spearman, N=200 ............ 40 

Figure 16: Correlation scatter diagram, Tsai-Wu vs. Ply thickness, Spearman, N=200 ................. 40 

Figure 17: Linear correlation matrices with different sample size (Spearman) .............................. 42 

Figure 18: Linear correlation matrices with different sample size (Pearson) .................................. 43 

Figure 19: Cumulative probability distribution of elastic modulus E1 ............................................ 48 

Figure 20: Cumulative probability distribution of inner diameter D .............................................. 49 

Figure 21: Cumulative probability distribution of internal pressure P ............................................ 49 

Figure 22: Values of Statistical moments vs Population Size ......................................................... 50 

Figure 23: % difference of statistical moments values compared to population size N=500 ......... 51 

Figure 24: Statistical models fitted to measured values .................................................................. 52 

Figure 25: Statistical models fitted to measured values, zoom-In at upper tail region ................... 52 

Figure 26: Workflow used to compare the response accuracy ........................................................ 55 

Figure 27: Comparison of probability density functions................................................................. 58 

Figure 28: Comparison of cumulative probability distribution functions ....................................... 58 

Figure 29: Number of parameters – Effect on statistical moments ................................................. 61 

Figure 30: Number of parameters – Effect on statistical moments (% difference) ......................... 62 

Figure 31: Number of parameters – Effect on probability density functions .................................. 64 

Figure 32: Number of parameters – Effect on cumulative probability functions ............................ 65 

Figure 33: Number of parameters – Effect on cumulative probability functions ............................ 65 

Figure 34: Different sizes of response surfaces .............................................................................. 68 

Figure 35: Size of response surface – Effect on statistical moments .............................................. 69 

Figure 36: Size of response surface – Effect on statistical moments (% difference) ...................... 70 



6 

 

Figure 37: Size of response surface – Effect on probability density functions ............................... 72 

Figure 38: Size of response surface – Effect on cumulative probability functions ......................... 73 

Figure 39: Size of response surface – Effect on cumulative probability functions ......................... 73 

Figure 40: Locations of study cases on the response model. .......................................................... 76 

Figure 41: Flow chart of exceeding failure value prediction using response surface. .................... 78 



7 

 

List of Tables 

Table 1: Comparison of Epoxy Carbon UD (230Gpa) and Steel AISI 4130 ................................... 10 

Table 2: Study of Sample Size and Correlation method ................................................................. 25 

Table 3: General Properties of Subsea CFEC Flowline .................................................................. 32 

Table 4: Material Data – Ply (Prepreg Epoxy Carbon UD 230 GPa) .............................................. 32 

Table 5: Nominal Load Values ........................................................................................................ 33 

Table 6: Failure Values Corresponding to Nominal Loads ............................................................. 33 

Table 7: Cases Studied for Mesh Refinement Study ....................................................................... 35 

Table 8: Correlation Coefficient of Failure Criteria, N=100, Spearman ......................................... 38 

Table 9: Correlation Coefficient of Internal Pressure and Ply Thickness ....................................... 39 

Table 10: Correlation Coefficient of Slightly Correlated Parameters ............................................. 41 

Table 11: Top 20 Most Influential Input Parameters ....................................................................... 44 

Table 12: Range of Input Parameters Used in Response Surface ................................................... 45 

Table 13: Response Value Comparison of Different Response Surface Types ............................... 46 

Table 14: Mean and Standard Deviation of Input Parameters Used in Base Case .......................... 47 

Table 15: R2 Value of Four Statistical Models ................................................................................ 53 

Table 16: Failure Results at Different Failure Rates for Measured Values ..................................... 54 

Table 17: Comparison of Statistical Moments ................................................................................ 56 

Table 18: Comparison of Failure Values ......................................................................................... 59 

Table 19: Size of Design of Experiment for Different Number of Input Parameters ...................... 60 

Table 20: Statistical Moments of Different Parameter Number and Measured Values ................... 62 

Table 21: Number of Parameters – Effect on Predicted Failure Values .......................................... 67 

Table 22: Range of Diameter and Ply Thickness Studied ............................................................... 69 

Table 23: Comparison of Statistical Moments of Different Response Surface Size ....................... 70 

Table 24: Size of Response Surface – Effect on Predicted Failure Values ...................................... 74 

Table 25: Mean and Standard Deviation of Inner Diameter and Thickness for New Population 

Cases ........................................................................................................................................ 75 

Table 26: % difference of Failure Rate at Different Locaiton on Extremly Large Size .................. 77 

 

 



8 

 

Nomenclature 

𝜎ℎ Hoop stress 𝜎𝑙  Longitudinal stress 

𝜎1 Principle stress in x-direction 𝜏12 Shear stress in xy-plane 

𝜎2 Principle stress in y-direction 𝜏23 Shear stress in yz-plane 

𝜎3 Principle stress in z-direction 𝜏13 Shear stress in xz-plane 

𝜎𝑢𝑐1 Compressive strength limit in x-direction 𝜏𝑢12 Shear strength limit in xy-plane 

𝜎𝑢𝑐2 Compressive strength limit in y-direction 𝜏𝑢23 Shear strength limit in yz-plane 

𝜎𝑢𝑐3 Compressive strength limit in z-direction 𝜏𝑢13 Shear strength limit in xz-plane 

𝜎𝑢𝑡1 Tensile strength limit in x-direction 𝐷 Flowline Iinner Diameter 

𝜎𝑢𝑡2 Tensile strength limit in y-direction OD Flowline outer Diameter 

𝜎𝑢𝑡3 Tensile strength limit in z-direction t Ply thickness 

𝜌𝑟𝑔𝑋,𝑟𝑔𝑌 Spearman correlation coefficient 𝑡𝑡𝑜𝑡𝑎𝑙  Flowline wall thickness 

𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌) Covariance of the rank variable 

𝜎𝑟𝑔𝑋 Standard deviation of the rank variable gX   

𝜎𝑟𝑔𝑌  Standard deviation of the rank variable gY   

P Internal pressure A Axial force 

B Bending moment T Torsion 
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1 Introduction and Background 

1.1 Subsea Flowline 

As an important component in the subsea oil and gas production system, subsea 

flowlines are pipelines that connect a wellhead to a manifold or processed equipment, 

which transport production/injection fluids between subsea wells and manifolds or 

processing facilities. With the constant development of the oil and gas industry, a higher 

number of deep-water oil and gas reservoirs are exploited. The average depth of oil 

wells drilled was 1108 m in 1949, increased to 1818 m in 2008.1 With more reservoirs 

are drilled, the total length of the pipeline is increasing. Noted by Global data 2019,2 

the length of oil and gas pipeline is expected to increase from 1.9 million km to 2.2 

million km in the next 4 years. However, the increasing depth and distance of pipeline 

would lead to the requirement of pipelines with better performance, which will 

unavoidably increase the cost. Mentioned by ICF International,3 the average pipeline 

cost increased from $94000 per inch-mile in 2011 to $155000 per inch-mile in 2012. 

To reduce the associated costs, an attractive solution is to use composite materials 

instead of traditional steel material in the flowline manufacture. Several projects have 

utilized composite flowline in their production system, for example Åsgard and Alder 

fields.  

 

1.2 Polymer Composite 

Polymer composite has been well established in areas such as aerospace, 

automotive, architecture and infrastructure, where requiring structures with a higher 
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strength but lighter weight. Many applications have used composites for components, 

like aircraft fin and tailplane. The composite is valued for its high strength-to-weight 

ratio. Airbus 320, a narrow-body airliner designed and produced by Airbus, has used 

ranges of composite components, which reduces the weight of 800 kg compared to the 

aluminum alloy.4 The good properties make the composite a cost-effective material in 

engineering design. 

The composite material is not new in the subsea industry. Fiber-reinforced polymer 

composites (FRP) have been used in the subsea industry in the last 30 years for 

applications like modules, protections, pipes, pressure vessels, etc.5 Their corrosion 

resistance properties additionally improving their competitiveness compared to metals 

in the offshore and subsea industry. 

1.3 CFEC Flowline 

Carbon Fibre Epoxy Composite is one of the attractive choices which have a high 

strength-to-weight ratio. As presented in Table 1, CFEC is nearly five times lighter than 

steel, but have more than two times of tensile strength.  

Table 1: Comparison of Epoxy Carbon UD (230Gpa) and Steel AISI 4130 

 
Yield Strength 

(GPa) 

Ultimate Tensile 

Strength (GPa) 

Density 

(g/cm3) 

Strength to 

Weight Ratio 

Epoxy Carbon UD 3.53 2.231 1.49 1.497 

Steel, AISI 4130 0.95 1.11 7.85 0.141 

CFEC consists of epoxy matrix and carbon fibres. The epoxy matrix provides 

protection for the fibres from the external environment and transfers the loads between 

the fibres, while the fibres provide the strength and stiffness to the component, as shown 
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in Figure 1. This gives the CFEC ability to customize the material strength according 

to different applications by adjusting the laminate layout and fibre directions. However, 

in most situations, the subsea flowlines are subjected to a combination of loading such 

as internal pressure, external pressure, bending, axial forces. Thus, the anisotropic 

property of CFEC also demands a comprehensive and reliable stress analysis. 

 

Figure 1: Structure of fibre reinforced polymer lamina 

Numbers of studies were published related to the composite pipeline stress 

analysis. Yang analyzed the stresses at composite joints under tensile loading.6 Jha et al 

analyzed the stresses of a fibre-reinforced flexible pipe for deepwater applications.7 In 

addition, the complex subsea terrain, temperature, current and other factors make the 

CFEC flowline not only be affected by the loading. The joint action of random 

parameters like loading, environment, material properties and geometries require a 

stochastic model in engineering design. Several pieces of research have studied 

stochastic process in the pipeline designs. Bazan et al. studied the stochastic process of 

pipeline corrosion growth models.8 Oliveira et al. carried on a probabilistic analysis of 

collapse pressure associated with corroded pipelines.9 However, considering the 

requirements of a large size of samples, which means time consumed is increased, the 

stochastic process is not widely used in the engineering design.   
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1.4 Design Optimization. 

To make the stochastic design available in engineering design, an optimized 

method of obtaining samples is required. Response surface methodology is an approach 

that can calculate approximate results by building a response surface model based on 

sample results, which can both obtained from several experiments or simulations. 

Compared to the traditional approach by which repeating the experiments or 

simulations, this method requires less time especially when the required sample size is 

large. Some studies were published associated with the response surface methodology 

in engineering problems. Jia et al. studied the Kriging-based response surface in the 

application of structure reliability analysis.10 Simpson et al. carried a failure analysis 

comparison using the second-order response surface models and Kriging models for 

multidisciplinary design.11 Gupta et al introduced an improved response surface method 

for the determination of failure probability.12 These studies show that the response 

surface is a convenient tool in engineering design and optimization. However, the 

results obtained by the response surface are approximate values, which means the using 

of the response surface requires careful consideration. Many factors will affect the 

accuracy of the response values, including the interpolation method, the response 

surface type, the chosen of parameters, size of response surface, etc. 

1.5 Thesis Outline 

This dissertation suggests an optimized method to predict the failure rates 

associate with a CFEC flowline using the Kriging response methodology. The general 

flowchart is shown in Figure 2: 
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Figure 2: Flowchart of the thesis 

In Section 1, the importance of flowline in the subsea oil and gas production 

system is discussed, Carbon Fibre Epoxy Composite used into the flowline design is 

introduced. An optimized method of CFEC flowline design using response surface 

methodology is put forward. 

In Section 2, the importance of classical laminate theory in fibre-reinforced 

composite stress analysis is introduced and three commonly used failure criteria for the 

composite material are Maximum Stress, Tsai-Wu13 and Hashin14 criteria. 
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In Section 3, the principle of using response surface methodology is discussed. 

Two correlation methods are introduced: Spearman15 and Pearson16. Four response 

surface types are introduced: Kriging17, Non-Parameter Regression, Neural Network18 

and Genetic Aggregation. 

In Section 4, a preliminary study of CFEC flowline under combined loads is 

presented. A finite element model of the CFEC flowline is built using ANSYS 

Composite Pre/Post, Mechanical and DesignXplorer. We will study how the different 

correlation methods will affect the correlation results between the input and parameter 

parameters. An approach of using correlation matrix to select parameters for the 

response surface generations is introduced. We will compare the difference between the 

three response surface methods. 

In Section 5, a traditional stochastic process of failure rate prediction is 

investigated, which requires a large size of samples. The generation of sample 

population using Monte-Carlo simulation is introduced. Meanwhile, a new method 

using response surface to generate required samples is introduced. The results are 

compared with the traditional method. 

In Section 6, we reveal the limits of using the response surface to predict the failure 

rates and promote some possible methods to improve the accuracy of the response 

surface. 

In Section 7, conclusions are made based on the results and observation, and 

recommendations for future work are suggested. 
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2 Literature Review 

2.1 Classical Laminate Theory 

A laminate is a stack of composite plies which have unique directions and 

properties. The coupling effects between adjacent plies made the composite material 

have different stress and strain distribution with common isotropic materials. The 

classical lamination theory (CLT) is a widely accepted theory to analyze the stress 

within the composite laminates.  

2.1.1 Assumptions 

The classical lamination theory is an extension of classical plate theory (CPT) 

proposed by Kirchhoff19 and Love20, which have the following assumptions: 

• Straight lines normal to the mid-plane remain normal and straight after 

deformation. 

• The thickness of the plate does not change during any deformation. 

As an extension of CPT, few more assumptions are made considering the 

difference between the stress-strain relationships of laminate: 

• The adjacent laminas are well bounded (There is no slip between adjacent 

layers). 

• The thickness of the plate is much smaller compared to other dimensions. 

• Stress in thickness directions is negligible (𝛾xz = 𝛾yz = 0). 

The classical laminate theory provides a relation between the strain and stress 

within the laminate and loading applied on the composite, which made the stress and 
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deformation analysis within the laminate become possible by mathematical method.  

2.1.2 Laminate Stacking 

The composite consists of epoxy matrix reinforced by multiple carbon-fibre layers 

with different fibre direction. The direction of 0° usually defined in the same direction 

with primary loading (x-axis). The plies that do not have the same direction with 0° 

should be assigned an angle. One of the methods to define the other fibre direction is to 

rotate the ply from 0° , clockwise direction is defined as a positive angle, and 

counterclockwise is negative.21 All the plies within the laminate should have an angle 

associate with 0°.  

 

Figure 3: Explanation of laminate sequence. 

The direction of each ply will be written to represent the stacking sequence of the 

laminate. For a non-symmetric laminate, the sequence starts from the outmost ply to 

the bottom and subscripted with “T” stand for total. For a symmetric laminate, the 
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sequence starts from the outermost ply to the middle ply, the bracket is subscripted with 

an “S” to represent symmetric. A bar put on the top of the angle of the middle plane 

represents the middle ply. Plies that have a same direction can be grouped together and 

mark the number of the groups at the corner. Some examples of layer sequences are 

shown below in Figure 4. 

 

Figure 4: Laminate stacking sequences and their notation 

2.2 Composite Failure Criterion 

Failure criteria are frequently used in engineering to qualify the failure of the 

structure design. Generally, the failure criteria compare the stress that the structure 

experienced and the stress limit that the material can hold without reducing its stability. 

The failure criteria basically have a form: 

𝜎𝑖 ≤ 𝑓 × 𝜎𝑢𝑖 (1) 

Where 𝜎𝑖 is the actual stress, 𝜎𝑢𝑖 is the ultimate strength of the material. When 

the ratio 𝑓 is larger than 1, which means the stress within the structure is larger than 
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the strength limit of the material, the component will be considered “fail”. Failure 

criteria of composite materials can be divided into two categories: non-interactive 

failure criteria and interactive failure criteria.22 

Non-Interactive failure criteria assume there is no interaction between stress or 

strain tensor components, which means the failure of the composite is determined by 

the stress or strain on one direction alone, and not related to other stress and strain in 

any directions. A typical non-interactive failure criterion of the composite is the 

Maximum Stress failure criterion. 

On the contrary, the interactive failure criteria as its name suggested, assume that 

the failures are determined by joint effect of at least two stress or strain components, 

which means the failure value can be presented as a combination formula of the stress 

and strain tensor components. The Tsai-Wu failure criterion and Hashin failure criterion 

are two typical interactive failure criteria. We will go into details of the three failure 

criteria discussed above. 

It is noted that as the classical laminate theory is used, the stress and strain in z 

direction is negligible. (i.e., 𝜎3 = 𝜏23 = 𝜏13 = 0) 

 

2.2.1 Maximum Stress Failure Criterion 

 Maximum Stress failure criterion is a commonly used criterion for composite 

materials. It is a non-interactive failure criterion that assume the failure occurs when 

the stresses in any principle direction exceed the material strength in that direction. The 

failure value is calculated using Equation (2). 
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𝑓 = 𝑚𝑎𝑥 (|
𝜎1
𝑋
| , |
𝜎2
𝑌
| , |
𝜎3
𝑍
| , |
𝜏12
𝑆
| , |
𝜏13
𝑅
| , |
𝜏23
𝑄
|) (2) 

Where: 

𝑋 = {
𝜎𝑢𝑐1, 𝜎1 < 0
𝜎𝑢𝑡1, 𝜎1 ≥ 0

, 𝑆 = 𝜏𝑢12 

𝑌 = {
𝜎𝑢𝑐2, 𝜎2 < 0
𝜎𝑢𝑡2, 𝜎2 ≥ 0

 , 𝑅 = 𝜏𝑢13 

𝑍 = {
𝜎𝑢𝑐3, 𝜎3 < 0
𝜎𝑢𝑡3, 𝜎3 ≥ 0

, 𝑄 = 𝜏𝑢23 

(3) 

2.2.2 Tsai-Wu Failure Criterion 

The Tsai-Wu failure criterion is a widely used failure criterion for anisotropic 

composite materials which have different strength for tension and compression. The 

Tsai-Wu failure criterion is based on the work of Gol’denblat and Koponov.23 The 

criterion assumes the existence of a failure surface and distinguishes between the 

compressive and tensile strength in the ply failure prediction. The failure criterion uses 

the following quadratic formulation presented in Equation (4). 

𝑓 =
𝜎1
2

𝜎𝑢𝑡1𝜎𝑢𝑐1
+

𝜎2
2

𝜎𝑢𝑡2𝜎𝑢𝑐2
+

𝜏12
2

𝜏𝑢122
+ 𝜎1 (

1

𝜎𝑢𝑡1
−

1

𝜎𝑢𝑐1
) + 𝜎2 (

1

𝜎𝑢𝑡2
−

1

𝜎𝑢𝑐2
) + 2𝐹12𝜎1𝜎2 (4) 

F12 is a parameter that only associated with principle stresses σ1 and σ2. This 

coefficient has a range from -1 to 1, which was related to the physical meaning of the 

material properties. F12 is also commonly obtained using bi-axial tests. Some examples 

can be found in Clouston et al.24 and Li et al.25 One commonly used form of F12 is 

presented in Equation (5): 

𝐹12 = −
1

2
√(

1

𝜎𝑢𝑡1
−

1

𝜎𝑢𝑐1
) (

1

𝜎𝑢𝑡2
−

1

𝜎𝑢𝑐2
) (5) 
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2.2.3 Hashin Failure Criterion 

Hashin failure criterion distinguishes three different types of failure modes: fibre 

failure, matrix failure and interlaminate failure. These failure modes are illustrated in  

Figure 5. 

 

Figure 5: Illustration of the various failure modes in Hashin failure criterion 

The tensile fibre failure considers the strength on the fibre direction, which have 

the following criterion: 
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𝑓𝑓 =

{
 

 (
𝜎1
𝜎𝑢𝑡1

)
2

+ (
𝜏12
𝜏𝑢12

)
2

        , 𝜎1 ≥ 0

          −
𝜎1
𝜎𝑢𝑡1

                   , 𝜎1 < 0
 (6) 

The matrix failure is caused by the tensile transverse stress perpendicular to the 

fibre direction, which have the criterion: 

𝑓𝑚 =

{
 
 

 
 (

𝜎2
𝜎𝑢𝑡2

)
2

+ (
𝜏23
𝜏𝑢23

)
2

+ (
𝜏12
𝜏𝑢12

)
2

+ (
𝜏13
𝜏𝑢13

)
2

                             , 𝜎2 ≥ 0

(
𝜎2

2𝜏𝑢23
)
2
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𝜏23
𝜏𝑢23

)
2

+ (
𝜏12
𝜏𝑢12

)
2

+ [(
𝜎𝑢𝑐2
2𝜏𝑢23

)
2

− 1]
𝜎2
𝜎𝑢𝑐2

     , 𝜎2 < 0

 (7) 

The criterion for tensile interlaminate failure is presented in Equation (8). This 

criterion evaluates the stress that normal to the laminate. 

𝑓𝑖 =

{
 
 

 
 (

𝜎3
𝜎𝑢𝑐3

)
2

+ (
𝜏13
𝜏𝑢13

)
2

+ (
𝜏23
𝜏𝑢23

)
2

, 𝜎3 < 0

(
𝜎3
𝜎𝑢𝑡3

)
2

+ (
𝜏13
𝜏𝑢13

)
2

+ (
𝜏23
𝜏𝑢23

)
2

, 𝜎3 ≥ 0

 (8) 

The Hashin failure criterion value is decided by the maximum of failure values 

calculated above, as shown in Equation (9): 

𝑓 = 𝑚𝑎𝑥(𝑓𝑓 , 𝑓𝑚, 𝑓𝑖) (9) 

2.2.4 Failure Criteria Calculation 

The failure values are calculated using ANSYS Composite Pre/Post. The failure 

results and the corresponding failure modes are shown in the ACP solution. As 

introduced above, the failure criteria have different failure modes. The maximum stress 

failure criteria have failure modes associate with stress in different directions: σ1, σ2 

and σ3. The Tsai-Wu failure criteria using an integrated formula that do not differ any 

failure modes. The Hashin failure criteria distinguish the failure between fibre failure, 

matrix failure and interlaminate failure. An example of Tsai-Wu failure criterion 
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solution is shown in Figure 6. The solution is processed at the middle section of the 

flowline model, as shown in Figure 7.  

 

Figure 6: Example of Tsai-Wu failure criterion plot –failure criterion 

 

Figure 7: Example of Tsai-Wu failure values calculated at the middle of the flowline 
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2.3 Probabilistic Analysis 

In engineering design, various design parameters will influence the performance 

of the structure, i.e. loading, environment, manufacture, etc. These parameters are 

always changing during the life cycle of the structure, which increases the uncertainty 

of the structures. Therefore, it is important to keep the structure performance above an 

acceptable level by performing the reliability analysis. The reliability analysis was first 

developed by Freudenthal in 1956,26 and has been frequently introduced in many fields 

for decades, i.e. aerospace, manufacture, electronics, etc.  

Reliability analysis is an estimation of failure probability, which should be 

considered in the conceptual design stage. The reliability can be defined as the 

probability of survival, as presented in Equation (10): 

𝑃𝑓 = 1 − 𝑃𝑠 (10) 

Where 𝑃𝑓  is the failure probability, 𝑃𝑠  is the survival probability. In this design of 

composite flowline, the “failure” is considered as the condition where failure criteria 

exceed 1. In contrast, “survival” means failure criteria below 1.  

To calculate these probabilities, distributions of the failure criteria are required. 

The distributions are based on the sample population, to make these samples more 

continuous, the input parameters should be randomly distributed within a reasonable 

range. It is noted that a sample is usually measured by experiment or calculated from a 

simulation. A larger size of sample population we have, more accurate the distribution 

will be. The traditional approach to obtain sample populations is based on the repetitive 
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experiments or simulations, which we discuss in Section. When the distributions of 

output parameters are formed, the reliability analysis will become available, the design 

can be adjusted efficiently based on an acceptable failure probability.
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3 Design Optimization Method 

3.1 Parameter Correlation and Determination 

In statistics, correlation shows the linear relationship between two random 

variables. The correlation study of engineering parameters is commonly used to reveal 

the relationship between different design parameters. The degree of correlation usually 

indicated by the correlation coefficient which range from -1 to 1. The correlation 

coefficient between two variables is 0 means there is no correlation between the 

selected parameters, and the coefficient closer to -1 or 1 means a stronger correlation. 

A positive coefficient indicates a positive correlation, which means one variable 

increase as the other variable increase, vice versa. In contrast, the negative coefficient 

means one variable increase as the other variable decrease. The values of the calculated 

coefficient can be interpreted as follows: 

Table 2: Study of Sample Size and Correlation method 

The absolute value of 

correlation coefficient 𝛒 
Degree of Relationship 

0.00~0.20 Slight correlated, the relationship is almost negligible. 

0.20~0.40 Lowly correlated, but the relationship is definite. 

0.40~0.60 Moderately correlated, the relationship is substantial. 

0.60~0.80 Highly correlated, the relationship is marked  

0.80~1.00 Very highly correlation, the relationship is very dependable 

The correlation coefficient can be computed by different methods. Two correlation 

method are studied in the thesis: Pearson and Spearman. 

3.1.1 Pearson Correlation 

The Pearson correlation measuring the linear correlation between two variables X 
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and Y, which have the following equation: 

ρ𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (11) 

Where 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance, 𝜎𝑋 and 𝜎𝑌 are the standard deviation. 

As a most familiar measure of parameter correlation method, Pearson correlation 

method establishes a best-fitting line by datasets of two variables, and the coefficient 

evaluates how the actual values far away from the expected values. 

3.1.2 Spearman Correlation 

The spearman correlation is a rank-order27 correlation method, which assesses the 

monotonic28 relationship of two ranked variables. The Spearman correlation between 

two variables is equal to the Pearson coefficient between the rank values of the two 

variables. It has the following equation: 

ρ𝑟𝑔𝑋,𝑟𝑔𝑌 =
𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌)

𝜎𝑟𝑔𝑋𝜎𝑟𝑔𝑌
 (12) 

Spearman’s coefficient is useful for both continuous and discrete variables. In a 

monotonic relationship, the variables can change together but not necessarily with a 

same rate, the Spearman correlation coefficient will be high when the two variables 

have a similar rank. 

The correlation coefficient is calculated between two variables, for an engineering 

model which have n design parameters, a correlation matrix is introduced. The 

correlation matrix collects the correlation coefficients between n design parameters, 

which can provide an overview of design parameter and identify the major design that 

will critically influence the result.  
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3.2 Response Surface Methodology 

The response surface methodology was first introduced by Box and Wilson29 in 

1951. The purpose was to create a ‘function’ to approximate the relationship between 

several input parameters and several output variables, which means: 

Output1, Output 2, … = f (Input1, Input2, …) 

Where f is the response surface.  

In engineering design, the real values are usually obtained from simulations or 

experiments, which is time-consuming and lack of efficiency. This is because the 

detailed function of input parameters and output variables is complex or unknown. 

However, the response surface methodology creates an ‘approximate function’ to 

calculate the approximate values, which is close to the real value we required. The 

efficient way to calculate the required value makes the analysis that needs a large 

sample size becomes available.  

The response surface tool in Ansys uses the parameters with a stronger correlation 

to generate numbers of sample results, which is called ‘Design of Experiment’. As we 

talked above, the response surface provides an ‘approximate function’ between input 

parameters and output parameters. However, errors exist between the approximate 

values (Response values) and the true values (Measured values). It is mentioned in the 

Ansys DesignXplorer User’s Guide30 that the accuracy of the response surface depends 

on the complexity of the variation of the solution, the size of samples (design of 

experiments) and response surface type. The existence of errors makes the refinement 
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of response surface become necessary, which means more design of experiments will 

be considered to improve the accuracy of the response model. 

To study how the different factors will influence the accuracy of response results, 

four responses surface type are introduced in the thesis: Standard, Kriging, No-

Parameter Regression, Neural Network and Genetic Aggregation. 

3.2.1 Kriging 

In statistic, Kriging is an interpolation method which gives the best linear unbiased 

prediction of the intermediate values. The Kriging method weighs the surrounding 

measured values to calculate a predicted result at an unknown location. The general 

formula for Kriging response surface method is presented in Equation 13. 

�̂�(𝑠0) =∑𝜆𝑖�̂�(𝑠𝑖)

𝑛

𝑖=1

 (13) 

Where: �̂�(𝑠𝑖) is the measured value at the ith location 

𝜆𝑖 is weight factor of the measured value at the ith location 

𝑠0 is the predicted location 

𝑛 is the number of measured values.  

The Kriging response surface in ANSYS offers an auto refinement tool that 

iteratively updates the refinement points during the update of the response surface. A 

predicted relative error is evaluated at each iteration of refinement, which have the 

following equation: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟

𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛
× 100% (14) 

Where: Predicted error = Measured value / (Predicted value - Measured value)  
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𝑂𝑚𝑎𝑥 is the maximum known value 

𝑂𝑚𝑖𝑛 is the minimum known value 

As observed in Equation (14), the predicted relative error is calculated considering 

the known maximum/minimum value, which provide an easy comparison across all the 

response results. 5% of the maximum predicted error is used in the Kriging response 

surface in this thesis. Figure 8 shows an example of Kriging response surface auto-

refinement process, which will discuss in Section 4.5. As shown in the figure, three 

failure criteria: Tsai-Wu, Maximum Stress, Hashin reach a predicted relative error 

below 5% after two iterations.  

 

Figure 8: Refinement of Kriging response surface (Base Case) 

3.2.2 Non-Parameter Regression 

Non-parametric regression (NPR) is a kind of regression analysis where no pre-
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determined model is used31. The result will be derived only based on the raw data. This 

leads to the requirement of a large sample size compared to other regression methods. 

The constants in NPR response surface are fixed and will not be optimized because the 

model strikes a compromise between the accuracy and the computational speed. 

The NPR response surface can provide improved response surface accuracy for 

high nonlinear behavior of the response results compared to the input parameters. 

However, for the case where low order polynomials dominate, the result will have some 

oscillations. 

3.2.3 Neural Network 

 This type of response surface is based on the neural network of human brain. To 

interpolate a function, three levels of Input, Hidden function and Output are built, see 

Figure 9.  

 

Figure 9: Neural network mechanism 

The arrows between hidden functions and output functions can be considered as a 

‘weight’. The output functions have the following form: 
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𝑓𝑘(𝑥𝑖) = 𝐾(∑𝑤𝑗𝑘𝑔𝑗(𝑥𝑖)) (15) 

Where: K is a predefined function (i.e. exponential based function), 

𝑥𝑖 is the input parameter, 

𝑔𝑗(𝑥𝑖) is the hidden function, 

𝑤 is the weight factor, 

This method uses few numbers of design of experiment (DoE) to investigate the 

hidden function and will have better performance when the DoE are too much. 

3.2.4 Genetic Aggregation 

The Genetic Aggregation (GA) response surface is a combination of difference 

response surfaces. It automates a process of choosing and configuring the most suitable 

response surface type for each output parameter. The GA response surface can either be 

generated based on a single response surface, or a combination of different types of 

response surfaces. This makes the GA response surface take more time than the other 

response surfaces. 
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4 Preliminary study - Burst design correlation study of a 

subsea flowline 

4.1 General Properties 

The flowline studied in this paper has the general properties as listed in Table 2. 

The material properties of the ply are presented in Table 3. The stacking sequence is 

presented in Figure 5. 

 Table 3: General Properties of Subsea CFEC Flowline 

Property Symbol Value Unit 

Outer Diameter 𝑂𝐷 125 mm 

Wall Thickness 𝑡𝑡𝑜𝑡𝑎𝑙 6 mm 

Total Number of Ply - 30 - 

Ply Thickness 𝑡 0.2 mm 

Fibre Orientation - +/- 45 ° 

 

Table 4: Material Data – Ply (Prepreg Epoxy Carbon UD 230 GPa) 

Material Property Symbol Value Unit 

Elastic Modulus E1, E2, E3 121 000, 8 600, 8600 MPa 

Shear Modulus G12, G23, G13 4 700, 3 100, 4 700 MPa 

Poisson’s Ratio ν12, ν23, ν13 0.27, 0.4, 0.27 - 

Tensile Strength σut1, σut2, σut3 2 231, 29, 29 MPa 

Compressive Strength σuc1, σuc2, σuc3 -1 082, -100, -100 MPa 

Shear Strength τu12, τu23, τu13 60, 32, 60 MPa 

Tsai-Wu Constants F12, F23, F13 -1, -1, -1 - 



33 

 

 

Figure 10: Stacking sequence of [(θ, -θ)15] T 

4.2 Nominal Load Values 

The nominal load values used in the correlation study are presented in Table 5. 

Table 5: Nominal Load Values 

Load Value Unit 

Internal Pressure 6.9 MPa 

Axial Force 20 kN 

Torsion 2 kN·m 

Bending 2 kN·m 

The failure criteria values of the nominal loads applied are presented in Table 6. 

The results are calculate using the finite element model introduced in Section 4.3 

Table 6: Failure Values Corresponding to Nominal Loads 

 
Maximum 

Stress 
Tsai-Wu Hashin 

Failure Criterion Value 0.508  0.595  0.592  

Failure Mode σ2 exceeded - Matrix failure 
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4.3 Finite Element Model 

A 2000 mm section of the CFEC flowline is modelled. This is sufficiently long by 

engineering judgement to avoid end effects of loads and boundary conditions in the 

finite element model. The solutions of failure criteria are calculated at the middle 

section of the flowline, as shown in Figure 7. Ansys 2019 R2 is used for the finite 

element modelling. 

4.3.1 Loads and Boundary Conditions 

Four loads are applied on the CFEC flowline. The loads and boundary condition 

are illustrated in Figure 11. 

• Pressure (Load A) is applied in the interior of the flowline. The negative 

means the pressure direction from internal to external, while a positive pressure 

in the following study represents an external pressure. 

• An end cap force (Load D) due to the internal pressure is applied on the 

left edge of the flowline. Which have the following equation: 

𝐹𝑒𝑛𝑑𝑐𝑎𝑝 =
𝜋

4
(𝑂𝐷 − 2𝑡𝑡𝑜𝑡𝑎𝑙)

2 × 𝑃 (16) 

Where 𝑂𝐷 is the outer diameter, 𝑡𝑡𝑜𝑡𝑎𝑙 is the total thickness of flowline wall, 

𝑃 is the internal pressure. 

• Axial force (Load B), torsion (Load C) and bending (Load E) are also 

applied at the left edge. 

• Fixed support (Load F) is applied on the right edge of the flowline.  
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Figure 11: Loads and boundary conditions 

4.3.2 Mesh Refinement Study 

The mesh refinement study of the Base Case is illustrated in Table 7, The 

corresponded results obtained from different element sizes are presented in Figure 12. 

Table 7: Cases Studied for Mesh Refinement Study 

Element Size (mm) No. of Elements No. of Nodes 

30 900 912 

25 1040 1053 

20 1536 1552 

15 2803 2821 

10 6430 6432 

5 25344 25408 
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Figure 12: Results of mesh refinement study 

The nominal load values as presented in Section 0 are used in the mesh refinement 

study. The element used is the 4-node SHELL181 element.32 The results show that three 

failure criteria results have not completely converged until 10 mm element is used. 5 

mm of element size is more accurate, but the element size is 4 times of the 10 mm 

element, which will increase the time required to calculate the results. To obtain both 

converged results and acceptable efficiency, an element size of 10 mm is used, as shown 

in Figure 13.  
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Figure 13: Mesh details, 10 mm element Size, 6430 SHELL181 elements with 6432 nodes 

4.4 Parameter Correlation Study of the Base Case 

A correlation matrix with sample size 200, Spearman correlation method, is 

calculated using ANSYS Composite Pre/Post, as shown in Figure 14. The correlation 

matrix reveals some meaningful information between different parameters. The 

following observations are made: 
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Figure 14: Correlation matrix of case studied, spearman, N=200 

- Failure results of Different failure criteria are strongly correlated. 

The failure criteria show very strong linear correlations between each other. The 

reason is that failure criteria are related to the stress within the laminate, a large stress 

which leads to a higher value of one failure criterion will logically contribute to the 

high values of others. The results of correlation coefficient between Tsai-Wu, 

Maximum stress and Hashin criteria are shown in Table 8.  

Table 8: Correlation Coefficient of Failure Criteria, N=100, Spearman 

 Tsai-Wu Max Stress Hashin 

Tsai-Wu 1.000 0.837 0.970 

Max Stress 0.837 1.000 0.894 

Hashin 0.970 0.894 1.000 

However, the Maximum Stress criterion has smaller coefficients with the other 



39 

 

two criteria. This is because the Maximum Stress criterion is a non-interactive failure 

criterion, which is different from the other criteria that consider stresses in at least two 

directions.  

- Internal pressure and ply thickness are moderately correlated to failure 

criteria 

The values of pressure and geometries correlated with the failure criteria are listed 

in Table 9: 

Table 9: Correlation Coefficient of Internal Pressure and Ply Thickness 

 Tsai-Wu Max Stress Hashin 

Internal Pressure -0.413  -0.291  -0.405  

Ply Thickness -0.628  -0.468  -0.608  

As shown in Table 9, the internal pressure and ply thickness have generally 

moderate correlation with the failure criteria, which is logically reasonable. A close-up 

view of the scatter diagram of internal pressure and ply thickness verse Tsai-Wu failure 

criteria results are illustrated in Figure 15 and Figure 16. It is noted that the pressure 

magnitude is negative, the right side of the pressure axis represents a smaller pressure 

applied. As observed in the figures, the scatter is large for both pressure and ply 

thickness, which did not show a strong correlation as expected. The reason could be 

that these parameters are still important for the results of failure criteria, but the 

contribution is lighted by other parameters that not studied in this model, for example, 

the fibre direction and the stacking sequence of the laminate.  
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Figure 15: Correlation scatter diagram, Tsai-Wu vs. Internal pressure, Spearman, N=200 

 

Figure 16: Correlation scatter diagram, Tsai-Wu vs. Ply thickness, Spearman, N=200 
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- Parameters slightly or lowly correlated with failure criteria 

Also shown in Figure 14, parameters that have slight to low correlation with the 

failure criteria are Elastic modulus E2, tensile stress σ𝑢2, shear stress τ𝑢12 and inner 

diameter D. The correlation coefficients of these parameters are listed in Table 10: 

Table 10: Correlation Coefficient of Slightly Correlated Parameters 

 Tsai-Wu Max Stress Hashin 

Elastic modulus E2 0.252  0.447  0.320  

Tensile Strength σ𝑢2 -0.273  -0.446  -0.334  

Shear strength τ𝑢12 -0.429  -0.136  -0.339  

Inner diameter D -0.145  -0.262  -0.125  

Except for the pressure, the bending moment is the second highest within the four 

loads. It is because that the flowline is easily influenced by the loads related to the z-

directions. It is noted that E2 and σ𝑢1 have moderate correlation with the Maximum 

Stress criterion, and τ𝑢12 has a moderate correlation with Tsai-Wu criterion.  

- Most Failure Parameters have almost No Correlation with Failure Criteria 

Except for the parameters related to the z-direction, some parameters show very 

small correlations with the failure criteria (the absolute value of failure criteria smaller 

than 0.1). They are Poisson’s ratios ν12, shear modulus G12, tensile strength σut1, 

compressive strength σuc1, axial force, bending and torsion. The reason could be that 

these parameters are less affected by the pressure, which is the dominant load of the 

case studied. The three Tsai-Wu constants also have very small correlations with the 

Tsai-Wu criteria. It is expected that a higher correlation could be found for a more 

complex case, where the pressure is not the only dominate load 
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4.4.1 Influence of Sample Size on Correlation Matrix 

The correlation matrices for Spearman and Pearson correlation method with 

different sample size are illustrated in Figure 17 and Figure 18: 

  

a) Pearson correlation N=150 b) Spearman correlation N=150 

  

c) Pearson correlation N=200 d) Spearman correlation N=200 

Figure 17: Linear correlation matrices with different sample size (Spearman) 
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a) Pearson correlation N=50 b) Pearson correlation N=100 

  

c) Pearson correlation N=150 d) Pearson correlation N=200 

Figure 18: Linear correlation matrices with different sample size (Pearson) 

By observation of linear correlation matrices of Spearman and Pearson methods 

with a same sample size, we find that both two methods provide a similar result of 

correlation between parameters.  

4.4.2 Influence of Correlation Method on Correlation Matrix 

As shown in Figure 17 and Figure 18, for the Spearman correlation method and 

the Pearson correlation method, the number of samples used in the correlation matrix 

calculation significantly affects the correlation results. For the correlation coefficients 

between input parameters and the output parameters (failure criteria), the results show 
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a generally similar correlation. However, in the case of 50 samples used, the correlation 

matrices show a large scatter between input parameters. Besides the failure criteria, the 

parameters related to the material properties and loading are somehow correlated, 

which is unreasonable. With the number of samples increased, the correlation between 

these parameters become lighter. When 200 sample points are used, the correlations 

between these parameters are generally decayed, which means that the correlation 

matrix is finally ‘converged’. The sample size of 200 is considered the most reasonable 

and accurate correlation matrix. For this reason, in the following study, the correlation 

matrix will go through with Spearman with sample size of 200. 

4.5 Response Surface for Base Case 

 Table 11: Top 20 Most Influential Input Parameters 

Parameters Level of Correlation 

Ply Thickness t 

Internal Pressure P 
Moderate 

Tensile Strength σut2  

Elastic Modulus E2 

Low 

Shear Strength τu12 

Inner Diameter D 
Slight 

Torsion T, Axial Force A 

Bending moment B 

Elastic Modulus E1 

Poisson’s Ratio ν12, ν23, ν13  

Shear Modulus G23, G13 

Tensile Strength σut1, σut3 

Shear Strength τu23 

Tsai-Wu constant F12, F13 

Very slight 

As mentioned in Section 4.4, Spearman method with sample size 200 is used to 

find the correlation coefficients between input parameters and failure criteria. The 
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generation of response surface needs to select 20 higher correlated parameters. 

According to Figure 14, the selected higher correlated parameters are listed in Table 11: 

4.5.1 Range of Selected Parameters 

The range of 20 selected input parameters used in the generation of the base case 

response surface is presented in Table 12. The range of these parameters will influence 

the accuracy of the response surface, which will be discussed in Section 6. 

Table 12: Range of Input Parameters Used in Response Surface 

Parameters Symbol Unit Lower limit Upper limit 

Elastic Modulus 
E1 MPa 108900 133100 

E2 MPa 7740 9460 

Poisson’s Ratio 
ν12, ν13  0.243 0.297 

ν23  0.36 0.44 

Shear Modulus 
G13 MPa 4230 5170 

G23 MPa 2790 3410 

Tensile Strength 
σut1 MPa 2007.9 2454.1 

σut2, σut3  26.1 31.9 

Shear Strength 
τu12 MPa 54 66 

τu23 MPa 28.8 35.2 

Tsai-Wu Constants F12, F13  -1 1 

Ply Thickness t mm 0.18 0.22 

Inner Diameter D mm 88 138 

Internal Pressure P MPa 6.21 7.59 

Axial Force A N 18000 22000 

Bending moment B Nm 1800 2200 

Torsion T Nm 1800 2200 

4.5.2 Response Value and Measured Value 

The comparison of the response results calculated by different types of response 

surface are listed in Table 13. 
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Table 13: Response Value Comparison of Different Response Surface Types 

Failure Criteria Maximum Stress Tsai-Wu Hashin 

Measured Values 0.508 0.595 0.592 

Response 

Values 

Kriging 0.506 0.593 0.591 

Non-Parameters 0.506 0.591 0.590 

Neural Network 0.506 0.593 0.590 

GA 0.507 0.594 0.591 

As shown in Table 13, the different types of response surface generally show 

closed results for the three failure criteria compared to the measured values. The 

Genetic Aggregation gave the most accurate response results compared to others. 

However, the generation Genetic Aggregation requires much more time compared to 

the others, which reduce the efficiency of obtaining the response surface. By observing 

the response results except the Genetic Aggregation, the Kriging response surface 

provide a second-best response accuracy. Meanwhile, as introduced in Section 2.3, the 

Kriging response surface method provide an auto-refinement process, which is more 

convenient to refine the response surface. Therefore, the Kriging response surface is 

chosen as the response surface model in the following studies to predict the failure 

criteria and the failure rates. 
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5 Stochastic Process Using Response Surface 

5.1 Generation of Measured Values 

A set of measured values is generated to be used as the reference population, which 

is called “Base Case”. The mean and standard deviation of the input parameters used in 

Base Case are presented in Table 14. The input parameters are normally distributed.  

Table 14: Mean and Standard Deviation of Input Parameters Used in Base Case 

Parameter Symbol Unit Mean  
Standard 

Deviation 

Elastic Modulus 
E1 MPa 121000 3630 

E2, E3 MPa 8600 258 

Poisson’s Ratio 
ν12, ν13 - 0.27 0.0081 

ν23 - 0.4 0.012 

Shear Modulus 
G13 MPa 4700 141 

G23 MPa 3100 93 

Tensile Strength 
σut1 MPa 2231 66.93 

σut2, σut3 MPa 29 0.87 

Compressive 

Strength 

σuc1 MPa -1082 -32.46 

σuc2, σuc3 MPa -100 -3 

Shear Strength 
τu12, τu13 MPa 60 1.8 

τu23 MPa 32 0.96 

Internal pressure P MPa -6.9 -0.207 

Axial Force A N 20000 600 

Bending  B N·m 2000 60 

Torsion T N·m 2000 60 

Tsai-Wu Constants F12, F23, F13  0 0.3 

Inner Diameter D mm 113 8.75 

Thickness t mm 0.2 0.01 

Using the values in Table 14, the random input parameters are generated using 

Monto Carlo simulation with normal distribution. Examples of cumulative probability 

distributions for the Elastic Modulus E1, Inner Diameter D, Internal Pressure P are 
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plotted in Figure 19, Figure 20 and Figure 21. These random parameters are used to 

calculate the “Measured Values”, which are considered as the actual values obtained 

from the actual experiments. 

It is obvious that larger population size will provide more continuous distribution, 

but meanwhile it will consume a longer time. Thus, it is necessary to determine a 

suitable population size. A convergence study of statistical moments is presented in 

Section 5.1.1 with a total population size of 500. The population size of 200 is chosen 

for the following study where the statistical moments are generally converged. 

 

Figure 19: Cumulative probability distribution of elastic modulus E1   
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Figure 20: Cumulative probability distribution of inner diameter D   

 

Figure 21: Cumulative probability distribution of internal pressure P 
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5.1.1 Convergence Study on Population Size 

The convergence of statistical moments is studied to find an enough size of the 

population. Mean, standard deviation, skewness and kurtosis with different sample 

sizes are illustrated in Figure 22. The percentage difference for the same statistical 

moments shown in Figure 23 are compared with the values when the population size is 

500. The percentage difference is calculated by the formula presented in Equation (17). 

% Difference =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑉𝑎𝑙𝑢𝑒 @ 𝑁 = 500

𝑉𝑎𝑙𝑢𝑒 @ 𝑁 = 500
× 100% (17) 

 

 

Figure 22: Values of Statistical moments vs Population Size 
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Figure 23: % difference of statistical moments values compared to population size (N=500) 

The results presented in Figure 22 and Figure 23 show that converged statistical 

moments are obtained for a population size larger than 200. The sample size of 200 is 

considered more efficient and used in other cases. For the “Base Case”, the sample size 

of 500 that have been calculated in the convergence study is more accurate. 

5.1.2 Fitting Statistical Models to Measured Values 

The exceedance probabilities (i.e., failure rates.) are considered the purpose of the 

stochastic process. In this section, fitting the measured values of 500 sample size to a 

suitable statistic model is studied. The Matlab distribution fitting tool is used. Four 

statistical distributions are used and compared the goodness of fitting, namely 

Exponential, Lognormal, Weibull and Normal. The fitting results are plotted in Figure 

24 and Figure 25.  
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Figure 24: Statistical models fitted to measured values 

 

Figure 25: Statistical models fitted to measured values, zoom-In at upper tail region 
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As observed in Figure 24, the small differences exist between Lognormal, Weibull 

and Normal distribution, while the Exponential distribution has larger difference. With 

a closer inspection of the upper tail region (last 50 samples of the 500 samples 

population) as shown in Figure 25, small differences can be distinguished with the 

Weibull distribution, while the Lognormal and Normal distribution still difficult to 

differ. To evaluate the goodness of fitting, the corresponding R2 values are calculated 

in Table 15. It is noted that the R2 values closer to 1 represent better goodness of fitting. 

Table 15: R2 Value of Four Statistical Models 

Statistical Model Exponential Lognormal Normal Weibull 

R2 Value 0.960 0.999 0.998 0.987 

The R2 values of the upper tail region suggest that the Lognormal distribution is a 

better statistical model fitted to the measured values compare to the Normal distribution. 

It is noted that the upper tail region is considered important for the prediction of the 

failure rates, which is the purpose of this study. Considering the better goodness of 

fitting at the upper tail region, the Lognormal distribution is chosen as the statistical 

distribution used to fit the measure values in the following studies.  

5.1.3 Failure Rate Calculation 

The lognormal distribution is adapted to fit the 500 measured values as mentioned 

above. The related exceedance rates are calculated based on the lognormal fitting 

distribution. The results are listed in Table 16. 
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Table 16: Failure Results at Different Failure Rates for Measured Values 

Failure Criteria Failure rate = 10-4 Failure rate = 10-5 Failure Rate = 10-6 

Maximum Stress 0.643  0.667  0.689  

Tsai-Wu 0.754  0.782  0.808  

Hashin 0.758  0.785  0.810  

5.2 Using Response Surfaces for Prediction of Failure Rates 

Kriging response surface is used to predict the failure results. In this section, using 

the kriging response surface to predict the failure rate is discussed. Compared to the 

failure rates calculated in Section 5.1.3, this method suggests an efficient way to 

calculate the required size of failure results, which provides time savings to calculate 

the failure rates. 

The study of the failure rate prediction using the Kriging response surface is 

carried out. First, the statistical moments are compared between the samples generated 

from the measured values, response values, and their lognormal fitting distributions, 

respectively. Then, the probability density and cumulative distribution are plotted and 

compared. In the end, the failure rates will be calculated for the response value fitted to 

lognormal distribution and compared with the measured value fitted to the lognormal 

distribution. A workflow is presented in Figure 26.  
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Figure 26: Workflow used to compare the response accuracy 

5.2.1 Comparison of Statistical Moments 

As shown in Figure 26, four groups of results will be compared with statistical 

moments, PDF and CDF, they are Measured values, Lognormal distribution fitted to 

measured values, Response values and Lognormal distribution fitted to response values. 

The source of these four results are explained as follow: 

• Measured values: These are 500 sample points calculated directly from 

the finite element model using ACP solution. These 500 samples are considered 

as accurate as the samples measured from experiments.  

• Lognormal distribution fitted to measured values: This is a Lognormal 

distribution fitted to “Measured values”. 

• Response values: These are 500 sample points calculated from the kriging 

response surface.  

• Lognormal distribution fitted to response values: This is a Lognormal 

distribution fitted to “Response values”. 

The statistical moments of the four groups of results are listed in  
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Table 17, the percentage differences in the brackets are calculated with respect to 

“Measured values” using Equation (18): 

% Difference =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠
× 100% (18) 

 

Table 17: Comparison of Statistical Moments 

Source Mean 
Standard 

Deviation 
Skewness Kurtosis 

Measured values,  

500 samples 
0.591 0.039 0.232 3.027 

Lognormal distribution 

fitted to measured values 

0.591 

(0.0%) 

0.039  

(0.1%) 

0.199 

(-14.1%) 

3.071 

(1.4%) 

Response surface,  

500 samples 

0.592 

(0.3%) 

0.036 

(-8.5%) 

0.209 

(-9.8%) 

2.980 

(-1.6%) 

Lognormal distribution 

fitted to response values 

0.592 

(0.3%) 

0.036 

(-8.6%) 

0.182 

(-21.7%) 

3.059 

(1.0%) 

The following observations are made from the results presented in Table 17: 

• The difference between the mean of the four groups of results are 

negligible. 

• The standard deviation of the response values is about 8.5% smaller than 

the measured values. The lognormal fitted to response values showed a similar 

result (-8.6%). This difference may lead to the difference on the failure rate 

prediction, we will discuss later. 

• Large differences exist in the skewness values of the four groups. The 

response values gave a 10% smaller skewness compared to the measured values, 

and both fitting distributions gave an extra 12% ~ 14% smaller skewness value.  

• The difference between the four Kurtosis values are small, all beyond 2%.  
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5.2.2 Comparison of Probability and Cumulative Distribution Plots 

The comparisons of the probability density and cumulative distribution for the four 

groups of results are presented in Figure 27 and Figure 28. The following observations 

are made: 

• There are small differences between the lognormal fitting distributions to 

the raw data, i.e., Measured values and Response values, the fitted distribution 

curves overlap the Measured values’ and Response values’ curves. 

• The Response values have a higher probability density at the most 

probable value, see area A in Figure 27. 

• As observed in Figure 28, there are some differences in the tail regions of 

the cumulative probability distribution curves. However, the difference is not 

significant, which leads to the differences between calculated failure rates 

become negligible, which will discuss in Section 5.2.3. 
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Figure 27: Comparison of probability density functions 

 

Figure 28: Comparison of cumulative probability distribution functions 
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5.2.3 Comparison of Failure Values 

The above studies suggest that the lognormal distribution fitted to measured values 

can predict accurate failure rates. In this section, the accuracy of the failure rates 

predicted by response surface are compared, the comparisons are shown in Table 18.  

Table 18: Comparison of Failure Values 

Source Failure Criterion 
Failure rate = 

10-4 

Failure rate = 

10-5 

Failure Rate 

= 10-6 

Lognormal distribution 

fitted to measured values 

Maximum Stress 0.64 0.67 0.69 

Tsai-Wu 0.75 0.78 0.81 

Hashin 0.76 0.79 0.81 

Lognormal distribution 

fitted to response values 

Maximum Stress 
0.64 

(0.0%) 

0.66 

(-1.5%) 

0.68 

(-1.4%) 

Tsai-Wu 
0.74 

(-1.3%) 

0.77 

(-1.3%) 

0.79 

(-2.5%) 

Hashin 
0.75 

(-1.3%) 

0.78 

(-1.3%) 

0.80 

(-1.2%) 

The difference of predicted failure rates can be calculated using Equation (19): 

% Difference =
Current value − value predicted by  measured values (Lognormal fitted)

value predicted by to measured values (Lognormal fitted)
× 100% 

 (19) 

The comparisons reveal that the failure rates predicted by the response surface are 

very close to the failure rates predicted by the measured values, which is considered the 

results of actual failure rates. Therefore, the Kriging response surface can be used as a 

reliable tool for failure prediction of the CFEC flowline subjected to combined loads. 
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6 Optimising Response Surface Generation 

6.1 Number of Input Parameters 

The number of selected input parameters determined the number of sample points 

used to generate the response surface. In the previous study in Section 4.5 and 5, 20 

parameters were used to generate the response surface, where more than 500 samples 

are created in the design of experiments. In this section, the reduced accuracy caused 

by fewer selected input parameters are studied. Using a smaller number of input 

parameters requires a smaller size of samples in the design of experiments, as listed in 

Table 19.  

Table 19: Size of Design of Experiment for Different Number of Input Parameters 

Number of Input Parameters 20 15 10 5 

Size of Design of Experiment, 

Number of Samples 
551 287 149 27 

Minimum Parametric Correlation 

Value 
0.046 0.079 0.131 0.271 

As observed in Table 19, the required size of the design of experiments reduced 

with the decrease of the selected parameters significantly, i.e., choosing 10 parameters 

will reduce 70% required size of samples compared to 20 parameters. The effect on the 

statistical moments, probability distributions and predicted failure value are presented 

in subsection 6.1.1, 6.1.2 and 6.1.3.  

6.1.1 Number of Parameters - Effect on Statistical Moments 

Four response surfaces are generated with different number of selected parameters 

mentioned in Table 19. The calculated statistical moments of Tsai-Wu response values 
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are presented in  

Figure 29 together with the ‘Measured Values’ and ‘Lognormal fitted to Measured 

Values’. 

 

Figure 29: Number of parameters – Effect on statistical moments 

The corresponding percentage differences compared with the measured values are 

presented in  

Figure 30. The calculation of percentage difference is using Equation (18), which 

introduced in Section 5.2.1.  
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Figure 30: Number of parameters – Effect on statistical moments (% difference) 

The statistical moments values and calculated percentage difference are listed in 

Table 20. 

Table 20: Statistical Moments of Different Parameter Number and Measured Values 

Source Mean 
Standard 

Deviation 
Skewness Kurtosis 

Measured Values 0.591 0.039 0.232 3.027 

Lognormal Distribution Fitted to 

Measured Values 

0.591 

(0.0%) 

0.039 

(0.1%) 

0.199 

(-14.1%) 

3.071 

(1.4%) 

Response Value 

20-Parameters 

Response Surface 

(Base Case) 

0.592 

(0.3%) 

0.036 

(-8.5%) 

0.209 

(-9.8%) 

2.980 

(-1.6%) 

15-Parameters 

Response Surface 

0.584 

(-1.1%) 

0.035 

(-9.6%) 

0.242 

(4.2%) 

3.035 

(0.2%) 

10-Parameters 

Response Surface 

0.590 

(-0.1%) 

0.032 

(-17.6%) 

0.160 

(-31.2%) 

2.722 

(-10.1%) 

5-Parameters 

Response Surface 

0.646 

(9.4%) 

0.036 

(-8.3%) 

0.818 

(253.0%) 

4.673 

(54.4%) 

The following observations are made: 



63 

 

• The mean values are not significantly affected by the number of select 

parameters, especially for the cases that more than 10 parameters are selected, 

where the differences are within 1%.  

• The standard deviations are moderately affected by the number of selected 

input parameters. The largest difference appears where 10 parameters are used, 

which doubles the difference calculated from the case where 20 parameters are 

used (from -8.5% to -17.6%).  

• The skewness values are significantly affected by the number of selected 

parameters. The skewness calculated from the 20 parameters response surface 

(Base Case) is 10% and increased to 250% when 5 parameters are used. These 

effects of statistical moments on the failure rates. 

• The kurtosis values are fairly affected by the number of selected 

parameters, where the 15 parameters case has the smallest difference (0.2%), 

and 5 parameters case shows the largest difference (54.4%). 

6.1.2 Number of Parameters – Effect on Fitted Probability Distributions 

The probability density function and cumulative distribution of lognormal fitted 

distribution of response value with different numbers of selected input parameters are 

plotted in Figure 31, Figure 32, Figure 33 together with the Measured Values.  

The following observations are made: 

• An extremely large difference appeared when only 5 parameters are used. 

As shown in Figure 31 and Figure 32, both the distributions have a large bias. 
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• The probability density functions fitted from the response surface 

generally do not fit well with the measured values, as presented in Figure 31. 

• For the cumulative distribution, the differences become small for most 

cases with larger size of selected parameters. By taking a close-up observation 

at the tail region of the cumulative distribution, as shown in Figure 33, the 

distances increase when fewer parameters are selected. However, these do not 

lead to large differences in the predicted failure values, which we will discuss 

in Section 6.1.3.  

 

Figure 31: Number of parameters – Effect on probability density functions 
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Figure 32: Number of parameters – Effect on cumulative probability functions 

 

Figure 33: Number of parameters – Effect on cumulative probability functions  

(Zoom-In at Upper Tail Region) 
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6.1.3 Number of Parameters – Effect on Predicted Failure Values 

Table 21 compared the predicted failure rates and percentage differences 

calculated from the Lognormal distribution fitted to the response values, which 

produced by response surfaces generated by different numbers of selected parameters. 

The percentage differences are calculated by Equation (19) presented in Section 5.2.3. 

As observed from Table 21, with selected parameters reduced to 10, the results do not 

show a poor accuracy, where the largest difference is Tsai-Wu failure value calculated 

at failure rate of 10-6
. The differences caused by the reduced selected are small. It is 

acceptable that the failure rates of lognormal distribution fitted to Measured values can 

be considered as the actual failure rates, which is enough accurate. The results are 

coincident with the previous discussion, that the number of parameters will not 

significantly affect the results unless the number of selected parameters is much smaller 

than the total parameters, i.e. 5 parameters are used. It is noted that the results of 10 

selected parameters are still acceptable, where the minimum correlation coefficient is 

0.131, as listed in Table 19. This suggests that the parameters which have correlation 

coefficients larger than 0.13 are better selected to ensure an acceptable accuracy. 
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Table 21: Number of Parameters – Effect on Predicted Failure Values 

Source Failure Criterion 
Failure Rate 

= 1 in 104 

Failure Rate 

= 1 in 105 

Failure Rate 

= 1 in 106 

Lognormal distribution 

fitted to measured values 

Maximum Stress 0.64 0.67 0.69 

Tsai-Wu 0.75 0.78 0.81 

Hashin 0.76 0.79 0.81 

Lognormal distribution 

fitted to response values 

(20 input parameters) 

Maximum Stress 
0.64 

(0.0%) 

0.66 

(-1.5%) 

0.68 

(-1.4%) 

Tsai-Wu 
0.74 

(-1.3%) 

0.77 

(-1.3%) 

0.79 

(-2.5%) 

Hashin 
0.75 

(-1.3%) 

0.78 

(-1.3%) 

0.80 

(-1.2%) 

Lognormal distribution 

fitted to response values 

(15 input parameters) 

Maximum Stress 
0.64 

(-1.6%) 

0.67 

(-3.0%) 

0.69 

(-1.4%) 

Tsai-Wu 
0.75 

(-2.7%) 

0.78 

(-2.6%) 

0.81 

(-3.7%) 

Hashin 
0.76 

(-2.6%) 

0.79 

(-2.5%) 

0.81 

(-2.5%) 

Lognormal distribution 

fitted to response values 

(10 input parameters) 

Maximum Stress 
0.64 

(0.0%) 

0.66 

(-1.5%) 

0.68 

(-1.4%) 

Tsai-Wu 
0.74 

(-4.0%) 

0.77 

(-5.1%) 

0.79 

(-6.2%) 

Hashin 
0.75 

(-1.3%) 

0.78 

(-1.3%) 

0.8 

(-1.2%) 

Lognormal distribution 

fitted to response values 

(5 input parameters) 

Maximum Stress 
0.63 

(15.6%) 

0.65 

(14.9%) 

0.68 

(15.9%) 

Tsai-Wu 
0.73 

(5.3%) 

0.76 

(5.1%) 

0.78 

(3.7%) 

Hashin 
0.74 

(2.6%) 

0.77 

(2.5%) 

0.79 

(2.5%) 
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6.2 Size of Response Surface 

To improve the efficiency of the response surface, another approach is to increase 

the available range of the input parameters to enlarge the size of the response surface, 

which allows the response surface can be applied to more design cases. In this section, 

the effects of the response surface size are studied. The inner diameter and the ply 

thickness are selected to enlarge the response surface size. Two larger response surfaces 

are generated using the same approach with the “Base Case”, namely “Larger Size” and 

“Extremely Large Size”. The illustration of response surface size is presented in Figure 

34, the corresponding range of parameters are listed in Table 22. 

 

Figure 34: Different sizes of response surfaces 
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Table 22: Range of Diameter and Ply Thickness Studied 

 
Ply Thickness 

[mm] 

Diameter [mm] 

(Inner diameter) 

Base Case 0.18-0.22 
100-150 

(88-138) 

Larger Size 0.14-0.26 
75-175 

(63-163) 

Extremely Larger 

Size 
0.10-0.30 

50-200 

（38-188） 

The effects of response surface size on statistical moments, probability 

distributions and predicted failure values are presented and discussed in subsection 

6.2.1, 6.2.2 and 6.2.3. 

6.2.1 Size of Response Surface - Effect on Statistical Moments 

The statistical moments of the response value calculated from “Larger size” and 

“Extremely Large size” response surfaces are calculated and compared with the “Base 

Case”, together with “Measured Values” and “Lognormal distribution fitted to 

Measured Values”, as shown in Figure 35. 

 

Figure 35: Size of response surface – Effect on statistical moments 
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The percentage differences compared with the measured values are calculated and 

illustrated in Figure 36.  

 

Figure 36: Size of response surface – Effect on statistical moments (% difference) 

The values of statistical moments and corresponded percentage difference are 

listed in Table 23. 

Table 23: Comparison of Statistical Moments of Different Response Surface Size 

Source Mean 
Standard 

Deviation 
Skewness Kurtosis 

Measured Values 0.591 0.039 0.232 3.027 

Lognormal Distribution Fitted to 

Measured Values 

0.591 

(0.0%) 

0.039 

(0.1%) 

0.199 

(-14.1%) 

3.071 

(1.4%) 

Response Value 

Base Case 
0.592 

(0.3%) 

0.036 

(-8.5%) 

0.209 

(-9.8%) 

2.980 

(-1.6%) 

Larger Size 
0.598 

(1.3%) 

0.038 

(-3.7%) 

0.137 

(-40.9%) 

2.872 

(-5.1%) 

Extremely Large 

Size 

0.626 

(6.1%) 

0.041 

(4.5%) 

0.151 

(-34.8%) 

2.905 

(-4.0%) 
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The following observations are made: 

• Generally, the differences in statistical moments increase with the 

increased size of the response surface used. 

• The mean values increase with the size of the response surface, but still 

within 10% for “Extremely Large Size”.  

• The standard deviation has no obvious difference with the changing of 

response surface size. The differences are within 10% for the three compared 

response surfaces. 

• The skewness is significantly affected by the response surface size. The 

differences are around 40% for ‘Larger Size’ and ‘Extremely Large Size’, while 

for the “Base Case” is only 10%. 

• The kurtosis values do not have big differences when response surfaces 

with different size are used, the largest difference is within 10% for “Extremely 

Large Size”. 

6.2.2 Size of Response Surface – Effect on Fitted Probability 

Distributions 

The probability density function and cumulative distribution of lognormal fitted 

distribution of response value with different size response surfaces are plotted in Figure 

37, Figure 38 and Figure 39, together with the Measured Values.  

The following observations are made: 
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• In general, using ‘Extremely Large Size’ leads to large differences in the 

probability distribution. 

• The probability density functions fitted from the response surface 

generally do not fit well with the measured values, as presented in Figure 37, 

the ‘Extremely Large Size’ is far away from the others.  

• As shown in Figure 38, the cumulative distributions of ‘Base Case’ and 

‘Larger Size’ are very close to ‘Measured Values’. Furthermore, as presented in 

Figure 39, these differences are reduced at the tail region. 

 

Figure 37: Size of response surface – Effect on probability density functions 
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Figure 38: Size of response surface – Effect on cumulative probability functions 

 

Figure 39: Size of response surface – Effect on cumulative probability functions 

(Zoom-In at upper tail region) 

6.2.3 Size of Response Surface – Effect on Predicted Failure Values 

 Table 24 compared the predicted failure rates and percentage differences 

calculated from the Lognormal distribution fitted to the response values calculated by 
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response surfaces with different sizes. As observed in Table 24, the size of response 

surfaces does not significantly affect the predicted failure values. The predicted failure 

values generally have a small increase when a larger size of response surface is used, 

but the difference is almost acceptable. Except for the Tsai-Wu failure values predicted 

by ‘Extremely Large Size’, most of the predicted failure values have differences within 

5%.  

Table 24: Size of Response Surface – Effect on Predicted Failure Values 

Source Failure Criterion 
Failure Rate 

= 1 in 104 

Failure Rate 

= 1 in 105 

Failure Rate 

= 1 in 106 

Lognormal distribution 

fitted to measured values 

Maximum Stress 0.64 0.67 0.69 

Tsai-Wu 0.75 0.78 0.81 

Hashin 0.76 0.79 0.81 

Lognormal distribution 

fitted to response values 

(Base Case) 

Maximum Stress 
0.64 

(0.0%) 

0.66 

(-1.5%) 

0.68 

(-1.4%) 

Tsai-Wu 
0.74 

(-1.3%) 

0.77 

(-1.3%) 

0.79 

(-2.5%) 

Hashin 
0.75 

(-1.3%) 

0.78 

(-1.3%) 

0.80 

(-1.2%) 

Lognormal distribution 

fitted to response values 

(Larger Size) 

Maximum Stress 
0.63 

(-1.8%) 

0.65 

(-1.9%) 

0.67 

(-2.1%) 

Tsai-Wu 
0.75 

(-0.1%) 

0.78 

(-0.1%) 

0.81 

(-0.3%) 

Hashin 
0.75 

(-1.2%) 

0.77 

(-1.4%) 

0.80 

(-1.5%) 

Lognormal distribution 

fitted to response values 

(Extremely Large Size) 

Maximum Stress 
0.63 

(-1.4%) 

0.66 

(-1.8 

0.67 

(-2.1%) 

Tsai-Wu 
0.80 

(5.7%) 

0.83 

(5.6%) 

0.85 

(5.6%) 

Hashin 
0.76 

(0.6%) 

0.79 

(0.4%) 

0.81 

(0.2%) 
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6.3 Location of Sample Population 

In Section 6.2, we talked about the availability of enlarging the size of the response 

surface and discovered the small differences of using the “Extremely Large Size”. It is 

noted that the comparisons were based on the centre-located sample population, as 

shown in Figure 34, the sample population is located at the centre of the response 

surface. In this section, the different locations of sample population on the “Extremely 

Large Size” are studied. Four extra locations are studied: Boundary Case 1, Boundary 

Case 2, Intermediate Case 1, Intermediate Case 2. The ranges of inner diameter and ply 

thickness are listed in Table, the illustration of the sample populations is shown in 

Figure 40. The other parameters are same as the “Base Case”. A sample size of 200 is 

used as discussed in Section 5.1.1 for each population group.  

Table 25: Mean and Standard Deviation of Inner Diameter and Thickness for New 

Population Cases 

Population Groups  Unit Mean Std Lower Upper 

Boundary Case 1 
D mm 168 6 148 188 

t mm 0.27 0.01 0.24 0.3 

Boundary Case 2 
D mm 168 6 160 200 

t mm 0.13 0.01 0.10 0.16 

Intermediate Case 1 
D mm 73 4 70 100 

t mm 0.15 0.01 0.12 0.18 

Intermediate Case 2 
D mm 153 4 150 180 

t mm 0.15 0.01 0.12 0.18 
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Figure 40: Locations of study cases on the response model. 

The new population groups are input into the “Extremely Large Size” response 

surface and ACP Solution, respectively. The response values and measured values are 

fitted to the lognormal distributions. The percentage difference of failure rate predicted 

by lognormal fitted distributions of response values compared to measured values are 

listed in Table 26. The following observations are made: 

• The accuracy of predicted failure rates is different at different locations of 

the response surface. 
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• Generally, the populations on the boundary show larger percentage 

differences compared to the populations inside, i.e. the percentage difference 

of Tsai-Wu exceeding 10-4 is 7.0% for “Intermediate Case 1” and 8.1% for 

“Boundary Case 2”. 

• Except the “Boundary Case 1”, the maximum percentage difference is 9.0% 

for Tsai-Wu criterion at 10-6 in “Boundary Case 2”, which is still acceptable.  

• Using the sample populations located at the boundary of the response 

surface should be avoided. 

Table 26: % difference of Failure Rate at Different Locaiton on Extremly Large Size 

Population Group Failure Criterion 
Failure Rate 

= 1 in 104 

Failure Rate 

= 1 in 105 

Failure Rate 

= 1 in 106 

Base Case 

(Section 6.2.3) 

Maximum Stress -1.4% -1.8% -2.1% 

Tsai-Wu 5.7% 5.6% 5.6% 

Hashin 0.6% 0.4% 0.2% 

Boundary Case 1 

Maximum Stress 7.3% 16.0% 24.2% 

Tsai-Wu 15.3% 22.4% 29.0% 

Hashin 5.5% 9.3% 12.8% 

Boundary Case 2 

Maximum Stress -1.8% -5.0% -7.7% 

Tsai-Wu 8.1% 8.5% 9.0% 

Hashin 0.6% -1.9% -4.1% 

Intermediate Case 1 

Maximum Stress 3.4% 4.5% 5.4% 

Tsai-Wu 7.0% 7.2% 7.3% 

Hashin 3.4% 3.6% 3.8% 

Intermediate Case 2 

Maximum Stress 4.2% 4.1% 4.1% 

Tsai-Wu 6.4% 6.8% 7.2% 

Hashin 3.9% 4.4% 4.7% 
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7 Conclusion and Future Work 

7.1 Conclusion 

This dissertation introduced an efficient method of applying stochastic process on 

a CFEC flowline using response surface methodology. We studied the different factors 

that will affect the accuracy of using the Kriging response surface to predict the failure 

values of different exceeding probabilities for a CFEC flowline, which subjected to 

combined loading. A flow chart of failure values prediction using response surface is 

illustrated in Figure 41: 

 

Figure 41: Flow chart of exceeding failure value prediction using response surface. 
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First, parameters of the flowline such as the dimension, material properties, 

laminate stacking of the flowline should be decided. Based on these input parameters, 

a finite element model of the CFEC flowline can be built in ACP, the solution of failure 

criteria can be calculated. It is recommended to adjust these parameters to let the failure 

criteria have the basic value around 0.8~0.9, which is easier for the final distribution of 

failure criteria to cover 1, which is the boundary to judge whether the flowline fail or 

not. 

Then, a correlation matrix is calculated. It is suggested to use more than 200 

samples to calculate the correlation matrix. The Spearman and Pearson generally have 

no differences. With the correlation matrix, parameters that have stronger correlation 

with the failure criteria values should be selected to build the Kriging response surface. 

By the studies in Section 6.1, it is suggested that the parameters have correlation 

coefficients higher than 0.13 be chosen for the response surface modelling. 

With selected parameters, the Kriging response surface can be modelled. It is 

suggested to have an auto-refinement process to reduce the predicted relative error 

below 5%. The range of the response surface could be extended to an appropriate size, 

where the response failure values of exceeding probabilities would keep an acceptable 

difference compared to “Measured Values”. In the studies in Section 6.2, we extended 

the range of inner diameter from 50 mm to 150 mm, and ply thickness from 0.04 mm 

to 0.20 mm, which kept the percentage difference of predicted failure values within 10% 

compared to “Measured Values”. 

Meanwhile, a sample population with a size larger than 200 can be generated and 
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input into the response surface, by which we can get converged statistical moments as 

studied in Section 5.1.1, and the “Response Values” of these sample populations are 

obtained. As studied in Section 6.3, the sample populations should avoid being 

centralized at the boundary of the response surface, which will increase the inaccuracy. 

Finally, fit the response values with a lognormal distribution, which can be used 

to calculate the exceeding probabilities, i.e. failure rate. The calculated failure values at 

the upper tail region usually have within 10% difference compared to the “Measured 

Values”, so a safety factor of 1.1 can be applied to calculate the modified failure value 

of exceeding probability 𝑓𝑚𝑜𝑑𝑖𝑓𝑒𝑑, as shown in Equation(20):  

𝑓𝑚𝑜𝑑𝑖𝑓𝑒𝑑 ≤ 1.1 × 𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (20) 

Where 𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the failure values for the exceeding probability predicted by 

the response surface. 

7.2 Recommendation for Future Work  

Response surface methodology is especially helpful for the failure prediction of 

flowline where need large size of samples. Considering the simplification of the model 

studied in this thesis, the recommendation for the future work are listed as follow:  

• The effect of the stacking sequence could be taken into consideration. As 

we mentioned above, the fibre direction and stacking will influence the loads 

transformation, which will directly change the strength within the laminate. 

This means the strengths in some direction are not fully utilized. Detailed 

studies of the stacking sequence and fibre direction can be carried out.       
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• Dynamic loading could be studied. In this thesis, the load combination is 

simplified as constants, while the loads applied on the flowline in actual 

applications will be more complicated and varied with time. A time interval can 

be set to find the maximum failure criteria that happened during the changing 

of the loads as a substitution of the failure criteria sample calculated by the 

static loading, which made the results more realistic. 

• Safety factor used to adjust the failure criteria predicted by the response 

surface, as mentioned in Equation (20), can be determined more specifically. In 

the studies above, the safety factor is determined by the general error between 

the response fitting value and the measured value, which did not distinguish 

between different failure rates and different failure criteria. Safety factors 

related to failure rate and failure criteria can be determined separately 
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Abstract. This paper examines the correlation and determination matrices of the burst design in 

a subsea carbon-fibre-epoxy composite flow-line. A case study of a 4” flow-line is investigated. 

The correlation and determination matrices are calculated and compared using Pearson and 

Spearman correlation methods. A comprehensive suite of failure modes that comprises of 

Maximum Stress, Tsai-Wu, Hashin and Puck failure criteria is used to quantify the burst design. 

The results reveal that the failure criteria are strongly correlated to each other. The applied 

pressure and ply thickness are moderately correlated to the failure criteria. It is observed that due 

to the nature of burst loads, most material failure parameters with the exception of the Tsai-Wu 

constant, F12 do not exhibit correlations with the failure criteria. Second, both Pearson and 

Spearman correlation methods identified the same set of major design parameters. Third, it was 

found that the identification of the major design parameters is not affected by the sample size. 

This paper provides an analysis framework to aid in the identification of the major design 

parameters which is the initial and crucial step of a design optimisation exercise.   

1.  Introduction and background 

Carbon-fibre-epoxy composite (CFEC) materials consist of an epoxy matrix reinforced by carbon fibres. 

The principal advantage of using CFEC materials is the high strength to weight ratio; carbon fibres are 

characterized by a strength-to-weight ratio 50 times higher than steel. Hence, structures made from 

CFEC materials are typically 20 % lighter than steel and 30% to 50% stronger. However, unlike isotropic 

materials, CFEC materials have directional strength properties. The orthotropic property is both an 

advantage and a disadvantage. CFEC materials can be aligned in the strong direction optimally to 

achieve higher strength-to-weight ratios in the structure. However, it requires careful design to ensure 

that the loads transverse to the fibre directions are not overly large; this is the weak direction. Another 

advantage of CFEC materials is their high fatigue strength. The fatigue limit of CFEC materials is as 

much as 70 % of the ultimate strength compared to only 30 % in the case of steel materials. A third 

advantage of using CFEC materials is their corrosion resistant properties. The above-mentioned 

properties make CFEC flow-lines attractive in high demanding applications.  



 

 

 

 

 

 

 

 

The stress analysis and strength evaluation of CEFC flowlines have been well-studied. Some studies 

are briefly described here. Azar et al. [1] calculated the optimum angle of filament-wound pipelines used 

for natural gas transmission using approximation methods. Theotokoglou [2] used finite element 

analyses to quantity the effect of delamination on the loss in load carrying capacity. Xia et al. [3] 

analysed multi-layered filament-wound composite pipes under internal pressure using a simplified 

elastic solution. Chouchaoui et al. [4] studied the stresses and displacements of a laminated cylindrical 

tube using analytical models. Guz et al. [5] analysed the stress distributions through the pipe thickness 

for various lay-ups when the pipe is subjected to different outer pressure loads. These papers presented 

some form of parametric studies. However, there has not been any published studies applying the 

parametric correlation method to composite flowlines to identify the major design parameters.   

This paper examines the correlation and determination matrices associated with the burst design of 

a 4” CFEC flow-line. Four failure criteria based on different failure theories are investigated. These are 

the Maximum Stress, Tsai-Wu [6], Hashin [7] and Puck [8-10] failure criteria. Furthermore, two 

correlation methods, namely Pearson [11, 12] and Spearman [13-15] correlation are studied. The 

purpose is to investigate the identification of the major design parameters associated with each 

individual failure criterion. The identification of the major design parameters is the initial and crucial 

step in a design optimization exercise [16].  

1.1.  Nomenclature 

𝜌𝑃1𝑃2  Pearson linear correlation coefficient 

𝑐𝑜𝑣(𝑃1, 𝑃2) Covariance 

𝜎𝑃1  Standard deviation of variable P1 

𝜎𝑃2  Standard deviation of variable P2 

𝜌𝑃12,𝑃22 Pearson quadratic correlation coefficient 

𝜌𝑟𝑔𝑃1 ,𝑟𝑔𝑃2  Spearman linear correlation coefficient 

𝑐𝑜𝑣(𝑟𝑔𝑃1 , 𝑟𝑔𝑃2) Covariance of the rank variable 

𝜎𝑟𝑔𝑃1  Standard deviation of the rank variable P1 

𝜎𝑟𝑔𝑃2  Standard deviation of the rank variable P2 

𝜌𝑟𝑔
𝑃1
2 ,𝑟𝑔𝑃2

2  Spearman quadratic correlation coefficient 

𝜎𝐴 Axial stress 

𝜎𝐻 Hoop stress 

𝜎1 Stress in the x-direction 

𝜎2 Stress in the y-direction 

𝜎3 Stress in the z-direction 

τ12 Shear stress in the xy-plane 



 

 

 

 

 

 

 

 

τ23 Shear stress in the yz-plane 

τ13 Shear stress in the xz-plane 

𝜎𝑢𝑡1 Ultimate tensile strength in the x-direction 

𝜎𝑢𝑐1 Ultimate compressive strength in the x-direction 

𝜎𝑢𝑡2 Ultimate tensile strength in the y-direction 

𝜎𝑢𝑐2 Ultimate compressive strength in the y-direction 

𝜎𝑢𝑡3 Ultimate tensile strength in the z-direction 

𝜎𝑢𝑐3 Ultimate compressive strength in the z-direction 

τu12 Ultimate shear strength the in the xy-plane 

τu13 Ultimate shear strength the in the xz-plane 

τu23 Ultimate shear strength the in the yz-plane 

2.  Correlation and determination matrix  

The correlation matrix measures the linear correlation between the identified design input parameters 

and the output variables using correlation coefficients. The correlative coefficient is a number between 

-1 and 1. A positive value indicates that P2 increases with P1, while a negative value indicates that P2 

decreases with P1. The closer the value of correlation is to +1 or -1, the stronger the correlation between 

the input and the output variables. The objective of using a correlation matrix is to identify the major 

design parameters. The following correlation methods are used in this paper: 

- Pearson correlation (Ref. Section 2.1.  ) 

- Spearman correlation (Ref. Section 2.2.  ) 

The determination matrix measures the quadratic correlations between P1 and P2. It indicates how 

close the points are to a quadratic curve. The determination matrix provide a measure of how well future 

outcomes are likely to be predicted. The correlation and determination matrices can be used to reduce 

the number of input parameters to a selection of major parameters in the design of experiments, or to 

reduce the number of output variables considered in a design optimization study.  

2.1.  Pearson correlation 

The Pearson correlation [11, 12] is a measure of the linear correlation between two variable P1 and P2. 

The Pearson correlation coefficient is defined as: 

𝜌𝑃1𝑃2 =
𝑐𝑜𝑣(𝑃1, 𝑃2)

𝜎𝑃1𝜎𝑃2
 (1) 

Equation (1) is used in the correlation matrix. For the determination matrix, i.e., quadratic correlation, 

the Pearson correlation coefficient is defined as: 

𝜌𝑃12,𝑃22 =
𝑐𝑜𝑣(𝑃1

2, 𝑃2
2)

𝜎𝑃12𝜎𝑃22
 (2) 

  



 

 

 

 

 

 

 

 

2.2.  Spearman correlation 

The Spearman correlation [13-15] is defined as the Pearson correlation between the rank variables. It 

is given as: 

𝜌𝑟𝑔𝑃1 ,𝑟𝑔𝑃2 =
𝑐𝑜𝑣(𝑟𝑔𝑃1 , 𝑟𝑔𝑃2)

𝜎𝑟𝑔𝑃1𝜎𝑟𝑔𝑃2
 (3) 

Similar to the Pearson correlation, Equation (3) is used in the correlation matrix. For the 

determination matrix, the Spearman correlation coefficient is defined as: 

𝜌𝑟𝑔
𝑃1
2 ,𝑟𝑔𝑃2

2 =
𝑐𝑜𝑣(𝑟𝑔𝑃12 , 𝑟𝑔𝑃22)

𝜎𝑟𝑔
𝑃1
2𝜎𝑟𝑔𝑃22

 (4) 

Note that the symbol σ in Equation (1) to (4) is used to represent standard deviations. The symbol σ 

is used to represent stresses in the rest of the paper.  

3.  Burst design of a subsea carbon-fibre-epoxy composite flow-line 

3.1.  Thin wall cylinder 

The flow-line is a long thin wall cylinder subjected to internal pressure. Under this load condition, an 

element in the cylinder wall will experience two distinct stresses, axial (𝜎𝐴) and hoop stresses (𝜎𝐻) as 

illustrated in Figure 1. 

 

 

 

Figure 1. Stresses in a thin wall cylinder 

 

 



 

 

 

 

 

 

 

 

3.2.  Classical laminate theory 

The classical laminate theory (CLT) [17-19] is used in this paper. This theory extends the classical plate 

theory for isotropic and homogeneous materials proposed by Kirchhoff [20, 21]. The CLT assumes the 

following: 

- There is no slip between the adjacent layers. This means that the laminate is perfectly bonded. 

- Each lamina is a homogenous layer with its effective properties known and uniform throughout 

the lamina. 

- Each lamina is in a state of plane stress 

- Each lamina can be isotropic, orthotropic or inversely isotropic.   

- The laminate deforms in accordance with Kirchhoff’s theory. This means the normal to the mid-

plane remain straight and normal to the mid-plane after deformation. In addition, the normal to 

the mid-plane does not change lengths.  

3.3.  Failure criteria 

The four failure criteria listed in Table 1 are investigated in this paper. The corresponding failure theories 

and their failure functions are described in some details in the following sub-sections. It is mentioned 

that failure is defined to occur when the failure function returns a value equal or greater than 1.0.  

Note that since CLT is used, the inter-laminar normal and shear stresses are zero and not computed, 

i.e., σ3 = τ23 = τ13 = 0. However, for completeness, the generalized 3D failure criteria are presented in 

Section 3.3.1.  to 3.3.4.   

Table 1. Failure criteria studied 

Failure Criterion Physical Basis Usage Convenience Ref. Section 

Maximum Stress Tensile behaviour of brittle 

material 

Requires only few parameters 

by testing 

3.3.1.   

Tsai-Wu Interactive tensor polynomial 

fitted to the failure behaviour of 

the material 

Requires numerous parameters 

by a comprehensive testing 

program 

3.3.2.   

Hashin Interactive criterion considering 

failure in fibre, transverse and 

delamination separately. 

Requires only few parameters 

by testing 

3.3.3.   

Puck Complex interactive criterion 

considering fibre and inter-fibre 

failures separately. 

Requires numerous parameters 

by a comprehensive testing 

program 

3.3.4.   

3.3.1.  Maximum stress failure criterion. This failure criterion compares the ratios of the actual stresses 

to the failure stresses in the ply principal coordinate system. The generalized failure function is defined 

as: 

𝑓 = 𝑚𝑎𝑥 (|
𝜎1
𝑋
| , |
𝜎2
𝑌
| , |
𝜎3
𝑍
| , |
𝜏12
𝑆
| , |
𝜏13
𝑅
| , |
𝜏23
𝑄
|) (5) 

where: 

𝑋 = {
𝜎𝑢𝑐1, 𝜎1 < 0
𝜎𝑢𝑡1, 𝜎1 ≥ 0

, 𝑌 = {
𝜎𝑢𝑐2, 𝜎2 < 0
𝜎𝑢𝑡2, 𝜎2 ≥ 0

, 𝑍 = {
𝜎𝑢𝑐3, 𝜎3 < 0
𝜎𝑢𝑡3, 𝜎3 ≥ 0

 

S = τu12 ,      R = τu13 ,      Q = τu23 

 



 

 

 

 

 

 

 

 

3.3.2.  Tsai-Wu failure criterion. The Tsai-Wu failure criterion [6] uses a quadratic failure function and 

is a simplification of Gol’denblat and Kapnov’s generalised failure theory for anisotropic materials [22]. 

It is expressed as:   

𝑓 = 𝑓𝑖𝜎𝑖 + 𝑓𝑖𝑗𝜎𝑖𝜎𝑗 (6) 

where i, j = 1, 2, 3, 4, 5, 6. 

In the plane stress condition, Equation (6) reduces to: 

𝑓 = 𝐹11𝜎1
2 + 𝐹22𝜎2

2 + 𝐹66𝜏12
2 + 2𝐹12𝜎1𝜎2 + 𝐹1𝜎1 + 𝐹2𝜎2 (7) 

where: 

𝐹11 =
1

𝜎𝑢𝑡1𝜎𝑢𝑐1
, 𝐹22 =

1

𝜎𝑢𝑡2𝜎𝑢𝑐2
,   𝐹66 =

1

𝑆2
,   𝐹1 =

1

𝜎𝑢𝑡1
−

1

𝜎𝑢𝑐1
,   𝐹2 =

1

𝜎𝑢𝑡2
−

1

𝜎𝑢𝑐2
  

and the nominal value of F12 is defined in Table 3. 

3.3.3.  Hashin failure criterion. This Hashin failure criterion [7] distinguishes the various different 

failure modes and model each of the modes separately. This is in contrast to the Tsai-Wu failure criterion 

(Ref. Section 3.3.2.  ) which uses a quadratic failure function that ‘mixes’ all the failures modes together. 

The Hashin failure function is defined as: 

𝑓 = 𝑚𝑎𝑥(𝑓𝑓 , 𝑓𝑚, 𝑓𝑑) (8) 

where ff, fm and fd are the failure functions for failures in the fibre direction, transverse direction 

and delamination, respectively. 

For failure in the fibre direction, ff is defined as: 

𝑓𝑓 =

{
 

 (
𝜎1
𝜎𝑢𝑡1

)
2

+ (
𝜏12
𝜏𝑢12

)
2

+ (
𝜏13
𝜏𝑢13

)
2

, 𝜎1 ≥ 0

−
𝜎1
𝜎𝑢𝑐1

, 𝜎1 < 0
 (9) 

For failure in the transverse direction, fm is defined as: 

𝑓𝑚 =

{
 
 

 
 (

𝜎2
𝜎𝑢𝑡2

)
2

+ (
𝜏23
𝜏𝑢23

)
2

+ (
𝜏12
𝜏𝑢12

)
2

+ (
𝜏13
𝜏𝑢13

)
2

, 𝜎2 ≥ 0

(
𝜎2

2𝜏𝑢23
)
2

+ (
𝜏23
𝜏𝑢23

)
2

+ (
𝜏12
𝜏𝑢12

)
2

+ [(
𝑌𝑐

2𝜏𝑢23
)
2

− 1]
𝜎2
𝜎𝑢𝑐2

, 𝜎2 < 0

 (10) 

For delamination failure, fd is defined as: 

𝑓𝑑 =

{
 
 

 
 (

𝜎3
𝜎𝑢𝑐3

)
2

+ (
𝜏13
𝜏𝑢13

)
2

+ (
𝜏23
𝜏𝑢23

)
2

, 𝜎3 < 0

(
𝜎3
𝜎𝑢𝑡3

)
2

+ (
𝜏13
𝜏𝑢13

)
2

+ (
𝜏23
𝜏𝑢23

)
2

, 𝜎3 ≥ 0

 (11) 

3.3.4.  Puck failure criteria. The Puck’s action plane strength criterion is used in this paper. The criterion 

considers two separate failures, namely fibre failure (FF) and inter-fibre failure (IFF). For FF, the 

Maximum Stress criterion as defined below is used [8-10]: 



 

 

 

 

 

 

 

 

𝑓𝐹𝐹 = {

𝜎1
𝜎𝑢𝑐1

, 𝜎1 < 0

𝜎1
𝜎𝑢𝑡1

, 𝜎1 ≥ 0
 (12) 

The failure function for IFF is complex and will not be presented here. Briefly, the IFF failure 

function considers a 3D stress state using the definition of fracture resistances, R and slope parameters 

of the fracture curves, p. The Puck IFF failure function also takes into account that some fibres might 

already break under uniaxial loads much lower than loads which cause ultimate factors using 

degradation factors. Details of the IFF failure function can be found in Puck et al. [8, 9] 

4.  Case study 

The flow-line studied is a 4” pipe with an applied pressure of 2500 psi.  

4.1.  Base case 

The general base case properties are presented in Table 2.  

Table 2. General properties of flow-line, Base case 

Property Symbol Value Unit 

Outer Diameter OD 114.3 mm 

Wall Thickness WT 6 mm 

Total Number of Ply - 30  

Ply Thickness tply 0.2 mm 

Fibre orientation - +/- 45 ° 

Applied Pressure Papplied 17.25 MPa 

       

Table 3. Material data - ply (prepreg epoxy carbon UD) 

Material Property Symbol Value Unit 

Elastic Modulus E1, E2, E3 121000, 8600, 8600 MPa 

Shear Modulus G12, G23, G13 4700, 3100, 4700 MPa 

Poisson’s Ratio ν12, ν23, ν13 0.27, 0.4, 0.27 - 

Tensile Strength σut1, σut2, σut3 2231, 29, 29 MPa 

Compressive Strength σuc1, σuc2, σuc3 -1082, -100, -100 MPa 

Shear Strength τu12, τu23, τu13 60, 32, 60 MPa 

Tsai-Wu Constants F12, F23, F13 -1, -1, -1 - 

Puck Constants p21+, p22+, p21-, p22- 0.35, 0.25, 0.3, 0.25 - 

Additional Puck Constants s, M, FIW 0.5, 0.5, 0.8 - 

 



 

 

 

 

 

 

 

 

 

Figure 2. Stacking sequence 

 

The base case failure criteria values, corresponding to the base case design talked into this sub-

section, are presented in Table 4. These are calculated using the finite element model presented in 

Section 4.2.   The results are calculated using the mesh size of 10 mm as discussed in Section 4.2.2.  The 

failure modes are mainly caused by the matrix, i.e., the material fails in shear. The Tsai-Wu failure 

criterion does not distinguish failure modes. One can also notice the large difference in failure values 

calculated using Maximum Stress failure criterion vs. the rest of the criteria. This is because Maximum 

Stress failure criterion does not consider the strength contribution from the fibre when evaluating matrix 

failure. In this particular case, the strength contribution from the fibres would be significant as they are 

aligned 45° to the direction of hoop stress and therefore help to share some of the load away from the 

matrix. 

Table 4. Base case failure criteria values 

 Maximum Stress Tsai-Wu Hashin Puck 

Failure Criterion Value 0.642 0.905 0.899 0.934 

Failure Mode τu12 exceeded - Matrix failure Matrix tension failure 

   

4.2.  Finite element model 

A 2 000 mm section of the flow-line is modeled. This is considered to be sufficiently long by engineering 

judgement in order to avoid end effects due to loads and boundary conditions in the finite element model. 

The results are obtained at the middle part of the section, i.e., at the 1 000 mm point. ANSYS R17.0 is 

used for the finite element modelling.  

4.2.1.  Loads and boundary conditions. The loads and boundary conditions applied on the model are 

illustrated in Figure 3. Pressure (Load A) is applied in the interior of the flow-line. Fixed support (Load 

B) is applied on the right edge of the flow-line. An end cap force (Load C) due to the internal pressure 

is applied on the left edge of the flow-line.   

 

 

 



 

 

 

 

 

 

 

 

 

Figure 3. Loads and boundary conditions 

 

4.2.2.  Mesh refinement study. The cases studied and the corresponding results obtained for the mesh 

refinement study are presented in Table 5 and Figure 4 respectively. The element used is the 4-node 

SHELL181 element [23]. The results show that a 10 mm element size is sufficient to produce 

converged solutions for the four failure criteria investigated in this paper. The mesh details used in this 

paper are presented in Figure 5. 

Table 5. Cases studied for mesh refinement study 

Element Size (mm) No. of Elements No. of Nodes 

30 888 900 

20 900 1 552 

15 2 904 2 926 

10 6 386 6 400  

5 24 896 24 960 

 



 

 

 

 

 

 

 

 

 

Figure 4. Results of mesh refinement study 

 

 

Figure 5. Mesh details, 10 mm element size, 6 386 SHELL181 elements with 6 400 nodes 

 

 

 



 

 

 

 

 

 

 

 

4.2.3.  Example result plots. An example plot of the maximum stress failure is presented in Figure 6. 

The maximum value generated by the failure function in the middle of the 2 000 mm flow-line is 

extracted and used in this paper.   

 

Figure 6. Example plot of maximum stress failure 

 

5.  Results and discussions 

5.1.  Correlation and determination matrices 

The correlation and determination matrices are presented in Figure 7 and Figure 8, respectively. The 

matrices are calculated using Spearman correlation method and a sample size of 200. Notice that the 

correlation matrix is symmetrical. However, the determination matrix is not symmetrical. This is 

because Cov(P1
2,P2

2) ≠ Cov(P2
2,P1

2) The matrix calculated using the Pearson correlation identified the 

same set of major design parameters and therefore not presented here. The comparison of Pearson and 

Spearman correlation methods is presented in Section 5.2.  The observations made are presented in the 

following sub-sections. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 7. Correlation matrix, Spearman correlation, n = 200 

 

 

Figure 8. Determination matrix, Spearman correlation, n = 200 



 

 

 

 

 

 

 

 

5.1.1.  Strong correlations between failure criteria. The failure criteria have strong linear and quadratic 

correlations with one and other. The values of these correlations are all above 0.8. This is intuitive, an 

increase in the failure value calculated from one failure criterion will imply that the failure values 

calculated from other failure criteria would also increase. A detailed investigation into the correlation 

values presented in Table 6 and Table 7 revealed that the correlation is stronger between the Tsai-Wu, 

Hashin and Puck criteria. The Maximum Stress criterion is not as correlated, particularly for the 

quadratic correlations. This could be explained that Tsai-Wu, Hashin and Puck criteria are non-linear 

criteria while the Maximum Stress criterion is a linear criterion. In addition, Tsai-Wu and Hashin have 

failure functions of a quadratic nature.  

Table 6. Spearman linear correlation, n = 200, failure criteria 

 Maximum Stress Tsai-Wu Hashin Puck 

Maximum Stress 1.00 0.90 0.91 0.91 

Tsai-Wu 0.96 1.00 0.96 0.97 

Hashin 0.91 0.96 1.00 0.99 

Puck 0.91 0.97 0.99 1.00 

 

Table 7. Spearman quadratic correlation, n = 200, failure criteria 

 Maximum Stress Tsai-Wu Hashin Puck 

Maximum Stress 1.00 0.81 0.83 0.84 

Tsai-Wu 0.81 1.00 0.94 0.96 

Hashin 0.82 0.94 1.00 0.98 

Puck 0.84 0.96 0.98 1.00 

5.1.2.  Moderate correlations between applied pressure & ply thickness and failure criteria. The applied 

pressure, Papplied and ply thickness, tply are moderately linearly correlated (0.4 to 0.6 or -0.6 to -0.4) with 

the failure criteria. These parameters are also slightly quadratically correlated (0.1 to 0.4 or -0.4 to -0.1). 

It is intuitive to understand that applied pressure and ply thickness would be naturally correlated with 

the failure criteria. The counter-intuitive thing is that the correlation is not strong. It can be natural to 

think that since hoop stress is directly proportional to the applied pressure and inversely proportional to 

wall thickness, therefore the correlation must be very strong. The moderate correlations can be 

understood by taking a closer examination at the correlation scatter diagram of Puck failure criteria vs. 

applied pressure and ply thickness as presented in Figure 9. Note the applied pressure (horizontal axis) 

is plotted in decreasing values, i.e., the right side of the horizontal axis denotes smaller values of applied 

pressure. From Figure 9, it is clear that the scatter is quite large; this is due to the fact that failure of the 

flow-line is not just fully dependent on the values of applied pressure and/or ply thickness but a result 

of many design parameters at play.  

 



 

 

 

 

 

 

 

 

 

Figure 9. Correlation scatter diagram, Puck failure criterion vs. applied pressure and ply thickness, 

Spearman correlation, n = 200 

 

5.1.3.  Other parameters with slight correlation with failure criteria. The parameters that have slight 

linear correlations (0.1 to 0.4 or -0.4 to -0.1) with the failure criteria are elastic moduli, E1, E2, tensile 

strength, σut1, shear strength, τu12 and outer diameter, OD. In addition, Tsai-Wu constant, F12, has a slight 

correlation with the Tsai-Wu failure criterion. The other parameters that have slight quadratic 

correlations (0.1 to 0.4 or -0.4 to -0.1) with the failure criteria are shear strength, τu12 and outer diameter, 

OD. The slight correlations of tensile strength σut1 and shear strength τu12 can be surprising to the reader. 

However, this can be understood by examining their correlation scatter diagrams. Figure 10 presents the 

correlation scatter diagrams of Maximum Stress criterion vs tensile strength σut1 and shear strength τu12. 

It becomes clear why these two design parameters are only slightly correlated to the Maximum Stress 

criterion. As previously mentioned in Section 5.1.2.  , the failure of the flow-line is not just dependent 

ontensile strength σut1 and shear strength τu12 , but it is a result of many design parameters at play. 

 

 

Figure 10. Correlation scatter diagram, maximum stress criterion vs. tensile strength σut1 and shear 

strength τu12, Spearman correlation, n = 200 

 

5.1.4.  Most material-related failure parameters insignificantly correlated with failure criteria. Most 

material-related failure parameters with the exception of Tsai-Wu constant, F12, do not exhibit 



 

 

 

 

 

 

 

 

correlation (below |0.1|) to the failure criteria. This is due to the nature of the current loading considered 

which predominantly result in membrane stress along the pipe walls. This causes the load to be 

predominantly in the fibre direction. The failure parameters in the failure criteria, i.e., Tsai-Wu constants 

and all Puck constants considered are primarily defined to model transverse, bending and/or inter-

laminar loading. It is expected that these failure parameters would play a more important role in the 

failure criteria when more complex loadings are considered.  

5.2.  Pearson vs. Spearman 

Both Pearson and Spearman correlation methods identified the same set of major design parameters as 

presented in Figure 11 and Figure 12. 

5.3.  Effect of sample size 

In general, the larger the sample size, the more likely design parameters with lower values of correlation 

get highlighted in the correlation and determination matrices. However, the governing design 

parameters, i.e., parameters with higher values of correlation would still be highlighted on the matrices. 

This is highlighted by the example presented in Figure 13 where the Spearman correlation matrix from 

n = 50 is compared against n = 200. It is observed that the darker coloured squares, i.e., high correlation 

values are practically the same for n = 50 and n = 200. The difference is in the lighter coloured squares, 

i.e., low correlation values. For practical engineering purposes, a sample size of 100 seemed to be 

sufficient in this paper.   

  



 

 

 

 

 

 

 

 

 

 

Figure 11. Comparison of linear correlation matrices, Pearson vs. Spearman 



 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of quadratic correlation matrices, Pearson vs. Spearman 



 

 

 

 

 

 

 

 

 

 

Figure 13. Comparison of correlation matrices, Spearman correlation, n = 50 vs. n = 200 



 

 

 

 

 

 

 

 

6.  Conclusions 

The following conclusions are made: 

- Strong linear and quadratic correlations are observed between the failure criteria. 

- Moderate linear and slight quadratic correlations are observed between applied pressure & ply 

thickness and the failure criteria.  

- Most material failure parameters with the exception of Tsai-Wu constant, F12, are not strongly 

correlated to the failure criteria. This can be explained by the fact that the loads experienced by 

the flow-line are pre-dominantly in the fibre direction.  

- Both Pearson and Spearman correlation methods identified the same set of major design 

parameters for the correlation matrix.  

- The effect of sample size is not profoundly significant to the results. There were no large 

differences found in using sample sizes of 50 vs. 100 vs. 200. For practical engineering purpose 

a sample size of 100 is recommended.   

7.  Future work 

There are plans to extend the study to include (i) external tension/compression forces and bending 

moments, (ii) response surface development and optimisation and (iii) six-sigma analysis. Furthermore, 

additional failure modes such as fatigue and collapse can be studied in future work. Other design 

scenarios such as pipeline global buckling and installation can also be investigated. The objective is to 

provide a framework for the design optimisation of flow-lines when non-traditional materials such as 

CFEC are used.  
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Using Kriging Response Surface Method for the Estimation of Failure Values of Carbon-Fibre-Epoxy 
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Abstract 

This paper investigates the use of Kriging response surface method for the estimation of failure values in carbon-

fibre-epoxy composite flowlines under the influence of stochastic processes. A case study of a 125 mm flowline 

is investigated. A comprehensive suite of failure modes that comprises of Maximum Stress, Tsai-Wu and Hashin 

failure criteria is used to quantify the burst design under combined loading with axial forces, torsion and bending 

moments. A large set of measured values are generated using Monte Carlo simulation and used as the ‘Base Case’ 

population which the results from the response surfaces are compared to. The response surfaces are evaluated in 

detail in terms of their ability to reproduce the statistical moments, probability and cumulative distributions and 

failure values at low probabilities of failure. In addition, the optimisation of the response surface calculation would 

be investigated in terms of reducing the number of input parameters and size of the response surface. Finally, a 

decision chart which can be used to build a response surface to calculate failures in a CFEC flowline is proposed 

based on the findings obtained. The results show that the response surface method is suitable to be used and can 

calculate failure values close to that calculated using a large set of measured values. This paper provides an analysis 

framework to aid in the identification of the major design parameters, response surface generation and failure 

prediction for CFEC flowlines.  

Keywords 

Composite material, Tsai-Wu, Response surface, Optimization, Failure analysis 

Nomenclature 

𝜎ℎ  Hoop stress 

𝜎𝑙  Longitudinal stress 
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𝜎1 Principle stress in x-direction 

𝜎2 Principle stress in y-direction 

𝜎3 Principle stress in z-direction 

𝜏12 Shear stress in xy-plane 

𝜏23 Shear stress in yz-plane 

𝜏13 Shear stress in xz-plane 

𝜎𝑢𝑐1 Compressive strength limit in x-direction 

𝜎𝑢𝑐2 Compressive strength limit in y-direction 

𝜎𝑢𝑐3 Compressive strength limit in z-direction 

𝜎𝑢𝑡1 Tensile strength limit in x-direction 

𝜎𝑢𝑡2 Tensile strength limit in y-direction 

𝜎𝑢𝑡3 Tensile strength limit in z-direction 

𝜏𝑢12 Shear strength limit in xy-plane 

𝜏𝑢23 Shear strength limit in yz-plane 

𝜏𝑢13 Shear strength limit in xz-plane 

𝜌𝑟𝑔𝑋,𝑟𝑔𝑌 Spearman correlation coefficient 

𝑐𝑜𝑣(𝑟𝑔𝑋 , 𝑟𝑔𝑌) Covariance of the rank variable 

𝜎𝑟𝑔𝑋
 Standard deviation of the rank variable gX 

𝜎𝑟𝑔𝑌
 Standard deviation of the rank variable gY 

𝐷 Flowline Diameter 
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𝑡 Flowline wall thickness 

 

1 Introduction 

Subsea flowlines play an important role in the subsea system. They transport production/injection fluids from the 

subsea wells to the subsea manifolds and vice versa. A higher number of deep-water oil and gas reservoirs are 

exploited in recent developments experienced in the oil and gas industry. This increased the average depth of oil 

wells drilled from 1108 m in 1949 and to 1818 m in 2008 (U.S. Energy Information Administration, 2020). At the 

same time, the total length of the oil and gas trunk pipeline is expected to increase from 1.9 million km in 2019 to 

2.2 million km in 2023 (GlobalData, 2019). This increase in distance and water depth would lead to higher 

associated capital and operating costs. The average pipeline cost increased from $94000 per inch-mile in 2011 to 

$155000 per inch-mile in 2002, according to ICF International (ICF International for The INGAA Foundation, 

2014). One cost-effective solution which is gaining popularity in the subsea industry is to utilise composite 

materials instead of the traditionally used steel material for the subsea flowline. Several projects that have utilised 

composite flowlines are Alder, Åsgard, West Lutong fields. Composite material has long been utilized in industries 

such as aerospace and automotive industries for a variety of application. Some applications include to use it for 

components such as the aircraft tail, wings and propellers, boat and scull hulls, storage tanks. They are valued for 

their high strength-to-weight ratio and the ability to customise the material directional strength properties by 

adjusting the laminate layout according to the application it is designed for. Composite materials are not new in 

the subsea industry. They have been utilised to make subsea protection covers and ROV buckets. Their corrosion 

resistance properties in addition to their strength properties make them particularly attractive in the offshore and 

subsea oil and gas industry. These properties make composite material an attractive choice in high performance 

subsea flowline applications where long reaches, deep waters, high loads and temperatures are encountered. 

The carbon-fibre epoxy composite (CFEC) which consists of an epoxy matrix with carbon fibres is a commonly 

used type of composite material when a high strength to weight ratio is desired. The epoxy matrix protects the 

fibres from external environment and transfer the loads between the fibres, while the fibres provide the strength 

and stiffness to the component. As presented in Table 1, CFEC is nearly five times lighter and two times stronger 

than steel. This allows CFEC structures to carry larger loads compared to metal structures of the same weight. 

Moreover, as with all composite materials, the good corrosion properties also make CFEC suitable for the use in 

harsh environments such as for subsea oil and gas applications. 



4 

 

Table 1: Comparison of Epoxy Carbon UD (230Gpa) and Steel AISI 4130 

 

Yield Strength 

(GPa) 

Ultimate Tensile 

Strength (GPa) 

Density 

(g/cm3) 

Strength to 

Weight Ratio 

Epoxy Carbon UD 3.53 2.231 1.49 1.497 

Steel, AISI 4130 0.95 1.11 7.85 0.141 

 

The anisotropic nature of CFEC materials demands for very comprehensive and robust stress analyses. Several 

previous studies were published by various authors within pipeline stress analysis. Some examples include Yang 

(2000) whom analysed the stresses at composite pipe joints under tensile loading and Jha et al. (2014) whom 

analysed the stresses in composite flexibles for deep-water applications. Due to the complex subsea terrain, current 

and other factors, the subsea CEFC flowline experiences a complex form of combined loading. In addition, the 

joint action of random parameters from loads, materials and geometry means that it may be necessary to apply 

stochastic models in the engineering design. Some authors have previously presented stochastic process applied 

in pipeline engineering problems. These include Bazan et al. (2013) whom studied the stochastic process to predict 

the corrosion growth for pipeline and Oliveira et al. (2016) whom performed probabilistic analysis of the collapse 

pressure of corroded pipelines. However, applying stochastic considerations in engineering design problems is 

typically not widely adopted. This is mainly due to the reason that it requires a large sample size, i.e., a large set 

of realisation values. This requires time resources which can be valuable in engineering projects.  

The response surface methodology is an approach that calculate an approximate result based on a response surface. 

The response surface is modelled by sample results calculated from simulation or measured in real life. This 

method requires fewer samples compared to the traditional approach when applied in the stochastic analysis of a 

structure. Some examples of response surface methods applied in engineering problems are presented here. Jia et 

al. (2016) studied the Kriging-base response surface application in structure reliability. Simpson et al. (1998) 

compared the response surface and kriging models for multidisciplinary design optimization. Gupta et al. (2004) 

suggested an improved response surface method of failure probability determination. These studies showed that 

the response surface is a convenient tool in engineering analysis and optimization.  However, the utilization of 

response surface does require careful consideration since the response results are approximate results. There are a 

lot of factors that affect the accuracy. These includes the response surface type, chosen of parameters, refinement 

method, etc.  
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To the authors’ knowledge, there has been no prior studies on using response surfaces as a tool to calculate failure 

values for CEFC flowlines in a more efficient manner. This paper studies in detail the influence of stochastic 

processes on the use of Kriging response surface method to predict failure rates in a CFEC flowline subjected to 

combined loading. Tsai-Wu (Tsai et al., 1971), Maximum Stress and Hashin (Hashin, 1980) failure criteria are 

used to quantify failure of the composite material. A large set of measured values are generated using Monte Carlo 

simulation and used as the ‘Base Case’ population which the results from the response surfaces are compared to. 

The response surfaces are evaluated in detail in terms of their ability to reproduce the statistical moments, 

probability and cumulative distributions and failure values at low probabilities of failure. In addition, the 

optimisation of the response surface calculation would be investigated in terms of reducing the number of input 

parameters and size of the response surface. Finally, a decision chart which can be used to build a response surface 

to calculate failures in a CFEC flowline is proposed based on the findings obtained. The modelling and the design 

optimization are performed using ANSYS Composite Pre/Post, Mechanical and DesignXplorer, 

2 Preliminaries 

2.1 Failure Criteria 

Failure criteria are used in engineering to evaluate the structural integrity of a component. Generally, failure criteria 

compare the stresses experienced by the structure to the allowable stress values. When the ratio between the two 

stresses is larger than 1, the component is usually considered “to fail”. Failure criteria for composites materials 

can be grouped into two categories, non-interactive failure criteria and interactive failure criteria, respectively. 

Non-Interactive failure criteria as the name suggests assumes no interaction between stress or strain tensor 

components, i.e., the tensor components are evaluated individually. An example is the maximum stress criterion. 

In contrast, Tsai-Wu (Wu et al., 1971) failure criterion and Hashin (Hashin, 1980) failure criterion are two 

examples of interactive failure criteria. Interactive failure criteria describe the failure value as a combined function 

of the stress or strain tensor components. The three failure criteria mentioned above are chosen to study the burst 

design of CFEC flowline in this paper. It is noted that since classical laminate theory is used, the stresses 

component in z-direction are neglected, i.e., σ3 = τ23 = τ13 = 0 in the following sections. 

2.1.1 Maximum Stress Failure Criterion 

Maximum Stress failure criterion is a conservative and commonly used criterion for composite materials (Feng et 

al., 2019). The failure occurs when the stresses in any principle direction exceed the material strength in that 

direction. The failure value is calculated using Equation ( 1 ). 
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𝑓 = 𝑚𝑎𝑥 (|
𝜎1

𝑋
| , |

𝜎2

𝑌
| , |

𝜎3

𝑍
| , |

𝜏12

𝑆
| , |

𝜏13

𝑅
| , |

𝜏23

𝑄
|) ( 1 ) 

Where: 

𝑋 = {
𝜎𝑢𝑐1, 𝜎1 < 0
𝜎𝑢𝑡1, 𝜎1 ≥ 0

, 𝑆 = 𝜏𝑢12 

𝑌 = {
𝜎𝑢𝑐2, 𝜎2 < 0
𝜎𝑢𝑡2, 𝜎2 ≥ 0

 , 𝑅 = 𝜏𝑢13 

𝑍 = {
𝜎𝑢𝑐3, 𝜎3 < 0
𝜎𝑢𝑡3, 𝜎3 ≥ 0

, 𝑄 = 𝜏𝑢23 

( 2 ) 

 

2.1.2 Tsai-Wu Failure Criterion 

The Tsai-Wu failure criterion (Wu et al., 1971) is based on the work of Gol’denblat and Koponov (Gol’denblat et 

al., 1965). The criterion assumes the existence of a failure surface and distinguishes between the compressive and 

tensile strength in the ply failure prediction. The failure criterion uses the following quadratic formulation 

presented in Equation ( 3 ). 

𝑓 =
𝜎1

2

𝜎𝑢𝑡1𝜎𝑢𝑐1
+

𝜎2
2

𝜎𝑢𝑡2𝜎𝑢𝑐2
+

𝜏12
2

𝜏𝑢12
2

+ 𝜎1 (
1

𝜎𝑢𝑡1
−

1

𝜎𝑢𝑐1
) + 𝜎2 (

1

𝜎𝑢𝑡2
−

1

𝜎𝑢𝑐2
)

+ 2𝐹12𝜎1𝜎2 

( 3 ) 

F12 is a user-specified parameter and is only associated with principle stresses σ1 and σ2. One commonly used form 

of F12 is presented in Equation ( 4 ). 

𝐹12 = −
1

2
√(

1

𝜎𝑢𝑡1
−

1

𝜎𝑢𝑐1
) (

1

𝜎𝑢𝑡2
−

1

𝜎𝑢𝑐2
) ( 4 ) 

F12 is also commonly obtained using bi-axial tests. Some examples can be found in (Clouston et al., 1998) and (Li 

et al., 2017).  
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2.1.3 Hashin Failure Criterion 

Hashin failure criterion (Hashin, 1980) was originally developed for unidirectional polymeric composites. The 

failure criterion distinguishes between three different types of failure modes, namely fibre failure, matrix failure 

and interlaminate failure, respectively. These failure modes are illustrated in Figure 1. 

 

Figure 1: Illustration of the Various Failure Modes in Hashin Failure Criterion 

The criterion for tensile fibre failure is presented in Equation ( 5 ). 

𝑓 = (
𝜎1

𝜎𝑢𝑡1
)

2

+ (
𝜏12

𝜏𝑢12
)

2

, 𝜎1 ≥ 0 ( 5 ) 
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The criterion for compressive fibre failure is presented in Equation ( 6 ). 

𝑓 = −
𝜎1

𝜎𝑢𝑡1
, 𝜎1 < 0 ( 6 ) 

The criterion for tensile matrix failure is presented in Equation ( 7 ). 

𝑓 = (
𝜎2

𝜎𝑢𝑡2
)

2

+ (
𝜏23

𝜏𝑢23
)

2

+ (
𝜏12

𝜏𝑢12
)

2

+ (
τ13

τu13
)

2

 ( 7 ) 

The criterion for compressive matrix failure is presented in Equation ( 8 ). 

𝑓 = (
𝜎2

2𝜏𝑢23
)

2

+ (
𝜏23

𝜏𝑢23
)

2

+ (
𝜏12

𝜏𝑢12
)

2

+ [(
𝜎𝑢𝑐2

2𝜏𝑢23
)

2

− 1]
𝜎2

𝜎𝑢𝑐2
 ( 8 ) 

The criterion for tensile interlaminate failure is presented in Equation ( 9 ). 

𝑓 = (
𝜎3

𝜎𝑢𝑐3
)

2

+ (
𝜏13

𝜏𝑢13
)

2

+ (
𝜏23

𝜏𝑢23
)

2

, 𝜎3 < 0 ( 9 ) 

The criterion for compressive interlaminate failure is presented in Equation ( 10 ). 

𝑓 = (
𝜎3

𝜎𝑢𝑡3
)

2

+ (
𝜏13

𝜏𝑢13
)

2

+ (
𝜏23

𝜏𝑢23
)

2

, 𝜎3 ≥ 0 ( 10 ) 

 

2.1.4 Calculation of Failure Values 

The failure values are calculated using ANSYS Composite Pre/Post. The failure results as well as the failure modes 

will be shown in the ACP solution. As presented in 2.1.1, 2.1.2 and 2.1.3, three failure criteria have different failure 

modes. For the Maximum stress, the failure modes are associated with σ1, σ2 and σ3, while the Tsai-Wu failure 

criteria do not distinguish between the failure modes. Hashin failure criteria has matrix failure, fibre failure and 

interlaminate failure.  An example of Hashin failure criterion plot is shown in Figure 2. These are calculated at the 

middle of the flowline as illustrated in the example plot presented in Figure 3. Details of the flowline model is 

presented in Section 3. 
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Figure 2: Example of Failure Criterion Plot – Hashin Failure Criterion 

 

Figure 3: Example of Tsai-Wu Failure Values calculated at the Middle of the Flowline 
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2.2 Parameter Correlation 

In this paper, Spearman (Spearman, 1910) correlation method is applied to identify the most important parameters 

to be included in the response surfaces; the response surface methodology is presented in Section 2.3. The 

Spearman correlation method is a rank-order method which calculates the monotonic relationship between two 

ranked variables as presented in Equation ( 11 ). 

ρ𝑟𝑔𝑋,𝑟𝑔𝑌 =
𝑐𝑜𝑣(𝑟𝑔𝑋, 𝑟𝑔𝑌)

𝜎𝑟𝑔𝑋
𝜎𝑟𝑔𝑌

 ( 11 ) 

The calculated correlation coefficient varies from -1.0 to 1.0 and measures the statistical coupling between two 

parameters, x and y. The values of the calculated coefficient can be interpreted as follows: 

• 0.0 to 0.2 – Slightly correlated, the relationship is almost negligible. 

• 0.2 to 0.4 – Lowly correlated, but the relationship is definite. 

• 0.4 to 0.6 – Moderately correlated, the relationship is substantial. 

• 0.6 to 0.8 – Highly correlated, the relationship is marked 

• 0.8 to 1.0 – Very highly correlated, the relationship is very dependable 

A positive coefficient means that the output parameter increases when the input parameter increases and vice versa. 

The correlation matrix is a n×n matrix which consists of n^2 correlation coefficients describing the correlation 

between n design parameters. The matrix provides an overview of which parameters influence the output variables 

more. The top 20 parameters with the highest values of coefficient are included in the set of parameters used in 

the generation of the response surface model. 

2.3 Response Surface Methodology 

The response surface methodology was first introduced by Box and Wilson in 1951 (Box et al., 1951) and uses 

mathematical modelling to approximate the relationship between one or more input parameters and one or more 

output variables. This means (Output1, Output 2, …) = F (Input1, Input2, …) where F is the response surface. The 

response surface methodology is especially useful to describe the model responses in the case when the detailed 

function describing the input parameters to the output variables is complex and usually unknown. This is because 

the response surface methodology approximates the function without the need for knowing the details about the 

function.  

The applied response surface method in this paper is Kriging response surface method (Krige, 1950). It is an 

interpolation method which interpolate the values generated by gaussian process governed by prior covariances. 
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It is similar to inverse distance weighting method, i.e., it weighs the surrounding measured values to calculate a 

predicted result at an unknown location. The general formula for Kriging response surface method is presented in 

Equation ( 12 ). 

�̂�(𝑠0) = ∑ 𝜆𝑖�̂�(𝑠𝑖)

𝑛

𝑖=1

 ( 12 ) 

Z(si) is the measure value at the ith location, λi is an unknown weight for the measured value at the ith location, s0 

is the predicted location and n is the number of measured values.  

The response surface tool in ANSYS uses the most correlated parameters identified from the correlation matrix to 

generate a required size of measured values. This process is called design of experiment. The central composite 

design method (Box et al., 1951) is used. A larger response surface requires a larger design of experiment exercise, 

i.e., a larger number of measured values. Verification points are calculated after the response surface is generated. 

The values from the verification points are checked against the measured values using predicted relative error 

values as defined in Equation ( 13 ).  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟

=
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑘𝑛𝑜𝑤𝑛 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑘𝑛𝑜𝑤𝑛 𝑣𝑎𝑙𝑢𝑒
× 100% 

( 13 ) 

Where: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
 ( 14 ) 

As observed in Equation ( 13 ), the predicted relative error is a value that is normalised by the known maximum 

variation of the output parameter. This allows for easy comparison across all output parameters in the design space. 

A predicted relative error of 5 % is used in this paper. The response surface will be refined iteratively with more 

measured values from the design of experiment until the predicted relative error of all output parameters fall below 

the threshold. Figure 4 presents an example plot of the refinement of the Kriging response surface. It is observed 

in Figure 4 that the Tsai-Wu, Maximum Stress and Hashin failure criteria had predicted relative error below 5 % 

after two iterations.  
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Figure 4: Example Plot of the Refinement of the Kriging Response Surface 

3 Case Study of the Burst Design of a Subsea CFEC Flowline 

3.1 General Properties 

The flowline studied in this paper has the following general properties as listed in Table 2. The material properties 

of the ply are presented in Table 3. The stacking sequence is presented in Figure 5. 

Table 2: General Properties of Subsea CFEC Flowline 

Property Symbol Value Unit 

Outer Diameter OD 125 mm 

Wall Thickness t 6 mm 

Total Number of Ply - 30 - 

Ply Thickness tply 0.2 mm 

Fibre Orientation - +/- 45 ° 
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Table 3: Material Data – Ply (Prepreg Epoxy Carbon UD 230 GPa) 

Material Property Symbol Value Unit 

Elastic Modulus E1, E2, E3 121 000, 8 600, 8600 MPa 

Shear Modulus G12, G23, G13 4 700, 3 100, 4 700 MPa 

Poisson’s Ratio ν12, ν23, ν13 0.27, 0.4, 0.27 - 

Tensile Strength σut1, σut2, σut3 2 231, 29, 29 MPa 

Compressive Strength σuc1, σuc2, σuc3 -1 082, -100, -100 MPa 

Shear Strength τu12, τu23, τu13 60, 32, 60 MPa 

Tsai-Wu Constants F12, F23, F13 -1, -1, -1 - 

 

 

Figure 5: Stacking Sequence  

3.2 Nominal Load Values 

The nominal load values used in this paper are presented in Table 4. 
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Table 4: Nominal Load Values 

Load Value Unit 

Internal Pressure 6.9 MPa 

Axial Force 20 kN 

Torsion 2 kN·m 

Bending 2 kN·m 

 

The failure criteria values, corresponding to the nominal loads presented in Table 4 are presented in Table 5. These 

are calculated using the finite element model presented in Section 3.3.  

Table 5: Failure Values Corresponding to Nominal Loads 

 Maximum Stress Tsai-Wu Hashin 

Failure Criterion Value 0.516 0.613 0.563 

Failure Mode σ2 exceeded - Matrix failure 

 

3.3 Finite Element Model 

A 2000 mm section of the flowline is modelled. This is sufficiently long by engineering judgement in order to 

avoid end effects due to loads and boundary conditions in the finite element model. The results are obtained at the 

middle part of the section, i.e., at the 1000 mm point as illustrated previously in Figure 3 . ANSYS R17.0 is used 

for the finite element modelling. 

3.3.1 Loads and Boundary Conditions 

The loads and boundary conditions applied on the model are illustrated in Figure 6. Pressure (Load A) is applied 

in the interior of the flowline. Fixed support (Load B) is applied on the right edge of the flowline. An end cap force 

(Load E) due to the internal pressure is applied on the left edge of the flowline. Axial force (Load C), torsion (Load 

D) and bending (Load F) are also applied at the left edge.   
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Figure 6: Loads and Boundary Conditions 

3.3.2 Mesh Refinement Study 

The cases studied and the corresponding results obtained for the mesh refinement study are presented in Table 6 

and Figure 7, respectively. The nominal load values as presented in Section 3.2 are used in the mesh refinement 

study. The element used is the 4-node SHELL181 element (Ansys, 2017). The results show that a 30 mm element 

size is enough to produce converged solutions for the three failure criteria investigated in this paper. An element 

size of 10 mm is used in the paper and the mesh details used in this paper are presented in Figure 8. 
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Table 6: Cases Studied for Mesh Refinement Study 

Element Size (mm) No. of Elements No. of Nodes 

30 900 912 

25 1040 1053 

20 1536 1552 

15 2803 2821 

10 6430 6432 

5 25344 25408 

 

 

Figure 7: Results of Mesh Refinement Study 



17 

 

 

Figure 8: Mesh Details, 10 mm Element Size, 6430 SHELL181 Elements with 6432 Nodes 

3.4 Generation of Measured Values 

A set of measured values is generated to be used as the reference population in this paper. This is named the ‘Base 

Case’ in this paper. The mean and standard deviation of the input parameters used in Base Case are presented in 

Table 7. The input parameters are normally distributed.  
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Table 7: Mean and Standard Deviation of Input Parameters used in Base Case 

Parameter Symbol Unit Mean  Standard Deviation 

Elastic Modulus 

E1 MPa 121000 3630 

E2, E3 MPa 8600 258 

Poisson’s Ratio 

ν12, ν13 - 0.27 0.0081 

ν23 - 0.4 0.012 

Shear Modulus 

G13 MPa 4700 141 

G23 MPa 3100 93 

Tensile Strength 

σut1 MPa 2231 66.93 

σut2, σut3 MPa 29 0.87 

Compressive Strength 

σuc1 MPa -1082 -32.46 

σuc2, σuc3 MPa -100 -3 

Shear Strength 

τu12, τu13 MPa 60 1.8 

τu23 MPa 32 0.96 

Internal pressure P MPa -6.9 -0.207 

Axial Force A N 20000 600 

Bending  B N·m 2000 60 

Torsion T N·m 2000 60 

Tsai-Wu Constants F12, F23, F13  0 0.3 

Diameter D mm 125 8.75 

Thickness t mm 0.2 0.01 

 

Using the values in Table 7, the Base Case population of measured values is generated using Monte Carlo 

simulation. Examples of the cumulative probability distributions are plotted in Figure 9, Figure 10 and Figure 11 
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for the elastic modulus E1, diameter D and internal pressure P, respectively. The population size is 500 which is 

chosen based on a convergence study presented in Section 3.4.1. The population size is chosen to be sufficiently 

large such that converged statistical moments are achieved. 

 

Figure 9: Cumulative Probability Distribution of Elastic Modulus E1   
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Figure 10: Cumulative Probability Distribution of Diameter D   
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Figure 11: Cumulative Probability Distribution of Internal Pressure P 

3.4.1 Convergence Study on Population Size 

A convergence study was performed to select a large enough population size such that converged statistical 

moments are obtained. Figure 12 presents values of mean, standard deviation, skewness and kurtosis versus the 

sample size. Figure 13 presents the percentage difference for the same statistical moments compared to the values 

when the population size is 500. The percentage difference is calculated using the formula presented in Equation 

( 15 ). 

% Difference =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑉𝑎𝑙𝑢𝑒 @ 𝑁 = 500

𝑉𝑎𝑙𝑢𝑒 @ 𝑁 = 500
× 100% ( 15 ) 
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Figure 12: Values of Statistical Moments vs Population Size 
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Figure 13: % Difference of Values of Statistical Moments vs Population Size Compared to N = 500 

The results presented in Figure 12 and Figure 13 show that converged statistical moments are obtained for a 

population size larger than 200. A population size of 500 is used in this paper.  

3.4.2 Fitting Statistical Models to Measured Values 

Statistical models are fitted to the results and used to calculate the exceedance probabilities, i.e., failure rates. In 

this section, the various statistical models used in the fitting are presented. The Matlab distribution fitting tool is 

used. Four types of distributions, namely Exponential, Weibull, Normal and Lognormal are fitted and compared 

with the measured values as shown in Figure 14 and Figure 15. The corresponding R2 values are presented in Table 

8. As previously mentioned, the population size, i.e., the size of the set of measured values is 500.  
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Figure 14: Statistical Models Fitted to Measured Values 
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Figure 15: Statistical Models Fitted to Measured Values, Zoom-In @ Upper Tail Region 

Table 8: R2 Values 

Statistical Model Exponential Lognormal Normal Weibull 

R2 Value 0.960 0.999 0.998 0.987 

 

The results show that the Lognormal and Normal distributions are better fits to the measured values. In contrast, 

the Weibull and Exponential distributions do not fit well. Upon closer inspection into the upper tail region as 

presented in Figure 15 and the R2 value considering the tail region presented in Table 8, it is observed that the 

Lognormal distribution is a better fit than the Normal distribution at the upper tail region. The upper tail region is 

crucial for the calculation of failure rates. The Lognormal distribution is therefore chosen as the statistical model 

to be fitted to the measured values.  
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3.5 Calculating the Response Surface 

3.5.1 Parametric Correlation to Identify Most Influential Input Parameters 

The parametric correlation matrix is calculated using Spearman correlation method as described in Section 2.2 to 

identify the most influential input parameters. A sample size of 100 is used in the calculation. The sample size is 

large enough based on previous studies by the authors on parametric correlation matrices associated with CFEC 

flowlines (Xing et al., 2019). The parametric correlation matrix is presented in Figure 16. The 20 most influential 

input parameters identified from the parametric correlation matrix are presented in Table 9. These input parameters 

are used in the generation of the response surface.  

 

Figure 16: Parametric Correlation Matrix 
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Table 9: Most Influential Input Parameters 

Parameter Group Parameters Level of Correlation 

Loads P, T Moderate 

Geometry t Moderate 

Material properties 

E2, ν12, ν23, ν13, G23, G13, σut1, 

σut3, τu23, D, F12, F13, A, B  
Slight 

E1, σut2, τu12  Low 

 

3.5.2 Range of Input Parameters 

The range of input parameters used in the generation of the response surface is presented in Table 10. As previously 

discussed, the input parameters used in the response surface are the top 20 most influential input parameters found 

from a parametric correlation study presented in Section 3.5.1. 
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Table 10: Range of Input Parameters used in Response Surface 

Parameters Symbol Unit Lower limit Upper limit 

Elastic Modulus 

E1 MPa 108900 133100 

E2 MPa 7740 9460 

Poisson’s Ratio 

ν12, ν13  0.243 0.297 

ν23  0.36 0.44 

Shear Modulus 

G13 MPa 4230 5170 

G23 MPa 2790 3410 

Tensile Strength 

σut1 MPa 2007.9 2454.1 

σut2, σut3 MPa 26.1 31.9 

Shear Strength 

τu12 MPa 54 66 

τu23 MPa 28.8 35.2 

Internal pressure P MPa 6.21 7.59 

Axial Force A N 18000 22000 

Bending  B Nm 1800 2200 

Torsion T Nm 1800 2200 

Tsai-Wu Constants F12, F13  -1 1 

Diameter D mm 100 150 

Thickness t mm 0.18 0.22 

 

4 Using Response Surfaces for Prediction of Failure Rates 

In this section, the use of response surfaces for the prediction of failure rates is discussed. The benefit of using 

response surfaces is that new sampling points are calculated almost instantly after the response surface is generated. 

This provides time savings in the engineering evaluation of the design and in the case in this paper, the calculation 

of failure rates. The investigation is carried out as follows in this section. First, the statistical moments are 



29 

 

compared between the samples generated from the measured values, response surface and their corresponding 

fitted Lognormal distributions. Second, the probability and cumulative distribution plots are compared. Last, the 

failure rates calculated from the response surface are compared against the ‘Base Case’. The workflow process 

used is presented in Figure 17.  

 

Figure 17: Workflow Process 

4.1 Comparison of Statistical Moments 

The comparison of the statistical moments is presented in Table 11. An explanation of ‘Source’ in Table 11 is 

presented in the following: 

• Measured values, 500 samples: These are 500 sample points calculated directly from the finite element 

model. These 500 samples are considered the ‘Base Case’ population.  

• Lognormal distribution fitted to measured values: This is a Lognormal distribution fitted to ‘Measured 

values, 500 samples’. 

• Response surface, 500 samples: These are 500 sample points calculated directly from response surface.  

• Lognormal distribution fitted to response surface values: This is a Lognormal distribution fitted to 

‘Response surface, 500 samples’. 

• The % differences are calculated with respected to ‘Measured values, 500 samples’ using Equation ( 16 

) 
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% Difference =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑙𝑢𝑒 @ 𝑀′ 𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠, 500 𝑠𝑎𝑚𝑝𝑙𝑒𝑠′

𝑉𝑎𝑙𝑢𝑒 @ 𝑀′ 𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠, 500 𝑠𝑎𝑚𝑝𝑙𝑒𝑠′

× 100% 

( 16 ) 

 

Table 11: Comparison of Statistical Moments 

Source Mean 

Standard 

Deviation 

Skewness Kurtosis 

Measured values, 500 

samples 

0.591 0.039 0.232 3.027 

Lognormal distribution fitted 

to measured values 

0.591 

(0.0%) 

0.039  

(0.1%) 

0.199 

(-14.1%) 

3.071 

(1.4%) 

Response surface, 500 

samples 

0.592 

(0.3%) 

0.036 

(-8.5%) 

0.209 

(-9.8%) 

2.980 

(-1.6%) 

Lognormal distribution fitted 

to response surface values 

0.592 

(0.3%) 

0.036 

(-8.6%) 

0.182 

(-21.7%) 

3.059 

(1.0%) 

 

The following observations are made from the results presented in Table 11: 

• There are negligible differences in the mean values. 

• The values obtained from the response surface (also when fitted to the Lognormal distribution) have 

smaller standard deviation values which are about 9% smaller than the measured values. 

• There are large differences in the skewness values. The response surface skewness values are about 10% 

smaller than the measured values. Fitting the response surface values to a Lognormal distribution makes 

the skewness values even smaller, i.e., about 22% smaller compared to the measured values. In addition, 

fitting the measured values to a Lognormal distribution give rise to smaller skewness values of about 14% 

smaller compared to the measured values.  

• There are only small differences of below 2% in the kurtosis values.  
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4.2 Comparison of Probability and Cumulative Distribution Plots 

The comparisons of the probability density and cumulative distribution plots are presented in Figure 18 and Figure 

19, respectively. 

 

Figure 18: Comparison of Probability Density Functions 

 

Black and green lines 

overlap each other 

Blue and red lines 

overlap each other 

Area A 
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Figure 19: Comparison of Cumulative Probability Distribution Functions 

The following observations are made: 

• The fitted distribution curves overlap the raw data, i.e., measured values and response surface sampled 

values. 

• The response surface has a higher probability density at the most probable value; refer to area A in Figure 

18. 

• There are some differences in the tail regions in the cumulative probability distribution functions, refer 

to Figure 19. However, these difference are not significant and lead to only negligible differences in the 

failure values which are calculated based on the upper tail region as presented in Section 4.3. 

4.3 Comparison of Failure Values 

The comparison of failure values at three different failure rates are presented in Table 12. 

 

  

Black and green lines 

overlap each other 
Blue and red lines 

overlap each other 
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Table 12: Comparison of Failure Values 

Source 

Failure 

Criterion 

Failure Rate 

= 1 in 104 

Failure Rate 

= 1 in 105 

Failure Rate 

= 1 in 106 

Lognormal distribution fitted 

to measured values 

Maximum 

Stress 

0.64 0.67 0.69 

Tsai-Wu 0.75 0.78 0.81 

Hashin 0.76 0.79 0.81 

Lognormal distribution fitted 

to response surface values 

Maximum 

Stress 

0.64 0.66 0.68 

Tsai-Wu 0.74 0.77 0.79 

Hashin 0.75 0.78 0.80 

 

The results presented in Table 12 show that the response surface model produce failure values that are very close 

to those resulting from the measured values. Therefore, it is a reliable tool that can be used to failure prediction of 

CEFC flowlines under combined loading.   

5 Optimising Response Surface Generation 

5.1 Number of Input Parameters 

In this section, the number of input parameters used to generate the response surfaces is investigated. Using a 

smaller number of input parameters requires a smaller design of experiment as presented in Table 13. Choosing 

10 input parameters instead of 20 input parameters results in a design of experiment that is less than one-third the 

size, leading to significant computational savings in the generation of the response surface. It is mentioned that 20 

input parameters are used in the response surface presented in results in Section 4. 
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Table 13: Size of Design of Experiment for Different Number of Input Parameters 

Number of Input Parameters 5 10 15 20 

Size of Design of Experiment, 

Number of Samples 

27 149 287 551 

Minimum Parametric 

Correlation Value 

0.271 0.131 0.079 0.046 

 

The effect on statistical moments, probability distributions and predicted failure values are presented and discussed 

in Sections 5.1.1, 5.1.2 and 5.1.3, respectively. The results show that using input parameters of 10 do not lead to 

any observable reduction in accuracy in the results calculated. This is obvious in the case where 5 input parameters 

are used, parameters that are somewhat correlated (having correlation coefficients between 0.131 to 0.271) to the 

failure value are excluded to be used in the generation of the response surfaces.  

5.1.1 Number of Parameters - Effect on Statistical Moments 

The statistical moments are presented in Figure 20 for the response surfaces generated with different number of 

input parameters together with the measured values (fitted and raw values). The corresponding percentage 

differences versus the measured values are presented in Figure 21. The following observations are made: 

• The mean values are not significantly affected when more than 10 input parameters are used where the 

differences are within 1%.  

• The standard deviations are fairly affected by the number of input parameters used. However, it is 

mentioned that using the response surface would already result in a difference in the standard deviation 

of about 9 % as presented in 4.1. Using a smaller number of input parameters will increase this difference 

to as much as about 20%. 

• The skewness values are very affected by the number of input parameters used. However, it is mentioned 

that using the response surface would already result in a difference in the standard deviation of about 14 

% as presented in 4.1. Using a smaller number of input parameters will increase this difference to as 

much as about 250%. 

• The kurtosis values are not significantly affected when enough input parameters are is used. The 

difference however become as large as 60% when not enough input parameters are used.  
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Figure 20: Number of Parameters – Effect on Statistical Moments 

 

Figure 21: Number of Parameters – Effect on Statistical Moments (% Difference) 

5.1.2 Number of Parameters – Effect on Fitted Probability Distributions 

The probability distributions (probability density and cumulative probability) fitted to response surface values with 

different number of input parameters are plotted together with the measured values and presented in Figure 22, 

Figure 23 and Figure 24. 

The following observations are made: 
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• In general, the probability distribution functions are extremely inaccurate when a small number of input 

parameters, i.e., 5 is used.  

• As presented in Figure 22, the probability density functions fitted from the response surfaces do not in 

general fit well with the measured values. A similar observation was also previously reported in Figure 

18 and Section 4.2. 

• As presented in Figure 23 and Figure 24, there are some differences in the cumulative probability 

distribution functions. These differences increase with decreasing number of input parameters. However, 

these do not significantly affect the upper tail regions and lead to not too large differences in the failure 

values calculated as presented in Section 5.1.3. Similar observations were also previously reported in 

Section 4.2. 

 

Figure 22: Number of Parameters – Effect on Probability Density Functions 
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Figure 23: Number of Parameters – Effect on Cumulative Probability Functions 

 

Figure 24: Number of Parameters – Effect on Cumulative Probability Functions (Zoom-In at Upper Tail 

Region) 
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5.1.3 Number of Parameters – Effect on Predicted Failure Values 

Table 14 presents comparisons of the predicted failure rates calculated from the Lognormal distributions fitted to 

response surfaces when the different number of input parameters are used. It is observed from the results that 

reducing the number of input parameters to 10 in general do not lead to poor accuracy in the failure values 

predicted. The accuracy of the failure values predicted suffer when the number of input parameters are small. This 

can be expected because the failure values are calculated from distributions fitted to sampled values. As previously 

discussed in Section 5.1.2, the number of input parameters do not affect the fitted probability distributions unless 

the number of input parameters is small, i.e., 5.   
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Table 14: Number of Parameters – Effect on Predicted Failure Values 

Source 

Failure 

Criterion 

Failure Rate 

= 1 in 104 

Failure Rate 

= 1 in 105 

Failure Rate 

= 1 in 106 

% Diff, 

Failure Rate 

= 1 in 104 

% Diff, 

Failure Rate 

= 1 in 105 

% Diff, 

Failure Rate 

= 1 in 106 

Lognormal distribution 

fitted to measured 

values 

Maximum 

Stress 

0.64 0.67 0.69 - - - 

Tsai-Wu 0.75 0.78 0.81 - - - 

Hashin 0.76 0.79 0.81 - - - 

Lognormal distribution 

fitted to response 

surface values (20 input 

parameters) 

Maximum 

Stress 

0.64 0.66 0.68 0.0 -1.5 -1.4 

Tsai-Wu 0.74 0.77 0.79 -1.3 -1.3 -2.5 

Hashin 0.75 0.78 0.80 -1.3 -1.3 -1.2 

Lognormal distribution 

fitted to response 

surface values (15 input 

parameters) 

Maximum 

Stress 

0.64 0.67 0.69 -1.6 -3.0 -1.4 

Tsai-Wu 0.75 0.78 0.81 -2.7 -2.6 -3.7 

Hashin 0.76 0.79 0.81 -2.6 -2.5 -2.5 

Lognormal distribution 

fitted to response 

surface values (10 input 

parameters) 

Maximum 

Stress 

0.64 0.66 0.68 0.0 -1.5 -1.4 

Tsai-Wu 0.74 0.77 0.79 -4.0 -5.1 -6.2 

Hashin 0.75 0.78 0.8 -1.3 -1.3 -1.2 

Lognormal distribution 

fitted to response 

surface values (5 input 

parameters) 

Maximum 

Stress 

0.63 0.65 0.68 15.6 14.9 15.9 

Tsai-Wu 0.73 0.76 0.78 5.3 5.1 3.7 

Hashin 0.74 0.77 0.79 2.6 2.5 2.5 
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5.2 Size of Response Surface 

In this section, the effects of response surfaces sizes are studied. Two larger response surfaces are compared against 

the original surface size used in Sections 3, 4 and 5.1. These larger response surfaces are named ‘Larger Size’ and 

‘Extremely Large Size’. The number of input parameters used to generate the response surfaces is the same, i.e., 

20, while the range of diameter and ply thickness is varied. An overview of the response surfaces studied is 

presented in Figure 25 and their corresponding range of diameters and ply thicknesses are presented in Table 15. 

 

Figure 25: Sizes of Response Surfaces Considered 
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Table 15: Range of Diameters and Ply Thicknesses Studied 

 Diameter [mm] Thickness [mm] 

Base Case 100-150 0.18-0.22 

Larger Size 75-175 0.14-0.26 

Extremely Larger Size 50-200 0.10-0.30 

 

The effect on statistical moments, probability distributions and predicted failure values are presented and discussed 

in Sections 5.2.1, 5.2.2 and 5.2.3, respectively. The results show that the extremely large response surface leads to 

inaccurate skewness values and probability distributions functions. However, the size of the response surface does 

not have large effect on the upper tail regions of the probability distributions and consequently lead to small 

differences in predicted failure rates if it is not too large as demonstrated in the ‘Larger Size’ response surface.  

5.2.1 Size of Response Surface - Effect on Statistical Moments 

The statistical moments are presented in Figure 26 for the response surfaces generated with different range of 

diameter and ply thickness together with the measured values (fitted and raw values). The corresponding 

percentage differences versus the measured values are presented in Figure 27. The following observations are 

made: 

• In general, the differences in statistical moments calculated increase with the size of the response surface 

used.  

• The differences in the mean values increase with the size of the response surface used but are within 10% 

for ‘Extremely Large Size’. 

• The response surface size has limited, if not no influence on the standard deviation values. The 

differences in the standard deviation are within approximately 10% which were like that of the ‘Base 

Case’ which had 8.5%.  

• The skewness is strongly affected by the response surface size. For the ‘Larger Size’ and ‘Extremely 

Large Size’, the differences are as much as 40%.  

• The differences in the kurtosis values increase with the size of the response surface used but are within 

10% for ‘Extremely Large Size’ 
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Figure 26: Size of Response Surface – Effect on Statistical Moments 

 

Figure 27: Size of Response Surface – Effect on Statistical Moments (% Difference) 

5.2.2 Size of Response Surface – Effect on Fitted Probability Distributions 

The probability distributions (probability density and cumulative probability) fitted to response surface values with 

different response surface sizes are plotted together with the measured values (fitted and raw values) and presented 

in Figure 28, Figure 29 and Figure 30.  

The following observations are made: 

• In general, using ‘Extremely Large Size’ results in large differences in the probability distributions.  
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• As presented in Figure 28, the probability density functions fitted from the response surfaces do not in 

general fit well with the measured values. The ‘Extremely Large Size’ probability distribution function 

is especially far away from the ‘Measured Values’. 

• As shown in Figure 29, the cumulative probability distributions of ‘Base Case’ and ‘Larger Size’ are quite 

close to ‘Measured Values’. Furthermore, as presented in Figure 30, these differences become smaller at 

the upper tail regions. As observed in the probability density functions, the ‘Extremely Large Size’ 

cumulative probability function is especially far away from the ‘Measured Values’. 

 

Figure 28: Size of Response Surface – Effect on Probability Density Functions 
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Figure 29: Size of Response Surface – Effect on Cumulative Probability Functions 

 

Figure 30: Size of Response Surface – Effect on Cumulative Probability Functions (Zoom-In at Upper Tail 

Region) 
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5.2.3 Size of Response Surface – Effect on Predicted Failure Values 

Table 16 presents comparisons of the predicted failure rates calculated from the Lognormal distributions fitted to 

response surfaces with different ranges of diameter and ply thickness. It is observed that the size of the response 

surfaces does not have significantly effect on the predicted failure values. A larger response surface in general 

would lead to larger differences in the predicted failure values. Most of the differences are below 5% except for 

the Tsai-Wu failure value for the ‘Extremely Large Sie’ response surface.  
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Table 16: Number of Parameters – Effect on Predicted Failure Values 

Source 

Failure 

Criterion 

Failure Rate 

= 1 in 104 

Failure Rate 

= 1 in 105 

Failure Rate 

= 1 in 106 

% Diff, 

Failure Rate 

= 1 in 104 

% Diff, 

Failure Rate 

= 1 in 105 

% Diff, 

Failure Rate 

= 1 in 106 

Lognormal distribution 

fitted to measured 

values 

Maximum 

Stress 

0.64 0.67 0.69 - - - 

Tsai-Wu 0.75 0.78 0.81 - - - 

Hashin 0.76 0.79 0.81 - - - 

Lognormal distribution 

fitted to base case 

response surface values 

Maximum 

Stress 

0.64 0.66 0.68 0.0 -1.5 -1.4 

Tsai-Wu 0.74 0.77 0.79 -1.3 -1.3 -2.5 

Hashin 0.75 0.78 0.80 -1.3 -1.3 -1.2 

Lognormal distribution 

fitted to larger size 

response surface values 

Maximum 

Stress 

0.63 0.65 0.67 -1.8 -1.9 -2.1 

Tsai-Wu 0.75 0.78 0.81 -0.1 -0.1 -0.3 

Hashin 0.75 0.77 0.80 -1.2 -1.4 -1.5 

Lognormal distribution 

fitted to extremely large 

response surface values 

Maximum 

Stress 

0.63 0.66 0.67 -1.4 -1.8 -2.1 

Tsai-Wu 0.80 0.83 0.85 5.7 5.6 5.6 

Hashin 0.76 0.79 0.81 0.6 0.4 0.2 

 

5.3 Recommendations for Optimisation of Response Surface 

Based on the findings obtained in Sections 5.1 and 5.2, the following recommendations are made for the 

optimisation of the response surface: 

• Reduce the input parameters selected to generate the response surface by only selecting the parameters 

with parametric correlation coefficients greater than +/- 0.15.  
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• Consider using a larger response surface to maximise flexibility if the accuracy in the predicted failure 

values are not extremely important. A larger response surface would lead to some decreased accuracy in 

the results. 

6 Conclusions 

In this paper, the use of Kriging response surface method for the estimation of failure values in carbon-fibre-epoxy 

composite flowlines under the influence of stochastic processes is investigated. The following conclusions are 

made: 

• In general, the response surface method produced predicted failure results that are closed to that of the 

measured values. Most errors are small unless too few input parameters are selected to generate the 

response surface and/or the size of the response surface is too large.  

• The skewness values in general are not accurately represented by the response surfaces; there is at least 

a 9% difference in the results. However, this is not of practical significance as this does not affect the 

prediction of failure values.  

• In general, using more input parameters increases the accuracy of the response surface. However, this 

also increases the time required to generate the response surface as the design of experiment will increase 

in size. 

• It is recommended to select input parameters that have correlation coefficients greater than +/- 0.15, i.e., 

input parameters that are at least slightly correlated. In this present study, this results about 10 input 

parameters.  

• In general, a larger response surface leads to reduced accuracy in the results. However, this enables greater 

flexibility in its utilisation as a larger range of input parameters is covered.  
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