
Title page for master’s thesis 
Faculty of Science and Technology 

 

 

 
 

FACULTY OF SCIENCE AND TECHNOLOGY 
 

MASTER’S THESIS 
 

Study programme/specialisation: 
 
 

 
Spring/ Autumn semester, 20...... 

 
 

Open / Confidential 
 

Author:  
 
Programme coordinator: 
 
Supervisor(s):  
 
 
Title of master’s thesis: 
 
 
 
 
 
Credits: 
 
Keywords: 
  
 
 
 
 

 
         Number of pages: ………………… 
     
     + supplemental material/other: ………… 

 
 

         Stavanger, ……………….. 
      date/year 
 

 



Captioning Mars Geology
geological features in images taken by the Curiosity
rover

Markus Fjellheim
DATMAS 2020





Abstract

Space-crafts and their instruments tend to collect way more data
on their missions than what can be transmitted back to earth in a
timely manner. This leads to the need to prioritize what data is
to be downloaded and what is not. This writing focuses on auto-
matic caption generation of images from the surface of Mars taken
by rovers that are sent to Earth as a way to save bandwidth and
making the images searchable[Ono+19].

The high latency and low bandwidth between Earth and spacecrafts
complicates communication. High latency makes it difficult to control the
crafts as you don’t see the results before hours later. The low bandwidth
does not help either as downloading data from the crafts takes a long time.
As an example, if you want to download the music video of the song "Never
Gonna Give You Up" by Rick Astley [Ast09], it would take about 3.17 hours.
Had it not been for the bandwidth limitation, almost all the surface of Mars
would already have been photographed by the Mars orbiter, but as of now, only
3% is[Ono20]. It is therefore important to be able to choose what images to
download and which images to not. Currently, the methods used to decide on
what images are of interest is by downloading thumbnail versions of the images
and/or highly compressed versions used to make decisions as to whether the
image is of interest. Another method is to use pixel value difference between the
images to prevent identical or too similar images from being downloaded[Ono20].
Future Mars missions might have modern radiation safe GPUs on board, like the
Snapdragon 820/855, for the purpose of data analysis. This will allow for some
of the data analysis to be done on board the rover without the need to transfer
the data back to Earth, only the abstracted features. This allows for better
determining similarity between images and decisions to what images are worth
spending the valuable bandwidth on[Gho+20]. Machine learning capabilities
and machine vision also increase opportunities for autonomic control of the
rover. Automatic caption generation of geological features in the images allow
geologists on Earth to search for geological features and choose the images of
interest based on the captions.

i





Contents

Abstract i

Contents iii

List of Figures v

1 Introduction 1

2 Related Work 3

3 Problem Definition 5

4 Data exploration 7

5 Method 11
5.1 Increase target information . . . . . . . . . . . . . . . . . . . . 11
5.2 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 The general architecture of the model . . . . . . . . . . . . . . 12
5.4 Segmentation model . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 Unsupervised segmentation . . . . . . . . . . . . . . . . . . . . 13
5.6 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7 Segmentation on synthetic images . . . . . . . . . . . . . . . . 25
5.8 Manual segmentation . . . . . . . . . . . . . . . . . . . . . . . 28
5.9 Caption generation . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Conclusion 63

Bibliography 65

iii





List of Figures

1.1 UGMP. Illustration by Masahiro Ono, taken from[Gho+20] . . . . 1

2.1 SPOCs terrain classification model. Taken from[Rot+16] . . . . . . 4

4.1 Example training image taken at the surface of mars. The human
created caption says: "mesas of layered sandstone outcrops and
dark sand" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Example of two images found in the test and train data that are
too similar. Use the red x as a landmark. . . . . . . . . . . . . . . 8

4.3 An example of a generated caption suggesting train to test data
leakage. The top caption is the true caption and the bottom one is
the automatically generated one. . . . . . . . . . . . . . . . . . . . 8

5.1 High level of abstraction diagram of pipeline. . . . . . . . . . . . . 14
5.2 Example of image labeling. . . . . . . . . . . . . . . . . . . . . . . 15
5.3 The unsupervised segmenter architecture. The numbers below the

blocks show an example of the output tensor shape. Different
configurations lead to different numbers. . . . . . . . . . . . . . . . 16

5.4 The process of calculating correlation loss. . . . . . . . . . . . . . . 16
5.5 Correlation loss function leading to a single class prediction. The

left side shows the input image, the right side shows the prediction. 16
5.6 Balance loss function of two classes. The horizontal axis is

the size of one of the first class. The other class size is 1 −
size_of_first_class. The vertical axis is the loss. . . . . . . . . . 17

5.7 Example results when both correlation loss and balance loss is
applied. The leftmost and 3rd from the left column shows the input
images. The images to the right of each input image shows the
prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.8 Loss function for indecisiveness. The more confident the guess
is (closer to 0 or 1) the smaller the loss. The function is
4 · prediction · (1− prediction). . . . . . . . . . . . . . . . . . . . . 17

5.9 Example of balancing between the partial losses of the unsupervised
segmenter. Here we see the correlation loss is increasing while the
class balance loss is small. Maybe this means more emphasis
(greater factor) should be used for the correlation loss. . . . . . . . 19

v



List of Figures

5.10 Example of segmentation model using the full loss function. The
leftmost and 3rd from the left column shows the input images. The
images to the right of each input image shows the prediction. . . . 19

5.11 The autoencoder architecture. The orange blocks represent
functions. The numbers show the tensor sizes for an example
configuration. Batch dimension is omitted. . . . . . . . . . . . . . 21

5.12 The leftmost and 3rd to the left columns is input images. Each
image to the right of the input images show the result after the
autoencoding and decoding. . . . . . . . . . . . . . . . . . . . . . . 22

5.13 Illustration of the problem using MSE as loss function in the
autoencoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.14 The leftmost and 3rd to the left columns is input images. Each
image to the right of the input images show the result after the
autoencoding and decoding. The loss function uses a feature loss
function to capture the features of the target. . . . . . . . . . . . . 22

5.15 The leftmost and 3rd to the left columns is input images. Each
image to the right of the input images show the result after the
autoencoding and decoding. The loss function uses a feature loss
function to capture the features of the target. The feature loss
function extracts a layer closer to the input image of the pre-trained
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.16 The outputs given different configurations of the loss function. The
inputs are to the right and predictions are to the left. The numbers
represent the relative high level filter factor compared to the low
level filter factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.17 The leftmost image show the true image. The next image show
the prediction. The next image is the MSE. The next image is the
mask. White is inside, black is outside. The last image is the error
after the mask is applied. . . . . . . . . . . . . . . . . . . . . . . . 24

5.18 The image to the left is a training sample. The image to the right
is a prediction. The prediction ignores the black borders as they
are ignored by the loss function. . . . . . . . . . . . . . . . . . . . 24

5.19 Illustration of probability density functions of real and synthetic
data to be segmented into two classes. The black decision boundary
separate the real samples, and the white decision boundary separate
the synthetic samples. Figure created using [Hoh+13] . . . . . . . 26

5.20 The right column is a synthetic rendering of the mars surface. The
surface is rendered using noise functions. The left column is of a real
image from the surface of Mars. Each row is different pre-processing
filters added to both images . . . . . . . . . . . . . . . . . . . . . . 27

5.21 The top row show synthetic renderings. The second and third row
show images taken by the Curiosity Mars rover. . . . . . . . . . . . 27

5.22 3d rendering of parts of the Gale crater, where the Curiosity rover
landed, based on a height-map generated by pictures taken by the
Mars Reconnaissance Orbiter using its HiRISE camera. Height-
map obtained from . NASA/JPL/University of Arizona. The
height-map is rendered using Blender[Ble19] . . . . . . . . . . . . . 28

5.23 The text is the caption describing the content of the image. The
bold word is the caption searched for. . . . . . . . . . . . . . . . . 30

vi

https://www.uahirise.org/dtm/dtm.php?ID=PSP_008437_1750


List of Figures

5.24 The most common n-grams of size 1. The horizontal axis is the
words index sorted from most common (left) to least common
(right). The vertical axis is the frequency of occurrence in the
training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.25 An example output during the data exploration with n-gram size
of 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.26 Screenshot of the VIA application. . . . . . . . . . . . . . . . . . . 32
5.27 Two cropping strategies for image augmentation. The top image

show non-overlapping three-fold cropping. The bottom one show
cropping with overlap. The bottom image has space for one more
cropping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.28 The final configuration of the segmentation model. The input is
the image at the top left, light red box. The output is seen at the
top right, light red box. Orange boxes represent functions taking
tensors as inputs and outputs. The numbers below the boxes are
the dimensions of the output tensors. The batch dimension is omitted. 34

5.29 Graphs showing the MSE test losses during training when the
segmentation model uses a fully connected layer connecting the
down-stack and up-stack. See figure 5.28 for the segmentation
model (not including the fully connected layer). . . . . . . . . . . . 36

5.30 Graph showing the MSE loss with or without dropout. . . . . . . . 37
5.31 Illustration of the problem of rarely occurring classes. In the

example, the input image is to the top left. The colored text above
each image shows the color code of the features detected in the
image. For example, the top mid image detects layered (blue). The
model detects bedrock sandstone outcrop, sand, and sky. What
the model fail to recognize is the rover. The striped red box shows
where the rover should have been detected. . . . . . . . . . . . . . 38

5.32 Example of the model reaching a plateau, where the test error stops
improving for a while before making progress. . . . . . . . . . . . . 39

5.33 Graphs showing the training of a model. The blue graph show the
training loss, the orange one shows the test loss. The green graph
shows the standard deviation in the test predictions. . . . . . . . . 40

5.34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.35 Visualized test predictions. Each row is one prediction. Each

column shows three of the predicted classes in red, green, and blue. 42
5.36 Input image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.37 Target class (bedrock). . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.38 Predicted class (bedrock). . . . . . . . . . . . . . . . . . . . . . . . 43
5.39 Predicted class (rover) . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.40 Visualized test predictions. Each row is one prediction. Each

column shows three of the predicted classes in red, green, and blue. 44
5.41 The final configuration of the captioning model. The input is the

image at the top left, light red box, and the segmented image at
the top middle, light red box. The output is seen at the bottom
right. Orange boxes represent functions taking tensors as inputs
and outputs. The numbers below the boxes are the dimensions of
the output tensors. The batch dimension is omitted. . . . . . . . . 45

5.42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



List of Figures

5.43 The true caption is the human generated caption describing the
geological features in the image above. The predicted caption is
the one generated by the model. . . . . . . . . . . . . . . . . . . . 49

5.44 The true caption is the human generated caption describing the
geological features in the image above. The predicted caption is
the one generated by the model. . . . . . . . . . . . . . . . . . . . 49

5.45 Green are true captions. Red captions are predictions. . . . . . . . 50
5.46 The left column is caption, the next is input image, the next ones

are some of the segmentations. . . . . . . . . . . . . . . . . . . . . 51
5.47 The left column is caption, the next is input image, the next ones

are some of the segmentations. . . . . . . . . . . . . . . . . . . . . 53
5.48 The loss during training using a combination of cross categorical

entropy loss and Jaccard loss. . . . . . . . . . . . . . . . . . . . . . 58
5.49 The loss during training using Jaccard loss function and teacher

enforcing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.50 Predicted captions on the validation data after training using

Jaccard loss function and teacher enforcing. Green captions are the
target, red are the predictions. . . . . . . . . . . . . . . . . . . . . 59

5.51 Predicted captions on the validation data after training using
Jaccard loss function without teacher enforcing. Green captions
are the target, red are the predictions. . . . . . . . . . . . . . . . . 60

viii



CHAPTER 1

Introduction

The further away a craft is, the signal
strength to that craft is reduced by
the inverse square law, but the crafts
ability to capture the data remains
the same. This leads to an ever
increasing need for a smarter way of
transferring information across space
the further into space we want to
explore. Another problem related to
distance is latency. The high latency
between Earth and crafts like the Mars
rover, makes them more difficult to
control. The low feedback frequency
and limited bandwidth leads to more
rigid planning of the actions to be
taken by the rover. As discussed in
MAARS[Gho+20], this could lead to
missed discoveries, described as the
Unnoticed Green Monster Problem
(UGMP).

The ability to analyse data on the
fly allow for the detection of features
the rover was not specifically asked to
look for. By automatically captioning
the images and coupling the captions
with geo-data, a searchable database
can be built without the need to spend
valuable bandwidth downloading all
the data, and valuable time spent by
the geologists having to analyse every
image manually. For the captioning
model to work efficiently on Mars
geology, it has to learn from training
data obtained by Mars rovers, and
labeled by geologists. A training set
of 1,000 captioned images created by
geologists is the available training data,

Figure 1.1: UGMP. Illustration by
Masahiro Ono, taken from[Gho+20]

provided by NASA’s Jet Propulsion
Laboratory (JPL). Since the target
information in a caption is low, but
caption generation from images is a
complex task, the models tend to be
complex. This cause problems of over
fitting. The methods used to deal with
these problems are discussed in this
writing.

Research Problem Training a com-
plex model on limited data is expected
to lead to over-fitting. Regularization
techniques can be applied to reduce
the over-fitting, however this comes
at a cost of not accurately have our
model fit the dependencies in the train-
ing data.

We want to see if splitting the

1



1. Introduction

more complex model into smaller parts
with sub tasks and intermediate loss
functions, makes it easier to find the
balance between regularization and
fitting true dependencies. We want
to take advantage of transfer learning
when possible and also design loss
functions at intermediate steps with
enough target information, allowing for
the creation of more complex models
and fine tuning of the pre-trained
models. We also believe the splitting
will help the debugging process as we
can isolate problems to different parts
of the model.

By creating a loss function more
similar to the scoring methods used
to validate the output of machine lan-
guage models, we hope to make the
model more directly reduce the val-
idation score rather than indirectly
through the loss function. We explore
the possibility and output of a differen-
tiable Jaccard Similarity loss function.
Instead of having to fine tune the loss
function to fit a separate scoring func-
tion, we imagine it would be more dir-
ect approach simply using the scoring
function as a loss function. However,
there is no guarantee such a loss func-
tion creates an easely traversable loss
space, or introduces other problems as
discussed in subsection BLEU score /
Jaccard Similarity.

Outline Exploring the data we find
the main problems is the low amounts
of target information in combination
with too complex models required to
solve the problems. Dealing with over-
fitting is a common theme throughout
the writing.

We try ways of increasing the
amount of target information split-
ting the model into parts. Also using
target information from elsewhere by
the means of pre-trained weights using
transfer learning. We explore ways of
using unsupervised clustering, autoen-

coding, and segmentation as ways of
increasing target information. We ex-
periment using synethetic data genera-
tion to increase the amounts of train-
ing data. We introduce new informa-
tion by manual image segmentation.
We have varying degrees of success,
but are not able to improve on the
performance of the SCOTI captioning
model (Scientific captioning of terrain
images[Ono+19]) model developed at
NASA JPL.

Comparing the results numerically
turned out to be a challenge due
to the discovery of test data tainted
by training data. To overcome this
problem, new data was downloaded
to use as validation data, however,
the lacking of labels made most of
the comparisons done manually and
visually rather than numerically. This
way of comparison is not ideal as it
is inaccurate. In order to further tune
the performance, untainted labeled test
data is needed.

Comparing results visually has the
problem of human bias being at play.
Considering the data is of the Martian
surface regarding geological features,
some of which appear frequently, a
model simply fitting the distribution of
the training data/test data and not the
dependencies might still produce res-
ults looking reasonable. Scramble loss
and other metrics are used throughout
to compare results of different imple-
mentations and configurations of mod-
els.

2



CHAPTER 2

Related Work

The previous work done at JPL is
splitting the captioning tasks into en-
coders and decoders with two decoding
tasks. Two models are used together
to form the final caption of the image.
"Soil Property and Object Classifica-
tion" (SPOC[Rot+16]) is a terrain seg-
mentation algorithm that can identify
the types of terrain used for rover nav-
igation. It consists of an encoder, and
a decoder producing the segmentation,
see figure 2.1.

"Scientific captioning of terrain im-
ages" (SCOTI[Ono+19]) is a caption-
ing model, generating the captions
based on output from a layer of the
encoder. Transfer learning is taken
advantage of encoding feature vectors
for the captioning decoder. SCOTI
uses the VGG19 model pre-trained on
ImageNet. The caption decoder is
generating captions with the help of
teacher enforcing and Bahdanau Atten-
tion[BCB14]. BLEU score is used to
evaluate the performance of the model
after training. This writing is exploring
ways of bettering the encoder model
by specializing it on data more specific
to Mars features rather than images of
cats and dogs and the like, that is found
in ImageNet. Multiple methods were
taken use of approaching the problems,
many of which build on previous work.
Our auto-encoder approach uses a fea-
ture loss function mentioned in Jeremy
Howard’s fast-ai course [How19]. He
makes use of this method to improve

the quality of his decrapification model
(a model that removes noise from im-
ages). We use the function to better
the auto-encoders ability to encode fea-
tures rather than colors.

For the manual segmentation ap-
proach, our model is inspired by the
u-net model [RFB15]. The model is
used in biomedical image segmentation.
It takes advantage of both low-level
features and high-level features to seg-
ment images. This is similar to what
we need to do when segmenting the
Marian surface based on geological fea-
tures that consist of a combination of
low and high-level features.

Using synthetic image generation
can be used to train model then applied
to real data. There are a multitude of
advantages but also challenges. Ad-
vantages are you can generate as many
images as you want, and change the
parameters controlling the generation,
adjusting your training data on the go.
This method works for learning pro-
jection and spacial orientation[Qi15],
but can it also be used for detecting
geological features?

"A DIFFERENTIABLE BLEU
LOSS. ANALYSIS AND FIRST RES-
ULTS"[CFC18] attempts at making a
differentiable BLEU score used as a
loss function. BLEU scoring is usually
used for validating the performance of
a model, and not as a loss function.
We further explore the topic of the
more direct method of using the valid-

3



2. Related Work

Figure 2.1: SPOCs terrain classification model. Taken from[Rot+16]

ation scoring system directly as a loss
function.

4



CHAPTER 3

Problem Definition

We split our tasks into research goals.
Our first goal is exploring if we

can reduce over-fitting and increase or
take better advantage of the existing
target information in training data by
splitting a more complex model into
different parts.

Our second goal is to see if this
splitting can also help the development
of the model by easier detecting the
location of errors. By using different
loss functions at outputting results at
different stages, we can better detect
where and what problems are.

Our third goal testing the possib-
ility of using the Jaccard Similarity as
a way of fine-tuning the performance
of our model. Previous attempts have
been performed using scoring as loss
functions, for example, BLEU score
[CFC18]. We want to explore the pos-
sibility of combining such an approach
with a cross-categorical entropy loss
function.

Our fourth goal is exploring ways
of using unsupervised ways of turning
information in the training data into
target information. This is done as a
part of splitting the full model into dif-
ferent parts. The unsupervised meth-
ods include clustering, segmentation,
and auto-encoding.

Our fifth goal is to try to use syn-
thetically generated data to increase
training and target data. This is an-
other way of increasing the amount of
target information. We want to know

if it is possible to make the synthetic
data similar enough to the real data
for models to work in production.

5





CHAPTER 4

Data exploration

Figure 4.1: Example training image
taken at the surface of mars. The
human created caption says: "mesas
of layered sandstone outcrops and dark
sand"

The training data The training data
used is 1,000 images taken by the Curi-
osity Mars rover, captioned by hu-
man geologists. Some of the images
are cropped versions of the larger im-
ages with captions corresponding with
visual features. The total number of
cropped images are 3067 train images,
and 52 test images with captions. The
data is provided by NASA Jet Propul-
sion Laboratory (JPL). See figure 4.1
for an example sample.

Creating a caption model that
turns images into captions tend to re-
quire complex models, that is, models
with a lot of learnable weights. First,

features found in the image must be
found, which might require the detec-
tion of low level and high-level features
and combining then to classify the fea-
tures occurrence, and spatial relations
to other features. For these features to
then be turned into captions, the un-
derstanding of basic English language
knowledge is needed to produce Eng-
lish that is both grammatically correct
and can describe the features found in
the image. To train complex models,
the need for large amounts of train-
ing data is often needed to prevent
over-fitting and to learn the general
dependencies between the input im-
ages and captions. The provided data
provided pose some challenges regard-
ing the above-mentioned needs.

Low target information The target
information (captions) are low on in-
formation. The average number of
words is about 8.3 and the size of the
vocabulary is 148 unique words. This
makes it difficult for the model to learn
what complex features in the images to
look for when the output is only about
8.3 · log2(148) ≈ 60 bits of information.

Large variation of training samples
Besides the number of training samples
not being that large, the variation is
also large. Some of the images are
of close up features in the centimeter
scale, and others are of mountains
and mounds. The large variation of

7



4. Data exploration

images makes over-fitting even more
of a problem as simplifying the model
may not be used to the same extent
as a regulation technique since such a
model might not be able to capture
all the features in the images. Some
images have different field of views,
different compression rates, some have
colors and some don’t, the weather
and lighting are different. There
are also images with various types
of artifacts that might make it more
difficult for the model. Some of the
geological features also have a low
rate of occurrence. Having the model
accurately detect those features while
being complex enough to detect the
rest of the features, would require more
labeled training data.

Similar images Besides the variance
of motives, some of the images also
form clusters of motives. Many of the
images taken are of very similar types
of landscapes or the exact same motive,
but a few degrees of in panning angle.
The cropped images also contribute to
the clustering.

Test error leakage During the train-
ing of the models to be described at
a later point in this text, some suspi-
ciously good results came up. Captions
were generated predicting features that
were only seen once in the training data.
It turned out there was some data leak-
age between the test and training data,
probably due to the way the croppings
were done. Figure 4.2 shows an ex-
ample of this, where an image taken
from the test and train data had over-
lapping regions. Figure 4.3 shows one
of the automatically generated cap-
tions matching the real caption too
well. Even a model perfectly fitting
the dependencies in the training data
would not be able to perfectly caption
an image describing the features in the
identical order using identical wording

Figure 4.2: Example of two images
found in the test and train data that
are too similar. Use the red x as a
landmark.

Figure 4.3: An example of a generated
caption suggesting train to test data
leakage. The top caption is the true
caption and the bottom one is the
automatically generated one.

unless by accident. The frequency of
images like in figure 4.3 occurred at a
too high frequency.

To validate the suspicion, new im-
ages taken by Curiosity at a much
later date (to prevent similar motives)
were downloaded and used as valida-
tion. This data is not labeled so the
performance of the model is manually
evaluated. The performance of the
model dropped on this new data which

8



led to the further tweaking of the model
to prevent over-fitting.

9





CHAPTER 5

Method

5.1 Increase target
information

As mentioned in chapter 4, the target
information when captioning the im-
ages is low. This in combination with
relatively low amounts of training data,
a model with many trainable paramet-
ers and some features with a low occur-
rence rate, leads to difficulties balan-
cing the model’s ability to be complex
enough to fit the dependencies, but not
over-fit the data, even using other reg-
ularization techniques. To solve this
problem, the model is split into sev-
eral models consisting of encoders and
decoders of data and features with im-
ages entering one side of the stack, and
captions exiting at the other end. Dif-
ferent loss functions and target data
are used to train each sub-model that
makes up the final caption model. One
of the loss functions was related to seg-
ment the image on a pixel by pixel level
by features. Multiple different ways of
doing this segmentation are mentioned
in the following sub-sections, but the
idea behind them is the same. By
doing some kind of image segmenta-
tion, you increase the target informa-
tion from simply a caption to that of
a large number of pixels belonging to
one or more classes. With more target
information, the model can learn more
from the training data. After learn-
ing the segmentation, the segmented
image can then be sent to a caption-

ing model doing the captioning. Since
this part only needs to fit the English
language and interpret what is the re-
lative spatial relations of the features
already detected in the image by the
segmentation model, fewer weights are
needed to detect the complex features
by itself. This reduces the possibility
of the captioner from over-fitting, by
moving more of the more difficult job
of recognizing the geological features
to a part of the model that has greater
ability to learn these features based on
more information-rich training data.

5.2 Transfer learning

Performance specification Band-
width is the limiting factor when it
comes to available resources. This
stays true as long as the machine
learning models have an inference time
smaller than the transfer rate. As the
machine learning models are trained
on earth, the time to train the models
is also not much of a problem. Memory
is not much of a problem either. The
choice of machine learning models,
therefore, depends on accuracy rather
than low inference time or size of
models. [Ono20]

Choosing the model The first part
of the model consists of a pre-trained
convolutional neural network architec-
ture. During initial testing of architec-
tures, mobileV3net[How+17] was used

11



5. Method

for speed. At a later stage Invep-
tionV3[Sze+15] and ResNet[He+15]
was used for higher accuracy. The
architectures was pre-trained on Im-
ageNet[Den+09]. Using transfer learn-
ing, one introduces knowledge learned
from training data different from the
one you use for a specific problem. In-
ceptionV3 and ResNet consist of mul-
tiple convolutional and other types of
layers, reducing the input image from a
tensor of image width by image height
by 3 color channels down to a much
smaller width and height, and much
larger depth value. At the end of this
model is a "head" which results in the
classification task that is the target of
the ImageNet data set. We use only
the "body" of this model, as the "head"
part, the classification is of no use for
classifying the Martian terrain.

Fine tuning for Martian features
Even though Mars is much different
than the types of images in ImageNet
(cats, dogs, and cars), some of the low-
level features (basic shapes and pat-
terns) will probably be useful for both
tasks. The next step is to fine-tune the
pre-trained weights to more fit the task
at hand, learning the more common
features of the Martian terrain rather
than those of cats and dogs. Several
methods were attempted to perform
this fine-tuning, discussed more in the
sub-section 5.4 Segmentation model.
Some of these methods were successful
and some were not.

5.3 The general
architecture of the
model

The captioning model consists of mul-
tiple parts. The first part is an image
segmentation model. This model takes
in an image tensor as input and has a
tensor describing the size and location
of the detected features found in the

image. These features are then sent
to a captioning model that generates
a caption based on the features.

The segmentation model consists of
an encoder and a decoder. The encoder
takes advantage of transfer learning to
encode the image into multiple output
layers describing detected features of
various levels of abstractions. The
decoder turns these layers of features
into segmentations. By fine-tuning the
encoder to do segmentation well, we
can fine-tune the pre-trained encoder
to better fit the Martian training data.

The caption generator takes the
output of the segmenter as input and
produces captions as outputs. The cap-
tioner also has an encoder and a de-
coder. The encoder encodes the seg-
mented data, reducing dimensionality,
passing the important information to
the decoder. The decoder consists of
an RNN that produces the final cap-
tion. See figure 5.1 showing this archi-
tecture.

Each part of the model (segment-
ation encoder, -decoder, caption en-
coder, -decoder) is first trained sep-
arately, before being trained together
for fine-tuning. Training the models
separately allows for fewer trainable
weights leading to less over-fitting. It
also allows for more rapid testing of
new ideas as the training time is faster.
Debugging the model is made easier
as problems might be noticed earlier.
See figure 5.2 as an example of this. In
this figure, one can see the model is
detecting a rover in the outcrops and
also detect some sky in the sand. Split-
ting the model into multiple parts limit
the search-space of where the problem
could be. If one simply had the full cap-
tioning model outputting there being
a rover where there is none, it would
be difficult to know what part of the
model has a problem. Now we know
the problem is the model has problems
identifying rovers since we see from the
figure that bedrock outcrop is detec-

12



5.4. Segmentation model

ted fine, but the rover is being falsely
detected.

5.4 Segmentation model

The segmentation model is not using
the captions to segment the image. In-
stead, various methods were used con-
structing loss functions rating the seg-
menter by its ability to learn something
from the images themselves. By using
the train data to create target data,
more target information is introduced
compared to the low information in
captions only.

5.5 Unsupervised
segmentation

Due to the large number of training
data, avoiding having to manually la-
bel images were attempted. The un-
supervised segmentation approach is
using a pre-trained image model to seg-
ment the images into similar-looking
features. After the segmentation, the
idea was to either use the segmenta-
tions themselves as input to the cap-
tioning model or fine-tuning the pre-
trained image model on the segmenta-
tion task and then using the features
in the captioner.

The segmentation model The seg-
mentation model consists of, as men-
tioned earlier, a decoder and an en-
coder. The encoder is a pre-trained on
ImageNet convolutional model. Both
MobileNet, ResNet, and InceptionNet
was tried, with similar results. In the
case of InceptionNet, the input dimen-
sions were images of size 512 by 512
by 3 color channels in size. Black
and white images were tiled/replicated
along the red, green, and blue dimen-
sion and treated the same way as the
colored images. The 92nd layer was
used as the output to the encoder. This
layer has dimensions of 61 by 61 by 96,

so this is the dimensions of the output
of the segmentation encoder. The de-
coder is a simple fully connected layer
applied along the filter dimension (of
size 96). The output of the segment-
ation model is then 61 by 61 by the
number of classes. The classification is
a type of clustering since the names of
the classes are note specified. The hope
is that the segmentation will cluster/-
classify the parts of the image covering
the same or similar geological features
to the same class. See figure 5.3 for how
the segmentation encoder and decoder
looks like.

The loss function The loss function
is designed to reward features in the
images being given the same class. The
name of the class is not important, in
how to interpret the classes is up to
the caption model to decide.

Correlation loss Since similar fea-
tures tend to occupy the same area,
the first iteration of the loss function
gives a larger loss if pixels close by are
classified as the same class. This will
incentivize the model to segment parts
of the image of the same class. The
output of the segmenter is 61 in width
and height. For each output to be sim-
ilar to its neighboring outputs, it must
use the found features it shares with
its neighbors to predict the same class.
The model and loss function is imple-
mented in TensorFlow[Mar+15]. The
implementation of the similarity loss
between neighboring pixels took ad-
vantage of TensorFlow’s convolutional
layers to make a Gaussian blur func-
tion. The difference between the non-
blurred predicted classes and the non-
blurred predicted classes is small if
many pixels close by are of the same
class. If the image is fractured into
many classes, the edges when one class
end and another one begins will bleed
over each other in the blurred version,

13



5. Method

Figure 5.1: High level of abstraction diagram of pipeline.

leading to a larger difference between
the blurred and none-blurred predic-
tions. The implementation in Tensor-
Flow looks like this:
# segmentedImage.shape = (
batchSize, width,
height, numClasses

)
blurrySegmentedImage =
guassianBlur(segmentedImage)

# Correlation error.
correlationError =
tf.reduce_sum(tf.math.abs(
segmentedImage -
blurrySegmentedImage

))

segmentedImage is already put
through the softmax function along
the numClasses dimension.

We can see in figure 5.4 an example
of calculating this loss.

The input image (of size 512 by 512
by 3) is sent through the segmenter
model (output is 61 by 61 by the num-
ber of classes). The number of classes
in this example is two. The first class
is represented with the color red, the
second one is represented by the color
green. The loss function also puts
the predicted classes through a soft-
max function along the filter/class di-
mension (size 96) making the predic-
tions’ probabilities between 0 and 1
for each class. The prediction is then
sent through the Gaussian filter. The

difference between the blurry image
and the segmented image is calculated.
The result is an edge detection filter.
The more edges, the less separated the
classes are. The edges are summarized
and used as the loss function. Let us
call this loss the correlation loss. After
training the model, the results are as
seen in figure 5.4.

We see there is a problem. All
the pixels are classified to be of the
same category. The reason is this is
the easiest way for the model to get
a perfect score. To fix this error, a
new additive to the loss function is
introduced that punishes unbalanced
categorizations.

Balance loss To prevent the model
from simply classifying everything as
being of the same class, a class balancer
additive to the loss function is made.
Let us call this loss the balance loss.
The total loss is now the sum of the
correlation loss and the balance loss.
The balance loss is zero if all classes
are given the same area. If one or
more classes are approaching zero area,
the balance loss will increase. Balance
loss is calculated across each batch, so
the batch size must be large enough
for there to be an approximately even
distribution of the various classes. The
samples of the batch must also be

14



5.5. Unsupervised segmentation

Figure 5.2: Example of image labeling.

15



5. Method

Figure 5.3: The unsupervised seg-
menter architecture. The numbers be-
low the blocks show an example of the
output tensor shape. Different config-
urations lead to different numbers.

Figure 5.4: The process of calculating
correlation loss.

Figure 5.5: Correlation loss function
leading to a single class prediction.
The left side shows the input image,
the right side shows the prediction.

representative of the data set as a
whole. The balance loss is designed
to give a small punishment if the
difference in area is small, but get
progressively greater as the classes are
getting more uneven. An example of
such a function is the following:

balance_loss0 =
n−1∑
i=0

1
ai

n is here the number of classes. ai

is the area of class number i in the
batch relative to the total area of all
the images of the batch. To be able to
compare the score of a varying number
of classes, a constant is added to the
loss function to make the loss zero
when all classes are balanced.

a1, ...an = 1
n
⇒

n−1∑
i=0

1
ai

=
n−1∑
i=0

1
1
n

=
n−1∑
i=0

n = n2

The final balance loss is:

balance_loss =
n−1∑
i=0

1
ai
− n2

Applying this additive to the full
loss function, the result looks like in
figure 5.7

The implementation of this loss in
TensorFlow:
# Class balance error.
# Reduce along batch, with, height
# dimension.
classSizes = tf.reduce_sum(
segmentedImage, axis=(0,1,2)

)
# Linear softmax.
classSizes = classSizes /
tf.reduce_sum(classSizes)

classBalanceError =
tf.reduce_sum(1./classSizes) -
segmentedImage.shape[-1]**2

As we can see, the results are still
not good. Yet again did the model
find a way to reduce the loss without
doing actual segmentation. In the

16



5.5. Unsupervised segmentation

Figure 5.6: Balance loss function of
two classes. The horizontal axis is the
size of one of the first class. The other
class size is 1− size_of_first_class.
The vertical axis is the loss.

Figure 5.7: Example results when both
correlation loss and balance loss is
applied. The leftmost and 3rd from
the left column shows the input images.
The images to the right of each input
image shows the prediction.

Figure 5.8: Loss function for indecis-
iveness. The more confident the guess
is (closer to 0 or 1) the smaller the
loss. The function is 4 · prediction ·
(1− prediction).

figure, there are two target classes.
The classes are represented with the
color red and green. In this case,
the model predicted a 50%-50% mix
guess for classes. This minimizes both
the correlation loss and the balance
loss. The correlation loss is minimized
since there is low fracturing of the
predictions and the balance loss is
minimized due to both classes having
equal representation. The problem
is the segmentation model does not
do any classification since none of
the predictions have confidence. To
fix this issue, a new additive to the
loss function is introduced. One that
punishes indecisiveness.

Indecisiveness loss Without an in-
decisiveness loss additive to the total
loss function, the easiest way for the
model to minimize the loss is by pre-
dicting 50%-50% on all pixels. To
prevent this, a loss is introduced that
punishes predictions that are far from
either 0 or 1.

The indecisiveness loss is summed

17



5. Method

together for all the predictions. The
following is a TensorFlow example
code.
# Indecisiveness error.
allPredictions = segmentedImage /
tf.reduce_sum(
segmentedImage, keepdims=True,
axis=-1

) # Linear softmax.
indecisivenessError = tf.reduce_sum(
allPredictions * (1-allPredictions)

)

Balancing the losses The full loss
function for the unsupervised segment-
ation is a sum of additives. Each addit-
ive is summed together multiplied with
various factors to form the final loss.
In figure 5.9 we see the changes of the
three losses over time. The graphed
losses were compared to visualizations
of the predictions as seen in figure 5.10.

Balancing the losses required a
lot of tweaking. Eventually, factors
were found that resulted in images
that were segmented by having nearby
pixels belonging to the same class,
not unbalanced, and the predictions
were confident. See figure 5.10 as an
example prediction on test data.

As seen in the figure, segmentation
is happening. However, after further
inspection, we notice the segmentation
is actually just some form of edge detec-
tion rather than segmenting the images
by features. By segmenting the image
by edges and surfaces, the model is able
to separate the model into two classes
that have similarly classified neighbors,
the classes are balanced and the pre-
dictions are confident. This leads to
a low loss, but it is not solving the
problem as intended, that is to cluster
based on geological features. Differ-
ent approaches are attempted to make
the segmenter actually segment the im-
ages by these features. An example
is replacing the dense layer in figure
5.3 with a convolutional layer. This
however leads to further edge detec-

tion. Different pre-trained models, for
example, MobileNet, ResNet, and In-
ceptionNet, made no difference either.
Another approach is using lower level
or higher-level layers of abstraction
extracted from the pre-trained mod-
els (higher layers being close to the
model’s head (end), and lower levels
being closer to the model’s input). The
idea behind extracting higher-level lay-
ers from the pre-trained model is that
edge detection at this stage would lead
to a too fractured image for doing edge
detection being a good way of lower-
ing the loss function. The idea behind
extracting lower-level layers from the
pre-trained model is that the model
has at this point abstracted away low-
level features such as edges, as this is
not necessary for doing ImageNet clas-
sification (ImageNet being the data set
the pre-trained model is trained on).
Neither of these strategies worked. If
extracting lower level features (from
layers earlier in the pre-trained model),
the model tends even more towards
edge detection. Maybe due to the
model not being able to recognize fea-
tures at this low level of detail, it
would instead need more perspective.
If extracting higher-level features, the
model achieves a good score by clas-
sifying the center of the image as one
class, and the edges of the image as the
second class.

No tweaking was successful at mak-
ing the unsupervised segmenter seg-
ment the images by features. Another
possible attempt was to treat each
slice in the filters’ output from the pre-
trained convolution model as a vector
and then use a clustering algorithm to
segment the vectors. If the filter were
of shape 61 by 61 by 96, there would
be 61 · 61 = 3721 vectors of dimension
96 each. No reason why this approach
would not also lead to edge detection
over geological feature detection could
be found. Therefor another unsuper-
vised approach was made.

18



5.6. Autoencoder

Figure 5.9: Example of balancing between the partial losses of the unsupervised
segmenter. Here we see the correlation loss is increasing while the class balance
loss is small. Maybe this means more emphasis (greater factor) should be used
for the correlation loss.

Figure 5.10: Example of segmentation
model using the full loss function. The
leftmost and 3rd from the left column
shows the input images. The images
to the right of each input image shows
the prediction.

5.6 Autoencoder

The idea behind using an autoencoder
is similar to using the unsupervised
segmentation model. An autoencoder
saves time as it uses the input training
data itself as target data. All that is
needed is images of Mars, no need for
labeling. As with the unsupervised
segmentation approach, we want to
fine-tune the pre-trained convolutional
image model to better fit the geological
features on Mars. The finely tuned
model might then be able to give better
feature vectors to the captioning model,
like the captioner part of SCOTI.

The autoencoder consists of a
down-convolution encoder and an up-
convolution decoder. For down convo-
lution, models pre-trained on imageNet
were used. After the end of the en-
coder, there is a fully connected layer

19



5. Method

creating the encoding. The encoded
vector is then passed to the decoder
consisting of up-convolutions. The full
architecture can be seen in figure 5.11.

Initially, the featurizer part of the
model is not trainable, but the rest of
the model is. The reason for this is
since the rest of the model probably
will not produce reasonable results in
the beginning, this could corrupt the
featurizer model. It is better to initially
freeze the featurizer, and then unfreeze
it during the tuning step.

The feature encoder model takes
the output of the featurizer and puts
the result through two fully connec-
ted layers. The first layer is the "Fully
Connected Feature Selection" layer as
can be seen in figure 5.11. This layer
reduces the number of features to the
ones the model learns is useful for the
encoding by doing a linear combination
along the feature dimension (the di-
mension of size 64 in figure 5.11). The
next fully connected layer is the "Fully
Connected Encoder". This layer fully
connects the remaining nodes along
all dimensions (except the batch size
which is omitted in the figure). This
layer is responsible for creating the en-
coding of the image. The reason the
Feature Encoder consists of two fully
connected layers instead of just one
connecting the full input (output from
the featurizer), is that the number of
connections would be way too large.
Dealing with only 64 of the 576 fea-
tures reduces the number of weights in
the "Fully Connected Encoder" layer
from
(8 · 8 · 576) · (64) + 64 = 2, 359, 360
to a more manageable
(8 · 8 · 64) · (64) + 64 = 262, 208.

In figure 5.11 between the encoder
and decoder the bottleneck is located.
In the example configuration in the
figure, the number of dimensions used
is 64.

The "Decoder" has a "Fully Connec-
ted" layer as the first layer interpreting

the encoded image. This fully connec-
ted layer scale up the encoded vector
and by the following reshape distrib-
utes the information along the width,
height, and filter dimension of the first
input to the "Up Block" layers. These
layers do logic as well as scaling the
image up to its original size. The ini-
tial loss function used to compare the
output image and the input image is
mean square error (MSE).

Blurriness problem When applying
the model to the data, some of the
images end up looking blurry. See
figure 5.12.
The blurriness probably due to mean
square error being used as a loss func-
tion. The way the autoencoder model
encodes the image is remembering the
average colors of features found in im-
ages instead of the features themselves.
Figure 5.13 illustrate this problem.

The figure shows three graphs and
three images. The top image illustrates
a part of the target image. This image
contain sand feature. The top (black)
graph shows an example of the bright-
ness of the sand surface along the width
dimension (this is just an illustration,
the brightness is not mapping to the
image accurately). The second image
shows what would be good decoding
after encoding of the top image. The
sand feature is captured in the encod-
ing. Even though the exact location
of the sand waves are wrong, the only
thing that matters concerning caption
generation is the encoder part of the au-
toencoder’s ability to capture the fea-
ture and general location of the feature
itself. What actually the autoencoder
produces at its current state is the bot-
tom image and graph (green). Instead
of remembering the feature, the au-
toencoder instead encodes the average
color. The reason for this can be seen
looking at the black, red, and green
brightness curves. There is a smal-

20



5.6. Autoencoder

Figure 5.11: The autoencoder architecture. The orange blocks represent
functions. The numbers show the tensor sizes for an example configuration.
Batch dimension is omitted.

21



5. Method

Figure 5.12: The leftmost and 3rd to
the left columns is input images. Each
image to the right of the input images
show the result after the autoencoding
and decoding.

Figure 5.13: Illustration of the problem
using MSE as loss function in the
autoencoder.

ler MSE between the black and green
curves than the black and red one. So
even though a human might say the red
curve looks more like the black curve,
the loss is still greater.

Feature loss function In Jeremy
Howards 2019 fast-ai course[How19],
he created a feature loss function in
his decrapification model. He trained
a model on removing artifacts and blur
from images using a loss function tak-
ing advantage of a pre-trained convo-
lutional model. Instead of using MSE
comparing the target and prediction
image, he puts both the target and pre-
diction through the pre-trained model.
Different layers were then extracted

Figure 5.14: The leftmost and 3rd to
the left columns is input images. Each
image to the right of the input images
show the result after the autoencoding
and decoding. The loss function uses
a feature loss function to capture the
features of the target.

from this pre-trained model and com-
pared using MSE. Using this method,
you are not only trying to achieve the
approximate correct color at each pixel
but also trying to replicate a higher
level of abstraction features. This
method was implemented and tested
to see if it could reduce the blurriness
of our autoencoder. See figure 5.14.

As we can see from the figure is
the images look sharper. Tests were
also done comparing layers of higher
abstraction as loss function. By higher
level of abstraction, we mean layers
closer to the input layer of the pre-
trained model. See figure 5.15

Balancing the feature loss layers
Using a feature loss function, a target
image and a prediction image is com-
pared. Both images are put through
a pre-trained convolutional network.
Layers within this network is extracted
and compared using MSE. Each com-
parison between each layer we choose
to extract leads to different losses. The
most low-level of abstraction layer loss
is simply the pixel loss. The higher
level losses are from comparing losses

22



5.6. Autoencoder

Figure 5.15: The leftmost and 3rd to
the left columns is input images. Each
image to the right of the input images
show the result after the autoencoding
and decoding. The loss function uses
a feature loss function to capture the
features of the target. The feature loss
function extracts a layer closer to the
input image of the pre-trained model.

between layers deeper in the model
(further away from the input end of the
model). We wanted the model to, at
any time epoch, equally weigh each of
the losses. By dividing each loss by the
losses size of the sum of all the losses,
each loss is scaled to the same value.
To prevent the solution landscape from
becoming flat, this dividend is is dis-
connected from the back-propagation
graph. See below code example for
implementation.
# Normalize.
sumOfFilterLosses = sum(
[float(filterLoss) for
filterLoss in filterLosses]

)
invSumOfLosses = 1/(
float(pixelLoss) + sumOfFilterLosses

)
#
pixelLoss = pixelLoss/(
float(pixelLoss)*invSumOfLosses

)
for i in range(len(filterLosses)):
filterLosses[i] = filterLosses[i]/(
float(filterLosses[i]) *
invSumOfLosses

)

The above code example is part of
the loss function. filterLosses is a list

of TensorFlow tensors, each of shape
(batch size,). These are the MSE of
each compared layer. pixelLoss is a
single tensor of the same shape. This
is the pixel MSE of the target and
predicted image. The normalization
makes all values the same size by
multiplying by invSumOfLosses. Since
invSumOfLosses is disconnected from
the back propagation graph, there will
still be back-propagation gradients.
loss = pixelLoss
for i in range(len(filterLosses)):

loss += (lossFilterFactors[i] *
filterLosses[i])

return loss

At the end, the losses are summed
together and multiplied by factors
balancing the impact of each filter.
These factors are chosen manually
based on the output. See figure 5.16 for
example output given different balance.

In this figure the loss function used
is balancing two different features at
two different layers. The low level
feature has a balance factor of 1. The
high level feature has factors as shown
in the image. Increasing the high level
feature balance factor from 0.25 to 0.50
makes the image sharper. Increasing
it too much and the color balance is
skewed.

Data cleaning. The model seemed
to put a lot of efforts into fitting
artifacts of the images. Some of
the images are composite images with
black areas where the shape of the
image does not fit into a rectangular
shape. The artifacts were removed by
making the loss function ignore loss
over those regions. The artifacts are
found by looking for pixels darker than
a threshold. See figure 5.17 for an
example of this.

In this figure the input image pro-
duces a prediction. The model is not
trained to make the error larger, mak-
ing it easier to see the effect of the

23



5. Method

Figure 5.16: The outputs given differ-
ent configurations of the loss function.
The inputs are to the right and pre-
dictions are to the left. The numbers
represent the relative high level filter
factor compared to the low level filter
factor.

Figure 5.17: The leftmost image show
the true image. The next image show
the prediction. The next image is the
MSE. The next image is the mask.
White is inside, black is outside. The
last image is the error after the mask
is applied.

Figure 5.18: The image to the left is
a training sample. The image to the
right is a prediction. The prediction
ignores the black borders as they are
ignored by the loss function.

mask. After the mask is applied, the
parts of the prediction outside the
mask is ignored. See figure 5.18 for
an example output.

As we can see, the model puts no
effort into detecting the dark out-of-
bounds area.

Optimalization To minimize the
training time, we pre-featurized the
images using the featurizer (see figure
5.11) before training the rest of the net-
work architecture. We can do this as
we do not train the pre-trained weights
in the featurizer initially anyway. The
featurized images are stored on disc
and batch for batch is loaded during
training dynamically using Tensor-
Flow’s data set object. We noticed
training the model was slow at the
beginning of each new epoch. We
suspected this may be due to a prob-
lem with our training pipeline. The
problem is since our model is not so
complex that running a single batch
through the model takes a long time,
the loading of the features from disc
becomes the bottleneck. Luckily our
featurized images does not take so
much space, so we instead fit all the
training data in memory, doubling the
training speed.

24



5.7. Segmentation on synthetic images

Results We had some problems with
over-fitting. To deal with this, stand-
ard regularization techniques is per-
formed, but this did not solve the prob-
lem. We also tried changing the sizes of
input images. 512, 256, and 128 square
sized images were tested with no dif-
ference. ResNet, InceptionNet, and
mobileNet pre-trained on ImageNet in
the featurizer also did not better the
results. One attempt that help with
over-fitting was reducing the encoding
dimension, but this results in blurry
predictions. Looking at figure 5.11 at
the end of the encoder, we tried to
add more dense layers for the encoder,
but this only slowed the training but
achieved no better test score. No good
balance could be found between over-
fitting, and a model simply fitting the
distribution of the input data. By fit-
ting the distribution of data, the model
adjust the output to the average color
at the given location of the image. Be-
sides the overfitting problem, there is
also a conceptual problem with the au-
toencoder approach. Using pre-trained
models in the loss function as a way
to fine tune a pre-trained model to de-
tect features in the image data, is like
trying to make the pre-trained model
learn features from itself. The only
thing the model might learn from the
data is what combinations of features
are relevant in the images. One way
the autoencoder approach could still
be salvaged, is by using a discriminator
as in a generative adversarial network
(GAN). This path was not explored as
it too might lead to over-fitting issues,
as already encountered using the fea-
ture loss function. Over-fitting seems
at this point to be one of the more chal-
lenging problems. Approaches from
this point of focuses on methods avoid-
ing this issue.

5.7 Segmentation on
synthetic images

The advantage of a synthetic image
generator is the ability to generate
practically infinite amounts of training
data. If one wants to make tweaks
to the training data, this can be done
by adding small adjustments to the
generator. The generator is in the
case of image generation, a render
engine. Another advantage is perfect
labeling. The tiresome labeling process
can be done much more accurately by
the program, and if new labels are
to be removed/introduced, new data
can be generated automatically. The
main challenges of synthetic images, is
making the images similar enough to
the production data. The data both
needs to capture the features of the
real data and be varied enough to fit
the variation of the real data. Also,
the synthetic data must not contain
features that can be used by the model
to do segmentation, that does not
exists in the real data.

In figure 5.19 we see an illustra-
tion of potential distribution differ-
ences between real data and synthetic
data. The horizontal axis (feature axis
1 and feature axis 2 ) illustrate the dif-
ferent features of training data. The
vertical axis illustrate the probability
distribution of the data (the probab-
ility that a sample finds itself having
this combination of features). Assum-
ing prior probabilities for each class
to be the same, the boundaries of a
sample being classified as of a class is
at the intersection of the classes dens-
ity functions. In figure 5.19, class A
real is the density function of features
to be classified as class A (green), and
class A synthetic is the density func-
tion of the synthetic data for class A
(dark green). The same for class B. In
this illustration, we see that the real
and synthetic data is different as they

25



5. Method

Figure 5.19: Illustration of probability density functions of real and synthetic
data to be segmented into two classes. The black decision boundary separate the
real samples, and the white decision boundary separate the synthetic samples.
Figure created using [Hoh+13]

occupy different areas in the feature
space. But the synthetic classes have
density functions similar to the density
functions of the real classes. This leads
to decision boundaries separating the
classes to be similar to each other. If a
model is trained on sufficient numbers
of real training data to classify samples
of the two classes, the black decision
boundary is used by the model to de-
termine what class a sample is of. If
synthetic data is used, the model will
instead find the white boundary. As
long as the model trained on synthetic
data make boundaries that are separ-
ating the real classes, the model can be
used on real data as well, alternatively
fine tuned to fit real data.

Potential problems For complex
models segmenting pixels to different
classes, there will probably not be
as simple decision borders as seen in
figure 5.19. Anything outside the dis-
tribution of the data trained on may

lead to random classification. A way
to reduce this problem, is increase the
variance of the synthetic data. This
can be done by varying parameters
during rendering. Varying field of view,
orientation of motives, color balance,
weather, and adding noise, are some
examples of ways of ensuring the syn-
thetic data covering the variation of
the test data.

Some features in the synthetic data
that does not exist in the real data,
might have features that can be used
for classification. If the model start
using these features, the model will
start making mistakes on the real data.
The synthetic data having features the
real data does not have, means there
will be parts of the distribution of the
real data outside the distribution of the
synthetic data. See figure 5.19. We see
that class A synthetic has distribution
leaking to the right of class B real. To
remove/reduce this leakage, both the
synthetic and real data can be pre-

26



5.7. Segmentation on synthetic images

Figure 5.20: The right column is a
synthetic rendering of the mars surface.
The surface is rendered using noise
functions. The left column is of a real
image from the surface of Mars. Each
row is different pre-processing filters
added to both images

processed the same way. This pre-
processing step reduces the variance
of both distributions, reducing the non
overlapping parts. See figure 5.20 as
an example of such pre-processing.

As we can see from this rendering,
is the images look more similar the
more pre-processing is applied. As long
as the features are still recognizable by
the model, this will make the model
better at fitting both real and synthetic

Figure 5.21: The top row show syn-
thetic renderings. The second and
third row show images taken by the
Curiosity Mars rover.

data.

Textures A one problem using syn-
thetically generated images becomes
apparent in figure 5.21.

In this figure, we see an example
of great variation within a single type
of geological feature, both in terms of
color, and in terms of texture. Cre-
ating code for generating all these
types of features, could take long to
do. Another strategy is to use textures
from the real training data and use
this to generate synthetic data. Step
one is then to extract textures from
all variants of each of the features in
the training images. The next step
is then to wrap these textures onto
3d geometry and render the geometry
in different angles, light settings, and
weather. The problem with this ap-
proach is two-fold. The first problem

27



5. Method

is that re-using textures could lead to
the model over-fitting specific textures
instead of learning the more general
patterns in these textures. Even if
the textures used are flipped, rotated,
color-shifted, blended, and warped due
to differences in perspective during ren-
dering, there is still the same patterns.
A way of circumventing this problem is
collecting a larger number of varied tex-
tures, which leads to the second prob-
lem. Collecting all these textures is
taking as much time as it would simply
manually labeling the images. Doing
manual image segmentation plus some
image augmentation, could might be a
more efficient approach.

Potential ways of salvage The
main problem is capturing the great
variation found in the real data. After
fiddling with parameters in combina-
tion with a sufficient number of tex-
tures, one can make terrain looking
pretty similar to the real ones, but we
might still encounter real data that
looks nothing like the synthetic data.
It is not sufficient making synthetic
data that is similar to the real, if there
is real data not looking sufficiently
like the synthetic, but getting there is
simply a matter of effort. Once a ter-
rain generator is created, the number
of training images with pixel perfect la-
beling is unlimited, which may require
less effort than the manual labeling
required to achieve the same level of
accuracy. Since one of the goals of
this writing is exploring the possible
advantages in splitting complex models
with small size of training data into
multiple parts as a way of increasing
the amount of target information, a
manual segmentation approach is in-
stead adapted for the segmentation
model.

One way the rendering could still
be of use is taking advantage of a ren-
derer’s ability to generate 3d geometry

Figure 5.22: 3d rendering of parts of
the Gale crater, where the Curiosity
rover landed, based on a height-map
generated by pictures taken by the
Mars Reconnaissance Orbiter using its
HiRISE camera. Height-map obtained
from . NASA/JPL/University of Ari-
zona. The height-map is rendered us-
ing Blender[Ble19]

from certain perspectives. The fea-
tures we focused on detecting in our ap-
proach is low level features, like sand,
bedrock, sandstone, regolith, and so
on. Larger scale features like layered
strata, mountains, mounds, and planes
is something that would be recognized
based on their shapes, made out from
a certain perspective based on some
lightning. This is an approach yet to
be explored.

5.8 Manual segmentation

The final approach to creating the
segmentation model was making one
that learn features of images from
manually labeled training data. As can
be seen in figure 5.1, the segmentation
model is part of the full captioning
model. Its potential purpose is two-
fold.

The first purpose is to combine
it with a pre-trained convolutional
network to do the segmentation. Then
after the segmenter is trained on the
manual data, it is fine tuned. Test
data is used to ensure the model does
not over-fit. The fined tuned model is

28

https://www.uahirise.org/dtm/dtm.php?ID=PSP_008437_1750


5.8. Manual segmentation

then inserted to the SCOTI captioning
model to see if a pre-trained model,
fine tuned on Mars data, performs
better than one that is only trained
on ImageNet.

The second purpose to be explored
is one where the result of the segment-
ation is itself used in the full segment-
ation and captioning model as seen in
figure 5.1.

Let us start going through a high
level of abstraction data pipeline.

The first step The plan is to first
manually create masks segmenting the
training images into different geological
features. Such features is for example
regolith, bedrock, layered, sandstone,
sand, and so on. Some of these fea-
tures can also overlap. For example,
you can have bedrock, layered bedrock,
sandstone, or layered sandstone. To
know what features should be given
focus, the captions and image data is
explored. The most common features
are the ones prioritised for the segment-
ation. The number of images is large,
about 3000. Some of them are crop-
pings of each other, removing those
there is about 1000 left. This is still
too many to segment, so what images
are segmented must be prioritised.

The second step The second step
is creating a segmentation model us-
ing the images as training data, and
masks as target. Different architec-
tures is explored, but is inspired by
the u-net architecture, as segmenta-
tion requires understanding of low level
and high level features of the image to
correctly classify the different parts of
the image. Compare this architecture
with our earlier approach doing unsu-
pervised segmentation, see section 5.5,
where we tried doing segmentation ex-
tracting only low level or high level fea-
tures for our segmentation, using both
has the advantage of classifying parts

of the image looking at both low level
features and large level features at the
same time. If we were to use an u-net
architecture while working on the un-
supervised image segmenter, the model
might take advantage of whatever in-
formation available doing edge detec-
tion lowering the loss function instead
of actually separating geological fea-
tures. Which is why a u-net archi-
tecture would not work in that case.
In this case the model is not told to
simply segment the image with correla-
tion between close by pixels regarding
the class it belongs to, but classify the
pixels by a manually chosen class. Giv-
ing the model more information in this
case does not open up for the mod-
els ability to cheat, as in the unsuper-
vised segmentation model, but instead
provide our model more information to
use to understand the observed geolo-
gical features in the image. Of course
a more complex model does open for
the ability to over-fit, but this prob-
lem can be detected by using test data,
and battled using regularization tech-
niques.

The third step The third step is
either fine tune a pre-trained convo-
lutional model based on the second
step which is then used for caption-
ing, alternatively see if the segmenta-
tions from the segmenter themselves
can be used for captioning. Differ-
ent variations of captioning models are
tested and tweaked to better accuracy
and prevent over-fitting.

The fourth step The fourth step is
to encode the the segmentation of the
image in some format decodable by
the captioning decoder. The caption
is then judged using a loss function.
Different loss functions were tested,
with different performance.

29



5. Method

Figure 5.23: The text is the caption
describing the content of the image.
The bold word is the caption searched
for.

Data exploration

The data consists of 3,067 training
images and 25 test images. Each image
has one caption describing the image.
Many of the training images is various
croppings of larger resolution images,
or of the same motive with different
panning. This leads to overlapping
information in the images.

For the manual segmentation,
masks is created segmenting the image
by geological features. The training
images are explored looking for what
features are more common and what
separates them from each other.

All the training captions are sep-
arated into n-grams of different sizes.
Images containing these n-grams are
visualized like what can be seen in fig-
ure 5.23.

The most common n-gram of size
1 is "regolith". The images containing
"regolith" is visualized to get a sense
for how to best segment the feature by
the manual masking and by making a
segmentation model that can learn the
feature. For the most common features

sorted by frequency, see figure 5.24.
As we see in this figure, the top

30 frequent n-grams cover most of the
occurrences of features in the caption.
The most common frequency by far is 1.
To achieve proof of concept regarding
this writings research goals, only the
most frequent features are accounted
for. This saves a lot of time. The
features is chosen amongst the most
common n-grams of all sizes. The most
common n-gram of size 1 is regolith,
with a frequency of 1624 occurrences
in the 3,067 training captions. For n-
gram size 2, the most common n-gram
is "float rocks", see figure 5.25

It was also noticed during the ex-
ploration, n-grams like in front of oc-
curs frequently. This suggests it is
important not only to detect geolo-
gical features in images, but remem-
ber where in the image the features
are found so the captioning part of the
model can describe their relative posi-
tions.

VIA-image segmentation

VGG Image Annotator (VIA)[DZ19]
is a manual annotation software for
image, audio and video. This is the
software we decided on using as it sup-
ported polygonal masks with support
multi class masking. The software runs
in as an offline web application in the
browser. We modified the software
slightly to fit our specific task.

In figure 5.26 we see an example
screenshot of VIA in use. The modi-
fication is seen on the lower right side
of the figure, where the caption corres-
ponding to the image currently being
labeled is displayed with highlighted
n-grams. There is also a search bar
for determining the frequency of occur-
rences of substrings of all training cap-
tions. In figure 5.26 we see the searched
string regolith occurs in the captions
1624 times.

30



5.8. Manual segmentation

Figure 5.24: The most common n-grams of size 1. The horizontal axis is the
words index sorted from most common (left) to least common (right). The
vertical axis is the frequency of occurrence in the training data.

Figure 5.25: An example output during
the data exploration with n-gram size
of 2.

Too much data, too little time The
number of images to segment using
the VIA application is large. If it
takes 5 minutes on average to label
one image, labeling 3,067 images would
take 5 minutes

image · 3, 067 images =
15, 335 minutes = 10.65 days. One ap-
proach considered reducing this time
is using active learning. Active learn-
ing consists of training a model using
a small number of training samples.
The trained model then classifies the

remaining training data. The data the
model is the most uncertain of is given
to the human label-er to label. The
human labels some more images and
the cycle repeats. This way, only the
training data the model is in most need
of is labeled first. This can lead to the
human only needing to label 10%-20%
as much training data [Dr 19]. The
problem using active learning in this
project is that the variance of the im-
ages is too big. Probably simply manu-
ally making sure the images labeled
are varied enough is a sufficient ap-
proach. Probably taking advantage of
the pre-trained model combined with
a smaller number of manually masked
samples than the number of images
required for making that first model
using active learning, is sufficient for
creating a model with a good enough
accuracy for proof of concept regard-
ing our first research goal. It is ex-
pected that the number of manually
masks required will be small enough
that manually making sure they have
a sufficient variation is manageable. If
this is not the case, hopefully augment-
ation of the masked images (flipping,
cropping... etc) will make up the gap.

To make sure as many ways of aug-
mentation is possible on the manually
masked data, mostly colored images

31



5. Method

Figure 5.26: Screenshot of the VIA application.

were masked. We want our model to be
able to detect features in both colored
and gray-scale images. If a colored im-
age is gray-scaled, we can automatic-
ally grey-scale it, doubling the training
data. The same can not be done if we
mask a grayscaled image. Some gray-
scale images still had to be masked.
This is due to some of the Rover cam-
eras, like the Navcam images. These
images might have different resolutions
and compression rates. Some of these
images are also labeled to make sure
the model can also predict these kinds
of images.

Image augmentation

As mentioned earlier, some of the im-
ages are croppings of larger versions
of the images. The images chosen
for manual segmentation are the un-
cropped versions. Larger images are
better since this allow for more freedom
doing manual cropping of the images,
allowing for a greater number of crop-
pings.

In figure 5.27 we see an example
of the way the images are cropped.

Figure 5.27: Two cropping strategies
for image augmentation. The top im-
age show non-overlapping three-fold
cropping. The bottom one show crop-
ping with overlap. The bottom image
has space for one more cropping.

32



5.8. Manual segmentation

The top image in figure 5.27 is an in
efficient version of cropping the image.
The bottom way of cropping allows for
one more cropping. Allowing for some
overlapping of the images allow for the
model to learn patterns crossing the
borders. These dependencies would
be lost using non-overlapping cropping.
If the image to be cropped is tall,
the overlapping cropping is also done
vertically. If the image is of high
resolution, which also typically means
the motive is highly detailed, zoom
is also applied. Zoom allow for even
more croppings as more croppings can
fit within the image. The overlap
ratio used is about 1/3 (as in the
example in figure 5.27) both vertically
and horizontally.

Beside making the images gray-
scale and cropping, the images are also
flipped horizontally. Rotation is also
augmentation that could be used, but
the for-mentioned augmentation suffi-
ciently increases the number of training
data (from about 100 manually masked
images to 6000) so that over-fitting be-
comes manageable.

Preventing test train leaking

During the splitting of test and train-
ing data, we made sure that a single
image being augmented did not have
variations of itself distributed amongst
both test and train data-sets. This
is due to the similarity between aug-
mentations coming from the same im-
age, and this will lead to over-fitting.
We noticed this over-fitting when we
saw the model sometimes predicting
masks making the exact same errors as
the errors within the manual maskings.
Seeing this phenomena appear in test
data, suggested test train leakage.

Multi classification There is many fea-
tures to be detected in the training

image. Examples are bedrock, sand-
stone, outcrop, sand, etc. Often the
features are combined together, for ex-
ample layered bedrock, layered sand-
stone outcrop, crossbedded bedrock out-
crop, sand dunes, etc. If our model
were to classify each pixel as one of all
of these classes using one-hot encod-
ing, the output would be quite large.
For a 256 by 256 image, there would
be 256 · 256 · number_of_classes di-
mensions to the output of the model.
The target data would also be rather
large. Multi class classification is used
instead, allowing for combined classes.
For example, this allow us to have
simply one class for sandstone, one
for bedrock, layered, outcrop, crossbed-
ded... etc, instead of every combin-
ation, sandstone, sandstone bedrock,
sandstone bedrock outcrop, sandstone
outcrop... etc.

Segmentation model

The training data is stored in the
format of tensors of image width by im-
age height by number of classes. These
tensors are fed to the segmentation
model during training. The full seg-
mentation model can be seen in figure
5.28.

The figure shows the configuration
we ended up with at the end after
exploring different variations and doing
tweaking of those. The Full model
architecture can be seen in figure
5.1. Figure 5.28 shows the segmenter
part of that model. The inspiration
for the model comes from the u-net
model[RFB15].

Down stack

On the left side of the model we see
the pre-trained convolution down stack.
The model is InceptionV3 pre-trained
on ImageNet. The reason we chose
InceptionV3 net, is due to it being
both accurate and has a fast infer-

33



5. Method

Figure 5.28: The final configuration of the segmentation model. The input is
the image at the top left, light red box. The output is seen at the top right,
light red box. Orange boxes represent functions taking tensors as inputs and
outputs. The numbers below the boxes are the dimensions of the output tensors.
The batch dimension is omitted.

ence[KUR20]. Fast inference is useful
for testing during implementation. As
discussed in section 5.2, inference time
does not matter much on the space
craft as long as it is lower than the
transfer rate of the craft, which is the
current bottleneck when it comes to
data collection. A more accurate but
possibly more expensive model is there-
fore better used on board the space
crafts.

As the InceptionV3 model we used
is trained on Imagenet, it has a head

(single final dense layer responsible for
the final classification classifying the
images of the Imagenet model). This
head is not useful for us, so it is re-
moved. Slices of outputs of the model
is extracted as outputs. The outputs
are chosen at from the model at points
just before the width and height of a
layer is reduced, which also is the layers
just after where multiple residual lay-
ers are concatenated in the InceptionV3
architecture. Another concern choos-
ing what layers from InceptionV3 to

34



5.8. Manual segmentation

extract is making sure the dimensions
of the layers are covering the entire
spectrum of low level of abstraction fea-
tures being extracted (typically those
layers have a large width and height
dimension, but a low number of filter
dimensions), and high level of abstrac-
tion features being extracted (typically
those layers have a smaller width and
height dimension, but a larger number
of filter dimensions). The reason we
want to cover the entire spectrum is
we want our segmentation model to
to pick up on geological features that
appear both as low level features and
also high layer features, and sometimes
combinations of those.

Up stack

On the right side, we see the up stack.
This part of the model is trained from
scratch. The down stack part of the
model with its pre-trained weights are
only made trainable during fine tun-
ing. The up stack consists of up blocks.
These blocks take in two tensors that
are concatenated. The bottom up block
takes the output from output layer 5
from InceptionV3. This is the last out-
put layer of InceptionV3 before the
head (ImageNet classification dense
layer). The output goes though res-
izing with bilinear interpolation and
a convolutional layer of kernelsize 3.
The idea of the up stack is for the seg-
mentation to use both high and low
layer features to determine the class
of each pixel. The final output layer
provide the high layer features, but the
spacial resolution is low (only 6 by 6
width and height). On the other hand
the final output layer has a large filter
depth. The initial output layers has
low filter depth, but has large spacial
resolution. For example output layer
1 is 125 by 125 width and height, but
only 64 depth. We want to combine
all this information for each pixel, but
stacking all the filters of all the output

layers at the target spacial resolution
will lead to an enormous tensor. The
convolutional layer in each up block al-
low for selecting the feature depth. The
convolutional layers kernel size of 3 also
allow for some logic. Since higher layer
of abstraction features typically take
up more physical space (and thereby
a larger portion of the field of view of
the picture and then number of pixels
on the screen), one might thing the
kernel size of the convolutions of the
bottom of the up-stack should have a
larger kernel size to capture these lar-
ger scale features. This is not necessary
as since the width and height resolu-
tion is smaller, the same sized kernel
size will cover a portion of the image
invertedly proportional with the image
horizontal or vertical resolution. Dif-
ferent sizes of kernel sizes were tested.
A too large kernel size lead to over-
fitting, a smaller kernel size lead to
under-fitting. Kernel size of 3 minim-
ized the test error.

Fully connected block

The bottom part of the down stack has
width and height of size 6 and 6 (see
bottom left of figure 5.28). This out-
put is resized to 14 by 14 and moves
through a convolutional layer in the
first up block (bottom up block in fig-
ure 5.28) with a kernel size of 3. This
means that in the up stack (the part
that is trainable before the fine tun-
ing), the tensor values will only have
an effect on pixels 1 step apart. This
makes it so our network has never a
full communication between pixels too
far apart. This makes it so the classi-
fication of pixels will only depend on
an area roughly frac16 of the image
width/height in size. The size of the
croppings are large enough, that this a
size of area should be sufficient to recog-
nize geological features. Having a fully
connected layer at the bottom of the
down-stack, would allow for combining

35



5. Method

Figure 5.29: Graphs showing the MSE
test losses during training when the
segmentation model uses a fully con-
nected layer connecting the down-stack
and up-stack. See figure 5.28 for the
segmentation model (not including the
fully connected layer).

information regarding all the higher
level of abstraction features, but would
also open up for more over-fitting. Lim-
iting the effect some pixels on one side
of the image influences the classifica-
tion of the pixels on the other end of
the picture, will separate the segment-
ation logic to limited areas. If some
feature on the left side of the image is
used to recognize one training sample
used for over-fitting, the right side of
the image would not be aware of this
feature. Limiting the reach of inform-
ation, leads to a better test loss. Ex-
periments using a dense layer between
the down-stack and up-stack resulted
in a lowered higher test loss. See fig-
ure 5.29. The scramble loss shows the
models ability to fit the distribution
of data. See subsection Scramble loss
for explanation of this metric. As we
see from this model, including a fully
connected layer, significantly lower the
test score, barely being better than the
scramble loss. This block was omitted
from the final model.

Up block logic

Without the ReLU function, the Up-
Stack would be nothing but a semi
connected layer, that is, it is a linear
combination of the output layers, with
some of the factors being zero. The
ReLU add non-linearity improving the
test score.

Multiple convolutional and ReLU
layers interlaced did also not improve
test error, but rather caused more over-
fitting.

Batch normalization is put at the
end of each block, stabilizing the layers
to prevent exploding or vanishing gradi-
ents and speed up training[Kur18].

For each up block the data propag-
ates, lower and lower level features is
concatenated with higher level features.
The last convolutional layer in figure
5.28 combines all the high and low level
features for the final classification. The
input image is concatenated before the
final convolution to make sure the fi-
nal convolution is aware of the original
image’s color in case this information
is lost in the down stack.

Adding a dropout layer turned out
to be a significant improvement to the
test loss by reducing over-fitting. The
minimum test loss went from 0.01014
to 0.007375. As suggested in this paper
[PK16], we added dropout after our
ReLU activation function. We used
stochastic dropout with a rate of 0.1.

The test loss is the mean square
error of each predicted class and actual
class weighted by the relative area
covered by that class in the training
data. The presence of a class in a
pixel is represented by a value 1 and
not percent is 0. The predictions are
decimal numbers between 0 and 1.

Class weights

The need of the class weights became
apparent after observing the following
problem. Since the loss function re-

36



5.8. Manual segmentation

Figure 5.30: Graph showing the MSE loss with or without dropout.

warding and punishing based on square
error per pixel, classes that generally
cover a small area, will contribute less
to the total loss. An example of such a
small class is parts of rovers. See figure
5.31. Rover parts are only present in
some images, and difficult to classify
since there is such a large variation in
colors and shapes. A class that is much
more common, is regolith or sky. If the
model, instead of spending effort pre-
dicting a class of low occurrence, fit the
distribution of occurrence of the class
(guessing the expected average pixel
value of a class), the extra loss is small.
This leads to the model focusing on
features of a large area rather than on

features important for captioning. To
overcome this problem, the total area
of each class is summed, and a weight
to the loss of each class invertedly pro-
portional to the size of the class is
factored in. For example, if there is
only three classes, A, B, and C, with re-
spective areas of 1, 2, and 3, the loss for
each respective class will be multiplied
with 1

1+2+3 ≈ 0.167, 2
1+2+3 ≈ 0.333,

and 3
1+2+3 = 0.5. These factors make

the model balance the weights for the
classes better.

Rare classes

Some classes are very rare. Not just
in area, as talked about in subsection

37



5. Method

Figure 5.31: Illustration of the problem of rarely occurring classes. In the
example, the input image is to the top left. The colored text above each image
shows the color code of the features detected in the image. For example, the
top mid image detects layered (blue). The model detects bedrock sandstone
outcrop, sand, and sky. What the model fail to recognize is the rover. The
striped red box shows where the rover should have been detected.

Class weights, but in occurrence in
images. The few training samples
makes it so there is very difficult for
the model to recognize these features.
Any effort by the model to lower
the loss regarding miss-classification
of these features, is simply over-fitting.
Some classes were so important, more
manual labeling were done on training
images containing these classes. The
classes that were too rare, even in the
unlabeled training data, were ignored
as they only introduce noise. For the
model to recognize these geological
features, more training data is needed.

Over-training

It is common practise to apply early
stopping as a way to prevent over-
fitting leading to the model fitting in-
dividual samples in the training data
rather than the dependencies in the
data. The over-fitting can hurt the
models ability to fit the dependencies.
The goal of early stopping is stopping
the training just when the test data
reaches its minimum. At this point the
models prediction ability is not hurt
more by the over-fitting than its predic-
tion ability obtained from the training
at this point. A common approach for
detecting such a minimum is stopping

38



5.8. Manual segmentation

Figure 5.32: Example of the model
reaching a plateau, where the test error
stops improving for a while before
making progress.

training when there has been a suc-
cessive number of test errors without
improvement to the score. The prob-
lem with this approach, is sometimes
there could be periods where the model
reaches a plateau in the loss landscape
where little to no improvements are
made before a sudden improvement is
made. Depending on the time spent
on this plateau and the number of suc-
cessive steps required before the model
is automatically stopped, the model
might stop learning too early. See 5.32
for an example of this problem occur-
ring.

Another potential problem unsung
the successive steps of no improvement
threshold, is the model will not stop
learning before a few steps after the
optimum. The approach we choose to
avoid the above mentioned problems
is saving the model weights every time
the test error is better than any test
error in epochs before that. The
advantage using this method is we
can train the model for as long as
we want without the problems of over-
training because after the training, the

models weights are reset to the last
checkpoint. A potential problem using
this method, is due to the variation of
the test score, it is likely that the model
will checkpoint a moment the model
just happened to fit the test score
well. Due to the principle of regression
toward the mean[Wik20], the test error
we get at the end of the training is
probably a little better than what the
true performance of the model.

Test loss variance

Sometimes when training a model, the
test loss stops improving, but does
not get noticeably worse over time.
Visually comparing the output of two
models with similar test scores showed
that the model trained for longer, had a
more confident predictions. We worry
that there is a possibility for the model
to both fit samples and dependencies
at the same time, leading to a test
loss that does not improve or worsen
during training. This over-trained
model might have the same test score,
but the variance in test error amongst
the test samples might increase. If
the test score is the same, we want
a smaller test variance. See figure
5.33 for an example output of this
metric. We can see that even though
the test error does not change much,
the variance increases.

Scramble loss

The test loss is used to validate the
models ability to fit dependencies in
the data. If the model can not map
input samples to the target value
either because there is no dependency
between the two, or the model is too
simple to fit the dependency, or there
is some kind of training problem, the
test error still drop usually drop during
training. The reason for this drop is
because the model fits the distribution
of the data rather than the depend-

39



5. Method

Figure 5.33: Graphs showing the train-
ing of a model. The blue graph show
the training loss, the orange one shows
the test loss. The green graph shows
the standard deviation in the test pre-
dictions.

encies. For example, if 1
8 of the area

of the models is sky, one way for the
model to reduce the loss without using
the dependencies between samples and
target, is simply guessing a 1

8 probab-
ility of sky for each pixel (using MSE
loss functions, guessing the expected
value of the target distribution min-
imizes loss if there is no dependencies
between samples and targets (the proof
is trivial)). For classes more common,
the probability would be set higher.
Even better accuracy could be achieved
by guessing with an even higher prob-
ability of sky in the top portion of the
image, as this is usually where the sky
is located. To capture the models abil-
ity to learn the models ability to fit
the actual dependencies between input
samples and target, a new metric was
made. This metric calculates the test
error, after scrambling the targets and
the samples so that each sample, is as-
sociated with a random target (we also
ensured no samples would be pared
with the original target). We call this
metric the scramble loss.

Optimization

Doing machine learning using images,
tensorflow’s data-set objects are useful
for creating a data pipeline feeding the
image data through the model during
training. Since there us usually a
large number of training images, it is
common to store the data on disc, then
pre-load batch by batch of training
images before loading them on to the
GPU for training. We noticed that
using this approach, the beginning of
each new epoch, there was a large
delay before training of the first batch
began. Further inspection found that
more than half the time spent in the
training loop was spent at loading the
data from disc. Since the data is not
pre-loaded at the beginning of each
epoch, this resulted in a larger delay
at the beginning of each epoch. Since
our model has a small inference time,
and the size of the training data is
not too large, we moved the training
data to memory instead of storing it on
disc. Image data sent through machine
learning models is usually stored as 32
bit floating point values. Compressing
this to a single unsigned integer of size
1 byte, we could fit all the training data
in memory. As casting the data back to
a 32 bit floating point tensor takes way
less time than loading the data from
disc, we were able to increase training
speed by about 2.5 times.

Fine tuning

After the model was sufficiently trained
using our final architecture (See figure
5.28), using a pre-trained down-stack
of non-trainable weights, we freed the
weights to fine tune the model. The
fine tuning lead to a test loss drop from
0.007387 to 0.004573 (61.9% of initial
loss). See figure 5.34 for the training
process. The model was first trained
for 300 generations, then the weights at
the point of best test score was loaded

40



5.9. Caption generation

Figure 5.34:

into the model before the fine tuning
began. After epoch 300 the model is
trained with all weights trainable.

Results

Sorting out good test data is a chal-
lenge. As mentioned before, the initial
split of test and train data was found to
suffer from over-fitting due to identical
motives and croppings of the same lar-
ger images can be found both in the
test data and the train data. Also as
explained in subsection Preventing test
train leaking, methods were used to
prevent this leakage. In case there still
is some test-train leaks, we also test the
model on images taken at Mars at a
later point in time to validate there be-
ing no leakage. To visualize the results
we used colors. If you look at figure
5.35, you see an example output.

In figure 5.35, we see 10 predictions.
The images are random selections from
the test data. Each image and corres-
ponding predictions take up one row.
All the predicted images are test im-
ages. Different images have different
zoom levels, as they are croppings of
larger images. At the top of figure
5.35, there is explanations of the mean-
ing of the colors. For example, in the

top left image (see figure 5.36 for close
up), we see some sand and bedrock out-
crop. To the right of this image, we
see some of the target classes visual-
ized (see figure 5.37 for close up)). The
green represents bedrock, the red rep-
resent regolith (no regolith is classified
in this image), and the blue represent
layered (no layer is classified in this
image). The image to the right of this
image is the prediction (see figure 5.38
for close up). As we see, the prediction
is pretty close. If you look at the image
at the top, third most to the right (see
figure 5.39 for close up), we see there is
a prediction of rover in a place there is
none. This could confuse the caption
generator to believe there is a rover in
this image even though there is none.

See figure 5.40 for the predictions
done on the validation images. These
images are not labeled. In this figure
we can see some more classes than in
figure 5.35. Some of these classes are
less frequently occurring, and therefore
the accuracy is lower.

5.9 Caption generation

The main challenge regarding the cap-
tion generation was the problem of
over-fitting. Reasonable captions were
generated, usually with the correct
grammars and sensible syntax. The
problem is the large difference between
the performance of test and train data,
or more specifically, the poor perform-
ance on test data. Different techniques
were used attempting to reduce the
over-fitting without reducing the net-
works ability to generate sensible cap-
tions.

The architecture

Figure 5.41 shows the final captioning
architecture showing the flow of data
(tensors) and the output dimensions of
the tensors for each operation. The

41



5. Method

Figure 5.35: Visualized test predictions. Each row is one prediction. Each
column shows three of the predicted classes in red, green, and blue.

42



5.9. Caption generation

Figure 5.36: Input image.

Figure 5.37: Target class (bedrock).

model is implemented in TensorFlow.
Since adding a batch dimension to
the tensor pushed through through
the model, save performance (fewer
iterations of the python code and fewer
interactions between the CPU and
GPU), then real tensor size of the data
should have a batch dimension to them.
For example, the input image should
have a size of (batch size, 256, 256,
3) instead of (256, 256, 3), but since
this in not important for explaining the
logic of the model, the batch dimension

Figure 5.38: Predicted class (bedrock).

Figure 5.39: Predicted class (rover)

is omitted. The caption generation
algorithm takes in two data-points.
One is the segmented image. The
size of this segmentation is the same
as the image in terms of width and
height. The depth is the number of
classes. The original color information
of the image is not included in the
segmentation. Therefore the original
image is included and concatenated.
This allow the captioning model to see
the difference between things like dark
sand versus just sand.

43



5. Method

Figure 5.40: Visualized test predictions. Each row is one prediction. Each
column shows three of the predicted classes in red, green, and blue.

44



5.9. Caption generation

Figure 5.41: The final configuration of the captioning model. The input is the
image at the top left, light red box, and the segmented image at the top middle,
light red box. The output is seen at the bottom right. Orange boxes represent
functions taking tensors as inputs and outputs. The numbers below the boxes
are the dimensions of the output tensors. The batch dimension is omitted.

Encoder

The encoder block as can be seen in
figure 5.41 must not be confused with
the segmentation encoder. In the full
model architecture as can be seen in fig-
ure 5.1, we see that there is a segmenter
and a captioner part to this full model.
Both has an encoder and a decoder.
The job of the encoder (see Encoder
block figure 5.41) is to create a tensor
containing information of the image,
including spacial information, used by
the rest of the captioning model to
create captions. When creating the
encoder, different approaches were con-

sidered. The first approach were put
the input image though a pre-trained
image model and extract a layer from
there. This layer is concatenated to-
gether with the segmentation before
being sent of for captioning. Due to
problems of over-fitting, the approach
were simplified to simply concatenate
the segmented image and the image.

Image encoding

For generating the captions we used a
recurrent neural network (RNN) since
caption generation require variable
length output. To mitigate the vanish-

45



5. Method

ing/exploding gradients problem, we
used a GRU RNN. We also considered
using an LSTM, but chose GRU due to
its generality and simpler (and thereby
faster) design. For the GRU to have
access to the image information, the
encoded image must be turned into
a format the GRU can understand.
We initially used an attention model
based on the SCOTI caption genera-
tion [Ono+19] model. This model uses
a version of Bahdanau attention for
images. The images were encoded into
a width by height by filter tensor. The
width and height were small (8 by 8).
That is, there will be 64 vectors describ-
ing their respective part of the image.
Lets call each of these 64 vectors a tile.
For each word the GRU predicts, it
will use this encoded image. Based on
the previously hidden state of the pre-
vious prediction, a context vector will
be created from the attention given
to each of the tiles. This context vec-
tor is combined with an embedding of
the previously predicted word is put
through the GRU model. The output
from the GRU creates the hidden state
for the next word to be predicted, and
an output that is the currently pre-
dicted word.

Due to the problems with over-
fitting, we also tried another method
for encoding the image. GRU is an
RNN capable of reducing the problem
of vanishing/exploding gradient prob-
lem. For very long pieces of texts how-
ever, a GRU generating text based on
some encoded input, the GRU might
still forget some information. This is
where the attention model comes into
play. It allow for the generation of
longer pieces of text without forgetting
the initial context. For each prediction,
the model is paying attention to the
relevant parts of the context for the
relevant predicted word.

Since the captions generated for the
problem at hand, is not particularly
long, we also explored replacing the

attention model with an alternative
way of feeding the encoded image to
the GRU. In figure 5.41 we see that
after the data is encoded the shape
is 8 by 8 by number of classes + 3.
The segmented image into classes and
the original red, green and blue color
channels are concatenated and ordered
in 8 · 8 = 64 tiles. This structure
is then flattened and encoded to the
initial state of the GRU. Dropout is
applied for further regularization. The
next word predictor model is an RNN
module containing multiple functions.
The initial hidden state is propagated
through the next word predictor. The
idea is that the hidden state will
both contain the information of the
encoded image, and language related
information keeping track of grammars
and the current progress in producing
the sentence.

RNN caption generation

The next word predictor model is an
RNN with a hidden state, input, and
an output. Each iteration of the rnn
produces an predicted word.

During the first iteration, the hid-
den state contain the encoded image.
This is a 32 dimensional vector. Be-
sides encoding the image, there must
also be room within this vector for the
next word predictor RNN to remember
language related information. Initially,
we used an encoding of 128. This was
reduced to 32 due to over-fitting. See
subsection Test train leaks for more on
the problems of over-fitting related to
captions. During the first iteration, a
start sentence token is embedded and
used as the input to the GRU. Based
on the hidden state vector (size of 32),
and the embedded start token (size of
128), a prediction is produced. A pre-
diction is a vector of size 32. Dropout
is performed to reduce over-fitting be-
fore the fully connected layer creates a
one-hot encoded prediction of the first

46



5.9. Caption generation

word. The dropout is applied before
the one-hot encoding, and not to the
hidden state of the GRU because ap-
plying the dropout to the hidden state
can harm the GRU’s ability for long
term memory[G18]. The one-hot en-
coded words, are 148 dimensional due
to the vocabulary is of size 147 plus
the end of sentence token. After the
first word is predicted, the next hidden
state is transferred to the next itera-
tion of the next word predictor ’s GRU.
Depending on whether the propagation
of the network is part of the training
forward propagation, or inference in
production, will decide how the next
iteration receives the previously pre-
dicted word. For more on this, see
subsection Teacher enforcer. During in-
ference, when the next word predictor
predicts the sentence end token, the
predicting is over. During training,
when the training sentence has come
to an end, the predicting is over.

The result of the captioner model,
is a tensor of size number of words by
148. The first dimension represents the
words in the sentence, while the second
dimension represents the probabilities
of each word in the vocabulary finding
itself at that place in the sentence.

Loss function

To compare the correctness of the pre-
diction with the target, cross categor-
ical entropy loss is used. The more
confidently the model predicts a se-
quence of words similar to the target,
the lower the loss. A problem with
this loss function, is it only compare
word by word similarity. It does not
compare context. If the true caption
is "a rover on regolith" and the predic-
tion is "rover on regolith", the loss will
be large. The reason is that the loss
function will compare "a" with "rover",
"rover" with "on"... etc. The whole
sentence is shifted, so even though the
grammar and content of the caption

is perfect, the large loss does not re-
flect this. We try different techniques
to deal with this problem. See subsec-
tion Teacher enforcer and BLEU score
/ Jaccard Similarity.

Teacher enforcer

During inference, the next word pre-
dictor (figure 5.41) predicts words
based on a hidden state memory, and
embedding of the previously predicted
word. For the first predicted word, a
start token is used, as there are not
previous words. The first prediction
is a 148 (148 is the size of the vocab-
ulary + 1 (the +1 is due to the end
of sentence token)) sized vector with
values representing the probability of
each word. The word with the largest
probability is chosen and fed into the
embedding layer of the next iteration
of the next word predictor model (see
figure 5.41). The predicting is finished,
when the next word predictor predicts
the end of sentence token. The result is
presented by picking the word with the
largest probability for each prediction.

During training, instead of the
next word predictor predicting words
that are used as the previous word
for the next prediction, teacher enfor-
cing[Won19][20] is used. The teacher
will replace the previous word predic-
tion, with the true first word in the
sentence. There is several advantages
with teacher enforcing.

The first advantage is that it speeds
up training. If we are not using teacher
enforcing during training, we will have
to use the previously predicted word
as the previously predicted word for
the next iteration. When the model
is untrained, the first predicted word
will probably be wrong. This will lead
to the second word also being wrong,
even if the model at this point had good
weights. For example, let us consider
an image of a rover on regolith. Let us
say the caption is "rover on regolith".

47



5. Method

If the first predicted word is "drill", it
does not matter how well the rest of the
model works, if the input is garbage,
the output will be garbage. If we are
using teacher enforcer, the first word
"drill" will be replaced with the correct
word "rover". This gives the model
a reasonable chance at describing the
rest of the caption.

The second advantage using teacher
enforcing, is it helps reducing the
problem described in subsection Loss
function. If the true caption is "a
rover on regolith" and the prediction
would be is "rover on regolith", the loss
would be large due to the loss function
comparing word by word. When all the
words in the sentence is shifted by one
word, all the words will be considered
wrong. The way teacher enforcing
helps in this case, is when the next
word predictor model produces the first
word "rover", it will be replaced with
the word "a". The next word predictor,
will then know that following the word
"a", the next word should be "rover".
This makes it so the prediction is "rover
rover on regolith". This prediction will
have a relative small loss, leading to a
model that would in production (and
thereby not have teacher enforcing)
predict "rover on regolith" when the
true caption is "a rover on regolith",
having a smaller loss. It will still
be punished for the first word, even
though is should not, but it is better
than being punished for getting all the
words wrong.

A potential problem with using
teacher enforcing is the model becom-
ing dependent on the teacher. The
teacher enforcer ensures the model is
stable by constantly correcting mis-
takes. During inference, this stabiliza-
tion factor is not there, causing instabil-
ity to the model (mistakes earlier can
propagate though the network causing
larger and larger mistakes). Since the
model has no training being unstable,
it is less able to stabilize. Another

Figure 5.42:

problem was encountered using BLUE
score as loss function. See subsection
BLEU score / Jaccard Similarity. for
more information.

Test train leaks

As with the training of the segment-
ation model, we sampled the weights
whenever the test loss is the lowest dur-
ing training. See figure 5.42

As can be seen in this figure, there
does not seem to be much of a problem
with over fitting. However, after
visually inspecting the results, we see
there is a problem.

In figure 5.43 we see a visualization
of a test sample being captioned. The
true caption and the predicted caption
is identical. The problem is, the
caption is too perfect. Not only are all
features captured, but also the wording
is identical. This suggests there is a
test train data leakage. To check for
this leakage, captions are generated by
the model based on data taken by the
Curiosity rover at a later point. None
of these validation images can be found
in the training data, so there should
be no leakage. The captions generated
is compared with the features found

48



5.9. Caption generation

Figure 5.43: The true caption is the
human generated caption describing
the geological features in the image
above. The predicted caption is the
one generated by the model.

by the segmentation model. Since
the segmentation model might contain
errors, this comparison is not perfect.
To properly fix the test train leakage,
validation images must be labeled by
human geologists. See figure 5.45 for
an example of test captioning.

As we can see in this figure, there
are captions that are suspiciously close
to the true captions. Again, not just
in content but also in wording. Let us
now compare to the test data to the
validation data.

If figure 5.46, we see some example
images and their captions. We also see
some of the segmentation models seg-
mentations. The resolution is reduced
to 8 by 8 to reflect the resolution re-
ceived by the captioning model. See
figure 5.41 encoder blocks resize func-

Figure 5.44: The true caption is the
human generated caption describing
the geological features in the image
above. The predicted caption is the
one generated by the model.

tion. The top row describes the content
of each column. Each row represent
each predicted caption. The leftmost
column shows the generated captions,
the next column shows the input im-
ages, the next ones show the segment-
ations. The meaning of the red, green,
and blue colors can be read from the
top row.

Comparing the image and the seg-
mentations, we see that most of the
images features are captured by the
segmentation model. However, the cap-
tions does not reflect this well. For
example, if we look at the top row
of figure 5.46, wee see the image of
a rover being captioned. The segment-
ation model recognizes the rover, how-
ever, the caption does not mention any
rover. Comparing the captions gener-

49



5. Method

Figure 5.45: Green are true captions. Red captions are predictions.

50



5.9. Caption generation

Figure 5.46: The left column is caption, the next is input image, the next ones
are some of the segmentations.

51



5. Method

ated on the test data (see figure 5.45
with the captions generated on the val-
idation data (see figure 5.46), we see
that our suspicion is confirmed. Due
to the degradation of quality of the
caption generation between the test
and validation data, we conclude the
test-train leakage is significant. To re-
duce the discrepancy, we introduce reg-
ularization techniques and manually
compare the discrepancy to see if our
model improves. This method is not
efficient, but with the lack of labeled
testing data, this is the best we can
do. Further optimization of the cap-
tioner model, would require captioned
test data not tainted by the train data.

One of the regularization tech-
niques were to remove the attention
model refereed to in subsection Image
encoding. Instead encoding the image
as the GRU’s initial hidden state re-
duced the test-validation discrepancy.
As mentioned in subsection 5.9, redu-
cing the size of the hidden state vector,
also reduced the discrepancy. After the
discrepancy, we noticed the test loss
increase, and the predictions becoming
more directed towards the features the
segmenter could detect. Figure 5.43
shows the prediction being identical to
the true prediction. Figure 5.44 shows
the prediction being more reflective of
the features the segmenter is looking
for (layered, bedrock, outcrops, rego-
lith). In figure 5.43, alternation halos
is mentioned, this is not a feature the
segmenter is looking for. Reducing the
size of the hidden state vector, leads
to the features found by the segmenter
being prioritised. See figure 5.47 for
the captions after regularization.

As we can see in the captions in fig-
ure 5.47, the captions are much better
than in figure 5.46. The segmentation
model is the same in both examples, so
the visualizations of the segmentations
in both figures are identical. We see
the improvement of the captions come
from the captions being to a greater

degree dependent on the features detec-
ted by the segmenter. The only caption
that is not improved is the one 6th row
of images. This caption changed from
"bedrock with many veins and dark
sand" to "rover on bedrock in front of
layered bedrock outcrops". There is no
rover in this image, so the caption is
clearly wrong, however, when we in-
spect the segmentation, we see it actu-
ally classify the left part of the image
as a rover. This shows the problem
at this prediction is not with the cap-
tioner, but with the segmenter. Split-
ting the model into a captioning model
and a segmentation model improve our
ability to debug the models and isolate
problems. This is in accordance with
our second research goal.

BLEU score / Jaccard Similarity

Bilingual Evaluation Understudy
(BLEU) score[Pap+02], is a method
for evaluating the quality of machine
translation. The score compares two
snippets of text and based on a similar-
ity quantify this similarity. A score of
0 means no similarity, while identical
sentences would give a score of 1. A
BLEU score is typically different from
the loss function, as the loss function
is differentiable and used in the back
propagation, while the BLEU score is
used to validate the result. A higher
BLEU score comparing two sentences
correlate well with how humans would
rate the similarity of meaning between
sentences. One idea we want to test, is
if we can use BLEU score directly as a
loss function, instead of using another
loss function, and then tweak it and
the model to make the BLEU score
lower.

The main problem with using the
BLEU score as a loss function, is the
BLEU score is not differentiable (tech-
nically, all algorithms is differentiable,
however, using the BLEU score as a
loss function does not have a continu-

52



5.9. Caption generation

Figure 5.47: The left column is caption, the next is input image, the next ones
are some of the segmentations.

53



5. Method

ous gradient vector, and that is what is
usually meant by a function not being
differentiable).

Directly calculating the BLEU
score function, leads to loss landscape
with steps. Gradient descent does
not work on such functions. To make
the BLEU score smoother, we will
instead of calculating the BLEU score
for each prediction, we will calculate
the expected BLEU score. One pre-
dicted caption for one sample is a
number_of_words · 148 dimensional
tensor. See figure 5.41 at the light red
box named predictions. The number
of words dimension depends on the
size of the sentence. The sentence
stops when the end of sentence token
is given the larges probability. The 148
sized dimension contain probabilities
the model thinks a word should be.
See example below.

<end> on rover regolith


0.01 0.02 0.90 0.01 · · · word0
0.00 0.95 0.00 0.01 · · · word1
0.01 0.02 0.03 0.87 · · · word2
0.69 0.07 0.09 0.01 · · · word3

4x148

(5.1)
The matrix above shows an ex-

ample prediction matrix. Each row rep-
resent a word in the sentence and each
column represents a potential word.
This matrix is 4 by 148 in size. The
bold numbers represents the largest
value for each row. The sum of each
row is 1. The column indexed 0 rep-
resents the word the end of sentence
token, the next columns represent the
word on, the next the word rover, the
next regolith and so on. If we select
the words of largest probability, the
sentence would be "rover on regolith
<end>".

Compared to the paper "A differ-
entiable BLEU loss. Analysis and first
results"[CFC18], we tried a similar ap-
proach. A problem they encountered is
their predictions would generate a vec-
tors of predictions averaging between

the predicted n-grams. Splitting a sen-
tence into n-grams, means grouping
n and n number sequential words to-
gether. The BLEU score will be bet-
ter the more of these n-grams two sen-
tences share. An example of creating
n-grams is as follows. Let us say we
want to split the sentence "a rover on
regolith" into n-grams of size 1 (mono-
grams). Then we get "a", "rover", "on",
and "regolith". Using size 2 (bigrams)
we get "a rover", "rover on", and "on
regolith". To avoid the same problems
they encountered, we take a different
approach making the BLEU score dif-
ferentiable. Since our captions are
pretty short, we only have n-grams
appearing in the predictions once or
more contribute positively to the score.
This, plus some other configurations
we made to make the score easier to
calculate lead to our score being more
similar to Jaccard Similarity. Hope-
fully this will lead to us avoiding some
of the problems encountered in their pa-
per. If we encounter similar problems,
we will explore the possibility of com-
bining the Jaccard Similarity with the
cross categorical entropy loss to achieve
better overall BLEU score. First let us
go through our implementation.

The BLEU score is calculated by
the following equation.

BLEU = BP ·e
∑N

n=1
wn·log |T Pn|

|T Pn|+|F Pn|

(5.2)
BP is a brevity penalty to punish

too short predictions. wn is the weight
given to the nth n-gram. The weighted
sum of N number of scores are added.
Tn is the set of true positive n-grams of
n size, in other words, n-grams found in
both the prediction caption and target
caption. |TPn| is the size of that set.
FPn (false positive) is the set of n-
grams found in the prediction caption,
but not the target caption.

The Jaccard Similarity is calculated
by the following equation.

54



5.9. Caption generation

Jn = |Tn ∩Pn|
|Tn ∪Pn|

(5.3)

Tn is the set of n-grams of size n
in the target caption. Pn is the set of
the n-grams of size n in the prediction
caption. Jn is the Jaccard Similarity
for n-grams size n between the target
caption and prediction caption. The
Jaccard Similarity does not have a
brevity penalty (BP ). This penalty
is used to punish short sized prediction
captions. Without this penalty, the
short predictions could get a large
score even though they are not being
similar to the target. The Jaccard
Similarity does not have this problem
as a short prediction would make the
intersection between the target and the
prediction much smaller than the union
(see equation 5.3), thereby reducing the
score.

To make the loss landscape using
Jaccard Similarity differentiable, we
interpret the prediction tensor (see
figure 5.41) as an array of words of
different probabilities of occurrence.
If we look at the example prediction
tensor 5.1, we see a sequence of words
that strongly suggests the sentence
"rover on regolith <end>". We want
to reward this sentence (if this truly is
the correct caption) when the model
is as confident as possible with the
probabilities corresponding to that
sequence of words (the numbers in
bold in equation 5.1). To achieve this,
we will use the expected score as the
loss function (actually 1 − score as
a loss should be minimized but the
Jaccard score is larger (closer to 1)
when similarity is larger).

loss = 1− E(Jn) (5.4)

If we want to combine multiple n-
grams together we can sum the losses
for different n parameters. During this
derivation we will consider a fixed and

single n-parameter to reduce notation
clutter.

E(Jn) = E( |Tn ∩Pn|
|Tn ∪Pn|

) (5.5)

To simplify calculations, we will
assume the gradient of the expected
value of the right side of the above
equation (5.5) is similar to the gradient
of the expected numerator divided by
the expected denominator.

∇E( |Tn ∩Pn|
|Tn ∪Pn|

)→ ∇E(|Tn ∩Pn|)
E(|Tn ∪Pn|)

(5.6)

Or at least the direction of the
∇E( |Tn∩Pn|

|Tn∪Pn| ) vector will be similar to
the ∇E(|Tn∩Pn|)

E(|Tn∪Pn|) vector. Therefore we
can simplify the expected Jaccard Sim-
ilarity as in equation 5.6, and expect
the gradient calculated during back
propagation to be similar. Before we
break down how to calculate expecta-
tion, let us take a look at some nota-
tion.

Consider the matrices TMn and
PMn. TMn describe the true caption.
PMn describe the predicted captions
and its uncertainty. Each row in the
matrices represent an n-gram in the
sentence. Each column describe the
probability an n-gram occupies that
space in the sentence. See the below
example of such matrices when n is 1.

PM1 =


0.01 0.02 0.90 0.01 · · ·
0.00 0.95 0.00 0.01 · · ·
0.01 0.02 0.03 0.87 · · ·
0.69 0.07 0.09 0.01 · · ·


4x148
(5.7)

TM1 =


0.00 0.00 1.00 0.00 · · ·
0.00 1.00 0.00 0.00 · · ·
0.00 0.00 0.00 1.00 · · ·
1.00 0.00 0.00 0.00 · · ·


4x148
(5.8)

In the example above n is 1. These
matrices describe the probability of
occurrence for each n-grams of size 1 at

55



5. Method

each position in the sentence. n-grams
of size 1 is simply words (or the end
token), so PM1 is the same as matrix
5.1. As in example 5.1, these matrices
would describe the sentence "rover on
regolith <end>". Notice the TM1
matrix has only 1s and 0s as we know
the target caption with 100% certainty.
To calculate the probability matrices
for n of a larger size, we will assume
random independent selection of words
(rows) based on the above matrix. Fox
example, the probability of the "rover
on" n-gram at the beginning of the
sentence is 0.9 · 0.95 = 0.855. The
probability of the "rover on" n-gram
to occur as the second bi-gram is
0.00 · 0.02 = 0. The probabilities
of the occurrence of these n-grams
(n parameter greater than 1) will be
dependent on each other. For example,
if the first bi-gram does not contain the
word "on", it is impossible for the next
bi-gram to be "on regoilth". We will
however assume independence as this
simplify calculations. If we calculate
these probabilities for all possible n-
grams at all possible positions, we
can create TMn and PMn matrices
for all values of n. These matrices
will quickly become very large. For
example, n parameter of 2, the PM2
matrix will have a number of rows of
one less because the last word (the
end token) does not have any other
words to form a bi-gram with. However
the number of columns will be the
size of the vocabulary squared. Every
word can be combined with every other
word to form a bi-gram. n-grams of
larger size will quickly be very large.
Practically this is not a problem since
the Tn matrix will be sparse, and we
will use tricks so we don’t have to
construct the matrices.

Let us take a closer look at the
numerator of equation 5.6.

E(|Tn ∩Pn|) =
NP n−1∑

i=0
prob(TMn∗i)prob(PMn∗i)

(5.9)
TMn∗i means column number i of

matrix TMn. The prob(·) function
takes a column of a probability matrix
and gives the probability of occurrence
of this n-gram one or more times over
the sentence. Given the probability
distribution given by our captioning
model, prob(TMn∗i) and prob(PMn∗i)
are independent. The probability of
occurrence of an n-gram in both target
and prediction is simply the product
of the two. As mentioned before, in-
dependence between occurrences of n-
grams across the sentence will be as-
sumed independent, so the multiplic-
ation rule can be used implementing
the prob(·) function.

prob(PMn∗i) = 1−
NP Mn∗i

−1∏
j=0

(1− PMnji · fnji)

(5.10)
There is an equivalent equation

for TMn∗i. PMnji is the element in
the PMn matrix at row i column j.
NP Mn∗i

is the size of the prediction
sentence and number of rows in the
PMn matrix. fnji is a probability
factor describing the probability of
n-gram size n, index i number j is
reachable or if the sentence has ended
yet. (1−PMnji ·fnji) is the probability
of an n-gram not occurring at index
j,

∏NP Mn∗i
−1

j=0 (1− PMnji · fnji) is the
probability of the n-gram not occurring
at all in the whole sentence, and
equation 5.10 is the probability of it
occurring at least once.

fnji is calculated as:
For n = 1:

f1ji = 1−
j∏

k=0
(1− PM1ki) (5.11)

56



5.9. Caption generation

For n > 1

fnji = 1−
j∏

k=j−n+1
(1− f1ki) (5.12)

Since prob(TMn∗i) from equation
5.9 will be mostly zero, we can im-
plement this as a lookup of all n-
grams in the target and sum together
prob(PMn∗i) for all indices i. Now that
we know how to calculate the numer-
ator of the right hand side of equation
5.6, let us look at the denominator.

E(|Tn ∪Pn|) = E(|Tn|+ |Pn| − |Tn ∩Pn|)
(5.13)

= E(|Tn|) + E(|Pn|)− E(|Tn ∩Pn|)
(5.14)

In equation 5.14 we now have three
additives to calculate. E(|Tn∩Pn|) we
already know what is. E(|Tn|) is the
expected size of the target n-gram set
which is simply |{TMn∗i}|. |{TMn∗i}|
is the size of the unique target n-gram
set. The last additive, E(|Pn|), is trick-
ier. This is the expected number of
unique n-grams found in the predic-
tions. Due to the large number of pos-
sible n-grams when n is large, and the
large number of combinations of oc-
currences of these n-grams, we make
a simplification. Instead of calculat-
ing the expected number of unique n-
grams in the prediction, we calculate
the expected number of n-grams in the
prediction.

E(|Pn|) ≈
∑
k=0

(k + 1) · PMnkl · fnkl

(5.15)
l is the index of the end token.

PMnkl · fnkl is the probability of the
size of the size of n-grams in the predic-
tion being k + 1. The approximation
we do where we count the number of n-
grams instead of the number of unique
n-grams will probably not harm the
loss function. Our approximation will

make the loss larger as the denomin-
ator will be larger (small score makes
loss larger). When the model is per-
forming well, it will predict captions
with very few repeating n-grams, so
when the model performs well, the ap-
proximation will be good.

Results

Teacher enforcing When applying
the Jaccard similarity loss function to-
gether with the use of teacher enforcing,
there is a leakage of target information.
The following is an example output
from the model:

Target word Predicted word
2 5
5 4
4 9
9 25
9 10
10 13
10 7
7 8
8 11
11 3
3 0
3 0
3 0
3 0
3 0
3 0

The numbers represent words. The
prediction seem good, just shifted a
little. The number 3 represent the sen-
tence end token. The test and train
score of the model is good, and is im-
proving over time. See figure 5.49. The
problem becomes apparent when test-
ing the model. See figure 5.50. The red
captions describe the predictions. As
we can see, they are way of. Looking
at the table, we see the problem. The
model has simply learned to predict
whatever the teacher enforcer is giv-
ing it. This creates a good test score,

57



5. Method

Figure 5.48: The loss during training
using a combination of cross categorical
entropy loss and Jaccard loss.

Figure 5.49: The loss during training
using Jaccard loss function and teacher
enforcing.

since Jaccard score support shifting
of the sentence. When teacher enfor-
cing is turned off when generating cap-
tions for the validation data, the model
will be its own teacher. As can be
seen in the table, the first prediction
is wrong. After this first wrong pre-
diction, the model relay of the teacher.
In figure 5.50 the first wrong predic-
tion happened to be "mudstone", after
that it repeat after the teacher (itself).
This result was predictable as it was en-
countered by the differentiable BLEU
paper[CFC18]. Turning of teacher en-
forcing fixes the problem, but slows
training substantially.

Average vector problem We hoped
we would not encounter the same prob-
lem as in the differentiable BLEU
paper[CFC18] regarding the model
simply learning to predict the aver-
age of the most common words and n-
grams. See figure 5.51 for example out-
put. The model fits the distribution of
data, not the dependencies. This prob-
lem was also expected as we didn’t do
anything fundamentally different from
the implementation in the differenti-
able BLEU paper[CFC18].

Combined losses The fore-
mentioned problems were predicted.
What we wanted to test, was to see
if we could combine the cross categor-
ical entropy loss with the Jaccard loss
to improve the model. The resulting
BLEU test loss can be seen in figure
5.48. The first 30 generations, the
model is trained on the cross categor-
ical entropy loss function. Then the
model is "fine tuned" using the Jac-
card loss function. As we can see, the
performance of the model drops rather
than improving. The reason might be
due to some unexpected consequences
of some of the simplifications we did
during the derivation of the loss func-
tion, alternatively a way the model

58



5.9. Caption generation

Figure 5.50: Predicted captions on the validation data after training using
Jaccard loss function and teacher enforcing. Green captions are the target, red
are the predictions.

59



5. Method

Figure 5.51: Predicted captions on the validation data after training using
Jaccard loss function without teacher enforcing. Green captions are the target,
red are the predictions.

60



5.9. Caption generation

tricks the loss function, as seen when
using the teacher enforcer. Do to the
tainted test data we have been working
with, further fine tuning of the caption-
ing model is difficult. The validation
data is not tainted, but lacks captions,
making fine tuning difficult as we have
no numerical test value to improve,
and must instead manually compare
results which is inaccurate and time
consuming.

61





CHAPTER 6

Conclusion

We set ourselves some research goals
we explored in this writing. Some at-
tempts we more successful than oth-
ers, but learned something regarding
each goal. Due to the discovery of test
data tainted by train data, it was dif-
ficult to validate the success of some
approaches. The validation data we
acquired to avoid the taintedness, is
not labeled. To further work on the
approaches in this writing, labeled un-
tainted data is needed.

Regarding our first goal, we did see
find the splitting of the full captioning
model into multiple parts beneficial.
Due to the tainted test data, it is diffi-
cult to compare the results in a mean-
ingful way. We did see the advantage of
reduced over-fitting. The main split of
our model was into a segmenter and a
captioner. The captioner suffered more
from over-fitting that the segmentation
model. Had we not split the model, it
would have been difficult to locate this
problem, which brings us to our second
research problem. Splitting the model
allowed us to detect where problems
were located more accurately in the
model. See figure 5.47 row 6 (of im-
ages). As mentioned before, we see the
segmentation model detecting a bit of
rover in the image (there is no rover in
the image), and the captioner mentions
rover in the caption. The intermedi-
ate output allows us to know this is a
problem in the segmentation model.

Regarding our third research goal,

during the testing of our models, we
used various testing metrics. Amongst
them is calculating the variation or
standard deviation of performance
between testing images. This metric
showed how even though the test score
might not be changing much, the over-
fitting of the model might still degrade
due to over-training/over-fitting by in-
creasing the variance in the test error.
The scramble error helped us validate
segmentations and captions for images,
reducing our human bias. Seeing im-
ages of the Martian surface that has no
vegetation, taken by a rover in similar
areas, the similarity of images might
make similar features be found in sev-
eral images. This may lead to general
predictions fitting to multiple images,
and we as humans having confirmation
bias might over-estimate our model’s
performance. Scrambling the test tar-
get and predicted test target, we can
get a sense of our model’s ability to
not just fit the distribution of data,
but to fit the dependencies. To what
degree did our model predict "regolith"
by chance, or did it actually see this
in this particular image? This met-
ric turned out to be very useful when
tainting of the test data made us have
to rely more on manual inspection of
results.

Our fourth goal was exploring ways
of using unsupervised ways of turning
information in the training data into
target information. We did not have

63



6. Conclusion

much success in this. The problem
was mostly related to the design of loss
functions rewarding the behavior we
desired of the segmenter. The unsu-
pervised image segmenter (section 5.5)
kept exploiting the loss function. The
auto-encoder (section 5.6) struggled
to learn features rather than just col-
ors. One method we did not explore,
was using clustering based on depth
slices of the filters from pre-trained con-
volutional architectures we explored.
But the results would probably be sim-
ilar to the clustering done using the
unsupervised image segmenter as the
concept is similar.

Our fifth goal was not explored
throughout. The reason was the in-
formation added by a 3d renderer
might be more related to perspective
projection and spacial information like
occlusion and orientation, then fea-
tures for classification. We instead
went for the manual segmentation ap-
proach, as it is more direct. Pos-
sible future work includes exploring
synthetic rendering for detecting more
volumetric features like mountains and
mounds.

As mentioned before, untainted test
data with labels are needed to continue
working with the techniques mentioned
in this writing. The over-fitting prob-
lems with the captioner can be mit-
igated using regularization techniques,
however, we found it difficult to find
a balance between over-fitting and a
complex enough model for good per-
formance. Currently, the segmenta-
tion model is limited when it comes
to what features it detects, all features
described in the captioner not detected
by the segmentator is noise, leading to
over-fitting. Future work might include
improving the segmentation model so
it can detect more features, which most
likely would need more manually seg-
mented data. Alternatively, filter away
the mentioned features in the captions
that are not yet detectable. An end to

end training of the model could allow
for more general detection of import-
ant features. We were not able to do
this, due to over-fitting problems. We
believe more data would be needed to
do this.

64



Bibliography

[20] Neural machine translation with attention. https://www.tensorflow.
org / tutorials / text / nmt _ with _ attention. Accessed: 2020-07-10.
12th June 2020.

[Ast09] Astley, R. Rick Astley - Never Gonna Give You Up (Video).
Youtube. 2009. url: https : / / www . youtube . com / watch ? v =
dQw4w9WgXcQ.

[BCB14] Bahdanau, D., Cho, K. and Bengio, Y. Neural Machine Translation
by Jointly Learning to Align and Translate. 2014. arXiv: 1409.0473
[cs.CL].

[Ble19] Blender Online Community. Blender - a 3D modelling and rendering
package. Blender Foundation. Blender Institute, Amsterdam, 2019.

[CFC18] Casas, N., Fonollosa, J. A. and Costa-jussà, M. R. A differentiable
BLEU loss. Analysis and first results. 2018.

[Den+09] Deng, J. et al. ‘ImageNet: A Large-Scale Hierarchical Image
Database’. In: CVPR09. IEEE Conference on Computer Vision
and Pattern Recognition, 2009.

[Dr 19] Dr Michel Valstar, S. R. Active (Machine) Learning - Computerphile.
2019. url: https://youtu.be/ANIw1Mz1SRI?t=315.

[DZ19] Dutta, A. and Zisserman, A. ‘The VIA Annotation Software
for Images, Audio and Video’. In: Proceedings of the 27th ACM
International Conference on Multimedia. MM ’19. Nice, France:
ACM, 2019.

[G18] G, A. A review of Dropout as applied to RNNs. https://medium.
com/@bingobee01/a- review- of- dropout- as- applied- to- rnns-
72e79ecd5b7b. Accessed: 2020-07-09. 22nd June 2018.

[Gho+20] Ghosh, S. et al. ‘MAARS: Machine learning-based Analytics for
Rover Systems’. In: 2020 IEEE vol. 1, no. 1 (2020).

[He+15] He, K. et al. Deep Residual Learning for Image Recognition. 2015.
arXiv: 1512.03385 [cs.CV].

[Hoh+13] Hohenwarter, M. et al. GeoGebra 4.4. http://www.geogebra.org.
Dec. 2013.

65

https://www.tensorflow.org/tutorials/text/nmt_with_attention
https://www.tensorflow.org/tutorials/text/nmt_with_attention
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://youtu.be/ANIw1Mz1SRI?t=315
https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b
https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b
https://medium.com/@bingobee01/a-review-of-dropout-as-applied-to-rnns-72e79ecd5b7b
https://arxiv.org/abs/1512.03385
http://www.geogebra.org


Bibliography

[How+17] Howard, A. G. et al. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. 2017. arXiv: 1704.04861
[cs.CV].

[How19] Howard, J. Using LATEX for Your Thesis. fastai. 2019.
[Kur18] Kurita, K. An Intuitive Explanation of Why Batch Normalization

Really Works. https : / / mlexplained . com / 2018 / 01 / 10 / an -
intuitive-explanation-of-why-batch-normalization-really-works-
normalization- in- deep- learning- part - 1/. Accessed: 2020-07-05.
10th Jan. 2018.

[KUR20] KURAMA, V. A Review of Popular Deep Learning Architectures:
ResNet, InceptionV3, and SqueezeNet. https://blog.paperspace.
com/popular- deep- learning- architectures- resnet- inceptionv3-
squeezenet/. Accessed: 2020-07-03. 2020.

[Mar+15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. Software available from tensorflow.org.
2015.

[Ono+19] Ono, M. et al. ‘Make Planetary Images Searchable: Content-based
search for PDS and On-Board Datasets’. In: 50th Lunar and
Planetary Science Conference 2019 vol. 1, no. 1 (2019).

[Ono20] Ono, M. personal communication. 2020.
[Pap+02] Papineni, K. et al. ‘BLEU: a Method for Automatic Evaluation of

Machine Translation’. In: (Oct. 2002).
[PK16] Park, S. and Kwak, N. ‘Analysis on the Dropout Effect in

Convolutional Neural Networks’. In: ACCV. 2016.
[Qi15] Qi, R. ( Learning 3D Object Orientations From Synthetic Images.

2015.
[RFB15] Ronneberger, O., Fischer, P. and Brox, T. U-Net: Convolutional

Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.
04597 [cs.CV].

[Rot+16] Rothrock, B. et al. ‘SPOC: Deep Learning-based Terrain Classifica-
tion for Mars Rover Missions’. In: AIAA SPACE 2016 vol. 1, no. 1
(2016).

[Sze+15] Szegedy, C. et al. Rethinking the Inception Architecture for
Computer Vision. 2015. arXiv: 1512.00567 [cs.CV].

[Wik20] Wikipedia contributors. Regression toward the mean — Wikipedia,
The Free Encyclopedia. [Online; accessed 6-July-2020]. 2020.

[Won19] Wong, W. What is Teacher Forcing. https://towardsdatascience.
com/what-is-teacher-forcing-3da6217fed1c. Accessed: 2020-07-10.
15th Oct. 2019.

66

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://mlexplained.com/2018/01/10/an-intuitive-explanation-of-why-batch-normalization-really-works-normalization-in-deep-learning-part-1/
https://mlexplained.com/2018/01/10/an-intuitive-explanation-of-why-batch-normalization-really-works-normalization-in-deep-learning-part-1/
https://mlexplained.com/2018/01/10/an-intuitive-explanation-of-why-batch-normalization-really-works-normalization-in-deep-learning-part-1/
https://blog.paperspace.com/popular-deep-learning-architectures-resnet-inceptionv3-squeezenet/
https://blog.paperspace.com/popular-deep-learning-architectures-resnet-inceptionv3-squeezenet/
https://blog.paperspace.com/popular-deep-learning-architectures-resnet-inceptionv3-squeezenet/
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1512.00567
https://towardsdatascience.com/what-is-teacher-forcing-3da6217fed1c
https://towardsdatascience.com/what-is-teacher-forcing-3da6217fed1c

