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Abstract 

 

This report aims to study the characteristics of signals collected by Acoustic Emission 

Testing (AET) and categorize them into types to detect yield. A literature survey of existing 

knowledge of AET and Acoustic Emission (AE) signal processing was conducted. In 

addition, data was processed by utilizing and developing tools to visualize and analyze the 

signal waveform based on signal duration and its corresponding amplitude. The investigation 

was done by exporting existing data from a three-point bending test that was used as a 

foundation for executing the analysis. Signal was visualized, and parameters were optimized 

to identify and classify signal types. The data used in this work was collected from the 

previous project in spring 2019 (Dawood_Khaled, 2019). 

 

Results show that due to the length of the hit data recorded, some limitations on classification 

were experienced. However, it is possible to isolate signal characteristics that could recognize 

different signal types. Laboratory experiments should be performed to validate whether it is 

still feasible to detect relevant signals in a noisy environment such as an offshore platform 

before setting up a full-scale test setup. Further research into algorithms are recommended to 

increase the reliability of signal categorization. 
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Chapter 1 : Introduction 

 

1.1 Background 

In the North Sea and other parts of the world, an increasing number of offshore jacket platforms 

have exceeded their original design life. The structural integrity of jacket platforms to extend the 

economic life of offshore structure is gaining interest. New techniques have been constantly 

developed to secure the use of these assets. In oil and gas industry, some of the important 

methods can be taken into consideration such as online monitoring of environmental data, 

improving analysis tools, developing of inspection technologies, re-analysis tools and planning 

inspection strategy. Current developments of sensor technology to monitor real time structural 

conditions opens new opportunities for offshore structures. Increasing sensor properties like 

robustness, accuracy, efficiency and reducing cost enhance data quality of structural response. 

The gathered data may be primarily used for two purposes: 

1. Online structural monitoring to ensure safe use, prevent failures and control further 

degradation. 

2. Assessment of the accuracy of the structural models used in design and verification. 

(Gabrielsen, 2019) 

SHM of Offshore Jacket Structures is operated with periodic manual inspections by various 

NDT techniques based on risk-based inspection (RBI) and mainly done by either Remote 

Operated Vehicle (ROV) or divers (Vestli, 2016). Inspection is used to characterize the 

condition of the structure to assess structural failures and take appropriate actions (Lee et al., 

2014). In the period between non-destructive inspections, cracks can initiate, propagate and 

catastrophic failure can occur due to the conventional testing only gathering information 

periodically. It depends on the inspection frequency while with acoustic emission method can 

potentially detect active cracks if the structure is installed with a continuous monitoring system. 

Safety in offshore is to avoid accidents and fatigue damage. In critical welds, remote monitoring 

is utilized, because conventional NDT techniques cannot provide an early warning of fracture 

propagation. Acoustic Emission Continuous Monitoring is considered as a monitoring method to 

extend the safe use of offshore platform (DUTHIE and GABRIELS, 2014). . Remote structural 

integrity monitoring using acoustic emission technology is a powerful technology to detect 

active fatigue cracks and fatigue damage initiation (Vestli et al., 2017). As a type of Predictive 

Maintenance, Condition Based Monitoring (CBM) can utilize sensors to measure assets’ status 

over time in its operation.  However, there are some limitations using this method, it is costly to 

install monitor equipment and in order to use the technology effectively and be able to interpret 

the signals from the sensors, operators must be trained properly. In addition, the sensors might 

not work in harsher operating environments and can have trouble in detecting fatigue damage 

(inspectioneering.com, 2020). 
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Acoustic emission signals are detected by deformation/ crack growth which is recorded by 

sensors placed around an element. A conference paper publication by Duthie and Gabriels 

(2014) states that the signal amplitude from crack growth can be measured within a distance up 

to 5 meters between sensors. AET equipment is delivered by various manufacturers, one of 

which is VALLEN System providing watertight AET sensors (Vestli et al., 2017).  

 

1.2 Research problem 

According to Lee et al. (2014), acoustic emissions are the elastic energy waves released by a 

material undergoing deformation. When an external stress is imposed on a component, AE 

signals reflect the internal stress redistribution within a material. Here, the stress can be 

hydrostatic, pneumatic, thermal, or bending. AET technology is a ‘passive’ NDT method which 

has been used since early 1980’s by petrochemical industry. The signal is effective to identify 

crack growth and propagation during fatigue tests. Signal discrimination between legitimate 

sources (e.g. cracks, corrosion, weld discontinuities) and spurious noise sources (such as 

mechanical friction, weather, engines/machinery, loose parts and other marine environment), as 

well as noise reduction are significant for a successful application of AE. Signal discrimination 

and noise reduction are more crucial in application to detect corrosion activity because in 

comparision to crack propagation, the corrosion process is slower and signal strength is weaker 

(Lee et al., 2014).   

Elastic deformation initially occurs when stress is applied, and plastic deformation is when the 

material reaches its elastic limit. As stress continues to increase, yield and strain hardening of 

the material lead to necking and fracture. Before the 1970s, deformation before macro-yielding 

was considered elastic, there was no dislocation activity or elastic wave release during this 

period. Signals during micro-plastic deformation were recognized as noise and AE signals could 

not be measured. After 1970s, studies revealed that plastic deformation accompanied by micro-

yielding caused acoustic signals generated during micro-plastic deformation before macro-

yielding. Other prior studies also suggested that partial dislocation multiplication or harmonic 

motion (micro source) that causes plastic deformation in metallic materials occur before the 

elastic limit is reached. AE signals were achieved before macro-yielding. Transmission electron 

microscope (TEM) could be used to observe the dislocation state between the material’s surface 

and interior in different stress states. When the applied force is much lower than the yield 

strength can cause plastic deformation of a material. Micro dislocation source observed by TEM 

and macroscopic AE characteristics can describe the micro-plastic deformation mechanism, 

where low angle grain boundary (LAGB) ratios play an important role (Tian et al., 2020). 

Results from previous studies by Han et al. (2011) exhibits that dislocation multiplication and 

motion can be characterized by AE and TEM can be used to determine the dislocation 

morphology (Han et al., 2011).   
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Figure 1. AET system setup (Dong and Ansari, 2011). 

 

Figure 1 above illustrates an AET system. AE-sensors are placed around the element that the 

acoustic emission signals can be detected. Data is transferred through pre-amplifier, to filter, and 

amplifier before it is fed into an acquisition system processing the result. Another component in 

an AET system is a workstation displaying the test result (Vestli, 2016).  

Sensor frequencies depends on where the sensor located. The main reasons for the different 

frequencies are due to difference in the propagation of signals in different materials and the 

mechanism of the signal source. (Vestli et al., 2017) 

 

Refer to Lee et al. (2014), different defects would leave unique characteristic signatures of AE 

waveform, as in figure 2 (Lee et al., 2014).  

 

Figure 2. Unique wave form (signature) for each defect (Lee et al., 2014). 

A suitable testing process and analysis procedure for AE data is essential to acquire a 

dependable level of structural flaw detection for a successful AET application (Lee et al., 2014).  
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1.3 Objectives of the Study 

The goal of this project is to study the characteristics of signals collected by Acoustic Emission 

Testing (AET) performed for different steel specimens and discuss their usage for detecting 

defects in offshore jacket structures. The work of this project would limit to detection of 

yielding effect in the specimens. 

This project shall help students to gain the knowledge of:  

 Familiarization with relevant NORSOK and international standards. 

 Understand AE technology and AET role in asset integrity management in the future. 

 Gain experience from Python and the use of AET in practice. 

 

1.4 Scope of Work 

The scope is to study the characteristics of AE signals from literature review and analyze the 

signal waveforms from various steel samples. 

The main tasks defined by DNV GL as follows: 

 Perform a literature study on current knowledge of SHM of offshore structures with 

emphasis on jackets and AET signals characteristics. 

 Export suitable waveforms from the recorded data. 

 Develop Python program to inspect the signals.  

 Post-process AET data from the tests. 

 Study and evaluate the signal characteristics. 

 

1.5 Limitations of the study 

Following limitations should be considered: 

 Due to COVID-19, small-scale tests suggested by DNV GL which would be performed 

in a laboratory in Høvik on various samples could not be done. 

 Waveforms, which could be collected, were not recorded completely during the 

experiments due to undesirable hardware setup in AEwin. 

 Not much time has been spent on locating the source of the signal, the priority was on 

finding out what the signal conveys. 

 AE signals were only investigated from bending tests of base material which is far from 

being realistic where it is first and foremost the welding connections that are the focus 

area for AET. 

 Evaluation of signal characteristics assessing case study in laboratory experiment only, 

no real time conditions such as environment effects or noise in offshore considered. 
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1.6 Organization of the thesis 

The report consists of 7 Chapters.  

Chapter 1. Introduction  

Chapter 2. Literature survey of existing knowledge of AET and AE signal processing  

2.1 Acoustic Emission Testing for Structural Health Monitoring of Offshore Jacket 

Platforms 

• Background to Structural Health Monitoring (SHM) of Jacket Platforms 

• Acoustic Emission Testing (AET) 

• Parameter-based AE techniques and Signal-based AE analysis 

• Applications and the future for AE 

2.2 Signal processing and characteristic of AE signals 

• Signal processing 

• Literature study of materials 

• Characteristic of AE signals 

Chapter 3. Methodology of the study  

Chapter 4. Processing of AE Signals from Three-Point Bending Tests  

Chapter 5. Results and Discussion  

Chapter 6. Conclusive remarks together with Recommendations for further work  

Chapter 7. Bibliography 
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Chapter 2 : Literature survey of existing knowledge of 

AET and AE signal processing 

 

2.1 Acoustic Emission Testing for Structural Health Monitoring 

of Offshore Jacket Platforms 

This section contains a review of AE technology with focus on the technique in Structural 

Health Monitoring (SHM) used for offshore structure. This is followed by information about the 

concept of AET. Presented next is information about two approaches to investigate AE signals: 

classical parameter-based and quantitative signal-based analysis; characterization, pros and cons 

of each analysis method is explained. Other applications of AE technique which are used in the 

industry as well as the future of AE is also considered.  

Figure 3 discusses the integrity management strategy, extracted from NORSOK N-005 standard 

(N-005, 2017). 

 
Figure 3. NORSOK N-005 (N-005, 2017). 
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2.1.1 Background to Structural Health Monitoring (SHM) of Jacket 

Platforms  

i. Jacket Platforms 

Offshore structures are divided into two main categories, bottom-supported and floating 

structures. Bottom-supported structures consist of jackets, jack-ups and compliant towers, they 

are permanently installed at the production location (except from the jack-up). Floating 

structures include semi-submersibles, tension leg platforms (TLP’s), spars and floating 

production, storage and offloading units (FPSO’s). Parameters such as reservoir size, water 

depth and type of well affect the selection of the correct type of structures installed. After 

installation, there are locations on bottom-supported structures which can never be inspected. 

On the other hand, floating structures can be towed to shore for thorough check-up (Vestli, 

2016).  

The design of offshore jacket structures to support oil and gas exploration and production 

facilities needs to sufficiently resist the external loads such as gravity loads, environmental 

loads, accident loads as well as seismic and ice loads at certain sea locations. On the other hand, 

the natural response of the structures are displacement and vibration (Henry et al., 2017). On the 

Norwegian continental shelf (NCS), the Ekofisk Field is the oldest producing oil and gas field. It 

was discovered in 1969 and the producing platforms were first installed in the early 1970’s. 

Drilling and production platforms were developed using jacket structures, designed from 

experience in the Gulf of Mexico. The platforms were originally designed to serve for 20 years 

(Grigorian et al., 2001). The field is a good example of the fact that the service life of oil and 

gas facilities is often significantly longer than originally intended. Therefore, there is a need to 

find methods that can provide safe operation beyond the original service life of the facility. 
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ii. Structural Health Monitoring (SHM) 

Degradation in the condition of structures is usually associated with processes. Structural 

condition monitoring, often referred to Structural Health Monitoring (SHM) or Structural 

Integrity Monitoring (SIM), is an area of continuing Research & Development (R&D) activity 

to assure continued safe operation in the most cost-effective way (Holroyd, 2005). Structural 

integrity monitoring is a good concept, where a system is installed, changes are monitored and 

investigated and the structural integrity is inspected (Webborn et al., 1980).  

Some SHM can detect, identify, assess and monitor flaws or faults/ conditions that has affected 

or may affect the future safety and performance of structures. SHM is a combination between 

elements of non-destructive testing (NDT) and evaluation, condition monitoring, statistical 

pattern recognition and physical modeling. Process of SHM consists of five stages: procedure 

development, sensing, diagnosis, monitoring and prediction. Condition-based maintenance 

(CBM) approach is to schedule maintenance based on the condition of the structure, which can 

perform maintenance whenever and wherever it is necessary (Muravin et al., 2010). The cost 

savings of CBM must be greater than the costs associated with its implementation, for instance 

purchase cost, training cost and running cost (incl. manpower cost) (Holroyd, 2005).  

The condition monitoring of offshore structures to reduce the risk of structural failure and 

guarantee the success of offshore operations is a key factor to manage integrity of offshore 

platform. To date, oil, and gas companies as well as institutions around the world have 

developed a significant number of field surveillance projects for that purpose. Safety of 

personals and platforms operating in deep water and extreme environmental condition is crucial. 

Wang et al. (2018) discussed about the state-of-the-art developments for field monitoring of 

offshore structures. Continuous monitoring of offshore structures can obtain raw data in real 

time to detect structural failures, assess safety and predict performance changes and the 

remaining structural life. It helps to verify the design parameters and provide a database for post 

project analysis. An integrated field monitoring system of an offshore structures has become an 

effective method to obtain real-time tracking and feedback information on the metocean (such 

as wind, waves, current, internal waves, ice, tide), structural motions and operational status to 

reduce failure risk, obtain a comprehensive understanding of structural dynamic behavior, 

calculate the accumulated damage and to assess the overall safety status. Monitoring of an 

offshore structure is a complex project with multiple facilities working together. The method has 

also drawn the increasing attention. For an efficient monitoring system, good stability, 

durability, compatibility, and credibility performances are essential. Increasingly more offshore 

structures will be installed with monitoring systems, which will further encourage to enhance 

sensor technologies and monitoring systems (Wang et al., 2018). 
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Dumousseau et al. (1979) made a thorough report on numerous technical and economical 

constraints to monitor jacket platforms, which mentioned cost to diving operations, low 

confidence of visual inspection as well as complexity and limitations of conventional NDT 

methods and lack of knowledge between inspections (Dumousseau et al., 1979). Ice loading and 

fatigue are problems for platforms located in the Gulf of Alaska and the North Sea. In addition, 

structural inspection using divers is limited in deep water and poor sea conditions. For North 

Sea application, acoustic emission (AE) monitoring techniques are utilized with significant 

savings by limiting the use of manual underwater inspection to only locations of concern 

(Dunegan, 1977). In offshore environment, AE technology is applied on steel and concrete 

structures, process equipment, tube skids, and slow-moving bearings. AE is used to test and 

monitor many materials, such as metals, concrete, and composite; real-time data of what is 

happening inside materials and structures is given during the monitoring process (MISTRAS 

Group, 2020b). AE technology, with its multiple advantages, is a promising but challenging 

method that may uniquely fit to SHM concept to continuous monitor the structure and assess 

structural integrity during its operation life (Muravin et al., 2010).  

 

iii. Acoustic Emission (AE) Technology 

In the Journal of Building and Infrastructural Engineering of Israeli Association of Engineers 

and Architects, Muravin (2009) discussed the application of acoustic emission method which 

can be applied as a diagnostic tool to assess structural integrity by two major approaches: 

1. Experimentally determining a characteristic set (fingerprints) of AE parameters and their 

characteristics that describe a material condition, fracture stage and flaw type. 

2. Establishing a theoretical relationship between AE parameters and their characteristics, 

material properties, fracture mechanics parameters (Muravin, 2009). 

AE techniques can be practical alternatives used for inspection of deep-water offshore structure. 

A paper by Dunegan (1977) described positive features of a bottom-supported offshore structure 

enables AE techniques to be successfully applied with a high degree of confidence: 

1. The first feature is that the structure is cyclically loaded and therefore AE signals will 

derive prior to failure. 

2. The structure is simple, composed of one-dimensional members. This provides for a 

simplification of computer software. 

3. All joints on the structure are 100% welded, eliminating potential noise sources due to 

frictional rubbing of members (Dunegan, 1977).  

However, structural joints are complex geometries in uncontrolled environments subjected to 

loading patterns which are not easy to predict in offshore environment. It is therefore difficult to 

understand the behavior of the acoustic emission generated in a specific complex (Fuller and 

Rose, 1983). 
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AE application offers a valuable testing technique for materials, components and structures with 

knowledge and practical experience from much research and development existing worldwide 

(Holroyd, 2005). Knowledge of the operational environmental profiles together with the 

measured AE will provide a fundamental for structure lifecycle management (Rogers and 

Stambaugh, 2014). Study is needed before companies may consider to implement acoustic 

emission equipment used for structural integrity (Fuller and Rose, 1983). 

 

2.1.2 Acoustic Emission Testing (AET) 

In the past decades, there is increasing interest in the use of AE or continuous monitoring of 

structures whilst in service (Holroyd, 2005). Interest in AE as an NDT method was growing fast 

from the late 1960s. Unique capabilities of AE were recognized for monitoring dynamic 

processes with increasing research on fundamentals of AE, instrumentation as well as 

characterization of the signal behavior of many materials. Multi-channel acoustic emission 

source location systems appeared commercially since 1970s, their development being driven by 

industry’s demand to boost non-destructive testing applications (Rogers and Stambaugh, 2014, 

Drouillard, 1994). Since 1980, along with the development of information technology and data 

processing, computers became a necessary element for both instrumentation and data analysis. 

There is a transition to waveform-based analysis from just analyzing the signals’ parameter 

(Drouillard, 1994). 

Trends are observed, comparisons are made between equivalent items and significant signal 

excursions are analyzed. For structural monitoring, it is most important to listen simultaneously 

to all sensor channels in order not to miss any irreversible activity and source localization 

techniques can be applied (Holroyd, 2005). The acoustic emission analysis technique has shown 

feasibility of the method as a means of increasing the inspection reliability of offshore 

structures. To establish the benefits of the technique and to define the role of AE analysis with 

other inspection or monitoring methods, more experience is needed on offshore structures 

(Webborn et al., 1980). AE analysis is helpful together with other diagnostic techniques, such as 

stress-strain measurements, microscopy, crack-opening-displacement measurements (CODM) 

and potential drop (for crack growth) (PAC, 2014). 

AET provides comprehensive and immediate information to study material deformation. AE 

inspection is sensitive to microstructure and its relationship with failure processes can give 

unique insights into the response of material to applied stress. Materials “talk” when they are in 

trouble and AE equipment can help to “listen” to the sounds active damage in the stressed 

material. Therefore small-scale damage can be able to detect long before failure (PAC, 2014).  
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According to Lee et al. (2014), acoustic emissions are the elastic energy waves released by a 

material undergoing deformation. When an external stress is imposed on a component, AE 

signals reflect the internal stress redistribution within a material. Here, the stress can be 

hydrostatic, pneumatic, thermal, or bending (Lee et al., 2014). If at any point during the 

deformation, the applied load is reduced to zero and increased to the previous high level, AE 

activity will gain only when it exceed the previous high stress (Rogers and Stambaugh, 2014). 

AE technique is the most effective ‘Passive’ Non-Destructive Evaluation (NDE) tool. This 

technique is ‘Passive’ because the technique doesn’t require an artificial source, instead it 

receives the source signals from the tested material in form of burst signals (spontaneous release 

of energy) (Barile et al., 2019).  

 

 

Figure 4. Active - Passive techniques (Grosse and Ohtsu, 2008, p. 4). 

 

Signal discrimination between legitimate sources (e.g. cracks, corrosion, weld discontinuities) 

and spurious noise sources (such as mechanical friction, weather, engines/machinery, loose parts 

and other marine environment), as well as noise reduction are significant for a successful 

application of AE. Signal discrimination and noise reduction are more crucial in application to 

detect corrosion activity because in comparision to crack propagation, the corrosion process is 

slower and signal strength is weaker (Lee et al., 2014).   
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Figure 5. Overall Process of AET (Lee et al., 2014). 

 

Lee et al. (2014) described process of AET in the figure above. Planning phase needs prior 

knowledge to understand test objective, selection of project team, structural damage history, 

structurally critical areas, selection of AET system, locations of acoustic emission sensors, 

acoustic emission sensors and AET computer. After the AET system is installed, Pencil Lead 

Break (PLB) must be performed for system checks to confirm sensors’ functionality, 

preamplifiers, and computer. Data collection should record acoustic emission data, operation 

information, strain information, stress information, etc. Then the data could be analyzed, 

monitored, and used for further report and follow-up inspection. After the test is done, 

equipment should be taken down and AET system would be uninstalled. Analysis procedure for 

acoustic emission data is crucial to the success of the AET to recognize signature, filter out 

noise, identify AE source location as well as high AE activity (Lee et al., 2014).  
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Figure 6. Pencil-Lead Breaks (Sause, 2011). 

 

In AE applications, PLB tests are used as a reproducible source for test signals. The lead in a 

mechanical pencil is pressed firmly against the structure under test until the lead breaks. The 

surface of lead tip cracks because of pressure during lead breakage. The accumulated stress is 

released triggers a signal and create an acoustic wave that propagates into the structure that we 

can use to calibrate the sensors. PLB is the most common test to calibrate AE source due to it is 

easy to handle both in laboratory environment and in field testing (Sause, 2011). The PLB test 

would be performed initially before applying load on the samples (Dawood_Khaled, 2019). 

AE analysis can provide great potential for both condition assessment and monitoring of 

structures not only in the laboratory but also in operation. In laboratory conditions, accuracy is 

higher than on site due to smaller dimensions of the test specimens and smaller distances 

between AE sources and the sensor. In contrast, tests in industrial services are less controlled 

and have more environmental noise (Grosse and Ohtsu, 2008, p. 389).  

Issues for successful application of acoustic emission to offshore structures were presented by 

Dunegan in 1977 (Dunegan, 1977): 

- In the steels used for offshore applications, are signal levels large enough to allow for 

economical spacing of transducers? 

- Have instrumentation techniques been significantly developed to separate valid signals 

from extraneous noise signals? 

- Have data handling methods been sufficiently developed so that ‘non-expert’ personnel 

can operate the system, pinpoint problem areas, and make decisions? (Dunegan, 1977) 
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2.1.3 Parameter-based AE techniques and Signal-based AE analysis 

The following definitions are based on a review by CU. Gross and M. Ohtsu (2008) in Acoustic 

Emission Testing book (Grosse and Ohtsu, 2008). 

There are two main groups to approach in recording and analyzing AE signals: parameter-based 

(classical) and signal-based (quantitative) AE techniques. Rapid developments in 

microelectronics allow the two approaches to exist simultaneously over the last few decades. 

Historically, difficulties in recording and storing large number of signals made it not possible to 

apply signal-based techniques for large structures and buildings. Further, high financial costs 

and time required were also a challenge to apply signal-based techniques. Recently, devices 

used for classical AE technique can store waveforms of the detected AE signals. For 

applications using signal-based analysis techniques, custom software tools can be applied to 

extract AE parameters for statistical analyses (Grosse and Ohtsu, 2008, p. 53).    

 

 

i. Parameter Analysis 

Parameter-based (classical) AE technique refers to a procedure that a set of parameters are 

extracted from the signal and stored, but the signal (waveform) itself is not stored, this 

consumes less time and storage space than to store the entire waveforms. Typical AE parameters 

are maximum peak-to-peak amplitude, arrival time, rise time, and duration (Grosse and Ohtsu, 

2008, p. 41). 

 

Figure 7. Conventional AE signal features (Grosse and Ohtsu, 2008, p. 43). 
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Pros and Cons of using Parameter-based AE Techniques is described in the table below. 

Table 1. Pros and Cons of using Parameter-based AE Techniques. 

Pros Cons 

- Significant amount of information on 

the damage progression (Barile et al., 

2019). 

- Fast visualization by high recording 

and storing data speeds.  

- Reduce system shuts down in a short 

period to record entire signal 

waveform by several sensors, reduces 

loss of information (Grosse and Ohtsu, 

2008, p. 55). 

 

- Difficult to discriminate AE signal 

from noise when signal is reduced to a 

few parameters, especially with using 

resonant sensor. 

- Extraction of simple parameters 

characterizing is difficult when using 

broadband sensor. 

- Complexity of the material and the 

geometry of the structure, as well as 

different in wave modes 

(compressional, shear or surface 

waves) that affect the propagation of 

signals are not considered  (Grosse 

and Ohtsu, 2008, p. 55, Barile et al., 

2019). 

- Peak Amplitude is an unreliable 

parameter in the damage monitoring 

(Barile et al., 2019). 

 

• Classical Parameters 

Characteristics of AE parameters have been studied to interpret physical phenomena. Signal 

parameters are defined in ISO 12716 2001 (Grosse and Ohtsu, 2008, p. 42-43). There are five 

most widely used signal measurement parameters: duration, counts, amplitude, rise time and 

energy (MARSE or the measured area under the rectified signal envelope) (PAC, 2014). 

Hit (signal duration): a signal that exceeds the threshold and causes a system channel to 

accumulate data. One ‘hit’ correspond one waveform. 

Duration: a time interval between the triggering time of AE signal and the time of 

disappearance. Usually expressed in microseconds, depends on source magnitude and noise 

filtering.  

Count/ring-down count/emission count: within the duration, the number of times where one 

signal (waveform) exceeds a present threshold.  



 

16 

 

‘Hit’ and ‘count’ is used to quantify the AE activity.  

‘Counts’ depend on the employed threshold and the operating frequency.  

‘Count to Peaks’ is counts between the triggering time over the threshold and the peak 

amplitude. 

Amplitude (max. amplitude or peak-to-peak): a peak voltage of the signal waveform. Instead of 

linear scale, amplitudes are expressed on a decibel scale, 1 V at sensor represents 0 dB AE. 

The amplitude is important parameter to determine the system’s detectability. The value of 

detected amplitude does not illustrate the emission-source but the response of sensor after losing 

the energy due to propagation. In each signal, the magnitude of amplitude and frequency 

distribution are often analyzed together.     

Rise time: a time interval between the triggered time of AE signal and the time of the peak 

amplitude. This is related to the source-time function and applied to eliminate noise signals.   

Energy: a measured area under the rectified signal envelope (MARSE). Energy is sensitive to 

the amplitude and the duration but not on the voltage threshold and operating frequencies. 

Therefore, it is favored to interpret the magnitude of sources event over counts (Grosse and 

Ohtsu, 2008, p. 42-43). 

 

Figure 8. AE parameters on one event (Caesarendra et al., 2016). 
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The size and speed of the local deformation process determines the amount of energy released. 

In isolation environment, AE stress wave can be produced by the formation and movement of a 

single dislocation, but it is not a large enough process to be detected. When large amount of 

dislocations is forming and moving at the same time during yielding of a tensile specimen, 

detectable result can be achieved by the individual stress waves overlap and superimpose (PAC, 

2014).  

 

 
According to Caesarendra et al. (2016), event is defined as a phenomenon which releases elastic 

energy (which propagates as elastic wave) into the material (Caesarendra et al., 2016). 

• Other parameters (Grosse and Ohtsu, 2008, p. 44): 

Average frequency = 
𝐶𝑜𝑢𝑛𝑡

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 , average frequency over one AE hit, used when signal waveforms 

are difficult to record. 

Initial frequency = 
𝐶𝑜𝑢𝑛𝑡 𝑡𝑜 𝑃𝑒𝑎𝑘

𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒
 

Reverberation frequency = 
𝐶𝑜𝑢𝑛𝑡−𝐶𝑜𝑢𝑛𝑡 𝑡𝑜 𝑃𝑒𝑎𝑘

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛−𝑅𝑖𝑠𝑒 𝑡𝑖𝑚𝑒
 

RA value = 
𝑅𝑖𝑠𝑒 𝑡𝑖𝑚𝑒

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 (ms/V) 

 

• Frequency Parameters (Grosse and Ohtsu, 2008, p. 44): 

AE signal waveforms characterize AE source mechanisms and can be recorded in real time. 

Frequency-domain features play an important role to interpret AE data. The resolution of 

frequency parameters depends on sampling rate and employed waveform length. 

Frequency centroid is reported in kilohertz and equivalent to the first moment of inertia. 

Peak frequency (kilohertz) is the point where the peak magnitude is observed (Grosse and 

Ohtsu, 2008, p. 44). 

 

Figure 9. Peak Frequency and Frequency centroid (Grosse and Ohtsu, 2008, p. 45). 



 

18 

 

ii. Signal-Based AE Analysis 

Table 2 discusses differences between Parameter- and Signal-based AET. 

Table 2. Parameter-based AET vs Signals-based AET (Grosse and Ohtsu, 2008, p. 57). 

 

 

Signal-based (quantitative) AE technique can record and store as many signals and waveforms 

(converted from analogue-to-digital) as possible. Using this approach enable a more 

comprehensive data analysis as well as post-processing environment (Grosse and Ohtsu, 2008).  

The recorded waveforms of Acoustic Event carry more useful information comparing to the AE 

parameters. Furthermore, proper analysis contributes more detail on the online monitoring of 

damage progression. Fast Fourier Transform (FFT) or the Wavelet to study the AE signal 

waveforms in the frequency domain. This is a powerful online tool to get information of the AE 

events during the entire load history. The Wavelet Analysis provides information on Frequency-

Time domain, where the peak frequency shows the highest frequency point of the entire 

spectrum (Barile et al., 2019). 
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Pros and Cons of using Signal-based AE Techniques is interpreted in the table below. 

Table 3. Pros and Cons of using Signal-based AE Techniques. 

Pros Cons 

- Capability of signal-to-noise 

discrimination based on waveforms 

analysis. The waveforms are still 

available after the measurement. 

- Different signal analysis methods can 

be applied using post-processing 

software, which enhance the signal-to-

noise ratio and extract material 

properties information.  

- Improve the reliability of the data 

interpretation (Grosse and Ohtsu, 

2008, p. 56). 

 

- Smaller number of events can be 

recorded. 

- Young field of research, lack of 

algorithms and software to process 

large number of AE signals 

automatically (Grosse and Ohtsu, 

2008, p. 56).  

- The peak frequency cannot represent 

the true nature of the AE signal (Barile 

et al., 2019). 
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2.1.4 Other applications and the future for AE  

i. Applications of AE 

AE method is widely applied in petrochemical, power, nuclear power, gas-treatment, military, 

aerospace, medical, pharmaceutical, automotive industries. In addition, it is also used in 

academic and industrial research institutions. AE applications can be divided into three 

categories: examination of structures, material study and control over manufacturing processes 

(Muravin, 2009, Gholizadeh et al., 2015).  

1. Examination of structures 

To examine the structures, AE technology can be used to inspect metal pressure vessel; piping 

for detection of cracks, corrosion damage and leaks; concrete, reinforced concrete bridges for 

flaws, rebar corrosion, failure of cables; as well as in aerospace industries to develop in flight 

monitoring systems (Muravin, 2009). There are two basic strategies of AE-based monitoring: 

local and global monitoring, where global monitoring assesses the whole integrity of the 

structure and local monitoring concerns a particular damage area (Gholizadeh et al., 2015). 

2. Material engineering used in composite, metal, concrete, rock  

Real-time structural monitoring is crucial where material condition can be estimated early which 

can prevent large-scale failure to increase safety and reduce management cost (Gholizadeh et al., 

2015).    

AE method can also be used to investigate the material such as: 

- Environmental cracking (stress corrosion cracking, hydrogen embrittlement) 

- Fatigue and creep crack growth 

- Material properties (material ductility, inclusions content) 

- Plastic deformation development 

- Phase transformation (Muravin, 2009) 

 

3. Control over manufacturing processes 

AE’s ability to discriminate between environmental noise and machine vibrations due to high 

frequency range and sensitivity of signal parameters enable the use of AE for process 

monitoring. The technique can be applied for monitoring of wears in welding, grinding, drilling 

(Gholizadeh et al., 2015). Other examples are test of component to detect micro-structural 

damage or test of composite overlap pressure vessels or engines (Muravin, 2009). 
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ii. Future for AE 

Since 2005, Holroyd already wrote in his report that the future for AE looks very promising. 

Increased processing power of instrumentation can reduce the need for specific AE instrument 

as well as enabling information from multiple sensory inputs to be more easily interpreted. 

Continually improving the design of AE sensors enhances reliability and delivers longer service 

life. For applications in structural monitoring, there is still demand for better wireless 

connectivity and lower power electronics allowing for more data to be captured increasing the 

data for analysis (Holroyd, 2005). 

Internet of Things (IoTs), big data and cloud computing will play an important role to collect the 

necessary information from the signals, process and analyze these signals as well as to store the 

data for future use (Coady et al., 2019). The new technologies support the interconnection of 

systems (Coady et al., 2019) and provide a great opportunity for smart monitoring and process 

optimization (Kan et al., 2018).  

Development of field monitoring for offshore structure will encourage the development of 

sensor technologies and monitoring system and further provide a standardization for set of 

instructions and design of the technology (Wang et al., 2018). Wireless Sensor Networks (WSN) 

is considered one of the application of this type of SHM IoTs based (Christin et al., 2009, 

Lamonaca et al., 2018). All sensors can communicate with a station transmitting measurement 

information, global or local data from structural properties will be acquired by sensors by using 

ultrasonic or acoustic emissions. Traditional sensors with new hardware will be able to detect 

inconsistencies in data and/or gather useful information to transmit over internet. The upgraded 

sensors consume significantly less power and increases service life with up to 5 or 10 years. The 

SHM hardware is compact, portable, light, electrically and mechanically robust. In addition, 

instrumentation is flexible, expandable and inexpensive (Lamonaca et al., 2018). 
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Figure 10. IoT-SHM system (Scuro et al., 2018). 

 

Figure above explains the architecture of an IoT-SHM system which consists of sensors, 

gateway, remote control and service room (RCSR) and open platform communications (OPC) 

server (Scuro et al., 2018). 

Recently, existing studies mainly focus on the development of sensors, wireless communication, 

and information architecture. There is a need to develop efficient algorithms to leverage 

collected data and characterize data signatures that are sensitive to operational, environmental, 

sustainable processes (Kan et al., 2018). Moreover, sensor virtualization, sensor scalability, 

security and interoperability also need to be enhanced to deploy the advantage of IoT in SHM 

(Lamonaca et al., 2018). 
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2.2 Signal processing and characteristic of AE signals 

The competency of signal processing has significantly improved since 1950 after the pioneering 

work of Josef Kaisers. Experimental procedures have been much defined, enhanced, and 

standardized. Multiple AE sensors and a broad range of signal processing techniques are 

required to use AE for structural monitoring in order to supply adequate detection coverage, 

pinpoint the source(s) of activity, limit the misinterpretation of non-deleterious signals and help 

determine the criticality of non-repeating signals. The sounds related to the failure of materials 

were recognized. When plastic deformation occurred in the stressed material, it triggered 

detectable activity and this activity was irreversible that it couldn’t happen again if the same 

stress was reapplied (Holroyd, 2005).  

 

2.2.1 Signal processing 

AE is a process of stress-release when applying an external force to an object, elastic waves will 

be generated due to the displacement of material particles and these waves propagate in material 

media. Elastic AE waves reflex mechanical vibration and can be extracted by the sensors. The 

characteristics of elastic waves are different depending on differences in external forces applied 

and different materials used. Investigation and classification of waveforms provide a great initial 

step which can ultimately increase the effectiveness of monitoring. The acoustic waves are often 

mixed with other acoustic waves such as grain fracture and mechanical and environmental noise 

(Griffin and Chen, 2006). 

 

Figure 11. Signal Analysis Workflow (Kirthi Devleker, 2017). 
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Throughout the AE testing, the background noise is often found very high. Different types of 

noise are mechanical noise, hydraulic noise, electrical (electromagnetic) noise, cyclic noise, 

welding noise, pseudo noise, etc. The presence of these noises makes it difficult to make the 

right interpretation of the AE signature. To investigate the AE signal, it is necessary to eliminate 

or reduce the noise. It can be done using filters, or by decreasing the gain and/or increasing the 

threshold. However, this may affect the AE data, i.e., the low-amplitude AE signals may not be 

detected and also the AE signals may get filtered out with frequency components in the same 

range as that of noise (Rao and Subramanyam, 2008). 

Data processing involves using the collected data and to transform this to data is possible to 

understand and evaluate. Several transformations are used, but the most popular transformations 

are based on a method called Fourier Transform (FT) (Vestli, 2016).  Drawbacks of this method 

are the loss of information about the time of occurrence of different frequency components and 

its unsuitability for non-stationary AE signals. Other useful tools for simultaneous frequency-

time analysis are short-time Fourier transform (STFT) and wavelet analysis. STFT, which 

involves multiplying a signal with a short window function and calculating the Fourier 

transform of the product. The window is moved to a new position and the calculation is 

repeated. Both time and frequency information of the whole signal is evaluated, the use of 

constant window length creates fixed resolution in both time and frequency domains. In contrast 

to fixed-length window size of STFT, wavelet analysis uses windowing technique with variable 

sizes, i.e. long time interval windows are used when there is more precise low-frequency 

information, and shorter regions are used where high-frequency information is preferred. 

Wavelet analysis divides a signal into different levels, where each level is associated with a 

certain band of frequencies in the signals (Kaphle et al., 2010). 

The purpose of these methods is basically to transform a data signal retrieved from sensors from 

time domain to frequency domain. SHM involves a vast amount of data, but not all data is 

valuable for the structural assessment. Therefore, the challenge with data processing is to utilize 

the most important data. The task of identifying the damage indicator which is sensitive to 

damage from the vibration response is necessary. This is called system identification. The 

processing of the collected data is an important step in a monitoring system. Most of the 

methods used in SHM systems of offshore jackets are related to modal analysis (Vestli, 2016). 
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Table 4. Data processing algorithms used in SHM of Jackets (Vestli, 2016). 

Processing Methods Application 

Fatigue rainflow of cycle counting Fatigue life evaluation 

Fourier Transform (FT/ FFT) Modal analysis 

Short Time Fourier Transform (STFT) Modal analysis 

Wavelet Transform (WT) Modal analysis 

 

The right method to use relies on the type of sensors that produces the data to be processed. The 

FT/ FFT, STFT, and WT algorithms are used when a conversation to frequency domain is 

needed. This is needed when accelerometers are used during modal analysis. The STFT was 

proposed as a better algorithm to process high-frequency signals by dividing the signal in a 

constant resolution, and do not take into consideration the different characteristics of high and 

low signals in the processing (Vestli, 2016).   

 

Figure 12. Illustrations of different transformations (Vestli, 2016). 

 



 

26 

 

According to Griffin and Chen (2006) about acoustic emission signals of rubbing, ploughing 

and cutting during single grit scratch tests, different types of transformation using in signal 

processing were reviewed. 

 

FFTs (Fast Fourier Transforms) were used in the past for condition monitoring, to estimate 

the frequency components and associated amplitudes. However, this method has a disadvantage 

as it doesn’t provide information on time when the event occurred. In other words, it doesn’t 

give information when deformation or fracture or combination of both happens, or when the 

elastic energy is released (Griffin and Chen, 2006).   

 𝑋(𝑓) =  ∫ 𝑥(𝑡) 𝑒−2𝑗𝜋𝑓𝑡 𝑑𝑡
∞

−∞
  (1) 

f: frequency 

t: time 

x: signal under transform 

x(t): signal in the frequency domain 

 

STFTs (Short-Time Fourier Transforms) technique considers time, frequency, and 

amplitudes in the measuring. The extra dimension of time can offer a good solution to 

characterize AE signal. STFT is equal to FT multiplied by a discrete window function along the 

length of the original time-domain signal (Griffin and Chen, 2006). 

 𝑆𝑇𝐹𝑇𝑥
(𝜔)

 (𝑡′, 𝑓) =  ∫ [𝑥(𝑡) 𝑤 (𝑡 − 𝑡′)] 𝑒−𝑗𝜋𝑓𝑡 𝑑𝑡
∞

−∞
 (2) 

x(t): time domain signal under transform 

w(t): the window function and  is the complex conjugate 

The resolution between the frequency and time domains is determined by the increment value of 

t’ (Griffin and Chen, 2006). 

 

WT (Wavelet Transforms) represents time-frequency analysis both in approximate and 

detailed scale. The analysis characterizes the signal in high-frequency burst of short duration 

and low frequency of longer duration, which can provide high resolution along the time-

frequency extracted signal (Griffin and Chen, 2006).  

 𝑊𝑠 [𝑥()] =  |𝑠|
−1

2⁄ ∫ 𝑥(𝑡)   (
𝑡− 𝜏

𝑠
)  𝑑𝑡

∞

−∞
 (3) 
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: translation, is the location of window which is shifted along the original time extracted signal  

s: scale parameters 

(t): the transforming function or so called the mother wavelet. 

 

Wavelet means a small wave and is based on the window function method of a wavelet with 

finite length and compactly supported. The mother function is from all windows using the 

wavelet function. In the function of WT, there is a scale parameter (the inverse of frequency 

which is similar to the phenomenon occurring in nature), instead of frequency parameter as in 

STFT or FT function (Griffin and Chen, 2006).  

WT can give a better resolution than that of STFT. The window of STFT signal processing 

technique shows an approximation of a specific time-frequency band, the user cannot extract an 

exact time at a particular point. On the other hand, WT indicates a smaller frequency with high-

short and low-long components and enables the user to read the exact start and finish point of 

the event (Griffin and Chen, 2006). 

 

2.2.2 Literature study of materials 

i. Yielding in materials 

Yielding begins when the applied stress is below the yield stress. The yield strength of metal 

appears when the offset strain is 0,2% (Tian et al., 2020). Yielding is explained as plastic 

deformation which takes place by slip, hence is caused by shear stresses. Plastic deformation 

will not happen unless the shear is adequate to cause slip. Yielding occurs when  

                                                                       = Fty  (4) 

It is when the stress () and uniaxial yield strength (Fty) measured in a tensile test is relatively 

equal. Without shear stress there can be no slip and no plastic deformation. Yielding will not 

happen regardless of how high the stress if the shear stress is zero. For slip to occur, one of the 

stresses must be larger than the other by Fty. A plane strain condition is more serious and can 

easily cause fracture and cracks (Broek, 1989).  
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Figure 13. Stress - strain behavior for steel (steelconstruction.info, 2020). 

 

ii. Deformation in materials 

When deformation starts, dislocations rapidly propagate, which would cause localized 

relaxations in the elastic strain distribution. It is likely that every mobile dislocation, growing 

crack, and debonding and/or breaking of every inclusion will lead to the initiation of elastic 

waves that propagate to the surface of the materials. AE can be successfully utilized to detect 

and distinguish various deformation mechanisms such as dislocation motion, debonding and/or 

braking of inclusions, interaction of dislocations with inclusions and precipitates, etc. As a 

result, AE technique is widely applied to study deformation behavior of engineering materials 

such as alloys and composites. One important AE source for metals and alloys is dislocation 

motion (slip), which mostly occurs at the yield stress of the material. In some cases, the high 

level of AE activity happens before the yield stress showing local plastic yielding. The low 

frequency events are firstly detected at stress quite lower than yield strength and most are before 

yield. This behavior is similar to the AE behavior from dislocation motion; therefore, it may be 

assumed that a possible AE source for low frequency events was dislocation motion (Khan et 

al., 2013). 

The AE energy E* released at strain ε during deformation depends on the mobile dislocation 

density ρ, dislocation velocity υ and dislocation free path α (Tian et al., 2020). 

 E* ∝ ρ (υα)2    (5) 

The AE energy increases as strain increases. Increasing the external stress would increase the 

plastic deformation rate and average dislocation velocity, while the change within the average 

free path of a mobile dislocation could be neglected. The primary source of AE during micro-

plastic deformation is dislocation activity and dislocation sources are activated by stress 

concentration at grain boundaries. Therefore, grain boundaries are considered as an important 

source of dislocations and the primary source of AE signals (Tian et al., 2020). 
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The analysis of fracture is based on a parameter indicating the crack tip stress field, which 

consists of  

- Linear Elastic Fracture Mechanics (LEFM) 

- Elastic-Plastic Fracture Mechanics (EPFM), which uses the strain energy release rate as 

quantity (Broek, 1989). 

For plastic deformation, the stress needed depends upon the state of stress; in plane, yielding 

happens when the highest principal stress is equal to the yield strength, but in the case of a 

triaxial state of stress, much higher stresses are required. When the entire section is yielding 

(fracture may occur before this could happen), the final stress distribution will be about the same 

(Broek, 1989).  

 

Linear elastic fracture mechanics (LEFM) 

All high strength materials used in the aerospace industry, high-strength-low-alloy steels, etc. 

are materials with relatively low fracture resistance, which can be analyzed on the basic of 

elastic concepts through the use of Linear Elastic Fracture Mechanics (LEFM). In a real material 

plastic deformation will occur so that stresses cannot increase much further after yielding 

begins. Yielding begins when the difference between maximum and minimum principal stress is 

equal to the yield strength, Fty (Broek, 1989). 

 

Elastic-plastic fracture mechanics (EPFM) 

If fracture is accompanied considerable plastic deformation, Elastic-Plastic Fracture Mechanics 

(EPFM) is used (Broek, 1989).  

 

 

Figure 14. EPFM (Broek, 1989). 
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The stress-strain equation: 

ε =  


E
   (6) 

ε is strain 

 is stress 

 

 

iii. Material properties 

Continuous emission from the plastic deformation of steels, aluminum alloys, and many other 

metals has been broadly studied, and there have been many detailed findings relating acoustic 

emissions to dislocation activity and precipitates, microstructure, and materials properties. 

Those studies can yield significant perceptions for the development of alloy and material. 

Continuous emission during and after yield has been focused on many studies; burst-type 

emissions sometimes observed in the nominally elastic region are less well explained (PAC, 

2014). 

Jones & Ashby (1986) described the material properties of various materials in the book named 

Engineering materials 2: An introduction to microstructures, processing and design published in 

1986. Material properties’ data is required for any design application. Detailed of material 

specifications from the supplier who will provide the materials used should be accessible before 

final design decisions making final decision. And if the component is a critical one (in case its 

failure could trigger a catastrophe), there should be conducted a test to check the material. The 

density, modulus, thermal expansion and specific heat of any steel, these properties depend very 

little on microstructure. Other properties vary greatly with the heat treatment and mechanical 

treatment, and the detailed alloy composition, which are the “structure-sensitive” properties 

such as: yield and tensile strength, ductility, fracture toughness, and creep and fatigue strength. 

They cannot be predicted from data for other alloys, even if the composition is almost the same. 

It is very important to check manufacturers’ data sheets listing the properties of the alloy that is 

planned to use, even though they contain the same mechanical and heat treatment (Jones and 

Ashby, 1986). Common sources of AE in materials include initiation/growth of cracks, material 

dislocations, yielding. The signals captured by sensors are affected by the medium (shape, size 

and material property) and the sensor characteristics (its type and the way it is coupled to the 

structure (Kaphle et al., 2010).  

Two things that defines the metal’s structure: first is the constitution (such as: the overall 

composition, or the elements/ components, that the metal contains and the relative weights of 

each of them; the number of phases, their relative weights and the composition of each phase); 

second is the geometric information about shape and size (here considers the shape of each 

phase and the sizes and spacings of the phases) (Jones and Ashby, 1986). 
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Crystal and glass structures 

Atoms are the smallest scale of controllable structural feature. On the metals, atoms are packed 

together to give either a crystalline or a glassy (amorphous) structure. The metal atoms pack into 

the simple crystal structures of face-centered cubic (f.c.c.), body-centered- cubic (b.c.c.) or 

close-packed hexagonal (c.p.h.). Many stainless steels are f.c.c. rather than b.c.c and at low 

temperatures, they have much better ductility and toughness compares to ordinary carbon steels 

(Jones and Ashby, 1986). 

 

Structures of solutions and compounds 

Metals are not usually used in their pure state, most likely other elements will be added to 

metals which turn them into alloys to get better mechanical properties (Jones and Ashby, 1986). 

 

Figure 15. Solid-Solution structures (Jones and Ashby, 1986). 

 

Phases  

Metal crystals, amorphous metals, solid solutions, and solid compounds – are all phases. A 

phase is defined as a region of material that has uniform physical and chemical properties (Jones 

and Ashby, 1986).  
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Grain and phase boundaries 

Single-phase is described as pure metal, or a solid solution. Making single crystals of metals or 

alloys is possible, but it is difficult and expensive. Therefore, it is only worth it for high-

technology applications such as single-crystal turbine blades or single-crystal silicon for 

microchips (Jones and Ashby, 1986). 

 

Figure 16. Grain boundary (Jones and Ashby, 1986). 

 

Figure above shows the structure of a typical grain boundary. To be able to ‘minimize the gap’ 

between two crystals of different orientation in the grain boundary, the atoms have to be 

organized in a less ordered way. The structure gives grain boundaries special properties of their 

own (Jones and Ashby, 1986).  

 

Shapes of grains and phases 

Grains come is all shapes and sizes, and both can influence the properties of the polycrystalline 

metal. Take mild steel as an example – its strength can be doubled by a ten-times decrease in 

grain-size. If there are no external effects, then the energy of the grain boundaries is the 

important thing. There are more shapes if the metal consists of two phases. It’s when a single-

crystal particle of one phase forms inside a grain of another phase, or if the energy of the 

interphase boundary is the same for all orientations (isotropic), the second-phase particle will try 

to be spherical in order to minimize the interphase boundary energy (Jones and Ashby, 1986). 
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2.2.3 Characteristic of AE signals 

i. AE wave types and modes 

Two broad classes of AE signals are burst signals and continuous signals (Terchi and Au, 2001). 

Acoustic emission applications are known for the ability to detect, distinguish, and analyze 

signals from both types of emission (Muravin, 2009). 

1. Burst signals are the spontaneous release of the strain energy, generated by the 

redistribution of the localized strain energy under different loading conditions which are 

caused by the microscopic changes in a structure, such as dislocation slips, grain 

boundary sliding, and phase transformation.  

2. Continuous signals are the result of overlapping burst signals. A complete 

characterization of an AE signal has to account for the number and rate of bursts (event 

count) and characterization of a single burst (Terchi and Au, 2001). 

 

Figure 17. Burst signals vs continuous emission of acoustic waves (Grosse and Ohtsu, 2008, p. 5). 

 

The magnitude and duration of the physical events occurring in the material affect the nature 

and power spectrum of acoustic emission (Rogers and Stambaugh, 2014) namely: 

i) ‘Continuous noise’ form many uncorrelated low energy dislocation events (atomic 

imperfections) 

ii) ‘Burst type noise’ due to the harmonized motion of many dislocation events (a 

dislocation avalanche) 

iii) Relatively high energy bursts from micro-fracture events come together with stable 

crack growth e.g. fatigue and stress corrosion cracking. 
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AE Wave modes 

 

Figure 18. AE signal (left) and Longitudinal, Shear, Rayleigh and Love Waves (right) (Muravin, 2008). 

 

 

Figure 19. Wave Modes in Different Geometries (Muravin, 2008). 

 

In semi-infinite media, there are Rayleigh and Lateral (Head) waves. Head waves generated by 

the interaction of the longitudinal waves with the free surface. In thinnest plates, only Lamb 

wave appearances are detectable (Muravin, 2008). 
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ii. AE waveform-based analysis 

 

Figure 20. Typical signals caused by a) transverse matrix crack and b) grip slippage or damage (Prosser, 

1998). 

 

Acoustic emission (AE) techniques based on the waveform, which is also known as Modal AE, 

provides an enhanced capability to distinguish and remove noise signals from those generated 

by damage mechanisms. The flexural mode propagates with a slower velocity and is highly 

dispersive with the higher frequencies traveling at higher velocities. Other techniques such as 

microscopy should be studied to confirm the ability to use AE in different material/ laminate/ 

geometry. Developments in modeling AE wave propagation will support the applicability of 

Modal AE by giving insight into the effects of different source mechanisms on detected AE 

signals (Prosser, 1998). 

With the availability of superior computing resources and data storage and transmission 

capability, recording and analysis of the complete signal waveforms is becoming a plausible 

analysis approach. Nonetheless, the issue of data volume has been a challenge in the use of AE 

technique for structural health monitoring applications. AE testing generates a large amount of 

data caused by a high sampling rate required for data capture. Additionally, it is even more 

complicated by the presence of false sources that can produce AE signals which can then cover 

the desired or genuine damage related signals. Therefore, there required an effective data 

analysis strategy to achieve source discrimination. This is essential for long term monitoring 

applications to prevent massive data overload in data storage and transmission. It is also useful 

to have a parameter that can be used to decide which data is important and needs to be 

transmitted. Analysis of frequency contents of recorded AE signals together with the use of 

signal waveform characteristics (waveform envelop) algorithms are the sophisticated and 

promising data analysis approaches for source discrimination (Kaphle et al., 2010).  

The basis for waveform-based analysis is that signals recorded contain information about the 

nature of the phenomenon; hence study of the signals will help identify and differentiate 

different AE signals (Kaphle et al., 2010). Analysis of the recorded AE waveforms will provide 

more information on the events and mechanisms leading to failure (Brunner et al., 2010).  
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Figure 21. Typical waveforms of AE signal (Lin and Chu, 2011, Kaphle et al., 2012, Yu et al., 2011). 

 

Figure above shows the typical waveforms of AE signal from various sources. The first one is 

signal from a pencil lead break (PLB), signal number two gives the typical waveform of an AE 

signal from knocking the leg test of the offshore structures. As shown in signal number three, 

the AE signals released from offshore platform model underwater. Signal number four is from 

friction emission (Lin and Chu, 2011, Kaphle et al., 2012, Yu et al., 2011).  
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Figure 22. AE signals from pressure vessel testing (Rao and Subramanyam, 2008). 

 

References of AE signals from pressure vessel testing were reviewed in a paper by Rao and 

Subramanyam (2008) in the publication regarding The Analysis of Acoustic Emission Signals 

using the Wavelet Transformation Technique. To be able to identify rubbing is difficult. This is 

because rubbing has elastic material energy properties, and in terms of its physical properties, 

elastic material has no or very little marking on the workpiece (Griffin and Chen, 2006). 
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Figure 23. Signal waveform at the yield stage of deformation (Akbari and Ahmadi, 2010). 

 

Waveform at the yield stage of deformation was described in a journal by Akbari and Ahmadi 

(2010) (Akbari and Ahmadi, 2010). This looks similar to the signal generated during micro-

plastic deformation. 

 

 

Figure 24. AE signal type A1 and A2 (Tian et al., 2020). 

 

Results from the study by Tian shows that during micro-plastic deformation AE signals 

generated different waveforms which are type A1 and A2. A type A1 signal is typical a burst 

signal with high amplitude and short duration, which is recognized as local dislocation 

multiplication events or grain boundary dislocation sources. Type A2 signal is a mixed signal 

created by two type A1 signals, which may be local dislocation multiplication and collective 

cooperative motion of local dislocations.  
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The paper by Brunner, A. J., Tannert, T. & Vallee, T. (2010) about waveform analysis of 

acoustic emission monitoring of tensile tests on welded wood-joints explained that the weld 

zone (around the center plane of the specimens) is a weak area with significant damage 

accumulation (Brunner et al., 2010). Another finding in carbon steel material with a single 

defect in V-butt weld was presented by Droubi in 2017. Very limited study in the literature has 

been conducted that reports on using AE as a tool for welding inspection. Welding inspection 

plays a key role to assess the integrity of any structure and its components in many industrial 

applications for instant pipeline systems in oil and gas, nuclear power, and petrochemical 

industries.  

Generally, there are six types of weld defects: porosity (PO), crack (CR), slag (SL), incomplete 

fusion (IF), incomplete penetration (IP) and no defect (ND). Variety of reasons that cause flaws 

in welded structures such lamellar tearing, which is often due to poor quality of steel, and 

cracking due to strain associated with phase change and thermal shrinkage. The structural 

integrity of welded structures will be affected by such flaws, consequently, welding requires 

regular inspection to monitor and evaluate their condition whether fit for a purpose or have lost 

part of their integrity due to aging problem. Actions are needed when a defect is noticed before 

leading to failure. Detecting weld defects as early as possible is important for the safety and 

continuity of operation of such structures. Quantitative interpretations of welded joint quality 

could be enhanced by identify unknown signals and evaluate their significance and correlating 

identified signals to the weld defect types. Droubi (2017) pointed out that among all AE 

parameters in the study, the key parameters in detecting a presence of a weld defect were found 

to be AE energy, root mean square (RMS) and peak amplitude. This was because of these three 

parameters indicating the largest percentage differences from the nodefect values (Droubi et al., 

2017).  
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Chapter 3 : Methodology of the study 

 

A literature study on current knowledge of AE signals and its characteristic was reviewed, 

with the focus on understanding signal by AET technology used in SHM for offshore steel 

jacket platforms. Microstructure of materials and fracture mechanics were discussed briefly 

to be able to understand AE signals and analyze the data measured from experiments from 

various steel samples. There are two main approaches to signal analysis, namely parameter-

based and signal-based analysis. This report focuses on the parameter-based analysis because 

signal-based analysis requires an advanced background in signal processing.  

Python was used to develop a computer program for data analysis of the signals that were 

recorded. The results can be visualized by the python program and QATS application.  

The AEwin software and input data were provided by DNV GL from the experiments 

performed in spring 2019 (Dawood_Khaled, 2019). AE signals were logged during three-

point bending test in various steel specimens. 

 

To summarize, the thesis consists of 4 main activities: 

 First is literature study that focuses on AET used as condition monitoring technique 

for offshore jacket structures and AE signals characteristics. Understand the concept 

of AE signal signatures through steel samples can contribute to investigate the data 

measured.  

 Extract appropriate signal waveforms from AEwin software.  

 Develop an algorithm using Python to evaluate the signals received from AET. 

 Process AET data from the tests to analyze AE parameters (such as amplitude, 

duration, frequency, energy, hit counts) and signals characteristics. 
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Chapter 4 : Experimentation and Python program 

 

4.1 Materials used and Experimentation 

Flat steel in quality S355J2 according to EN 10025-2 and NORSOK M120 MDS-Y05. 

Table 5 was derived from table 21 from Mr. Dawood (2019) report. Only a few specimens 

were chosen from the report in 2019 for data processing. 

Table 5. Specimens Dimensions (Dawood_Khaled, 2019). 

Specimen samples Thickness (mm) Width (mm) Length (mm) 

A1 (with coating) 14,74 30,10 500 

A3N (without coating) 14,72 29,82 500 

B1N (without coating) 19,76 29,61 500 

B2NR (Reversed) (without coating) 29,40 19,74 500 

• Samples A1, B1N: The normal force was applied on the width surface. 

• Sample A3N: The normal force was applied on the width surface and a fan was 

attached as an external noise source which has specific frequency.  

• Sample B2NR (Reversed dimension of sample B2N): The normal force was applied 

on the width surface (29,4mm) with thickness (19,74mm). The experiment here was 

repeated on the same B2N specimen with the force that was applied in different side 

of the specimen. The reason to do this is because the specimen would be deformed 

after the first test. Then in the second attempt, the specimen would be in the plasticity 

stage and therefore, different AE results would be recorded and analyzed 

(Dawood_Khaled, 2019). 

Three-point bending machine shall be used to load the specimens to the desired load. In a 

bend test, the specimen is exposed to a complex combination of forces including tension, 

compression, and shear when it bends or flexes. Tensile stress appears in the convex side of 

the specimen and compression stress in the concave side. An area of shear stress is generated 

along the midline. (Instron, 2020). Test setup is described in appendix 5. 

 

Figure 25. Bending test. 
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4.2 Waveform data from AEwin 

The data used in this work was collected from AEwin software (given accessed by DNV GL) 

by exporting from the experiments that were done in spring 2019 (Dawood_Khaled, 2019). 

Figure 26 shows the recorded data from A1 specimen, this is loaded into AEwin and 

replayed, from here the data was exported into ASCII Waveforms as a csv (comma separated 

values) file. The csv contains the foundation for the input to the developed signal processing 

program. 

 

 

Figure 26. Extracting waveform information from AEwin. 

 

 

Figure 27. Information of one waveform (in .csv format). 

 

Figure 27 is an example of a waveform (hit) data that was extracted from AEwin. 
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For each of the experiments, there are multiple files that cover relative timestamp and signal 

amplitude. For instance, the specimens that were coated contains a lot of files, A1 test has 

total 7888 files that includes two channels (data from two sensors), A2 has 7097 files, and 

etc.; the specimens without coating have smaller number of recorded files, A3 contains 826 

files, B1 has 245 files, B2 has 622 files, and etc. Due to AEwin hardware setup (appendix 3), 

each hit contains 1024 data points (1024 microseconds of which the pre-trigger duration is 

256 microseconds). The signal and time units in .csv file are recorded in volts (V) and 

seconds (s), which subsequently will be converted to micro volts (mV) and microseconds 

(s) to make interpreting the signal easier as the interval between the signals in the csv files 

are 1 s. 

 

4.3 Python program 

This program is used to characterize the Acoustic Emission signal by extracting number of 

signals in a time series using some criteria given by the input parameters and thereafter 

extracting some of the characteristics of each signal. This was developed in Python by using 

JetBrains PyCharm and is compatible with python version 3.4 and newer. The source codes 

are attached in appendix 1.  

There are a total of three programs that were developed in Python. The first one called 

Process Signal, is used to collect, and connect the data from AEwin. The second one, Signal 

Output, helps to illustrate the complete waveform of each experiment without repeating 

signal processing. The third program, Display Detected Waveform, processes detected 

waveforms and exports plots of the waveforms.  

The program was developed by utilizing different packages to solve different problems that 

specializes in each field which helps to reach the goal of analyzing the AE signal waveform. 

Packages is a way to extend the functionality of Python to go beyond the standard features. 

For example, matplotlib.pyplot allows to supply two axis (x, y axis) and thereafter plots and 

displays them. 
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The block diagram in figure 28 explains the workflow of how the signal was processed. 

 

Figure 28. Block diagram explains signal processing. 

 

In this work, these are the packages that were used: 

import pandas as pd  # Import pandas for data manipulation 
import argparse  # Import argparse for parsing command line parameters 
import numpy 
import matplotlib.pyplot as plt  # Import matplotlib module for plotting 
import matplotlib.patches as mpatches  # Needed for putting label on figure 
import pickle  # Used for serializing object to disk, we use this to store the figure to 
retrieve later 
# this allows us to interact with the model without calculating values again. 
import os  # Import os for doing file operations, read the files from specified folder 
import re  # Import re for regular expression to select correct files and parse channels and 
Time 
# of test and number of hit 
import datetime  # Used to interact and calculate dates and time for output files 
from natsort import natsorted, ns  # sort file names naturally 
from enum import Enum 
 
# Enum defining the signal type. This is used so that we can easily display the labels and 
colors in the figures and 
# makes counting signal types easier 
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Figure 29. Install packages in Python. 

 

To run the application, there are some default parameters, but the input and output folder 

name needs to be provided to match the local environment, since the folder structure will be 

different. Input parameters are presented below: 

-InputFolderName (# path where the exported files located) 

"./Bao 2020/B1/" 

-OutputFolderName (# path where the results will be placed) 

"./Bao 2020 output/" 

-SignalThresholdInPercent 

10 

-PeakThresholdInPercent 

80 

-ThresholdMarginInPercent 

5 

-ZeroDuration 

12 

-ChannelId 

1 

 

The signal threshold was set to 10% of max amplitude (absolute max value between min and 

max amplitude), peak threshold was set at 80% of max amplitude. Zero Duration (s) is the 

duration when the signal falls below signal threshold. There is +/-5% in the value range to 

classify signal into types. For example: 

# Crack-like should be rise_percent less than or equal to 10%, fall_percent more than or 
equal to 84% and 
# peak_percent should be less than or equal to 6% 
 
# Type A (e.g. Crack-like) 
if abs(rise_percent - 5) <= margin and abs(fall_percent - 90) <= margin and 
abs(peak_percent - 5) <= margin 
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Figure 30. Run configurations. 

 

 
Figure 31. Parameters explanation. 
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Important code blocks for this program: 

1. Create a logical output filename.  

specimen_id = InpFolder.rpartition('/')[0].rpartition('/')[2] 
date_time = datetime.datetime.now()  # to set unique file name for each run 
file_name = OutputFolder + date_time.strftime("%Y%m%d%H%M%S") + "_" + 
str(specimen_id) + "_C" + str(ChannelId) + \ 
    "_S" + str(int(SigThres)) + "_P" + str(int(PeakThres)) 
 
# For example: 20200601224750_A1(specimen_id)_C1(channel_id)_S10(signal 
threshold in percent)_P80(peak threshold in percent).txt|pickle 

This file name covers timestamp of the result (finished at 22:47:50 on 12th June 2020), 

from A1 specimen, channel number 1, with signal threshold at 10% of Max absolute 

amplitude value and peak threshold at 80% of Max absolute amplitude value. 

 

2. Parse filenames and get specimen id, file number, channel id and timestamp. 

# example "pencil break_1_1_31239062.csv" 

The data output from AEwin gives information about the specimen ID, channel ID, 

hit number and the time this hit was documented. The example above is waveform 

recorded from pencil break (PLB), the first hit in channel 1 at 00:00:31239062, or in 

other words at 31s and 239062 s. 

 

3. Read contents from input files and calculate relative timestamp and put into data 

frame to allow processing of the data. Each file needs to be transformed to remove the 

pre-trigger signals as these are not useful, this is done by slicing the data frame and 

only keeping what is after the 256 indexes. To get the correct unit from the exported 

files the signal needs to be multiplied by 1000 to get microvolts instead of volts. 

 

4. Go through the newly created data frame and look for signal values that are above 

signal threshold and mark them as start point. Then look for the signal end, dropping 

below signal threshold.  

Three possible ends to signal 

a. Dropping below signal threshold 

b. Zero duration is reached 

c. Time between the current and previous signal is longer than 766 microseconds 

(length of file) 
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5. Calculate all relevant statistics data (average amplitude, max amplitude, min 

amplitude, max amplitude time stamp, rise/ fall/ peak duration and so on) that 

provides the base for classifying signals. 

 

Waveform characteristics is illustrated below: 

 

 

Figure 32. Waveform characteristic (parameters such as: duration, rise duration, fall duration, peak 

duration, signal threshold, peak threshold, max amplitude). 

 

 

Figure 33. Signal Type A, color Yellow. Rise duration very fast, peak very short, fall duration long. 
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Figure 34. Signal Type B, color Green. Rise- and Fall duration equal, peak duration very short. 

 

Figure 35. Signal Type C, color Pink. Fast Rise- and Fall duration, long peak duration. 

 

Source code: 

 

def check_waveform_characteristic(duration, rise_duration, fall_duration, peak_duration, 
margin, data_vector, 
                                  current_index): 
    # Need to look for fast rise time, short peak and long fall duration 
    # Calculating percentages 
    rise_percent = (rise_duration / duration) * 100 
    fall_percent = (fall_duration / duration) * 100 
    peak_percent = (peak_duration / duration) * 100 
 
    # Type B (e.g. Mechanical rubbing) 
    if abs(rise_percent - 47) <= margin and abs(fall_percent - 47) <= margin and 
abs(peak_percent - 6) <= margin: 
    #if (rise_duration < duration / 3) and (duration < duration * 2 / 3): 
        return SignalType.GREEN 
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    # Type C (e.g. Leak) 
    elif abs(rise_percent - 15) <= margin and abs(fall_percent - 15) <= margin and 
abs(peak_percent - 70) <= margin: 
        return SignalType.PINK 
 
    # Crack-like should be rise_percent less than or equal to 10%, fall_percent more than or 
equal to 84% and 
    # peak_percent should be less than or equal to 6% 
 
    # Type A (e.g. Crack-like) 
    #if abs(rise_percent - 5) <= margin and abs(fall_percent - 90) <= margin and 
abs(peak_percent - 5) <= margin: 
    elif abs(rise_duration < duration / 3): 
        signal_type = SignalType.YELLOW 
        # Check if not last signal? 
        if current_index + 1 < len(data_vector.MaxAmplitude): 
            next_signal_type = data_vector.Type[current_index + 1] 
            next_signal_max_amp = data_vector.MaxAmplitude[current_index + 1] 
            signal_max_amp = data_vector.MaxAmplitude[current_index] 
            next_signal_timestamp = data_vector.EndTime[current_index + 1] 
            signal_timestamp = data_vector.StartTime[current_index] 
            if next_signal_type == SignalType.YELLOW and signal_max_amp <= 
next_signal_max_amp / 2 and \ 
                    signal_timestamp - next_signal_timestamp < 766:  # checking if the previous 
signal is yellow 
                data_vector.Type[current_index + 1] = SignalType.RED  # setting both signals to 
red 
                signal_type = SignalType.RED 
 
        return signal_type 
    elif rise_duration > duration * 2 / 3: 
        return SignalType.ORANGE 
    else: 
        return SignalType.GRAY 

 

 

6. The text output gives detailed information that supports to analyze the signal 

characteristics. This report contains necessary data, such as: max amplitude, max 

amplitude time stamp, number of zero crossing (NZC), rise/ fall/ peak duration, type 

of signal, etc.   

 

 

7. Plotting of waveform diagram and scatter plot are done by using matplotlib.pyplot. 

This package allows for easy creation of different figures, the two relevant plots are 

waveform and scatter. This requires creating a figure and specifying labels for the 

different signal types, a title for the figure itself, x and y axis and finally the actual 

values of x and y. The pyplot package takes care of generating the figure. 
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Waveform plot code: 

plt.figure(1, figsize=(16, 4)) 
legend_list = [mpatches.Patch(color='GRAY', label='Not classified signal: ' + 
str(waveform_count[SignalType.GRAY])), 
               mpatches.Patch(color='YELLOW', label='Signal type A: ' + 
str(waveform_count[SignalType.YELLOW])), 
               mpatches.Patch(color='GREEN', label='Signal type B: ' + 
str(waveform_count[SignalType.GREEN])), 
               mpatches.Patch(color='PINK', label='Signal type C: ' + 
str(waveform_count[SignalType.PINK])), 
               mpatches.Patch(color='RED', label='Signal type D: ' + 
str(waveform_count[SignalType.RED])), 
               mpatches.Patch(color='ORANGE', label='Signal type E: ' + 
str(waveform_count[SignalType.ORANGE]))] 
plt.legend(handles=legend_list) 
plt.gcf().canvas.set_window_title('Signal waveform-time') 
plt.title("Specimen: %s" % specimen_id + " Channel: %s" % ChannelId) 
plt.xlabel("Time (microsecond)")  # Set x axis label 
plt.ylabel("Signal (micro volt)")  # Set y axis label 
plt.plot(data.Time, data.Signal) 

 

8. Eventually, running this program will generate four possible outputs, two files with 

text (one in .txt and one in .csv) and four files include figures (two .png and two 

.pickle). The text file contains information of identified signals, this covers the same 

information as printed in the console output. The .csv file merges all relevant files 

(767s of each file) of a specimen from selected channel to one large file, which can 

be use in QATS application, which is a python library developed for efficient 

inspection and analysis of time series. There are two figures in .png, the first one 

shows the behavior of signal waveform over time, the second is a scatter plot which 

displays the relationship of signal amplitude, waveform type and time. The files in 

pickle help to trigger figure models that can quickly be loaded back in without 

regenerating. 

 

9. Signal Post-processing can be done in excel, Python and QATS. In excel, several 

relationships from different output parameters which are generated from Python 

(Signal processing program) can be evaluated, such as relationship between NZC vs 

signal duration, Rise/ Fall/ Peak-duration vs signal duration, NZC vs Number of count 

half max absolute amplitude (CHMA), and so on. In Python, detected waveforms can 

be displayed and noise is filtered to analyze the frequency content (FFT). QATS is a 

python library, it enhances post-processing, quality assurance and reporting of time-

domain simulations. In QATS, signals can be reviewed in time history, power 

spectrum and cycle distribution. 
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Figure 36. QATS window of B1 specimen. 
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Chapter 5 : Results and Discussion 

 

5.1 General 

This chapter analyzes the signal waveform using a parameter-based characterization by using 

duration and amplitude. Changing the parameters (threshold, peak threshold and zero 

duration) and executing the program and reviewing the results multiple times until the output 

showed identified signals classification of signal types. For example, if the threshold value 

was set too low, the waveform would be selected from start to end duration. If set too high, 

nothing would be selected. Zero duration also has a significant impact on selecting the signal, 

this value determines how long the signal can drop below threshold before the signal is 

ended. If too low crucial signals could be terminated early and too high signals could get 

merged and not properly classified. 

During this process it was discovered that fixed threshold value would not work efficiently 

across the merged data as the signal amplitude varied considerably. To combat this problem 

the threshold and peak threshold values were changed to be a percentage of the absolute 

maximum signal amplitude in the set of data points for example 10% of 1000 mV then the 

threshold value for this set would become 100 mV. This change gave better results overall, 

but also had a consequence of selecting some weak signals that was not of interest. 

After experimenting with different values for these three parameters the threshold was set to 

10%, the peak threshold set to 80% and zero duration to 12 s and most of the tests were 

done with these settings. The complete explanation of the input parameters and values in use 

can be found in figure 31 in chapter 4. 

The later stages of program development support Fast Fourier Transform (FFT) was added, 

but due to time constraints the output from this new feature has not been thoroughly 

analyzed. In this version the FFT does not affect the signal type categorization. 

During analysis specimen B1 was the main samples used for evaluating signal data. In this 

chapter, the relationship between stress, signal strength and amplitude vs time was reviewed. 

Next the waveform output from the developed program was discussed. Derived parameters 

(include duration, rise duration, fall duration, peak duration, max amplitude, start time, NZC, 

CHMA) from the output of signal waveforms were evaluated to have a better understanding 

of the signal characteristics. Frequency analysis was also explained briefly. 
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5.2 Relationship between Stress, Amplitude and Signal 

strength vs Time 

 

Figure 37. Stress, Amplitude and Signal strength vs Time of specimen A1. 

 

Figure 38. Stress, Amplitude and Signal strength vs Time of specimen B1. 

 

Figure 39. Stress, Amplitude and Signal strength vs Time of specimen B2 reversed (without coating). 
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The activity increases the closer one gets to the yield value. This high activity or intensity 

(the intensity can be measured as energy, signal strength, absolute energy or similar per time 

unit) can be used to determine whether yielding occurs or not. From the plots above, the 

number of signals started to increase after 240s in A1, 220s in B1 and 100s in B2NR. The A1 

specimen had a coating layer and the cracking of this generated significantly more signal data 

during the test. B2 reversed specimen took lesser time to get to the yield point, and the signal 

strength was also weaker than other specimens since it was already deformed once before this 

test was done. 

This approach is not very precise therefore it is crucial to go deeply into the details of the 

signal waveform to check for indicators of material deformation. The signal strength itself is 

not a good indicator as the sensor proximity can affect this. For instance, in A1 there were 

many signals, but the reason for this was the coating layer cracking and not yielding 

(Dawood_Khaled, 2019). Identifying many waveforms of a specific type around the same 

time can be a solution for this obstacle. 

 

5.3 Signal from pencil lead break (PLB) tests 

 

Figure 40. PLB test, signal recorded at channel 1. 

 

Figure 41. PLB test, signal recorded at channel 2. 
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Figure 42. Signal type A recorded at channel 1 in PLB at 87854496 s. 

 

Figure 43. Signal recorded at channel 2 in PLB at 87854433 s. 

 

Comparing the signals between the two sensors in PLB test revealed signal similarity, as the 

largest signals started within 63 s of each other. Figure 40 and 41 above show the signals 

that were recorded from sensor 1 and 2. Figure 42 and 43 show the signal from sensor 1 was 

recorded at 87854496 s, with duration of 749 s, max amplitude at 9880 mV, 198 times 

NZC and 159 times of CHMA. Sensor 2 recorded the same signal, but with fractionally 

different data, starting at 87854433 s with a duration of 759 s, max amplitude of 9838 mV, 

NZC 180, and CHMA 159. 
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5.4 Comparison of signal from two sensors 

Results from scatter plot and waveform plot show that signal type A is the most identified 

signals during three-point bending test. A1 generated a multitude of signal type B, C and E, 

while specimen B1 showed much less activity. This discrepency is most likely caused by A1 

having a coating layer which rubs or cracks open during material deformation as the specimens 

are the same material and dimensions (Dawood_Khaled, 2019). 

The majority of signals are of type A in both test A1 and B1, the algorithm is not able to identify 

the difference between cracking in coating and cracking in material. 

 

 

Figure 44. Scatter plot from A1 test, channel 1. 

 

Figure 45. Scatter plot from A1 test, channel 2. 
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Figure 46. Scatter plot from B1 test, channel 1. 

 

Figure 47. Scatter plot from B1 test, channel 2. 

 

 

 

 

 

 

 

 

 



 

59 

 

Comparing the waveform plot below (figure 48 and 49) with the relationship between Stress, 

Amplitude and Signal strength vs Time in section 5.1. The results show that in specimen A1, the 

intensity of activity increases from 240s and the activity with the highest amplitude is at 411s. 

The intensity in specimen B1 increases from 220s, the highest amplitude was recorded at 223s. 

 

 

Figure 48. Waveform plot from A1 test. 

 

Figure 49. Waveform plot from B1 test. 
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5.5 Observed waveform types in test B1 

Reference of signal types A, B, C and E below were registered from B1 test, with zero duration 

of 5 s. One reason why no signal type D was not identified could be due to discontinuity in the 

signal waveforms that were recorded. This type represents the waveform characteristics of 

yielding in the material. Expected signal characteristic of type D would be a combination of two 

type A signals where the latter has at least twice the max amplitude of the previous. 

 

Figure 50. Signal type A (color YELLOW). 

Figure 50 shows the signal rising to peak value within the first 
1

3
 of the duration with short peak 

duration. 

 

Figure 51. Signal type B (color GREEN). 

Figure 51 contains a signal type B diamond shape highlighted in green, with rise duration equal 

to fall duration and short peak duration. 
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Figure 52. Signal type C (color PINK). 

Signal type C, indicated by pink color, has a hexagon shape with fast rise and fast fall duration 

and long peak duration. 

 

Figure 53. Signal type E (color ORANGE). 

Signal type E in orange shows the signal rising to peak value through the last 
2

3
 of signal 

duration. In other words, this signal has long rise duration and short fall duration. 
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5.6 Fast Fourier Transformation (FFT) of selected signals 

 

Figure 54. Signal from test A1. 
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Figure 55. Signal from test B1. 
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The developed signal processing program helps to capture and display detected waveforms with the amplitude greater than a specific threshold 

and enable the function to examine the frequency content of the signal. Time-domain is converted to a frequency domain in Fourier transform. 

The transformation breaks down the time-based waveform into sinusoidal terms, with unique intensity, frequency, and phase. FFT can locate 

intensity of frequency which can help to determine if intensity is high around natural frequency of the material.  

For A1 specimen threshold was set at 2000 mV and B1 threshold was set at 500 mV, resulting in numerous waveform plots for each execution. 

The two figures (54 and 55) were selected based on the highest absolute signal values for specimen A1 and B1. Result from the signal measured 

in A1 specimen shows that the intensity spikes around 2 kHz and 15 kHz, in specimen B1, the intensity of the recorded signal increases around 8 

kHz and 42 kHz. 

There is an abundance of interesting data to be analyzed in frequency domain, however due to time limitation, no comprehensive study has been 

done. 
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5.7 Study of derived parameters of signals from test B1 

 

 

 

Figure 56. Parameters from test A1 (in comparison with signal duration). 
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Figure 57. Parameters from specimen A3 (in comparison with signal duration). 

Maximum duration for each waveform was 768 s due to how AEwin was configured during the tests. None of the signals are continuous, there 

are significant gaps from one waveform to the next. This in turn likely had an impact on signal classification in this report. All specimen shows a 

similar trend in the relationship between rise, fall and peak vs duration, it is more obvious in figure 56 due to a greater recorded signal data. It 

makes the relationship between all the parameters easier to observe. 

 

Signal duration = rise duration + fall duration + peak duration. (7) 

 

As mentioned previously, signal type A is the most detected. The figure 56 and 57 show that rise duration is recorded mostly below 150 s 

(below 
1

3
 duration of a recorded signal), fall duration is larger than 

1

2
 duration of a recorded signal, peak duration is mostly below 100 s. 
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Figure 58. Parameters from specimen A1 (in comparison with signal duration and start time). 
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Figure 59. Parameters from specimen A3 (in comparison with signal duration and start time). 
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NZC vs Signal duration shows an interesting trend, a steady increase in NZC as duration increases which is obvious but has a sharp rise at the 

signal end. This could be because of overlapping datapoints in the figure and the increase at the end is caused by a bigger spread of final NZC. 

The signals with the longest duration also have the highest number of zero crossing. 

The relationship between start time vs NSZ and max amplitude for A3 seems to all increase the as start time increases. The exception is signal 

duration, which looks to have an even distribution of signal that last for 768 s. For A1 specimen there is an accumulation of detected signals 

starting after 250s indicating low activity in the early stage of the test. 

 

 

Figure 60. NZC vs CHMA. 

NZC in figure 60 A1 increases rapidly compared to CHMA and begins to flatten out which seems to indicate a lot of low amplitude signals at a 

higher frequency. While on B1 indicates that the signal starts abruptly with many higher amplitude values and has high activity around the 200 

NZC area. A3 is very similar to B1 except it starts with quite low amplitude signal values before ending up with similar trend to B1 around the 

area of 200 NZC. 
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5.8 Waveform statistics across several tests 

Statistics across several tests are collected below in table 6 and 7. The table shows a relationship 

between signal type and number of hits per waveform. The results indicate that signal A was the 

most abundant type, next was type E, then followed type B and lastly was type C. The only 

exception was that no signal type B and C were identified in test B1 from sensor 1. 

 

Table 6. Number of hits per waveform type from sensor 1. 

Test ID Zero 

duration 

Number of hits per waveform type 

A B C E Unknown Sum 

A1 12 4364 37 9 202 411 5023 

A3 12 561 7 0 65 114 747 

B1 12 111 0 0 5 6 122 

B2N 12 284 3 1 19 40 347 

 

 

 

Table 7. Number of hits per waveform type from sensor 2. 

Test ID Zero 

duration 

Number of hits per waveform type 

A B C E Unknown Sum 

A1 12 4306 58 5 209 430 5008 

A3 12 505 5 1 40 56 607 

B1 12 172 1 0 16 33 222 

B2N 12 235 2 3 7 17 266 
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Chapter 6 : Conclusive remarks and Recommendations 

for further work 

 

6.1 Conclusive remarks 

The thesis reviews a literature survey of AE technology, AET, and signal processing. This 

includes a study on the yielding mechanism in metal (mainly steel) and a discussion about 

material properties. There are two approaches to investigate AE signals, classical parameter-

based, and quantitative signal-based analysis, where characterization, positive and negative of 

each analysis method were explained. Applications of the AE technique used in the industry and 

the future of AE are also considered. According to research, the future of AE technology looks 

promising. It is shown that the development of field monitoring for offshore structure can lead 

to enhancements in sensor technology and monitoring systems and further provide a reliable 

standardization for a set of instructions and design of the AE technology. However, there is a 

need to develop efficient algorithms to leverage collected data and characterize data signatures 

that are sensitive to operational, environmental, and sustainable processes. 

The study was able to analyze the characteristics of the AE signal. The process started with 

merging signal data extracted from AEwin, then developed computer programs to help identify 

relevant waveforms. Once the original data had been processed and highlighted, the next step 

was to categorize the different signal signatures. An algorithm with a defined set of rules was 

applied to this data and signals could be grouped and visually represented in waveform and 

scatter figures. This helped to confirm or dismiss that the signals had been correctly identified. 

The program managed to create visualizations of waveforms to look for signal properties that 

could identify signal types. The obstacle during the work was that the complexity of signal 

processing was greater than anticipated. Developing tools for classifying the signal required a 

lot of effort leaving limited time to analyze and understand the signal. For instance, a waveform 

representing yielding was not identified even on tests that were expected to contain it. The 

program is ready to do the analysis but depending on how the yield waveform is captured, the 

classification algorithm may need to be adjusted to appropriately identify this type. 

This report managed to identify many different categories of signals and it is believed that with 

better test-data the program should be able to identify signal characteristics with even more 

precision. After implementation and testing in multiple iterations, the results showed good 

improvement and more signals were correctly classified. As many signals were not classified, a 

need for a configurable margin of error became apparent. It is no doubt that in offshore 

production with a lot of background noise, the application can prove harder.  
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6.2 Recommendations for further work 

Recommendations for further work are considered as follows: 

 Research effort should also focus on improving algorithms to categorize more signal 

types.  

 For future work, the focus should be on recording lager hit data to detect yielding while 

the material deforms.  

 Laboratory experiments should also include specimens with welds and coatings to verify 

that the signals can be characterized. A proposal for a future small-scale test program 

with welded samples is attached in appendix 5, specimens include: 

• Welded vs. base material  

• Coated vs. uncoated specimens 

• Small (less than 60 cm long) vs. long (up to 4m) 

• Simple bar vs. truss 

 It is clear that the study in this thesis would be interesting when applied to a bigger 

structure, with complexity in materials, dimensions, and shapes, and exposed to dynamic 

loading conditions. Further testing on the offshore platform can be conducted to evaluate 

the reliability of AE technology. 

 Analyzing the data in the frequency domain (for instance WT or STFT) in comparison 

with the time domain to have a better understanding of the signal characteristic. 

 Development of a monitoring system for SHM to be able to accurately record relevant 

signals. 
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Appendix 

1. Python program 

The work is done with tremendous contributions from Ole Gabrielsen and Svein Anfinnsen. 

Signal processing 

# -*- coding: utf-8 -*- 
# ------------------------------------------------------------------ 
# File         : ProcessSignal.py 
# Project      : AET signal characteristics 
# Client       : N/A 
# Purpose      : Extract number of signals in a time series using some criteria  
#                given by the input parameters and thereafter extract some of 
#                of the characteristics of each signal.  
# 
# Prerequisite : Works with Python 3.4 and newer. 
# Created by   : 2020-01-30 GABO 
# Expanded and modified by : 2020-07 Bao Nguyen and Svein Anfinnsen 
# Date/version : 2020-01-dd / 1.0: First release 
#                2020-07-dd / 1.1-9: Last release, total nine updates 
 
from pathlib import Path 
from typing import Collection 
 
import pandas as pd  # Import pandas for data manipulation 
import argparse  # Import argparse for parsing command line parameters 
import numpy 
import matplotlib.pyplot as plt  # Import matplotlib module for plotting 
import matplotlib.patches as mpatches  # Needed for putting label on figure 
import pickle  # Used for serializing object to disk, we use this to store the figure to retrieve later 
# this allows us to interact with the model without calculating values again. 
import os  # Import os for doing file operations, read the files from specified folder 
import re  # Import re for regular expression to select correct files and parse channels and Time 
# of test and number of hit 
from datetime import datetime  # Used to interact and calculate dates and time for output files 
 
from natsort import natsorted, ns  # sort file names naturally 
 
from enum import Enum 
 
# Enum defining the signal type. This is used so that we can easily display the labels and colors in the figures and  
# makes counting signal types easier 
class SignalType(Enum): 
    GRAY = "Unknown" 
    YELLOW = "A" 
    GREEN = "B" 
    PINK = "C" 
    RED = "D" 
    ORANGE = "E" 
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    @classmethod 
    def has_value(cls, value):  # Method for checking if value exists in the enum 
        if isinstance(value, SignalType):  # Could get garbage, need to verify type is SignalType 
            return value in cls  # Confirmed value is instance of SignalType, but could exist or not  
        else: 
            False  # does not have value 
 
 
# Counting each type by SignalType 
def count_detected_waveforms(data_vector): 
    # Creating key value for incrementing when counting 
    dict = { 
        SignalType.GRAY: 0, 
        SignalType.YELLOW: 0, 
        SignalType.GREEN: 0, 
        SignalType.PINK: 0, 
        SignalType.RED: 0, 
        SignalType.ORANGE: 0 
    } 
 
    for i in range(len(data_vector.Type)): 
        signal_type = data_vector.Type[i]  # Retrieve the signal type from the identified waveforms 
        if SignalType.has_value(signal_type):  # Check that signal_type is a valid 
            dict[signal_type] += 1  # Increment count for this signal type 
 
    return dict 
 
 
def MeanValue(DataVector): 
    if len(DataVector) > 0: 
        mValue = sum(DataVector) / len(DataVector) 
    else: 
        print("MeanValue ERROR: Vector length is zero.") 
    #    print("MeanValue: Sum = ",sum(DataVector)," Length = ",len(DataVector),"Mean value = ",mValue) 
    return mValue 
 
 
def MaxAmplitude(DataVector, mValue): 
    if len(DataVector) > 0: 
        MaxAmp = max([abs(max(DataVector)), abs(min(DataVector))]) 
    else: 
        print("MaxAmplitude ERROR: Vector length is zero.") 
    #    print("MaxAmplitude: Sum =",sum(DataVector)," Length= ",len(DataVector),"Max amplitude = ",MaxAmp) 
    return MaxAmp 
 
 
def max_amplitude_timestamp(time_vector, data_vector, m_value): 
    if len(data_vector) > 0: 
        current_max = -1 
        current_max_timestamp = -1 
        for i in range(len(data_vector)): 
            max_amp = max([abs(data_vector.iloc[i] - m_value), abs(m_value - data_vector.iloc[i])]) 
            if current_max < max_amp: 
                current_max = max_amp 
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                current_max_timestamp = time_vector.iloc[i] 
    else: 
        print("MaxAmplitude ERROR: Vector length is zero.") 
    #    print("MaxAmplitude: Sum =",sum(DataVector)," Length= ",len(DataVector),"Max amplitude = ",MaxAmp) 
    return current_max_timestamp 
 
 
def NumZeroCrossings(DataVector): 
    if len(DataVector) > 0: 
        #   Code from: 
        #   https://stackoverflow.com/questions/3843017/efficiently-detect-sign-changes-in-python 
        nzc = len(numpy.where(numpy.diff(numpy.signbit(DataVector)))[0]) 
    #        print(numpy.where(numpy.diff(numpy.sign(DataVector)))[0]) 
    else: 
        print("NumZeroCrossings ERROR: Vector length is zero.") 
    return nzc 
 
 
def riseDuration(DataVector, peakThreshold): 
    # time from signal threshold to crossing peak threshold 
    if len(DataVector) > 0: 
        index = riseDurationIndex(DataVector, peakThreshold) 
        rDuration = int(DataVector.Time.iloc[index]) - int(DataVector.Time.iloc[0]) 
    else: 
        print("Rise duration ERROR: Vector length is zero.") 
    #    print("MeanValue: Sum = ",sum(DataVector)," Length = ",len(DataVector),"Mean value = ",mValue) 
    return rDuration 
 
 
def riseDurationIndex(DataVector, peakThreshold): 
    # time from signal threshold to crossing peak threshold 
    index = -1 
    if len(DataVector) > 0: 
        import operator 
        # Need to have a current peak to hold highest signal strength in case we don't reach peak threshold 
        currentPeak = 0 
 
        for i in range(len(DataVector.Signal) - 1): 
            currentSignal = abs(float(DataVector.Signal.iloc[i])) 
            if currentPeak <= currentSignal: 
                currentPeak = currentSignal 
                index = i 
            if currentSignal >= peakThreshold: 
                index = i 
                break 
    return index 
 
 
def fallDuration(DataVector, peakThreshold, riseIndex): 
    # time from falling below peak threshold to signal threshold 
    if len(DataVector) > 0: 
        import operator 
        # Need to have a current peak to hold highest signal strength in case we don't reach peak threshold 
        currentPeak = 0 
        index = -1 
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        for i in range(len(DataVector.Signal) - 1, 0, -1): 
            currentSignal = abs(float(DataVector.Signal.iloc[i])) 
            if currentPeak < currentSignal: 
                currentPeak = currentSignal 
                index = i 
            if currentSignal >= peakThreshold or i <= riseIndex: 
                index = i 
                break 
 
        # index, value = max(enumerate(DataVector.Signal), key=operator.itemgetter(1)) 
        # index = DataVector.idxmax(axis=0) 
        fDuration = int(DataVector.Time.iloc[len(DataVector.Time) - 1]) - int(DataVector.Time.iloc[index]) 
    else: 
        print("Fall duration ERROR: Vector length is zero.") 
    #    print("MeanValue: Sum = ",sum(DataVector)," Length = ",len(DataVector),"Mean value = ",alue) 
    return fDuration 
 
 
def peakDuration(duration, riseDuration, fallDuration): 
    # time spent above threshold 
    peakDuration = duration - (riseDuration + fallDuration) 
    return peakDuration 
 
# Type Unknown (Noise, unidentified flying waveform (UFW)) 
# Recorded amplitude over signal threshold, but isn't grouped in any waveform envelop 
# Color GRAY (default) 
 
# Type A (e.g. Crack-like) 
# Rise duration very fast, peak very short, fall duration long 
# Color YELLOW 
 
# Type B (e.g. Mechanical rubbing) 
# Rise- and Fall duration equal, peak duration very short 
# Color GREEN 
 
# Type C (e.g. Leak) 
# Fast Rise- and Fall duration, long peak duration 
# Color PINK 
 
# Type D (e.g Yielding) 
# Combination of two crack-like waveform, first one smaller than the next one, 5-10 times size difference 
# Color RED 
# Is this two cracking which is within X time? 
 
# Type E 
# Color ORANGE 
# Max amplitude is located in the 2/3 of signal duration 
 
 
def check_waveform_characteristic(duration, rise_duration, fall_duration, peak_duration, margin, data_vector, 
                                  current_index): 
    # Need to look for fast rise time, short peak and long fall duration 
    # Calculating percentages 
    rise_percent = (rise_duration / duration) * 100 
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    fall_percent = (fall_duration / duration) * 100 
    peak_percent = (peak_duration / duration) * 100 
 
    # Type B (e.g. Mechanical rubbing) 
    if abs(rise_percent - 47) <= margin and abs(fall_percent - 47) <= margin and abs(peak_percent - 6) <= 
margin: 
    #if (rise_duration < duration / 3) and (duration < duration * 2 / 3):  
        return SignalType.GREEN 
 
    # Type C (e.g. Leak) 
    elif abs(rise_percent - 15) <= margin and abs(fall_percent - 15) <= margin and abs(peak_percent - 70) <= 
margin: 
        return SignalType.PINK 
 
    # Crack-like should be rise_percent less than or equal to 10%, fall_percent more than or equal to 84% and 
    # peak_percent should be less than or equal to 6% 
 
    # Type A (e.g. Crack-like) 
    #if abs(rise_percent - 5) <= margin and abs(fall_percent - 90) <= margin and abs(peak_percent - 5) <= margin: 
    elif abs(rise_duration < duration / 3): 
        signal_type = SignalType.YELLOW 
        # Check if not last signal? 
        if current_index + 1 < len(data_vector.MaxAmplitude): 
            next_signal_type = data_vector.Type[current_index + 1] 
            next_signal_max_amp = data_vector.MaxAmplitude[current_index + 1] 
            signal_max_amp = data_vector.MaxAmplitude[current_index] 
            next_signal_timestamp = data_vector.EndTime[current_index + 1] 
            signal_timestamp = data_vector.StartTime[current_index] 
            if next_signal_type == SignalType.YELLOW and signal_max_amp <= next_signal_max_amp / 2 and \ 
                    signal_timestamp - next_signal_timestamp < 766:  # checking if the previous signal is yellow 
                data_vector.Type[current_index + 1] = SignalType.RED  # setting both signals to red 
                signal_type = SignalType.RED 
        return signal_type 
    elif rise_duration > duration * 2 / 3: 
        return SignalType.ORANGE 
    else: 
        return SignalType.GRAY 
 
 
def count_half_max_amp(data_vector, max_amp): 
    count = 0 
    for i in range(len(data_vector.Signal) - 1): 
        current_signal = abs(float(data_vector.Signal.iloc[i])) 
        if current_signal >= (max_amp / 2): 
            count += 1 
 
    return count 
 
 
def processSignal(InpFolder, OutputFolder, SigThres, PeakThres, Margin, ZeroDuration, ChannelId, 
file_output, comment='%'): 
    # Create output name (timestamp plus channel id and OutFile value) 
    # For example: 20200601224750_A1(specimen_id)_C1(channel_id)_S50(signal threshold)_P700(peak 
threshold).txt|pickle 
    # complete example: ./Bao 2020/PLB/20200601224750_A1_C1_S50_P700.txt 
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    #                                 <--------------------------------- rpartition searches from right to left 
    #                             <--- rpartition 0 is left side, 2 is right side 
    specimen_id = InpFolder.rpartition('/')[0].rpartition('/')[2] 
    date_time = datetime.now()  # to set unique file name for each run 
    name = date_time.strftime("%Y%m%d%H%M%S") + "_" + str(specimen_id) + "_C" + str(ChannelId) + 
"_S" + str( 
        int(SigThres)) + "_P" + str(int(PeakThres)) 
    # Create directory to store waveform data 
    Path(OutputFolder + "detected_waveforms").mkdir(parents=True, exist_ok=True) 
    display_detected_waveforms = OutputFolder + "detected_waveforms/" + name 
    file_name = OutputFolder + name 
 
    # from os import listdir - To get list of all files and directories in specified directory 
 
    # onlyfiles = [f for f in listdir(InpFolder) if match specific pattern (we look for specific channel id)] 
    # example "pencil break_1_1_31239062.csv" 
    # Regular expression matching, r'.*_' matches any character once or more until first _ then match the 
ChannelId 
    # '_\\d+_\\w+' matches digits once or more (+) (file number) until next _ then it matches any word character 
    # once or more to allow matching of file extension 
    # More info https://regex101.com/ 
    files = [f for f in os.listdir(InpFolder) if re.match(r'.*_' + str(ChannelId) + '_\\d+_\\w+', f)] 
    plot_list = [] 
 
    # sort file names naturally, example 1, 2, 11 
    # If sorted with basic sort, it would show 1, 11, 2 
    sorted_files = natsorted(files, alg=ns.REAL) 
    # files.sort(key=natsorted(alg=ns.)) 
 
    max_amplitude_dict = {i: 0.0 for i in sorted_files} 
 
    for fileName in sorted_files: 
        # Reading file from list into data frame 
        frame = pd.read_csv(InpFolder + fileName, sep="\t", header=None, 
                            names=["Signal", "Time", "MaxAmplitude"])  # Array to hold time-series 
        # Splitting file on last '_' to isolate time of test, then splitting on '.' to remove file type 
        timeOfTest = int(fileName.rpartition('_')[2].rpartition('.')[0]) 
 
        # Signal is recorded in segments of 1024 microseconds, but the first 256 is pre-trigger so it's removed 
        # from the data frame. Setting time based on time of test 
        for i in range(len(frame)): 
            frame.Time[i] = timeOfTest + (i - 256)  # Since actual signal starts after pre-trigger (at 256 micro 
second) 
            # we need to populate the pre-trigger time so that time of test is at pre-trigger end 
        slicedFrame = frame[256:] 
 
        # Get max amplitude to calculate threshold percentage 
        max_amplitude = max(abs(slicedFrame.Signal * 1000))  # Signal unit in AE Win is in Volts, need to convert 
to mV. 
        # To always have the max amplitude available we fill this for every signal of every file  
        #for i in range(256, len(frame)): 
            #slicedFrame.assign(MaxAmplitude=[max_amplitude]) 
        slicedFrame = slicedFrame.assign(MaxAmplitude=max_amplitude) 
 
        # Always start signal with 0 
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        slicedFrame.loc[255] = [0, timeOfTest - 1, max_amplitude] 
        data = [] 
 
        # Always end signal with 0 
        #data.insert(1024, {'Signal': 0, 'Time': timeOfTest + 768, 'MaxAmplitude': max_amplitude}) 
        slicedFrame.loc[1024] = [0, timeOfTest + 768, max_amplitude] 
 
        slicedFrame.sort_index(inplace=True) 
        # Adding only the relevant data to list to be joined later 
        plot_list.append(slicedFrame) 
 
    # joining the relevant data to one large data frame ready for analysis 
    data = pd.concat(plot_list, ignore_index=True) 
 
    data.to_csv("".join([os.getcwd(), file_name + '.csv']), sep=";", columns=["Time", "Signal", 
"MaxAmplitude"], 
                index=False) 
 
    # Change the first value in shape to match number of signal hits for csv to generate properly  
    a = numpy.zeros(shape=(1, 21))  # Temporary array 
    stats = pd.DataFrame(a, columns=["SignalNumber", "StartTime", "EndTime", 
                                     "StartRow", "EndRow", 
                                     "SignalDuration", "SignalThreshold", 
                                     "PeakThreshold", "ZeroDuration", 
                                     "MeanValue", "Max", "Min", 
                                     "MaxAmplitude", "MaxAmplitudeTimestamp", 
                                     "MaxPeakToPeak", "NumberOfZeroCrossings", "HalfMaxAmpCount", 
                                     "RiseDuration", "FallDuration", "PeakDuration", "Type"]) 
    # For every 1024 we get a new file and should read filename to get time of test 
    # Take time of test 
    for i in range(len(data.Signal)): 
        data.Signal[i] = data.Signal[i] * 1000  # Signal unit in AE Win is in Volts, need to convert to mV. 
 
    if len(data.Time) != len(data.Signal): 
        print("DATA ERROR: Length of time vector not equal to length of signal vector.") 
        return 
 
    FoundSignal = 0  # Flag for detecting new signal (above SignalThreshold) 
    nSignals = 0  # Counter for counting number of signals 
    iSignalStart = 0  # Variable to hold signal start time 
    iPeakDuration = 0  # Variable to hold signal peak duration 
    iZeroStart = 0  # Variable to hold start of signal value below SignalThreshold 
    iZeroDuration = 0  # Variable to hold duration of signal below SignalThreshold 
 
    # Loop through the time series data to find number of signals, start time and end time 
    for i in range(len(data.Signal)): 
        signal_threshold_percentage = data.MaxAmplitude[i] / 100 * SigThres 
        signal_peak_threshold_percentage = data.MaxAmplitude[i] / 100 * PeakThres 
 
        # This just resets zero duration if signal is over threshold 
        if abs(data.Signal[i]) > signal_threshold_percentage: 
            iZeroDuration = 0 
 
        # This checks if signal is over threshold and FoundSignal identifies if it is a start or end signal (0 or 1)  
        # This sets the start signal 
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        if abs(data.Signal[i]) > signal_threshold_percentage and FoundSignal == 0: 
            FoundSignal = 1  # Sets that we have a start point and looking for an end 
            iZeroStart = data.Time[i] 
            nSignals = nSignals + 1 
 
            # Need to use .loc to force update of dataframe array 
            stats.loc[nSignals - 1, 'SignalNumber'] = nSignals 
            iSignalStart = data.Time[i]  # Should be interpolated 
            # stats.StartTime[nSignals - 1] = iSignalStart 
            stats.StartTime[nSignals - 1] = iSignalStart 
            stats.StartRow[nSignals - 1] = i 
        else: 
            # This checks that we have a start signal, if so and the time suddenly increases by more than a total file  
            # (766) we should end the signal selection 
            if FoundSignal == 1 and data.Time[i] - data.Time[i - 1] > 766: 
                # if previous time is more than 1000 microseconds before current timestamp, we know the signal has 
ended 
                # print("iZeroDuration exceeded ZeroDuration at time ",data.Time[i]) 
                FoundSignal = 0 
                stats.EndTime[nSignals - 1] = data.Time[i - 1]  # We need the previous value to cut the signal correctly 
                stats.EndRow[nSignals - 1] = i - 1  # We need the previous value to cut the signal correctly 
                stats.SignalDuration[nSignals - 1] = stats.EndTime[nSignals - 1] - stats.StartTime[nSignals - 1] 
                stats.SignalThreshold[nSignals - 1] = data.MaxAmplitude[i-1] / 100 * SigThres  # Need the previous 
value 
                stats.PeakThreshold[nSignals - 1] = data.MaxAmplitude[i-1] / 100 * PeakThres  # Need the previous 
value 
                stats.ZeroDuration[nSignals - 1] = ZeroDuration 
            # If we have a start signal and it reaches above ZeroDuration argument (input argument) we end the 
signal or 
            elif FoundSignal == 1 and iZeroDuration >= ZeroDuration or FoundSignal == 1 and i == 
len(data.Signal)-1: 
                FoundSignal = 0 
                stats.EndTime[nSignals - 1] = data.Time[i] 
                stats.EndRow[nSignals - 1] = i 
                stats.SignalDuration[nSignals - 1] = stats.EndTime[nSignals - 1] - stats.StartTime[nSignals - 1] 
                stats.SignalThreshold[nSignals - 1] = signal_threshold_percentage 
                stats.PeakThreshold[nSignals - 1] = signal_peak_threshold_percentage 
                stats.ZeroDuration[nSignals - 1] = ZeroDuration 
            # If iZeroDuration is below ZeroDuration argument, increases zero duration count by 1 
            elif iZeroDuration < ZeroDuration: 
                iZeroDuration += 1 
    # Print selected columns of stats array to output window 
    output_line = ("ID             : Signal number in time-series.\n" 
                   "Start          : Start time of signal when the signal exceeds the signal " 
                   "threshold (SThres).\n" 
                   "End            : End time of signal, i.e. when the signal is below the signal " 
                   "threshold for a duration longer than ZDuration.\n" 
                   "Duration       : Signal duration (End - Start).\n" 
                   "SThres         : Signal threshold; signal value above this threshold is " 
                   "considered a signal. Input parameter SignalThresholdInPercent.\n" 
                   "PThres         : Peak threshold: fraction of maximum signal value. Input " 
                   "parameter PeakThresholdInPercent.\n" 
                   "ZDuration      : Duration when the signal is below SThres.\n" 
                   "Mean           : Average signal amplitude.\n" 
                   "Max            : Largest positive signal amplitude.\n" 
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                   "Min            : Smallest negative signal amplitude.\n" 
                   "MaxAmp         : Absolute max signal amplitude.\n" 
                   "MaxAmpTimestamp: Timestamp of the absolute max signal amplitude.\n" 
                   "Peak2Peak      : Distance between max and min signal amplitude.\n" 
                   "NZC            : Number of zero-crossings between Start and End.\n" 
                   "RiseDuration   : Duration taken from signal SThres to PThres.\n" 
                   "FallDuration   : Duration taken from signal PThres to SThres.\n" 
                   "PeakDuration   : Duration above PThres.\n" 
                   "Type           : Waveform classification.\n" 
                   "") 
    print(output_line) 
    file_output += "\n" + output_line 
 
    headers = ("  ID     Start        End            StartRow   EndRow    Duration      SThres      PThres    "  
               "ZDuration     Mean       Max          Min        MaxAmp      MaxAmpTimestamp    Peak2Peak   NZC 
CHMA " 
               "RiseDuration FallDuration  PeakDuration  Type        ID ") 
    file_output += "\n" + headers 
    print(headers) 
 
    #    Loop through all signals in stats array (one in each row) 
    for i in range(nSignals): 
        try: 
            # Need to end the signal as it is the last one 
            if len(stats.EndRow) == i or stats.EndRow[i] == 0 and nSignals - 1 == i: 
                endRow = len(data.Signal - 1) 
                endTime = data.Time[len(data.Time) - 1] 
                stats.SignalDuration[nSignals - 1] = endTime - stats.StartTime[nSignals - 1] 
                stats.SignalThreshold[nSignals - 1] = signal_threshold_percentage 
                stats.PeakThreshold[nSignals - 1] = signal_peak_threshold_percentage 
                stats.ZeroDuration[nSignals - 1] = ZeroDuration 
            else: 
                endRow = stats.EndRow[i] 
                endTime = stats.EndTime[i] 
        except: 
            endRow = len(data.Signal) 
            endTime = data.Time[len(data.Time) - 1] 
        try: 
            output_line = ("%4d %12d %12d %10d %10d %12d %12.2f %12.2f %12d" % 
                           (stats.SignalNumber[i], stats.StartTime[i], endTime, 
                            stats.StartRow[i], endRow, stats.SignalDuration[i], 
                            stats.SignalThreshold[i], stats.PeakThreshold[i], 
                            stats.ZeroDuration[i])) 
            print(output_line, end='') 
            file_output += '\n' + output_line 
        except: 
            print("failed") 
        #        Calculate mean value 
        try: 
            stats.MeanValue[i] = MeanValue(data.Signal[int(stats.StartRow[i]):int(endRow)]) 
            file_output += "%12.5f" % stats.MeanValue[i] 
            print("%12.5f" % stats.MeanValue[i], end='') 
        except: 
            print("failed mean") 
 



 

 

85 

 

        #        Find and store maximum value 
        stats.Max[i] = max(data.Signal[int(stats.StartRow[i]):int(endRow)]) 
        file_output += "%12.5f" % stats.Max[i] 
        print("%12.5f" % stats.Max[i], end='') 
 
        #        Find and store minimum value 
        stats.Min[i] = min(data.Signal[int(stats.StartRow[i]):int(endRow)]) 
        file_output += "%12.5f" % stats.Min[i] 
        print("%12.5f" % stats.Min[i], end='') 
 
        #        Find and store maximum amplitude 
        stats.MaxAmplitude[i] = MaxAmplitude(data.Signal[int(stats.StartRow[i]):int(endRow)], 
                                             stats.MeanValue[i]) 
        file_output += "%12.5f" % stats.MaxAmplitude[i] 
        print("%12.5f" % stats.MaxAmplitude[i], end='') 
 
        #        Find and store timestamp of maximum amplitude 
        stats.MaxAmplitudeTimestamp[i] = 
max_amplitude_timestamp(data.Time[int(stats.StartRow[i]):int(endRow)], 
                                                                 data.Signal[int(stats.StartRow[i]):int(endRow)], 
                                                                 stats.MeanValue[i]) 
        file_output += "%18d" % stats.MaxAmplitudeTimestamp[i] 
        print("%18d" % stats.MaxAmplitudeTimestamp[i], end='') 
 
        #        Find and store maximum peak to peak value 
        stats.MaxPeakToPeak[i] = stats.Max[i] - stats.Min[i] 
        file_output += "%14.5f" % stats.MaxPeakToPeak[i] 
        print("%14.5f" % stats.MaxPeakToPeak[i], end='') 
 
        #        Find and store number of zero crossings 
        stats.NumberOfZeroCrossings[i] = NumZeroCrossings(data.Signal[int(stats.StartRow[i]):int(endRow)]) 
        file_output += "%5d" % stats.NumberOfZeroCrossings[i] 
        print("%5d" % stats.NumberOfZeroCrossings[i], end='') 
 
        # Find and store number of half max amplitude signals 
        stats.HalfMaxAmpCount[i] = count_half_max_amp(data[int(stats.StartRow[i]):int(stats.EndRow[i])], 
stats.MaxAmplitude[i]) 
        file_output += "%5d" % stats.HalfMaxAmpCount[i] 
        print("%5d" % stats.HalfMaxAmpCount[i], end='') 
 
        stats.RiseDuration[i] = riseDuration(data[int(stats.StartRow[i]):int(endRow)], stats.PeakThreshold[i]) 
        file_output += "%12d" % stats.RiseDuration[i] 
        print("%12d" % stats.RiseDuration[i], end='') 
 
        stats.FallDuration[i] = fallDuration(data[int(stats.StartRow[i]):int(endRow)], 
                                             stats.PeakThreshold[i], 
                                             riseDurationIndex(data[int(stats.StartRow[i]):int(endRow)], 
                                                               stats.PeakThreshold[i])) 
        file_output += "%12d" % stats.FallDuration[i] 
        print("%12d" % stats.FallDuration[i], end='') 
 
        stats.PeakDuration[i] = peakDuration(stats.SignalDuration[i], stats.RiseDuration[i], stats.FallDuration[i]) 
        file_output += "%16d" % stats.PeakDuration[i] 
        print("%16d" % stats.PeakDuration[i], end='') 
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        stats.Type[i] = check_waveform_characteristic(stats.SignalDuration[i], 
                                                      stats.RiseDuration[i], 
                                                      stats.FallDuration[i], 
                                                      stats.PeakDuration[i], 
                                                      Margin, 
                                                      stats, 
                                                      i) 
        file_output += "%8s" % stats.Type[i].value 
        print("%8s" % stats.Type[i].value, end='') 
 
        file_output += "    %4d" % stats.SignalNumber[i] 
        print("    %4d" % stats.SignalNumber[i]) 
 
    waveform_count = count_detected_waveforms(stats) 
    # Create plot of time signal 
    plt.figure(1, figsize=(16, 4)) 
    legend_list = [mpatches.Patch(color='GRAY', label='Not classified signal: ' + 
str(waveform_count[SignalType.GRAY])), 
                   mpatches.Patch(color='YELLOW', label='Signal type A: ' + 
str(waveform_count[SignalType.YELLOW])), 
                   mpatches.Patch(color='GREEN', label='Signal type B: ' + 
str(waveform_count[SignalType.GREEN])), 
                   mpatches.Patch(color='PINK', label='Signal type C: ' + str(waveform_count[SignalType.PINK])), 
                   mpatches.Patch(color='RED', label='Signal type D: ' + str(waveform_count[SignalType.RED])), 
                   mpatches.Patch(color='ORANGE', label='Signal type E: ' + 
str(waveform_count[SignalType.ORANGE]))] 
    plt.legend(handles=legend_list) 
    plt.gcf().canvas.set_window_title('Signal waveform-time') 
    plt.title("Specimen: %s" % specimen_id + " Channel: %s" % ChannelId) 
    plt.xlabel("Time (microsecond)")  # Set x axis label 
    plt.ylabel("Signal (micro volt)")  # Set y axis label 
    plt.plot(data.Time, data.Signal) 
 
    # Change to figure 2 scatter 
    plt.figure(2, figsize=(16, 4)) 
    plt.legend(handles=legend_list) 
 
    plt.gcf().canvas.set_window_title('Amplitude-waveform-time') 
    plt.title("Specimen: %s" % specimen_id + " Channel: %s" % ChannelId) 
    plt.xlabel("Time (microsecond)")  # Set x axis label 
    plt.ylabel("Signal (micro volt)")  # Set y axis label 
 
    for i in range(len(stats.SignalNumber) - 1): 
        plot_list = [] 
        plt.figure(2) 
        plt.scatter(stats.MaxAmplitudeTimestamp[i], stats.MaxAmplitude[i], c=stats.Type[i].name, 
label=stats.Type[i].name) 
        for j in range(int(stats.StartRow[i]), int(stats.EndRow[i]) + 1): 
            d = {'Signal': [data.Signal[j]], 'Time': [data.Time[j]]} 
            plot_list.append(pd.DataFrame(data=d)) 
        if (len(plot_list) > 0): 
            selectedDataFrame = pd.concat(plot_list) 
            plt.figure(1) 
            plt.plot(selectedDataFrame.Time, selectedDataFrame.Signal, c=stats.Type[i].name, 
label=stats.Type[i].name) 
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    file1 = open(file_name + ".txt", "w") 
    file1.write(file_output) 
    file1.close() 
 
    figure = plt.gcf() 
    pickle_out = open(file_name + ".fig_wave.pickle", 'wb') 
    pickle.dump(figure, pickle_out) 
    pickle_out.close() 
 
    plt.savefig(file_name + "fig_wave.png") 
 
    plt.figure(2) 
    figure = plt.gcf() 
    pickle_out = open(file_name + ".fig_scatter.pickle", 'wb') 
    pickle.dump(figure, pickle_out) 
    pickle_out.close() 
 
    stats.to_csv(display_detected_waveforms + ".stats.csv") 
    data.to_csv(display_detected_waveforms + ".data.csv") 
 
    plt.savefig(file_name + "fig_scatter.png") 
 
    plt.show() 
 
 
def restricted_float(x): 
    try: 
        x = float(x) 
    except ValueError: 
        raise argparse.ArgumentTypeError("%r not a floating-point literal" % (x,)) 
 
    if x < 0.0 or x > 1.0E12: 
        raise argparse.ArgumentTypeError("%r not in range [0.0, 1.0E6]" % (x,)) 
    return x 
 
 
###########################################################################
## 
#                           Start of main program                           # 
###########################################################################
##  
parser = argparse.ArgumentParser(description='Process time series from  \ 
                  AET sensors and output the characteristics. The output \ 
                  will be either directed to standard output or file \ 
                  specified in the OutputFilename parameter.') 
parser.add_argument('-InputFolderName', type=str, nargs='?', default='./Bao 2020/PLB/', 
                    help='Folder containing signal files \ 
                   default: ./Bao 2020/PLB/') 
parser.add_argument('-OutputFolderName', type=str, nargs='?', default='./Bao 2020 output/', 
                    help='Folder containing the output, default: ./Bao 2020 output/') 
parser.add_argument('-SignalThresholdInPercent', type=restricted_float, nargs='?', default="20", 
                    help='Signal threshold defining start of signal in percentage of max amplitude, default: 20') 
parser.add_argument('-PeakThresholdInPercent', type=restricted_float, nargs='?', default='80', 
                    help='Threshold defining signal peak - fraction of max signal, \ 
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                   default: 80') 
parser.add_argument('-ThresholdMarginInPercent', type=restricted_float, nargs='?', default='5', 
                    help='Percentage of margin for classifying signals, \ 
                   default: 5') 
parser.add_argument('-ZeroDuration', type=restricted_float, nargs='?', default='50', 
                    help='Duration between signals (abs of signal value) less \ 
                   than SignalThreshold, default: 50 microseconds') 
parser.add_argument('-ChannelId', type=int, nargs='?', default='1', 
                    help='Which sensor channel signal to analyze, default: 1') 
args = parser.parse_args() 
 
file_header = ("InputFolderName          = " + str(args.InputFolderName) + "\n" + 
               "OutputFilename           = " + str(args.OutputFolderName) + "\n" + 
               "SignalThresholdInPercent = " + str(args.SignalThresholdInPercent) + "\n" + 
               "PeakThresholdInPercent   = " + str(args.PeakThresholdInPercent) + "\n" + 
               "ThresholdMarginInPercent = " + str(args.ThresholdMarginInPercent) + "\n" + 
               "ZeroDuration             = " + str(args.ZeroDuration) + "\n" + 
               "ChannelId                = " + str(args.ChannelId) + "\n") 
 
print(file_header)  # output in Python console 
# Put everything into output to write it to file later 
file_output = file_header  # output to txt file 
 
# inp_folder = open(args.InputFolderName) 
processSignal(args.InputFolderName, args.OutputFolderName, args.SignalThresholdInPercent, 
args.PeakThresholdInPercent, 
              args.ThresholdMarginInPercent, args.ZeroDuration, args.ChannelId, file_output) 
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Signal output 

import matplotlib.pyplot as plt 
import pickle 
 
import tkinter as tk 
from tkinter import filedialog 
 
 
root = tk.Tk() 
root.withdraw() 
 
file_path = filedialog.askopenfilename(initialdir="./Bao 2020 output/", 
                                       title="Select file", 
                                       filetypes=(("pickle files", "*.pickle"), 
                                                  ("all files", "*.*"))) 
 
pickle_in = open(file_path, 'rb') 
pkl_figure = pickle.load(pickle_in) 
pickle_in.close() 
 
dummy = plt.figure() 
new_manager = dummy.canvas.manager 
new_manager.canvas.figure = pkl_figure 
pkl_figure.set_canvas(new_manager.canvas) 
plt.figure = pkl_figure 
 
plt.show() 
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Display detected waveform 

import signal 
 
import inline as inline 
import matplotlib.pyplot as plt 
import pandas as pd 
from datetime import datetime 
import numpy as np 
import os 
import re 
import argparse  # Import argparse for parsing command line parameters 
from tkinter import filedialog  # This is for displaying file selection dialog 
 
#import mpld3 
#mpld3.enable_notebook() 
 
# filters and functions definition 
# https://medium.com/analytics-vidhya/how-to-filter-noise-with-a-low-pass-filter-python-885223e5e9b7 
 
def butter_highpass(cutoff, fs, order=5): 
    nyq = 0.5 * fs 
    normal_cutoff = cutoff / nyq 
    b, a = signal.butter(order, normal_cutoff, btype='high', analog=False) 
    return b, a 
 
def butter_highpass_filter(data, cutoff, fs, order=5): 
    b, a = butter_highpass(cutoff, fs, order=order) 
    y = signal.filtfilt(b, a, data) 
    return y 
 
def butter_lowpass(cutoff, fs, order=5): 
    nyq = 0.5 * fs 
    normal_cutoff = cutoff / nyq 
    b, a = signal.butter(order, normal_cutoff, btype='low', analog=False) 
    return b, a 
 
def butter_lowpass_filter(data, cutoff, fs, order=5): 
    b, a = butter_lowpass(cutoff, fs, order=order) 
    y = signal.lfilter(b, a, data) 
    return y 
 
def compute_fft_ModPh(data): 
    N = len(data) 
    data_freq = np.fft.fft(data) 
 
    if (np.remainder(N,2) == 0): 
        # N is even 
        # 2020-05-27 GABO: Replaced use of / operator with // in slices to ensure that result is integer  
        mod = abs(data_freq[0:N//2+1]); 
        ph  = np.angle(data_freq[0:N//2+1]); 
 
        mod[0] = mod[0]/N; 
        mod[1:N//2] = mod[1:N//2]/(N//2); 
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        mod[N//2] = mod[N//2]/N; 
    else: 
        # N is odd 
        mod = abs(data_freq[0:(N+1)//2]); 
        ph = np.angle(data_freq[0:(N+1)//2]); 
 
        mod[0] = mod[0]/N; 
        mod[1:(N+1)//2] = mod[1:(N+1)//2]/(N/2); 
    return mod, ph 
 
parser = argparse.ArgumentParser(description='Process time series from  \ 
                  AET sensors and output the characteristics. The output \ 
                  will be either directed to standard output or file \ 
                  specified in the OutputFilename parameter.') 
parser.add_argument('-threshold', type=float, nargs='?', default='500', 
                    help='Threshold for saving waveform \ 
                   default: 500') 
 
args = parser.parse_args() 
data = pd.read_csv('./Bao 2020 output/detected_waveforms/'+'signal_data_corrected'+'.csv',  sep=";", 
index_col ="Time (s)") 
data = pd.read_csv('./Bao 2020 output/detected_waveforms/'+'signal_data_corrected'+'.csv',  sep=";", 
index_col ="Time (s)") 
stats = pd.read_excel('./Bao 2020 output/detected_waveforms/'+'B1 characteristics'+'.xlsx') 
 
# Set threshold for plotting wave form (do not plot waveforms with MaxAmp less than this number) 
PlotThreshold = args.threshold 
 
for iRow in range(0,stats.ID.max(),1): 
    # Shorter loop for debugging 
    # for iRow in range(0,100,1): 
    if stats.MaxAmp[iRow] > PlotThreshold: 
        # Convert start and end time from microseconds to seconds 
        StartTime = stats.Start[iRow] / 1e6 
        EndTime = stats.End[iRow] / 1e6 
 
        fig = plt.figure(figsize=(20, 14)) 
        ax1 = plt.subplot(311) 
 
        # Plot wave form - converted to mV 
        plt.plot(data[StartTime:EndTime]*1e3, '--') 
        plt.xlabel('Time (s)') 
        plt.ylabel('Signal strength (mV)') 
        plt.title("".join(['Waveform plot no. ', str(stats.ID[iRow])])) 
 
        # Shrink current axis by 40% 
        box1 = ax1.get_position() 
        ax1.set_position([box1.x0, box1.y0, box1.width * 0.6, box1.height]) 
 
        # Put a legend to the right of the current axis 
        for iCol in range(1, 20, 1): 
            plt.text(1.02, 1.0 - iCol * 0.05, stats.columns[iCol], 
                     transform=ax1.transAxes, bbox={'facecolor': 'white', 'edgecolor': 'none', 'alpha': 0.8, 'pad': 3}) 
            plt.text(1.18, 1.0 - iCol * 0.05, " - ", 
                     transform=ax1.transAxes, bbox={'facecolor': 'white', 'edgecolor': 'none', 'alpha': 0.8, 'pad': 3}) 
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            plt.text(1.20, 1.0 - iCol * 0.05, str(stats[stats.columns[iCol]][iRow]), 
                     transform=ax1.transAxes, bbox={'facecolor': 'white', 'edgecolor': 'none', 'alpha': 0.8, 'pad': 3}) 
        # Turn on grids 
        ax1.grid(True, which='both', ls="-") 
 
        # Store selected signal data in vector 
        fx1 = data[StartTime:EndTime] 
        # compute FFT as module and angle 
        mod, ph = compute_fft_ModPh(fx1) 
        # Number of elements in vector: 
        N = len(fx1) 
        # Time range of data: 
        #TimeRange = data.Time[EndRow] - data.Time[StartRow] 
        TimeRange = EndTime-StartTime 
        # Average time between samples: 
        TypicalDeltaT = TimeRange / N 
 
        fsamp = 1 / TypicalDeltaT 
        tsamp = 1 / fsamp 
        df = 1 / (N * tsamp) * 0.1 
        freq = np.arange(0, (N / 2) * df, df) 
        if len(mod) > len(freq): 
            freq = np.arange(0, (N / 2 + 1) * df, df) 
 
        ax2 = plt.subplot(3, 1, 2) 
        plt.plot(freq, mod) 
        plt.xlabel('Frequency [Hz]') 
        plt.ylabel('FFT module') 
        plt.title('FFT of signal') 
        ax3 = plt.subplot(3, 1, 3) 
        plt.plot(freq, ph * 180 / np.pi) 
        plt.xlabel('Frequency [Hz]') 
        plt.ylabel('FFT Phase [deg]') 
 
        box2 = ax2.get_position() 
        ax2.set_position([box2.x0, box2.y0, box2.width * 0.6, box2.height]) 
        box3 = ax3.get_position() 
        ax3.set_position([box3.x0, box3.y0, box3.width * 0.6, box3.height]) 
 
        # datetime object containing current date and time 
        now = datetime.now() 
        dt_string = now.strftime("%Y-%m-%d %H%M") 
 
        PlotFileName = "".join([dt_string, "-Waveform-", str(stats.ID[iRow])]) 
        print('Saving plot to: ', "".join([PlotFileName, '.png'])) 
 
        # Save plot file to current working directory 
        plt.savefig(os.path.join(figure_path, "".join([PlotFileName, '.png'])), dpi=600) 
        plt.close('all') 
        plt.clf() 
    else: 
        print('Waveform no. ', stats.ID[iRow], " has a peak value less than the plot threshold - ", 
PlotThreshold) 
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2. Example of Text output from Signal Processing 

 

Figure 61. Text output of test B1. 
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3. AEwin waveform definition and setup 

AE timing parameters and settings recommendation:  

AE win Hardware setup illustration:  

 

Figure 62. Standard setup (MISTRAS Group, 2020a). 

 

Figure 63. Advanced setup (MISTRAS Group, 2020a). 
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Four AE Timing Parameters which are located under the second tab of the AE Hardware Setup 

menu:   

1. Hit Definition Time (HDT): time constant to terminate the measurement of a signal. 

2. Hit Lockout Time (HLT): to create a ‘dead time’ after the end of a hit. 

3. Peak Definition Time (PDT): for those signals that its’ envelopes have several rising 

peaks, this parameter can help to define which peaks are used to record rise time and 

amplitude.  

4. MAX Duration: limitation to the maximum duration that is acceptable for a hit (PAC, 

2014). 

Setting recommendation for AE timing parameter in AE Win software: 

1. Hit Definition Time (HDT):  

a) Strategy for materials-oriented strategy: 400-2000s for metals (to reduce false hits, 

the duration can be set higher than 400s); 100-200s for composite materials and 

other non-metals. 

b) Strategy for good waveform capture: 800s, combined with 1MSPS Sample Rate 

(Mega Samples Per Second), 256s Pre-trigger and 1k Length in the Waveform 

Setup.  

2. Hit Lockout Time (HLT): Set equal to the HDT, or to the minimum available (2s); for 

special purposes can use other settings. 

3. Peak Definition Time (PDT): Rise Time – Time Out. Set to ½ of the HDT. 

4. MAX Duration: a value of 99ms is convenient, the hit rate will be high enough to be 

quickly noticed when the signal is continuously above the threshold and also low enough 

not to fill the record with useless data. This data suitable for recording changes in signal 

amplitude with time (PAC, 2014).  
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Figure 64. Hardware setup - Waveform setup (MISTRAS Group, 2020a). 

Waveforms setup: 

Waveform, Sample Rate: Samples acquisition waveforms on a per second basic. At rate of 

1MSPS (Mega Samples Per Second) means that one waveform sample is taken every sec; 

2MSPS means that one waveform sample is taken every ½ sec, etc. Mainly, the higher the 

sample rate, the better but it also depends on other factors such as how much of the waveform is 

of interest. A 1024 points waveform at 10MSPS is only 102,4 sec of waveform while at 1MSPS 

it is 1,024 milliseconds (10x the time period). Thus, there should be a balance between sample 

rate, waveform length and the filter settings. 

Waveform, Pre-Trigger: (specified in sec) Duration before the trigger point (the point at which 

the threshold is exceeded). The minimum value is zero, the maximum value is calculated by 

dividing the hit length by the sample rate in MHz. For example, the maximum allowable pre-

trigger value would be 1024/10 = 102,4 sec when the hit length was 1k (1k = 1024) and the 

sample rate was 10 MHz. 

Waveform, Length: The maximum number of samples collected for each waveform (as a 

multiple of 1024 particularly 1k samples). This duration also includes the length of pre-trigger; it 

is not in addition to it (PAC, 2014). 
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Figure 65. Non-destructive testing (ISO, 2001-06). 

 

 

Figure 66. Waveform illustration (PAC, 2014). 
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4. Data from AEwin for specimens A1, A3N, B1N and 

B2NR 

 

Figure 67. A1. 

 

Figure 68. A3. 
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Figure 69. B1. 

 

Figure 70. B2NR. 
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5. Proposal for future small-scale test program 

• Welded vs. base material 

• Coated vs. uncoated specimens 

• Small (less than 60 cm long) vs. long (up to 4 m) 

 

 

Table of Contents 
1. Introduction .......................................................................................................................... a 

2. Materials ............................................................................................................................... a 

3. Test procedure ...................................................................................................................... b 

3.1 Specimens geometry ..................................................................................................... b 

3.1.1 Beam section ............................................................................................................... b 

3.1.2 Welded specimens (single-V butt joint, full penetration) ........................................ c 

3.1.3 Coating for weld specimens........................................................................................ e 

3.2 Materials preparation .................................................................................................. f 

3.3 Test plan .........................................................................................................................j 

3.4 Test apparatus ...............................................................................................................l 

 

 



 

 

a 

 

1. Introduction 

This procedure provides a methodology for recording acoustic signals under three-point bending 

test at room temperature and atmospheric pressure. The purpose of the testing is to detect the 

signals emitted during yielding stage in steel specimens with different properties. 

 

2. Materials 

Flat steel in quality S355J2 according to EN 10025-2 and NORSOK M120 MDS-Y05. 

Table 8. Steel grade. 

Number NOBB No. Description Unit Price Quantity 

99612 54220036 30 x 15 mm x 6 m 21.6 KG / STK 21.20 per kg 2 

13574 

(Or 83997 

54220036 

54220036 

100 x 15 mm x 6 

m 

80 x 15 mm x 6 m 

72 KG / STK 

57.66 KG / 

STK 

21,20 per kg 

21,20 per kg 

1 

1) 

More information available at: https://produktkatalog.norskstaal.no/produkt/flattstal-s355j2/ 

 

Coating  

For the specimens that required coating, coating will be applied on one side of the specimens. 

 

Welded joint: Single-V butt weld, full penetration.  

https://produktkatalog.norskstaal.no/produkt/flattstal-s355j2/
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3. Test procedure 

3.1 Specimens geometry 

3.1.1 Beam section 

 

Figure 71. Beam 600 mm. 

 

Figure 72. Beam 2500 mm. 
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3.1.2 Welded specimens (single-V butt joint, full penetration) 

 
Figure 73. Butt weld. 

 

 

Figure 74. Weld specimen (600 mm length). 
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Figure 75. Weld specimen (2500 mm length). 

 

 
Figure 76. Doubler plate (30x15 mm). 
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3.1.3 Coating for weld specimens  

 

Figure 77. Coating for welded specimen (600 mm). 
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3.2  Materials preparation 

Table 9. Number of samples. 

Specimens’ type 

Number 

of 

samples 

Lab 

suggestion 

Number of 

samples 

revises 

Priority 

Uncoated 

(Base) 

600 mm 
Welded 4 3 2 High 

Bar 3 3 2 High 

2500 mm 
Welded 2 2 2 High 

Bar 2 2 3 High 

Coated 

600 mm 
Welded 4 2 2 Low 

Bar 5 2 4 Medium 

2500 mm 
Welded 2 0 0  

Bar 2 0 0  

Doubler plate 

(uncoated) 

- Long 

plate:  

600 mm 

- Short 

plate:  

30 x 15 

mm 

Welded 2 2 2 Medium 

Total samples 26 16 17  

 

 

Figure 78. Symbol use. 
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2 x (30 x 15 mm x 6 m) steel plate 

Test 1a; 2a; 3a and 5. 

 

Figure 79. Preparation of 2 steel plates 30 x 15mm x 6m for bar type specimens. 
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1 x (100 x 15 mm x 6 m) plate 

Use for test 1b; 2b; 3b; 4.  

 

 
Figure 80. 100 x 15 mm x 6 m steel plate (Remove 10 mm each side in case of using 80 x 15 mm x 6 m 

plate). 
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Figure 81. 100 x 15 mm x 6 m steel plate (Remove 10 mm each side in case of using 80 x 15 mm x 6 m plate). 
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3.3 Test plan 

 

 
Figure 82. Test 1 - Yield in short specimens, base material (600 mm). 

 

 
Figure 83. Test 2 - Increase to 2500 mm specimens. 

 

= AE sensor

# off tests Priority Specimen length (mm) Length between supports Width Thickness

Test 1a: Yielding in base material 2 High 600 400 30 15

Test piece: 15 mm thick x 20 to 50 mm wide

Ductile material: Structural steel

Test machine: 10 tonnes capacity

Test 1b: Yielding in weld (root) 2 High

L = 400 mm

L/2

L = 400 mm

L/2

F

F

Specimen length (mm) Length between supports Width Thickness

2500 400 30 15

# off tests Priority

Test 2a: Increase distance between force and one sensor 3 High

Length of  2500 mm is possible

Test 2b: Increase distance between force and one sensor (weld specimens) 2 High

L = 400 mm

L/2

L = 400 mm

L/2

F

F
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Figure 84. Test 3 - Coated material (600 mm). 

 

 

Figure 85. Test 4 - Doubler plate. 

 

 

Figure 86. Test with noise source (coated material, 600 mm). 

 

 

= AE sensor

# off tests Priority Specimen length (mm) Length between supports Width Thickness

Test 3a: Yielding in coated material 2 High 600 400 30 15

Test piece: 15 mm thick x 20 to 50 mm wide

Ductile material: Structural steel

Test machine: 10 tonnes capacity

Test 3b: Yielding in weld (root) 2 Low

L = 400 mm

L/2

F

Coating side

L = 400 mm

L/2

F

Coating side

Test 4: Reinforced test piece 2 Medium

Two sources of yielding

t = 15 mm

L/2

F

Motor

h = 30 mm

L = 400 mm

# off tests Priority

Test 5: Test with noise source 2 Medium

May be possible to use hydraulic test bench which will generate noise

L = 400 mm

L/2

F
Motor

Coating side
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3.4 Test apparatus 

Three-point bending machine (see Figure 87 below) shall be used to load the specimens to 

the desired load. This is an electric type which can apply force up to 100 kN with variable 

loading rate. In a bend test, the specimen is exposed to a complex combination of forces 

including tension, compression, and shear when it bends or flexes. Tensile stress appears in 

the convex side of the specimen and compression stress in the concave side. An area of 

shear stress is generated along the midline (Instron, 2020). 

 

Figure 87. Three-point bending machine. 

 

 
Figure 88. Bending test. 
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Acoustic Accessories: 

• Sensors: Resonant R15a (Physical acoustic) with frequency 150kHz. 

• Amplifiers: when the band frequency is unknow, the 2/4/6 (20, 40, 60 decibels) 

voltage preamplifier with switch-selectable gain is used. 

• Metal holders: hold the sensors on the steel samples to resist motion due to vibration 

or due to external load. 

• Couplant: grease between sample surface and the adjusted sensors to fill air gaps, 

works as connection and to improve the sensitivity of the sensor. 

• Cables: physical acoustic signal connects sensors with the amplifiers, power cable 

connects the amplifiers with AE instrument. 

• PAC (Acquisition Device – Physical acoustic Corporation): The Micro-II Express 

has a compact form factor but it’s still powerful enough to perform AET, with 

adequate PCI Express slots to be able to hold 4 Physical Acoustics’ Express-8 AE 

boards which gives 32 AE channels. It can be controlled both physically by 

keyboard and mouse or remotely by a computer.  

• Software: Windows-based program AE win software is used for AE signal 

displaying and analysis. The software can process wave, store data, display data 

online and replay measurement at later time (Dawood_Khaled, 2019). 
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