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Abstract

This report aims to study the characteristics of signals collected by Acoustic Emission
Testing (AET) and categorize them into types to detect yield. A literature survey of existing
knowledge of AET and Acoustic Emission (AE) signal processing was conducted. In
addition, data was processed by utilizing and developing tools to visualize and analyze the
signal waveform based on signal duration and its corresponding amplitude. The investigation
was done by exporting existing data from a three-point bending test that was used as a
foundation for executing the analysis. Signal was visualized, and parameters were optimized
to identify and classify signal types. The data used in this work was collected from the
previous project in spring 2019 (Dawood_Khaled, 2019).

Results show that due to the length of the hit data recorded, some limitations on classification
were experienced. However, it is possible to isolate signal characteristics that could recognize
different signal types. Laboratory experiments should be performed to validate whether it is
still feasible to detect relevant signals in a noisy environment such as an offshore platform
before setting up a full-scale test setup. Further research into algorithms are recommended to
increase the reliability of signal categorization.
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Chapter 1 : Introduction

1.1 Background

In the North Sea and other parts of the world, an increasing number of offshore jacket platforms
have exceeded their original design life. The structural integrity of jacket platforms to extend the
economic life of offshore structure is gaining interest. New techniques have been constantly
developed to secure the use of these assets. In oil and gas industry, some of the important
methods can be taken into consideration such as online monitoring of environmental data,
improving analysis tools, developing of inspection technologies, re-analysis tools and planning
inspection strategy. Current developments of sensor technology to monitor real time structural
conditions opens new opportunities for offshore structures. Increasing sensor properties like
robustness, accuracy, efficiency and reducing cost enhance data quality of structural response.
The gathered data may be primarily used for two purposes:

1. Online structural monitoring to ensure safe use, prevent failures and control further
degradation.
2. Assessment of the accuracy of the structural models used in design and verification.

(Gabrielsen, 2019)

SHM of Offshore Jacket Structures is operated with periodic manual inspections by various
NDT techniques based on risk-based inspection (RBI) and mainly done by either Remote
Operated Vehicle (ROV) or divers (Vestli, 2016). Inspection is used to characterize the
condition of the structure to assess structural failures and take appropriate actions (Lee et al.,
2014). In the period between non-destructive inspections, cracks can initiate, propagate and
catastrophic failure can occur due to the conventional testing only gathering information
periodically. It depends on the inspection frequency while with acoustic emission method can
potentially detect active cracks if the structure is installed with a continuous monitoring system.
Safety in offshore is to avoid accidents and fatigue damage. In critical welds, remote monitoring
is utilized, because conventional NDT techniques cannot provide an early warning of fracture
propagation. Acoustic Emission Continuous Monitoring is considered as a monitoring method to
extend the safe use of offshore platform (DUTHIE and GABRIELS, 2014). . Remote structural
integrity monitoring using acoustic emission technology is a powerful technology to detect
active fatigue cracks and fatigue damage initiation (Vestli et al., 2017). As a type of Predictive
Maintenance, Condition Based Monitoring (CBM) can utilize sensors to measure assets’ status
over time in its operation. However, there are some limitations using this method, it is costly to
install monitor equipment and in order to use the technology effectively and be able to interpret
the signals from the sensors, operators must be trained properly. In addition, the sensors might
not work in harsher operating environments and can have trouble in detecting fatigue damage
(inspectioneering.com, 2020).



Acoustic emission signals are detected by deformation/ crack growth which is recorded by
sensors placed around an element. A conference paper publication by Duthie and Gabriels
(2014) states that the signal amplitude from crack growth can be measured within a distance up
to 5 meters between sensors. AET equipment is delivered by various manufacturers, one of
which is VALLEN System providing watertight AET sensors (Vestli et al., 2017).

1.2 Research problem

According to Lee et al. (2014), acoustic emissions are the elastic energy waves released by a
material undergoing deformation. When an external stress is imposed on a component, AE
signals reflect the internal stress redistribution within a material. Here, the stress can be
hydrostatic, pneumatic, thermal, or bending. AET technology is a ‘passive’ NDT method which
has been used since early 1980’s by petrochemical industry. The signal is effective to identify
crack growth and propagation during fatigue tests. Signal discrimination between legitimate
sources (e.g. cracks, corrosion, weld discontinuities) and spurious noise sources (such as
mechanical friction, weather, engines/machinery, loose parts and other marine environment), as
well as noise reduction are significant for a successful application of AE. Signal discrimination
and noise reduction are more crucial in application to detect corrosion activity because in
comparision to crack propagation, the corrosion process is slower and signal strength is weaker
(Lee et al., 2014).

Elastic deformation initially occurs when stress is applied, and plastic deformation is when the
material reaches its elastic limit. As stress continues to increase, yield and strain hardening of
the material lead to necking and fracture. Before the 1970s, deformation before macro-yielding
was considered elastic, there was no dislocation activity or elastic wave release during this
period. Signals during micro-plastic deformation were recognized as noise and AE signals could
not be measured. After 1970s, studies revealed that plastic deformation accompanied by micro-
yielding caused acoustic signals generated during micro-plastic deformation before macro-
yielding. Other prior studies also suggested that partial dislocation multiplication or harmonic
motion (micro source) that causes plastic deformation in metallic materials occur before the
elastic limit is reached. AE signals were achieved before macro-yielding. Transmission electron
microscope (TEM) could be used to observe the dislocation state between the material’s surface
and interior in different stress states. When the applied force is much lower than the yield
strength can cause plastic deformation of a material. Micro dislocation source observed by TEM
and macroscopic AE characteristics can describe the micro-plastic deformation mechanism,
where low angle grain boundary (LAGB) ratios play an important role (Tian et al., 2020).

Results from previous studies by Han et al. (2011) exhibits that dislocation multiplication and
motion can be characterized by AE and TEM can be used to determine the dislocation
morphology (Han et al., 2011).
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Figure 1. AET system setup (Dong and Ansari, 2011).

Figure 1 above illustrates an AET system. AE-sensors are placed around the element that the
acoustic emission signals can be detected. Data is transferred through pre-amplifier, to filter, and
amplifier before it is fed into an acquisition system processing the result. Another component in
an AET system is a workstation displaying the test result (Vestli, 2016).

Sensor frequencies depends on where the sensor located. The main reasons for the different
frequencies are due to difference in the propagation of signals in different materials and the
mechanism of the signal source. (Vestli et al., 2017)

Refer to Lee et al. (2014), different defects would leave unique characteristic signatures of AE
waveform, as in figure 2 (Lee etal., 2014).

'|f| Al l{! 'l.h' |
L (T '

'a
I ’ ’ ”" [
Crack-like Mechamcal Leak EMI
rubbing

Figure 2. Unique wave form (signature) for each defect (Lee et al., 2014).

A suitable testing process and analysis procedure for AE data is essential to acquire a
dependable level of structural flaw detection for a successful AET application (Lee et al., 2014).



1.3 Objectives of the Study

The goal of this project is to study the characteristics of signals collected by Acoustic Emission
Testing (AET) performed for different steel specimens and discuss their usage for detecting
defects in offshore jacket structures. The work of this project would limit to detection of
yielding effect in the specimens.

This project shall help students to gain the knowledge of:

+ Familiarization with relevant NORSOK and international standards.
+ Understand AE technology and AET role in asset integrity management in the future.
+ Gain experience from Python and the use of AET in practice.

1.4 Scope of Work

The scope is to study the characteristics of AE signals from literature review and analyze the
signal waveforms from various steel samples.

The main tasks defined by DNV GL as follows:

+ Perform a literature study on current knowledge of SHM of offshore structures with
emphasis on jackets and AET signals characteristics.

Export suitable waveforms from the recorded data.

Develop Python program to inspect the signals.

Post-process AET data from the tests.

Study and evaluate the signal characteristics.

-+ FF

1.5 Limitations of the study
Following limitations should be considered:

+ Due to COVID-19, small-scale tests suggested by DNV GL which would be performed
in a laboratory in Hgvik on various samples could not be done.

+ Waveforms, which could be collected, were not recorded completely during the
experiments due to undesirable hardware setup in AEwin.

+ Not much time has been spent on locating the source of the signal, the priority was on
finding out what the signal conveys.

+ AE signals were only investigated from bending tests of base material which is far from
being realistic where it is first and foremost the welding connections that are the focus
area for AET.

+ Evaluation of signal characteristics assessing case study in laboratory experiment only,
no real time conditions such as environment effects or noise in offshore considered.



1.6 Organization of the thesis

The report consists of 7 Chapters.

Chapter 1. Introduction
Chapter 2. Literature survey of existing knowledge of AET and AE signal processing
2.1 Acoustic Emission Testing for Structural Health Monitoring of Offshore Jacket
Platforms
Background to Structural Health Monitoring (SHM) of Jacket Platforms
Acoustic Emission Testing (AET)
Parameter-based AE techniques and Signal-based AE analysis
Applications and the future for AE
2.2 Signal processing and characteristic of AE signals
e Signal processing
e Literature study of materials
e Characteristic of AE signals
Chapter 3. Methodology of the study
Chapter 4. Processing of AE Signals from Three-Point Bending Tests
Chapter 5. Results and Discussion

Chapter 6. Conclusive remarks together with Recommendations for further work
Chapter 7. Bibliography



Chapter 2 : Literature survey of existing knowledge of
AET and AE signal processing

2.1 Acoustic Emission Testing for Structural Health Monitoring
of Offshore Jacket Platforms

This section contains a review of AE technology with focus on the technique in Structural
Health Monitoring (SHM) used for offshore structure. This is followed by information about the
concept of AET. Presented next is information about two approaches to investigate AE signals:
classical parameter-based and quantitative signal-based analysis; characterization, pros and cons
of each analysis method is explained. Other applications of AE technique which are used in the
industry as well as the future of AE is also considered.

Figure 3 discusses the integrity management strategy, extracted from NORSOK N-005 standard
(N-005, 2017).

l Section 5
__ Integrity management strategy [i—
Regulations and standards, operational limitations, organization, inspection and monitoring strategy
l Section 5.3
Operation in accordance with operational limitations |——-

l

Control of as-is condition

Section 8 Section 9
Inspection & Execution of

Section 6 Section 7 i
. Initiator T 3 :
Data I—-I Evaluation triggered? monitoring [ inspection &
programmes monitoring
Section 10
{ Integrity assessment IL
l Section 10

{ Compensating measures
Update integrity management strategy T

Section 10.5

= Review of integrity management process }

Improvement and quality assurance

Figure 3. NORSOK N-005 (N-005, 2017).



2.1.1 Background to Structural Health Monitoring (SHM) of <Jacket
Platforms

i. Jacket Platforms

Offshore structures are divided into two main categories, bottom-supported and floating
structures. Bottom-supported structures consist of jackets, jack-ups and compliant towers, they
are permanently installed at the production location (except from the jack-up). Floating
structures include semi-submersibles, tension leg platforms (TLP’s), spars and floating
production, storage and offloading units (FPSO’s). Parameters such as reservoir size, water
depth and type of well affect the selection of the correct type of structures installed. After
installation, there are locations on bottom-supported structures which can never be inspected.
On the other hand, floating structures can be towed to shore for thorough check-up (Vestli,
2016).

The design of offshore jacket structures to support oil and gas exploration and production
facilities needs to sufficiently resist the external loads such as gravity loads, environmental
loads, accident loads as well as seismic and ice loads at certain sea locations. On the other hand,
the natural response of the structures are displacement and vibration (Henry et al., 2017). On the
Norwegian continental shelf (NCS), the Ekofisk Field is the oldest producing oil and gas field. It
was discovered in 1969 and the producing platforms were first installed in the early 1970’s.
Drilling and production platforms were developed using jacket structures, designed from
experience in the Gulf of Mexico. The platforms were originally designed to serve for 20 years
(Grigorian et al., 2001). The field is a good example of the fact that the service life of oil and
gas facilities is often significantly longer than originally intended. Therefore, there is a need to
find methods that can provide safe operation beyond the original service life of the facility.



it.  Structural Health Monitoring (SHM)

Degradation in the condition of structures is usually associated with processes. Structural
condition monitoring, often referred to Structural Health Monitoring (SHM) or Structural
Integrity Monitoring (SIM), is an area of continuing Research & Development (R&D) activity
to assure continued safe operation in the most cost-effective way (Holroyd, 2005). Structural
integrity monitoring is a good concept, where a system is installed, changes are monitored and
investigated and the structural integrity is inspected (Webborn et al., 1980).

Some SHM can detect, identify, assess and monitor flaws or faults/ conditions that has affected
or may affect the future safety and performance of structures. SHM is a combination between
elements of non-destructive testing (NDT) and evaluation, condition monitoring, statistical
pattern recognition and physical modeling. Process of SHM consists of five stages: procedure
development, sensing, diagnosis, monitoring and prediction. Condition-based maintenance
(CBM) approach is to schedule maintenance based on the condition of the structure, which can
perform maintenance whenever and wherever it is necessary (Muravin et al., 2010). The cost
savings of CBM must be greater than the costs associated with its implementation, for instance
purchase cost, training cost and running cost (incl. manpower cost) (Holroyd, 2005).

The condition monitoring of offshore structures to reduce the risk of structural failure and
guarantee the success of offshore operations is a key factor to manage integrity of offshore
platform. To date, oil, and gas companies as well as institutions around the world have
developed a significant number of field surveillance projects for that purpose. Safety of
personals and platforms operating in deep water and extreme environmental condition is crucial.
Wang et al. (2018) discussed about the state-of-the-art developments for field monitoring of
offshore structures. Continuous monitoring of offshore structures can obtain raw data in real
time to detect structural failures, assess safety and predict performance changes and the
remaining structural life. It helps to verify the design parameters and provide a database for post
project analysis. An integrated field monitoring system of an offshore structures has become an
effective method to obtain real-time tracking and feedback information on the metocean (such
as wind, waves, current, internal waves, ice, tide), structural motions and operational status to
reduce failure risk, obtain a comprehensive understanding of structural dynamic behavior,
calculate the accumulated damage and to assess the overall safety status. Monitoring of an
offshore structure is a complex project with multiple facilities working together. The method has
also drawn the increasing attention. For an efficient monitoring system, good stability,
durability, compatibility, and credibility performances are essential. Increasingly more offshore
structures will be installed with monitoring systems, which will further encourage to enhance
sensor technologies and monitoring systems (Wang et al., 2018).



Dumousseau et al. (1979) made a thorough report on numerous technical and economical
constraints to monitor jacket platforms, which mentioned cost to diving operations, low
confidence of visual inspection as well as complexity and limitations of conventional NDT
methods and lack of knowledge between inspections (Dumousseau et al., 1979). Ice loading and
fatigue are problems for platforms located in the Gulf of Alaska and the North Sea. In addition,
structural inspection using divers is limited in deep water and poor sea conditions. For North
Sea application, acoustic emission (AE) monitoring techniques are utilized with significant
savings by limiting the use of manual underwater inspection to only locations of concern
(Dunegan, 1977). In offshore environment, AE technology is applied on steel and concrete
structures, process equipment, tube skids, and slow-moving bearings. AE is used to test and
monitor many materials, such as metals, concrete, and composite; real-time data of what is
happening inside materials and structures is given during the monitoring process (MISTRAS
Group, 2020b). AE technology, with its multiple advantages, is a promising but challenging
method that may uniquely fit to SHM concept to continuous monitor the structure and assess
structural integrity during its operation life (Muravin et al., 2010).

1ii.  Acoustic Emission (AE) Technology

In the Journal of Building and Infrastructural Engineering of Israeli Association of Engineers
and Architects, Muravin (2009) discussed the application of acoustic emission method which
can be applied as a diagnostic tool to assess structural integrity by two major approaches:

1. Experimentally determining a characteristic set (fingerprints) of AE parameters and their
characteristics that describe a material condition, fracture stage and flaw type.

2. Establishing a theoretical relationship between AE parameters and their characteristics,
material properties, fracture mechanics parameters (Muravin, 2009).

AE techniques can be practical alternatives used for inspection of deep-water offshore structure.
A paper by Dunegan (1977) described positive features of a bottom-supported offshore structure
enables AE techniques to be successfully applied with a high degree of confidence:

1. The first feature is that the structure is cyclically loaded and therefore AE signals will
derive prior to failure.

2. The structure is simple, composed of one-dimensional members. This provides for a
simplification of computer software.

3. All joints on the structure are 100% welded, eliminating potential noise sources due to
frictional rubbing of members (Dunegan, 1977).

However, structural joints are complex geometries in uncontrolled environments subjected to
loading patterns which are not easy to predict in offshore environment. It is therefore difficult to
understand the behavior of the acoustic emission generated in a specific complex (Fuller and
Rose, 1983).



AE application offers a valuable testing technique for materials, components and structures with
knowledge and practical experience from much research and development existing worldwide
(Holroyd, 2005). Knowledge of the operational environmental profiles together with the
measured AE will provide a fundamental for structure lifecycle management (Rogers and
Stambaugh, 2014). Study is needed before companies may consider to implement acoustic
emission equipment used for structural integrity (Fuller and Rose, 1983).

2.1.2 Acoustic Emission Testing (AET)

In the past decades, there is increasing interest in the use of AE or continuous monitoring of
structures whilst in service (Holroyd, 2005). Interest in AE as an NDT method was growing fast
from the late 1960s. Unique capabilities of AE were recognized for monitoring dynamic
processes with increasing research on fundamentals of AE, instrumentation as well as
characterization of the signal behavior of many materials. Multi-channel acoustic emission
source location systems appeared commercially since 1970s, their development being driven by
industry’s demand to boost non-destructive testing applications (Rogers and Stambaugh, 2014,
Drouillard, 1994). Since 1980, along with the development of information technology and data
processing, computers became a necessary element for both instrumentation and data analysis.
There is a transition to waveform-based analysis from just analyzing the signals’ parameter
(Drouillard, 1994).

Trends are observed, comparisons are made between equivalent items and significant signal
excursions are analyzed. For structural monitoring, it is most important to listen simultaneously
to all sensor channels in order not to miss any irreversible activity and source localization
techniques can be applied (Holroyd, 2005). The acoustic emission analysis technique has shown
feasibility of the method as a means of increasing the inspection reliability of offshore
structures. To establish the benefits of the technique and to define the role of AE analysis with
other inspection or monitoring methods, more experience is needed on offshore structures
(Webborn et al., 1980). AE analysis is helpful together with other diagnostic techniques, such as
stress-strain measurements, microscopy, crack-opening-displacement measurements (CODM)
and potential drop (for crack growth) (PAC, 2014).

AET provides comprehensive and immediate information to study material deformation. AE
inspection is sensitive to microstructure and its relationship with failure processes can give
unique insights into the response of material to applied stress. Materials “talk” when they are in
trouble and AE equipment can help to “listen” to the sounds active damage in the stressed
material. Therefore small-scale damage can be able to detect long before failure (PAC, 2014).
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According to Lee et al. (2014), acoustic emissions are the elastic energy waves released by a
material undergoing deformation. When an external stress is imposed on a component, AE
signals reflect the internal stress redistribution within a material. Here, the stress can be
hydrostatic, pneumatic, thermal, or bending (Lee et al., 2014). If at any point during the
deformation, the applied load is reduced to zero and increased to the previous high level, AE
activity will gain only when it exceed the previous high stress (Rogers and Stambaugh, 2014).
AE technique is the most effective ‘Passive’ Non-Destructive Evaluation (NDE) tool. This
technique is ‘Passive’ because the technique doesn’t require an artificial source, instead it
receives the source signals from the tested material in form of burst signals (spontaneous release
of energy) (Barile et al., 2019).

active techniques

Source
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|

passive techniques

Figure 4. Active - Passive techniques (Grosse and Ohtsu, 2008, p. 4).

Signal discrimination between legitimate sources (e.g. cracks, corrosion, weld discontinuities)
and spurious noise sources (such as mechanical friction, weather, engines/machinery, loose parts
and other marine environment), as well as noise reduction are significant for a successful
application of AE. Signal discrimination and noise reduction are more crucial in application to
detect corrosion activity because in comparision to crack propagation, the corrosion process is
slower and signal strength is weaker (Lee et al., 2014).
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Figure 5. Overall Process of AET (Lee etal., 2014).

Lee et al. (2014) described process of AET in the figure above. Planning phase needs prior
knowledge to understand test objective, selection of project team, structural damage history,
structurally critical areas, selection of AET system, locations of acoustic emission sensors,
acoustic emission sensors and AET computer. After the AET system is installed, Pencil Lead
Break (PLB) must be performed for system checks to confirm sensors’ functionality,
preamplifiers, and computer. Data collection should record acoustic emission data, operation
information, strain information, stress information, etc. Then the data could be analyzed,
monitored, and used for further report and follow-up inspection. After the test is done,
equipment should be taken down and AET system would be uninstalled. Analysis procedure for
acoustic emission data is crucial to the success of the AET to recognize signature, filter out
noise, identify AE source location as well as high AE activity (Lee et al., 2014).
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Figure 6. Pencil-Lead Breaks (Sause, 2011).

In AE applications, PLB tests are used as a reproducible source for test signals. The lead in a
mechanical pencil is pressed firmly against the structure under test until the lead breaks. The
surface of lead tip cracks because of pressure during lead breakage. The accumulated stress is
released triggers a signal and create an acoustic wave that propagates into the structure that we
can use to calibrate the sensors. PLB is the most common test to calibrate AE source due to it is
easy to handle both in laboratory environment and in field testing (Sause, 2011). The PLB test
would be performed initially before applying load on the samples (Dawood_Khaled, 2019).

AE analysis can provide great potential for both condition assessment and monitoring of
structures not only in the laboratory but also in operation. In laboratory conditions, accuracy is
higher than on site due to smaller dimensions of the test specimens and smaller distances
between AE sources and the sensor. In contrast, tests in industrial services are less controlled
and have more environmental noise (Grosse and Ohtsu, 2008, p. 389).

Issues for successful application of acoustic emission to offshore structures were presented by
Dunegan in 1977 (Dunegan, 1977):

- In the steels used for offshore applications, are signal levels large enough to allow for
economical spacing of transducers?

- Have instrumentation techniques been significantly developed to separate valid signals
from extraneous noise signals?

- Have data handling methods been sufficiently developed so that ‘non-expert’ personnel
can operate the system, pinpoint problem areas, and make decisions? (Dunegan, 1977)

13



2.1.3 Parameter-based AE techniques and Signal-based AE analysis

The following definitions are based on a review by CU. Gross and M. Ohtsu (2008) in Acoustic
Emission Testing book (Grosse and Ohtsu, 2008).

There are two main groups to approach in recording and analyzing AE signals: parameter-based
(classical) and signal-based (quantitative) AE techniques. Rapid developments in
microelectronics allow the two approaches to exist simultaneously over the last few decades.
Historically, difficulties in recording and storing large number of signals made it not possible to
apply signal-based techniques for large structures and buildings. Further, high financial costs
and time required were also a challenge to apply signal-based techniques. Recently, devices
used for classical AE technique can store waveforms of the detected AE signals. For
applications using signal-based analysis techniques, custom software tools can be applied to
extract AE parameters for statistical analyses (Grosse and Ohtsu, 2008, p. 53).

i. Parameter Analysis

Parameter-based (classical) AE technique refers to a procedure that a set of parameters are
extracted from the signal and stored, but the signal (waveform) itself is not stored, this
consumes less time and storage space than to store the entire waveforms. Typical AE parameters
are maximum peak-to-peak amplitude, arrival time, rise time, and duration (Grosse and Ohtsu,
2008, p. 41).
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Figure 7. Conventional AE signal features (Grosse and Ohtsu, 2008, p. 43).
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Pros and Cons of using Parameter-based AE Techniques is described in the table below.

Table 1. Pros and Cons of using Parameter-based AE Techniques.

Pros

Cons

Significant amount of information on
the damage progression (Barile et al.,
2019).

Fast visualization by high recording
and storing data speeds.

Reduce system shuts down in a short
period to record entire signal
waveform by several sensors, reduces
loss of information (Grosse and Ohtsu,

Difficult to discriminate AE signal
from noise when signal is reduced to a
few parameters, especially with using
resonant sensor.

Extraction of simple parameters
characterizing is difficult when using
broadband sensor.

Complexity of the material and the
geometry of the structure, as well as

different in wave modes
(compressional, shear or surface
waves) that affect the propagation of
signals are not considered (Grosse
and Ohtsu, 2008, p. 55, Barile et al.,
2019).

- Peak Amplitude is an unreliable
parameter in the damage monitoring
(Barile et al., 2019).

2008, p. 55).

e Classical Parameters

Characteristics of AE parameters have been studied to interpret physical phenomena. Signal
parameters are defined in 1SO 12716 2001 (Grosse and Ohtsu, 2008, p. 42-43). There are five
most widely used signal measurement parameters: duration, counts, amplitude, rise time and
energy (MARSE or the measured area under the rectified signal envelope) (PAC, 2014).

Hit (signal duration): a signal that exceeds the threshold and causes a system channel to
accumulate data. One ‘hit’ correspond one waveform.

Duration: a time interval between the triggering time of AE signal and the time of
disappearance. Usually expressed in microseconds, depends on source magnitude and noise
filtering.

Count/ring-down count/emission count: within the duration, the number of times where one
signal (waveform) exceeds a present threshold.
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‘Hit” and ‘count’ is used to quantify the AE activity.
‘Counts’ depend on the employed threshold and the operating frequency.

‘Count to Peaks’ is counts between the triggering time over the threshold and the peak
amplitude.

Amplitude (max. amplitude or peak-to-peak): a peak voltage of the signal waveform. Instead of
linear scale, amplitudes are expressed on a decibel scale, 1 uV at sensor represents 0 dB AE.
The amplitude is important parameter to determine the system’s detectability. The value of
detected amplitude does not illustrate the emission-source but the response of sensor after losing
the energy due to propagation. In each signal, the magnitude of amplitude and frequency
distribution are often analyzed together.

Rise time: a time interval between the triggered time of AE signal and the time of the peak
amplitude. This is related to the source-time function and applied to eliminate noise signals.

Energy: a measured area under the rectified signal envelope (MARSE). Energy is sensitive to
the amplitude and the duration but not on the voltage threshold and operating frequencies.
Therefore, it is favored to interpret the magnitude of sources event over counts (Grosse and
Ohtsu, 2008, p. 42-43).
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Figure 8. AE parameters on one event (Caesarendra et al., 2016).
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The size and speed of the local deformation process determines the amount of energy released.
In isolation environment, AE stress wave can be produced by the formation and movement of a
single dislocation, but it is not a large enough process to be detected. When large amount of
dislocations is forming and moving at the same time during yielding of a tensile specimen,
detectable result can be achieved by the individual stress waves overlap and superimpose (PAC,
2014).

According to Caesarendra et al. (2016), event is defined as a phenomenon which releases elastic
energy (which propagates as elastic wave) into the material (Caesarendra et al., 2016).

e Other parameters (Grosse and Ohtsu, 2008, p. 44):

Count

Average frequency = , average frequency over one AE hit, used when signal waveforms

Duration

are difficult to record.

.- Count to Peak
Initial frequency = Rise Time

Count—Count to Peak

Reverberation frequency =

Duration—Rise time

Rise time

RA value = :
Amplitude

(ms/V)

e Frequency Parameters (Grosse and Ohtsu, 2008, p. 44):

AE signal waveforms characterize AE source mechanisms and can be recorded in real time.
Frequency-domain features play an important role to interpret AE data. The resolution of
frequency parameters depends on sampling rate and employed waveform length.

Frequency centroid is reported in kilohertz and equivalent to the first moment of inertia.

Peak frequency (kilohertz) is the point where the peak magnitude is observed (Grosse and
Ohtsu, 2008, p. 44).
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Figure 9. Peak Frequency and Frequency centroid (Grosse and Ohtsu, 2008, p. 45).
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ii.  Signal-Based AE Analysis

Table 2 discusses differences between Parameter- and Signal-based AET.

Table 2. Parameter-based AET vs Signals-based AET (Grosse and Ohtsu, 2008, p. 57).

Parameter-based AET  Signal-based AET

Failure detection Large scale Small scale
Localization:

° 1D (zonal) requires many Sensors requires many sensors

e 2D (planar) minimum 3 sensors minimum 3 sensors

e 3D minimum 4 sensors minimum 4 sensors
Fast real-time data analysis requires PC with memory -
Statistical analysis requires PC with memory requires PC with memory
Analysis of:

e amplitudes Only statistical analysis resolution > 12 Bit

e frequencies - requires broadband sensors

e  waveforms - sampling frequency > IMHz
Fracture analysis: Min. 6 sensors in the farfield

e  Fault-plane orientation - Distributed sensors

¢ Fault-plane size - Moment tensor inversion

¢  Fault-plane energy - Moment tensor inversion

o Fracture mode (I, I1, 111, = Moment tensor inversion

mixed)

Signal-based (quantitative) AE technique can record and store as many signals and waveforms
(converted from analogue-to-digital) as possible. Using this approach enable a more
comprehensive data analysis as well as post-processing environment (Grosse and Ohtsu, 2008).

The recorded waveforms of Acoustic Event carry more useful information comparing to the AE
parameters. Furthermore, proper analysis contributes more detail on the online monitoring of
damage progression. Fast Fourier Transform (FFT) or the Wavelet to study the AE signal
waveforms in the frequency domain. This is a powerful online tool to get information of the AE
events during the entire load history. The Wavelet Analysis provides information on Frequency-
Time domain, where the peak frequency shows the highest frequency point of the entire
spectrum (Barile et al., 2019).
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Pros and Cons of using Signal-based AE Techniques is interpreted in the table below.

Table 3. Pros and Cons of using Signal-based AE Techniques.

Pros

Cons

Capability of signal-to-noise
discrimination based on waveforms
analysis. The waveforms are still
available after the measurement.
Different signal analysis methods can
be applied using post-processing
software, which enhance the signal-to-
noise ratio and extract material
properties information.

Improve the reliability of the data
interpretation (Grosse and Ohtsu,
2008, p. 56).

Smaller number of events can be
recorded.

Young field of research, lack of
algorithms and software to process
large  number of AE signals
automatically (Grosse and Ohtsu,
2008, p. 56).

The peak frequency cannot represent
the true nature of the AE signal (Barile
etal., 2019).
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2.1.4 Other applications and the future for AE

i. Applications of AE

AE method is widely applied in petrochemical, power, nuclear power, gas-treatment, military,
aerospace, medical, pharmaceutical, automotive industries. In addition, it is also used in
academic and industrial research institutions. AE applications can be divided into three
categories: examination of structures, material study and control over manufacturing processes
(Muravin, 2009, Gholizadeh et al., 2015).

1. Examination of structures

To examine the structures, AE technology can be used to inspect metal pressure vessel; piping
for detection of cracks, corrosion damage and leaks; concrete, reinforced concrete bridges for
flaws, rebar corrosion, failure of cables; as well as in aerospace industries to develop in flight
monitoring systems (Muravin, 2009). There are two basic strategies of AE-based monitoring:
local and global monitoring, where global monitoring assesses the whole integrity of the
structure and local monitoring concerns a particular damage area (Gholizadeh et al., 2015).

2. Material engineering used in composite, metal, concrete, rock

Real-time structural monitoring is crucial where material condition can be estimated early which
can prevent large-scale failure to increase safety and reduce management cost (Gholizadeh et al.,
2015).

AE method can also be used to investigate the material such as:

- Environmental cracking (stress corrosion cracking, hydrogen embrittlement)
- Fatigue and creep crack growth

- Material properties (material ductility, inclusions content)

- Plastic deformation development

- Phase transformation (Muravin, 2009)

3. Control over manufacturing processes

AE’s ability to discriminate between environmental noise and machine vibrations due to high
frequency range and sensitivity of signal parameters enable the use of AE for process
monitoring. The technique can be applied for monitoring of wears in welding, grinding, drilling
(Gholizadeh et al., 2015). Other examples are test of component to detect micro-structural
damage or test of composite overlap pressure vessels or engines (Muravin, 2009).

20



ii. Future for AE

Since 2005, Holroyd already wrote in his report that the future for AE looks very promising.
Increased processing power of instrumentation can reduce the need for specific AE instrument
as well as enabling information from multiple sensory inputs to be more easily interpreted.
Continually improving the design of AE sensors enhances reliability and delivers longer service
life. For applications in structural monitoring, there is still demand for better wireless
connectivity and lower power electronics allowing for more data to be captured increasing the
data for analysis (Holroyd, 2005).

Internet of Things (10Ts), big data and cloud computing will play an important role to collect the
necessary information from the signals, process and analyze these signals as well as to store the
data for future use (Coady et al., 2019). The new technologies support the interconnection of
systems (Coady et al., 2019) and provide a great opportunity for smart monitoring and process
optimization (Kan et al., 2018).

Development of field monitoring for offshore structure will encourage the development of
sensor technologies and monitoring system and further provide a standardization for set of
instructions and design of the technology (Wang et al., 2018). Wireless Sensor Networks (WSN)
is considered one of the application of this type of SHM loTs based (Christin et al., 2009,
Lamonaca et al., 2018). All sensors can communicate with a station transmitting measurement
information, global or local data from structural properties will be acquired by sensors by using
ultrasonic or acoustic emissions. Traditional sensors with new hardware will be able to detect
inconsistencies in data and/or gather useful information to transmit over internet. The upgraded
sensors consume significantly less power and increases service life with up to 5 or 10 years. The
SHM hardware is compact, portable, light, electrically and mechanically robust. In addition,
instrumentation is flexible, expandable and inexpensive (Lamonaca et al., 2018).
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Figure 10. 1oT-SHM system (Scuro et al., 2018).

Figure above explains the architecture of an IoT-SHM system which consists of sensors,
gateway, remote control and service room (RCSR) and open platform communications (OPC)
server (Scuro et al., 2018).

Recently, existing studies mainly focus on the development of sensors, wireless communication,
and information architecture. There is a need to develop efficient algorithms to leverage
collected data and characterize data signatures that are sensitive to operational, environmental,
sustainable processes (Kan et al., 2018). Moreover, sensor virtualization, sensor scalability,
security and interoperability also need to be enhanced to deploy the advantage of 10T in SHM
(Lamonaca et al., 2018).
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2.2 Signal processing and characteristic of AE signals

The competency of signal processing has significantly improved since 1950 after the pioneering
work of Josef Kaisers. Experimental procedures have been much defined, enhanced, and
standardized. Multiple AE sensors and a broad range of signal processing techniques are
required to use AE for structural monitoring in order to supply adequate detection coverage,
pinpoint the source(s) of activity, limit the misinterpretation of non-deleterious signals and help
determine the criticality of non-repeating signals. The sounds related to the failure of materials
were recognized. When plastic deformation occurred in the stressed material, it triggered
detectable activity and this activity was irreversible that it couldn’t happen again if the same
stress was reapplied (Holroyd, 2005).

2.2.1 Signal processing

AE is a process of stress-release when applying an external force to an object, elastic waves will
be generated due to the displacement of material particles and these waves propagate in material
media. Elastic AE waves reflex mechanical vibration and can be extracted by the sensors. The
characteristics of elastic waves are different depending on differences in external forces applied
and different materials used. Investigation and classification of waveforms provide a great initial
step which can ultimately increase the effectiveness of monitoring. The acoustic waves are often
mixed with other acoustic waves such as grain fracture and mechanical and environmental noise
(Griffin and Chen, 2006).
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Throughout the AE testing, the background noise is often found very high. Different types of
noise are mechanical noise, hydraulic noise, electrical (electromagnetic) noise, cyclic noise,
welding noise, pseudo noise, etc. The presence of these noises makes it difficult to make the
right interpretation of the AE signature. To investigate the AE signal, it is necessary to eliminate
or reduce the noise. It can be done using filters, or by decreasing the gain and/or increasing the
threshold. However, this may affect the AE data, i.e., the low-amplitude AE signals may not be
detected and also the AE signals may get filtered out with frequency components in the same
range as that of noise (Rao and Subramanyam, 2008).

Data processing involves using the collected data and to transform this to data is possible to
understand and evaluate. Several transformations are used, but the most popular transformations
are based on a method called Fourier Transform (FT) (Vestli, 2016). Drawbacks of this method
are the loss of information about the time of occurrence of different frequency components and
its unsuitability for non-stationary AE signals. Other useful tools for simultaneous frequency-
time analysis are short-time Fourier transform (STFT) and wavelet analysis. STFT, which
involves multiplying a signal with a short window function and calculating the Fourier
transform of the product. The window is moved to a new position and the calculation is
repeated. Both time and frequency information of the whole signal is evaluated, the use of
constant window length creates fixed resolution in both time and frequency domains. In contrast
to fixed-length window size of STFT, wavelet analysis uses windowing technique with variable
sizes, i.e. long time interval windows are used when there is more precise low-frequency
information, and shorter regions are used where high-frequency information is preferred.
Wavelet analysis divides a signal into different levels, where each level is associated with a
certain band of frequencies in the signals (Kaphle etal., 2010).

The purpose of these methods is basically to transform a data signal retrieved from sensors from
time domain to frequency domain. SHM involves a vast amount of data, but not all data is
valuable for the structural assessment. Therefore, the challenge with data processing is to utilize
the most important data. The task of identifying the damage indicator which is sensitive to
damage from the vibration response is necessary. This is called system identification. The
processing of the collected data is an important step in a monitoring system. Most of the
methods used in SHM systems of offshore jackets are related to modal analysis (Vestli, 2016).
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Table 4. Data processing algorithms used in SHM of Jackets (Vestli, 2016).

Processing Methods Application

Fatigue rainflow of cycle counting Fatigue life evaluation
Fourier Transform (FT/ FFT) Modal analysis

Short Time Fourier Transform (STFT) Modal analysis
Wavelet Transform (WT) Modal analysis

The right method to use relies on the type of sensors that produces the data to be processed. The
FT/ FFT, STFT, and WT algorithms are used when a conversation to frequency domain is
needed. This is needed when accelerometers are used during modal analysis. The STFT was
proposed as a better algorithm to process high-frequency signals by dividing the signal in a
constant resolution, and do not take into consideration the different characteristics of high and
low signals in the processing (Vestli, 2016).
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Figure 12. Illustrations of different transformations (Vestli, 2016).
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According to Griffin and Chen (2006) about acoustic emission signals of rubbing, ploughing
and cutting during single grit scratch tests, different types of transformation using in signal
processing were reviewed.

FFTs (Fast Fourier Transforms) were used in the past for condition monitoring, to estimate
the frequency components and associated amplitudes. However, this method has a disadvantage
as it doesn’t provide information on time when the event occurred. In other words, it doesn’t
give information when deformation or fracture or combination of both happens, or when the
elastic energy is released (Griffin and Chen, 2006).

X() = [, x@® e Mt dt (1)
f: frequency
t: time
x: signal under transform

X(t): signal in the frequency domain

STFTs (Short-Time Fourier Transforms) technique considers time, frequency, and
amplitudes in the measuring. The extra dimension of time can offer a good solution to
characterize AE signal. STFT is equal to FT multiplied by a discrete window function along the
length of the original time-domain signal (Griffin and Chen, 2006).

STET” (t',f) = [ [x(®) w* (t —t")] e /™ dt )
X(t): time domain signal under transform

w(t): the window function and * is the complex conjugate

The resolution between the frequency and time domains is determined by the increment value of
t” (Griffin and Chen, 2006).

WT (Wavelet Transforms) represents time-frequency analysis both in approximate and
detailed scale. The analysis characterizes the signal in high-frequency burst of short duration
and low frequency of longer duration, which can provide high resolution along the time-
frequency extracted signal (Griffin and Chen, 2006).

Ws [x(D)] = IsI ™2 [ x@) v () dt )
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T: translation, is the location of window which is shifted along the original time extracted signal
s: scale parameters

y(t): the transforming function or so called the mother wavelet.

Wavelet means a small wave and is based on the window function method of a wavelet with
finite length and compactly supported. The mother function is from all windows using the
wavelet function. In the function of WT, there is a scale parameter (the inverse of frequency
which is similar to the phenomenon occurring in nature), instead of frequency parameter as in
STFT or FT function (Griffin and Chen, 2006).

WT can give a better resolution than that of STFT. The window of STFT signal processing
technigque shows an approximation of a specific time-frequency band, the user cannot extract an
exact time at a particular point. On the other hand, WT indicates a smaller frequency with high-
short and low-long components and enables the user to read the exact start and finish point of
the event (Griffin and Chen, 2006).

2.2.2 Literature study of materials

L. Yielding in materials

Yielding begins when the applied stress is below the yield stress. The yield strength of metal
appears when the offset strain is 0,2% (Tian et al., 2020). Yielding is explained as plastic
deformation which takes place by slip, hence is caused by shear stresses. Plastic deformation
will not happen unless the shear is adequate to cause slip. Yielding occurs when

c = Fty (4)

It is when the stress (o) and uniaxial yield strength (Ft) measured in a tensile test is relatively
equal. Without shear stress there can be no slip and no plastic deformation. Yielding will not
happen regardless of how high the stress if the shear stress is zero. For slip to occur, one of the
stresses must be larger than the other by Fy. A plane strain condition is more serious and can
easily cause fracture and cracks (Broek, 1989).
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Figure 13. Stress - strain behavior for steel (steelconstruction.info, 2020).

ii.  Deformation in materials

When deformation starts, dislocations rapidly propagate, which would cause localized
relaxations in the elastic strain distribution. It is likely that every mobile dislocation, growing
crack, and debonding and/or breaking of every inclusion will lead to the initiation of elastic
waves that propagate to the surface of the materials. AE can be successfully utilized to detect
and distinguish various deformation mechanisms such as dislocation motion, debonding and/or
braking of inclusions, interaction of dislocations with inclusions and precipitates, etc. As a
result, AE technique is widely applied to study deformation behavior of engineering materials
such as alloys and composites. One important AE source for metals and alloys is dislocation
motion (slip), which mostly occurs at the yield stress of the material. In some cases, the high
level of AE activity happens before the yield stress showing local plastic yielding. The low
frequency events are firstly detected at stress quite lower than yield strength and most are before
yield. This behavior is similar to the AE behavior from dislocation motion; therefore, it may be
assumed that a possible AE source for low frequency events was dislocation motion (Khan et
al., 2013).

The AE energy E” released at strain € during deformation depends on the mobile dislocation
density p, dislocation velocity v and dislocation free path o (Tian et al., 2020).

E* « p (va)2 ®)

The AE energy increases as strain increases. Increasing the external stress would increase the
plastic deformation rate and average dislocation velocity, while the change within the average
free path of a mobile dislocation could be neglected. The primary source of AE during micro-
plastic deformation is dislocation activity and dislocation sources are activated by stress
concentration at grain boundaries. Therefore, grain boundaries are considered as an important
source of dislocations and the primary source of AE signals (Tian etal., 2020).
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The analysis of fracture is based on a parameter indicating the crack tip stress field, which
consists of

- Linear Elastic Fracture Mechanics (LEFM)
- Elastic-Plastic Fracture Mechanics (EPFM), which uses the strain energy release rate as
quantity (Broek, 1989).

For plastic deformation, the stress needed depends upon the state of stress; in plane, yielding
happens when the highest principal stress is equal to the yield strength, but in the case of a
triaxial state of stress, much higher stresses are required. When the entire section is yielding
(fracture may occur before this could happen), the final stress distribution will be about the same
(Broek, 1989).

Linear elastic fracture mechanics (LEFM)

All high strength materials used in the aerospace industry, high-strength-low-alloy steels, etc.
are materials with relatively low fracture resistance, which can be analyzed on the basic of
elastic concepts through the use of Linear Elastic Fracture Mechanics (LEFM). In a real material
plastic deformation will occur so that stresses cannot increase much further after yielding
begins. Yielding begins when the difference between maximum and minimum principal stress is
equal to the yield strength, Fi (Broek, 1989).

Elastic-plastic fracture mechanics (EPFM)

If fracture is accompanied considerable plastic deformation, Elastic-Plastic Fracture Mechanics
(EPFM) is used (Broek, 1989).
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Figure 14. EPFM (Broek, 1989).

29



The stress-strain equation:

(6)

mlQ

€ 1s strain

o IS stress

1ii.  Material properties

Continuous emission from the plastic deformation of steels, aluminum alloys, and many other
metals has been broadly studied, and there have been many detailed findings relating acoustic
emissions to dislocation activity and precipitates, microstructure, and materials properties.
Those studies can yield significant perceptions for the development of alloy and material.
Continuous emission during and after yield has been focused on many studies; burst-type
emissions sometimes observed in the nominally elastic region are less well explained (PAC,
2014).

Jones & Ashby (1986) described the material properties of various materials in the book named
Engineering materials 2: An introduction to microstructures, processing and design published in
1986. Material properties’ data is required for any design application. Detailed of material
specifications from the supplier who will provide the materials used should be accessible before
final design decisions making final decision. And if the component is a critical one (in case its
failure could trigger a catastrophe), there should be conducted a test to check the material. The
density, modulus, thermal expansion and specific heat of any steel, these properties depend very
little on microstructure. Other properties vary greatly with the heat treatment and mechanical
treatment, and the detailed alloy composition, which are the “structure-sensitive” properties
such as: yield and tensile strength, ductility, fracture toughness, and creep and fatigue strength.
They cannot be predicted from data for other alloys, even if the composition is almost the same.
It is very important to check manufacturers’ data sheets listing the properties of the alloy that is
planned to use, even though they contain the same mechanical and heat treatment (Jones and
Ashby, 1986). Common sources of AE in materials include initiation/growth of cracks, material
dislocations, yielding. The signals captured by sensors are affected by the medium (shape, size
and material property) and the sensor characteristics (its type and the way it is coupled to the
structure (Kaphle etal., 2010).

Two things that defines the metal’s structure: first is the constitution (such as: the overall
composition, or the elements/ components, that the metal contains and the relative weights of
each of them; the number of phases, their relative weights and the composition of each phase);
second is the geometric information about shape and size (here considers the shape of each
phase and the sizes and spacings of the phases) (Jones and Ashby, 1986).
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Crystal and glass structures

Atoms are the smallest scale of controllable structural feature. On the metals, atoms are packed
together to give either a crystalline or a glassy (amorphous) structure. The metal atoms pack into
the simple crystal structures of face-centered cubic (f.c.c.), body-centered- cubic (b.c.c.) or
close-packed hexagonal (c.p.h.). Many stainless steels are f.c.c. rather than b.c.c and at low
temperatures, they have much better ductility and toughness compares to ordinary carbon steels

(Jones and Ashby, 1986).

Structures of solutions and compounds

Metals are not usually used in their pure state, most likely other elements will be added to
metals which turn them into alloys to get better mechanical properties (Jones and Ashby, 1986).

Phases

Metal crystals, amorphous metals, solid solutions, and solid compounds — are all phases. A

phase is defined as a region of material that has uniform physical and chemical properties (Jones
and Ashby, 1986).

ENGINEERING MATERTALS

(a) Interstitial

(e) Ordered

Figure 15. Solid-Solution structures (Jones and Ashby, 1986).
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Grain and phase boundaries

Single-phase is described as pure metal, or a solid solution. Making single crystals of metals or
alloys is possible, but it is difficult and expensive. Therefore, it is only worth it for high-
technology applications such as single-crystal turbine blades or single-crystal silicon for
microchips (Jones and Ashby, 1986).

4— Grain
boundary

Figure 16. Grain boundary (Jones and Ashby, 1986).

Figure above shows the structure of a typical grain boundary. To be able to ‘minimize the gap’
between two crystals of different orientation in the grain boundary, the atoms have to be
organized in a less ordered way. The structure gives grain boundaries special properties of their
own (Jones and Ashby, 1986).

Shapes of grains and phases

Grains come is all shapes and sizes, and both can influence the properties of the polycrystalline
metal. Take mild steel as an example — its strength can be doubled by a ten-times decrease in
grain-size. If there are no external effects, then the energy of the grain boundaries is the
important thing. There are more shapes if the metal consists of two phases. It’s when a single-
crystal particle of one phase forms inside a grain of another phase, or if the energy of the
interphase boundary is the same for all orientations (isotropic), the second-phase particle will try
to be spherical in order to minimize the interphase boundary energy (Jones and Ashby, 1986).
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2.2.3 Characteristic of AE signals

i. AFE wave types and modes

Two broad classes of AE signals are burst signals and continuous signals (Terchi and Au, 2001).
Acoustic emission applications are known for the ability to detect, distinguish, and analyze
signals from both types of emission (Muravin, 2009).

1. Burst signals are the spontaneous release of the strain energy, generated by the
redistribution of the localized strain energy under different loading conditions which are
caused by the microscopic changes in a structure, such as dislocation slips, grain
boundary sliding, and phase transformation.

2. Continuous signals are the result of overlapping burst signals. A complete
characterization of an AE signal has to account for the number and rate of bursts (event
count) and characterization of a single burst (Terchi and Au, 2001).

burst signals

0,0 0,2 04 time [S] 086 08

Figure 17. Burst signals vs continuous emission of acoustic waves (Grosse and Ohtsu, 2008, p. 5).

The magnitude and duration of the physical events occurring in the material affect the nature
and power spectrum of acoustic emission (Rogers and Stambaugh, 2014) namely:

)] ‘Continuous noise’ form many uncorrelated low energy dislocation events (atomic
imperfections)

i) ‘Burst type noise’ due to the harmonized motion of many dislocation events (a
dislocation avalanche)

iii)  Relatively high energy bursts from micro-fracture events come together with stable
crack growth e.g. fatigue and stress corrosion cracking.
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AE Wave modes
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Figure 19. Wave Modes in Different Geometries (Muravin, 2008).

In semi-infinite media, there are Rayleigh and Lateral (Head) waves. Head waves generated by
the interaction of the longitudinal waves with the free surface. In thinnest plates, only Lamb
wave appearances are detectable (Muravin, 2008).
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1i. AE waveform-based analysis
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Figure 20. Typical signals caused by a) transverse matrix crack and b) grip slippage or damage (Prosser,
1998).

Acoustic emission (AE) techniques based on the waveform, which is also known as Modal AE,
provides an enhanced capability to distinguish and remove noise signals from those generated
by damage mechanisms. The flexural mode propagates with a slower velocity and is highly
dispersive with the higher frequencies traveling at higher velocities. Other techniques such as
microscopy should be studied to confirm the ability to use AE in different material/ laminate/
geometry. Developments in modeling AE wave propagation will support the applicability of
Modal AE by giving insight into the effects of different source mechanisms on detected AE
signals (Prosser, 1998).

With the availability of superior computing resources and data storage and transmission
capability, recording and analysis of the complete signal waveforms is becoming a plausible
analysis approach. Nonetheless, the issue of data volume has been a challenge in the use of AE
technique for structural health monitoring applications. AE testing generates a large amount of
data caused by a high sampling rate required for data capture. Additionally, it is even more
complicated by the presence of false sources that can produce AE signals which can then cover
the desired or genuine damage related signals. Therefore, there required an effective data
analysis strategy to achieve source discrimination. This is essential for long term monitoring
applications to prevent massive data overload in data storage and transmission. It is also useful
to have a parameter that can be used to decide which data is important and needs to be
transmitted. Analysis of frequency contents of recorded AE signals together with the use of
signal waveform characteristics (waveform envelop) algorithms are the sophisticated and
promising data analysis approaches for source discrimination (Kaphle et al., 2010).

The basis for waveform-based analysis is that signals recorded contain information about the
nature of the phenomenon; hence study of the signals will help identify and differentiate
different AE signals (Kaphle et al., 2010). Analysis of the recorded AE waveforms will provide
more information on the events and mechanisms leading to failure (Brunner et al., 2010).
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Figure 21. Typical waveforms of AE signal (Lin and Chu, 2011, Kaphle etal., 2012, Yuetal., 2011).

Figure above shows the typical waveforms of AE signal from various sources. The first one is
signal from a pencil lead break (PLB), signal number two gives the typical waveform of an AE
signal from knocking the leg test of the offshore structures. As shown in signal number three,
the AE signals released from offshore platform model underwater. Signal number four is from
friction emission (Lin and Chu, 2011, Kaphle et al., 2012, Yu et al., 2011).
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Figure 22. AE signals from pressure vessel testing (Rao and Subramanyam, 2008).

References of AE signals from pressure vessel testing were reviewed in a paper by Rao and
Subramanyam (2008) in the publication regarding The Analysis of Acoustic Emission Signals
using the Wavelet Transformation Technique. To be able to identify rubbing is difficult. This is
because rubbing has elastic material energy properties, and in terms of its physical properties,
elastic material has no or very little marking on the workpiece (Griffin and Chen, 2006).

37



Wavelorm

0 200 400 600 800 1000 1200

Figure 23. Signal waveform at the yield stage of deformation (Akbari and Ahmadi, 2010).

Waveform at the yield stage of deformation was described in a journal by Akbari and Ahmadi
(2010) (Akbari and Ahmadi, 2010). This looks similar to the signal generated during micro-
plastic deformation.
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Figure 24. AE signal type Al and A2 (Tian et al., 2020).

Results from the study by Tian shows that during micro-plastic deformation AE signals
generated different waveforms which are type Al and A2. A type Al signal is typical a burst
signal with high amplitude and short duration, which is recognized as local dislocation
multiplication events or grain boundary dislocation sources. Type A2 signal is a mixed signal
created by two type Al signals, which may be local dislocation multiplication and collective
cooperative motion of local dislocations.
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The paper by Brunner, A. J., Tannert, T. & Vallee, T. (2010) about waveform analysis of
acoustic emission monitoring of tensile tests on welded wood-joints explained that the weld
zone (around the center plane of the specimens) is a weak area with significant damage
accumulation (Brunner et al., 2010). Another finding in carbon steel material with a single
defect in V-butt weld was presented by Droubi in 2017. Very limited study in the literature has
been conducted that reports on using AE as a tool for welding inspection. Welding inspection
plays a key role to assess the integrity of any structure and its components in many industrial
applications for instant pipeline systems in oil and gas, nuclear power, and petrochemical
industries.

Generally, there are six types of weld defects: porosity (PO), crack (CR), slag (SL), incomplete
fusion (IF), incomplete penetration (IP) and no defect (ND). Variety of reasons that cause flaws
in welded structures such lamellar tearing, which is often due to poor quality of steel, and
cracking due to strain associated with phase change and thermal shrinkage. The structural
integrity of welded structures will be affected by such flaws, consequently, welding requires
regular inspection to monitor and evaluate their condition whether fit for a purpose or have lost
part of their integrity due to aging problem. Actions are needed when a defect is noticed before
leading to failure. Detecting weld defects as early as possible is important for the safety and
continuity of operation of such structures. Quantitative interpretations of welded joint quality
could be enhanced by identify unknown signals and evaluate their significance and correlating
identified signals to the weld defect types. Droubi (2017) pointed out that among all AE
parameters in the study, the key parameters in detecting a presence of a weld defect were found
to be AE energy, root mean square (RMS) and peak amplitude. This was because of these three
parameters indicating the largest percentage differences from the nodefect values (Droubi et al.,
2017).
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Chapter 3 : Methodology of the study

A literature study on current knowledge of AE signals and its characteristic was reviewed,
with the focus on understanding signal by AET technology used in SHM for offshore steel
jacket platforms. Microstructure of materials and fracture mechanics were discussed briefly
to be able to understand AE signals and analyze the data measured from experiments from
various steel samples. There are two main approaches to signal analysis, namely parameter-
based and signal-based analysis. This report focuses on the parameter-based analysis because
signal-based analysis requires an advanced background in signal processing.

Python was used to develop a computer program for data analysis of the signals that were
recorded. The results can be visualized by the python program and QATS application.

The AEwin software and input data were provided by DNV GL from the experiments
performed in spring 2019 (Dawood_Khaled, 2019). AE signals were logged during three-
point bending test in various steel specimens.

To summarize, the thesis consists of 4 main activities:

+ First is literature study that focuses on AET used as condition monitoring technique
for offshore jacket structures and AE signals characteristics. Understand the concept
of AE signal signatures through steel samples can contribute to investigate the data
measured.

+ Extract appropriate signal waveforms from AEwin software.

+ Develop an algorithm using Python to evaluate the signals received from AET.

+ Process AET data from the tests to analyze AE parameters (such as amplitude,
duration, frequency, energy, hit counts) and signals characteristics.
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Chapter 4 : Experimentation and Python program

4.1 Materials used and Experimentation
Flat steel in quality S355J2 according to EN 10025-2 and NORSOK M120 MDS-Y05.

Table 5 was derived from table 21 from Mr. Dawood (2019) report. Only a few specimens
were chosen from the report in 2019 for data processing.

Table 5. Specimens Dimensions (Dawood_Khaled, 2019).

Specimen samples Thickness (mm) |  Width (mm) Length (mm)
Al (with coating) 14,74 30,10 500
A3N (without coating) 14,72 29,82 500
B1N (without coating) 19,76 29,61 500
B2NR (Reversed) (without coating) 29,40 19,74 500

e Samples Al, BIN: The normal force was applied on the width surface.

e Sample A3N: The normal force was applied on the width surface and a fan was
attached as an external noise source which has specific frequency.

e Sample B2NR (Reversed dimension of sample B2N): The normal force was applied
on the width surface (29,4mm) with thickness (19,74mm). The experiment here was
repeated on the same B2N specimen with the force that was applied in different side
of the specimen. The reason to do this is because the specimen would be deformed
after the first test. Then in the second attempt, the specimen would be in the plasticity
stage and therefore, different AE results would be recorded and analyzed
(Dawood_Khaled, 2019).

Three-point bending machine shall be used to load the specimens to the desired load. In a
bend test, the specimen is exposed to a complex combination of forces including tension,
compression, and shear when it bends or flexes. Tensile stress appears in the convex side of
the specimen and compression stress in the concave side. An area of shear stress is generated
along the midline. (Instron, 2020). Test setup is described in appendix 5.
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Figure 25. Bending test.
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4.2 Waveform data from AEwin

The data used in this work was collected from AEwin software (given accessed by DNV GL)
by exporting from the experiments that were done in spring 2019 (Dawood_Kbhaled, 2019).
Figure 26 shows the recorded data from Al specimen, this is loaded into AEwin and
replayed, from here the data was exported into ASCII Waveforms as a csv (comma separated

values) file. The csv contains the foundation for the input to the developed signal processing
program.
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Figure 26. Extracting waveform information from AEwin.

B =] ) E F G H | [ J K L
SOURCE F|LE NAME: C:\Users\hikar\Desktop\AE Win\Khaled Thesis\File set from Tor Jo\testing\A1.DTA
DATE: Wednesday, May 08, 2019

TIME: 11:02:00

SAMPLE INTERVAL (Seconds): 0.0000010000
SIGNAL UNITS: volts

TIME UNITS: Seconds

DATA TYPE: WAVEFORM

NUMBER OF DATA POINTS PER WAVEFORM: 1024
9 CHANNEL NUMBER: 1

10 HIT NUMBER: 1

11 TIME OF TEST: 29.3280227

ONOUVSWN =

13 0.00366211
14  0.00122070
15 -0.00122070
16 -0.00366211
17 -0.00274658

Figure 27. Information of one waveform (in .csv format).

Figure 27 is an example of a waveform (hit) data that was extracted from AEwin.
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For each of the experiments, there are multiple files that cover relative timestamp and signal
amplitude. For instance, the specimens that were coated contains a lot of files, Al test has
total 7888 files that includes two channels (data from two sensors), A2 has 7097 files, and
etc.; the specimens without coating have smaller number of recorded files, A3 contains 826
files, B1 has 245 files, B2 has 622 files, and etc. Due to AEwin hardware setup (appendix 3),
each hit contains 1024 data points (1024 microseconds of which the pre-trigger duration is
256 microseconds). The signal and time units in .csv file are recorded in volts (V) and
seconds (s), which subsequently will be converted to micro volts (mV) and microseconds
(us) to make interpreting the signal easier as the interval between the signals in the csv files
are 1 pus.

4.3 Python program

This program is used to characterize the Acoustic Emission signal by extracting number of
signals in a time series using some criteria given by the input parameters and thereafter
extracting some of the characteristics of each signal. This was developed in Python by using
JetBrains PyCharm and is compatible with python version 3.4 and newer. The source codes
are attached in appendix 1.

There are a total of three programs that were developed in Python. The first one called
Process Signal, is used to collect, and connect the data from AEwin. The second one, Signal
Output, helps to illustrate the complete waveform of each experiment without repeating
signal processing. The third program, Display Detected Waveform, processes detected
waveforms and exports plots of the waveforms.

The program was developed by utilizing different packages to solve different problems that
specializes in each field which helps to reach the goal of analyzing the AE signal waveform.
Packages is a way to extend the functionality of Python to go beyond the standard features.
For example, matplotlib.pyplot allows to supply two axis (X, y axis) and thereafter plots and
displays them.
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The block diagram in figure 28 explains the workflow of how the signal was processed.

Start )

. . Write csv to signal Look for signal
F—————
Process signal - Read files - output start
Y
Plot data into . Calculate derived | . Look for signal
figures o data (rise time etc) | Process stats data |- end

Y

Write figures,
pickle, text file to
output

Y

( End '

Figure 28. Block diagram explains signal processing.

In this work, these are the packages that were used:

import pandas as pd # Import pandas for data manipulation

import argparse # Import argparse for parsing command line parameters

import numpy

import matplotlib.pyplot as plt # Import matplotlib module for plotting

import matplotlib.patches as mpatches # Needed for putting label on figure
import pickle # Used for serializing object to disk, we use this to store the figure to
retrieve later

# this allows us to interact with the model without calculating values again.
import os # Import os for doing file operations, read the files from specified folder
importre # Import re for regular expression to select correct files and parse channels and
Time

# of test and number of hit

import datetime # Used to interact and calculate dates and time for output files
from natsort import natsorted, ns # sort file names naturally

from enum import Enum

# Enum defining the signal type. This is used so that we can easily display the labels and

colors in the figures and
# makes counting signal types easier
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Terminal k  Loca + e
Downloading six-1.14.0-py2.py3-none-any.whl (18 kB)

Installing collected packages: pytz, six, python-dateutil, numpy, pandas

Successfully installed numpy-1.18.2 pandas-1.8.3 python-dateutil-2.8.1 pyt2-2819.3 six-1.14.0

(venv) C:\Users\BAONGU\PycharnProjects\AEsignals>pip install matplotlib
Collecting matplotlid
Downloading matplotlib-3.2.1-cp38-cp38-win32.whl (9.8 MB)
L IRNECGURLE
Requirement already satisfied: python-dateutil»=2.1 in c:\users\baongu\pycharmprojects\aesignals\venv\lib\site-packages (from matplotlip) (2.8.1)
 Collecting pyparsing!=2.0.4,!=2.1.2,1=2.1.6,5=2.8.1
% Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)

| INMRNRRRRRNRRRRRRNRNNNNNN | 7 G 1.4 tB/s

* Requirement already satisfied: numpy>=1.11 in c:\users\baongu\pycharmprojects\aesignals\venv\lib\site-packages (from matplotlin) (1.18.2)

Eg7000 | M Terminal @ Python Console Q vent Log
o 124 CRLF Aspaces £ Python 38 (veny)

Figure 29. Install packages in Python.

To run the application, there are some default parameters, but the input and output folder
name needs to be provided to match the local environment, since the folder structure will be
different. Input parameters are presented below:

-InputFolderName (# path where the exported files located)

"./Bao 2020/B1/"

-OutputFolderName (# path where the results will be placed)

"./Bao 2020 output/"

-SignalThresholdInPercent

10

-PeakThresholdInPercent

80

-ThresholdMargininPercent

5

-ZeroDuration

12

-Channelld

1

The signal threshold was set to 10% of max amplitude (absolute max value between min and
max amplitude), peak threshold was set at 80% of max amplitude. Zero Duration (us) is the
duration when the signal falls below signal threshold. There is +/-5% in the value range to
classify signal into types. For example:

# Crack-like should be rise_percent less than or equal to 10%, fall_percent more than or
equal to 84% and
# peak_percent should be less than or equal to 6%

# Type A (e.g. Crack-like)

if abs(rise_percent - 5) <= margin and abs(fall_percent - 90) <= margin and
abs(peak_percent - 5) <= margin
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Configuration Logs

Script path: v C\Users\hikar\Dropbox\HelloWorld\ProcessSignal.py
Parameters: -InputFolderName

"./Bao 2020/B1/"
v Environment —-OutputFolderName

"./Bao 2020 output/"

Environment variables: -SignalThresholdInPercent
10

Bython interpreter: -PeakThresholdInPercent
80

Interpreter options: -ThresholdMarginInPercent
5

Working directory: -ZeroDuration
12

Add content roots to, -ChannelId

2
Add source roots to F

v Execution L I TR

Emulate terminal in output console

Figure 30. Run configurations.

0 : Signal number in time-series.

Start : Start time of signal when the signal exceeds the signal threshold (SThres).

End : End time of signal, i.e. when the signal is below the signal threshold for a duration longer than ZDuration.
Duration : Signal duration (End - Start).

SThres : Signal threshold; signal value above this threshold is considered a signal. Input parameter SignalThresholdInPercent.
PThres . Peak threshold: fraction of maximum signal value. Input parameter PeakThresholdInPercent.

ZDuration : Duration when the signal is below SThres.

Mean . Average signal amplitude.

Max : Largest positive signal amplitude.

Min : Smallest negative signal amplitude.

MaxAmp : Absolute max signal amplitude.

MaxAmpTimestamp: Timestamp of the absolute max signal amplitude.

Peak2Peak : Distance between max and min signal amplitude.

NzC : Number of zero-crossings between Start and End.

RiseDuration : Duration taken from signal SThres to PThres.
FallDuration : Duration taken from signal PThres to SThres.
PeakDuration : Duration above PThres.

Type . Waveform classification.

Figure 31. Parameters explanation.
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Important code blocks for this program:
1. Create a logical output filename.

specimen_id = InpFolder.rpartition('/")[0].rpartition(’/")[2]
date_time = datetime.datetime.now() # to set unique file name for each run
file_name = OutputFolder + date_time.strftime("%Y%m%d%H%M%S") + "_" +
str(specimen_id) + “_C" + str(Channelld) + \

" S" + str(int(SigThres)) + "_P" + str(int(PeakThres))

# For example: 20200601224750_A1(specimen_id)_C1(channel_id)_S10(signal
threshold in percent)_P80(peak threshold in percent).txt/pickle

This file name covers timestamp of the result (finished at 22:47:50 on 12t June 2020),
from Al specimen, channel number 1, with signal threshold at 10% of Max absolute
amplitude value and peak threshold at 80% of Max absolute amplitude value.

2. Parse filenames and get specimen id, file number, channel id and timestamp.

# example "pencil break_1_1_31239062.csv"

The data output from AEwin gives information about the specimen ID, channel ID,
hit number and the time this hit was documented. The example above is waveform
recorded from pencil break (PLB), the first hit in channel 1 at 00:00:31239062, or in
other words at 31s and 239062 ps.

3. Read contents from input files and calculate relative timestamp and put into data
frame to allow processing of the data. Each file needs to be transformed to remove the
pre-trigger signals as these are not useful, this is done by slicing the data frame and
only keeping what is after the 256 indexes. To get the correct unit from the exported
files the signal needs to be multiplied by 1000 to get microvolts instead of volts.

4. Go through the newly created data frame and look for signal values that are above
signal threshold and mark them as start point. Then look for the signal end, dropping
below signal threshold.

Three possible ends to signal
a. Dropping below signal threshold
b. Zero duration is reached
c. Time between the current and previous signal is longer than 766 microseconds
(length of file)
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5. Calculate all relevant statistics data (average amplitude, max amplitude, min
amplitude, max amplitude time stamp, rise/ fall/ peak duration and so on) that
provides the base for classifying signals.

Waveform characteristics is illustrated below:

s Signal3

x
PeakThreshold
0.5

L Jsignaihreshold
_v  ySignal

X
15@"3'5“"95“""' .05 | 04 | 10.15 | 0.2 \ /o025 \ | 03 0.35 0.4 0.4

MaxPeakToPeak

-0.5
PeakThreshold

MaxAmplitude Txl\mphtude

2

v
,l Fallburation [ ZeroDuration

| RiseDuration | PeakDuration

signalDuration

-1.5
Signal3

Figure 32. Waveform characteristic (parameters such as: duration, rise duration, fall duration, peak
duration, signal threshold, peak threshold, max amplitude).

SignalA

Amplitude

Time

Figure 33. Signal Type A, color Yellow. Rise duration very fast, peak very short, fall duration long.
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34. Signal Type B, color Green. Rise- and Fall duration equal, peak duration very short.

SignalC

Time

Figure 35. Signal Type C, color Pink. Fast Rise- and Fall duration, long peak duration.

Source code:

def check_waveform_characteristic(duration, rise_duration, fall_duration, peak_duration,
margin, data_vector,

current_index):
# Need to look for fast rise time, short peak and long fall duration
# Calculating percentages
rise_percent = (rise_duration / duration) * 100
fall_percent = (fall_duration / duration) * 100
peak_percent = (peak_duration / duration) * 100

# Type B (e.g. Mechanical rubbing)
if abs(rise_percent - 47) <= margin and abs(fall_percent - 47) <= margin and

abs(peak_percent - 6) <= margin:

#if (rise_duration < duration / 3) and (duration < duration *2 / 3):
return SignalType.GREEN
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# Type C (eg. Leak)
elif abs(rise_percent - 15) <= margin and abs(fall_percent - 15) <= margin and
abs(peak_percent - 70) <= margin:
return SignalType.PINK

# Crack-like should be rise_percent less than or equal to 10%, fall_percent more than or
equal to 84% and
# peak_percent should be less than or equal to 6%

# Type A (e.g. Crack-like)
#if abs(rise_percent - 5) <= margin and abs(fall_percent - 90) <= margin and
abs(peak_percent - 5) <= margin:
elif abs(rise_duration < duration / 3):
signal_type = SignalType.YELLOW
# Check if not last signal?
if current_index + 1 < len(data_vector.MaxAmplitude):
next_signal_type = data_vector.Type[current_index + 1]
next_signal_max_amp = data_vector.MaxAmplitude[current_index + 1]
signal_max_amp = data_vector.MaxAmplitude[current_index]
next_signal_timestamp = data_vector.EndTime[current_index + 1]
signal_timestamp = data_vector.StartTime[current_index]
if next_signal_type == SignalType.YELLOW and signal_max_amp <=
next_signal_max_amp / 2 and \
signal_timestamp - next_signal_timestamp < 766: # checking if the previous
signal is yellow
data_vector.Type[current_index + 1] = SignalType.RED # setting both signals to
red
signal_type = SignalType.RED

return signal_type

elif rise_duration > duration * 2 / 3:
return SignalType.ORANGE

else:
return SignalType.GRAY

The text output gives detailed information that supports to analyze the signal
characteristics. This report contains necessary data, such as: max amplitude, max
amplitude time stamp, number of zero crossing (NZC), rise/ fall/ peak duration, type
of signal, etc.

Plotting of waveform diagram and scatter plot are done by using matplotlib.pyplot.
This package allows for easy creation of different figures, the two relevant plots are
waveform and scatter. This requires creating a figure and specifying labels for the
different signal types, a title for the figure itself, x and y axis and finally the actual
values of x and y. The pyplot package takes care of generating the figure.
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Waveform plot code:

plt.figure(1, figsize=(16, 4))
legend_list = [mpatches.Patch(color="GRAY', label="Not classified signal: ' +
str(waveform_count[SignalType.GRAY])),
mpatches.Patch(color="YELLOW', label="Signal type A: ' +
str(waveform_count[SignalType.YELLOW])),
mpatches.Patch(color="GREEN', label="Signal type B: ' +
str(waveform_count[Signal Type.GREEN])),
mpatches.Patch(color="PINK’, label="'Signal type C: ' +
str(waveform_count[Signal Type.PINK])),
mpatches.Patch(color="RED’, label="Signal type D: ' +
str(waveform_count[Signal Type.RED])),
mpatches.Patch(color="ORANGE', label="Signal type E: ' +
str(waveform_count[SignalType.ORANGE]))]
pltlegend(handles=legend_list)
plt.gcf().canvas.set_window_title('Signal waveform-time")
plt.title("Specimen: %s" % specimen_id + " Channel: %s" % Channelld)
pltxlabel("Time (microsecond)") # Set x axis label
plt.ylabel("Signal (micro volt)") # Sety axis label
plt.plot(data.Time, data.Signal)

Eventually, running this program will generate four possible outputs, two files with
text (one in .txt and one in .csv) and four files include figures (two .png and two
.pickle). The text file contains information of identified signals, this covers the same
information as printed in the console output. The .csv file merges all relevant files
(767us of each file) of a specimen from selected channel to one large file, which can
be use in QATS application, which is a python library developed for efficient
inspection and analysis of time series. There are two figures in .png, the first one
shows the behavior of signal waveform over time, the second is a scatter plot which
displays the relationship of signal amplitude, waveform type and time. The files in
pickle help to trigger figure models that can quickly be loaded back in without
regenerating.

. Signal Post-processing can be done in excel, Python and QATS. In excel, several
relationships from different output parameters which are generated from Python
(Signal processing program) can be evaluated, such as relationship between NZC vs
signal duration, Rise/ Fall/ Peak-duration vs signal duration, NZC vs Number of count
half max absolute amplitude (CHMA), and so on. In Python, detected waveforms can
be displayed and noise is filtered to analyze the frequency content (FFT). QATS is a
python library, it enhances post-processing, quality assurance and reporting of time-
domain simulations. In QATS, signals can be reviewed in time history, power
spectrum and cycle distribution.
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Figure 36. QATS window of B1 specimen.
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Chapter 5 : Results and Discussion

5.1 General

This chapter analyzes the signal waveform using a parameter-based characterization by using
duration and amplitude. Changing the parameters (threshold, peak threshold and zero
duration) and executing the program and reviewing the results multiple times until the output
showed identified signals classification of signal types. For example, if the threshold value
was set too low, the waveform would be selected from start to end duration. If set too high,
nothing would be selected. Zero duration also has a significant impact on selecting the signal,
this value determines how long the signal can drop below threshold before the signal is
ended. If too low crucial signals could be terminated early and too high signals could get
merged and not properly classified.

During this process it was discovered that fixed threshold value would not work efficiently
across the merged data as the signal amplitude varied considerably. To combat this problem
the threshold and peak threshold values were changed to be a percentage of the absolute
maximum signal amplitude in the set of data points for example 10% of 1000 mV then the
threshold value for this set would become 100 mV. This change gave better results overall,
but also had a consequence of selecting some weak signals that was not of interest.

After experimenting with different values for these three parameters the threshold was set to
10%, the peak threshold set to 80% and zero duration to 12 us and most of the tests were
done with these settings. The complete explanation of the input parameters and values in use
can be found in figure 31 in chapter 4.

The later stages of program development support Fast Fourier Transform (FFT) was added,
but due to time constraints the output from this new feature has not been thoroughly
analyzed. In this version the FFT does not affect the signal type categorization.

During analysis specimen B1 was the main samples used for evaluating signal data. In this
chapter, the relationship between stress, signal strength and amplitude vs time was reviewed.
Next the waveform output from the developed program was discussed. Derived parameters
(include duration, rise duration, fall duration, peak duration, max amplitude, start time, NZC,
CHMA) from the output of signal waveforms were evaluated to have a better understanding
of the signal characteristics. Frequency analysis was also explained briefly.
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5.2 Relationship between Stress,

strength vs Time

A1l Stress, Amplitude and Signal strength vs Time
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Figure 37. Stress, Amplitude and Signal strength vs Time of specimen Al.
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Figure 38. Stress, Amplitude and Signal strength vs Time of specimen B1.
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Figure 39. Stress, Amplitude and Signal strength vs Time of specimen B2 reversed (without coating).

54



The activity increases the closer one gets to the yield value. This high activity or intensity
(the intensity can be measured as energy, signal strength, absolute energy or similar per time
unit) can be used to determine whether yielding occurs or not. From the plots above, the
number of signals started to increase after 240s in A1, 220s in B1 and 100s in B2NR. The Al
specimen had a coating layer and the cracking of this generated significantly more signal data
during the test. B2 reversed specimen took lesser time to get to the yield point, and the signal
strength was also weaker than other specimens since it was already deformed once before this
test was done.

This approach is not very precise therefore it is crucial to go deeply into the details of the
signal waveform to check for indicators of material deformation. The signal strength itself is
not a good indicator as the sensor proximity can affect this. For instance, in Al there were
many signals, but the reason for this was the coating layer cracking and not yielding
(Dawood_Khaled, 2019). Identifying many waveforms of a specific type around the same
time can be a solution for this obstacle.

5.3 Signal from pencil lead break (PLB) tests

Specimen: PLB Channel: 1

10000 4
B Not classified signal: 1
7500 4 signal type A: 13
= Signal type B: 2
signal type C: 0
mmm Signal type D: 0
2500 + Signal type E: 0

5000 4

—2500 A

Signal (micro volt)

-5000

=7500 A

—10000 4

04 0.6 08 10 12 14 16
Time (microsecond) les

Figure 40. PLB test, signal recorded at channel 1.

Specimen: PLB Channel: 2
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Figure 41. PLB test, signal recorded at channel 2.
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Specimen: PLB Channel: 1

B Not classified signal: 1
Signal type A: 13

Bl Signal type B: 2
Signal type C: 0
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Figure 42. Signal type A recorded at channel 1 in PLB at 87854496 ps.
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Figure 43. Signal recorded at channel 2 in PLB at 87854433 ps.

Comparing the signals between the two sensors in PLB test revealed signal similarity, as the
largest signals started within 63 us of each other. Figure 40 and 41 above show the signals
that were recorded from sensor 1 and 2. Figure 42 and 43 show the signal from sensor 1 was
recorded at 87854496 s, with duration of 749 us, max amplitude at 9880 mV, 198 times
NZC and 159 times of CHMA. Sensor 2 recorded the same signal, but with fractionally

different data, starting at 87854433 us with a duration of 759 us, max amplitude of 9838 mV,
NZC 180, and CHMA 159.
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5.4 Comparison of signal from two sensors

Results from scatter plot and waveform plot show that signal type A is the most identified
signals during three-point bending test. A1 generated a multitude of signal type B, C and E,
while specimen B1 showed much less activity. This discrepency is most likely caused by Al
having a coating layer which rubs or cracks open during material deformation as the specimens
are the same material and dimensions (Dawood_Khaled, 2019).

The majority of signals are of type A in both test Al and B1, the algorithm is not able to identify
the difference between cracking in coating and cracking in material.

Specimen: A1 Channel: 1
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Figure 44. Scatter plot from Al test, channel 1.
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Figure 45. Scatter plot from A1l test, channel 2.
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signal (micro volt)
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Figure 46. Scatter plot from B1 test, channel 1.
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Figure 47. Scatter plot from B1 test, channel 2.
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Comparing the waveform plot below (figure 48 and 49) with the relationship between Stress,
Amplitude and Signal strength vs Time in section 5.1. The results show that in specimen Al, the
intensity of activity increases from 240s and the activity with the highest amplitude is at 411s.
The intensity in specimen B1 increases from 220s, the highest amplitude was recorded at 223s.

Specimen: AL Channel: 1
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Figure 48. Waveform plot from Al test.
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Figure 49. Waveform plot from B1 test.
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5.5 Observed waveform types in test Bl

Reference of signal types A, B, C and E below were registered from B1 test, with zero duration
of 5 us. One reason why no signal type D was not identified could be due to discontinuity in the
signal waveforms that were recorded. This type represents the waveform characteristics of
yielding in the material. Expected signal characteristic of type D would be a combination of two
type A signals where the latter has at least twice the max amplitude of the previous.

Specimen: B1 Channel: 1

1000 mmm Not classified signal: 235
signal type A: 362

= Signal type B: 33

750 Signal type C: 2

B Signal type D: 0

Signal type E: 139
500 ] yP
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-750

—1000 4

100 200 300 400
Time (microsecond) +2.85277e8

Figure 50. Signal type A (color YELLOW).

Figure 50 shows the signal rising to peak value within the first% of the duration with short peak

duration.
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Figure 51. Signal type B (color GREEN).

Figure 51 contains a signal type B diamond shape highlighted in green, with rise duration equal
to fall duration and short peak duration.
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Figure 52. Signal type C (color PINK).

Signal type C, indicated by pink color, has a hexagon shape with fast rise and fast fall duration
and long peak duration.
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Figure 53. Signal type E (color ORANGE).

Signal type E in orange shows the signal rising to peak value through the Iast%of signal

duration. In other words, this signal has long rise duration and short fall duration.
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5.6 Fast Fourier Transformation (FFT) of selected signals
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Figure 54. Signal from test Al.
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Figure 55. Signal from test B1.
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The developed signal processing program helps to capture and display detected waveforms with the amplitude greater than a specific threshold
and enable the function to examine the frequency content of the signal. Time-domain is converted to a frequency domain in Fourier transform.
The transformation breaks down the time-based waveform into sinusoidal terms, with unique intensity, frequency, and phase. FFT can locate
intensity of frequency which can help to determine if intensity is high around natural frequency of the material.

For Al specimen threshold was set at 2000 mV and B1 threshold was set at 500 mV, resulting in numerous waveform plots for each execution.
The two figures (54 and 55) were selected based on the highest absolute signal values for specimen Al and B1. Result from the signal measured
in Al specimen shows that the intensity spikes around 2 kHz and 15 kHz, in specimen B1, the intensity of the recorded signal increases around 8
kHz and 42 kHz.

There is an abundance of interesting data to be analyzed in frequency domain, however due to time limitation, no comprehensive study has been
done.
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5.7 Study of derived parameters of signals from test B1

Rise Duration vs. Signal Duration Fall Duration vs. Signal Duration Peak duration vs. Signal Duration
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Figure 56. Parameters from test Al (in comparison with signal duration).
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Figure 57. Parameters from specimen A3 (in comparison with signal duration).

Signal duration = rise duration + fall duration + peak duration.
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Maximum duration for each waveform was 768 us due to how AEwin was configured during the tests. None of the signals are continuous, there
are significant gaps from one waveform to the next. This in turn likely had an impact on signal classification in this report. All specimen shows a
similar trend in the relationship between rise, fall and peak vs duration, it is more obvious in figure 56 due to a greater recorded signal data. It
makes the relationship between all the parameters easier to observe.

As mentioned previously, signal type A is the most detected. The figure 56 and 57 show that rise duration is recorded mostly below 150 ps
(below g duration of a recorded signal), fall duration is larger than % duration of a recorded signal, peak duration is mostly below 100 ps.
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Figure 58. Parameters from specimen Al (in comparison with signal duration and start time).
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Figure 59. Parameters from specimen A3 (in comparison with signal duration and start time).
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NZC vs Signal duration shows an interesting trend, a steady increase in NZC as duration increases which is obvious but has a sharp rise at the
signal end. This could be because of overlapping datapoints in the figure and the increase at the end is caused by a bigger spread of final NZC.
The signals with the longest duration also have the highest number of zero crossing.

The relationship between start time vs NSZ and max amplitude for A3 seems to all increase the as start time increases. The exception is signal
duration, which looks to have an even distribution of signal that last for 768 us. For Al specimen there is an accumulation of detected signals
starting after 250s indicating low activity in the early stage of the test.
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Figure 60. NZC vs CHMA.
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NZC in figure 60 Al increases rapidly compared to CHMA and begins to flatten out which seems to indicate a lot of low amplitude signals at a
higher frequency. While on B1 indicates that the signal starts abruptly with many higher amplitude values and has high activity around the 200
NZC area. A3 is very similar to B1 except it starts with quite low amplitude signal values before ending up with similar trend to B1 around the

area of 200 NZC.
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5.8 Waveform statistics across several tests

Statistics across several tests are collected below in table 6 and 7. The table shows a relationship
between signal type and number of hits per waveform. The results indicate that signal A was the
most abundant type, next was type E, then followed type B and lastly was type C. The only
exception was that no signal type B and C were identified in test B1 from sensor 1.

Table 6. Number of hits per waveform type from sensor 1.

TestID | Zero Number of hits per waveform type
duration
A B C E Unknown | Sum
Al 12 4364 37 9 202 411 5023
A3 12 561 7 0 65 114 747
B1 12 111 0 0 5 6 122
B2N 12 284 3 1 19 40 347
Table 7. Number of hits per waveform type from sensor 2.
TestID | Zero Number of hits per waveform type
duration
A B C E Unknown | Sum
Al 12 4306 58 5 209 430 5008
A3 12 505 5 1 40 56 607
B1 12 172 1 0 16 33 222
B2N 12 235 2 3 7 17 266
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Chapter 6 : Conclusive remarks and Recommendations
for further work

6.1 Conclusive remarks

The thesis reviews a literature survey of AE technology, AET, and signal processing. This
includes a study on the yielding mechanism in metal (mainly steel) and a discussion about
material properties. There are two approaches to investigate AE signals, classical parameter-
based, and quantitative signal-based analysis, where characterization, positive and negative of
each analysis method were explained. Applications of the AE technique used in the industry and
the future of AE are also considered. According to research, the future of AE technology looks
promising. It is shown that the development of field monitoring for offshore structure can lead
to enhancements in sensor technology and monitoring systems and further provide a reliable
standardization for a set of instructions and design of the AE technology. However, there is a
need to develop efficient algorithms to leverage collected data and characterize data signatures
that are sensitive to operational, environmental, and sustainable processes.

The study was able to analyze the characteristics of the AE signal. The process started with
merging signal data extracted from AEwin, then developed computer programs to help identify
relevant waveforms. Once the original data had been processed and highlighted, the next step
was to categorize the different signal signatures. An algorithm with a defined set of rules was
applied to this data and signals could be grouped and visually represented in waveform and
scatter figures. This helped to confirm or dismiss that the signals had been correctly identified.
The program managed to create visualizations of waveforms to look for signal properties that
could identify signal types. The obstacle during the work was that the complexity of signal
processing was greater than anticipated. Developing tools for classifying the signal required a
lot of effort leaving limited time to analyze and understand the signal. For instance, a waveform
representing yielding was not identified even on tests that were expected to contain it. The
program is ready to do the analysis but depending on how the yield waveform is captured, the
classification algorithm may need to be adjusted to appropriately identify this type.

This report managed to identify many different categories of signals and it is believed that with
better test-data the program should be able to identify signal characteristics with even more
precision. After implementation and testing in multiple iterations, the results showed good
improvement and more signals were correctly classified. As many signals were not classified, a
need for a configurable margin of error became apparent. It is no doubt that in offshore
production with a lot of background noise, the application can prove harder.

71



6.2 Recommendations for further work

Recommendations for further work are considered as follows:

*

*

Research effort should also focus on improving algorithms to categorize more signal
types.
For future work, the focus should be on recording lager hit data to detect yielding while
the material deforms.
Laboratory experiments should also include specimens with welds and coatings to verify
that the signals can be characterized. A proposal for a future small-scale test program
with welded samples is attached in appendix 5, specimens include:

e Welded vs. base material

e Coated vs. uncoated specimens
Small (less than 60 cm long) vs. long (up to 4m)
Simple bar vs. truss
It is clear that the study in this thesis would be interesting when applied to a bigger
structure, with complexity in materials, dimensions, and shapes, and exposed to dynamic
loading conditions. Further testing on the offshore platform can be conducted to evaluate
the reliability of AE technology.
Analyzing the data in the frequency domain (for instance WT or STFT) in comparison
with the time domain to have a better understanding of the signal characteristic.
Development of a monitoring system for SHM to be able to accurately record relevant
signals.
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Appendix

1. Python program
The work is done with tremendous contributions from Ole Gabrielsen and Svein Anfinnsen.

Signal processing
# -*- coding: utf-8 -*-

# File : ProcessSignal py

# Project  : AET signal characteristics

# Client :N/A

# Purpose  : Extract number of signals in a time series using some criteria

# given by the input parameters and thereafter extract some of
# of the characteristics of each signal.
#

# Prerequisite : Works with Python 3.4 and newer.

# Created by :2020-01-30 GABO

# Expanded and modified by : 2020-07 Bao Nguyen and Svein Anfinnsen
# Date/version : 2020-01-dd / 1.0: First release

# 2020-07-dd / 1.1-9: Last release, total nine updates

from pathlib import Path
from typing import Collection

import pandas as pd # Import pandas for data manipulation

import argparse # Import argparse for parsing command line parameters

import numpy

import matplotlib.pyplot as plt # Import matplotlib module for plotting

import matplotlib.patches as mpatches # Needed for putting label on figure

import pickle # Used for serializing object to disk, we use this to store the figure to retrieve later
# this allows us to interact with the model without calculating values again.

import os # Import os for doing file operations, read the files from specified folder

importre # Import re for reqular expression to select correct files and parse channels and Time
# of test and number of hit

from datetime import datetime # Used to interact and calculate dates and time for output files

from natsort import natsorted, ns # sort file names naturally

from enum import Enum

# Enum defining the signal type. This is used so that we can easily display the labels and colors in the figures and
# makes counting signal types easier

class SignalType(Enum):
GRAY ="Unknown"

YELLOW = "A"
GREEN ="B"
PINK ="C"
RED ="D"
ORANGE ="E"
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@classmethod
defhas_value(cls, value): # Method for checking if value exists in the enum
if isinstance(value, SignalType): # Could get garbage, need to verify type is SignalType
return value in cls # Confirmed value is instance of SignalType, but could exist or not
else:
False # does not have value

# Counting each type by SignalType
def count_detected_waveforms(data_vector):
# Creating key value for incrementing when counting
dict={
SignalType.GRAY: 0,
SignalType.YELLOW: 0,
SignalType.GREEN: 0,
SignalType.PINK: 0,
SignalType.RED: 0,
SignalType.ORANGE: 0

}

foriin range(len(data_vector.Type)):
signal_type = data_vector.Type[i] # Retrieve the signal type from the identified waveforms
if SignalType.has_value(signal_type): # Check that signal typeis a valid
dict[signal_type] +=1 # Increment count for this signal type

return dict

def MeanValue(DataVector):
iflen(DataVector) > 0:
mValue = sum(DataVector) / len(DataVector)
else:
print("MeanValue ERROR: Vector length is zero.")
# print("MeanValue: Sum = "sum(DataVector)," Length = "len(DataVector),"Mean value = ", mValue)
return mValue

def MaxAmplitude(DataVector, mValue):
iflen(DataVector) > 0:
MaxAmp = max([abs(max(DataVector)), abs(min(DataVector))])
else:
print("MaxAmplitude ERROR: Vector length is zero.")
# print("MaxAmplitude: Sum ="sum(DataVector)," Length= ",len(DataVector),"Max amplitude = ",MaxAmp)
return MaxAmp

def max_amplitude_timestamp(time_vector, data_vector, m_value):
iflen(data_vector) > 0:

current_max =-1

current_max_timestamp =-1

for i in range(len(data_vector)):
max_amp = max([abs(data_vector.iloc[i] - m_value), abs(m_value - data_vector.iloc[i])])
if current_max < max_amp:

current_max = max_amp
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current_max_timestamp = time_vector.iloc]i]
else:
print("MaxAmplitude ERROR: Vector length is zero.")
# print("MaxAmplitude: Sum ="sum(DataVector)," Length="len(DataVector),"Max amplitude = ",MaxAmp)
return current_max_timestamp

def NumZeroCrossings(DataVector):

iflen(DataVector) > 0:
# Code from:
# https://stackoverflow.com/questions/3843017 /efficiently-detect-sign-changes-in-python
nzc = len(numpy.where(numpy.diff(numpy.signbit(DataVector)))[0])

#  print(numpy.where(numpy.diff(numpy.sign(DataVector)))[0])

else:
print("NumZeroCrossings ERROR: Vector length is zero.")

return nzc

defriseDuration(DataVector, peakThreshold):
# time from signal threshold to crossing peak threshold
iflen(DataVector) > 0:
index = riseDurationlndex(DataVector, peakThreshold)
rDuration = int(DataVector.Time.iloc[index]) - int(DataVector.Time.iloc[0])
else:
print("Rise duration ERROR: Vector length is zero.")
# print("MeanValue: Sum = ",sum(DataVector)," Length = "len(DataVector),"Mean value = ", mValue)
return rDuration

defriseDurationlndex(DataVector, peakThreshold):
# time from signal threshold to crossing peak threshold
index =-1
iflen(DataVector) > 0:
import operator
# Need to have a current peak to hold highest signal strength in case we don't reach peak threshold
currentPeak = 0

for i in range(len(DataVector.Signal) - 1):
currentSignal = abs(float(DataVector.Signal.iloc[i]))
if currentPeak <= currentSignal:

currentPeak = currentSignal
index =i
if currentSignal >= peakThreshold:
index =i
break
return index

def fallDuration(DataVector, peakThreshold, riselndex):
# time from falling below peak threshold to signal threshold
iflen(DataVector) > 0:
import operator
# Need to have a current peak to hold highest signal strength in case we don't reach peak threshold
currentPeak = 0
index =-1
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foriin range(len(DataVector.Signal) - 1, 0, -1):
currentSignal = abs(float(DataVector.Signal.iloc[i]))
if currentPeak < currentSignal:

currentPeak = currentSignal
index =i
if currentSignal >= peakThreshold ori <= riseIndex:
index =i
break

# index, value = max(enumerate(DataVector.Signal), key=operator.itemgetter(1))

# index = DataVector.idxmax(axis=0)

fDuration = int(DataVector.Time.iloc[len(DataVector.Time) - 1]) - int(DataVector.Time.iloc[index])
else:

print("Fall duration ERROR: Vector length is zero.")
# print("MeanValue: Sum = ".sum(DataVector)," Length = "len(DataVector),"Mean value = ", yualue)
return fDuration

def peakDuration(duration, riseDuration, fallDuration):
# time spent above threshold
peakDuration = duration - (riseDuration + fallDuration)
return peakDuration

# Type Unknown (Noise, unidentified flying waveform (UFW))
# Recorded amplitude over signal threshold, but isn't grouped in any waveform envelop
# Color GRAY (default)

# Type A (e.g. Crack-like)
# Rise duration very fast, peak very short, fall duration long
# Color YELLOW

# Type B (e.g. Mechanical rubbing)
# Rise- and Fall duration equal, peak duration very short
# Color GREEN

# Type C (e.g. Leak)
# Fast Rise- and Fall duration, long peak duration
# Color PINK

# Type D (e.g Yielding)

# Combination of two crack-like waveform, first one smaller than the next one, 5-10 times size difference
# Color RED

# Is this two cracking which is within X time?

# Type E
# Color ORANGE
# Max amplitude is located in the 2 /3 of signal duration

def check_waveform_characteristic(duration, rise_duration, fall_duration, peak_duration, margin, data_vector,
current_index):
# Need to look for fast rise time, short peak and long fall duration
# Calculating percentages
rise_percent = (rise_duration / duration) * 100
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fall_percent = (fall_duration / duration) * 100
peak_percent = (peak_duration / duration) * 100

# Type B (e.g. Mechanical rubbing)
if abs(rise_percent - 47) <= margin and abs(fall_percent - 47) <= margin and abs(peak_percent - 6) <=
margin:
#if (rise_duration < duration / 3) and (duration < duration *2 / 3):
return SignalType.GREEN

# Type C (e.g. Leak)
elif abs(rise_percent - 15) <= margin and abs(fall_percent - 15) <= margin and abs(peak_percent - 70) <=
margin:
return SignalType.PINK

# Crack-like should be rise_percent less than or equal to 10%, fall_percent more than or equal to 84% and
# peak_percent should be less than or equal to 6%

# Type A (e.g. Crack-like)
#if abs(rise_percent - 5) <= margin and abs(fall_percent - 90) <= margin and abs(peak_percent - 5) <= margin:
elif abs(rise_duration < duration / 3):
signal_type = SignalType.YELLOW
# Check if not last signal?
if current_index + 1 < len(data_vector.MaxAmplitude):
next_signal_type = data_vector.Type[current_index + 1]
next_signal_max_amp = data_vector.MaxAmplitude[current_index + 1]
signal_max_amp = data_vector.MaxAmplitude[current_index]
next_signal_timestamp = data_vector.EndTime[current_index + 1]
signal_timestamp = data_vector.StartTime[current_index]
if next_signal_type == SignalType.YELLOW and signal_max_amp <= next_signal_max_amp / 2 and \
signal_timestamp - next_signal_timestamp < 766: # checking if the previous signal is yellow
data_vector.Type[current_index + 1] = SignalType.RED # setting both signals to red
signal_type = SignalType.RED
return signal_type
elif rise_duration > duration * 2 / 3:
return SignalType.ORANGE
else:
return SignalType.GRAY

def count_half max_amp(data_vector, max_amp):
count=0
foriinrange(len(data_vector.Signal) - 1):
current_signal = abs(float(data_vector.Signal.iloc]i]))
if current_signal >= (max_amp / 2):
count+=1

return count

def processSignal(InpFolder, OutputFolder, SigThres, PeakThres, Margin, ZeroDuration, Channelld,
file_output, comment="%"):

# Create output name (timestamp plus channel id and OutFile value)

# For example: 20200601224750_A1(specimen_id)_C1(channel_id) _S50(signal threshold)_P700(peak
threshold).txt|pickle

# complete example: ./Bao 2020/PLB/20200601224750_A1_C1_S50_P700.txt
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# Cmmomm e e e e e e e e e e rpartition searches from right to left

# <--- rpartition 0 is left side, 2 is right side

specimen_id = InpFolder.rpartition('/")[0].rpartition("/")[2]

date_time = datetime.now() # to set unique file name for each run

name = date_time.strftime("%Y%m%d%H%M%S") + "_" + str(specimen_id) + "_C" + str(Channelld) +
" S"+str(

int(SigThres)) + "_P" + str(int(PeakThres))

# Create directory to store waveform data

Path(OutputFolder + "detected_waveforms").mkdir(parents=True, exist_ok=True)

display_detected_waveforms = OutputFolder + "detected_waveforms/" + name

file_name = OutputFolder + name

# from os import listdir - To get list of all files and directories in specified directory

# onlyfiles = [f for f in listdir(InpFolder) if match specific pattern (we look for specific channel id)]

# example "pencil break_1_1_31239062.csv"

# Regular expression matching, r'.* 'matches any character once or more until first_ then match the
Channelld

# ' \\d+_\\w+"matches digits once or more (+) (file number) until next _ then it matches any word character

# once or more to allow matching of file extension

# More info https://regex101.com/

files = [f for fin os.listdir(InpFolder) if re.match(r".*_" + str(Channelld) + "_\\d+_\\w+', f)]

plot_list =]

# sort file names naturally, example 1, 2, 11

# If sorted with basic sort, it would show 1,11, 2
sorted_files = natsorted(files, alg=ns.REAL)

# files.sort(key=natsorted(alg=ns.))

max_amplitude_dict = {i: 0.0 foriin sorted_files}

for fileName in sorted_files:
# Reading file from list into data frame
frame = pd.read_csv(InpFolder + fileName, sep="\t", header=None,
names=["Signal", "Time", "MaxAmplitude"]) # Array to hold time-series
# Splitting file on last '’ to isolate time of test, then splitting on "." to remove file type
timeOfTest = int(fileName.rpartition('_")[2].rpartition(".")[0])

# Signal is recorded in segments of 1024 microseconds, but the first 256 is pre-trigger so it's removed
# from the data frame. Setting time based on time of test
for i in range(len(frame)):
frame.Time[i] = timeOfTest + (i - 256) # Since actual signal starts after pre-trigger (at 256 micro
second)
# we need to populate the pre-trigger time so that time of test is at pre-trigger end
slicedFrame = frame[256:]

# Get max amplitude to calculate threshold percentage
max_amplitude = max(abs(slicedFrame.Signal * 1000)) # Signal unitin AE Win is in Volts, need to convert
tomV.
# To always have the max amplitude available we fill this for every signal of every file
#for iin range(256, len(frame)):
#slicedFrame.assign(MaxAmplitude=[max_amplitude])
slicedFrame = slicedFrame.assign(MaxAmplitude=max_amplitude)

# Always start signal with 0
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slicedFrame.loc[255] = [0, timeOfTest - 1, max_amplitude]
data=1]

# Always end signal with 0
#data.insert(1024, {'Signal’: 0, 'Time': timeOfTest + 768, 'MaxAmplitude': max_amplitude})
slicedFrame.loc[1024] = [0, timeOfTest + 768, max_amplitude]

slicedFrame.sort_index(inplace=True)
# Adding only the relevant data to list to be joined later
plot_list.append(slicedFrame)

# joining the relevant data to one large data frame ready for analysis
data = pd.concat(plot_list, ignore_index=True)

wn wn

data.to_csv("".join([os.getcwd(), file_name + ".csv']), sep=";", columns=["Time", "Signal”,
"MaxAmplitude"],
index=False)

# Change the first value in shape to match number of signal hits for csv to generate properly
a =numpy.zeros(shape=(1, 21)) # Temporary array
stats = pd.DataFrame(a, columns=["SignalNumber"”, "StartTime", "EndTime",
"StartRow", "EndRow",
"SignalDuration", "SignalThreshold",
"PeakThreshold", "ZeroDuration",
"MeanValue", "Max", "Min",
"MaxAmplitude”, "MaxAmplitudeTimestamp",
"MaxPeakToPeak", "NumberOfZeroCrossings”, "HalfMaxAmpCount",
"RiseDuration”, "FallDuration", "PeakDuration"”, "Type"])
# For every 1024 we get a new file and should read filename to get time of test
# Take time of test
foriin range(len(data.Signal)):

data.Signal[i] = data.Signal[i] * 1000 # Signalunit in AE Win is in Volts, need to convert to mV.

iflen(data.Time) !=len(data.Signal):
print("DATA ERROR: Length of time vector not equal to length of signal vector.")
return

FoundSignal =0 # Flag for detecting new signal (above SignalThreshold)
nSignals =0 # Counter for counting number of signals

iSignalStart =0 # Variable to hold signal start time

iPeakDuration =0 # Variable to hold signal peak duration

iZeroStart = 0 # Variable to hold start of signal value below SignalThreshold
iZeroDuration = 0 # Variable to hold duration of signal below SignalThreshold

# Loop through the time series data to find number of signals, start time and end time
foriin range(len(data.Signal)):
signal_threshold_percentage = data.MaxAmplitude[i] / 100 * SigThres
signal_peak_threshold_percentage = data.MaxAmplitude[i] / 100 * PeakThres

# This just resets zero duration if signal is over threshold
if abs(data.Signal[i]) > signal_threshold_percentage:
iZeroDuration = 0

# This checks if signal is over threshold and FoundSignal identifies if it is a start or end signal (0 or 1)
# This sets the start signal
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if abs(data.Signal[i]) > signal_threshold_percentage and FoundSignal == 0:

FoundSignal =1 # Sets that we have a start point and looking for an end
iZeroStart = data.Time[i]
nSignals = nSignals + 1

# Need to use .loc to force update of dataframe array
stats.loc[nSignals - 1, 'SignalNumber'] = nSignals
iSignalStart = data.Time[i] # Should be interpolated
# stats.StartTime[nSignals - 1] = iSignalStart
stats.StartTime[nSignals - 1] = iSignalStart
stats.StartRow[nSignals - 1] =i

else:

ended

value

value

# This checks that we have a start signal, if so and the time suddenly increases by more than a total file
# (766) we should end the signal selection
if FoundSignal == 1 and data.Time[i] - data.Time[i - 1] > 766:

# if previous time is more than 1000 microseconds before current timestamp, we know the signal has

# print("iZeroDuration exceeded ZeroDuration at time ",data.Time[i])

FoundSignal = 0

stats.EndTime[nSignals - 1] = data.Time[i - 1] # We need the previous value to cut the signal correctly
stats.EndRow|[nSignals - 1] =i- 1 # We need the previous value to cut the signal correctly
stats.SignalDuration[nSignals - 1] = stats.EndTime[nSignals - 1] - stats.StartTime[nSignals - 1]
stats.SignalThreshold[nSignals - 1] = data.MaxAmplitude[i-1] / 100 * SigThres # Need the previous

stats.PeakThreshold[nSignals - 1] = data.MaxAmplitude[i-1] / 100 * PeakThres # Need the previous

stats.ZeroDuration[nSignals - 1] = ZeroDuration

# If we have a start signal and it reaches above ZeroDuration argument (input argument) we end the

signal or

elif FoundSignal == 1 and iZeroDuration >= ZeroDuration or FoundSignal == 1 and i ==

len(data.Signal)-1:

FoundSignal = 0

stats.EndTime[nSignals - 1] = data.Time[i]

stats.EndRow[nSignals - 1] =i

stats.SignalDuration[nSignals - 1] = stats.EndTime[nSignals - 1] - stats.StartTime[nSignals - 1]
stats.SignalThreshold[nSignals - 1] = signal_threshold_percentage
stats.PeakThreshold[nSignals - 1] = signal_peak_threshold_percentage
stats.ZeroDuration[nSignals - 1] = ZeroDuration

# If iZeroDuration is below ZeroDuration argument, increases zero duration count by 1
elifiZeroDuration < ZeroDuration:

iZeroDuration +=1

# Print selected columns of stats array to output window

output_line = ("ID : Signal number in time-series.\n"
"Start : Start time of signal when the signal exceeds the signal "
"threshold (SThres).\n"
"End : End time of signal, i.e. when the signal is below the signal "

"threshold for a duration longer than ZDuration.\n"
"Duration :Signal duration (End - Start).\n"

"SThres : Signal threshold; signal value above this threshold is "
"considered a signal. Input parameter SignalThresholdInPercent.\n"
"PThres : Peak threshold: fraction of maximum signal value. Input "

"parameter PeakThresholdInPercent.\n"

"ZDuration :Duration when the signal is below SThres.\n"
"Mean : Average signal amplitude.\n"

"Max : Largest positive signal amplitude.\n"
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"Min : Smallest negative signal amplitude.\n"

"MaxAmp : Absolute max signal amplitude.\n"

"MaxAmpTimestamp: Timestamp of the absolute max signal amplitude.\n"
"Peak2Peak :Distance between max and min signal amplitude.\n"

"NZC : Number of zero-crossings between Start and End.\n"
"RiseDuration :Duration taken from signal SThres to PThres.\n"
"FallDuration : Duration taken from signal PThres to SThres.\n"
"PeakDuration : Duration above PThres.\n"

"Type : Waveform classification.\n"

"ll)
print(output_line)
file_output += "\n" + output_line

headers=(" ID Start End StartRow EndRow Duration SThres PThres "

"ZDuration Mean Max Min MaxAmp MaxAmpTimestamp Peak2Peak NZC
CHMA"

"RiseDuration FallDuration PeakDuration Type ID")
file_output += "\n" + headers
print(headers)

# Loop through all signals in stats array (one in each row)
foriin range(nSignals):
try:
# Need to end the signal as it is the last one
iflen(stats.EndRow) ==1i or stats.EndRow([i] == 0 and nSignals - 1 == i:
endRow =len(data.Signal - 1)
endTime = data.Time[len(data.Time) - 1]
stats.SignalDuration[nSignals - 1] = endTime - stats.StartTime[nSignals - 1]
stats.SignalThreshold[nSignals - 1] = signal_threshold_percentage
stats.PeakThreshold[nSignals - 1] = signal_peak_threshold_percentage
stats.ZeroDuration[nSignals - 1] = ZeroDuration
else:
endRow = stats.EndRow/[i]
endTime = stats.EndTime[i]
except:
endRow = len(data.Signal)
endTime = data.Time[len(data.Time) - 1]
try:
output_line = ("%4d %12d %12d %10d %10d %12d %12.2f %12.2f %12d" %
(stats.SignalNumber([i], stats.StartTime[i], endTime,
stats.StartRow([i], endRow, stats.SignalDuration[i],
stats.SignalThreshold[i], stats.PeakThreshold[i],
stats.ZeroDuration[i]))
print(output_line, end="")
file_output +="\n' + output_line
except:
print("failed™)
# Calculate mean value
try:
stats.MeanValue[i] = MeanValue(data.Signal[int(stats.StartRow[i]):int(endRow)])
file_output += "%12.5f" % stats.MeanValue[i]
print("%12.5f" % stats.MeanValue[i], end="")
except:
print("failed mean")
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# Find and store maximum value

stats.Max[i] = max(data.Signal[int(stats.StartRow[i]):int(endRow)])
file_output += "%12.5f" % stats.Max[i]

print("%12.5f" % stats.Max[i], end="")

# Find and store minimum value

stats.Min[i] = min(data.Signal[int(stats.StartRow([i]):int(endRow)])
file_output += "%12.5f" % stats.Min[i]

print("%12.5f" % stats.Min[i], end="")

# Find and store maximum amplitude

stats.MaxAmplitude[i] = MaxAmplitude(data.Signal[int(stats.StartRow[i]):int(endRow)],
stats.MeanValue[i])

file_output += "%12.5f" % stats.MaxAmplitudel[i]

print("%12.5f" % stats.MaxAmplitude[i], end="")

# Find and store timestamp of maximum amplitude
stats.MaxAmplitudeTimestamp[i] =
max_amplitude_timestamp(data.Time[int(stats.StartRow/[i]):int(endRow)],
data.Signal[int(stats.StartRow([i]):int(endRow)],
stats.MeanValue[i])
file_output += "%18d" % stats.MaxAmplitudeTimestamp[i]
print("%18d" % stats.MaxAmplitudeTimestamp[i], end="")

# Find and store maximum peak to peak value

stats.MaxPeakToPeak[i] = stats.Max[i] - stats.Min[i]
file_output += "%14.5f" % stats.MaxPeakToPeak[i]
print("%14.5f" % stats.MaxPeakToPeak[i], end="")

# Find and store number of zero crossings

stats.NumberOfZeroCrossings[i] = NumZeroCrossings(data.Signal[int(stats.StartRow[i]):int(endRow)])
file_output += "%5d" % stats.NumberOfZeroCrossings[i]

print("%5d" % stats.NumberOfZeroCrossings[i], end="")

# Find and store number of half max amplitude signals

stats.HalfMaxAmpCount[i] = count_half max_amp(data[int(stats.StartRow[i]):int(stats.EndRow[i])],
stats.MaxAmplitude[i])

file_output += "%5d" % stats.HalfMaxAmpCount][i]

print("%5d" % stats.HalfMaxAmpCount[i], end="")

stats.RiseDuration[i] = riseDuration(data[int(stats.StartRow[i]):int(endRow)], stats.PeakThreshold[i])
file_output += "%12d" % stats.RiseDurationl[i]
print("%12d" % stats.RiseDuration[i], end="")

stats.FallDuration[i] = fallDuration(data[int(stats.StartRow[i]):int(endRow)],
stats.PeakThreshold[i],
riseDurationIndex(data[int(stats.StartRow[i]):int(endRow)],
stats.PeakThreshold[i]))
file_output += "%12d" % stats.FallDuration[i]
print("%12d" % stats.FallDuration][i], end="")

stats.PeakDuration[i] = peakDuration(stats.SignalDuration[i], stats.RiseDuration[i], stats.FallDuration]i])

file_output += "%16d" % stats.PeakDuration[i]
print("%16d" % stats.PeakDuration[i], end="")

85



stats.Type[i] = check_waveform_characteristic(stats.SignalDuration[i],
stats.RiseDuration[i],
stats.FallDuration[i],
stats.PeakDuration[i],
Margin,
stats,
i)
file_output += "%8s" % stats.Type[i].value
print("%8s" % stats.Type[i].value, end="")

file_output+=" %4d" % stats.SignalNumber(i]
print(" %4d" % stats.SignalNumberf[i])

waveform_count = count_detected_waveforms(stats)
# Create plot of time signal
plt.figure(1, figsize=(16, 4))
legend_list = [mpatches.Patch(color="GRAY", label="Not classified signal: ' +
str(waveform_count[SignalType.GRAY])),
mpatches.Patch(color="YELLOW/', label="Signal type A: " +
str(waveform_count[SignalType.YELLOW])),
mpatches.Patch(color="GREEN', label="Signal type B: ' +
str(waveform_count[SignalType.GREENT])),
mpatches.Patch(color="PINK', label="Signal type C: ' + str(waveform_count[SignalType.PINK])),
mpatches.Patch(color="RED’, label="Signal type D: ' + str(waveform_count[SignalType.RED])),
mpatches.Patch(color="ORANGE', label="Signal type E: ' +
str(waveform_count[SignalType.ORANGE]))]
pltlegend(handles=legend_list)
plt.gcf().canvas.set window_title('Signal waveform-time")
plt.title("Specimen: %s" % specimen_id + " Channel: %s" % Channelld)
plt.xlabel("Time (microsecond)") # Set x axis label
plt.ylabel("Signal (micro volt)") # Sety axis label
plt.plot(data.Time, data.Signal)

# Change to figure 2 scatter
plt.figure(2, figsize=(16, 4))
pltlegend(handles=legend_list)

plt.gcf().canvas.set_ window_title('Amplitude-waveform-time")
plt.title("Specimen: %s" % specimen_id + " Channel: %s" % Channelld)
plt.xlabel("Time (microsecond)") # Setx axis label

plt.ylabel("Signal (micro volt)") # Sety axis label

foriin range(len(stats.SignalNumber) - 1):
plot_list=1]
plt.figure(2)
plt.scatter(stats.MaxAmplitudeTimestamp[i], stats.MaxAmplitude[i], c=stats.Type[i].name,
label=stats.Type[i].name)
for jin range(int(stats.StartRow[i]), int(stats.EndRowf[i]) + 1):
d = {'Signal': [data.Signal[j]], 'Time": [data.Time[j]]}
plot_list.append(pd.DataFrame(data=d))
if (len(plot_list) > 0):
selectedDataFrame = pd.concat(plot_list)
plt.figure(1)
plt.plot(selectedDataFrame.Time, selectedDataFrame.Signal, c=stats.Type[i].name,
label=stats.Type[i].name)
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filel = open(file_name + ".txt", "w"
filel.write(file_output)
filel.close()

figure = plt.gcf()

pickle_out = open(file_name + ".fig wave.pickle", 'wb")
pickle.dump(figure, pickle_out)

pickle_out.close()

plt.savefig(file_name + "fig wave.png")

plt.figure(2)

figure = plt.gcf()

pickle_out = open(file_name + ".fig_scatter.pickle”, 'wb")
pickle.dump(figure, pickle_out)

pickle_out.close()

stats.to_csv(display_detected_waveforms + ".stats.csv")
data.to_csv(display_detected_waveforms + ".data.csv")

plt.savefig(file_name + "fig_scatter.png")

plt.show()

defrestricted_float(x):
try:
x = float(x)
except ValueError:
raise argparse.ArgumentTypeError("%r not a floating-point literal” % (x,))

ifx<0.0 orx>1.0E12:
raise argparse.ArgumentTypeError("%r not in range [0.0, 1.0E6]" % (x,))
return x

T T AT T AL T AL AL T AT A AL AL AL AT 7 AT AL AL T 1L T T A 9 AL A L1 AT 1 A A L A T 1 A 7
#it
# Start of main program #
T T T T AL AL A T A A AL AL T A1 1 T A 7 AL AL T AT A A T T 1 T A A A A AL A A 1 7 7
#i#t
parser = argparse.ArgumentParser(description="Process time series from \
AET sensors and output the characteristics. The output\
will be either directed to standard output or file \
specified in the OutputFilename parameter.")
parser.add_argument('-InputFolderName', type=str, nargs="?", default="./Bao 2020 /PLB/’,
help="Folder containing signal files \
default:./Bao 2020/PLB/")
parser.add_argument('-OutputFolderName’, type=str, nargs="?", default="./Bao 2020 output/’,
help="Folder containing the output, default: ./Bao 2020 output/")
parser.add_argument('-SignalThresholdInPercent’, type=restricted_float, nargs="?", default="20",
help="Signal threshold defining start of signal in percentage of max amplitude, default: 20")
parser.add_argument('-PeakThresholdInPercent’, type=restricted_float, nargs='?", default="80’,
help="Threshold defining signal peak - fraction of max signal, \
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default: 80")
parser.add_argument('-ThresholdMarginInPercent’, type=restricted_float, nargs="?", default="5’,
help="Percentage of margin for classifying signals, \
default: 5")
parser.add_argument('-ZeroDuration’, type=restricted_float, nargs="?", default="50",
help="Duration between signals (abs of signal value) less \
than SignalThreshold, default: 50 microseconds")
parser.add_argument('-Channelld’, type=int, nargs="?", default="1",
help="Which sensor channel signal to analyze, default: 1")
args = parser.parse_args()

file_header = ("InputFolderName ="+ str(args.InputFolderName) + "\n" +
"OutputFilename =" + str(args.OutputFolderName) + "\n" +
"SignalThresholdInPercent =" + str(args.SignalThresholdInPercent) + "\n" +
"PeakThresholdInPercent =" + str(args.PeakThresholdInPercent) + "\n" +
"ThresholdMargininPercent = " + str(args.ThresholdMarginIinPercent) + "\n" +
"ZeroDuration =" + str(args.ZeroDuration) + "\n" +
"Channelld ="+ str(args.Channelld) + "\n")

print(file_header) # outputin Python console
# Put everything into output to write it to file later
file_output = file_header # output to txt file

# inp_folder = open(args.InputFolderName)
processSignal(args.InputFolderName, args.OutputFolderName, args.SignalThresholdInPercent,
args.PeakThresholdInPercent,

args.ThresholdMarginlnPercent, args.ZeroDuration, args.Channelld, file_output)
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Signal output

import matplotlib.pyplot as plt
import pickle

import tkinter as tk
from tkinter import filedialog

root = tk.Tk()
root.withdraw()

file_path = filedialog.askopenfilename(initialdir="./Bao 2020 output/",
title="Select file",
filetypes=(("pickle files", "*.pickle"),
("all files", "*.*M)))

pickle_in = open(file_path, 'rb")
pkl_figure = pickle.load(pickle_in)
pickle_in.close()

dummy = plt.figure()

new_manager = dummy.canvas.manager
new_manager.canvas.figure = pkl_figure
pKl_figure.set_canvas(new_manager.canvas)
plt.figure = pkl_figure

plt.show()
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Display detected waveform
import signal

import inline as inline

import matplotlib.pyplot as plt

import pandas as pd

from datetime import datetime

import numpy as np

import os

importre

import argparse # Importargparse for parsing command line parameters
from tkinter import filedialog # This is for displaying file selection dialog

#import mpld3
#mpld3.enable_notebook()

# filters and functions definition
# https://medium.com/analytics-vidhya/how-to-filter-noise-with-a-low-pass-filter-python-885223e5e9b7

def butter_highpass(cutoff, fs, order=5):
nyq=0.5*fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype="high', analog=False)
returnb, a

def butter_highpass_filter(data, cutoff, fs, order=5):
b, a = butter_highpass(cutoff, fs, order=order)
y = signal filtfilt(b, a, data)
returny

def butter_lowpass(cutoff, fs, order=5):
nyq=0.5*fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype="low’, analog=False)
returnb, a

def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = signallfilter(b, a, data)
returny

def compute_fft_ ModPh(data):
N =len(data)
data_freq = np.fft.fft(data)

if (np.remainder(N,2) == 0):
# N is even
#2020-05-27 GABO: Replaced use of / operator with // in slices to ensure that result is integer
mod = abs(data_freq[0:N//2+1]);
ph =np.angle(data_freq[0:N//2+1]);

mod[0] = mod[0]/N;
mod[1:N//2] =mod[1:N//2]/(N//2);
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mod[N//2] =mod[N//2]/N;
else:
# N is odd
mod = abs(data_freq[0:(N+1)//2]);
ph =np.angle(data_freq[0:(N+1)//2]);

mod[0] = mod[0]/N;
mod[1:(N+1)//2] =mod[1:(N+1)//2]/(N/2);
return mod, ph

parser = argparse.ArgumentParser(description="Process time series from \
AET sensors and output the characteristics. The output \
will be either directed to standard output or file \
specified in the OutputFilename parameter.')
parser.add_argument('-threshold’, type=float, nargs="?", default="500",
help="Threshold for saving waveform \
default: 500")

args = parser.parse_args()

data = pd.read_csv('./Bao 2020 output/detected_waveforms/'+'signal_data_corrected'+'.csv’, sep=";",
index_col ="Time (s)")

data = pd.read_csv('./Bao 2020 output/detected_waveforms/'+'signal_data_corrected'+'.csv’, sep=";",
index_col ="Time (s)")

stats = pd.read_excel('./Bao 2020 output/detected_waveforms/'+'B1 characteristics'+".xlIsx")

# Set threshold for plotting wave form (do not plot waveforms with MaxAmp less than this number)
PlotThreshold = args.threshold

for iRow in range(0,stats.ID.max(),1):
# Shorter loop for debugging
# for iRow in range(0,100,1):
if stats.MaxAmp[iRow] > PlotThreshold:
# Convert start and end time from microseconds to seconds
StartTime = stats.Start[iRow] / 1e6
EndTime = stats.End[iRow] / 1e6

fig = plt.figure(figsize=(20, 14))
ax1 = plt.subplot(311)

# Plot wave form - converted to mV
plt.plot(data[StartTime:EndTime]*1e3, '--")
pltxlabel("Time (s)")

plt.ylabel('Signal strength (mV)")
plt.title("".join(['Waveform plot no. ', str(stats.ID[iRow])]))

# Shrink current axis by 40%
box1 = ax1.get_position()
ax1l.set_position([box1.x0, box1.y0, box1.width * 0.6, box1.height])

# Put a legend to the right of the current axis
for iColin range(1, 20, 1):
plt.text(1.02, 1.0 - iCol * 0.05, stats.columns[iCol],
transform=ax1.transAxes, bbox={"facecolor': 'white’, 'edgecolor’: 'none’, ‘alpha': 0.8, 'pad': 3})
plt.text(1.18,1.0 - iCol * 0.05, "- ",
transform=ax1.transAxes, bbox={"facecolor': 'white’, 'edgecolor’: 'none’, ‘alpha': 0.8, 'pad': 3})
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plt.text(1.20, 1.0 - iCol * 0.05, str(stats[stats.columns[iCol]][iRow]),
transform=ax1.transAxes, bbox={'facecolor’: 'white’, 'edgecolor": 'none’, 'alpha’: 0.8, 'pad': 3})
# Turn on grids
ax1.grid(True, which="both’, Is="-")

# Store selected signal data in vector
fx1 = data[StartTime:EndTime]

# compute FFT as module and angle
mod, ph = compute_fft ModPh(fx1)
# Number of elements in vector:

N = len(fx1)

# Time range of data:

#TimeRange = data.Time[EndRow] - data.Time[StartRow]
TimeRange = EndTime-StartTime

# Average time between samples:
TypicalDeltaT = TimeRange / N

fsamp =1 / TypicalDeltaT
tsamp =1 / fsamp
df=1 /(N *tsamp) * 0.1
freq = np.arange(0, (N / 2) * df, df)
if len(mod) > len(freq):
freq = np.arange(0, (N / 2 + 1) * df, df)

ax2 = plt.subplot(3, 1, 2)
plt.plot(freq, mod)
pltxlabel('Frequency [Hz]")
plt.ylabel("FFT module")
plt.title("FFT of signal")

ax3 = plt.subplot(3, 1, 3)
plt.plot(freq, ph * 180 / np.pi)
pltxlabel('Frequency [Hz]")
plt.ylabel("FFT Phase [deg]")

box2 = ax2.get_position()
ax2.set_position([box2.x0, box2.y0, box2.width * 0.6, box2.height])
box3 = ax3.get_position()
ax3.set_position([box3.x0, box3.y0, box3.width * 0.6, box3.height])

# datetime object containing current date and time
now = datetime.now()
dt_string = now.strftime("%Y-%m-%d %H%M")

PlotFileName = "".join([dt_string, "-Waveform-", str(stats.ID[iRow])])

print(‘Saving plot to: ', "".join([PlotFileName, ".png']))

# Save plot file to current working directory
plt.savefig(os.path.join(figure_path, "".join([PlotFileName, .png'])), dpi=600)
plt.close('all")
plt.clf()
else:
print('"Waveform no. ', stats.ID[iRow], " has a peak value less than the plot threshold - ",
PlotThreshold)
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2. Example of Text output from Signal Processing

7 20200712104826_B1_C1_S10_P80.txt - Notepad
File Edit Format View Help

[taputFoldertiane = ./Bao 2020/81/

OutputFilenase ./Bac 2020 ocutput/

signalThresholdInvercent = 1.0

PeakThresholdInPercent = 88.0

ThresholdMarginInPercent = 5.8

ZeroDuration -12.0

Channelld -1

bO) : Signal nusber in time-series.

start : Start tine of signal when the signal exceeds the signal threshold (SThres).

End : End time of signal, i.e. when the signal is below the signal threshold for a duration longer than ZDuration.
Duration : Signal duration (End - Start).

SThres : signal threshold; signal value above this threshold is considered s signal. Input parameter SignalThresholdInPercent.
PThres : peak threshold: fraction of maximun signal value. Input parameter PeskThresholdInPercent.

Zouration : Duration when the signal is below SThres.

Mean Average signal awplitude.

Hax Largest positive signal amplitude.

Hin Smallest negative signal amplitude.

NaxAmpTinestanp: Timestamp of the absolute max signal amplitude.
Peak2Peak Distance between max and min signal anplitude.
nzc : Musber of zero-crossings between Start and End.
RiseDuration : Duration taken from signal SThres to PThres.
FallDuration : Duration taken from signal PThres to SThres.

NaxAmp : Absolute max signal amplitude.

PeakDuration : Duration above PThres.
Type : Waveforn classification.
™ start £nd StartRow Endow  Duration  SThres  PThres  ZDuration  Mean va #in Maxinp  VaxhspTinestasp  PeakzPeak NIC CHWA RiseDuration Fallburation Peakburation Type
1 8170132 8170900 768 2.78 2.2 12 -1.15395 26.24512  -27.77100 27.77100 8170812 54.01612 184 88 5 83 680
2 8493078 8493846 m 1539 768 5.86 46.88 12 -1.09553 58.59375  -54.32129 58.59375 8493279 112.91504 202 62 6 566 19
3 11442881 11443649 1541 2309 768 7.9 58.35 12 -1.02639 63.17139  -72.93701 72.93701 11442960 136.10840 196 39 % 685 5
4 12121206 12121974 2311 3e79 768 2.78 2.2 12 -1.22190 25.32959  -27.77100 27.77100 12121882 53.10059 189 72 74 9 603
5 12265255 12266023 3881 3849 768 5.28 42.24 12 -1.05381 52.79541  -51.57471 52.79541 12265456 104.37012 204 90 5 87 676
6 12370595 12371363 3851 4619 768 4.70 37.60 12 -1.07884 46.99707  -45.16602 46.99707 12371275 92.16309 186 80 w 83 607
7 12809330 12810148 4621 5389 768 2.26 18.07 12 -1.23382 21.97266  -22.58301 22.58301 12809586 4455567 190 81 1 160 607
8 12943672 12950440 5391 6159 768 3.57 28.56 12 -1.13567 31.12793  -35.70557 35.70557 12949751 66.83350 200 31 ” 685 4
9 13809160 13809358 6161 6359 198 3.14 25.15 12 -1.34401 31.43311  -23.49854 31.43311 13809181 54.93165 49 25 21 9 7
10 13809361 13809871 6362 6872 518 3.14 25.15 12 -1.19677 22.27783  -23.80371 23.80371 13809738 46.08154 122 64 373 136 1
1 13809878 13809928 6879 6929 56 3.4 25.15 12 -1.31836 11.90186 -12.20703 12.20703 13809336 24.10889 11 18 14 35 1
12 14079021 14079789 6931 7699 768 .17 17.33 12 -1.25130 20.44678  -21.66748 21.66748 14079025 42,11426 196 27 e 763 5
13 14556276 14557044 7701 8469 768 4.0 2.n 12 -1.12494 35.40039  -40.89355 40.89355 14556354 76.29394 208 64 7% 87 603
14 1470203 14702798 8471 9239 768 4.2 33,94 12 109553 4241943 3631502  42.41043 14702710 78.73535 192 76 ” 8 602
15 14803292 14804060 9241 10009 768 2.41 19.29 12 4125011 24.10889 -23.80371  24.10889 14803489 47.91260 194 99 2 % 676
16 1503275 15033518 10011 10779 768 2.62 21,00 12 112071 2624512 -22.27783  26.24512 15033231 48.52295 194 67 1 282 435
17 63032388 63033156 10781 11549 768 4.49 35.89 12 113328 4364004 -44.86084  44.86084 63032455 88.50098 194 40 6 567 138
18 69821165 69821933 11551 12319 768 6.81 54,44 12 -1.15156  60.72998 -68.05420  68.05420 69821227  128.78418 206 43 62 667 E
19 73008551 73009319 12321 13089 768 2.78 2.22 12 128349 2685547 -27.77100  27.77108 73008555 54.62647 199 35 ° 630 138
20 73729783 737355 1392 13659 767 5.52 .19 12 112679 55.23662 -50.65918  55.23682 73729395 105.69600 202 61 7 547 141
21 76275569 76276336 13862 14629 767 2.56 20.51 12 -1.19842 25.63477  -19.22607 25.63477 76275570 44.36084 212 22 ° 765 2
22 80692218 80692531 14631 14344 313 ERte 28,90 12 -1.16805 2655029 -31.12793  31.12793 80692231  57.67822 81 38 13 162 138
23 80692532 80692986 14945 15399 as4 n 24.9 12 -1.32422 15.25879  -16.47949 16.47949 80692739 31.73828 114 53 378 5 1
24 83842699 83843462 15406 16169 763 28.63 229.00 12 -0.83913  286.25488 -254.82178  286.25488 83842780 541.07666 201 49 7 587 9
25 89293845 89294613 16171 16939 768 5.46 43.70 12 -1.12812 52.49023  -54.62646 54.62646 89293978 107.11669 200 50 62 538 168
26 98587221 98587989 16941 17709 768 1.95 15.62 12 -1.22865 19.53125  -18.61572 19.53125 98587258 38.14697 182 53 ° 730 38
27 111023553 111024321 7m 18479 768 0.2 97.66 12 -0.96440  122.07031 -120.84961 122.07031 111024030 242,91992 208 94 3 195 570
28 114869673 114870441 18481 19249 768 8.00 63.96 12 ~1.06096 79.95685  -66.52832 79.95605 114869887 146.48437 200 49 81 548 139
29 117536429 117537197 19251 20019 768 3.23 25.88 12 -1.22348 21.66748  -32.34863 32.34863 117536430 54.01611 187 29 L] 734 34
30 126426281 126427043 20021 20789 768 3.8 30.52 12 -1.17620 30.51758  -38.14697 38.14697 126426285 68.66455 197 54 4 194 570
3 129515473 129516240 20792 21559 767 4.61 36.87 12 -1.14630 46.08154  -44.55566 46.08154 129515518 90.63720 179 81 3 286 448

Figure 61. Text output of test B1.
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3. AEwin waveform definition and setup

AE timing parameters and settings recommendation:

AE win Hardware setup illustration:

| Hardware Setup: PCI-DSP4

Figure 62. Standard setup (MISTRAS Group, 2020a).

Hardware Setup: PCI-DSP4

Figure 63. Advanced setup (MISTRAS Group, 2020a).
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Four AE Timing Parameters which are located under the second tab of the AE Hardware Setup
menu:

1. Hit Definition Time (HDT): time constant to terminate the measurement of a signal.

2. Hit Lockout Time (HLT): to create a ‘dead time’ after the end of a hit.

3. Peak Definition Time (PDT): for those signals that its’ envelopes have several rising
peaks, this parameter can help to define which peaks are used to record rise time and
amplitude.

4. MAX Duration: limitation to the maximum duration that is acceptable for a hit (PAC,
2014).

Setting recommendation for AE timing parameter in AE Win software:

1. Hit Definition Time (HDT):

a) Strategy for materials-oriented strategy: 400-2000us for metals (to reduce false hits,
the duration can be set higher than 400us); 100-200us for composite materials and
other non-metals.

b) Strategy for good waveform capture: 800us, combined with 1IMSPS Sample Rate
(Mega Samples Per Second), 256us Pre-trigger and 1k Length in the Waveform
Setup.

2. Hit Lockout Time (HLT): Set equal to the HDT, or to the minimum available (2us); for
special purposes can use other settings.

3. Peak Definition Time (PDT): Rise Time — Time Out. Set to % of the HDT.

4. MAX Duration: a value of 99ms is convenient, the hit rate will be high enough to be
quickly noticed when the signal is continuously above the threshold and also low enough
not to fill the record with useless data. This data suitable for recording changes in signal
amplitude with time (PAC, 2014).
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e Acquisition Setup Acquire/Replay Graphing Tables View Utiliies Page Window Help
CHE B DSOS m G A Y LR e L A

B %, |AE Hardware Setup: Express-8 2 %
Virtual Parametrics | Front End Filters Front End Alarms ‘ DeltaT Filters Setup
100 AEChannelSetup | Preamp Sensors, Fitters and Waveforms AE Timing Parameters | Waveform Streaming | Data Sets/Parametrics Parametric Setup
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PR e W0kH: | None. Nore. MsPs 2560000 *
80+ ™~ 2 15 2kHe 100kHz None Nore MSPS 256.0000 *
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0 ™5 15 2kHz 100kHz Nene. None: 1MSPS. 256.0000 *®
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60 V7 15 2kHz 100kHz None. Nore. 1MSPS 256.0000 &
|7 & 15 2z 00Kz None Nore 1MSPS 2560000 *
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= 4| N ~
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For Help, press F1 IDLE A1.DTA 8-5-2019, 11:(|Replay Only |X, Y = 23.8314, 41D ON

Figure 64. Hardware setup - Waveform setup (MISTRAS Group, 2020a).
Waveforms setup:

Waveform, Sample Rate: Samples acquisition waveforms on a per second basic. At rate of
1MSPS (Mega Samples Per Second) means that one waveform sample is taken every psec;
2MSPS means that one waveform sample is taken every % usec, etc. Mainly, the higher the
sample rate, the better but it also depends on other factors such as how much of the waveform is
of interest. A 1024 points waveform at 10MSPS is only 102,4 usec of waveform while at LMSPS
it is 1,024 milliseconds (10x the time period). Thus, there should be a balance between sample
rate, waveform length and the filter settings.

Waveform, Pre-Trigger: (specified in usec) Duration before the trigger point (the point at which
the threshold is exceeded). The minimum value is zero, the maximum value is calculated by
dividing the hit length by the sample rate in MHz. For example, the maximum allowable pre-
trigger value would be 1024/10 = 102,4 psec when the hit length was 1k (1k = 1024) and the
sample rate was 10 MHz.

Waveform, Length: The maximum number of samples collected for each waveform (as a
multiple of 1024 particularly 1k samples). This duration also includes the length of pre-trigger; it
is not in addition to it (PAC, 2014).
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dBag

logarithmic measure of acoustic emission signal amplitude, referenced to 1 pV
Signal peak amplitude (dBag) = 20 logqg(44/4p)

where
Ag is equal to 1 pV at the sensor output (before amplification);
Ay is the peak voltage of the measured acoustic emission signal.

Acoustic emission reference scale:

dBag value Voltage at sensor output
0 1pv
20 10 uv
40 100 pv
60 1Tmv
80 10 mV
100 100 mvV

Figure 65. Non-destructive testing (ISO, 2001-06).
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Figure 66. Waveform illustration (PAC, 2014).
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4. Data from AEwin for specimens Al, A3SN, B1IN and
B2NR
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Figure 68. A3.
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Figure 70. B2NR.
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5. Proposal for future small-scale test program

e Welded vs. base material
e Coated vs. uncoated specimens
e Small (less than 60 cm long) vs. long (up to 4 m)
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1. Introduction

This procedure provides a methodology for recording acoustic signals under three-point bending
test at room temperature and atmospheric pressure. The purpose of the testing is to detect the
signals emitted during yielding stage in steel specimens with different properties.

2. Materials

Flat steel in quality S355J2 according to EN 10025-2 and NORSOK M120 MDS-Y05.

Table 8. Steel grade.

Number NOBB No. | Description Unit Price Quantity

99612 54220036 30x15mmx6m | 21.6 KG/STK | 21.20 perkg |2

13574 54220036 100 x 15 mm x 6 | 72 KG/ STK 21,20 perkg |1

(Or 83997 54220036 " 5766 KG /|21,20perkg |1)
80x15mmx6m | STK

More information available at: https://produktkatalog.norskstaal.no/produkt/flattstal-s355j2/

Coating

For the specimens that required coating, coating will be applied on one side of the specimens.

Welded joint: Single-V butt weld, full penetration.


https://produktkatalog.norskstaal.no/produkt/flattstal-s355j2/

3. Test procedure
3.1 Specimens geometry

3.1.1 Beam section

Beam section (600 mm)

Figure 71. Beam 600 mm.

30 mm

15 mm

Beam section (2500 mm)

Figure 72. Beam 2500 mm.

30mm

15 mm



3.1.2 Welded specimens (single-V butt joint, full penetration)

Figure 73. Butt weld.

Butt weld

Beam section (600 mm)

v

v

l‘ 300 mm

Figure 74. Weld specimen (600 mm length).

300 mm

30 mm

15 mm



Butt weld

v Beam section (2500 mm)

¢ — 30mm
300 mm

Figure 75. Weld specimen (2500 mm length).

600 mm
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15 mm

Figure 76. Doubler plate (30x15 mm).

15 mm



3.1.3 Coating for weld specimens

Butt weld

Coating side

Beam section (600 mm) /

—>
15 mm

y

300 mm ah 300mm 30 mm

Figure 77. Coating for welded specimen (600 mm).



3.2

Table 9. Number of samples.

Materials preparation

Figure 78. Symbol use.

Rest material

Number Lab Number of | Priority
Specimens’ type of suggestion samples
samples revises
600 mm Welded 4 3 2 H!gh
Uncoated Bar 3 3 2 High
(Base) Welded 2 2 2 High
2500 mm Bar 2 2 3 High
600 mm Welded 4 2 2 Loyv
Coated Bar 5 2 4 Medium
2500 mm Welded 2 0 0
Bar 2 0 0
- Long
plate:
600 mm
Doubler plate - Short Welded 2 2 2 Medium
(uncoated) _
plate:
30x15
mm
Total samples 26 16 17
| weld
Coating




2 X (30 x 15 mm x 6 m) steel plate

Test 1a; 2a; 3aand 5.

2x Steel plate L = 6000 mm

-~
v

|¢W=30mm

) 1=2500 mm 1=2500 mm L=600 mm L=400mm
W=mny | | B |

L Lsfomm  L=600mm L=600mm L=600 mm L=600 mn L=40 mm,

€ —) € —)

et | | | | | | | | | | |

Test 1a Test3a Test5
2 specimens 2 specimens 2 specimens

L 4
v

-~

Test 2a
3 specimens

Figure 79. Preparation of 2 steel plates 30 x 15mm x 6m for bar type specimens.



1 x (100 x 15 mm x 6 m) plate

Use for test 1b; 2b; 3b; 4.

Steel plate L = 6000 mm

A

A 4

W =100 mm

Sketch of steel plate 100 x 15 mm x 6 m

N - remove 20 mm to avoid weld end effect
| | 20

remove 20 mm to avoid weld end effect

— |[—r|—| « > [N
600 mm 600 mm 600 tnm 2500 mm Mmm
-Test1b - Test 2b, uncoated material
2 welded specimens 600 Welded specimens (2500 mm)
mm long without coating. /

-Test4

- Test3b Doubler plate

2 welded specimens 600
mm long with coating.

Figure 80. 100 x 15 mm x 6 m steel plate (Remove 10 mm each side in case of using 80 x 15 mm x 6 m
plate).



- Test4
Doubler plate

1670 mm

300 mm 300 mm 300 mm 300 mm 600 mm 300 mm 0 mm 30mm
«— «— — — — — <« .
600 mm 600 mm 600 mm 2500 mm
— < >
remove 20 mm to avoid weld end effect [~ N 7___77{ _____ - ea—TT B
\ W =100 mm b\ W =100 mm '\\ W =100 mm \ W= 100.mm
remove 20 mm to avoid weld end effect L0 Iy~ - | i e e N ] =
Welding Welding Welding Welding
|:|]Z|¢W=30mm [ | | ¢w:30mm
—— 1R CL R S — T

-Test1b - Test3b - Test4 - Test 2b, uncoated material
2 welded 2 welded Doubler plate Welded specimens (2500 mm)
specimens 600 mm specimens 600 mm

long without long with coating.

coating.

Figure 81. 100 x 15 mm x 6 m steel plate (Remove 10 mm each side in case of using 80 x 15 mm x 6 m plate).

W =100 mm



3.3 Test plan

F O = AE sensor

# off tests Priority Specimen length (mm) Length between supports Width  Thickness
Test 1a: Yielding in base material 2 High 600 400 30 15
Test piece: 15 mm thick x 20 to 50 mm wide
Ductile material: Structural steel 4{
Test machine: 10 tonnes capacity Y2

L=400 mm
l F

Test 1b: Yielding in weld (root) 2 High

Figure 82. Test 1 - Yield in short specimens, base material (600 mm).

Specimen length (mm) Length between supports Width  Thickness

3 2500 400 30 15
# off tests Priority O

Test 2a: Increase distance between force and one sensor 3 High
Length of 2500 mm is possible

L =400 mm

Test 2b: Increase distance between force and one sensor (weld specimens)

=400 mm
————————

Figure 83. Test 2 - Increase to 2500 mm specimens.



= AE sensor

#off tests Priority O f Specimen length (mm)  Length between supports Width  Thickness
Test 3a: Yielding in coated material 2 High 600 400 30 15
Test piece: 15 mm thick x 20 to 50 mm wide
Ductile material: Structural steel
Test machine: 10 tonnes capacity \ A~
L Coating side
L =400 mm

F
Test 3b: Yielding in weld (root) 2 Low O l O

A Aw_

V2 Coating side

L =400 mm

Figure 84. Test 3 - Coated material (600 mm).

Test 4: Reinforced test piece 2 Medium
Two sources of yielding

h=30mm

L/2
t=15mm

L =400 mm

Figure 85. Test 4 - Doubler plate.

Motor

F‘ O
b ‘\A

Coating side

#off tests Priority
Test 5: Test with noise source 2 Medium

May be possible to use hydraulic test bench which will generate noise

O

L=400 mm

Figure 86. Test with noise source (coated material, 600 mm).



3.4 Test apparatus

Three-point bending machine (see Figure 87 below) shall be used to load the specimens to
the desired load. This is an electric type which can apply force up to 100 kN with variable
loading rate. In a bend test, the specimen is exposed to a complex combination of forces
including tension, compression, and shear when it bends or flexes. Tensile stress appears in
the convex side of the specimen and compression stress in the concave side. An area of
shear stress is generated along the midline (Instron, 2020).

8 i |
5 B

Figure 87. Three-point bending machine.
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Figure 88. Bending test.



Acoustic Accessories:

Sensors: Resonant R15a (Physical acoustic) with frequency 150kHz.

Amplifiers: when the band frequency is unknow, the 2/4/6 (20, 40, 60 decibels)
voltage preamplifier with switch-selectable gain is used.

Metal holders: hold the sensors on the steel samples to resist motion due to vibration
or due to external load.

Couplant: grease between sample surface and the adjusted sensors to fill air gaps,
works as connection and to improve the sensitivity of the sensor.

Cables: physical acoustic signal connects sensors with the amplifiers, power cable
connects the amplifiers with AE instrument.

PAC (Acquisition Device — Physical acoustic Corporation): The Micro-Il1 Express
has a compact form factor but it’s still powerful enough to perform AET, with
adequate PCI Express slots to be able to hold 4 Physical Acoustics’ Express-8 AE
boards which gives 32 AE channels. It can be controlled both physically by
keyboard and mouse or remotely by a computer.

Software: Windows-based program AE win software is used for AE signal
displaying and analysis. The software can process wave, store data, display data
online and replay measurement at later time (Dawood_Kbhaled, 2019).
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