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Abstract 

Two degree-of-freedom (2-DoF) flow-induced vibrations (FIV) of a single cylinder 

and two rigidly coupled cylinders are numerically investigated at the Reynolds 

number of  3.6 × 106. Two-dimensional (2D) Unsteady Reynolds-Averaged Navier-

Stokes (URANS) simulations are performed combined with the ! − !  SST 

turbulence model. A low mass-damping system is considered with the mass ratio set 

to 2 and the damping ratio to zero. For the coupled cylinders configurations, the 

diameter ratio is set to 0.25. A parametric study is performed to analyse the influence 

of the reduced velocity (!!), the position angle (!) of the small cylinder relative to the 

large cylinder and the gap ratio (! !) between the cylinders on the FIV response of 

the system. For the single cylinder, the simulations are performed for 2.5 ≤ !! ≤ 12, 
and for the coupled cylinders, for 2 ≤ !! ≤ 12. To analyse the effect of !, three 

values are considered, [! = 0°, 90°, 180°] with a constant value of ! ! = 0.1. The 

effect of ! ! is studied for the ! = 90° configuration in which the ! ! = 0.25 and 

! ! = 0.5 configurations are analysed in addition to the ! ! = 0.1 cases. A good 

grid convergence is obtained and the numerical model is validated against published 

results for a stationary single cylinder. It is found that the lock-in regime extends 

beyond !! = 12 for the ! = 0°, 180° and ! = 90° at ! ! = 0.1, 0.25 configurations 

compared with the single cylinder configuration. Galloping response is observed 

when the small cylinder is placed at ! = 90°, with ! ! = 0.1, and at ! = 180°. In 

addition, for the ! = 90° configuration, the results obtained for !!, !! and !!,!"# ! 

converge to those of the single cylinder with the increase of ! !. 
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Chapter 1 

Introduction 

 

1.1  Background and Motivation 

 

Flow around a circular cylinder is a canonical case in fluid mechanics and has been 

well studied, both experimentally and numerically. It can be encountered in many 

engineering applications, for instance in heat exchanger tubes, chimneys, and ocean 

structures such as marine risers and pipelines. Many complex phenomena can occur 

due to the interaction of the body with the surrounding fluid flow. An important 

example of fluid-structure interactions (FSI) is flow-induced vibrations (FIV). A 

subclass of FIV is denoted as vortex-induced vibrations (VIV), caused by the periodic 

separation of the flow around the cylinder, known as vortex shedding. In the offshore 

oil and gas industry, VIV can lead to fatigue failure of deepwater risers. Hence, it is of 

great significance to investigate the FIV phenomena.  

In practice, cylinder-type structures can often be installed in groups. The bodies can 

have similar diameter or not, and the spacing between them can also vary depending 

on the application. Consequently, it is known that those different configurations cause 

changes to the surrounding flow field compared to the flow around a single cylinder 

(Sumner, 2010). It is expected to observe changes in the hydrodynamic loading due to 

the distinct interactions between shear layers and wakes depending on the 

configuration. 

Regarding FIV, placing one or more objects close to the main cylinder may lead to the 

suppression of the vortex shedding behind the main body (Lam and Lin, 2008). One 

example is the so-called piggyback pipeline, in which a second small pipe is placed in 

close proximity to the main pipe; both are strapped at certain intervals along their 

length and laid together. The main one is used to transport oil and gas, while the 

secondary pipe is employed to transport monitoring signals. The presence of the 

additional pipeline influences the dynamic response of the main pipe. 
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Compared with the study of VIV of a single cylinder, which can be found in the 

extensive reviews of Sarpkaya (1979), Williamson and Govardhan (2004) and 

Nakamura et al. (2013), less attention has been given to VIV of coupled cylinders 

under the same flow conditions. To date, there are relatively few experimental studies 

on the effects of VIV on two rigidly coupled cylinders with different diameters. 

The work of Feng (1968) is among the earliest publications on VIV of elastically 

mounted cylinders. He investigated the one degree-of-freedom (1-DoF) VIV of a 

single cylinder and demonstrated the lock-in phenomenon. Kalghatgi and Sayer 

(1997) conducted experiments on piggyback pipelines at the Reynolds numbers 

between 9 × 104 and 3 × 105 (!" = !!!/!, where !! is the free stream velocity, ! 

denotes the diameter of the large cylinder and ! is the flow viscosity). They reported 

that the drag force is increased with the presence of the secondary pipe compared with 

that on a single cylinder. Besides, in the subcritical Reynolds number regime, the lift 

force points downward to the seabed, whereas in the critical Reynolds number regime, 

it points in the opposite direction. In the case of a single cylinder, the direction of the 

lift force is always towards the seabed, for the studied flow regimes. Tsutsui et al. 

(1997) investigated the flow around two stationary coupled cylinders at Reynolds 

numbers in the order of O(104). The diameter ratio, !/! (where ! is the diameter of 

the small cylinder) and the gap ratio !/! (where !  is the distance between the 

cylinders) were kept constant at 0.45 and 0.06, respectively. The position angle ! 

(defined as the angle between the horizontal plane and the line connecting the 

cylinders centres) was varied from 90° (cylinders are vertically aligned) to 180° (small 

cylinder downstream the large one). They noticed that when ! ≥ 150°, the drag force 

on the main cylinder is lower compared to that on a single cylinder, and the lift force 

becomes zero. This was attributed to the presence of the small cylinder in the wake of 

the large one. Zang et al. (2012)  conducted experiments using particle image 

velocimetry (PIV) to study vortex shedding and VIV of piggyback pipelines in the 

subcritical flow regime. Their results showed that the amplitude ratio !/! (where ! 

denotes the vibration amplitude of the cylinder) is dependent on the gap ratio !/!. 

For !/! larger than 0.3, the amplitude resembles that of an isolated cylinder, so the 

influence of the small pipeline on the large one is small. In the work of Zang and Gao 

(2014), VIV response of piggyback pipelines was investigated using a hydro-elastic 

facility. Several configuration parameters were studied, such as !, !/! and !/!, and
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different Reynolds number values in the order of O(104) were investigated. They 

found that VIV is supressed significantly in the side-by-side configuration (! = 90°) 
and when !/! = 0.25.  

Numerical studies have also been conducted to study cylinders in various flow 

regimes. Ong et al. (2009) performed two-dimensional (2D) Unsteady Reynolds-

Averaged Navier-Stokes (URANS) simulations with the k – ! model to investigate the 

flow around a circular cylinder at !" = 3.6 × 106. They obtained good agreement 

with the experimental data published by Achenbach (1968). Zhao et al. (2007) 

investigated the hydrodynamic loading and vortex shedding frequency of coupled 

cylinders in the subcritical Reynolds number regime. They solved the 2D Reynolds-

Averaged Navier-Stokes (RANS) equations with a Finite Element Method (FEM) and 

the k – ! turbulence model. One of the main findings of the study by Zhao et al. 

(2007) is the classification of two  characteristic modes of the vortex shedding. The 

first mode was named the one-wake mode in which the cylinders behave as one body 

and it was observed when ! was close to 0° or 180°. The second mode was named as 

interaction-shedding mode, in which the vortex shedding is influenced by the shear 

layers downstream the gap between the cylinders. It was observed for ! close to 90°, 

but it is dependent on !/!. Regarding numerical simulations of FIV, Zhao and Yan 

(2013) investigated the two degree-of-freedom (2-DoF) VIV of two cylinders with 

different diameters in the low Reynolds number regime (!" = 250). They employed 

the Petrov-Galerkin Finite Element Method to solve the 2D URANS equations and 

the Arbitrary-Lagrangian-Eulerian to deal with the motion of the bodies. The main 

analysed parameters were ! and !/! for a low mass-damping system, in which the 

mass ratio !∗ (!∗ = !/!! , where ! and !! are the mass of the cylinders and the 

displaced mass, respectively) was set to 2 and the damping ratio ! (! = !/2 !", ! is 

the structural damping and !, the structural stiffness) was specified as zero. They 

reported that the lock-in range was increased for certain ! values, such as 0° (small 

cylinder downstream the large one), 22.5°, 90° and 112.5°. Also, at !/! = 0.2, the 

vibration amplitude is reduced and the lock-in range is narrowed. In the work of Zhao 

et al. (2016), three-dimensional (3D) simulations were performed to analyse the VIV 

of two cylinders with different diameter and arranged side-by-side at !" = 1000. 
They applied similar numerical method as used by Zhao and Yan (2013). The values 

of m* and ! were kept at 2 and zero, respectively, and the reduced velocity !!
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(!! = !!/!!!, here !! is the natural frequency of the system) varied from 2 to 15. 

Zhao et al. (2016) reported that the observed vortex shedding pattern was the 2S mode 

throughout the range of investigated !!. Besides, at !! = 4, the root-mean-square of 

the lift coefficient attained its maximum value and it was similar to that of a single 

cylinder. For !! larger than 10, the drag and lift coefficients were not influenced by 

the increase of !!. 

 

 

1.2  Research Objectives and Outline of the Thesis 

 

The scope of the present thesis is to investigate the flow around a single cylinder and 

two rigidly coupled cylinders at !" = 3.6 × 106 . The cylinders are elastically 

mounted and can vibrate in both the in-line and cross-flow directions. The 2D flow is 

modelled and numerically solved by using Computational Fluid Dynamics (CFD). 

The chosen software is OpenFOAM (Open Field Operation And Manipulation), an 

open source code based on the Finite Volume Method (FVM). The studied parameters 

are: !!, ! and !/!.  

The main objectives of the present study are described as follows: 

• The effect of different position angles on the FIV response of two rigidly 

coupled cylinders are investigated and compared with that of a single cylinder. 

The hydrodynamic coefficients, such as drag and lift coefficients, the in-line 

and cross-flow vibration amplitudes, the motion trajectories and the flow 

fields are analysed. 

• The effect of different gaps on the FIV response of two rigidly coupled 

cylinders are investigated and compared with that of a single cylinder. The 

hydrodynamic coefficients, such as drag and lift coefficients, the in-line and 

cross-flow vibration amplitudes, the motion trajectories and the flow fields are 

analysed. 
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The structure of the present thesis is outlined as follows: 

Chapter 2: The main theory of the present study is summarized. The main topics 

reviewed in this chapter are flow around a circular cylinder, different flow regimes 

based on the Reynolds number, boundary layer, hydrodynamic forces and flow-

induced vibrations. 

Chapter 3: The numerical simulation methods are introduced in this chapter. 

Chapter 4: The numerical set up employed in the present study is described in this 

chapter. Also, convergence and validation studies are performed. 

Chapter 5: The results of the simulations are presented and discussed in this chapter. 

The analysis of hydrodynamic quantities, vibration amplitudes, motion trajectories 

and flow fields for the different studied configurations is carried out.  

Chapter 6: The main conclusions are addressed in this chapter in conjunction with 

recommendations for future work. 
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Chapter 2 

Theory 

 

2.1  Flow Around a Circular Cylinder 

 

The flow past a circular cylinder is the canonical case of bluff body flow. It can be 

characterized by boundary layer separation and the wake region downstream the 

cylinder due to the fluid’s viscosity and the presence of the body. As the flow reaches 

the cylinder, some fluid particles slow down whereas others continue to flow around 

the object. According to Zdravkovich (1997), four regions can be identified as shown 

in Figure 2.1: 

i. The narrow region in front of the cylinder is characterized by retarded flow in which 

the local time-averaged velocity, !, is smaller than the free stream velocity, !!. 

ii. The boundary layer region attached to the cylinder wall. The boundary layer 

thickness, !, is very small compared to the cylinder diameter, !, so it results in a 

region characterized by high velocity gradients and considerable shear stress effects. 

iii. Sideways of the cylinder, the flow is accelerated and ! > !! is observed. 

iv. The wake region extends from the separation point over a distance downstream the 

cylinder and is characterized by ! < !!. 

 

 

 

 

Figure 2.1: Flow field around a circular cylinder (Zdravkovich, 1997) 
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The non-dimensional quantity known as the Reynolds number is the main governing 

parameter used to describe the flow behaviour. It represents the ratio between the 

inertial and viscous forces and can be expressed as: 

 !" =  !!!!  (2.1) 

where !!  is the free stream velocity, !  is the kinematic viscosity and !  is the 

diameter of the cylinder. As the Reynolds number is increased, the flow experiences 

changes which can be described by different flow regimes. 

 

2.1.1  Flow Regimes 

 

The different flow regimes experienced by the cylinder in a steady current can be 

classified according to Table 2.1. At very low !", the flow is called creeping flow. 

There is no flow separation, it remains attached to the cylinder surface. At higher !", 

5 < !" < 40, the flow begins to separate and two fixed vortices are formed in the 

wake region. When !" is further increased, the vortices start to shed alternately on 

both sides of the cylinder and form the vortex street; this is known as the vortex 

shedding phenomenon. In the range of 40 < !" < 200, the vortex street is still 

laminar, the transition to turbulent occurs at 200 < !" < 300. The wake becomes 

fully turbulent when !" is further increased, i.e. in the range of 300 < !" < 3 × 105, 
but the boundary layer is still laminar. This flow regime is called the subcritical 

regime. The transition to turbulence occurs in the narrow range of Re, 3 × 105 <
!" < 3.5 × 105, known as the critical or the lower transition regime. At one side of 

the cylinder, the boundary layer turns turbulent at the separation point and it shifts 

from side to side intermittently. This phenomenon causes asymmetry in the flow 

behaviour and consequently, non-zero mean lift coefficient on the body since the 

hydrodynamic force is changing direction (Schewe, 1983). The turbulent boundary 

layer separation is observed on both sides of the cylinder at 3.5 × 105 < !" <
1.5 × 106, in the supercritical flow regime. However, the boundary layer becomes 

turbulent in one side of the body in the upper transition regime, in the range of 

1.5 × 106 < !" < 4 × 106 . When !" > 4.5 × 106 , the flow regime is called the
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transcritical regime and the boundary layer is fully turbulent on both sides of the 

cylinder. 

 

Table 2.1: Flow regimes around a circular cylinder (Sumer and Fredsøe, 2006) 

	
No separation. 
Creeping flow.	

!" < 5	

	
A fixed pair of symmetric 
vortices.	

5 < !" < 40	

	
Laminar vortex street.	 40 < !" < 200	

	

Transition to turbulence in the 
wake.	

200 < !" < 300	

	

Wake completely turbulent. 
A: Laminar boundary layer 
separation.	

300 < Re < 3 × 105 
Subcritical	

	

A: Laminar boundary layer 
separation. 
B: Turbulent boundary layer 
separation; but boundary layer 
laminar.	

3 × 105 < Re < 3.5 × 105 
Critical (Lower transition)	

	

B: Turbulent boundary layer 
separation; but boundary layer 
partly laminar partly turbulent.	

3.5 × 105 < Re < 1.5 × 106 
Supercritical	

 

C: Boundary layer completely 
turbulent at one side. 

1.5 × 106 < !" < 4 × 106 
Upper transition	

 

C: Boundary layer completely 
turbulent at two sides. 

4 × 106 < Re  
Transcritical	
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2.2  Turbulent Flow 

 

In most engineering applications, the flow is turbulent. According to Tennekes and 

Lumley (1972), it is not an easy task to define turbulent flows, but it is possible to 

establish a list of the main features that can be observed in such flows:  

1. Turbulent flows are irregular and characterized by random fluctuations, which 

makes it difficult to predict the flow pattern based on deterministic methods; yet 

stochastic approach is necessary. 

2. An important feature of turbulent flow is the diffusivity. It exhibits fast mixing and 

enhanced rates of heat, momentum and mass transfer. Velocity fluctuations, for 

example, are transferred along the surrounding fluid. 

3. Turbulent flows are observed at high Reynolds numbers in which instabilities in the 

laminar flow start to appear due to the complex interaction between viscous and 

inertial terms. The inertia force of the flow is dominant. 

4. Three-dimensionality is an intrinsic characteristic of turbulent flows. The presence 

of the vortex stretching mechanism to maintain the vorticity fluctuations cannot be 

observed in two-dimensional flows.  

5. Turbulent flows are dissipative and turbulence decays rapidly if there is no supply 

of energy. Viscous shear stresses are responsible for dissipating the kinetic energy 

into internal energy of the fluid. 

6. Turbulence can be described by the continuum mechanics, governed by mass and 

momentum conservation laws. The smallest scale of turbulence is larger than any 

molecular length scale. 

7. Turbulence depends on the flow characteristics, not on the fluid. Thus, the above 

features of turbulent flows are the same in all fluids since they are not regulated by 

molecular properties. 
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2.3  Boundary Layer 

 

In the flow around immersed bodies, the thin region close to the body’s surface is 

known as the boundary layer. One of the main features of the flow in this region is 

that it adheres to the surface of the object, known as the no-slip condition. Prandtl 

hypothesized that the viscous forces cannot be neglected across the boundary layer 

thickness, δ, in which the flow experiences a rapid velocity transition, from zero at the 

wall to the free stream velocity magnitude (Kundu et al. 2012). Thus, potential flow 

theory is no longer valid inside the boundary layer to obtain the velocity field, and 

Prandtl proposed how Navier-Stokes equations could be simplified within the 

boundary layer. For a steady, two-dimensional flow, the boundary-layer equations can 

be written (Kundu et al. 2012) as: 

 !"
!" +

!"
!" = 0 (2.2) 

 ! !"!" + !
!"
!" = ! !"!" + !

!2!
!!2 

(2.3) 

 

where ! and ! are the horizontal and vertical velocity components, respectively, and 

! = !(!,∞) is the free stream velocity. These equations have a parabolic character, so 

the boundary conditions depend on the upstream information, and the solution can be 

obtained numerically. The boundary layer thickness !, shown in Figure 2.2, denotes a 

generic boundary layer thickness which corresponds to the distance from the wall to a 

wall-normal location where the horizontal velocity ! is 99% of the local free stream 

velocity !!. 

 
Figure 2.2: Schematic depiction of a velocity profile within the boundary layer
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When the pressure gradient changes from favourable to adverse, there is a point where 

the shear stress is zero, and the flow separates from the wall. Flow separation happens 

at the so-called separation point (Figure 2.3). From Bernoulli’s equation for steady 

and incompressible flow, and Equation (2.3), one can write: 

 −!" !"!" =
!"
!" (2.4) 

 

where ! is the fluid density and ! denotes the pressure. When the boundary layer 

equation is evaluated at the surface, where ! =  ! =  0, Equation (2.3) becomes: 

 ! !
2!
!!2 !"##

= !"
!" (2.5) 

 

where ! is the dynamic viscosity of the fluid. Based on Equations (2.4) and (2.5), 

when there is a positive pressure gradient, the boundary layer flow decelerates, the 

boundary layer thickness increases, and a point of inflection is created. If this adverse 

pressure gradient persists over a sufficiently long distance over the surface, backflow 

close to the wall is generated (Kundu et al. 2012).  

 

 

Figure 2.3: Velocity profiles close to the separation point S (Kundu et al. 2012)
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2.3.1 Turbulent Boundary Layer 

 

As the Reynolds number increases, a transition from laminar to turbulent boundary 

layer occurs. The Reynolds number at which the transition to turbulence occurs is 

generally different for different flow cases. It depends on parameters such as wall 

curvature, surface roughness and local free stream disturbances. Figure 2.4 illustrates 

the different regions within the boundary layer over a flat plate. The laminar region is 

characterized by streamlined velocity components. In the transition to the turbulent 

boundary layer, turbulent eddies appear and the flow becomes unstable. In the 

turbulent state, the eddies generate fluctuating velocities. 

	
Figure 2.4: Development of the boundary layer along a flat plate (Çengel and 

Cimbala, 2006) 

 

The turbulent boundary layer can be subdivided into characteristic flow regions. The 

inner region in which the fluid particles are subjected to the no-slip condition and 

their velocities are zero is known as the viscous sublayer. It accounts for 10 - 20% of 

the boundary layer thickness (Versteeg and Malalasekera, 2007). A set of non-

dimensional parameters is derived to describe the boundary layer in this region. They 

are expressed as: 

 !! = !
!!
,         !! = !!!

! , !! =
!!
!  (2.6) 

 

where !! is the dimensionless velocity, !! is the dimensionless distance from the 

surface, !! is the shear velocity and !! is the shear stress. The viscous sublayer is
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located in the range of  0 < !! < 5. The velocity profile close to the wall varies 

linearly and can be expressed based on the plus units shown in Equation (2.7) as: 

 !! = !! (2.7) 

 

Away from the wall, where !! takes values in the range of  30 < !! < 500, the 

effects of viscosity are negligible and the region is known as the log-law region. The 

velocity profile in this region can be approximated as: 

 !! = 1
! ln !

! +  ! (2.8) 

 

where ! = 0.41 denotes the von Kármán constant and !  is the additive constant 

which is usually taken as 5.5 for smooth walls (Versteeg and Malalasekera, 2007). 

Figure 2.5 shows the different velocity profiles usually applied in the inner layer 

compared with experimental data. Finally, in the buffer region where 5 < !! < 30, 
Equations (2.7) and (2.8) are not applicable.  

 

	
Figure 2.5: Plot of velocity profiles within the turbulent boundary 

layer 
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2.4  Vortex Shedding 

 

In the external flows around a circular cylinder, the vortex shedding phenomenon is 

observed at !" > 40, when the boundary layer separates due to adverse pressure 

gradient, and the shear layers are released. This mechanism is illustrated in Figure 2.6. 

The separated shear layers absorb the vorticity from the boundary layer and start to 

fold into vortices. At both sides of the cylinder, vortices are formed with opposite 

direction of rotation. They are very unstable, and as a consequence, one becomes 

larger and stronger than the other, and draws the opposite vortex across the wake. 

Since the smaller vortex has the opposite vorticity sign, the larger vortex is cut off 

from the boundary layer and sheds. As a free vortex, it is convected downstream the 

flow. The smaller vortex keeps on growing and becomes dominant relative to the next 

vortex that will be formed on the opposite side. The previously described process 

repeats and the shedding of the vortices occurs alternately behind both sides of the 

cylinder. Figure 2.6 illustrates the preceding principle.  

 

                        (a) (b) 

 
Figure 2.6: Vortex shedding process (Sumer and Fredsøe, 2006) 

 

The vortex shedding mechanism can be observed in many patterns in which the 

vortices are formed and shed. Table 2.2 shows the classifications of modes according 

to Williamson and Roshko (1988) and Williamson and Govardhan (2004). In 2S 

mode, it is observed that a single vortex is shed alternately at each side of the 

cylinder. A pair of vortices with the same vorticity sign characterizes the 2P mode. In 

P+S mode, at each cycle, a vortex pair is shed on one side of the cylinder and a single 

vortex on the opposite side. Similar to 2P mode there is 2Po, in which one of the 

vortices in the pair is considerably smaller than the other. The 2P+2S mode is formed 

by pairs of vortices as in 2P, but with singles vortices in between. The 2T mode is

   A 

    B 

     C   A 

  B 
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characterized by two triplets of vortices that are shed at each cycle. Compared to 2P, 

in addition to the vortex pair, there is a third principal vortex. Jauvtis and Williamson 

(2004) found that this mode is more stable and periodic than 2P. Lastly, in 2C mode it 

is observed the formation of a doublet of vortices per half cycle. 

 

Table 2.2:  Modes of vortex shedding (Williamson and Roshko, 1988 and Williamson 

and Govardhan, 2004) 

Nomenclature Vortex shedding pattern 

2S 
 

2P 

 

P+S 

 

2Po 

 

2P+2S 
 

2T 

 

2C 
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2.5  Hydrodynamic Forces in Fluid-Structure Interactions 

 

The total force acting on the cylinder can be decomposed into pressure and viscous 

components. According to Sumer and Fredsøe (2006), an expression for the total 

forces acting in the in-line and cross-flow directions is obtained by summing the 

integral of the orthogonal components of the time-averaged pressure and the time-

averaged wall shear-stress on the cylinder surface. The force acting in-line is the so-

called mean drag force, !!, and the cross-flow component is known as mean lift 

force, !!. When the cylinder is in free flow, !! is equal to zero due to flow symmetry. 

When !" is greater than 40, the vortex shedding mechanism is observed and it causes 

non-zero instantaneous !!. 

During the vortex shedding process, the pressure distribution and consequently, the 

forces around the cylinder undergo a periodic variation.  According to Figure 2.7, the 

resultant force ! points upwards when a vortex is shed at the bottom of the cylinder. 

The pre 

(a) (b) 

 

(c) (d) 

 

Figure 2.7: Pressure distribution around the cylinder and the total force during vortex 

shedding (Sumer and Fredsøe, 2006) 

The pressure is larger in this region compared with the opposite side. As a vortex is 

formed on the upper edge of the cylinder, the inverse is observed. The force points
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downward and the pressure is higher on the top region. When the pressure distribution 

changes from upper region to lower region of the cylinder, there is a moment in which 

zero lift force and reduced drag are observed. 

 

2.5.1  Drag and Lift Coefficients 

 

Expressions for the dimensionless drag coefficient, !!, and the dimensionless lift 

coefficient, !!, can be written as: 

 !! =
!!

1
2!"!!!

 (2.9) 

 !! =
!!

1
2!"!!!

 (2.10) 

 

It can be noted that both formulations are a function of !". 

 

2.5.2  Pressure and Skin Friction Coefficients 

 

Besides the drag and lift coefficients, two other important dimensionless numbers are 

the time-averaged pressure and the skin friction coefficients. They are defined, 

respectively, as: 

 !! =
! − !!
1
2!!!!

 (2.11) 

 !! =
!!

1
2!!!!

 (2.12) 
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where ! is the static pressure at the angle ! measured on the surface of the cylinder, 

clockwise from the stagnation point, !! is the static pressure in the free stream and 

!! = ! !"
!"  is the local wall shear stress. 

 

 

2.6  Flow-Induced Vibrations 

 

At Reynolds numbers larger than 40, the vortex shedding mechanism is observed. It 

causes pressure imbalance between the upper and lower regions of the cylinder and 

thus, fluctuating hydrodynamic forces. If the cylinder is flexible or elastically 

supported, these forces induce vibrations. This phenomenon is known as FIV. The 

two most common types of FIV are VIV and galloping. According to Ding et al. 

(2018), the first is a self-excited vibration induced by the alternated vortex shedding, 

and is a self-limiting phenomenon. The latter is mostly influenced by the dynamics of 

shear layers and is characterized by high amplitudes. 

 

2.6.1  Equation of Motion 

 

The motions of an oscillating structure in 1-DoF are described by the dynamic 

equation of motion: 

 !! ! + !! ! + !" ! = 0 (2.13) 

 

where ! is the total mass of the system, ! is the damping coefficient, ! is the spring 

coefficient, ! !  is the acceleration, ! !  is the velocity and ! !  is the displacement.
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All the terms are in the considered direction of motion. A solution of Equation (2.13) 

can be written as: 

 ! = !!!" (2.14) 

 

where ! and ! are constants which depend on the boundary conditions of the system. 

Thus, Equation (2.13) assumes the following form: 

 !!! + !" + ! = 0 (2.15) 

 

The two solutions of the quadratic equation are expressed as: 

 !!,! = − !
2! ± 1

2! !! − 4!" (2.16) 

 

When the term !! − 4!" is equal to zero, there is only one solution to Equation 

(2.16), and it yields the critical damping condition. Correspondingly, the critical 

damping coefficient, !!", can be written as: 

 !!" = 2 !" = 2!!! (2.17) 

 

where !!  denotes the undamped natural frequency. The dimensionless parameter 

damping ratio, !, is defined as: 

 ! = !
!!"

= !
2 !" (2.18) 

 

The damping ratio governs the behaviour of the oscillating system. When ! is in the 

range of 0 < ! < 1, the system is underdamped, for ! > 1, the system is overdamped, 

and it is critically damped if ! = 1. 
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In the case of a structure vibrating with 2-DoF, the equation of motion can be written 

to represent the dynamics in ! and ! directions. The equations can be expressed in the 

following forms: 

 !! ! + !!! ! + !!! ! = !!(!) (2.19) 

 !! ! + !!! ! + !!! ! = !!(!) (2.20) 

 

where !! is the force in the ! direction and !! is the force in the ! direction. 

 

2.6.2  Added Mass 
 

A moving body submerged in a fluid flow is subjected to an external force due to its 

motion. The disturbed fluid exerts a force on the structure that is in phase with the 

relative acceleration between the body and the fluid, and is known as the added mass 

force. In the case of an object vibrating in fluid, this force is accounted in the equation 

of motion as follows: 

 ! +!! ! + !! + !" = !! (2.21) 

 

where the hydrodynamic added mass is denoted by !! and the mass of the structure 

in vacuum is !. Accordingly, the natural frequency of the system, !! , can be 

expressed as: 

 !! =
!

! +!!
 (2.22) 

 

2.6.3  Strouhal Number 

 

For a stationary cylinder, the frequency at which the lift force oscillates is considered 

to be the same as the vortex-shedding frequency, !!" . When normalized by the 

cylinder diameter, D, and free steam flow velocity, U, it gives the Strouhal number:
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 !" = !!"!
!  (2.23) 

 

where !!" is the vortex shedding frequency of a static body. !" expresses the ratio 

between local flow velocity to average flow velocity and is dependent on the 

Reynolds number. Figure 2.8 illustrates how !" changes as a function of !". When 

!" = 40, St is taken at approximately 0.1. From !" =  300, !" increases to 0.2 and 

remains approximately constant in the subcritical regime. !" experiences a rapid 

increase in the critical regime. During the transition from laminar to turbulent 

boundary layer, the separation points move downstream the cylinder and as a 

consequence, the vortex shedding occurs at a higher frequency. In the upper transition 

and transcritical regimes, !" is approximately in the range of 0.25 – 0.30.  

 

 

 

Figure 2.8: Strouhal number dependency with the Reynolds number (Lienhard, 1966)  
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2.6.4  Reduced Velocity 
 

The dimensionless reduced velocity is the ratio of the free stream flow velocity !! to 

the natural frequency !! (of a system immersed in a fluid), normalized by the cylinder 

diameter, D. The reduced velocity can be expressed as: 

 !! =
!!
!!!

 (2.24) 

 

It should be noted that the ratio !! !! represents the length of vibration path of a 

vibrating object in a fluid flow. 

 

2.6.5  Mass Ratio 
 

The dimensionless mass ratio denotes the ratio of the mass of the oscillating cylinder 

to the mass of displaced fluid, and is defined as: 

 !∗ = !
!"!

!
4 !

 (2.25) 

 

where ! is the characteristic length of the cylinder. The value of  !∗ indicates the 

relative importance of buoyancy and added mass effects on the body. Moreover, !∗ 

expresses how prone is the structure to VIV. Structures with low mass ratio are more 

susceptible to resonance over a large range of !!.  

 

2.6.6  Amplitude Ratio 
 

The dimensionless amplitude ratio represents the vibration amplitude, A, normalized 

by the diameter of the cylinder, D, and can be expressed as: 

 !!
!  (2.26) 

 

where ! = !, ! are the in-line and cross-flow directions, respectively. The motion 

amplitude varies with !!  as shown in Figure 2.9. The response amplitude is
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characterized by a hysteresis behaviour which consists in jumps of the vibration

amplitude as !! is varied. According to Khalak and Williamson (1999), for low mass-

damping structures, three distinct branches of response can be observed, i.e. initial, 

upper and lower. When !! is increased, discontinuities are observed in the maximum 

!! response of the cylinder. From initial to upper branch, the transition is hysteretic, 

and between upper and lower branches, the switching is intermittent. During the 

transition between the branches, phase shifts occur between the dynamics of the 

cylinder and the exciting force. These influence not only the branch jumps, but also 

the interaction of transverse and in-line vibrations. 

 

	

Figure 2.9: Response amplitude of a low mass-damping system (Khalak and 

Williamson, 1999) 

 

2.6.7  Lock-in 
 

The lock-in phenomenon occurs due to the synchronization between the vortex 

shedding frequency, !!", and the natural frequency, !!, of the oscillating system when 

they approach a common value. Accordingly, the cylinder starts to vibrate at an 

oscillation frequency, !!"#. Over a certain range of reduced velocities, !!" locks on to 

!!"#  and large amplitude oscillations are observed. The frequency lock-in is 
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represented in Figure 2.10 and can be observed when the reduced velocity is in the 

range of 5 < !! < 8. During this process, the flow velocity and amplitude ratio play an 

important role. As !! increases, the system receives energy from vortex shedding 

which leads to increase in oscillation amplitude (Figure 2.9). The response amplitude

reaches its maximum value when energy equilibrium is achieved, and the system is in 

lock-in. A further increase in !!  causes the vortex shedding frequency !!"  to 

desynchronize with the oscillation frequency !!"#, and lock-in terminates.  

 

 

	

Figure 2.10: Experimental response frequency of a submerged oscillating cylinder 

(Sumer and Fredsøe, 2006) 
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Chapter 3 

Numerical Method 

 

3.1  Computational Fluid Dynamics 

 

3.1.1  Introduction 

 

Computational science has expanded and become popular due to its capability of 

providing results with acceptable accuracy and low cost, when compared with 

experimental analysis. Among the computational tools is Computational Fluid 

Dynamics (CFD), an increasingly reliable approach to perform different flow 

analyses. There are distinct numerical techniques in CFD which can be employed to 

simulate the flow and solve the Navier-Stokes equations. In the case of turbulent 

flows, examples of the available methods are: Direct Numerical Simulation (DNS), 

Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS). In the 

present study, high Reynolds number flows are investigated. Hence, RANS approach 

in conjunction with turbulence modelling is employed due to its reduced 

computational cost compared with DNS and LES methods. 

 

3.1.2  OpenFOAM 

 

OpenFOAM (Open Field Operation And Manipulation) is an object-oriented library 

written in the C++ programming language, used to perform numerical simulations 

within the continuum mechanics. OpenFOAM code is based on Finite Volume 

Method (FVM). Besides, it is an open source CFD software adopted by both the 

academia and the industry. 
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The use of OpenFOAM involves three main steps: pre-processing, solving and post-

processing. Pre-processing consists in setting up appropriately the text files contained 

in the case directories and defining the computational domain. Solving implies 

running the simulation using a suitable solver. Finally, in post-processing, the 

generated simulation data is analysed numerically and graphically. All the 

information related to the simulation is stored in the case directory. An example of the 

structure of a case directory is given in Figure 3.1. Accordingly, the 0 folder stores the 

information necessary to initialize the flow simulation. It is where the boundary 

conditions and initial values of the pressure field p, the mesh motion 

pointDisplacement and the velocity field U are defined. In the constant 

directory, data related to the mesh and choice of turbulence model are stored. The 

polymesh folder contains the settings of the grid. The dynamicMeshDict defines 

the patches and area of the mesh which are morphed by the mesh motion solver, and 

in the turbulenceProperties the properties of turbulence model are specified. 

Lastly, the system directory stores the controlDict text file in which the time step 

and total simulation time are defined, the fvSchemes, which contains the selected 

discretization schemes, and the fvSolutions, where the numerical solvers are 

defined.  

 
Figure 3.1: OpenFOAM case directory structure 
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3.2  Governing Equations 

 

3.2.1  Conservation of Mass and Momentum 

 

The flow investigated in the present study is considered to be incompressible and 

viscous. The incompressibility condition holds true because the Mach number 

(!" =  !/!, where ! is the flow velocity and ! is the speed of sound) is low for the 

studied flow (!" < 0.3), so compressibility effects are negligible and the fluid 

density remains constant.  Besides, the flow is governed by the continuity equation 

and the so-called Navier-Stokes equations. Thus, from the conservation of mass, the 

continuity equation can be written as: 

 
!"
!" +

!"
!" = 0 (3.1) 

 

where ! and ! denote the in-line and cross-flow directions, respectively, and ! and ! 

are the corresponding velocity components. The !- and !-components of the Navier-

Stokes momentum equation are given as follows: 

 
!"
!" + !

!"
!" + !

!"
!" = − 1!

!"
!" + !

!2!
!!2 +

!2!
!!2 + !! (3.2) 

 

 
!"
!" + !

!"
!" + !

!"
!" = − 1!

!"
!" + !

!2!
!!2 +

!2!
!!2 + !! (3.3) 

 

where ! denotes the pressure, and !! and !! represent body forces acting in ! and ! 

directions, respectively. 
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3.2.2  Reynolds-Averaged Navier-Stokes Equations 

 

Turbulent flows are characterized by random velocity fluctuations and motions with a 

large range of length and time scales. The largest scales are associated with the mean 

flow and it is in the smallest scales where dissipation occurs. The full spectrum of 

turbulent scales is accounted by the Navier-Stokes equations, and it can be costly to 

fully solve them numerically. Therefore, there are distinct numerical methods 

available in CFD which are employed to model turbulence and solve the momentum 

equations. Direct Numerical Simulation solves instantaneous Navier-Stokes 

equations, resolving all length scales without the use of any models. The computer 

requirements of DNS are extremely high, and increase rapidly with the Reynolds 

number. Large Eddy Simulation employs a spatial filtering operation in which the 

large eddies are separated from the small ones. In the LES methodology, the large-

scale motions are resolved and the small ones are modelled. The Reynolds-Averaged 

Navier-Stokes approach consists in averaging the flow quantities and modelling the 

effects of instantaneous turbulent motion. Reynolds decomposition is used to separate 

instantaneous flow variables into mean and fluctuating values (Figure 3.2). 

Accordingly, expressions for the velocity and pressure fields are written, respectively, 

as: 

 !! = !! + !!! (3.4) 

 ! = ! + !! (3.5) 

 

where !, ! = 1, 2 are the streamwise and cross-stream directions, respectively; !! 
denotes the instantaneous velocity, !!  is the average flow velocity and !!!  is the 

fluctuating term associated with the velocity. In Equation (3.5), ! represents the 

instantaneous pressure, ! is the mean pressure and !! is the fluctuating component of 

pressure. Thus, the mean and fluctuating terms are substituted in the governing
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equations of the flow and this yields the Reynolds averaged equations of motion, 

given by: 

 
!!!
!!!

= 0 (3.6) 

 !!!
!" + !!

!!!
!!!

= − 1!
!"
!!!

+ ! !
2!!
!!!2

− !!!′!!′
!!!

 (3.7) 

 

where the term !!!!!! represents the Reynolds stress tensor. Based on the Boussinesq 

eddy viscosity assumption, the Reynolds stress tensor is expressed by: 

 !!!!!! = !!" = !!
!!!
!!!

+ !!!
!!!

− 23!!!" (3.8) 

 

where !! denotes the turbulent viscosity, ! represents the turbulent kinetic energy and 

!!" is the Kronecker delta. There are different turbulence models to treat the unknown 

variables in the time-averaged momentum equations. They are classified based on the 

number of transport equations they introduce which ranges from zero (e.g. the Mixing 

length model), up to seven (e.g. the Reynolds Stress Model). The present study 

employs the ! − ! Shear Stress Transport (SST) model. 

 

 

 
 Figure 3.2: Graphical representation of Reynolds decomposition to velocity field 
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3.3  Finite Volume Method 

 

The Finite Volume Method is employed in OpenFOAM to obtain the numerical 

solution of the partial differential equations describing the fluid flow. According to 

Schäfer (2006), the methodology of FVM consists firstly, in the decomposition of the 

computational domain into subdomains, or control volumes (CVs). Accordingly, for 

each CV, the equations are formulated based on an integral balance as shown in 

Equation (3.9) for a generic unknown variable !.  

 
!
!" !"#$

 

!"
+ ! ∙ !"! !"

 

!
= ! ∙ Γ!∇! !"

 

!
+ !!!"

 

!"
 (3.9) 

	

! denotes the volume, ! is the surface, Γ! represents a diffusive term associated with 

! and !! expresses a source term associated with !. The integrals are approximated 

based on numerical integration, and the functions values and derivatives, on 

interpolation of the nodal values. Finally, the system of algebraic equations is solved 

iteratively. 

 

3.3.1  Spatial Discretization 

 

In the first step of FVM, the domain is discretized into a finite number of control 

volumes. Figure 3.3 shows an example of a CV built around a generic grid node !.

 
Figure 3.3: Generic representation of a control volume (Jasak, 1996) 
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The centroid of the CV is where the calculated information of the variables is stored. 

Besides, ! denotes the centre of the face, ! is the centroid of a neighbouring volume 

and ! is the surface vector. Accordingly, expressions for the centroids ! and ! are 

given by Equation (3.10). 

 ! − !! !" = 0 
!! ,           ! − !! !" = 0 

!!  (3.10) 

 

Interpolation schemes are used to compute the quantities on the cell faces. The present 

study employs second order accurate linear interpolation scheme, which can be 

expressed for a generic scalar ! as: 

 !! = !!!! + (1− !!)!! (3.11) 

 

where the linear interpolation factor !! is expressed by: 

 !! =
!! − !!

!! − !! + !! − !!
 (3.12) 

 

Moreover, a computational domain is classified as structured or unstructured. Figure 

3.4 shows an example of each type of mesh. Structured meshes are characterized by

 

(a)    (b) 

  

Figure 3.4: Example of unstructured (a) and structured (b) meshes 

 

quadrilateral elements, in 2D domains, or hexahedral cells in 3D domains. On the 

other hand, unstructured meshes can be formed by cells with any shape, such as 

triangular and quadrilateral, in 2D domains, or tetrahedral, pyramids and hexahedra, 
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in 3D domains. Structured meshes are usually employed in regular geometries, while 

the unstructured type of cells is used to mesh complex geometries.  

 

3.3.2  Temporal Discretization 

 

Unsteady flow problems require temporal discretization schemes to define how the 

field variables are integrated with respect to time. The present study uses the Crank-

Nicolson time-stepping scheme which is second order accurate in time and relies on 

the central differencing method. For a general quantity !, the Crank-Nicolson method 

can be written as: 

 !!!! = !! + 12 ! !!,!! + ! !!!!,!!!! ∆! (3.13) 

 

The face values in the new time-level are dependent on the past and the new time 

levels, thus a system of equations must be solved for each cell. Moreover, the stability 

of the solution can be controlled by the dimensionless Courant number. It expresses 

how fast the flow information transverses a computational grid cell in a given time 

step and is defined as: 

 !" = ! ∆!
∆!  (3.14) 

where !  is the flow velocity magnitude, ∆!  is the time step size and ∆!  is the 

computational grid cell size in the direction of the flow.   

 

 

3.4  PIMPLE 

 

In the present study, unsteady Reynolds-Averaged Navier-Stokes equations are solved 

with the use of the PIMPLE algorithm. The PIMPLE solution procedure consists in
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employing the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 

combined with the Pressure-Implicit Split-Operator (PISO). The flowchart for 

PIMPLE is given in Figure 3.5.   

 

Figure 3.5: PIMPLE algorithm flowchart 

 

PIMPLE is implemented in OpenFOAM and it is the pressure coupling solution of the 

solver pimpleFOAM. The latter is chosen as the solver for the present analysis due to 

its capability to compute mesh motion. 

 

 

3.5  Turbulence Modelling 

 

3.5.1  ! − ! SST Turbulence Model 
 

The ! − ! SST model (Menter, 1994 and Menter et al. 2003) belongs to the group of 

two-equation turbulent-viscosity models. It combines the original ! − !  and the 

classic ! − ! models. In far field regions of the flow, the ! − ! is activated whereas 
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! − ! is applied in wall proximity regions. The expressions for the turbulent kinetic 

energy ! and the specific dissipation rate ! are written as: 

 

 
!"
!" =  !! − !∗!" +

!
!!!

! + !!!!
!"
!!!

 (3.15) 

 !! = !"# !!
!!!
!!!

!!!
!!!

+ !!!
!!!

, 10!∗!"  (3.16) 

 
!"
!" = !!! − !!! + !

!!!
! + !!!!

!"
!!!

+ 2 1− !!
!!!
!

!"
!!!

!"
!!!

 (3.17) 

 

where the corresponding constant values are defined in Table 3.1, ! is the strain rate 

invariant and the expression for the turbulent viscosity !! is given as: 

 

 !! =
!!!

!"# !!!, !!!
 (3.18) 

 

where !! = 0.31. The application of either ! − ! or ! − ! is determined based on the 

blending functions !! and !! and the constant ! defined as: 

 

 ! = !!!! + 1− !! !! (3.19) 

 !! = !"#ℎ !"# !"# !
!∗!" ,

500!
!!! , 4!"!!!!!"!!

!

 (3.20) 

 !! = !"#ℎ !"# 2 !
!∗!" ,

500!
!!!

!

 (3.21) 

 

Away from the wall, !! tends to zero and ! − ! is gradually activated. On the other 

hand, the ! − ! is activated in the viscous sublayer and logarithmic layer, and in this 

case, !! becomes one. Finally, the !!!" denotes the positive portion of the cross-

diffusion term and it is defined in Equation (3.22). 
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 !!!" = !"# 2!!!
1
!
!"
!!!

!"
!!!

, 10!!"  (3.22) 

 

 

Table 3.1: Coefficient values in ! − ! SST model 

! !! !! !∗ ! ! 

!! 0.85 0.5 0.09 0.075 0.555 

!! 1 0.856 0.09 0.083 0.44 
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Chapter 4 

Numerical Model 

 

4.1  Numerical Set-up 

 

The computational domain employed in the present analyses is shown in Figure 4.1. 

The domain is defined as a rectangular box with overall size of 40! × 20!, where ! 

is the diameter of the large cylinder. The upstream length is set as 10! from the inlet 

to the centre of the large cylinder, and the downstream length is set as 30! from the 

centre of the large cylinder to the outlet. In the transverse direction, the domain size 

extends 10! from the centre of the large cylinder to the top and bottom boundaries, 

respectively. Ong et al. (2009) used a domain size of 27! × 14! and reported that 

such distances to the boundaries show negligible influence on the flow in the vicinity 

of the body. Thus, the domain size used in the present study is considered to be 

sufficiently large. 

 

 
Figure 4.1: Representation of the computational domain  
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The !/! value is kept constant throughout the study at !/! = 0.25 which is a typical 

value for offshore applications. Besides, a similar !/! was used in the previous 

works by Zhao et al. (2005), Zang et al. (2012) and Zang et al. (2013). The gap 

between the cylinders is defined as ! and the position angle of the small cylinder 

relative to the large cylinder is denoted as !, as shown in Figure 4.1. The two 

cylinders are rigidly coupled together so they vibrate as one body. Moreover, they are 

modelled as one system elastically supported by dampers and springs, and free to 

experience FIV with 2-DoF. The stiffness of the springs is the same in both the 

streamwise and transverse directions !! = !!. The mass ratio is set as !∗ = 2 and the 

damping ratio as ! = 0 for all the simulations. Thus, this low mass-damping system 

can reach large displacement amplitudes. 

The imposed boundary conditions are given as follows: 

1. Uniform flow with !! = !! and !! = 0 is prescribed at the inlet. The inlet values 

for ! and ! are specified based on the following expressions: 

 

 ! = 3 !!! !

2  (4.1) 

 ! = !
!  (4.2) 

 

where the turbulence intensity ! is set as 1% and the turbulent length scale ! as !. 

2. At the outlet, zero gradient condition is imposed for !!, !!, ! and !. The pressure 

is set to zero. 

3. On the cylinders walls, the no-slip condition is applied with !! = !! = 0. For ! 

and !, standard wall functions are specified as: 

 

 ! = !∗!
!!

 (4.3) 
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 ! = !
!!! !ℎ!

 (4.4) 

where !∗  denotes the friction velocity, the model constant is !! = 0.09, the von 

Kármán constant is ! = 0.41 and ℎ! denotes the radial length between the cylinders 

surface and the centre of the first cell adjacent to the cylinders surface. 

4. At top and bottom boundaries, zero normal gradient is prescribed for !! , !! , 

pressure, ! and !. 

 

 

4.2  Convergence Studies 

 

The convergence studies are performed in two steps. Firstly, mesh and time step 

dependence studies are carried out for a single cylinder. In this step, a series of 

simulations of a stationary cylinder is conducted to investigate the necessary mesh 

density to accurately model the flow around the cylinder and in the wake region. New 

simulations are then performed for a vibrating single cylinder using the same set of 

grid resolution from the simulations of the stationary cylinder. In this case, due to the 

motion solver, the mesh is deformed during the simulations, and as a consequence the 

size of the cells can vary significantly in some regions of the domain. Hence, time 

step convergence study is also carried out for the case with the vibrating single 

cylinder to find the maximum Courant number setting that minimizes time step errors.  

Secondly, grid convergence study is carried out for two coupled cylinders with 

! = 90° and !/! = 0.1 configuration, and free to vibrate with 2-DoF. The selected 

mesh densities are based on the study carried out for the single cylinder cases. Based 

on the obtained results, similar grid resolutions are used for the other investigated 

configurations with two cylinders.  

Figure 4.2 presents a complete view of a typical mesh used in the first stage of the 

convergence studies. The domain is composed of structured hexahedral elements. A 

high refinement is applied in the region around the cylinder and in the cylinder’s 
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wake. In the far field, the mesh is coarsened in order to reduce the computational cost. 

In Figure 4.3, detailed views of the mesh around the cylinder are shown. The first cell 

height near the surface of the cylinder is set as 0.0005! which yields approximately 

averaged !! (here !! = ℎ!!∗ !) values in the range of 30 − 40 which is appropriate 

for the use of wall function. 

 

 

Figure 4.2: Computational mesh for the single cylinder cases: mesh A3 (Table 4.1), 

104536 cells  

 

  
Figure 4.3: Mesh details around the cylinder for the single cylinder cases 

 

For the simulations with the stationary cylinder, hydrodynamic force coefficients and 

the Strouhal number are used to evaluate the convergence. OpenFOAM has the built-



40   
 

   
 

in function object forceCoeffs which extracts the hydrodynamic coefficients !! 

and !! of the cylinder at each time step. Expressions for the mean drag and mean lift 

coefficients are given as follows: 

 !! =
1
! !!,!

!

!!!
 (4.5) 

 !! =
1
! !!,!

!

!!!
 (4.6) 

 

where !!,! and !!,! corresponds to !! and !! values, respectively, at !th time step and 

! is the total number of time steps averaged. 

The corresponding root-mean-square values for the drag and lift coefficients are 

obtained by: 

 !!,!"# =
1
! !!,! − !!

!
!

!!!
 (4.7) 

 !!,!"# =
1
! !!,! − !!

!
!

!!!
 (4.8) 

 

In the grid resolution test for the stationary single cylinder case, four sets of meshes 

with an increment of approximately 40% in the total number of elements are assessed. 

A time step of ∆! = 0.002 is employed in the simulations keeping the maximum 

Courant number below 0.60. The total non-dimensional duration of the simulations is 

set to ! = 200, where the dimensionless time is defined as: 

 ! = !!!
!  (4.9) 
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Table 4.1 summarizes the mesh parameters along with the corresponding results for 

the analysed hydrodynamic quantities. The differences between the results obtained 

on the meshes A3 and A4 are smaller than 0.5% for !!, !!,!"# and !". 

 

Table 4.1: Mesh convergence study for the stationary single cylinder 

Mesh No. of cells Time Step !!  !!,!"#  !"  
A1 53595 ∆! = 0.002 0.4492  0.153  0.3204  

A2 74889 ∆! = 0.002 0.4547  0.162  0.3204  

A3 104536 ∆! = 0.002 0.4616  0.175  0.3204  

A4 146092 ∆! = 0.002 0.4625 0.174 0.3204 

 

In the convergence study of the vibrating single cylinder, !! = 6 is selected for the 

simulations where high vibration amplitudes of the cylinder, both in-line and 

transverse, are expected. In the grid resolution analysis, the maximum Courant 

number is constrained to !"!"# = 0.5. Besides the hydrodynamic force coefficients, 

displacement amplitudes are also used to compare the results obtained from the 

simulations. The normalized maximum vertical vibration amplitude is given by: 

 !!,!"#
! = 1

2
!!,!"# − !!,!"#

!  (4.10) 

 

The mesh settings along with the corresponding results for the analysed parameters 

are given in Table 4.2. The differences in the calculated !!, !!,!"# and !" obtained on 

the meshes A3 and A4 are smaller than 1%. The !!,!"# ! values differ 1.44% 

between the simulations using the meshes A3 and A4.  

In the time step sensitivity analysis, three simulations with the mesh A3 (see Table 

4.2) are carried out with different maximum Courant numbers, 

!"!"# = 0.25, 0.5, 1.0 , and the obtained results are presented in Table 4.3. The 

discrepancies in the observed !!  and !"  values between the simulations using 

!"!"# = 0.5 and !"!"# = 0.25 are within 1%. The differences in the calculated 
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!!,!"# ! and !!,!"# using !"!"# = 0.25 compared with the values obtained using 

!"!"# = 0.5 are approximately 1.80% and 3.10%, respectively. Thus, based on the 

convergence studies with the vibrating single cylinder, it is concluded that the mesh 

A3 with 104536 elements and !"!"! = 0.5 provides sufficient grid and time step 

convergence. This setting of mesh and time step is selected for the present simulations 

of FIV of a single cylinder.  

 

Table 4.2: Mesh convergence study for the vibrating single cylinder 

Mesh No. of cells Time Step !!  !!,!"# !" !!,!"# ! 

A1 53595 !"!"# = 0.5 1.2848  0.3659  0.4992  1.1701  

A2 74889 !"!"# = 0.5 1.3120  0.4728  0.4898  1.2907  

A3 104536 !"!"# = 0.5 1.2503  0.5134  0.4844  1.2937  

A4 146092 !"!"# = 0.5 1.2529 0.5185 0.4844 1.2751 

 

Table 4.3: Time step convergence study for the vibrating single cylinder 

Mesh No. of cells Time Step !! !!,!"# !" !!,!"# ! 

A3 104536 !"!"# = 1.0 1.3188 0.5194  0.5033  1.3274 

A3 104536 !"!"# = 0.5 1.2503 0.5182  0.4844 1.3055 

A3 104536 !"!"# = 0.25 1.2612 0.4997 0.4844 1.3170 

 

In the grid resolution analyses for the cases with two coupled cylinders, the 

computational domain is the same as that for the single cylinder cases. It consists of 

structured hexahedral elements. Figures 4.4 and 4.5 show a typical mesh for ! = 90° 
and ! ! = 0.1 configuration used in the convergence studies. Three meshes with an 

increment of approximately 40% in the total number of elements are assessed. 

Similarly to the cases with a single cylinder, the mesh is highly refined close the 

cylinders, and coarser cells are used in the far-field regions.  

In the Table 4.4, the results of the grid sensitivity study for two vibrating coupled 

cylinders are presented. The maximum Courant number is constrained to 0.5 based on 

the results obtained from the time step convergence studies with the vibrating single 
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Figure 4.4: Computational mesh for the two coupled cylinders cases with ! = 90° and 

! ! = 0.1 configuration: mesh B3 (Table 4.4), 114321 cells 

 

  
Figure 4.5: Mesh details around the cylinders for the two coupled cylinder cases with 

! = 90° and ! ! = 0.1 configuration 

 

cylinder (Table 4.3). The reduced velocity !! = 6 is used in the simulations. At this 

!! , high amplitudes of the cylinder’s vibration are expected, facilitating the 

assessment of the dynamic simulations convergence. Discrepancies in the results 

between the meshes B2 and B3 are within 1.45% for !! , !!,!"# and !". The deviation 

in the observed !!,!"# ! using the mesh B3 compared to the obtained result using 

the mesh B2 is 2.38%. Considering that further mesh refinement results in negligible 
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Table 4.4: Mesh convergence study for the two vibrating rigidly coupled cylinders 

with ! = 90° and ! ! = 0.1 configuration 

Large Cylinder 

Mesh No. of cells Time Step !! !!,!"# !" !!,!"# ! 

B1 57833 !"!"# = 0.5 1.6392  0.5218 0.5033  1,4678  

B2 80163 !"!"# = 0.5 1.4844  0.5601 0.5033  1,4355  

B3 114321 !"!"# = 0.5 1.4808 0.5534 0.5033 1,4013  

Small Cylinder 

Mesh No. of cells Time Step !! !!,!"# !" !!,!"# ! 

B1 57833 !"!"# = 0.5 3.1914 1.9453 0.0841 1,4678  

B2 80163 !"!"# = 0.5 3.6173  2.0196  0.0841 1,4355  

B3 114321 !"!"# = 0.5 3.6290 1.9945 0.0841 1,4013  

 

change of the compared parameters, the mesh B3 is selected for the present 

simulations of FIV of two coupled cylinders with different ! and ! !. 

 

 

4.3  Model Validation 
 

The numerical model employed in the present study is validated by comparing the 

present model predictions with the published experimental and numerical studies in 

the upper transition regime. The number of published data in the upper transition 

regime is very limited since the required experimental setup and numerical 

simulations to reproduce such flows are very complex and expensive. The predicted 

values of !! , !!,!"# , −!!"  and !" for the single stationary cylinder are compared 

with previous published results in Table 4.5. Here !!" is the base pressure coefficient 

which is the value of !! at ! = 180°. The predicted !! shows good agreement with 

the published numerical results by Catalano et al. (2003) and Ong et al. (2009), and is 

in the range of values reported by the experimental studies of Roshko (1961) and 

Achenbach (1968). The present result obtained for !!,!"# differs significantly from 

the value predicted by Ong et al. (2009). The predicted −!!" agrees well with the 

values reported by Porteous et al. (2015). The value of !", on the other hand, is higher 
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than the value predicted by Porteous et al. (2015) but close to the value reported by 

Ong et al. (2009). 

 

Table 4.5: Numerical and experimental data of a single stationary cylinder at high 

Reynolds number regime 

Author Description !! !!,!"# −!!" !" 

Present study  URANS ! − ! SST !" = 3.6 × 106 0.4616 0.175 0.5527 0.3204 

Catalano et al. (2003)  URANS ! − ! !" = 4 × 106 0.46 - - - 

Ong et al. (2009) URANS ! − ! !" = 3.6 × 106 0.4573 0.0766 - 0.3052 

Porteous et al. (2015) URANS ! − ! SST !" = 3.6 × 106 0.4206 - 0.495 0.148 

Roshko (1961)  Experimental studies !" = (1 – 3.5) × 106 0.30 – 0.70 - 0.62 – 0.85 - 

Achenbach (1968)  Experimental studies !" = (1 - 5) × 106 0.37 – 0.68 - 0.85 - 

 

 

Figure 4.6 shows the time-averaged pressure distribution and skin friction distribution 

around the cylinder compared with the experimental data reported by Achenbach  

(1968) and the numerical results reported by Ong et al. (2009).  The time averaged 

pressure distribution shows very good agreement with the results reported by Ong et 

al. (2009). Compared with the data reported by Achenbach (1968), it seems that the 

present model underpredicts !! at 60° < ! < 80° and 110° < ! < 180°. In Figure 4.8 

(b), the skin friction distribution has a satisfactory prediction between the present 

simulation and the published data by Ong et al. (2009) and Achenbach (1968) for the 

region of separated flow, 113° < ! < 250°. The discrepancies observed in the region 

of attached flow may be explained by the use of wall function in predicting the 

turbulent flow around a single cylinder. The present model combined with the wall 

function assumes a fully turbulent boundary layer. However, for !" < 4 × 106 the 

boundary layer around the cylinder is not fully turbulent yet, especially before the 

separation point, and there is a transition from laminar to turbulent boundary layer. 

Overall, the present numerical model is in good agreement with the published 

numerical and experimental data. 
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(a) 

 
(b) 

 
Figure 4.6: Time-averaged pressure distribution (a) and skin friction distribution (b) 

around the single stationary cylinder at !" = 3.6×106  
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Chapter 5 

Flow-Induced Vibrations of Two Rigidly Coupled 

Cylinders at !" = 3.6 × 106 
 

5.1  Introduction 
 

A parametric study is carried out to investigate the dynamic response of the single 

cylinder configuration and different configurations of two rigidly coupled cylinders 

with respect to !, ! ! and !!. Three values of ! are studied [! = 0°, 90°, 180°] at a 

fixed ! ! = 0.1 . For the ! = 90°  configuration, two additional ! !  values are 

studied [! ! = 0.25, 0.5]. The simulations are performed for 2.5 ≤ !! ≤ 12 for the 

single cylinder configuration. The coupled cylinders configurations are analysed for 

2 ≤ !! ≤ 12. The time of simulation is sufficiently long in order to capture at least 30 

cycles of oscillation when it is regular and periodic. For irregular vibration, the 

simulation time is extended until statistically stationary state is reached. 

 

5.2  Effect of the Position Angle ! 
 

The effect of ! on the FIV response of two rigidly coupled cylinders is analysed with 

respect to the hydrodynamic coefficients, vibration amplitude, response frequencies 

and flow fields. The results obtained from the analysed quantities are compared with 

those of the single cylinder configuration. 

 

5.2.1 Hydrodynamic Force Coefficients 
 

The hydrodynamic force coefficients of the cylinder bundle and the single cylinder 

configuration are discussed. For the cases with two cylinders, !! , !! , !!,!"# and 

!!,!"#  are obtained based on the total force value for both cylinders and their 
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projected area to the flow direction. Figure 5.1 shows the variation of !! and !!,!"# 
with !! for the single cylinder configuration and all the investigated ! configurations.  

It can be seen that the presence of the small cylinder has a strong influence on !! 

which has also been reported by Zang and Gao (2014). For the single cylinder 

configuration, the !! values are around 1.2 for 2.5 ≤ !! ≤ 6.5 and tend to decrease 

for !! > 6.5. Compared with the single cylinder configuration, when the small 

cylinder is placed upstream the large cylinder (! = 0°), an increased magnitude of !! 

is observed for 4 ≤ !! ≤ 5 with a peak at !! = 5. A decreased magnitude of !! is 

observed by placing the small cylinder downstream the large cylinder (! = 180°) for 

!! < 10, compared with the single cylinder configuration. For !! ≥ 11, the values of 

!!  for the single cylinder and the ! = 0° configurations are similar. The highest 

values of !! are observed when the cylinders are vertically aligned (! = 90°) for 

4 ≤ !! ≤ 6.  
 

(a) (b) 

  
Figure 5.1: Time-averaged drag coefficient !! (a) and root-mean-square of the drag 

coefficient !!,!"# (b) for the single cylinder and ! = [0°, 90°, 180°] configurations 

 

The plot of !!,!"# presented in Figure 5.1 (b) shows peak values at low reduced 

velocities (!! ≤ 3) for all the investigated configurations. This is characteristic of in-

line lock-in. The highest peak in !!,!"#  is observed for the single cylinder 

configuration at !! = 2.5 and it is followed by a sharp decrease with increasing !!. 

Similar behaviour is observed for the ! = 0° and ! = 180° configurations, where a 
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peak in !!,!"#  is observed at !! = 2  for both configurations. The ! = 90° 
configuration has the lowest peak in !!,!"# observed at !! = 3, and it is followed by 

a monotonic decrease. 

Figure 5.2 shows !! and !!,!"# against !! for the single cylinder configuration and 

different !  configurations. As expected, !!  is approximately zero in the 

configurations characterized by geometric symmetry aligned with the flow direction 

(single cylinder, ! = 0°, ! = 180°). For the ! = 90° configuration, the effect of the 

small cylinder on !! is significant. Positive values of !! are observed for 4 ≤ !! ≤
10  with a peak at !! = 5 , and negative values of !!  are found for !! ≤ 3  and 

!! ≥ 11. 
The peak values of the !!,!"#  response curve for the single cylinder, ! = 0° and 

! = 90° configurations are found for !! ≤ 5, and a sudden decrease occurs with 

increasing !!. The !!,!"# curve for the ! = 180° configuration shows less variability 

in the range of studied !! , compared with the other configurations. Also, for 

6 ≤ !! ≤ 12, the observed !!,!"# values for the ! = 180° cases are higher than those 

for the other configurations.  

 

(a) (b) 

  
Figure 5.2: Time-averaged lift coefficient !! (a) and root-mean-square lift coefficient 

!!,!"# (b) for the single cylinder and ! = [0°, 90°, 180°] configurations 
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5.2.2 Amplitude Response 
 

The variation of !!,!"# !  and the root-mean-square of the in-line vibration 

amplitude !!,!"# !  with !!  is presented in Figure 5.3. The expression for the 

normalized root-mean-square of the in-line vibration amplitude is given by: 

 

 !!,!"#
! =

!!,! − !!
!!

!!! !
!  

(5.1) 

 

Based on the plot of !!,!"# !, the lock-in regime of the single cylinder configuration 

is observed in the range of 2.5 ≤ !! ≤ 11  with a peak value of approximately 

!!,!"# ! = 1.52  at !! = 8 . The lock-in regime of the three investigated ! 

configurations extends beyond the studied range of !!. For the ! = 0° configuration, 

the peak of !!,!"# ! = 1.26 occurs at !! = 5 and the lock-in starts at !! = 2. 
co  

(a) (b) 

  
Figure 5.3: Normalized maximum cross-flow vibration amplitude !!,!"# ! (a) and 

normalized root-mean-square of the in-line vibration amplitude !!,!"# ! (b) for the 

single cylinder and ! = [0°, 90°, 180°] configurations 

 

For the ! = 90°  and ! = 180°  configurations, !!,!"# !  values increase 

monotonically over the range of investigated !! . This is characteristic of the 
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galloping response, in which !!,!"# ! continues increasing with increasing !!. The 

highest !!,!"# ! is observed for the ! = 180° configuration with !!,!"# ! = 2.61 
at !! = 12. 
The !!,!"# ! curves for the single cylinder and the ! = 0° configurations (Figure 5.3 

(b)) are characterized by a non-monotonic behaviour. However, there is a visible trend 

of decrease in the !!,!"! ! values with an increase of !!. On the other hand, for the 

! = 90°  and ! = 180°  configurations, the values of !!,!"# !  show a trend of 

increase in !!,!"# ! with an increase of !! . 
 

5.2.3 Frequency Analysis 
 

The Fast Fourier Transform (FFT) is used to compute the frequency spectra of !!, !!, 

! ! and ! !. The frequency spectra are shown in Figures 5.4 - 5.7 for the single 

cylinder, ! = 0°, ! = 90° and ! = 180° configurations, respectively. The frequency 

spectra are presented in the !! − !" ! plane. For the single cylinder, ! = 0° and 

! = 90°  configurations, the initial branch is characterized by distinct !!  peak 

frequencies. For the ! = 180° configuration, the !! peak frequencies are observed for 

the entire !!  range due to the extended initial branch compared with the other 

configurations. This behaviour is in accordance with Figure 5.3 (a). Moreover, the 

dominant frequencies of ! ! correspond to the lock-in regimes observed for all the 

configurations. It is observed that the highest amplitudes in the ! ! spectra are 

located in the low frequency range of !" ! < 0.4. For all the configurations, the 

peak frequencies of the spectra decrease with the increase of !!. The frequency 

spectra of ! ! for the single cylinder, ! = 0°, ! = 90° and ! = 180° configurations 

is shown in Figure 5.8 for the corresponding !! cases with the largest cross-flow 

amplitude. It is observed that ! influences the peak frequency of ! !. The lowest 

dominant frequency of !" ! = 0.05 is observed for the ! = 180° configuration at 

!! = 12. The ! = 0° configuration at !! = 5 has the highest dominant frequency of 

!" ! = 0.18 . The single cylinder at !! = 8  and the ! = 90°  configuration at 

!! = 12 have a similar dominant frequency of !" ! = 0.12.  
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Figure 5.4: Frequency spectra of !!, ! !, !! and ! !: single cylinder 
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Figure 5.5: Frequency spectra of !! , ! !, !!  and ! !: coupled cylinders ! = 0°, 
! ! = 0.1 
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Figure 5.6: Frequency spectra of !!, ! !, !! and ! !: coupled cylinders ! = 90°, 
! ! = 0.1 
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Figure 5.7: Frequency spectra of !!, ! !, !! and ! !: coupled cylinders ! = 180°, 
! ! = 0.1 
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Figure 5.8: Frequency spectra of ! ! for the single cylinder and ! = [0°, 90°, 180°] 
configurations at selected !! corresponding to the cases with the largest transverse 

displacement amplitude 

 

5.2.4 Motion Trajectories 
 

Figures 5.9 - 5.12 show the motion trajectories on the !/! –  !/! plane for the single 

cylinder, ! = 0°, ! = 90° and ! = 180° configurations, respectively. The duration of 

the displacement time series used to plot the motion trajectories is ! = 100. For low 

!! values, the trajectory of the single cylinder is characterized by an irregular motion 

due to large in-line displacement, as shown in Figure 5.9. According to Jauvtis and 

Williamson (2004), in the VIV of a low-mass ratio system with 2-DoF, the 

characteristic “figure of eight” trajectory is often observed in the initial branch. This 

trajectory is seen for !! = 4 and !! = 5. For !! ≥ 6.5, the trajectory is characterized 

by small in-line motion. At !! = 12, the structural response is desynchronized from 

the vortex shedding (see Figure 5.3 (a)), thus the in-line and cross-flow amplitudes are 

almost zero. 

For the ! = 0°  configuration at !! = 2  (Figure 5.10), an irregular trajectory is 

observed. For !! ≥ 7, the trajectories are regular and characterized by small in-line 

motion. The trajectories in !! = 11 and !! = 12 cases have a skewed oval shape. 
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Figure 5.9: !/! –  !/! trajectory: single cylinder 

 

The ! = 90°  cases, shown in Figure 5.11, have the most irregular trajectories 

compared with the single cylinder and ! = 0° configurations. The presence of the 

small cylinder on top of the large cylinder causes the structure at !! = 2 to experience 

almost zero displacement amplitude, both in the in-line and cross-flow directions. The 

!! = 6, 7 and 8 cases are characterized by the “figure of eight” trajectory. For !! ≥ 7, 
the trajectories become more chaotic. This may be explained by the galloping 

response experienced by the ! = 90° configuration.  

 

 
Figure 5.10: !/! –  !/! trajectory: coupled cylinders ! = 0°, ! ! = 0.1 
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Figure 5.11: !/! –  !/! trajectory: coupled cylinders ! = 90°, ! ! = 0.1 
 

The trajectories of the ! = 180° configuration at !! = 2 and !! = 3 are irregular, as 

shown in Figure 5.12. For 5 ≤ !! ≤ 9, the trajectories resemble the crescent shape 

(Jauvtis and Williamson, 2004). The “figure of eight” trajectory is observed for 

!! ≥ 10. Overall, with the increase of !! , the cross-flow amplitude increases as 

observed in Figure 5.3 (a). 

 

 
Figure 5.12: !/! –  !/! trajectory: coupled cylinders ! = 180°, ! ! = 0.1 
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5.2.5 Flow Field Analysis 
 

The flow characteristics around the single cylinder and the different ! configurations 

of the cylinder bundle are analysed. Contours of the spanwise vorticity and the 

normalized pressure with streamlines are investigated at selected time instances 

within one oscillation cycle. The presented flow fields correspond to the cases with 

the largest transverse amplitude of displacement found in the respective 

configurations. Firstly, the flow features of the single cylinder configuration at !! = 8 
are shown in Figure 5.13. It is observed that two vortex triplets are shed in one cycle 

(see Figure 5.13 (e)). The vortex shedding mode can be classified as 2T. When the 

cylinder reaches the highest vertical displacement, a high negative pressure is 

observed on the upper side of the cylinder (see Figure 5.13 (b)). The opposite is true 

when the cylinder is at the lowest vertical position (see Figure (f)). Also, when the 

cylinder is located around ! ! = 0, the negative pressure forces on both sides of the 

cylinder are balanced. In Figure 5.14, the time histories of the hydrodynamic 

coefficients, !!  and !! , and the normalized displacements, ! ! and ! !, for the 

single cylinder configuration at !! = 8 are presented. It is observed that the !! 

frequency is twice the !! frequency which is characteristic of the flow around an 

isolated cylinder (Sumer and Fredsøe, 2006).  Moreover, !! is in phase with ! ! and 

!! is out of phase with ! !.  

Figure 5.15 shows the spanwise vorticity and pressure contours for the ! = 0° 
configuration at !! = 5. The vorticity contours (Figure 5.15 (a) – (g)) reveal that the 

vortex shedding occurs both behind the small cylinder and the large cylinder. During 

downward motion of the cylinder bundle (Figure 5.15 (c) and (e)), the vortex street 

from the small cylinder rolls on top of the large cylinder and breaks the clockwise 

vortex, which is shed from the upper surface of the large cylinder, into small vortical 

structures. The same mechanism is observed when the two cylinders move upwards 

(Figure 5.15 (a) and (g)). In this case, the presence of the small cylinder affects the 

vortex shedding on the bottom surface of the large cylinder. The vortex street from 

the small cylinder supresses the development of a third vortex. Thus, every half cycle 

of oscillation, a pair of vortices is shed with a residual vorticity from the supressed 

vortex. The vortex shedding pattern can be classified as 2P. The pressure contours at 

selected time instances during one oscillation are shown in Figure 5.15 (b) – (h). It is
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 (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 5.13: Contours of (a, c, e, g) the spanwise vorticity and (b, d, f, h) normalized 

pressure with streamlines for one vortex shedding cycle: single cylinder at !! = 8 
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Figure 5.14: Time histories of !!, !!, !/! and !/!: single cylinder at !! = 8 

 

observed that the vortex street from the small cylinder reduces the maximum vertical 

amplitude of the cylinder bundle as shown in Figure 5.3 (a). The time histories of the 

hydrodynamic coefficients and the displacements of the  ! = 0°  configuration at 

!! = 5 are presented in Figure 5.16. Similar to the observations made for the single 

cylinder configuration, it is seen that for the ! = 0° configuration at !! = 5, !! is in 

phase with !/! and !! is out of phase with !/!. 

The flow field around the ! = 90° configuration at !! = 12 is shown in Figure 5.17. 

Similar to the observations made for the ! = 0° configuration (see Figure 5.15), the 

vortex formation (Figure 5.17) behind the large cylinder is influenced by the vortex 

street developed behind the small cylinder. The vortex shedding from the small 

cylinder is seen when the cylinder bundle moves upwards and a long vortex street is 

observed (see Figure 5.17 (a) and (g)). As the coupled cylinders go downward (Figure 

5.17 (c) and (e)), the vortex street behind the small cylinder is shortened and this 

facilitates the detachment of the counter-clockwise vortex from the bottom surface of 

the large cylinder. A regular vortex shedding mode is not observed. This can be 

explained by the galloping response experienced by the !! = 12 case. When !! is 

high, the galloping response is dominant compared with VIV. A region with a high 

negative pressure is observed around the small cylinder, which is in accordance with
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 5.15: Contours of (a, c, e, g) the spanwise vorticity and (b, d, f, h) normalized 

pressure with streamlines for one vortex shedding cycle: coupled cylinders ! = 0°, 
! ! = 0.1 at !! = 5 
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Figure 5.16: Time histories of !! , !! , !/!  and !/! : coupled cylinders ! = 0° , 
! ! = 0.1 at !! = 5 

the larger vertical amplitude compared with the single cylinder and the ! = 0° cases. 

Figure 5.18 presents the time histories of the hydrodynamic force coefficients and the 

displacements of the ! = 90° configuration at !! = 12. It is revealed that !! is not in 

phase with !/! and it is explained by the presence of the small cylinder on the top of 

the large cylinder which creates an asymmetric flow around the bundle. Moreover, 

larger amplitudes of !/! are observed compared with those of the single cylinder (see 

Figure 5.14) and the ! = 0° (see Figure 5.16) cases. 

Figure 5.19 shows the spanwise vorticity and pressure contours with streamlines for 

the ! = 180°  configuration at !! = 12 . The vortex formation length is longer 

compared with that of the ! = 0° (see Figure 5.15) and ! = 90° (see Figure 5.17) 

configurations, which explains the lower frequency of the cylinders oscillations (see 

Figure 5.8). Also, in contrast to the ! = 0° and ! = 90° configurations, the vortex 

street from the small cylinder is not revealed. Similar to the observations made for the 

! = 90° configuration, a regular vortex shedding pattern, which is typical of VIV, is 

not observed for the !! = 12 case, due to the galloping response. A strong negative 

pressure is also observed on the upper and bottom sides of the large cylinder when it 

is located at the maximum (Figure 5.19 (b)) and the minimum (Figure 5.19 (f)) 

vertical positions, respectively. The time histories of the hydrodynamic coefficients 

and the displacements of the ! = 180° configuration at !! = 12 are presented in
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 5.17: Contours of (a, c, e, g) the spanwise vorticity and (b, d, f, h) normalized 

pressure with streamlines for one vortex shedding cycle: coupled cylinders ! = 90°, 
! ! = 0.1 at !! = 12 
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Figure 5.18: Time histories of !! , !! , !/!  and !/! : coupled cylinders ! = 90°, 
! ! = 0.1 at !! = 12 

 

Figure 5.20. It is observed that !! is in phase with ! ! as seen in the single cylinder 

(see Figure 5.14) and the ! = 0° (see Figure 5.16) cases. In the time history of ! !, 

larger in-line displacement amplitudes are observed compared with the ! = 0° 
configuration (see Figure 5.16). 

The time histories of !! , !! , !/!  and !/!  for the single cylinder and the ! =
[0°, 90°, 180°] cases that are not presented in this section, are provided in Appendix A. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 5.19: Contours of (a, c, e, g) the spanwise vorticity and (b, d, f, h) normalized 

pressure with streamlines for one vortex shedding cycle: coupled cylinders ! = 180°, 
! ! = 0.1 at !! = 12 
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Figure 5.20: Time histories of !! , !! , !/! and !/!: coupled cylinders ! = 180°, 
! ! = 0.1 at !! = 12 

 

5.3  Effect of the Gap Ratio ! ! 

 

The effect of ! ! on the FIV response of two rigidly coupled cylinders is analysed 

with respect to the hydrodynamic coefficients, vibration amplitude, response 

frequencies and flow fields. In addition to the ! = 90° configuration with ! ! = 0.1 
presented in the previous section, two additional values of ! ! are investigated, 0.25 

and 0.5. 

 

5.3.1 Hydrodynamic Force Coefficients 

 

Figure 5.21 illustrates the values of !! and !!,!"# versus !! for the single cylinder 

and the studied ! ! configurations. It can be observed that with the increase of ! !, 
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!! is approximating to the values observed for the single cylinder configuration. For 

3 ≤ !! ≤ 9, the ! ! = 0.1 configuration has the highest values of !!, with a peak at 

!! = 5. Among the coupled cylinder configurations, the ! ! = 0.5 configuration has 

the lowest values of !!, and the response curve of !! is the closest to that of the 

single cylinder configuration. The !!  response curve for the ! ! = 0.25 
configuration lies in between those of the ! ! = 0.1 and ! ! = 0.5 configurations. 

The !!,!"# values observed for the single cylinder configuration (Figure 5.21 (b)) 

show considerably more fluctuations compared with those for the other investigated 

configurations. The !!,!"#  response curves of the coupled cylinder cases are 

characterized by peak values at low !!, and a monotonic decrease. The peak in !!,!"# 
for the ! ! = 0.1  and ! ! = 0.5  configurations occurs at !! = 3 , and for the 

! ! = 0.25 case, it is observed at !! = 2. 

Figure 5.22 presents the !! and !!,!"# response curves of the single cylinder and the 

investigated ! ! configurations. It is shown in Figure 5.22 (a), that the presence of 

the small cylinder at different ! ! values causes non-zero values of !!. The highest 

values of !! are observed for the ! ! = 0.1 and ! ! = 0.25 configurations. For the 

! ! = 0.5  configuration, the !!  curve is closer to that of the single cylinder

 

(a) (b) 

  
Figure 5.21: Time-averaged drag coefficient !! (a) and the root-mean-square of the 

drag coefficient !!,!"#  (b) for the single cylinder and [! ! =  0.1, 0.25 , 0.5 ] 

configurations 



   69 
 

   
 

compared with the ! ! = 0.1 and ! ! = 0.25 configurations. This is in accordance 

with Zang and Gao (2014), who reported that the magnitude of !! increases with 

increasing ! ! until approximately ! ! = 0.25. For ! ! > 0.25, !! decreases and 

converges to the values observed for the single cylinder configuration. 

 

(a) (b) 

  
Figure 5.22: Time-averaged lift coefficient !! (a) and root-mean-square of the lift 

coefficient !!,!"#  (b) for the single cylinder and [ ! ! =  0.1, 0.25 , 0.5 ] 

configurations 

 

The shape of the !!,!"#  response curve (Figure 5.22 (b)) for the ! ! = 0.5 and 

! ! = 0.25 configurations is characterized by a peak value at !! = 2 followed by a 

sharp decrease. The peak in !!,!"#  observed for the ! ! = 0.25 configuration is 

significantly higher than the predicted values of !!,!"# for the other configurations. 

For !! > 6 , the !!,!"#  values for the single cylinder and the ! ! = 0.5 
configurations converge to similar values. Finally, the !!,!"#  values for the 

! ! = 0.1 configuration at !! > 7 cases are the highest among the investigated 

configurations. 
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5.3.2 Amplitude Response 

 

The !!,!"# ! and !!,!"# ! response curves for the single cylinder and the different 

! ! configurations are presented in Figure 5.23. It is observed (see Figure 5.23 (a)), 

that the lock-in regime for the single cylinder and the ! ! = 0.5 configurations are 

captured within the range of studied !! . For the ! ! = 0.5  configuration, the 

maximum !!,!"# ! is approximately !!,!"# ! = 1.40 at !! = 8, which is lower 

than the peak value observed for the single cylinder configuration of !!,!"# ! =
1.52. The lock-in range for the ! ! = 0.1 and ! ! = 0.25 configurations extend 

beyond !! = 12. The maximum observed value of !!,!!" ! for the ! ! = 0.25 
configuration is approximately !!,!"# ! = 1.59  at !! = 6 . Based on the 

observations made in the present study, ! ! has significant influence on the vibration 

response of the cylinder bundle. For small ! ! values (! ! ≤ 0.25), !!,!"# ! is 

increased at high !! (!! > 8). 

 

(a) (b) 

  
Figure 5.23: Normalized maximum cross-flow vibration amplitude !!,!"# ! (a) and 

normalized root-mean-square of the in-line vibration amplitude !!,!"# ! (b) for the 

single cylinder and [! ! = 0.1, 0.25, 0.5] configurations 
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5.3.3 Frequency Analysis 

 

The frequency spectra of !!, !!, ! ! and ! ! are shown in Figures 5.24 and 5.25 

for the ! ! = 0.25  and ! ! = 0.5  configurations, respectively. The frequency 

spectra are presented in the !! − !" ! plane. In the !! spectra of ! ! = 0.25 and 

! ! = 0.5  configurations, the highest amplitudes are observed at low !!  which 

correspond to the initial branch of VIV. The ! ! spectra show peak frequencies in

 

 
Figure 5.24: Frequency spectra of !!, ! !, !! and ! !: coupled cylinders ! = 90°, 
! ! = 0.25 
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the lock-in regime observed in Figure 5.23 (a). Overall, the !! and ! ! spectra are 

broad-banded compared with the corresponding spectra of the single cylinder and 

! ! = 0.1 configurations (see Figure 5.4 and Figure 5.5). The frequency spectra of 

! ! for the single cylinder, ! ! = 0.1, ! ! = 0.25 and ! ! = 0.5 configurations 

are shown in Figure 5.26 for the corresponding !! cases with the largest cross-flow 

amplitude.

 
Figure 5.25: Frequency spectra of !!, ! !, !! and ! !: coupled cylinders ! = 90°, 
! ! = 0.5 
 

Similar to the observations made for the effect of ! , ! !  influences the peak 

frequency of ! !. The highest dominant frequency of !" ! = 0.19 is observed for 

the ! ! = 0.25 configuration at !! = 6. The ! ! = 0.5 configuration at !! = 8 has 
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a dominant frequency of !" ! = 0.15 . This value is closer to the dominant 

frequency observed for the single cylinder at !! = 8 and the ! ! = 0.1 configuration 

at !! = 12. 

 

Figure 5.26: Frequency spectra of ! ! for the single cylinder and [! ! = 0.1, 0.25, 

0.5 ] configurations at selected !!  corresponding to the cases with the largest 

transverse displacement amplitude 

 

5.3.4 Motion Trajectories 

 

Figures 5.27 and 5.28 present the motion trajectories in the !/! –  !/! plane for the 

! ! = 0.25  and ! ! = 0.5  configurations, respectively. The duration of the 

displacement time series used to plot the motion trajectories is ! = 100. It is observed 

that the trajectories of ! ! = 0.25  and ! ! = 0.5  configurations are narrower 

compared with the ! ! = 0.1 configuration (see Figure 5.14). The in-line motion 

experienced by ! ! = 0.25 and ! ! = 0.5 configurations is smaller compared with 

the ! ! = 0.1 configuration. The !! = 2 cases of the ! ! = 0.25 and ! ! = 0.5 
configurations have lower in-line amplitude compared with the !! = 2 case of the 

single cylinder configuration. Overall, it is seen that with the increase in ! !, the 

trajectories converge to those observed for the single cylinder cases (see Figure 5.9). 
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This is explained by the decreased influence of the vortex shedding from the small 

cylinder on the large cylinder, with increasing ! !. 

 

 

Figure 5.27: !/! –  !/! trajectory: coupled cylinders ! = 90°, ! ! = 0.25 

 

 

Figure 5.28: !/! –  !/! trajectory: coupled cylinders ! = 90°, ! ! = 0.5 
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5.3.5 Flow Field Analysis 

 

The contours of the spanwise vorticity and the normalized pressure with streamlines 

for the ! ! = 0.25 and ! ! = 0.5 configurations are investigated at selected time 

instances within one oscillation cycle. The presented flow fields correspond to the 

cases with the largest transverse amplitude of displacement found in respective 

configurations. The flow features around the ! ! = 0.25 configuration at !! = 6 are 

presented in Figure 5.29. A vortex street behind the small cylinder is observed, 

similarly to the ! ! = 0.1 configuration (see Figure 5.17). During the downward 

movement of the cylinder bundle (Figure 5.29 (c) and (e)), the vortices shed from the 

large cylinder follow the shear layers of the small cylinder. As the clockwise vortex, 

shed from the top of the large cylinder, merges with the vortex street behind the small 

cylinder, it is observed the formation of many vortical structures behind the cylinder 

bundle. It is seen that the presence of the small cylinder suppresses the vortex 

shedding from the top of the large cylinder and this causes a positive lift on the 

cylinder bundle, as reported by Jauvtis and Williamson (2004). When the cylinders 

move upwards (Figure 5.29 (a) and (g)), the vortex formation length from the small 

cylinder is elongated before it merges with the newly formed vortices on the backside 

of the large cylinder. There is a region of strong negative pressure around the small 

cylinder (Figure 5.29 (b)). However, it is slightly weaker than the negative pressure 

observed for the ! ! = 0.1 configuration (see Figure 5.17). This explains the lower 

vertical amplitude of displacement observed for the ! ! = 0.25  configuration 

compared with the ! ! = 0.1 configuration. Figure 5.30 presents the time histories 

of the hydrodynamic coefficients and displacements for the ! ! = 0.25 
configuration at !! = 6. It is observed that !! is in phase with !/! as opposed to the 

observations made for the ! ! = 0.1 configuration (see Figure 5.18). Overall, the 

amplitudes of !/! are lower compared with the ! ! = 0.1 case shown in Figure 

5.18. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 5.29: Contours of (a, c, e, g) the spanwise vorticity and (b, d, f, h) normalized 

pressure with streamlines for one vortex shedding cycle: coupled cylinders ! = 90°, 
! ! = 0.25 at !! = 6 
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Figure 5.30: Time histories of !! , !! , !/!  and !/!: coupled cylinders ! = 90°, 
! ! = 0.25 at !! = 6 

 

Figure 5.31 shows the contours of the spanwise vorticity and the pressure with 

streamlines for the ! ! = 0.5  configuration at !! = 8 . Compared with the 

! ! = 0.1 and ! ! = 0.25 configurations, the vortex formation length from the 

small cylinder is increased and larger vortical structures are formed due to the 

increased ! ! value. These vortices from the small cylinder merge with the vortical 

structures from the large cylinder (Figure 5.31 (a) – (g)). As the cylinder bundle goes 

downward (Figure 5.31 (c) and (e)), the newly formed vortices from the large cylinder 

break the vortex street from the small cylinder. The velocity profiles between the 

small cylinder and the large cylinder for the [! ! = 0.1, 0.25, 0.5] configurations are 

presented in Figure 5.32. It is observed that with the increase of ! !, the mean 

velocity decreases in the gap region. This is in accordance with the pressure contours 

for the respective configurations (see Figure 5.17 (b) – (h), Figure 5.29 (b) – (h) and 

Figure 5.31 (b) – (h)), where it is seen that the regions of negative pressure around the 

small cylinder weakens with the increase of ! !. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 5.31: Contours of (a, c, e, g) the spanwise vorticity and (b, d, f, h) normalized 

pressure with streamlines for one vortex shedding cycle: coupled cylinders ! = 90°, 
! ! = 0.5 at !! = 8 
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Figure 5.32: Velocity profile in the gap between the cylinders: ! ! = 0.1 at !! = 12, 
! ! = 0.25 at !! = 6 and ! ! = 0.5 at !! = 8 
 

The time histories of the hydrodynamic coefficients and displacements for the 

! ! = 0.5 configuration at !! = 8 are presented in Figure 5.33. It is observed that !! 

is in phase with !/! and !! is out of phase with !/!. Finally, the time histories of !!, 

!!, !/! and !/! for the [! ! = 0.1, 0.25, 0.5] cases that are not presented in this 

section, are provided in Appendix A. 

 

Figure 5.33: Time histories of !! , !! , !/!  and !/!: coupled cylinders ! = 90°, 
! ! = 0.5 at !! = 8 
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Chapter 6 

Conclusions and Recommendations for Future 

Work 

 

6.1 Conclusions 

 

In the present study, the flows around a single cylinder and two rigidly coupled 

cylinders are analysed at !" = 3.6 × 106 . The 2D URANS equations are solved 

combined with the ! − ! SST turbulence model. Different configurations of the two 

rigidly coupled cylinders are simulated and their influence on the FIV response of the 

system is investigated and compared with the single cylinder response. Grid 

convergence studies are carried out for the single cylinder and the ! = 90° 
configuration with ! ! = 0.1, and a good balance between the computational cost 

and discretization error is obtained with 104536 and 114321 cells, respectively. The 

numerical model is validated for a stationary single cylinder against published 

numerical and experimental studies in the high Reynolds number regime with a 

satisfactory agreement. The drag and lift coefficients, the in-line and cross-flow 

vibration amplitudes, the frequency responses, the motion trajectories and the flow 

fields are discussed. The main conclusions are summarized as follows: 

 

1. Effect of !: 

 

• In general, the highest !! values occur for the ! = 90° configuration, and the 

lowest are observed for the ! = 180° configuration. When the cylinders are in 

tandem, the results obtained for !! tend to that of the single cylinder, which 

are found to be around zero. For the ! = 90° configuration, the cylinder 

bundle experiences negative !! for !! ≤ 3 and !! ≥ 11, and positive !! for 

4 ≤ !! ≤ 10. 
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• It is found that for the ! = 0°, ! = 90° and ! = 180° configurations, the 

presence of the small cylinder widens the lock-in regime compared with that 

of the single cylinder. The ! = 0° configuration has the lowest !!,!"# ! 

value of 1.26, and the highest !!,!"# ! value of 2.61 is found for the 

! = 180° configuration. The galloping response is observed for the ! = 90° 
and ! = 180° configurations. 

• The frequency analysis shows that !! has a peak frequency in the initial 

branch of FIV for all the configurations. Moreover, the peak frequencies of 

all the spectra are in the low frequency range of !" ! < 0.4 and tend to 

decrease with the increase of !!. 

• The ! = 90°  configuration has the most irregular motion trajectories, 

compared with those of the single cylinder, ! = 0°  and ! = 180° 
configurations.  

• The flow field of the single cylinder case at !! = 8 shows the 2T vortex 

shedding mode. This is characteristic of the VIV of a single cylinder with low 

mass-damping in the high Reynolds number regime. For the coupled 

cylinders configurations, the vortex street around the small cylinder is 

observed for the ! = 0° and ! = 90° configurations. In addition, the presence 

of the small cylinder downstream the large cylinder elongates the vortex 

formation length behind the cylinder bundle. The ! = 0° configuration at 

!! = 5 exhibits the 2P vortex shedding mode. For the ! = 90° configuration 

at !! = 12  and the ! = 180°  configuration at !! = 12 , a regular vortex 

shedding mode is not observed due to the galloping response. 

 

2. Effect of ! !: 

 

• It is found that with the increase of ! !, !! values decrease and converge to 

those observed for the single cylinder. The highest magnitudes of !!  are 

observed for ! ! = 0.1  and ! ! = 0.25  configurations. The !!  response 

curve for the ! ! = 0.5 configuration is closer to that of the single cylinder. 

• The lock-in range of the ! ! = 0.5 configuration is similar to that of the 

single cylinder. For the ! ! = 0.25 and ! ! = 0.1 configurations, the lock-
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in regime extends beyond !! = 12. The highest !!,!"# ! value of 1.82 is 

observed for the ! ! = 0.1 configuration at !! = 12.  
• The effect of ! ! on the FIV response of the cylinder bundle is observed in 

the motion trajectory. With the increase of ! !, the trajectories become more 

regular and more similar to those observed for the single cylinder.

• Finally, the velocity in the gap between the cylinders decreases with the 

increase of ! !.  

 

 

6.2 Recommendations for Future Work 

 

The following recommendations would contribute to the knowledge of FIV of two 

coupled cylinders: 

• Extend the !! range in order to investigate in depth the galloping response of 

the ! = 90° and ! = 180° configurations. Hence, the lock-in could be fully 

captured for a complete analysis. 

• Extend the present study of the FIV response of the two coupled cylinders for 

the staggered position, 0° < ! < 90° and 90° < ! < 180°. Moreover, analyse 

the effect of ! ! for the ! = 0° and ! = 180° configurations. 

• Perform 3D LES of the FIV of two coupled cylinders in the critical regime of 

!" = 1 × 106 . In addition, study the coherent structures of the flow by 

carrying out dynamic mode decomposition. 
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A-1 

	
Appendix A 
Time histories of the hydrodynamic coefficients and normalized 

displacements 

 
	

  
(a) !! = 2.5 (b) !! = 3 

  
(c) !! = 4 (d) !! = 5 

  
(e) !! = 6 (f) !! = 6.5 

Figure A1: Time histories of !!, !!, !/! and !/!: single cylinder, !! = 2.5− 6.5
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(a) !! = 7 (b) !! = 7.5 

  
(c) !! = 9 (d) !! = 10 

  
(e) !! = 11 (f) !! = 12 

Figure A2: Time histories of !!, !!, !/! and !/!: single cylinder, !! = 7− 12
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(a) !! = 2 (b) !! = 3 

  
(c) !! = 4 (d) !! = 6 

  
(e) !! = 7 (f) !! = 8 

Figure A3: Time histories of !!, !!, !/! and !/!: ! = 0°, ! ! = 0.1, !! = 2− 8
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(a) !! = 9 (b) !! = 10 

  
(c) !! = 11 (d) !! = 12 

Figure A4: Time histories of !!, !!, !/! and !/!: ! = 0°, ! ! = 0.1, !! = 9− 12
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(a) !! = 2 (b) !! = 3 

  
(c) !! = 4 (d) !! = 5 

  
(e) !! = 6 (f) !! = 7 

Figure A5: Time histories of !!, !!, !/! and !/!: ! = 90°, ! ! = 0.1, !! = 2− 7
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(g) !! = 8 (h) !! = 9 

  
(a) !! = 10 (b) !! = 11 

Figure A6: Time histories of !!, !!, !/! and !/!: ! = 90°, ! ! = 0.1, !! = 8− 11 
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(a) !! = 2 (b) !! = 3 

  
(c) !! = 4 (d) !! = 5 

  
(e) !! = 6 (f) !! = 7 

Figure A7: Time histories of !!, !!, !/! and !/!: ! = 180°, ! ! = 0.1, !! = 2− 7 
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(g) !! = 8 (h) !! = 9 

  
(a) !! = 10 (b) !! = 11 

Figure A8: Time histories of !!, !!, !/! and !/!: ! = 180°, ! ! = 0.1, !! = 8− 11 
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(a) !! = 2 (b) !! = 3 

  
(c) !! = 4 (d) !! = 5 

  
(e) !! = 7 (f) !! = 8 

Figure A9: Time histories of !!, !!, !/! and !/!: ! = 90°, ! ! = 0.25, !! = 2− 8 
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(g) !! = 9 (h) !! = 10 

  
(a) !! = 11 (b) !! = 12 

Figure A10: Time histories of !! , !! , !/!  and !/! : ! = 90° , ! ! = 0.25 , 
!! = 9− 12 
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(a) !! = 2 (b) !! = 3 

  
(c) !! = 4 (d) !! = 5 

  
(e) !! = 6 (f) !! = 7 

Figure A11: Time histories of !!, !!, !/! and !/!: ! = 90°, ! ! = 0.5, !! = 2− 7 
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(g) !! = 9 (h) !! = 10 

  
(a) !! = 11 (b) !! = 12 

Figure A12: Time histories of !!, !!, !/! and !/!: ! = 90°, ! ! = 0.5, !! = 9− 12 
 

 


