

UNIVERSITY OF STAVANGER

Implementation of TOTEM defined SDK

Author:
Behfar Behzad

Supervisors:
Antorweep Chakravorty

Dhanya Therese Jose

July 7, 2020

http://www.uis.no

iii

Abstract
Blockchain Technology made its first debut when Satoshi Nakamoto, whose real iden-
tity is still unknown, released the white paper Bitcoin: A Peer to Peer Electronic Cash
System in 2008. This technology has developed over the last decade with the primary
mission to establish a creditworthy distributed environment among various indepen-
dent contributors in a non-trustable manner. The transparency, tamper-proof records,
and decentralized nature of blockchain have grabbed the attention of many scientists
and investors to solve old business problems in new ways.

At the same time, with Internet usage surging over the past decade, a variety of enor-
mous data has been generated at a breakneck pace from various sources, whether it is
from social media, banking sectors, governments, etc. As a result, many organizations
throughout the globe have changed their work culture and adopted Big Data analyt-
ics to gain various benefits from the data being produced. Nevertheless, handling
these big data was always a tremendous challenge for scientists and engineers as it
involved large and complex information, which cannot be handled by conventional
tools.

TOTEM: Token for controlled computation, accounts for a new concept that inte-
grates both blockchain technologies and big data systems and uses their advantages
to present a better, safer, and more cost-effective solution for both data consumers
and providers. The TOTEM project’s main objective is to overcome the security and
privacy breaches and prevent moving large data sets across the network for analysis.

Within the TOTEM computational system, TOTEM SDK is of importance as data con-
sumers use it to create a MapReduce code for computation, which will be performed
in the data provider’s environment. Depending on consumers’ computational needs,
pre-defined totems will be assigned to these authorized users. The SDK, along with a
smart contract, forms a monitoring system that keeps track of totem value associated
with users’ submitted codes using an estimator table to allow codes for execution.
That is how the TOTEM system puts constraints on computational operations.

This thesis will focus on specific aspects of the TOTEM project, looking into how
the SDK interacts with the input data and the other components, takes the code and
analyzes it within its layers, and finally, how responds to it. With SDK as the gate
to connect the data consumer to the owner of data, it ensures the accountability and
transparency of the results based on the rules and language defined for it. How is the
SDK developed and implemented? What is the architecture used in it? These are the
questions that the present study will look into in further detail.

iv

Acknowledgements
I would like to express my gratitude and appreciation to my supervisors, Assoc. Prof.
Antorweep Chakravorty and Mrs. Dhanya Therese Jose, for their valuable advises
and feedback throughout my work on this thesis.

I am also extremely indebted and thankful to my family, especially my lovely wife,
for so much affection, care and blessings.

v

Contents

1 Introduction 1
1.1 Contributions and Outline . 2

2 Background 3
2.1 Blockchain Technology . 3

2.1.1 Smart Contracts . 4
2.1.2 Hyperledger Fabric . 6

2.2 Big Data System . 7
2.2.1 Hadoop . 8

Hadoop Distributed File System 8
MapReduce . 9

2.3 JavaScript . 10
2.3.1 Node.js . 10

2.4 Related Works . 11

3 Architecture 13
3.1 Theory of TOTEM . 13
3.2 The workflow in the TOTEM architecture 16

3.2.1 Data Consumers Side . 16
Totem Estimator Table . 17

3.2.2 Data Providers Side . 18
Customized Computational Framework 20

3.3 Architecture of TOTEM defined SDK . 22
3.3.1 Specifications . 22
3.3.2 Layers . 23

SDK layer . 24
Controllers layer . 25
Handlers layer . 25

4 Implementation and Results 29
4.1 Frameworks and Tools . 29
4.2 Coding Explication . 32

4.2.1 Environment Setup . 32

vi

4.2.2 Main Functionalities . 34
4.3 Execution and Testing . 37

5 Conclusion and Future Work 41

Bibliography 47

A TOTEM SDK User Manual 52

B Configuration guide 54

vii

List of Abbreviations

AJAX Asynchronous JavaScrpit And XML

CA Certificate Authority

CCF Customized Computational Framework

CLI Command Line Interface

COR Cross Origin Requests

CORS Cross-Origin Resource Sharing

CSA Cross Site Attacks

CSC Control Statement Controller

DFS Distributed File System

DLT Distributed Ledger Technology

DN Data Node

DNS Domain Name System

DOM Document Object Model

DoS Denial of Service

EHC Error Handler Component

ET Estimated Totem

ETH Ethers (cryptocurrency of Ethereum network)

GFS Google File System

GUI Graphical User Interface

HDFS Hadoop Distributed File System

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

viii

I/O Input and Output

IBAC Identity-Based Access Control

IoT Internet of Things

JS JavaScript

LRC Line Reader Component

LTC Labelled Type Controller

MDP Modular Design Pattern

MSP Membership Service Provider

NPM Node Package Manager

OHC Operation Error Handler

OSN Ordering Service Nodes

P2P Peer To Peer

PoS Proof of Stake

PoW Proof of Work

RBAC Role-Based Access Control

RC Reaction Checker

RDD Resilient Distributed Dataset

RPC Rule Processor Component

SDK Software Development Kit

SHDFS Simplified Hadoop Distributed File System

TCP Transmission Control Protocol

TDA Trusted Distributed Application

TET Totem Estimator Table

TL Totem Language

TOTEM Token for controlled computation

UDP User Datagram Protocol

UI User EInterface

URL Uniform Resource Locator

ix

UX User Experience

VC Variable Checker

x

Dedicated to my parents, in whose hands I had received my real
education, and to my wife, Maryam, for giving me strength to

reach for the stars and chase my dreams.

1

Chapter 1

Introduction

This thesis will focus on the implementation of a Software Development Kit (SDK) for
a novel architecture integrating the Hyperledger Fabric blockchain and the Apache
Hadoop framework, investigating its architectural design process and the method-
ologies employed to develop the SDK using JavaScript. The thesis will also look into
the tools, frameworks, and the chief functionalities used during the development of
the SDK current version, for the purpose of policies and coding procedures.

In today’s era, with the role of technology becoming multi-fold in all sectors, we need
to deal with a boom in the data industry that keeps increasing exponentially. Never-
theless, conventional methods for data analysis are no more effective as they demand
moving data across the network for analysis. Additionally, data owners are also re-
luctant to expose their data due to security issues. As a result, having infrastructures
that are configured and managed to handle the storage mechanism while fulfilling
the security and privacy aspects are essential. TOTEM is a new approach that in-
troduces moving the computational code to the data without any concern regarding
the data disclosure to external networks. TOTEM employs the properties of Hadoop
framework, for its parallel computation on large datasets, and Blockchain technology,
for its guarantee on secured and tamper-proof transactions, to enable a new way of
computation upon large datasets securely and effectively.

As the aim of this work is the implementation and defining of a TOTEM defined
SDK, a natural aspect of developing a set of tools that need to work synchronously
with other components would be to investigate what are the comprising components
of TOTEM. Overall, the primary objectives of the present study can be divided into
two parts. First is to understand the significant components of the TOTEM architec-
ture and the various steps within the workflow of the proposed architecture to study
relevant parameters that affect the way that the SDK operates. Secondly, a multi-layer
architecture is proposed, and a detailed explanation of the theory and practice of the
SDK implementation is provided.

2 Chapter 1. Introduction

1.1 Contributions and Outline

The following contributions are made in this thesis:

• Designed a 3-tier architectural TOTEM defined SDK, with each layer corre-
sponding to a different service or integration.

• Developed the TOTEM SDK adapted to the Modular Design Pattern (MDP) us-
ing Node Package Manager (NPM) packages installed for easy improvement,
update, and reusability.

• Defined the TOTEM Language (TL), allowing specific data types and operations
to perform in the SDK.

• Implemented the rules in a tabular format as a comma-separated values file
with respective rules that TL must follow.

• Implemented the TOTEM defined SDK using pure JavaScript code.

• Developed a Graphical User Interface (GUI), resembling the environment where
Data Consumers can submit their computational codes and receive feedback.

• Evaluated the performance of the TOTEM SDK under two testing scenarios.

The remainder of this thesis is outlined as follows:

Chapter 2: Gives an overview of two leading technologies employed in TOTEM:
the Blockchain technology and Big Data systems, looking at Hadoop as one of
the leading frameworks for processing of large data sets and the key categories
in blockchain; permissionless and permissioned.

Chapter 3: Elaborates on the structural design in the TOTEM and its defined
SDK, studying the interactions among the TOTEM consisting components and
proposing a multi-layered architecture for the SDK.

Chapter 4: Presents the methods, tools ,and foundational functionalities imple-
mented in the SDK and evaluate tests conducted over two defined scenarios.

Chapter 5: Concludes the work of this thesis and presents ideas for future work.

3

Chapter 2

Background

Blockchain and Big Data are among the leading-edge technologies which have grabb-
ed a great deal of attention. Both are expected to reshape the way businesses are done
across all kinds of industries in the years ahead. After a long time of developing in
full swing, one might assume that Blockchain and Big Data are quiet two orthogonal
technologies. However, the idea is rapidly changing. The Distributed Ledger Tech-
nology (DLT) that powers Bitcoin, Ethereum, and other cryptocurrencies is expected
to help enterprises to get to grips with Big Data finally. This technology can revolu-
tionize conventional methods for data analysis, which has presented a slew of prob-
lems, such as dirty data, inaccessible data, and security breaches. Token for controlled
computation (TOTEM), which has just been introduced by computer scientists at the
University of Stavanger in [1], rose to these challenges by combining the Blockchain
and Big Data system.

This chapter will focus on Blockchain Technology and its primary types, as well as
the design and architecture in the Big Data System. A presentation of Hadoop and
its core functionalities will be followed by a short comparison between two popular
Big Data frameworks. A detailed consideration into the structural layers will also
be illustrated, to provide a more straightforward understanding of the concept in
TOTEM defined SDK presented in the following chapters.

After covering Blockchain Technology and Big Data System, attention will shift to the
JavaScript as the programming language by which the defined SDK is implemented.
Node.js, as the server-side runtime environment for JavaScript, will also be presented
and discussed, referencing related works from other parties.

2.1 Blockchain Technology

Blockchain is an open distributed ledger that allows multiple parties to add and store
transactions into it efficiently, verifiably, and permanently. With Blockchain, data can

4 Chapter 2. Background

be embedded in digital code and be recorded in transparent, shared databases. This
method makes Blockchain protected against revision, tampering, and deletion [2]. It
is, in fact, a Point to Point (P2P) communication among all nodes in the chain; there-
fore, no central node can monitor or control the whole network. In [3], A. Meier in-
troduces Blockchain as a combination of distributed ledger and consensus algorithm
in which the participating nodes of this P2P system guarantees the protection and
integrity globally, thanks to the consensus algorithm.

Cryptographically hash functions are implemented to record the data into the block-
chain. In 1991, S. Haber and W. Stornetta described cryptographically secured chains
of blocks to make the document timestamps tamper-proof [4], and one year later, in
1992, they used Merkle tree to allow timestamping of several documents into one
block. After 17 years of attention on this concept in 2009, Bitcoin was first introduced
by Satoshi Nakamoto [5]. Bitcoin is an entirely decentralized, permissionless P2P
Blockchain.

Blockchains are classified into two types of public and private blockchains [6]. The
public Blockchain (a.k.a. Permissionless Blockchain) is permissionless, signifying that
contributors are anonymous, and no restriction in joining the network or authenti-
cation process is required. Bitcoin and Etherium are significant examples of pub-
lic blockchains. On the other hand, in the private Blockchain (a.k.a. Permissioned
Blockchain), prior approval is necessary, and participants are restricted to get per-
mission to join the network. Hyperledger Fabric 1 and Ripple 2 are two examples of
private blockchains.

Due to the decentralized nature of blockchains, the validity of each proposed trans-
action can be verified by any node in the network. These nodes add transactions
to a block and append it to the existing chain. However, some nodes may come
up with a new block to append simultaneously. Thus, there must be an agreement
among distributed nodes about which node can append a new block. This is where
the consensus algorithm comes to play to guarantee that all rules are being followed
in a trustless way. Consensus algorithms can be proof-based, such as Proof of Work
(PoW) and Proof of Stake (PoS), or voting based [7].

2.1.1 Smart Contracts

Smart contracts account for one of the promising uses of Blockchain that has exploited
this technology’s potential even beyond cryptocurrencies. In [8], Nick Szabo, cryp-
tographer and lawyer, was the first person who coined the term in the 1990s. He
suggested to translate the contract terms into computer codes and added them into
the software or hardware. This suggestion not only makes the contract automated
and self-executed, but it also minimizes the possibility of accidental exceptions and

1https://www.hyperledger.org/ 2https://ripple.com/

https://www.hyperledger.org/
https://ripple.com/

2.1. Blockchain Technology 5

fraudulent transactions between parties [9]. Since then, people have defined smart
contracts in different ways. C. D. Clack in [10] provides a broad definition of smart
contracts that integrates all various uses:

“A smart contract is an automobile and enforceable agreement. Automatable by computer,
although some parts may require human input and control. Enforceable either by legal en-
forcement of rights and obligations or via tamper-proof execution of computer code.”

This low-level computer code deployed on blockchains (without trusting a third-
party) monitors all transactions so that each transaction in the Blockchain is executed
if they meet all the terms and requirements in the smart contracts. A Smart contract
operates as a Trusted Distributed Application (TDA), which has obtained its security
from the Blockchain and the consensus algorithm shared among peers.

In permissionless blockchains, where all nodes join anonymously and participate in
validation, each node may deploy a smart contract which requires high computation,
particularly in PoW algorithms. If the smart contract requires high execution time to
implement, substantial delays might occur in the network, which makes the entire
network vulnerable to malicious attacks such as Denial-of-Service (DoS) attack [11].
Consequently, it is necessary to restrict the complexity of smart contracts to prevent
additional delays to the network. One of the best solutions to this issue is employed
by Ethereum called gas. Figure 2.1 from [12] depicts an example of making a transac-
tion in the Ethereum network.

FIGURE 2.1: Ethereum transaction example using gas fee [12]

Gas is an internal pricing mechanism that measures how much does a transaction
would cost in computing resources. Nodes must pay the gas fee in Ethers (ETH) to
add their transactions to blocks. The more gas they pay, the faster their transactions
are mined by miners. A transaction fails if the smart contract exhausts the available
gas of the creator node. The gas mechanism is one of the successful approaches to
allocate resources efficiently and reduce unrealistic spam on the network [9].

6 Chapter 2. Background

2.1.2 Hyperledger Fabric

Fabric is a module-based architecture and extensible open-source foundation to es-
tablish, manage, and operate on private or permissioned blockchains [13]. In Hy-
perledger Fabric, each contributor should register to the network through a trusted
Membership Service Provider (MSP). The MSP maintains the information about all
nodes in the network, including peers, clients, and Ordering-Service Nodes (OSN),
and its primary role is to issue credentials used in the authentication process. The
Hyperledger fabric allows different MSPs, and there is no restriction in which format
the ledger data is stored.

Ledger is a critical concept in Hyperledger Fabric. It contains factual information
about objects, both the current value and attributes and the transaction history that
led to these values [13, 14]. A ledger in Hyperledger Fabric consists of two different
but related components – world state and transaction logs (Blockchain). World state
is implemented like a database and holds current values and attributes of an object,
while transaction logs (Blockchain) is the updated historical record for the world state
[15].

FIGURE 2.2: Example Ledger: fabcar [15]

Figure 2.2 indicates a sample ledger L comprises of a world state W and transaction
log (Blockchain) B. W has four states with keys CAR0 to CAR3. All states are at
version 0. B consists of two blocks: the genesis block (first block of a blockchain) and
block 1 with four transaction T1 to T4 [15].

One of the other advantages of using Hyperledger Fabric is to run arbitrary smart
contracts in them. Smart contracts in Fabric, called chaincode, are usually implemented
in Golang 3 or Node.js 4 programming languages; the chaincode is installed on each
peer in the network and ready to be invoked by applications which require to interact
with the ledger [14].

3https://golang.org/ 4https://nodejs.org/en/

https://golang.org/
https://nodejs.org/en/

2.2. Big Data System 7

TABLE 2.1: A comparison between two popular big data frameworks

Hadoop Spark

Data format Key-Value Key-Value, RDD
Processing mode Batch Batch and Stream
Programming model MapReduce Transformation and Action
Supported programming language Java Java-Scala-Python
Iterative Computation Yes Yes

2.2 Big Data System

Big data accounts for large-scale datasets defined as the combination of large, un-
structured, complex, and heterogeneous datasets. These are beyond the capabilities
of standard analytical methods in data management such as process, store, capture,
analyze, and visualize in an acceptable amount of time [16]. Big data is usually char-
acterized by four Vs – volume, velocity, variety, and veracity. These Vs symbolize
the size of data that a and stored, the rate at which data is captured and processed,
various types of data stored and how much the data is accurate [17].

There are various methods, tools, or strategies developed to analyze significant vol-
umes of data. Among all, some are more popular due to different reasons such as
iterative and interactive analytics, lower memory consumption, disk bandwidth im-
provement, etc. [17]. Hadoop 5, Spark 6, Storm 7, Samza 8, MongoDB 9 and Cassan-
dra 10are popular examples of such tools and frameworks.

Table 2.1 illustrates some of the key differences between Hadoop and Spark frame-
works as the most popular tools in Big Data analytics. This comparison is carried out
according to the data format, processing mode, programming model, fault tolerance,
and whether the framework allows iterative computation [18].

Regarding data formats, in key-value type keys and values are encoded as tuples,
which makes the Read/Write operations so fast. At the same time, Resilient Dis-
tributed Datasets (RDD) is a read-only partitioned collection of records which reduces
speed but gives immutability to datasets. Batch Processing mode also processes over
all or most of the data, while Stream Processing only processes the most recent records
of data. This is the reason why Spark is approximately 100 times faster in processing
than Hadoop. Finally, Hadoop uses MapReduce programming model, which gives it
the advantage of processing data sets parallelly. This model makes Hadoop work on
more extensive data sets than Spark does in which Transformation and Action model
is employed [16].

5https://hadoop.apache.org/
6https://spark.apache.org/
7https://storm.apache.org/

8http://samza.apache.org/
9https://www.mongodb.com/

10https://cassandra.apache.org/

https://hadoop.apache.org/
https://spark.apache.org/
https://storm.apache.org/
http://samza.apache.org/
https://www.mongodb.com/
https://cassandra.apache.org/

8 Chapter 2. Background

This short comparison makes Hadoop a better option to be employed in TOTEM ar-
chitecture with large clusters of data. However, all tools and frameworks have their
strengths and weaknesses.

2.2.1 Hadoop

Hadoop is an Apache project that began in 2008 and accounts for one of the lead-
ing frameworks in distributed processing of big data sets with clusters of computers.
Hadoop is an open-source framework that works on a programming model approach,
namely MapReduce to process and generate large data sets [19]. Hadoop principally
consists of a two-layer structure, designed to improve the performance of handling
I/O requests [20]. These layers are called the Hadoop Distributed File System (HDFS)
and MapReduce (distributed processing).

Hadoop Distributed File System

HDFS is the implementation of Google File System (GFS) and provides a scalable
Distributed File System (DFS) to record big files on distributed machines reliably and
effectively. Figure 2.3 from [18], illustrates an overview of HDFS architecture and its
components. As it is shown, HDFS has a master/slave architecture where the Name
Node is the master with several Data Nodes being slaves.

FIGURE 2.3: An overview of HDFS architecture [18]

The Name Node or the master is mainly responsible for providing physical space
to record massive data files sent by the HDFS client. Data Nodes or slaves, on the
other hand, are used to store HDFS client data files after files being split into fix-
sized blocks. The Name Node determines how the data blocks should be mapped
into the slaves, and slaves are responsible for doing the Read/Write operations such
as creation, deletion, or replication of data blocks. Data Nodes also send periodic
heartbeat signals to the master to indicate they are active. If the HDFS client wants to
retrieve data from HDFS, it sends a request to the master. The master, then, will seek
for the data location in its indexing system and sends the address back to the HDFS

2.2. Big Data System 9

client as file system metadata (file name, file location, etc.). There is also a secondary
Name Node, which stores periodically the leading Name Node state and checkpoints
of the metadata to play the same role if the main master fails [18].

MapReduce

MapReduce is a programming model for processing and producing large data sets.
This model is built in 2003 to achieve a simplified way of constructing an inverted in-
dex in order to handle searches at Google.com. MapReduce is a highly efficient frame-
work for large-scale data analysis [19]. MapReduce distributed processing framework
consists of two principle functions or tasks that are executed: map and reduce. Users
specify a map function that takes a key-value pair as input and generates a set of
intermediate key-value pairs as output [21]. The following script from [19] shows
pseudo-code for map function that a user would write:

SCRIPT 2.1: Map function in pseudo-code

map(S t r i n g key , S t r i n g value) :
// key : document name
// value : document contents
f o r each word w in value :
Dele te Intermedia te (w, 1) ;

In the reduce function, the intermediate key-value pairs (map function’s outputs) are
merged and grouped by key. For each group, the user performs the reduce function,
producing new key-value tuples associated with a unique key [21]. All the data, in-
cluding inputs and outputs of both functions, will be stored on the file system. A user
would write the reduce function like the following pseudo-code from [19]:

SCRIPT 2.2: Reduce function in pseudo-code

reduce (S t r i n g key , I t e r a t o r values) :
// key : a word
// values : a l i s t of counts
i n t r e s u l t = 0 ;
f o r each v in values :
r e s u l t += P a r s e I n t (v) ;
Delete (AsString (r e s u l t)) ;

MapReduce framework is based on two components: Job Trackers or masters that
manage and control resources and schedules of the Task Trackers or slaves. Task
Trackers or slaves that execute the given tasks supervised by the Job Trackers, which
are mainly supervising the Map/Reduce functions [18]. Slaves send their state data to
the masters regularly, and if one fails, The Job Tracker will reschedule the unfinished
tasks to the next available Task Tracker. However, if the master fails, the whole system
will go down.

10 Chapter 2. Background

2.3 JavaScript

JavaScript (JS) is an imperative, object-oriented language first announced in 1995 by
Netscape as an “easy-to-use object scripting language designed for creating live on-
line applications that link together objects and resources on both clients and servers”
[22]. Since then, JavaScript has become the standard for front-end scripting and even
one of the most dominant languages in the software industry. Unlike other popular
traditional languages such as Java and C, JavaScript does not allow encapsulation by
using classes or structured programming to maximize flexibility. JavaScript prosper-
ity is undeniable to the extend that, based on Google’s report as a data point, it has
been used in 97 out of 100 most popular websites and web applications [23].

Often, developers fall in love with JavaScript because of its extremely dynamic na-
ture, including libraries that can be downloaded at run time from various sources
on the web, script, and objects in particular. In JS, objects can be sent over the web
as raw strings that can be dynamically parsed and easily executed by the receivers,
and its APIs support by all modern browsers [24]. Here are two of the distinct advan-
tages of using JS in software or application development over the other programming
languages:

• Less load on sever – User input can be validated before sending the data off
to the server. This action not only saves part of the traffic and demand on the
server, but it also increases the interactivity of the software.

• Speed – Since JS can be run immediately on the user’s device instead of the
server, it reduces server requests and improves the User Experience (UX).

2.3.1 Node.js

Node.js – also called Node – is an open-source, server-side JavaScript runtime envi-
ronment that runs JS scripts outside of the web browser. The runtime environment
compiles JS using Google’s V8 JS engine, and its core is implemented in a JavaScript
library. Node simplifies the creation of multi-functional web servers as well as net-
working tools by using JavaScript. It provides a collection of modules such as file
system I/O, data streams, networking protocols, including HyperText Transfer Proto-
col (HTTP), Domain Name System (DNS), and Transmission Control Protocol (TCP)/
User Datagram Protocol (UDP), etc. [25].

Node.js is primarily used to bring event-driven programming to web servers, ow-
ing to make the server development fast in JS. It allows developers to build scalable
servers without the use of threading as it used to be traditionally, but by using an
event-driven programming model that uses call-back functions to indicate that a task
is completed [25].

2.4. Related Works 11

Node Package Manager (NPM 11) is a free to use, software package manager and
installer for Node libraries and applications. It includes a Command Line Interface
(CLI), used to automate the package management and dependencies inside a file,
called package.json, with a single line of code.

2.4 Related Works

In “Blockchain solutions for Big Data challenges” [26], the author reviewed the pos-
sibilities of employing Blockchain on Big Data systems to alter the currently used
model of collecting and managing data in organizations. The potential improvement
of these possible solutions was also discussed on various subjects and scenarios, such
as decentralized control of personal data, big data in Healthcare, Internet of Things
(IoT) communications, and intellectual property of digital art.

In [27], the Simplified HDFS (SHDFS) architecture employs the KERBROS authenti-
cation mechanism to overcome the existing disadvantages of HDFS. In the proposed
architecture, the Name Node concept is eliminated due to the dependency of the en-
tire system on the Name Node, which leads to the single point of failure problem.
Instead, a collection of Data Nodes (DN) called HDFS_DNs is implemented as a clus-
ter, that also makes the design cheaper and more straightforward.

FIGURE 2.4: The SHDFS architecture [27]

As it is depicted in Figure 2.4, the metadata storage is also distributed across all the
DNs by a master node called SHDFS_MINER. Blockchain technology is used to pro-
vide easy access to linking the data blocks in different Data Nodes serially.

11https://www.npmjs.com/

https://www.npmjs.com/

12 Chapter 2. Background

HBasechainDB [28], is a scalable Blockchain-based tamper-proofed Big Data storage
for distributed computing. It adds the characteristic values of Blockchain, such as de-
centralization and immutability, to the Hadoop HBase database. Authors introduced
HBasechainDB as a distributed, inviolable, decentralized Big Datastore and consid-
ered as a convenient option for enterprises/organizations whose domain logic is built
on Hadoop and are willing to adapt Blockchain Technology.

A prototype of the Blockchain Access Control Ecosystem, which provides efficient
management in access control of large data sets and guarantees against security breaches
and violations for data authorities, is proposed in the “Blockchain access control
Ecosystem for Big Data security” [29]. The described architecture designed with the
assumption that it will be running in a partial trust environment. The proposed pro-
totype uses a decentralized security system based on Hyperledger Fabric. The Hyper-
ledger Fabric blockchain, as well as two existing access control paradigms – Identity-
Based Access Control (IBAC) and Role-Based Access Control (RBAC) – are used to
implement the access control of big data. The blockchain technology, in fact, solves
the challenges associated with centralized access control and ensures the verifiability,
security, and traceability of the data for the authorized owner.

13

Chapter 3

Architecture

The TOTEM defined SDK in [1] is planned to enable the data consumers to submit
their computational codes within the data owner’s environment. Furthermore, SDK
is responsible for estimating and checking the required TOTEM value that any com-
putational code might cost. If the prerequisites are met in this computational system,
SDK will create a MapReduce formatted code for computation. The upshot of all
this is that TOTEM SDK plays a vital role in the TOTEM architecture so that it not
only must prevent the execution of malicious functions by throwing error, but it also
makes the computation ready for the execution part. Hence, a well-structured multi-
layer architecture is proposed to handle all the necessary functionalities and carry out
the required actions based on the source article.

Before starting the proposed architecture and design of the TOTEM defined SDK,
a detailed review of TOTEM theory is conducted. The expression on the workflow
of the architecture proposed in TOTEM will be followed by an indication of how
the Blockchain Technology and MapReduce concepts are integrated into the theory
of TOTEM. Finally, the architecture in the developed TOTEM defined SDK will be
explained.

It should be noted, of course, that the content presented in the Theory of TOTEM 3.1
and the Workflow in the TOTEM architecture 3.2 sections of this chapter, is to help
potential readers figure out the background of the TOTEM SDK, and obtained from
[1], where the whole idea is expressed.

3.1 Theory of TOTEM

Token for controlled computation (TOTEM) is a novel idea, introducing a new way
to analyze data. TOTEM aimed at bringing the computation to data to avoid the
drawbacks associated with the traditional methods for data analysis, in particular

14 Chapter 3. Architecture

higher bandwidth demands and security breaches. Analysis in these methods is con-
ventionally carried out by request for moving data across the network. This leads
to considerably high bandwidth consumption. In addition to that, asset owners and
data providers are often not willing to expose their data visible to everyone in the
network. This makes their data privacy and security vulnerable to the possibility of
being cyber attacked.

TOTEM introduces a new approach, focusing on the establishment of a framework
to integrate Blockchain Technology with Big Data Systems, which can utilize the ad-
vantages of both technologies effectively. As discussed in Chapter 2, the Hadoop
framework allows for parallelized computation on large data sets through its under-
lying MapReduce library. Figure 3.1 from [30] illustrates parallel computation on a
large data set of input data.

FIGURE 3.1: Parallel MapReduce computations [30]

The parallelism is performed through a parallel map over input data in the first place.
Then, the intermediate data are grouped parallelly by key, as needed for the reduce
phase. Parallel reduction per group is carried out ultimately to produce the output
data [30].

On the other hand, Blockchain is restricted by block size and creation frequency; con-
sequently, it is incapable of handling large data sets or parallel processing. How-
ever, Blockchain has proved to be a highly tamper-proof, secure, and reliable option
for recording transactions. TOTEM combines the strength of these two technologies,

3.1. Theory of TOTEM 15

which can complement each other, to develop a new approach. The architecture il-
lustrated in Figure 3.2 shows the integration of the Hyperledger Fabric and Hadoop
framework. In general, TOTEM architecture comprised of three fundamental layers:
Blockchain, Storage layer, and Computation layer.

FIGURE 3.2: TOTEM architecture [1]

In the blockchain consortium, Data Providers and Data Consumers play the most crit-
ical roles and are considered as the main characters. Data Providers, as the name indi-
cates, are the owner of the data. They provide data by linking their Big Data resources
to the system and publishing the meta-data of these data sets to the Blockchain. Con-
versely, Data Consumers are the entities who use the provided data, after being au-
thenticated to be given access to the data resources. Data Consumers can execute their
computational code on the available data sets.

A further important actor in the blockchain layer is the Smart Contract. Smart Con-
tracts are deployed by the Data Providers and primarily responsible for the validation
and evaluation of the computational code submitted by the Data Consumers. Smart
Contract ensures more transparent facilitation by restricting the computation com-
plexity. In other words, Smart Contract monitors the malware or infinite loops in
the submitted code and excludes them from execution. With various Data Providers
operating within the blockchain consortium, having a standardized monitoring pro-
cess is of importance. This process should represent an inclusive effort from all Data
Providers serving one purpose: validation of the consumer’s code to limit the com-
putation complexity and prevent malicious functions. The new concept TOTEM pro-
posed in [1] is introduced for proper validation of the computational code.

16 Chapter 3. Architecture

TOTEM is an entity that monitors the complexity of the Consumers’ submitted code
and its potential malicious bugs, to stop network latencies. Totem resembles the con-
cept of gas in Ethereum [31], and similarly, it will be assigned to users depending on
their computational needs. These authenticated consumers use their totems during
the execution time so that the more complicated their computational codes are, the
more totems they would need for execution. The usage of totem will be continuously
controlled during computation until either the computation process finishes success-
fully or totem value exhausts.

The other additional layers in the TOTEM architecture are the Storage layer and the
Computation layer. The Storage layer is used to store the actual data and represents
the Hadoop Distributed File System (HDFS). In contrast, the Computation layer con-
tains the MapReduce framework to do distributed processing.

Totem manager and updater are also introduced to handle totem consumption and
update its status by the execution of each opcode.

3.2 The workflow in the TOTEM architecture

The architecture discussed in the Theory of TOTEM 3.1 gives a general overview of
the synthesis of TOTEM structure and how they function. However, this section is
written to show the entire process in detail, starting from Data Consumers’ authenti-
cation process and ending with the computation of their submitted codes and further
results. The workflow presented in the following is divided into two sub-sections:
The Data Consumers’ side and Data Providers’ side.

3.2.1 Data Consumers Side

The workflow begins with the authorization process. The Data Consumers can gain
access to the data sets, provided under the blockchain consortium when they are au-
thorized, and this happens through enrolling in the consortium.

FIGURE 3.3: Enrollment in the blockchain consortium [1]

As soon as the Certificate Authority (CA) is obtained, and Data Consumers are au-
thorized, they will be allowed to request for the meta-data and enabling the comput-
ing facility provided by the Data Providers. This request is essential for Data Con-
sumers as they can perform their computation and estimate how many totems will

3.2. The workflow in the TOTEM architecture 17

be required for it. However, there is no specific way of acquiring totems from the
blockchain consortium suggested in [1] since it is highly dependent on the underly-
ing network architecture. In the next step, the Data Consumer will get a response
containing a key to access the data and the required totem for computation.

FIGURE 3.4: Data Consumer Side of the TOTEM workflow [1]

In the schematic diagram depicted in Figure 3.4, steps 2, 3, and 4 of the workflow,
as well as the relations between involved entities, are shown. In step 4, the compu-
tational code will be provided by the Data Consumer for deployment and execution
on the requested data. The computational code must correspond to the Map_Reduce
pattern of the SDK defined for the TOTEM. Further to this, the consumer provides the
key and the required totem for execution in order to get permission to perform their
code. Then, the smart contract which was deployed by the Data Provider will perform
an evaluation on the consumer code. It processes the submitted code and determines
whether there are sufficient totems provided by the Data Consumer regarding the
computational needs of the submitted code. Script 3.1 indicates a preliminary check
of the code deployed by a Data Consumer (Code*) written in pseudo-code.

SCRIPT 3.1: Smart Contract primilinary check in pseudo-code [1]

Evaluate (Code∗)
E = Estimated totem
i f (a v a i l a b l e totem >= E) {

Allow Computation
} e l s e {

Terminate
}

The Evaluate function uses a Totem Estimator Table (TET) to evaluate an approximate
value of required totems. The code is allowed for computation if the available amount
of totem associated with the code is more than or equal to the evaluated value. The
steps followed by the approval for computation will be dealt with in more detail in
the Data Providers Side 3.2.2.

Totem Estimator Table

Totem is an entity that monitors the complexity of the Consumers’ submitted code.
The given opcodes should be evaluated in such a way that the amount of totem re-
quired to perform each opcode is shared among all Data Providers in the blockchain
consortium. Totem Estimator Table (TET) accounts for a table that describes standard

18 Chapter 3. Architecture

totem values to perform each of the defined opcodes. As mentioned earlier, the smart
contract is executed before the computation of the consumer code to estimate the re-
quired totem and then check the Data Consumer’s balance. This estimation of the
submitted code is carried out by using the information within the TET. The estimator
table should include all the defined opcodes on the data. Table 3.1 shows an example
of a TET with different operators and data types and their corresponding weights.

The estimate of the totem is made through a function of opcodes and data types.
Considering the type of data is essential, as various data types require various spaces
to store the data. For instance, the addition of two values with data type double
requires more bytes than two integer values. By assuming the Data Consumer code
as Code*, comprising several opcodes, each represented by C, we can write: Code :
{c1, c2, c3, . . . , cn}. Opcodes can be defined operators, such as assignment, arithmetic,
logical, bitwise, etc with the corresponding weights set Weight : {w1, w2, w3, . . . , wn}.
Similarly, if a set of supported data types is assumed as Datatype : {d1, d2, d3, . . . , dn},
then the corresponding amount of bytes required to store these data types can be
written as Byte : {b1, b2, b3, . . . bn}.

Regarding the above assumptions, the general formula for the Estimated Totem (ET)
required to perform Code* on the data can be expressed as:

ET =
n

∑
i=1

Weight(ci)× Byte(di)

where n = the number of opcodes in Code*, ci ∈ Code and di ∈ Datatype.

Operator Datatype

Operator Weight Datatype Byte
Arithmetic 2 Integer 4
Assignment 1 Double 8
Logical 2 Float 4
Relational 1 Date 3
Read 1 # #
#

TABLE 3.1: An example of Totem Estimator Table [1]

3.2.2 Data Providers Side

The further steps of the TOTEM architecture workflow proceed in the Data Providers’
side when the consumer code is allowed for actual computation. This computation
is carried out in a Customized Computational Framework (CCF), which resembles

3.2. The workflow in the TOTEM architecture 19

the architecture used in Hadoop with some modifications. Figure 3.5 shows the Cus-
tomized Computational Framework employed in the TOTEM architecture and out-
lines the relations among the comprising components. As it is shown, the CCF start
performing the requested computation after the preliminary check implemented in
the smart contract 3.1 passes. This stage continues following the steps described
below until the corresponding results are produced. More details on the CCF archi-
tecture will also be given at the end of this subsection.

Within the new computational framework, one totem manager and one totem up-
dater are attached to the master node and each of the slave nodes, respectively. Fol-
lowing each execution of the given opcodes, totem updaters receive reports from each
peer slave node about the performed opcode. Once the report is received, each totem
updater sends a signal to the totem manager of the master node, which is respon-
sible for the calculation of the available balance. At this point, the totem manager
computes the remained totem after collecting all reports from the updaters, and then
sends an update back to the totem updaters. By getting the response from the totem
manager, updaters signal their attached slave nodes to move on to the next opcode
execution.

FIGURE 3.5: Data Provider Side of the TOTEM workflow [1]

This cycle will repeat either until the completion of executing a chain of map/reduce
function or the available totem exhausts, and the system reaches the "Out of totem"
status. In case the prior happens, updaters send the last report to the totem manager.
However, if the latter takes place, the totem manager will immediately signal the
master node to halt the execution.

When the execution of map/reduce function has been completed, the manager sends
the final amount of totem consumed during the execution to the Blockchain. For this
purpose, the manager creates a transaction, which invokes the smart contract that has
already been deployed to the blockchain consortium. As it is stated in Script 3.2, the

20 Chapter 3. Architecture

smart contract monitors the availability of totem for further computations every time
and will let the master node to execute the next function in case of sufficient totem.

SCRIPT 3.2: Totem balance checker in the Smart Contract [1]

For each Map/Reduce funct ion :
i f (a v a i l a b l e totem > 0) {

Continue
} e l s e {

Terminate
}

Finally, when the computation on the specified data set completes or there is not
enough totem for the rest of the execution, the ultimate result illustrated as R in Fig-
ure 3.5 will be delivered to the Data Consumer.

Customized Computational Framework

On the Data Providers side, the requested data, along with a framework in which the
computation is performed, are provided. As discussed earlier, the architecture used
in the Customized Computational Framework (CCF) resembles the Hadoop architec-
ture. However, the authors in [1] modified the architecture in Hadoop by introducing
two new entities, totem manager and totem updater. These are extended to the mas-
ter node and slave nodes, respectively, to adapt the required functionalities to the
framework. Figure 3.6 indicates the workflow diagram of the CCF in detail. Follow-
ing the preliminary check of the totem balance, the CCF master node takes the control
and starts giving map/reduce functions as well as data to the slave nodes. This is the
starting point of the CCF workflow, which is described below in various stages.

The initial stage of the CCF has been divided into two steps. In 1.1, the actual totem
balance of the Data Consumer, in addition to the estimated amount of totem required
to execute the computational code is passed to the totem manager. The master node
performs the next computation only if the totem manager confirms the availability
of totem for further executions. At the same time, the actual computational code is
sent to the master node in 1.2. The code consists of multiple map/reduce functions,
representing as M and R in the figure 3.6 and considered as the custom format of
TOTEM.

In the second stage, the master node gives the first map function to slaves for execu-
tion (2.1) and informs the totem manager about it immediately(2.2). After the totem
manager is notified, it forwards the information regarding the available totem to all
totem updaters (3.1). Totem updaters will also receive the performing information of
the function from their corresponding slave nodes in 3.2.

During the stage 4 of the CCF workflow, the estimated totem by totem updater, re-
quired to perform a particular function, is compared to the actual balance. Depending

3.2. The workflow in the TOTEM architecture 21

FIGURE 3.6: CCF architecture

on the sufficiency of totem for execution, it goes to either stage 5 or 15 of the work-
flow, which is to halt the execution immediately. Following the comparison of totem
balance with the estimated value, totem updater sends an affirmative signal to the
corresponding slave to begin the execution of the function (5).

As soon as each comprising opcode within the function is performed, the slave node
informs the updater (6), and the updater will compute the amount of used totem
for performing that opcode on the given datatype (7). Then, this amount will be
updated into the totem manager to calculate the available totem (8). Script 3.3 shows
the pseudo-code that is executed in the totem manager by updaters to calculate the
updated totem balance and to determine whether the control should go to the next
step (9):

SCRIPT 3.3: Totem balance updater in totem manager [1]

// totem updater in the next l i n e :
Avai lable totem −= Used totem
i f (a v a i l a b l e totem == 0) then :

Go to step 1 5 . 1 //"Out of totem " s t a t u s

At this time, the calculated amount will be sent back to the updaters at the stage 10. By
receiving a signal from the totem manager respecting the sufficiency of totem for fur-
ther computations, updaters will send another signal to their slave nodes and confirm
the continuity of executions. This will keep on again from stage 5 until the computa-
tion of the entire function completes, or the process terminates due to lack of totem
(11). Soon after the completion of executing the whole function, the master node

22 Chapter 3. Architecture

notifies the totem manager about the successful completion of that specific function
execution (12.1). Afterward, the manager updates the Blockchain with the available
totem by creating a transaction within the Blockchain (12.2). In the next stage (13),
the smart contract double-checks the totem balance and lets the totem manager sig-
nal the master node for further executions. However, in case of totem balance being
empty, the Data Consumer will get "Out of totem" status, and the connection will be
terminated.

Lastly, the master node receives a signal to release the next function. As it is shown
in the figure 3.6, the next function is M2. Likewise, it goes through all steps from 2.1
to 13, the same as M1. Stage 15 is considered as the termination stage. Right after
the available totem exhausts in the system, two actions will be taken place to stop the
operation: "Out of totem" status announcement to the blockchain consortium (15.1),
and informing the master node to terminate all executions instantly (15.2). However,
if there is a final result of the last reduce function available (R2 in the figure), it will be
promptly published to the blockchain consortium for the use of Data Consumer, and
then the connection will be terminated.

3.3 Architecture of TOTEM defined SDK

As discussed in previous sections, the SDK plays a vital role in the architecture of
TOTEM. It is aimed at enabling the consumers to submit their computational codes in
the Data Providers’ side. Moreover, the SDK produces an estimated value of required
totem that consumer’s code might cost, using the Totem Estimator Table. Ultimately,
the SDK outputs a formatted code needed for the execution section. That explains
why the importance of having an extensible, well-structured, and easy-to-use SDK
cannot be emphasized too much.

The source code of the TOTEM SDK is released under the MIT license, and avail-
able on Github 1. With this in mind that the defined SDK presented in this thesis is
not the final version and aims at only showing the potential functionalities regarding
some pre-defined rules. This section introduces the highlights and describes the lay-
ers within the architecture of the defined SDK to give a better understanding of the
implementation in Chapter 4.

3.3.1 Specifications

TOTEM SDK provides a flexible toolkit for testing and deploying computational codes
of Data Consumers over the Internet, setting a good starting point for researches and

1https://github.com/Behfar90/TOTEM-SDK

https://github.com/Behfar90/TOTEM-SDK

3.3. Architecture of TOTEM defined SDK 23

developers to experience the new concept of Blockchain and Big Data integration. In
the following, some of the highlights about TOTEM SDK is presented:

• Community Cooperation – the source code is put on Github publicly and lever-
age the whole community and interested developers to improve the SDK for
better performance and flexibility.

• Pure JS code – the TOTEM SDK presented in this thesis is implemented in
fully JavaScript code, including Vanilla javascript and jQuery, which is a famous
JavaScript library to simplify Document Object Model (DOM). Using JS makes
TOTEM SDK very efficient to deploy in web browsers regardless of operating
systems and multiple hardware platforms [32].

• Modular Design Pattern – TOTEM SDK is designed from the beginning to con-
form to the Modular Design Pattern (MDP), allowing for wrapping a set of vari-
ables and functions together in a single scope. The module interface is, in fact,
a piece of program that specifies which other pieces it relies on and which func-
tionality it provides for other modules to use (its interface). By limiting the way
that modules interact with each other, the whole system can be seen as a LEGO,
where pieces interact through well-defined connectors called dependencies [33].
From all the benefits that MDP brings in favor of interdependent codebase, the
following three are more important in the TOTEM SDK: Maintainability, Names-
pacing and Reusability. The modular pattern makes it simple to improve and
update single modules and reuse them in new required places in the project. It
also helps to avoid "namespacing pollution" where completely unrelated code
shares global variables by providing private space for variables [34].

• Maintainability and extensibility – The core architecture of the presented SDK
has been made to be maintainable and extensible as there are still opportunities
for further enhancements. This architecture was done through the modular pat-
tern. A well-designed module strives to reduce the dependencies on different
parts of the codebase as much as possible so that it can grow and improve in-
dependently. Therefore, either adding a new module to the architecture or up-
dating a single module would be much easier while the module is disassociated
from the other pieces of code [34].

3.3.2 Layers

TOTEM defined SDK is primarily used for creating a formatted code from the user’s
submitted code as well as estimating its computational cost, all according to the de-
fined rules. This analysis of the user’s code and the estimation of the required totem
are taken place within a three-layer architecture, which are SDK layer, Controllers layer,
and Handlers layer. Figure 3.7 depicts these layers and describes how their comprising
components are linked to each other in the architecture of the defined SDK.

24 Chapter 3. Architecture

FIGURE 3.7: Workflow in the TOTEM SDK

SDK layer

The SDK layer accounts for the primary layer of the whole design, where all the rules
and the user inputs are taken. Each line of the user input goes to the next layer if
it complies with the rules. As it is illustrated in Figure 3.7, Line Reader Component
(LRC) is one of the main components in the current layer in which the process of
reading user input lines is carried out. Another critical component in the SDK layer is
the Rule Processor Component (RPC). RPC is the only component within the whole
architecture which reads, processes and extracts the proper way of handling various
commands based on the defined rules, prior to any other action. Consequently, Rules
is the first block of scripts that the SDK takes. This action is necessary as all the further
actions occurring in the SDK layer are determined based on these rules.

Input lines go into the LRC split evenly, and the LRC divides each one into two parts
of the command and the assignment part. If the command exists in the rules, the LRC
will read the proper reaction to that specific command and rest will be done in the
Controller layer, after conducting a check through the Reaction Checker (RC).

On the other hand, it is also possible that the input line is just another operation or
mathematical equation on an already defined variable. For such conditions, there is
another checker called Variable Checker (VC). VC can ignore the Controller Layer and

3.3. Architecture of TOTEM defined SDK 25

directs both the command as well as the assignment parts directly to the Operation
Handler Component (OHC) in the Handler layer if it figures that the above condition
is correct. Otherwise, Error Handler Component (EHC) will take control and throws
the related error.

Controllers layer

The next layer in the TOTEM SDK architecture is the Controllers layer. This intermedi-
ate layer between the SDK layer and the Handler layer plays a crucial role in enabling
the user’s submitted code to the following global variables stored after the evaluation
in the final step. On a broader level, the Controller wraps all the components, each of
which handles the controlling of a specific command type defined in the rules block.
Table 3.2 indicates an example of rules defined in the rules block.

COMMAND HOW TO REACT COMMAND TYPE DOMAIN

Int HandleNumber() Labelled Set of Z

Bool HandleBoolean() Labelled Set of β = {0, 1}
Float HandleNumber() Labelled Set of Q

For HandleForLoop() Control Statement Labelled Type Vars

If HandleIf() Conditional Statement Labelled Type Vars

TABLE 3.2: An example of defined rules in the TOTEM SDK

As it is indicated in Table 3.2, multiple command types might lay in the rules file. Nev-
ertheless, for the sake of simplicity and to follow the modular pattern of the design,
the Controller redirects the taken commands to their respective components. All fur-
ther operations on each command type will take place in these components. Labelled
Type Controller (LTC) and Control Statement Controller (CSC) are two examples of
such controlling components, shown in Figure 3.7.

Following some necessary operations on the Controller inputs, such as naming con-
vention check, splitting the assignment chunk for more evaluation, error check, etc.,
type controlling components consider where to point in the subsequent layer (Han-
dlers layer). If the input is error-free, then the respective reaction function determined
in the "How To React" column of the above table will be invoked. By contrast, in case
of errors detected within the type controlling component, it invokes a related error in
the Error Handler component to show on the User Interface (UI).

Handlers layer

The last layer in the architecture of TOTEM SDK is the Handlers layer, which receives
requests to handle either execution, throw exceptions, or mathematical computations.
The handlers layer is principally responsible for providing functions to the requesting

26 Chapter 3. Architecture

components within the Controllers layer. However, in a situation that a new line of
command is detected as an operation on an already defined variable, that line of com-
mand within the SDK layer will be sent directly to the OHC to perform the operations
in the Handlers layer.

The handlers layer consists of 3 major components in which several functions are
defined. In the operations handler, all allowed operations on existing variables are
managed. Taking note in the OHC, logical operations, relational assignments, and
mathematical operations, such as addition, subtraction, multiplication, power, etc.,
are all handling functions within this component.

The error functions, on the other hand, are all wrapped up in the EHC irrespective of
where the exception is being thrown. Such a component that handles all the functions,
not only makes it more feasible to add, change or remove the functions in the future
versions, but it also helps to avoid redundancies by calling interchangeable functions
in different places of the SDK. Table 3.3 reveals various error functions defined so far
in the existing version of the SDK.

FUNCTION CALL SITE DESCRIPTION

CommandError() SDK Command is not defined

HandleError() LTC
No defined bundler to compile
the command

NamingError() LTC
Name is against the naming con-
vention

CTRLStatementError() CSC
An error occurred during the
control statement execution

OperationError()
Execution
Handler

An error occurred during the
operation functions

TABLE 3.3: Error functions defined in the EHC

Execution handler accounts for another handler component with several functionali-
ties, each of which serves to execute the output of controller components. When the
processing of the input command line completes in the Controllers layer, it gets pre-
pared for the execution stage. Depending on the call site of these executive functions,
different functions could be called. Each of these executive functions handles at least
one type of command defined in the rules file. In the end, the resulted outcomes from
the executions will be stored in several global variables for the use of smart contracts
in the blockchain consortium. Table 3.4 shows three global variables as well as their
descriptions defined in the existing version of TOTEM defined SDK.

As discussed earlier, the objective of our defined SDK is not to output the final results
of the submitted code as it will be done in another part of the TOTEM architecture.

3.3. Architecture of TOTEM defined SDK 27

TABLE 3.4: Global variables of the defined SDK

Global Variable Description

ruleLines
A global array of map values, each representing
one total row of the rules defined in rules.csv

userDefined_vars
A global object to keep track of user-defined
variables and their updated values

TOTEM_operators
A global array to keep all operators and assign-
ments within the Data Consumer’s code – used
to estimate the required TOTEM

mapped_executions
A global array to store the resulted mapped ex-
ecutions format of the Data Consumer’s code -
used as an input in CCF

Nevertheless, having the updated values of variables is necessary before reading the
next line. The reason is that the next lines of the user’s submitted code might be
dependant on those variables defined earlier. As a result, considering such a global
object of most updated variables and their values, which is accessible through the
modular pattern in other layers, particularly in the SDK layer, is crucial.

28 Chapter 3. Architecture

29

Chapter 4

Implementation and Results

As discussed in the TOTEM architecture, the defined SDK is part of a concept purpos-
ing at enabling the data users to the requested data without exposing the whole data
domain. This means everything should be handled throughout the Internet, and thus
a web application is a preferable option. In other words, the application can serve as
a framework for users to submit their computational codes and receive results. In this
application, the authentication process, distributed processing of computation, fetch-
ing data from the distributed storage, and result creation are all done in the smart
contract within the Data Providers’ servers. However, the SDK can be implemented
in the front-end layer while it is connected to the smart contract for totem checking.

This chapter will discuss solely the way that the existing version of TOTEM defined
SDK is developed in detail. Followed by the frameworks and tools used to reach the
current version, the features and functions of all constructing modules will also be
explained. A User Manual sample for whatever commands that have been already
defined will then be presented, and in the end, execution analysis and some testings
will be performed.

4.1 Frameworks and Tools

The procedure of handling input data in the TOTEM defined SDK is based on a mod-
ular pattern. Writing the core structure of the SDK with modules helps with organiza-
tion, maintenance, testing, and, most importantly, dependency management. Unlike
the large traditional frameworks in which everything is done under the sun, the new
approach suggests creating small modules that do one thing and one thing well [35].
For this purpose, various frameworks and tools are employed during the develop-
ment to make the SDK performance as expected, which are all listed below.

1. JavaScript JS is one of the most effective and versatile programming languages
used to extend functionality in web applications. Among all of the advantages that

30 Chapter 4. Implementation and Results

JS presents, being fast for the end-user, no compilation required, being easy to test
and debug, platform independency, and capability of procedural programming are
the ones who make JS a superior language to write the core structure of the SDK with
[36].

2. JQuery 1 jQuery accounts for one of the fast, small, and feature-rich libraries writ-
ten by JS designed to simplify HTML DOM tree traversal and manipulation with an
easy-to-use API, working across a multitude of browsers. The jQuery contains a full
suite of AJAX (Asynchronous JavaScrpit And XML) capabilities to read/write data
from/to a server without rerendering the web page [37]. In this thesis, the jQuery
AJAX is used to read the rules file into the SDK (main) layer of the defined SDK. It
can also be used to write to the output for the use of further components within the
TOTEM architecture.

3. VSCode 2 Visual Studio Code is a free, lightweight source-code editor made by
Microsoft for use in different operational systems. VSCode has numerous useful fea-
tures that support debugging, snippets, intelligent code completion, syntax highlight-
ing, code refactoring, and embedded Git [38]. These features, in addition to the extra
extensions provided with more functionalities, are the reasons why it has been used
in this thesis to develop the TOTEM SDK.

4. LiveServer 3 liveServer is a practical and functional extension for Visual Studio
Code. It primarily speeds up the development process by launching a local devel-
opment server with a live reload feature for static and dynamic pages. LiveServer
also provides advanced support for Hypertext Transfer Protocol Secure (HTTPS), CLI
for any browser (e.g., Firefox, Chrome, Nightly), and Cross-origin Resource Sharing
(CORS) mechanism which allows sharing restricted resources among domains. These
features might be useful in future versions of our defined SDK.

5. Node.js As discussed earlier in the subsection 2.3.1, Node.js is a runtime envi-
ronment that compiles JS via Google’s V8 JS engine to simplify the creation of multi-
functional web servers using JS. Moreover, NPM is the Node Package Manager, which
helps with installing various packages and resolving their dependencies effortlessly
and straightforwardly. In this thesis, NPM has been used to add some functional
dependencies to the current version of the defined SDK.

6. Browserify 4 With the modular architectural design of the TOTEM defined SDK,
there should be a module loader library to load and wire these modules in the browser
because browsers still do not support that. Browserify is a tool that helps to enable
developers to modularize their JavaScript codes. Browserify allows to use Node style
modules statements “require()” and “export” in the browser, and brings all the NPM
ecosystem off to the server and the client; simple, yet immensely powerful [39]. Thus,

1https://jquery.com/
2https://code.visualstudio.com/

3https://marketplace.visualstudio.com/
items?itemName=ritwickdey.LiveServer

4http://browserify.org/

https://jquery.com/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer
http://browserify.org/

4.1. Frameworks and Tools 31

developers only need to define dependencies, and then Browserify bundles it all up
into a single neat and clean JS file, which can then be included in the desired project
(e.g., <script />).

Browserify can be installed by NPM command and has been used in this thesis to
implement the modular pattern among the SDK various components and functions.
Figure 4.1 illustrates browsers compatibility of the syntax “export” and the “default”
keyword in different devices that are used in JS modules.

FIGURE 4.1: Browsers compatibility of JS modules syntaxes [40]

7. Watchify Watchify is another NPM module that is known as the Browserify com-
patible caching bundler for super-fast bundle rebuilds. It is a helpful and time-saving
tool that watches source files for any changes and re-run Browserify whenever a
change in the entry-point JS file or its required modules is detected [41].

8. Exact-math In JS, all numbers are encoded as double-precision floating-point num-
bers, following the international IEEE 754 standard, which stores each number in 64
bits. Figure 4.2 indicates how each number is stored as a binary fraction based on
IEEE 754. However, most of the decimal fractions cannot be represented exactly fol-
lowing this standard, and that causes floating-point arithmetic to be not 100% precise.
Exact-math library is an NPM module, consisting of various methods of math calcu-
lations, such as addition, subtraction, multiplication, division, power, rounding, etc.
which gives a precise result.

FIGURE 4.2: IEEE 754: number representation in JS

9. Google Chrome DevTools Google Chrome Developer Tools is a set of authoring,
debugging, and developing tools built directly into the Google Chrome browser. De-
vTools helps significantly to edit projects on-the-fly and to diagnose problems quickly
[42]. Chrome DevTools consists of several panels, including Elements panel, Console

32 Chapter 4. Implementation and Results

panel, Sources panel, Network panel, Performance panel, Memory panel, Application
panel, and Security panel. Using these panels, most importantly, the Console panel,
not only have assisted a lot during the development of the defined SDK, but they are
also employed to show the results and to perform testings on the execution of each
layer.

10. Github Github is a code sharing and publishing service which provides host-
ing for software development version control using a distributed control system for
tracking changes, called Git. As a command-line tool, Git gives access control and
several collaboration features to developers for each project, which is stored in a repos-
itory. The defined SDK existing version is stored in a public repository of the author’s
Github account 5 under MIT license for further contributions.

4.2 Coding Explication

The developed SDK is implemented in a way that hypothetical Data Consumers are
allowed to submit their computational codes and receive reactions. It is also worth
noting that the assumption is, consumers have already gone through the authoriza-
tion process which is outside the scope of this thesis. For this purpose, a simple HTML
file is designed in which the SDK is imported as a bundled JS file using a <script> tag.

4.2.1 Environment Setup

To establish the environment as described, the first step is to initialize an NPM pack-
age. Script 4.1 reveals the initial steps, such as creating the package, adding depen-
dencies, etc. in the root directory. Initializing a package requires to have Node and
NPM already installed on the machine. As indicated in 4.1, line 1 generates a pack-
age.json file in the root project. This file is updated when adding further dependencies
during the development process.

SCRIPT 4.1: Initial stages of establishing the SDK environment

(1) $ npm i n i t
(2) $ npm i n s t a l l < l i b r a r y > −−save (−−save−dev)
(3) $ mkdir s r c

$ cd s r c //To change d i r e c t o r y i n t o SRC
(4) $ echo > index . html

After the package is created, line 2 adds the library to the dependencies section of
the package.json file. However, there is another section, devDependencies, within the
package.json file. The difference between these two sections is that dependencies are
modules required at run-time, while devDependencies contains modules which are

5https://github.com/Behfar90/TOTEM-SDK

https://github.com/Behfar90/TOTEM-SDK

4.2. Coding Explication 33

only required during the development. Using –save-dev instead of –save , adds the
library to the devDependencies. Followed by the installation of the desired libraries,
node_modules directory is created automatically. The package.json file, in fact, defines
which libraries are installed into the node_modules when npm install is run. After
installation, having a SRC folder in which all the development occurs is of preference
(line 3).

Line 4 shows creating an HTML file in the SRC directory. As discussed earlier, an
HTML file can be a realistic option to show the interaction between the hypothetical
user and the SDK. This includes both receiving the user’s computational code and
displaying feedback to the user, such as displaying errors, results, etc. In this mat-
ter, the SDK functions and checkers are imported to the HTML, and the SDK will
be executed over the user’s code through a triggering event (e.g., a button onClick).
However, another option would be to store the computational code as a separate file
and then execute the SDK over it. In this thesis, the prior was chosen as it offers a
better way of handling feedback to the user.

SCRIPT 4.2: The body of the index.html in pseudo-code

<Body of the page>
<Div i son of the page>

<TextArea id =" userCode " />
<Button type =" button "> Run </Button>

</Div i son of the page>
<Paragraph id =" e r r o r " c o l o r =" red " />
<Script s r c =" index . j s " /> //Bundled JS f i l e by browseri fy

</Body of the page>

Script 4.2 shows the body of the HTML file described above. In this simple file, there
is a division (using a <div> tag) to place a text area and a button. Within the text
area, users can write their computational codes according to sort of rules and then
submit them for further analysis through the button. In addition to that, there is also
a paragraph to show the errors associated with the users’ computational codes. The
errors are thrown when a statement does not comply with the defined regulations
and rules. In the end, there is a script tag used to import the SDK and enable it to the
button onClick event handler.

The index.js file, indicated in the Script 4.2, is the bundled JS file generated by the
browserify to serve up to the browser in a single script tag. Browserify is recursively
analyzing the require() calls in the app to build a bundle and Script 4.3 shows how
simply the bundled file is created using the NPM Scripts.

SCRIPT 4.3: NPM script to build the browserify bundled JS file

" bui ld " : " browseri fy ./ s r c / j s /SDK. j s −o ./ s r c /index . j s "

NPM scripts are part of package.json file and used to automate repetitive tasks.

34 Chapter 4. Implementation and Results

Script 4.3 specifies that running $npm run build executes the defined browserify com-
mand which takes the main entry point (SDK.js) and bundles it to the output file (in-
dex.js). Likewise, a similar script can be used by watchify to monitor the changes
in the SDK.js as well as its dependencies and automatically rebuilds the bundle.
Script 4.4 shows the NPM script that keeps an eye on the files. This is quite useful
during development as developers only need to reload the browser.

SCRIPT 4.4: NPM script to watch the changes in JS files

" watch " : " watchify ./ s r c / j s /SDK. j s −o ./ s r c /index . j s "

4.2.2 Main Functionalities

Before taking the consumer’s submitted code and estimating the number of required
totem for its execution, fetching the command rules and their corresponding reactions
defined in the rules.csv file is necessary. This is done through the jQuery AJAX call,
which accounts for one of the important functions implemented in the defined SDK.
As Script 4.5 illustrates, this AJAX GET call sits in the ready() method of the document
within the main layer where all functionalities are bundled. The ready() event occurs
when the DOM has been loaded, and it is the best place to import the prerequisites
for the rest of the functions.

SCRIPT 4.5: AJAX callback to GET the rules file in pseudo-code

When the document i s ready (Function () :
Ajax ({

type : "GET"
u r l : " address to the r u l e s . csv "
datatype : " t e x t "
success : c a l l ProcessRules (r u l e s) funct ion

})) ;

As it is shown above, the AJAX callback has four basic features. Type indicates the
HTTP method to use for the request (e.g., ‘’POST”, “PUT”). URL is a string containing
the Uniform Resource Locator (URL) to which the request is sent. A dataType is what
is expected back from the server, and success shows the function to be called if the
request succeeds.

ProcessRules is the core function inside the AJAX callback, aiming at processing each
rule and storing all as an array of map values. Script 4.6 describes the ProcessRules()
function statements in pseudo-code. As mentioned earlier, ruleLines is one of the
global variables that keep important data for use in further computations. The Pro-
cessRules() function includes a set of statements to perform its primary task which
is to fill the ruleLines global variable. In more details, ProcessRules() takes all data
within the rules.csv file, then splits the rules and header and for each rule, pushes

4.2. Coding Explication 35

each header and its corresponding data to a map. Ultimately, each map value be-
comes one element of the ruleLines array. The reason for representing each rule as a
map value is that extracting values using their paired keys is more straightforward
and secure than tracking single values based on their positions within an array. Fur-
thermore, having a map has several benefits over using an object at it is ordered and
iterable and accepts any type of data as a key [43].

SCRIPT 4.6: ProcessRules function in pseudo-code

Function ProcessRules (r u l e s) :
Se t a l l T e x t L i n e s to an array of s p l i t t e d r u l e s
Set headers to an array of s p l i t t e d a l l T e x t L i n e s [0] as headers
FOR each of the a l l T e x t L i n e s elements

Set data to an array of s p l i t t e d each r u l e by comma
IF length of headers = length of data THEN

Set ruleMap to an empty map
FOR each of the headers elements

Push (header [j] , data [j]) to the ruleMap
ENDFOR
Push ruleMap to the g loba l var ru leL ines

ENDIF
ENDFOR

lineReader is the other fundamental procedure implemented in the existing version
of the TOTEM defined SDK. This function enables the consumer’s submitted lines of
code separately and in succession to the lower layers of the defined SDK (Controllers
layer and Handlers layer) if a reaction is set out to each. In the lineReader function,
each line of code is broken down into two parts, command and assignment. Then,
based on the function name of the correlative reaction to each command, lineReader
routes each line to either the controller or handler functions. This task is done by a
local function, called getRuleValues which iterates through the ruleLines global vari-
able to return the related information about a command.

SCRIPT 4.7: lineReader function in pseudo-code

Function l ineReader (l i n e of code) :
Set cmd to the command part of each l i n e of code
Set assignment to the r e s t of the l i n e of code
Set r e a c t i o n to the output of getRuleValues (cmd , "HOWTOREACT")
Set isVar to t rue i f cmd i s an already defined v a r i a b l e

IF r e a c t i o n e x i s t s and defined THEN
Go to the C o n t r o l l e r

ELSE
IF isVar = true THEN

Go to the execut ion handler
ELSE

Go to the e r r o r handler
ENDIF

ENDIF

36 Chapter 4. Implementation and Results

Script 4.7 describes how the lineReader function operates and routes the Data Con-
sumers’ computational codes line by line to the successive layers. Based on the SDK
regulations, which will be presented in the Appendix A, if a line includes a command,
then the command comes first. Unless it is arithmetic, logical or relational operation
over an already defined variable in which no defined command is in the command
part of the line. This justifies why the isVar checking is necessary when there is no
known command or no reaction to the command part of a line.

SCRIPT 4.8: Listener function for button "click" event in pseudo-code

Button . addEventListener (" c l i c k " , func t ion () :
Se t userCodeValue to the value of the textArea (# userCode)
Set codeValueLines to an array of s p l i t t e d submitted code by l i n e
Set loopLine to an empty array
Set statementLine to an empty s t r i n g
FOR EACH l i n e IN codeValueLines

IF l i n e command i s of c o n t r o l statement type THEN
Push l i n e and next l i n e s within " { } " to the loopLine
Delete a l l pushed l i n e s from codeValueLines
Set statementLine to concatenated l i n e s in loopLine by " ; "
Replace statementLine with deleted l i n e s in codeValueLines

ENDIF
IF statementLine i s empty THEN

Execute lineReader(l i n e)
ELSE

Execute lineReader(statementLine)
ENDIF

ENDFOR
) ;

The addEventListener for the event target button accounts for the other primary func-
tionality implemented in the TOTEM SDK. This method sets up a function that will be
called whenever the specified event is delivered to the target. This procedure, which
is shown thoroughly in Script 4.8 in pseudo-code, is executed before the lineReader
function operates. The function specified above is triggered when users submit their
codes by clicking the button. The button “click” event here, resembles the circum-
stance in which users desire to receive results after completion of their codes.

The function indicated in Script 4.8, takes the entire submitted code, separates it by
line and stores each line as an element of a pre-defined local array (codeValueLines).
The reason is to deliver each command separately in one piece to the lineReader func-
tion. However, some commands (e.g., control statements) are more than a single line
of code. Therefore, the consecutive lines related to a single command should all be
considered as one. That is what the first if statement manages to do. In the following,
the second if statement checks the next line of command is either an initial splitted
line or a block of lines belonged to a sole command. Then, it calls the lineReader
function with the proper argument.

4.3. Execution and Testing 37

4.3 Execution and Testing

To verify that the developed SDK can take the submitted code, analyze it, perform
the error investigation and produce the expected results, the console panel in the
Google Chrome DevTools was used to capture the messages and show the outputs. It
should also be noted that all the executions and testings which are presented in this
section are conducted using three defined commands INT, FLOAT, and FOR loop.
The first screenshot, Figure 4.3, displays the ruleLines global variable, the array of
rules obtained from the rules.csv file. In the figure, one can see the formatted map
elements of the array, each representing one rule that users are allowed to use. Once
the page DOM is ready for JavaScript code to execute, jQuery detects this readiness
and performs an asynchronous HTTP request to get the rules. Every rule contains
several (key => value) tuples equal to the number of columns in the rules.csv file.

FIGURE 4.3: The ruleLines global variable: array of rules

To make the tests more representative, and be able to achieve a better judgment on the
SDK performance, two scenarios are defined, which include all types of commands.
Script 4.9 depicts two scenarios for a user’s submitted code, which within the scenario
A, an Integer and a Float number values change within a For loop without any error.
While the scenario B shows a code containing various types of errors in every line of
it.

SCRIPT 4.9: Testing scenarios of user’s submitted code: A) error-free
B) error in all lines

i n t a = 1 , b = 2 i n t e g e r a = 1
i n t c = add (a , b) f l o a t b% = 4 . 1
f l o a t d = 4 . 1 i n t c = add (3 , d)
f o r (i =1 ; i <4 ; i ++) { i n t d = sub (3)

c = add (c , i) f o r (i =1 ; i <4) {
d = sub (d , 0 . 1) c = add (c , i)

} }
A B

Figure 4.4 displays the results of two embedded testings in the scenario A, one in
the lineReader function and the other one placed at the end of execution to show the

38 Chapter 4. Implementation and Results

value of userDefined_vars global variable. As the figure illustrates, the SDK detects the
type and the corresponding reaction to each block of command after being processed
in the lineReader function. Moreover, the value of each defined variable is stored at
userDefined_vars and gets updated by each command block execution. These data are
the input of the Controllers layer. Similarly, in the second testing scenario, the type
and the reaction to command blocks with defined commands, excluding the first line
as it is undefined, are detected by the SDK. However, there will be no variables stored
in the userDefined_vars due to the exceptions thrown by the error handler in every line.
Figure 4.5 displays the errors associated with the code in scenario B.

FIGURE 4.4: Controllers layer input data as well as the final values of
variables in testing scenario A

FIGURE 4.5: The errors associated with the code in testing scenario B

Two more tests are conducted before the termination of the execution for the testing
scenarios in 4.9. The objective of performing these tests is to figure the TOTEM_operators
and mapped_executions global variables that contain required data for both totem es-
timation and the CCF. As mentioned earlier, TOTEM_operators stores all the assign-
ments and operators within the user’s code. This information is then used to estimate
the amount of totem required to perform the computation using a pre-defined TET
and execute the code in the computation part. Figure 4.6 shows the elements stored
in this global array at the end of execution in scenario A.

FIGURE 4.6: The TOTEM_operators global array elements after the ex-
ecution in testing scenario A

Figure 4.7 also displays the mapped_executions global array when the execution termi-
nates in the testing scenario A. As depicted, each element of this array represents a
single execution in the submitted code, mapped together for the use of CCF at the
further levels, e.g., computation framework, which is beyond the scope of this thesis.

4.3. Execution and Testing 39

FIGURE 4.7: The mapped_executions global array elements after the
execution in testing scenario A

In the testing scenario B, conversely, both TOTEM_operators and mapped_executions
remain empty after the execution. The reason is when an error occurs; the EHC takes
control over the Controller or the Execution handler. Thus, that line of command will
not be executed and ultimately stored in either of these arrays.

40 Chapter 4. Implementation and Results

41

Chapter 5

Conclusion and Future Work

The main objective of this thesis was to implement the defined SDK within the TOTEM
computational system with a particular focus on devising a TOTEM language and
regulations. This has been completed, and two operational scenarios emulating Data
Consumers’ computational codes, have been implemented. These test-beds have
been conducted only to demonstrate the stability of the SDK framework, even though
there is still room for the addition of new operations and allowed data types in the
rules.csv file.

Using a multi-layer architecture in designing the TOTEM defined SDK and eventu-
ally deploy all functionalities within this architecture not only helps to maintain the
level of data security high, but it also makes further enhancements easy. However,
there might be some concerns that the tiered structure might add unexpected com-
plexity to the project and increase the maintenance costs, as well as the risk of failure.
The author believes that the costs of higher complexity compared to the costs of new
machines (for additional tiers) and network bandwidth are relatively low.

From an operational point of view, using JavaScript and Node.js to create the SDK
and what it aims for, which is to make map-reduce formatted computational code
specific to the TOTEM platform, was a practical choice that should be considered in
further versions of the SDK. In TOTEM, the computation takes place where the data
is located, and this might justify web applications as the best servers to it by giving
the ability to streamline the operations. Additionally, JavaScript and Node.js are the
best tools to develop the SDK as a web application as they make code deployment
and executions quicker and easier and also assist in much faster data transmission
between the server and the client.

For future work, it would be necessary to extend the number of data types and op-
erations that are allowed to use by Data Consumers while submitting their computa-
tional codes. The next thing that could be experimented further is to add a framework
for assigning totem to the users, and also an estimator table to emulate the process as

42 Chapter 5. Conclusion and Future Work

described in the TOTEM workflow when there is a smart contract serving as a back-
end to the SDK. Future studies could also aim to replicate results in a broader scope,
e.g., creating a sole compiler that can be installed separately rather than interpreting
codes deployed into the browser. Last but not least, as TOTEM accounts for a novel
architecture, the author considers publishing a paper based on the work that has been
done during this thesis in the near future.

44

List of Figures

2.1 Ethereum transaction example using gas fee [12] 5
2.2 Example Ledger: fabcar [15] . 6
2.3 An overview of HDFS architecture [18] 8
2.4 The SHDFS architecture [27] . 11

3.1 Parallel MapReduce computations [30] 14
3.2 TOTEM architecture [1] . 15
3.3 Enrollment in the blockchain consortium [1] 16
3.4 Data Consumer Side of the TOTEM workflow [1] 17
3.5 Data Provider Side of the TOTEM workflow [1] 19
3.6 CCF architecture . 21
3.7 Workflow in the TOTEM SDK . 24

4.1 Browsers compatibility of JS modules syntaxes [40] 31
4.2 IEEE 754: number representation in JS 31
4.3 The ruleLines global variable: array of rules 37
4.4 Controllers layer input data as well as the final values of variables in

testing scenario A . 38
4.5 The errors associated with the code in testing scenario B 38
4.6 The TOTEM_operators global array elements after the execution in test-

ing scenario A . 38
4.7 The mapped_executions global array elements after the execution in

testing scenario A . 39

45

List of Scripts

2.1 Map function in pseudo-code . 9
2.2 Reduce function in pseudo-code . 9

3.1 Smart Contract primilinary check in pseudo-code [1] 17
3.2 Totem balance checker in the Smart Contract [1] 20
3.3 Totem balance updater in totem manager [1] 21

4.1 Initial stages of establishing the SDK environment 32
4.2 The body of the index.html in pseudo-code 33
4.3 NPM script to build the browserify bundled JS file 33
4.4 NPM script to watch the changes in JS files 34
4.5 AJAX callback to GET the rules file in pseudo-code 34
4.6 ProcessRules function in pseudo-code 35
4.7 lineReader function in pseudo-code . 35
4.8 Listener function for button "click" event in pseudo-code 36
4.9 Testing scenarios of user’s submitted code: A) error-free B) error in all

lines . 37

46

List of Tables

2.1 A comparison between two popular big data frameworks 7

3.1 An example of Totem Estimator Table [1] 18
3.2 An example of defined rules in the TOTEM SDK 25
3.3 Error functions defined in the EHC . 26
3.4 Global variables of the defined SDK . 27

47

Bibliography

[1] Dhanya Therese Jose, Antorweep Chakravorty, and Chunming Rong. “TOTEM:
Token for controlled computation: Integrating Blockchain with Big Data”. In:
2019 10th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). IEEE. 2019, pp. 1–7.

[2] Karim R Lakhani and M Iansiti. “The truth about blockchain”. In: Harvard Busi-
ness Review 95 (2017), pp. 118–127.

[3] Andreas Meier and Henrik Stormer. “Blockchain= Distributed Ledger+ Con-
sensus”. In: HMD Praxis der Wirtschaftsinformatik 55.6 (2018), pp. 1139–1154.

[4] Stuart Haber and W Scott Stornetta. “How to time-stamp a digital document”.
In: Conference on the Theory and Application of Cryptography. Springer. 1990, pp. 437–
455.

[5] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Tech. rep. Manubot,
2019.

[6] Gareth W Peters and Efstathios Panayi. “Understanding modern banking ledgers
through blockchain technologies: Future of transaction processing and smart
contracts on the internet of money”. In: Banking beyond banks and money. Springer,
2016, pp. 239–278.

[7] Du Mingxiao et al. “A review on consensus algorithm of blockchain”. In: 2017
IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE. 2017,
pp. 2567–2572.

[8] Nick Szabo. “The idea of smart contracts”. In: Nick Szabo’s Papers and Concise
Tutorials 6 (1997).

[9] Weiqin Zou et al. “Smart contract development: Challenges and opportunities”.
In: IEEE Transactions on Software Engineering (2019).

[10] Christopher D Clack. “Smart Contract Templates: legal semantics and code val-
idation”. In: Journal of Digital Banking 2.4 (2018), pp. 338–352.

48 Bibliography

[11] Lin William Cong and Zhiguo He. “Blockchain disruption and smart contracts”.
In: The Review of Financial Studies 32.5 (2019), pp. 1754–1797.

[12] Preethi Kasireddy. How does Ethereum work, anyway? https://www.preethikasireddy.
com/post/how-does-ethereum-work-anyway. 2017.

[13] Elli Androulaki et al. “Hyperledger fabric: a distributed operating system for
permissioned blockchains”. In: Proceedings of the Thirteenth EuroSys Conference.
2018, pp. 1–15.

[14] Christian Cachin et al. “Architecture of the hyperledger blockchain fabric”. In:
Workshop on distributed cryptocurrencies and consensus ledgers. Vol. 310. 2016, p. 4.

[15] Ledger. https://hyperledger-fabric.readthedocs.io/en/latest/ledger/
ledger.html. 2020.

[16] T Ramalingeswara Rao et al. “The big data system, components, tools, and tech-
nologies: a survey”. In: Knowledge and Information Systems (2018), pp. 1–81.

[17] Fadi H Gebara, H Peter Hofstee, and Kevin J Nowka. “Second-generation big
data systems”. In: Computer 48.1 (2015), pp. 36–41.

[18] Wissem Inoubli et al. “An experimental survey on big data frameworks”. In:
Future Generation Computer Systems 86 (2018), pp. 546–564.

[19] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: a flexible data processing
tool”. In: Communications of the ACM 53.1 (2010), pp. 72–77.

[20] Xiayu Hua et al. “Enhancing throughput of the Hadoop Distributed File System
for interaction-intensive tasks”. In: Journal of Parallel and Distributed Computing
74.8 (2014), pp. 2770–2779.

[21] ElRancho. MapReduce explained. https : / / medium . com / @francescomandru /
mapreduce-explained-45a858c5ac1d. 2019.

[22] Simon Holm Jensen, Anders Møller, and Peter Thiemann. “Type analysis for
JavaScript”. In: International Static Analysis Symposium. Springer. 2009, pp. 238–
255.

[23] Gregor Richards et al. “An analysis of the dynamic behavior of JavaScript pro-
grams”. In: Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2010, pp. 1–12.

https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway
https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/latest/ledger/ledger.html
 https://medium.com/@francescomandru/mapreduce-explained-45a858c5ac1d
 https://medium.com/@francescomandru/mapreduce-explained-45a858c5ac1d

Bibliography 49

[24] Ravi Chugh et al. “Staged information flow for JavaScript”. In: Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. 2009, pp. 50–62.

[25] About Node.js, and why you should add Node.js to your skill set? http://blog.

training.com/2016/09/about-nodejs-and-why-you-should-add.html. 2016.

[26] Elena Karafiloski and Anastas Mishev. “Blockchain solutions for big data chal-
lenges: A literature review”. In: IEEE EUROCON 2017-17th International Confer-
ence on Smart Technologies. IEEE. 2017, pp. 763–768.

[27] Deepa S Kumar and M Abdul Rahman. “Simplified HDFS architecture with
blockchain distribution of metadata”. In: International Journal of Applied Engi-
neering Research 12.21 (2017), pp. 11374–11382.

[28] Manuj Subhankar Sahoo and Pallav Kumar Baruah. “HBasechainDB–A Scal-
able Blockchain Framework on Hadoop Ecosystem”. In: Asian Conference on Su-
percomputing Frontiers. Springer. 2018, pp. 18–29.

[29] Uchi Ugobame Uchibeke et al. “Blockchain access control Ecosystem for Big
Data security”. In: 2018 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Phys-
ical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE. 2018,
pp. 1373–1378.

[30] Madhavi Vaidya. “Parallel processing of cluster by map reduce”. In: Interna-
tional journal of distributed and parallel systems 3.1 (2012), p. 167.

[31] Vitalik Buterin et al. “A next-generation smart contract and decentralized ap-
plication platform”. In: white paper 3.37 (2014).

[32] Xin Liu et al. “VIPLFaceNet: an open source deep face recognition SDK”. In:
Frontiers of Computer Science 11.2 (2017), pp. 208–218.

[33] Marijn Haverbeke. Eloquent javascript: A modern introduction to programming. No
Starch Press, 2014.

[34] Preethi Kasireddy. JavaScript Modules: A Beginner’s Guide. https://www.freecodecamp.
org/news/javascript-modules-a-beginner-s-guide-783f7d7a5fcc/. 2016.

[35] Mike Chen Ben Berman Juan Pablo Osorio Ospina Stephen Margheim Kent C.
Dodds. An Intro To Using npm and ES6 Modules for Front End Development. https:
//wesbos.com/javascript-modules. 2015.

http://blog.training.com/2016/09/about-nodejs-and-why-you-should-add.html
http://blog.training.com/2016/09/about-nodejs-and-why-you-should-add.html
https://www.freecodecamp.org/news/javascript-modules-a-beginner-s-guide-783f7d7a5fcc/
https://www.freecodecamp.org/news/javascript-modules-a-beginner-s-guide-783f7d7a5fcc/
https://wesbos.com/javascript-modules
https://wesbos.com/javascript-modules

50 Bibliography

[36] Justin Spencer. Top 9 Advantages of JavaScript. https://www.markupbox.com/
blog/advantages-of-javascript/. 2017.

[37] jQuery contributors. jQuery API. https://api.jquery.com/. 2020.

[38] Visual Studio Code - Open Source ("Code - OSS"). https://github.com/microsoft/
vscode. 2019.

[39] Peleke Sengstacke. Getting Started with Browserify. https://scotch.io/tutorials/
getting-started-with-browserify. 2016.

[40] MDN contributors. A background on modules. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Guide/Modules. 2020.

[41] Per Jansson. BROWSERIFY – MODULES FOR CLIENT SIDE JAVASCRIPT. https:
//thecuriousdeveloper.com/2015/06/07/browserify-modules-for-client-

side-javascript/. 2015.

[42] Google Developers. Chrome DevTools. https://developers.google.com/web/
tools/chrome-devtools. 2020.

[43] Maya Shavin. ES6 — Map vs Object — What and when? https://medium.com/

front-end-weekly/es6-map-vs-object-what-and-when-b80621932373. 2018.

https://www.markupbox.com/blog/advantages-of-javascript/
https://www.markupbox.com/blog/advantages-of-javascript/
https://api.jquery.com/
 https://github.com/microsoft/vscode
 https://github.com/microsoft/vscode
 https://scotch.io/tutorials/getting-started-with-browserify
 https://scotch.io/tutorials/getting-started-with-browserify
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://thecuriousdeveloper.com/2015/06/07/browserify-modules-for-client-side-javascript/
https://thecuriousdeveloper.com/2015/06/07/browserify-modules-for-client-side-javascript/
https://thecuriousdeveloper.com/2015/06/07/browserify-modules-for-client-side-javascript/
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://medium.com/front-end-weekly/es6-map-vs-object-what-and-when-b80621932373
https://medium.com/front-end-weekly/es6-map-vs-object-what-and-when-b80621932373

Appendices

52

Appendix A

TOTEM SDK User Manual

The following tables provide an outline of the sort of areas and details that a TOTEM
defined SDK user should consider, including all commands and data types already
defined. They also include all allowed programming operations manuals to provide
all the information and instructions necessary to enable the users to execute their
codes safely and effectively.

The User Manual is not exhaustive and may be adjusted as necessary to suit the par-
ticular arrangements of specific users.

Appendix A. TOTEM SDK User Manual 53

54

Appendix B

Configuration guide

Configuration files, dependencies, and all the JavaScript codes and functions used in
this thesis can be found at https://github.com/Behfar90/TOTEM-SDK.git.

The HTML code, as well as the bundled SDK functions, set up and used to conduct
testing scenarios, were deployed by Visual Studio Code 1.46.1, Node.js 10.15.0, NPM
6.14.5 and tested on Google Chrome 83.0.4103.116 (Official Build 64-bit).

Before starting the steps required to execute the source code, Node.js should be al-
ready installed on the machine. By installing Node through https://nodejs.org/

en/, one automatically gets NPM installed on their machine.

Steps needed before running the project and performing the testing scenarios are as
follows:

$ git clone https://github.com/Behfar90/TOTEM-SDK.git

$ cd TOTEM-SDK

$ git checkout add-license-1

$ git branch

$ git pull

To open the project folder in the VSCode

$ code .

Now the project folder is up and running within the VSCode environment. How-
ever, any other IDE or code editor could also be used. The next step is to install the
dependencies of this project, which can be seen in the package.json file. To install the
dependencies, we can use the terminal embedded in the VSCode by pressing Ctrl +
Shift + T:

$ npm install

run ’npm audit fix’ if vulnerabilities found among the dependencies

https://github.com/Behfar90/TOTEM-SDK.git
https://nodejs.org/en/
https://nodejs.org/en/

Appendix B. Configuration guide 55

The above npm command will install all the libraries and dependencies needed to run
the project. The next step is to build the bundled JavaScript index file that is imported
in the HTML file. According to the scripts section of the package.json file, "build" bun-
dles the SDK.js file in the js folder and creates the output file index.js. In addition to
that, "watch" starts watchify to monitor the changes, which might not be necessary
for here.

$ npm run build

$ npm run watch (only assists while developing)

// cd src

// start (’open’ in macOS terminal) -a "Google Chrome" index.html

The last step is to open the index.html file in the browser. The last two commands
show the way to open the index.html through the terminal. However, this way will
probably cause error messages about Cross-Origin Requests (COR) that blocks the
requests due to Cross-Site Attacks (CSA). As a result, we need a local server set up on
the machine.

As mentioned before, Live Server extension is an easy option that can be installed via
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer.
By having Live Server installed on the VSCode, one can open the project by pressing
Ctrl + Shift + P and type Live Server: Open with Live Server, then click the src folder
where the index.html is located.

Now, the project is ready, and testing scenarios mentioned in Script 4.9 can be repli-
cated by submitting the codes in the text area and click on ’Run’.

To see the results, open the inspect elements of the Google Chrome (by pressing Ctrl
+ Shift + I or right-click on anywhere in the page and click Inspect) and choose the
console panel to see the rules, type and corresponding reaction to each command,
and the global variables.

https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

	Introduction
	Contributions and Outline

	Background
	Blockchain Technology
	Smart Contracts
	Hyperledger Fabric

	Big Data System
	Hadoop
	Hadoop Distributed File System
	MapReduce

	JavaScript
	Node.js

	Related Works

	Architecture
	Theory of TOTEM
	The workflow in the TOTEM architecture
	Data Consumers Side
	Totem Estimator Table

	Data Providers Side
	Customized Computational Framework

	Architecture of TOTEM defined SDK
	Specifications
	Layers
	SDK layer
	Controllers layer
	Handlers layer

	Implementation and Results
	Frameworks and Tools
	Coding Explication
	Environment Setup
	Main Functionalities

	Execution and Testing

	Conclusion and Future Work
	Bibliography
	TOTEM SDK User Manual
	Configuration guide

