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Abstract 

 

Semi-supervised learning defines the techniques that fall in between supervised and unsupervised 

learning. It is commonly used in classification settings where one has a lesser amount of labeled data 

compared to unlabeled. The goal is to extract extra learning from the unlabeled data to improve on the 

supervised classification. 

We will explore some of the approaches to semi-supervised learning to improve on the classification of 

Nordic news articles in the corpus provided. We will be exploring the methods of self-training in several 

different configurations and methods of feature extraction and engineering.  

We will also provide some background and baseline using common supervised methods for improving 

results as well as different document representations like word-embedding so that we will be able to 

compare and put our semi-supervised results in relation to these methods. 

We will see that while some of the methods explored did not succeed, others did and in relation to some 

of the supervised methods their performance is comparable. We will also see some promising approaches 

for countering the imbalance problem when considering confident pseudo-labels. 
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1. Introduction 

1.1. Motivation 
In our dataset of 1 561 443 articles, only 37 323 are labeled. That is a miniscule 2.390%. That leaves 

97.610% of the data and possible patterns contained there unavailable for our supervised learning 

algorithms to learn from. If it was possible to leverage only some percentage of that data it could give us 

additional learning and increased performance in our supervised models. This applies to most supervised 

learning scenarios where the labeled data compared to unlabeled is very sparse. 

This is the task of semi-supervised learning techniques, some of which we will explore in this work. To be 

able to compare results we will also look at supervised methods of improving performance and create a 

baseline for comparison. 

1.2. Problem definition 
Text classification of Nordic newspapers following the CAP labeling scheme has proved difficult because 

of imbalance in the labeled data in the corpus available and few samples for the minority labels. 

Supervised methods of countering this imbalance has had mixed results. We will see if we can improve 

upon these supervised methods with additional learning from the unlabeled part of the corpus. 

Q1: Are we able to create an algorithm that is able to extract additional learning using self-training 

methods, an inductive wrapper class of semi-supervised methodology. 

Q2: Can we use unsupervised preprocessing techniques for feature extraction and engineering. 

Q3: Will applying these techniques improve accuracy in classification 

2. Background 
Here we will write about the news corpus that has been the focus of our work. It was delivered by the 

Faculty of Social Sciences at UiS and has been a part of research done by one of their Ph.D. students. To 

make our contributions as comparable to their research we have also received their formatted and 

lemmatized version of the corpus. We have used this lemmatized version in all our experiments. 

The corpus itself is a selection of news articles from two major newspaper outlets in Norway; Aftenposten 

and VG. Each contributing 60.5% and 39.5% to the total 1 561 443 articles in the corpus. Of these, 37 323 

articles are labeled according to the CAP scheme in the respective 45 labels (see table). 

2.1. Labeling scheme 
Below is a table of the original CAP labeling scheme. 

Code Label 

1|1 Macroeconomics 

101|101 Employment and unemployment 

102|102 Taxes, tax policy and reforms 

103|103 Public spending, National Budget and debt 

104|104 Industrial policy 

2|2 Civil rights and liberties 

3|3 Health 
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4|4 Agriculture, fisheries and food 

401|401 Foods and food industry 

5|5 Labour 

501|501 Unemployment benefits and sickness benefits/pay 

6|6 Education 

7|7 Environment 

8|8 Energy 

9|9 Refugees and immigration 

901|901 Refugees and asylumseekers 

10|10 Transport 

1001|1001 Public transport 

12|12 Crime and justice 

13|13 Social welfare and social affairs 

1301|1301 Elderly care, retirement and other benefits for elderly 

1302|1302 Children and families, rights and conditions of children 

14|14 Housing and urban/rural development 

1401|1401 Public funding for housing 

15|15 Commerce, banking and consumer issues 

16|16 Defense and security 

1601|1601 Terrorism 

17|17 Research, technology, IT and mass media 

18|18 Foreign trade 

19|19 Foreign affairs, development aid and international economy 

1901|1901 Aid assistance policy to developing countries and assistance to other countries 

1902|1902 International economy and finance 

1903|1903 EU and EEA 

20|20 Public sector and politics in general 

2002|2002 Politics in general 

2001|2001 Relationship between the central and local level, regional policy and local politics 

21|21 Public land, spatial planning and resource management 

23|23 Culture, art 

91|91 Culture / art events and entertainment 

24|24 Sports 

92|92 Sporting events, athletes 

25|25 Natural disasters, fires, preparedness 

2501|2501 Other accidents 

26/26 Religion and churches 

93|93 Miscellaneous 
Table 1 CAP labeling scheme 

As we can see the list of labels is very exhaustive and it is of a hierarchical structure. There is a lot of 

overlapping subjects especially for subgroups of labels (3 and 4 digit labels). To simplify classification and 

make the labeling scheme less “noisy” we aggregate sublabels into parent labels. Then we get the updated 

labelling scheme we will be using further on in this thesis. This aggregation is done in accordance with the 

Faculty of Social sciences directions. 
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Code Label 

1 Macroeconomics 

2 Civil rights and liberties 

3 Health 

4 Agriculture, fisheries and food 

5 Labour 

6 Education 

7 Environment 

8 Energy 

9 Refugees and immigration 

10 Transport 

12 Crime and justice 

13 Social welfare and social affairs 

14 Housing and urban/rural development 

15 Commerce, banking and consumer issues 

16 Defense and security 

17 Research, technology, IT and mass media 

18 Foreign trade 

19 Foreign affairs, development aid and international economy 

20 Public sector and politics in general 

21 Public land, spatial planning and resource management 

23 Culture, art 

91 Culture / art events and entertainment 

24 Sports 

92 Sporting events, athletes 

25 Natural disasters, fires, preparedness 

26 Religion and churches 

93 Miscellaneous 
Table 2 Aggregated labels 

We should also note that the labels 91, 92 and 93 are to be considered as trash/noise and we are not 

ultimately interested in these labels, but since we are going to be working with the unlabeled part of the 

corpus we keep them as they have a considerable large portion of the labeled corpus and we can expect 

that the distribution is similar in the unlabeled corpus. Being able to discriminate them would be 

important. 
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2.2. Class distribution 
The corpus is heavily imbalanced as we can see from figure below. 

 

Figure 1 Label distribution 

We can also observe that a large portion of the labeled articles fall in the “trash” category (91, 92, 93) and 

when we merge them we can see how they compare to the rest of the label distribution in the figure 

below. 

 

Figure 2 Trash distribution 

Our main concern here are the labels 18 and 21 with very low numbers of samples, 167 samples from 

label 18 and 214 labeled 21. These numbers are low with respect to ability to learn enough patterns to 

discriminate, but they are also low compared to the other labels and would be prone to be ignored by a 

classifier due to such a low prior probability compared to the other labels. 
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2.3. Length metrics 
We can count number of words per article or just take the character length of the entire article as 

measurements of length. We use the mean values and also standard deviation to see if there is any 

discriminatory effects. We use label -1 for the unlabeled data and we choose character length as metric. 

 

Figure 3 Mean character length 

 

Figure 4 Standard deviation character length 

As we can see there is minimal discriminatory effect from these metrics. We could perhaps see some 

difference in mean length, but when we have such a high standard deviation it becomes impossible to 

discriminate on this metric. 

We can also compare between labeled and unlabeled to check the distribution. 
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Figure 5 Mean length and standard deviation for labeled and unlabeled data 

Here we can see a slight difference indicating that the distributions are not entirely equal. We can perhaps 

expect a higher presence of the lower length labels with a higher standard deviation. 
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2.4. Nynorsk/Bokmål distribution 
Since Norwegian language have two distinct written languages it is important to check for the distribution 

of these in the corpus. There is no indicator for NN (Nynorsk) or NB (Bokmål)) in the dataset so we need 

to make a discriminator for this. An easy way to discriminate would be to take the 500 most common 

words for NB and translate this to NN. Then we can reduce these lists to words that are different. When 

we iterate over articles we can take the intersection between these two lists, and the list with the greatest 

intersection would imply the written language used. 

 

Figure 6 Nynorsk distribution 

As we can see the NN presence is very low in the labeled data, and at a total of 1957 articles in the whole 

corpus. We are safe to remove them as they would only introduce noise to our feature space. All further 

experiments in this thesis is done with these NN articles removed. 

2.5. Date distribution 
Our corpus ranges in date from 2000-01-02 until 2017-09-16. During these 17 years there might be some 

development in language usage and perhaps also newspaper focus. New subjects with internet related 

terminology might grow more dominant in later times and so on. 

Let us also check the corpus distribution per year to see if we have representative number of articles for 

each time-period. 
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Figure 7 Entire corpus articles per year distribution 

As we can see there is no time period that is not well represented, perhaps the later years have a little 

less then the average. Let us compare the corpus distribution with the labeled data to see if we have any 

differences there. 

 

Figure 8 Labeled corpus per year distribution 

Our labeled corpus follow the overall distribution well. We will keep this time distribution in mind later 

and check if there is any differences in perhaps binning the corpus by time and train separate models. 

2.6. Vectorization 
We have a corpus of news articles containing Norwegian language text. To be able to run any machine 

learning algorithm on these we need to reduce these articles to a numerical feature space that our 

machine learning algorithms can understand. A simple and intuitive way to solve this is to break down our 

articles into the words that it contains. Then we can represent our articles as a set of words with a 

corresponding count of the number of times the word appeared in the article. When we have done so 
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with all the articles we can merge the sets of words into one great set of words spanning all the words in 

the entire corpus. This is now our vocabulary or feature space and each article is then represented in this 

feature space with the counts of words appearing in the articles as a vector we can feed to our machine 

learning algorithm. This method is called a bag-of-words method, BoW. 

This method has some weaknesses though. It will favor the most frequent words in the corpus and longer 

documents as well. Luckily there is a method that counters these biases. 

2.6.1. TF-IDF 
TF-IDF or Term Frequency – Inverse Document Frequency, counters these problems by converting the 

counts to internal document frequencies, countering the bias towards long documents. The IDF counters 

the bias towards most frequently used words by punishing words that occur frequently in the corpus. See 

formula below. 

 

Figure 9 TF-IDF formula 

A popular library to use for TF-IDF vectorization is scikit-learns[1] TfidfVectorizer [2]. It comes with a lot 

of customizable hyperparameters, but the most important ones that we will focus on is ‘lowercase’ and 

‘max_df’. 

When we apply our vectorizer to the corpus we will tokenize the articles by splitting them on the space 

character. The way this tokenization is done can also be customized and one very common thing to do at 

this stage is to lowercase all words. This is to reduce noise in the feature space, but since we have a pre-

formated lemmatized corpus where such noise is already taken care of we do not want to lowercase 

words because capitalized words are here recognized as entities and should be vectorized as independent 

terms. So we set ‘lowercase’ to false. 

The next hyperparameter ‘max_df’ is a feature selection parameter with similar function as removing stop 

words. It will remove terms that occur at a maximum frequency of documents. This is also to reduce noise 

as very frequent words bring little discriminatory effect. We set our ‘max_df’ to 0.25, meaning we remove 

terms that occur in ¼ of the documents. 

More about how we come to these hyperparameter-settings in next chapter, Baseline, where we tune 

our model. 
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With help from Singular Value Decomposition (SVD) we can plot our TF-IDF vectors and see if there is any 

separation between classes. 

 

Figure 10 SVD plot of TF-IDF vectors of labeled data 

There is little separation between classes in this plot. Let us see if there is a difference in distribution for 

the unlabeled data.

 

Figure 11 SVD plot of TF-IDF vectors of unlabeled data 
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Difficult to say much about the distribution of the unlabeled data, but it seems to be similar to the 

labeled distribution. 

2.6.2. Word embedding 
As TF-IDF gives discrete representations in vector space it does not capture any relationships between 

words. Word embeddings capture these relationships with help of neural nets looking at the context the 

words appear in and project these words into a defined dimensional space. 

As word embedding models are resource heavy to train it is very useful to make use of transfer learning 

and use already trained models from different datasets. We can then optionally do fine tuning to better 

adapt to our specific dataset. 

The Language Technology Group at University of Oslo [3] has a repository [4] of several embedding models 

trained on multiple datasets available for download. We will look at model 80 and 81 which are both 

fastText [5] skipgram models trained on Norsk Aviskorpus, NoWaC and NBDigital corpuses. These 

corpuses are highly related to our context so we will not do any fine tuning of these models. 

Model 80 is a lemmatized model with vector size 100 and a vocabulary size of 3 998 140 words. 

Model 81 is not lemmatized with vector size 100 and a vocabulary size of 4 428 648 words. 

To convert our corpus with the embedding models we need to follow a few steps. First we need to identify 

the vocabulary to embed. This can be done using scikit-learns CountVectorizer [6]. We then iterate over 

the vocabulary and query the model for the embedding vector for that word. When done we will have a 

matrix representing our vocabulary. 

Then we need to convert our document representations to fit into the embedded space. This can most 

easily be done by converting our document vector holding counts of words for each document into a 

subset of the embedded matrix vocabulary. Then we can take the mean values over each dimension and 

we have a single vector representation of a document. This approach has the same weaknesses as the 

simple approach to vectorization explained earlier. Word frequencies both internal to document and over 

corpus are not taken into consideration and therefore our mean vectors will be very noisy as every word 

“pulls” equally in their direction. 

To further sophisticate the embedding document representations we can make use of the TF-IDF term 

frequencies we already have made to represent our documents. Now instead of just taking the mean we 

take the TF-IDF weighted sum of the embedded subset matrix. To do this we simply take the dot product 

of the TF-IDF vector with the embedded matrix and if the TF-IDF weights are not regularized (sum to 1) 

we divide that with the sum of the TF-IDF vector. 

Then we get a better representation of the documents in embedded space. It will give us approx. 2% 

increase in accuracy over the naive mean representation. 

Below are some plots of both lemmatized and not lemmatized embedding vectors. 
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Figure 12 PCA plot of lemmatized fastText vectors of labeled data 

 

Figure 13 PCA plot of lemmatized fastText vectors of unlabeled data 
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Figure 14 PCA plot of non-lemmatized fastText vectors of labeled data 

 

Figure 15 PCA plot of non-lemmatized fastText vectors of unlabeled data 

3. Baseline 
Before we apply our supervised and semi-supervised algorithms it is good to establish a baseline for us to 

refer to. Our main task is text classification so we will need a model for classification. Here we have a few 
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choices to make. Classical text classification models are Naïve Bayes (NB) and Support Vector Machines 

(SVM). These are fast and reliable and have proved effective for such tasks. In later years it has also 

become popular with huge deep neural networks like BERT that are very heavy and expensive to train. 

We will not look into such heavy models here because as they do deliver better accuracy, so will any newer 

and better classifiers in the near future (and the bar moves fast). Our goal is not to find the best classifier, 

but to device a model for exploiting unlabeled data. A classifier is part of such a model, so replacing it will 

certainly improve results. We are more interested in the increase in accuracy we can achieve regardless 

of what type of classifier is used by leveraging the unlabeled data. 

3.1. Train, validation and test splits 
To be able to compare and measure results we will need to split our labeled data into 3 disjoint sets. One 

for training, this will be the data available for our machine learning algorithm to learn patterns from. One 

for validation, this set is used during training to evaluate the performance of the model and to perform 

hyper-parameter tuning based on results on this validation set. Lastly we have a test set that we do the 

final performance evaluation of the model on. This way we will not be overly optimistic by tuning our 

model to fit our validation set, but get a better understanding of our models general performance on 

unseen data. 

For our experiments we will use a 60% train, 20% validation and 20% test split of our labeled data. We use 

scikit-learns train_test_split [35] library to do a stratified split, meaning we try to balance the label 

distribution in the splits. This is important since we have a lot of labels and also since our dataset is 

imbalanced we want to keep the prior probabilities similar in our splits. We do an initial split with 

random_state=1 and a test_size=0.4, this gives us the 60% training data. Then we further split the 0.4 

test_size data in half to get our 20% validation and test sets, also with random_state=1. 

We will use these splits throughout the experiments so that results are comparable. 

3.2. TF-IDF vectorization 
For our experiments we will use scikit-learns TfidfVectorizer referenced earlier. It comes with a set of 

hyper-parameters we can set, for further explanation on what the parameters do we reference to scikit-

learns documentation. We will focus on the following parameters: 

Hyper-parameter Options 
‘strip_accents’ [‘ascii’, ‘unicode’, ‘None’] 
‘max_df’ Float, in range [0.0, 1.0] 
‘lowercase’ [‘True’, ‘False’] 
‘max_features’ Int, number of features 
‘stop_words’ List, list of stopwords 

Table 3 scikit-learn TfidfVectorizer hyper-parameters 

In order to evaluate the vectorization we need a classifier and for our initial evaluation we just run the 

TfidfVectorizer with default hyper-parameters together with 5 different classifiers also running with 

default hyper-parameteres on validation data split. The classifiers are as follow, and subsequent accuracy 

scores: 
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Model Accuracy score 
LinearSVC 0.6754 
SGDClassifier 0.6671 
LogisticRegression 0.6357 
ComplementNB 0.6224 
MultinomialNB 0.3182 

Table 4 Initial model default values accuracy scores 

As we can see both the SVM based classifiers come out ahead of both logistic regression and NB based 

classifiers. These results are only preliminary results though and we will go more thorough into exploring 

hyper-parameters for each of these classifiers later. But for our initial tuning of TfidfVectorizer we choose 

LinearSVC as our classifier to tune with. 

The hyper-parameter values shown in the table below will be run in a grid-search with LinearSVC as 

classifier using only default parameters on the validation data split. 

Hyper-parameter Values 
‘strip_accents’ [‘ascii’, ‘unicode’, None] 
‘max_df’ [0.05, 0.15, 0.25, 0.35] 
‘lowercase’ [True, False] 
‘max_features’ [10000, 20000, 30000, 40000, None] 

Table 5 TfidfVectorizer initial grid-search hyper-parameter values 

We skip running stopwords in the grid-search as this parameter is dependent on the ‘strip_accents’ hyper-

parameter to properly function. Instead we get the best performing hyper-parameters of this initial grid-

search and see if they perform better with or without stopwords afterwards. 

The best performing hyper-parameters of this initial grid-search: 

Hyper-parameter Value 
‘strip_accents’ None 
‘max_df’ 0.25 
‘lowercase’ False 
‘max_features’ None 

Table 6 TfidfVectorizer initial grid-search best values 

Returned with an accuracy of: 0.6775 

3.2.1. Stopwords 
To reduce noise in a corpus it can sometimes be beneficial to remove what is known as stopwords. These 

are words that are so common in language that they carry little discriminatory effect to any text. They are 

mostly function words as “the”, “is”, and “at”. Removing them will shrink the size of the corpus and of 

course the vocabulary and can therefore make modelling more efficient. But removing such words can 

also be detrimental to catching phrases or entities where these words are used. 

From our hyper-parameters we already have used ‘max_df’ which could be thought of as a corpus-specific 

stopwords list and we saw that a value of 0.25 returned the best score. This means that the words 

appearing in >=25% of the documents will be considered stopwords and removed. 
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To further investigate if we can get benefits of removing stopwords other then the corpus-specific ones 

we need to get a list of stopwords not based entirely on our corpus. Such a list is not easily obtained for 

Norwegian language as most NLP frameworks operate with English vocabulary. But there is a resource 

online that provide a list of the 500 most frequent words in Norwegian language based on both newspaper 

articles and literature. This list is compiled on behalf of University of Bergen and can be found at this 

location [7]. 

We also need to process the list of stopwords with the same lemmatization as is applied to the corpus for 

it to match correctly. We will also see what results we get by using different lengths of the list, i.e. all 500, 

top 250, top 100, top 50 etc. 

The results applied with the previously mentioned best hyper-parameters for TfidfVectorizer and 

LinearSVC default settings on the validation set below: 

Number of stopwords Accuracy score 
20 0.6775 
50 0.6763 
100 0.6767 
150 0.6763 
250 0.6724 
500 0.6687 

Table 7 Stopwords accuracy scores 

As we can see there is no extra benefit from using an external stopwords list and we will not apply it 

further in our experiments. 

3.3. Classifier 
As mentioned earlier we have focused on the common classical classifiers for Natural Language Processing 

(NLP) for this thesis. We will also use implementations provided by scikit-learns package of machine 

learning libraries. Scikit-learn is a reputable and reliable source of such implementations and also provide 

an extensive library of other functionality we can benefit from in our experiments. Sticking with one 

provider also simplifies compatibility issues between different modules. 

The classifiers we will look at are the following: 

3.3.1. LinearSVC 
This classifier [8] is a SVM classifier based on the C-library liblinear [9]. It uses a linear kernel and is 

implemented to support a large number of samples. This is important to us as our entire corpus is more 

then 1.5 million samples. It also support sparse representations which is also important as our 

TfidfVectorization will produce a sparse matrix. Multiclass classification , which is our case, is handled by 

one-vs-rest. 

We will look at the following hyper-parameters and perform a grid-search over the value ranges in the 

table below: 
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Hyper-parameter Values 
‘loss’ [‘hinge’, ‘squared_hinge’] 
‘tol’ [0.01, 0.005, 0.001, 0.0005] 
‘C’ [0.5, 1, 1.5, 2] 

Table 8 LinearSVC initial hyper-parameter grid-search values 

The best performing hyper-parameter values were: 

Hyper-parameter Value 
‘loss’ ‘squared_hinge’ 
‘tol’ 0.01 
‘C’ 0.5 

Table 9 LinearSVC initial best hyper-parameter values 

With an accuracy score of: 0.6798 

As we can see two of our best performing hyper-parameters are edge values so we do further 

investigation and run a second grid-search with following parameters: 

Hyper-parameter Values 
‘loss’ [‘squared_hinge’] 
‘tol’ [0.008, 0.01, 0.015, 0.02] 
‘C’ [0.1, 0.3, 0.5, 0.8] 

Table 10 LinearSVC second hyper-parameter grid-search values 

The best performing hyper-parameter values were: 

Hyper-parameter Value 
‘loss’ ‘squared_hinge’ 
‘tol’ 0.01 
‘C’ 0.5 

Table 11 LinearSVC best hyper-parameter values 

With an accuracy score of: 0.6796 

Here we get a confusing result as we have the same hyper-parameter values, but different accuracy 

scores. This is a result of the underlying liblinear library random state that we are unable to do anything 

with, so scores will have minor fluctuations (+- 0.0005). But we did get non-edge values so we settle for 

these hyper-parameters as our best. 

3.3.2. SGDClassifier 
This is a Stochastic Gradient Decent (SGD) wrapper [10] for linear classifiers that enables SGD training. 

Depending on what loss function defined by hyper-parameter it can work as a SVM, Logistic Regression 

(LR) or Perceptron classifier. It works with large data and can handle sparse representations. 

We will focus on the following hyper-parameters and perform grid-search over the value ranges in the 

table below: 
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Hyper-parameter Values 
‘loss’ [‘hinge’, ‘log’, ‘squared_hinge’, ‘perceptron’] 
‘alpha’ [0.001, 0.0001, 0.00001, 0.000001] 
‘random_state’ [1] 

Table 12 SGDClassifier hyper-parameter grid-search values 

The best performing hyper-parameters were: 

Hyper-parameter Value 
‘loss’ ‘log’ 
‘alpha’ 0.00001 

Table 13 SGDClassifier best hyper-parameter values 

With an accuracy score of: 0.6711 

The LR loss function performed best and also worth noting was it got a precision of 0.7125 which is 2-4% 

above what previous models achieve.  

3.3.3. LogisticRegression 
A probabilistic model for classification [36] also based on the liblinear library. It uses a one-vs-rest 

implementation of multiclass problems. It handles sparse data and scales well and it has regularization. 

We will focus on the following hyper-parameters: 

Hyper-parameter Values 
‘tol’ [0.001, 0.0001, 0.00001, 0.000001] 
‘C’ [6, 8, 10, 12] 
‘solver’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘saga’] 
‘random_state’ [1] 

Table 14 LogisticRegression hyper-parameter grid-search values 

The best performing hyper-parameters were: 

Hyper-parameter Value 
‘tol’ 0.0001 
‘C’ 8 
‘solver’ ‘saga’ 

Table 15 LogisticRegression best hyper-parameter values 

With an accuracy score of: 0.6728 

The solver ‘saga’ is a stochastic average gradient decent solver and is optimized for large datasets with 

high dimensionality so it should fit our purpose well.  

3.3.4. ComplementNB 
This Naïve Bayes implementation [11] is optimized for imbalanced datasets and could therefore be 

interesting for us. It is an adaptation of Multinomial Naïve Bayes (MNB) where weights are based on 

statistics of the complement of each class. It should be more stable and is also considered to be better at 

text classification then MNB. 
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Naïve Bayes classifiers also have an advantage that they have only one hyper-parameter to tune, the alpha 

smoothing parameter: 

Hyper-parameter Values 
‘alpha’ [0.1, 0.2, 0.5, 1] 

Table 16 ComplementNB hyper-parameter grid-search values 

The best performing alpha smoothing parameter was: 

Hyper-parameter Value 
‘alpha’ 0.2 

Table 17 ComplementNB best hyper-parameter value 

With an accuracy score of: 0.6573 

We see that we get a lesser score then the prior classifiers, but an advantage to the NB classifiers is that 

they are very fast and probabilistic, something that is advantageous for our application where we have a 

very large dataset and we will also need to deal with probability for judging confidence in predictions. 

3.3.5. MultinomialNB 
One of the most classical NB variants [12] for text-classification. We will see how it performs compared 

to its complement counterpart that is more optimized for imbalanced data. 

Again, we focus only on the alpha smoothing parameter for our grid-search: 

Hyper-parameter Values 
‘alpha’ [0.01, 0.0015, 0.001, 0.0005, 0.0001] 

Table 18 MultinomialNB hyper-parameter grid-search values 

The best performing alpha smoothing parameter was: 

Hyper-parameter Value 
‘alpha’ 0.0015 

Table 19 MultinomialNB best hyper-parameter value 

With an accuracy score of: 0.6463 

As we can see there was a slight underperformance compared to the complement version of NB, though 

MNB is the fastest of all the classifiers we have tested it is also the bottom performer. 

3.4. Conclusion 
Now we have tuned and compared some of the most classical classifiers for text-classification and we 

have the current ranking from tuning on the validation set: 

Classifier Accuracy score 
LinearSVC 0.6797 
LogisticRegression 0.6728 
SGDClassifier 0.6711 
ComplementNB 0.6573 
MultinomialNB 0.6463 

Table 20 Classifiers best performance on validation set 
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As a final test we will run these tuned classifiers on the holdout test set to get a more realistic view of 

performance: 

Classifier Accuracy score 
LinearSVC 0.6759 
LogisticRegression 0.6672 
SGDClassifier 0.6660 
ComplementNB 0.6605 
MultinomialNB 0.6456 

Table 21 Classifiers performance on holdout test set 

Not any surprises here on the test set, most classifiers have slightly poorer performance compared to 

validation set in accuracy and ComplementNB a slight increase, but nothing more then what to be 

expected. The ranking is still the same. 

So in conclusion we can say that for our labeled data the best performing classifier is the SVM family of 

classifiers and LinearSVC being the top performer. We can then say that 0.6759 is our initial baseline score. 

Our supervised experiments will be judged on performance in comparison to this score. 

We may use some of the lesser performing classifiers in the experiments due to for instance performance 

and speed issues or for probabilistic issues. As mentioned earlier, probabilistic classifiers as NB and LR give 

good probabilities that we can use for confidence scores. Though there are ways of computing 

approximations to probabilities for the SVM based classifiers. More on this later in the thesis. 

4. Supervised methods for improvement 
In order for us to be able to compare the effectiveness of our semi-supervised techniques we will also 

apply some supervised (or rather non-semi-supervised) measures for increasing accuracy. This way we 

can compare the results in relation to these measures. 

We will adapt some techniques used in a precursor project to this thesis [37] with some adjustments, but 

due to a problem in file naming and ID’s we were not able to re-use any of the results and conclusions 

from that project here. 

4.1. Feature selection 
Perhaps the simplest and most common practice for better performance. Feature selection decrease the 

complexity of our model and could lead to less variance. We already do a bit of feature selection in the 

vectorization stage of the process, mentioned in the chapter about vectorization. There we do feature 

selection based on frequency in features alone, but at this stage we will perform more sophisticated 

statistical measures by also looking at the labels when we perform selection. This way we will hopefully 

choose features that are most important for classification. 

A caveat here is that sometimes, especially if we have few samples, feature selection like this can lead to 

picking features that are very rare, and therefore very discriminatory in our dataset, but not really 

generally discriminatory “in real life”. For instance if an adjective not often used is used by coincidence 

only sometimes within a category and not anywhere else, it would become a very significant 

discriminatory feature for this category. But “in real life” this adjective might be used in any category and 

therefore it would lead to misclassifications. 



26 
 

Possible countermeasures to this could be done at the vectorization stage where we can filter out very 

rare words by setting a minimum document frequency threshold. We have not done this and we will not 

be doing any particular measures to prevent these caveats in this feature selection process as well, but it 

is mentioned so that it is something to be aware of. 

For all our experiments we will be using the previous experiments best performing setup of 

TfidfVectorization and LinearSVC classification. We will be looking at percentage increase (or decrease) in 

accuracy compared to our current initial baseline. 

4.1.1. SelectKBest 
This [13] module from scikit-learns library enable us to perform feature selection based on a scoring 

function. We will look at chi-square, ANOVA F-value and mutual info scoring functions and perform a grid-

search over them looking at k different thresholds for number of features. 

Hyper-parameter Values 
‘score_func’ [chi2, f_classif, mutual_info_classif] 
‘k’ [10000, 25000, 40000, 55000] 

Table 22 SelectKBest grid-search hyper-parameter values 

The feature selection is done on the training set and then the validation and test set is transformed into 

the selected features of the training set. 

The performance on the validation set was as follow, grouped by ‘k’: 

‘k’ ‘score_func’ Accuracy score 

10000 chi2 0.6669 

25000 f_classif 0.6751 

40000 chi2 0.6781 

55000 chi2 0.6777 

 

And the result running with best performing feature selection on test set: 0.6704 

4.1.2. Conclusion 
As we see there is a 0.814% decrease in performance using feature selection. 

4.2. Sampling 
Since our dataset is heavily imbalanced we can introduce techniques for dealing with that as a means for 

improving accuracy. One such technique is sampling and we will take a look at some popular sampling 

strategies for both over-sampling minority labels and under-sampling the majority labels.  

To do sampling we will look outside the scikit-learn libraries and use a package called imbalanced-learn 

[14] that has a lot of modules for doing different sampling techniques. A great thing about this package is 

that it is developed with compatibility with scikit-learn in mind so we can use the modules seamlessly with 

our models. 
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4.2.1. ClusterCentroids 
This [15] is sort of a hybrid of under-sampling as it introduce new synthetic samples. By creating k 

centroids using a KMeans clustering algorithm applied to samples of same label and using them as 

representatives for the label. It is sensitive to how well the data is able to be clustered and there are a 

couple strategies as to how much of this is applied. This is represented in the hyper-parameter 

sampling_strategy. We will be doing a grid-search over this hyper-parameter. 

Hyper-parameter Values 
‘sampling_strategy’ [‘majority’, ‘not_minority’, ‘all’] 
‘random_state’ 1 

Table 23 ClusterCentroids grid-search hyper-parameter values 

The best performing hyper-parameter value being: 

Hyper-parameter Value 
‘sampling_strategy’ ‘majority’ 

Table 24 ClusterCentroids best hyper-parameter values 

With an accuracy score on validation set: 0.6326 

Accuracy score on test set: 0.6332 

This gives a 6.318% decrease in performance. 

Since this technique use clustering techniques for creating synthetic samples it could benefit from 

reducing feature space using feature selection. We will also try with best performing hyper-parameters 

for both ClusterCentroids and SelectKBest to see if this is the case. The sampling will then be applied after 

feature selection in the pipeline. 

Accuracy score on test set with feature selection: 0.6147 

And we see that feature selection gained no extra benefits. 

4.2.2. RandomUnderSampler 
The most basic under-sampling technique. As the name implies it [16] performs under-sampling by 

selecting random subsets from the different labels. Depending on sampling strategy it will do this from 

either only the majority label or from all but the smallest label. It can also adjust for replacement or not. 

We will look at the two hyper-parameters available and perform a grid-search: 

Hyper-parameter Values 
‘sampling_strategy’ [‘majority’, ‘auto’] 
‘replacement’ [True, False] 
‘random_state’ 1 

Table 25 RandomUnderSampler grid-search hyper-parameter values 

With best performing hyper-parameters: 
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Hyper-parameter Value 
‘sampling_strategy’ ‘majority’ 
‘replacement’ False 

Table 26 RandomUnderSampler best hyper-parameter values 

Accuracy score on validation set: 0.6258 

Accuracy score on test set: 0.6256 

This gives us a 7.442% decrease in performance. 

4.2.3. TomekLinks 
Perhaps the most interesting under-sampling technique [17]. A Tomek’s link is when two samples of 

different labels are each other’s closest neighbors according to a chosen distance metric. The under-

sampling is done by removing either one or both of these samples depending on what sampling strategy 

is chosen. With ‘majority’ strategy only the majority label samples are removed, with ‘auto’ strategy both 

are removed, except for the minority label samples. 

We can grid-search only one hyper-parameter for TomekLinks: 

Hyper-parameter Values 
‘sampling_strategy’ [‘majority’, ‘auto’] 
‘random_state’ 1 

Table 27 TomekLinks grid-search hyper-parameter values 

The best performing hyper-parameter value being: 

Hyper-parameter Value 
‘sampling_strategy’ ‘majority’ 

Table 28 TomekLinks best hyper-parameter value 

With an accuracy score on validation set: 0.6803 

And accuracy on test set: 0.6770 

Giving us a 0.163% increase in performance. So far the only technique that has actually given us an 

increase in performance. 

4.2.4. ADASYN 
Our first over-sampling method. Short for Adaptive Synthetic sampling method [18]. It use k-nearest 

neighbors to calculate the density for a region and populates it with synthetic samples until a density 

threshold is met. 

It has two hyper-parameters to tune, sampling_strategy same as before and n_neighbors. The latter is 

used to define how many neighbors in KNN is used to determine the density of a region. 

Due to a software error in this implementation other sampling strategies then minority return an error. 

Because of this we tried searching using a dictionary defining manually sample thresholds for each label. 

Every effort to tune this with either all labels with same threshold as majority or different grading of 

threshold for each label returned worse results then using minority as sample strategy. We therefore 

focus only on this strategy. 
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We will perform a grid-search over the hyper-parameters: 

Hyper-parameter Values 
‘sampling_strategy’ [‘minority’] 
‘n_neighbors’ [23, 27, 31, 33] 
‘random_state’ 1 

Table 29 ADASYN grid-search hyper-parameter values 

With best performing hyper-parameters: 

Hyper-parameter Value 
‘sampling_strategy’ ‘minority’ 
‘n_neighbors’ 27 

Table 30 ADASYN best hyper-parameter values 

Accuracy score on validation set: 0.6797 

And accuracy on test set: 0.6761 

Giving us a 0.030% increase in performance. 

4.2.5. SMOTE 
Short for Synthetic Minority Oversampling Technique [19]. It is same as ADASYN, but differs by not using 

a density function for regions but rather a uniform grid like structure. It creates new synthetic samples on 

this grid until a label imbalance threshold is met. KNN is also used for deciding what labels are being 

synthesized on the grid. 

Hyper-parameters are same as for ADASYN: 

Hyper-parameter Values 
‘sampling_strategy’ [‘minority’, ‘auto’] 
‘k_neighbors’ [3,5,7,13] 
‘random_state’ 1 

Table 31 SMOTE grid-search hyper-parameter values 

With best performing hyper-parameters: 

Hyper-parameter Value 
‘sampling_strategy’ ‘minority’ 
‘k_neighbors’ 3 

Table 32 SMOTE best hyper-parameter values 

Here we get a lower end edge value of 3 as ‘k_neighbors’, but we do not search at lower values of k. 

Accuracy score on validation set: 0.6795 

And accuracy score on test set: 0.6761 

Giving us a 0.030% increase in performance, exactly same as ADASYN. 
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4.2.6. RandomOverSampler 
The most basic over-sampling technique [20]. Creates new synthetic samples by random sampling with 

replacement from the minority classes depending on what sampling strategy is chosen. 

Grid-search over hyper-parameters: 

Hyper-parameter Values 
‘sampling_strategy’ [‘minority’, ‘auto’] 
‘random_state’ 1 

Table 33 RandomOverSampler grid-search hyper-parameter values 

With best performing hyper-parameter: 

Hyper-parameter Value 
‘sampling_strategy’ ‘minority’ 

Table 34 RandomOverSampler best hyper-parameter values 

Accuracy score on validation set: 0.6794 

Accuracy score on test set: 0.6761 

Giving an 0.030% increase in performance. 

4.2.7. Conclusion 
If we look at the results in the table below we can see that none of the sampling techniques gave any 

substantial increase in performance. 

Sampling technique Change in performance 
ClusterCentroids -6.318% 
RandomUnderSampler -7.442% 
TomekLinks 0.163% 
ADASYN 0.030% 
SMOTE 0.030% 
RandomOverSampler 0.030% 

Table 35 Resulting performance change of sampling techniques 

As we can see our best choice here would be TomekLinks that gave a small increase in performance. We 

can conclude that the sampling techniques used here have little to give in regards of performance. 

4.3. Word-embedding 
As mentioned earlier word-embedding try to capture more of the contextual information of the words 

and could therefore provide additional performance by use of this additional information. We will look at 

two different models, with and without lemmatization. The reason for this is that we can not be quite 

sure that the trained embedding model follows the exact same lemmatization process as we have for our 

corpus. Also the nature of how fasttext embedding is done by splitting up words into skipgrams it could 

prove that an unlemmatized model with more words in the dictionary handles our corpus better. 

When we create our baseline word-embedding we will use the TF-IDF values and vocabulary of the train 

set. 
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First we will see how well the two different models perform alone. We will use the LinearSVC classifier 

with same settings as used in earlier experiments.  

Word-embedding model Validation set score Test set score 

80 (lemmatized) 0.6667 0.6728 

81 (non-lemmatized) 0.6606 0.6701 
Table 36 Word-embedding models performance alone 

As we can see the lemmatized model slightly outperforms the non-lemmatized model. Though the 

difference is minimal we will go further with model 80 in further experiments. 

We also ran our grid-search on hyper-parameters for classifiers and can conclude that the best performing 

hyper-parameters and classifier, LinearSVC, also perform close to best on the embedded data alone. 

Now we will use the word-embeddings in addition to our TF-IDF vectorizations of our data and see if they 

combined will perform better. TfidfVectorizer and LinearSVC is run with best performing hyper-

parameters from previous experiments. 

Set Accuracy score 
Validation 0.6983 
Test 0.7030 

Table 37 TF-IDF and word-embedding combined accuracy scores 

Here we see we get a substantial 4.009% increase in performance on the test set from initial baseline. 

Since we are running with a SVM model we need to be careful with the scale of our features, if we do a 

quick test we can see that the word-embeddings have a maximum value of 1.844 and a minimum value 

of -1.535. This will make our SVM model unstable as our values are TF-IDF frequencies between 0 and 1. 

So we will apply a scaler to our word-embeddings so that the values range from 0 to 1. To do this we use 

another package from scikit-learns library, MinMaxScaler [21] and we set it to scale to the range [0,1]. 

Then we run again. 

Set Accuracy score 
Validation 0.6995 
Test 0.7039 

Table 38 TF-IDF and word-embedding scaled combined accuracy scores 

And we see that the get a slight increase from without scaling, 4.143% increase in performance from 

initial baseline. 

4.3.1. Conclusion 
Adding word-embedded representation gave us a substantial increase in performance combined with 

the traditional TF-IDF values. 

4.4. Calibration 
Since we are using a SVM model for our classifications, which is a margin-maximizer model it does not 

inherently have probabilities. This is something we will need to have when we later want to perform semi-

supervised methods. A calibrator can also improve classifications so we will apply it here and see how it 

affects the results. 
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4.4.1. CalibratedClassifierCV 
There is a module for calibration in scikit-learns library called CalibratedClassifierCV [22]. It will wrap 

around our LinearSVC classifier and use cross-validation to split the input train data in k-fold internal train 

and test sets. Using the internal train set it will perform classification using the LinearSVC classifier, and in 

our multiclass context it will do so in 1-vs-rest fashion. It will use a binary class of 0 and 1 for the predictions 

and using the test set it will fit a regressor on these predictions. Read more about this module in the 

referenced manual. 

There are two hyper-parameters to tune for CalibratedClassifierCV and those are the number of folds for 

cross-validation and method for calibration. We will use 3 fold cross-validation for performance reasons. 

But we will check what method performs best on validation set. 

Hyper-parameter Values 
‘method’ [‘sigmoid’, ‘isotonic’] 

Table 39 CalibratedClassifierCV hyper-parameter values 

Best performing method: 

Hyper-parameter Value 
‘method’ ‘isotonic’ 

Table 40 CalibratedClassifierCV best performing hyper-parameter 

Accuracy on validation set: 0.6791 

Accuracy on test set: 0.6800 

Calibration benefited our classification as well as providing us with the needed probabilities we need 

later. It got a 0.607% increase in performance on test set. 

4.5. Conclusion 
If we now combine all that we have tried into one model, we can get what we will call our supervised 

model baseline. 

Our supervised model consists of the following modules: 

Module Hyper-parameters 
TfidfVectorizer [‘lowercase’: False, ‘max_df’: 0.25] 
LinearSVC [‘C’: 0.5, ‘loss’: ‘squared_hinge’, ‘tol’: 0.01] 
TomekLinks [‘sampling_strategy’: ‘majority’, ‘random_state’: 1] 
fastText word-embedding Model 80 (lemmatized) 
MinMaxScaler [‘feature_range’: (0,1)] 
CalibratedClassifierCV [‘method’: ‘isotonic’, ‘cv’: 3] 

Table 41 Final model with conventional means of improvements. 

With accuracy score on validation set: 0.6987 

And accuracy score on test set: 0.7066 

Giving us a total improvement from initial baseline by 4.542% increase in performance. 
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Now we have some good results to compare our further experiments with. We have an initial baseline 

with just vectorization and classifier and we also have numbers to compare individually how well 

supervised methods and representations improved our performance. 

We will now use this model in our further experiments with semi-supervised methods. 

5. Semi-supervised methods 
Semi-supervised techniques are techniques that involve both labeled and unlabeled data. It is therefore 

considered to be in between supervised and unsupervised learning. The motivation for semi-supervised 

learning (SSL) is that supervised learning requires labeled data which can be expensive and time 

consuming to attain, while unlabeled data is readily available in plentiful. 

For semi-supervised learning to be effective it relies on at least one of these basic assumptions about the 

relationships between the labeled and unlabeled data; 

Smoothness/continuity assumption: this means that samples close to each other in feature space should 

be close to each other in label space. It also imply that  samples of same label exists in a clustered region 

of feature space. 

Low density assumption: meaning that decision borders should exist in areas of feature space with low 

density. This assumption implies that there exists some separation between labels in feature space and 

that these areas are sparsely populated. 

Manifold assumption: Here we assume that the samples we observe in feature space exists on lower-

dimensional manifolds and that samples of same label share the same manifold. 

SSL methods can be divided into two main categories [23] each with their own sub-categories. These main 

categories are; Inductive methods and transductive methods. Inductive methods provide models for 

predictions of samples that cover the full feature space, while transductive methods  can only predict 

what it has seen before. 

We will focus on the inductive methods in this work. 

First we will look at the oldest and most known SSL methods under the sub-category called wrapper 

methods. These are methods that first train a model on the available labeled data for then to iteratively 

classify unlabeled data and re-train the model on a combination of labeled and pseudo-labeled data. They 

are very versatile as they can be used with any classification algorithm. These methods can again be sub-

categorized as either self-training methods or co-training methods. We will be working with self-training 

methods, but also inspired by co-training methodology. 

We will also look into the sub-category of unsupervised preprocessing. These are methods that can be 

used for feature extraction from the unlabeled data, unsupervised feature engineering from the labeled 

data or as a method for setting initial parameters for the supervised model. We will look into methods for 

feature extraction and engineering. 
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5.1. Self-training 
Self-training was introduced by Yarowski [24] for word sense disambiguation. It has since been applied to 

many problems with success. [25]. Since it is such a versatile method it gives rise to many configurations 

of how to attain pseudo-labeled data, how to use it and how to increment and stop the process. 

Self-training can be considered the most basic wrapper method. It attains pseudo-labels by a supervised 

classification algorithm. Since it is a wrapper function, the classifier is not aware of any difference in 

labeled and pseudo-labeled data and we can also therefore apply this method with any classifier available. 

The process is iterative and for each iteration the classifier will create new pseudo-labels. Depending on 

the algorithm it will append all or portions of the pseudo-labeled data to the next iterations train data. It 

is natural to consider some type of confidence in the predictions as a parameter to discriminate what is 

included in the training data.  

If the process of attaining pseudo-labeled samples is based on probabilities it can resemble Expectation-

Maximization [26]. Here there has been done work with NB-classifiers on detecting fake product reviews 

[27].  

The process is also sensitive to reinforcing any mistakes made in the pseudo-labeling and it is therefore 

important to either get as confident pseudo-labels as possible or have some way of dealing with the mis-

labeled samples. 

5.1.1. Relation to co-training 
Co-training [28] is an extension of self-training with some set conditions on how to use the pseudo-labeled 

data. It involves two or more classifiers, each trained on their separate views of the data. It was originally 

developed for dataset with native multiple views of the data, for instance in web-related tasks where one 

could consider link text and target text as two separate views sharing the same label space. The co-trainers 

then creates pseudo-labeled samples that they append to their counterparts training data. A distinction 

to be made here is that in co-training we are interested in the samples where the co-trainers disagree on 

the label. 

For co-training to be effective it relies on the assumptions that the different views of the data are 

independent and not highly correlated. It also assumes that each view is sufficient to make credible 

predictions. 

It has been proven that it is possible to achieve successful co-training with only single view data by way of 

splitting the feature space into separate views [29]. 

We will in our experiments make self-training models that take inspiration from these conditions, by way 

of splitting feature space for multiple trainers and also by splitting the training data. We will not follow 

the disagreement condition for exchanging information through unlabeled data. 

5.2. Unsupervised pre-processing 
Feature extraction is an old and extensive subject and we will not describe it other then in how we will 

use it in regards to our unlabeled data. We do not care about the labels or pseudo-labels of unlabeled 

data, but we rather want to extract features existing in the unlabeled portion of the data at the 

vectorization stage. 
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For feature engineering we will look into cluster-then-label techniques of improving classification. Here 

we are interested in if mixing the labeled and unlabeled data will improve results in the clustering stage.  
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6. Experiments 
We will now perform semi-supervised methods to further improve on our classification accuracy score. 

6.1. Feature extraction, new semi-supervised baseline 
Our first experiment with the unlabeled data is also one of convenience. Since we will be doing a lot of 

iterations and re-training of our model with different combinations of our labeled and pseudo-labeled 

data it would be very time and resource consuming to perform the word-embedding conversion of the 

vocabulary for each iteration. Instead we can pre-calculate these for each document by applying TF-IDF 

vectorization to all the training data and unlabeled data combined and create the fasttext word-

embedding representations for each sample and store these vectors as a feature we can extract directly. 

This would be considered feature extraction as we get the extended vocabulary from the unlabeled data 

as well as more regularized IDF values from the much larger dataset. 

Note that we do not include the validation and test set in this pre-calculation, these sets are transformed 

into the train plus unlabeled vocabulary after fitting the vectorizer. 

Our baseline model is then as follows: 

Module Hyper-parameters 
TfidfVectorizer [‘lowercase’: False, ‘max_df’: 0.25] 
LinearSVC [‘C’: 0.5, ‘loss’: ‘squared_hinge’, ‘tol’: 0.01] 
TomekLinks [‘sampling_strategy’: ‘majority’, ‘random_state’: 1] 
fastText word-embedding Model 80 (lemmatized) pre-run on all unlabeled+train set 
MinMaxScaler [‘feature_range’: (0,1)] 
CalibratedClassifierCV [‘method’: ‘isotonic’, ‘cv’: 3] 

Table 42 Semi-supervised baseline model with feature-extracted word embeddings 

This model accuracy on validation set: 0.7038 

And accuracy on test set: 0.7122 

And we see that word-embeddings with TF-IDF weights and vocabulary from the unlabeled data already 

give us a considerable increase from supervised baseline, a 1.007% increase. 

We now consider this as our new baseline as we will be using this model for our further experiments. 

Note; we did try this same feature extraction method to our regular bag-of-words representation with no 

change in performance. 

6.2. Self-training, single model 
The most intuitive way of leveraging the unlabeled data is by applying a classifier to it, identify the most 

confident samples, add them to the train set and reapply. Then we only have to find the threshold of 

confidence and let it run for as many iterations as we want or until there is no more unlabeled data to 

append. 

We can decide if we want to classify all the unlabeled data at once and rerun the algorithm on all the 

labeled data until there are no samples above confidence threshold. 
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Another approach is to apply the algorithm to a sample of n size of the unlabeled data, append the 

samples above confidence threshold to train set and remove them from the sampling pool of unlabeled 

data and repeat until either no more samples reach above threshold or the sampling pool is empty. 

We will try both and compare results, but we can speculate on some intuitions about these methods. 

If we classify all the unlabeled data we will either have to set the confidence threshold very high so that 

we get very few samples and the algorithm will converge quickly and we will not gain much from the 

unlabeled data. If we lower the threshold we will get more samples, but of less quality and the model will 

become very unstable and deteriorate quickly. It is perhaps applicable to think about it as a gradient 

decent, if we find a optimal threshold we will stabilize at some local minimum. 

If we perform the algorithm on subsets of the unlabeled data instead we might mitigate bad predictions 

that would be inevitable when we predict all at once. And also by moving more slow we can learn more 

on the way which may make more of the unlabeled data available at a given threshold. 

6.2.1. All data 
First we will run our model in 5 iterations and with confidence (probability) threshold of 0.99 and 0.98 

on all the unlabeled data. 

Unlabeled data Iterations Confidence Total samples 
added 

Final acc. on test 
set 

All 5 0.99 6116 0.6951 

All 5 0.98 61321 0.6744 
Table 43 Self-training on all unlabeled data 

As we can see self-training on all the unlabeled data at once get deteriorating performance. Let us inspect 

the distribution of the new pseudo-labeled samples added in the last run with confidence of 0.98 and with 

a 2.401% decrease in performance. 
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We can clearly see that our pseudo-labeling distribution is not even. 

We can see some correlation with the label distribution in the labeled 

data, but not completely. For instance label 93 is the second largest 

label after 12, but it gets only 174 pseudo-labeled samples. Label 92 

is the 9th largest label in the labeled data and it gets 76.8% of all the 

pseudo-labeled samples. 

We could reason that this is due to a difference in distribution from 

the labeled data to the unlabeled data. We did mention earlier that 

we saw a slight skew in mean length and standard deviations 

indicating that the unlabeled data consists of slightly shorter articles 

with greater standard deviations. This would correlate with the 

distribution of length metrics for label 92.  

If we look at the content of label 92, which is “Sporting events, 

athletes”, we could perhaps imagine that this is a category filled with 

names of sports clubs and athletes. Such names would be very 

discriminatory as they rarely appear in any other circumstances. They 

also often appear in articles many at once creating good patterns to 

enforce their discriminatory effect. 

If we look at the confusion matrix for our baseline results and 

compare it with this self-training result the label 92 accuracy has 

declined from 0.87 to 0.52 and the labels most confused with label 92 

are the labels 24, 91, 93 and 23. These are all sport, events and 

cultural related labels, with exception of 93 which is a miscellaneous 

label containing anything. We could infer from this that we have 

wrongfully pseudo-labeled samples from these related classes, not 

only because of relation and similarities, but also because of the 

magnitude of number of samples that have crossed the threshold. We 

would be moving the decision border wrongfully in wrong direction 

just by the density of samples in this label. 

6.2.2. Sample from pool 
When we use the unlabeled data as a pool to sample from we can regulate how many new pseudo-labeled 

samples we add to the train set per iteration. This way we can leverage any additional learning 

incrementally as opposed to when we sample all at once. 

We will perform a grid-search on the following parameters: 

Parameter Values 
Iterations [5, 10, 15] 
Confidence [0.99, 0.98] 
Sample size [50000, 100000, 150000] 

Table 45 Self-training sample from pool parameter grid-search values 

Below is a table with top 5 and bottom 5 results from this grid-search, ranked by accuracy. 

Pseudo-label Samples added 
1 1 
2 0 
3 1510 
4 38 
5 0 
6 312 
7 31 
8 318 
9 63 
10 628 
12 9085 
13 1 
14 6 
15 99 
16 1131 
17 51 
18 0 
19 2 
20 91 
21 0 
23 16 
24 35 
25 11 
26 1 
91 634 
92 47083 
93 174 

Table 44 Self-training with all unlabeled 
data and confidence at 0.98 pseudo-label 
distribution 
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Unlabeled sample 
size 

Iterations Confidence Total samples 
added 

Final acc. on test 
set 

50 000 5 0.99 786 0.7125 

50 000 10 0.99 1429 0.7102 

100 000 5 0.99 1428 0.7101 

50 000 15 0.99 1886 0.7098 

150 000 5 0.99 1995 0.7089 

… … … … … 

50 000 15 0.98 7220 0.6948 

100 000 15 0.98 13776 0.6943 

150 000 10 0.98 14878 0.6941 

100 000 10 0.98 9684 0.6931 

150 000 15 0.98 22051 0.6920 
Table 46 Self-training sample from pool grid-search results 

We see that the top result gives a slight, 0.042% 

increase in performance, but as we add samples 

performance deteriorates. The trend is clearly that with 

added samples and lowering confidence performance 

worsen. 

And from the pseudo-label distribution table to the right 

we clearly see the same pattern as when we sampled all 

the data at once. And label 92 is still overly represented. 

6.2.3. Sample from pool with validation 
To counter the deterioration with added samples we 

can use the validation set to train a model and check 

whether it improves or not. If samples added to train set 

improves accuracy on validation set we include them in 

the train set, if not we put them back in the pool. 

In the most extreme case here we could check every 

single sample and train a model for each, but that would 

be very impractical and resource demanding. But we 

would benefit from having a smaller set of samples to 

evaluate for each iteration. We will use the parameters 

of the top ranked model as it will give approximately 

150-200 samples per iteration. 

If we follow the statistical chance of getting 1% error we 

should have about 1-2 badly classified samples per 

iteration. Now depending on how bad they are on 

overall performance we have a way of discarding them. 

Pseudo-label  Top rank Bot. rank 
1 0 0 
2 0 0 
3 35 835 
4 0 15 
5 0 0 
6 4 148 
7 0 2 
8 9 52 
9 0 26 
10 15 237 
12 182 3752 
13 0 1 
14 0 4 
15 0 12 
16 35 382 
17 0 21 
18 0 0 
19 0 0 
20 0 10 
21 0 0 
23 0 3 
24 0 11 
25 0 2 
26 0 1 
91 5 98 
92 501 16431 
93 0 8 

Table 47 Self-training sample from pool pseudo-label 
distribution 
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Now we have the same parameters as previous, number of iterations, sample size and confidence 

threshold, but we also set an initial validation accuracy threshold. 

Unlabeled 
sample size 

Iterations Confidence Total samples 
added 

Initial 
validation acc. 

Final acc. on 
test set 

50 000 5 0.99 178 0.7038 0.7122 

50 000 15 0.99 178 0.7038 0.7121 
Table 48 Sample from pool with validation initial parameters results 

As we can see the model did not achieve any more samples that increased the validation accuracy from 5 

iterations to 15, in fact it achieved the top score in the first iteration and discarded all subsequent 

iterations samples. We will have to increase the amount of iterations considerably to be able to gain more 

from this procedure. In this regard it becomes impractical to use our best performing model in this 

iterative selection process. 

Rather then using the full model for the selection of samples to append to the training set we will use a 

model of just TfidfVectorizer for vectorization and the ComplementNB classifier as it provides quick 

classification and has probability inference inherently. To make the probabilities most accurate we will 

also use the CalibratedClassifierCV module to perform scaling. 

Module Hyper-parameters 
TfidfVectorizer [‘lowercase’: False, ‘max_df’: 0.25] 
ComplementNB [‘alpha’: 0.2] 
CalibratedClassifierCV [‘cv’: 3] 

Table 49 Quick model for validation 

We will of course suffer by less accurate classifications, but in this process we are filtering out the majority 

of less probable classifications and we are also filtering out by judging improvement in validation accuracy. 

We assume that samples that improve this simpler quick model will also be beneficial for our baseline 

model. 

Unlabeled 
sample size 

Iterations Confidence Total samples 
added 

Init./final 
valid. acc. 

Final acc. on 
test set 

250 000 150 0.98 37 0.6598/0.6604 0.7124 

50 000 150 0.97 72 0.6598/0.6602 0.7110 
Table 50 Sample from pool with validation by quick model 

As we can see the first run using a high (0.98) confidence we got a 0.028% increase in performance, but 

achieves very few added samples, 37 in total. It got approximately 10-30 candidates per iterations, but 

only added them to train set 4 times and lastly as early as the 18th iteration. One could argue that the 

sample size vs total amount of samples in the pool, roughly 1/6th of the unlabeled data would indicate 

that most samples even though randomly selected at each iteration (but deterministic in between 

experiments to be able to compare) have been evaluated early on. But an argument for performing as 

many iterations would be that at each iteration a new set of candidates are chosen, and since we only 

check whether the set of candidates as a whole increase or decrease performance it would be beneficial 

to have many random sets of these candidates so that we increase the chance of getting a good set. 
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Another thing to notice about the high confidence run is that all the pseudo-labels added were label 12. 

This could indicate that the effect we are seeing with an overrepresentation of pseudo-labels in label 92 

is a reinforcement phenomenon. 

When we look at the lower (0.97) confidence run we decreased the iteration sample size to 50 000 so that 

we get roughly the same amount of confident candidates per iterations as previous run (20-40). We did 

get more samples added to the train set, but performance was worse on the test set even though 

performance on validation set with the quick model was approximately same as the higher confidence 

run. For the pseudo-label distribution we got 65 samples with label 12 and 7 samples with label 92. 

Now we will forget about confidence and just classify 30 samples per iteration and add them to train set 

if the validation accuracy is improved. 

Unlabeled sample 
size 

Iterations Total samples 
added 

Init./final valid. 
Acc 

Final acc. on test 
set 

30 150 420 0.6598/0.6649 0.7110 

30 300 450 0.6598/0.6651 0.7118 
Table 51 Sample from pool with validation and no confidence threshold 

Here we can see that we get further in validation accuracy and 

we also get more samples added. But we get a 0.056% decrease 

in accuracy from the baseline on test set. 

We can see from the pseudo-label distribution that we get a 

better representation of labels, but we see a overrepresentation 

of the so-called ‘trash’ labels, 91, 92 and 93. This could indicate a 

difference in distribution in the unlabeled vs labeled corpus. 

Let us do a classification over the entire corpus using the quick 

model and see how our pseudo-labels distribute. 

 

Figure 16 Quick model predictions over unlabeled corpus 

Pseudo-label 150-iter. 300-iter. 
1 8 8 
2 8 9 
3 16 16 
4 9 10 
5 2 2 
6 4 5 
7 4 4 
8 3 3 
9 5 5 
10 7 8 
12 39 42 
13 7 7 
14 3 3 
15 12 14 
16 10 12 
17 9 9 
18 2 2 
19 10 10 
20 16 18 
21 3 3 
23 5 6 
24 8 8 
25 3 3 
26 4 4 
91 79 84 
92 76 82 
93 68 73 

Table 52 Sample from pool with validation 
and no confidence threshold pseudo-label 
distribution 
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From this we clearly see that our unlabeled corpus most likely have a different distribution of the so called 

‘trash’ labels. Of course we can not trust our predictions to be accurate, but they give us a strong indication 

and we also see that the distribution of the other labels follow the labeled corpus distribution closely. 

6.2.4. Trash filter 
Let us try to filter out the trash labels from the unlabeled corpus before we apply the pseudo-labeling. To 

do this we create a binary label for the train set to be 1 if label is in [91,92,93] and 0 if else. We then use 

these labels to train our baseline model and apply it to the unlabeled data. 

When we apply it to the validation and test set we get results at 90% and 91% so we should have a high 

accuracy for this filter. 

When applied to entire corpus, both unlabeled and labeled we can create a confusion matrix from the 

labeled data. 

 Is trash Is not trash 

Predicted trash 6145 793 

Predicted not trash 1478 28856 
Table 53 Trash filter confusion matrix over labeled data 

And we see that we get a good precision of 0.886. Our filter should be conservative with low Type 1 errors 

and also a reasonable Type 2 error rate. 

When filter is applied we get 764 869 positives, meaning we filter out 50.2% of the unlabeled data. 

Lets apply the trash filter and run the grid-search performed earlier and see if get better results. 

Sample size Iterations Confidence Total samples 
added 

Final acc. on test 
set 

50 000 10 0.99 948 0.7133 

150 000 5 0.99 1267 0.7125 

100 000 5 0.99 956 0.7124 

50 000 15 0.99 1232 0.7118 

50 000 5 0.99 562 0.7118 

… … … … … 

150 000 5 0.98 5349 0.7031 

100 000 10 0.98 6118 0.7008 

100 000 15 0.98 7110 0.6920 

150 000 10 0.98 7236 0.6886 

150 000 15 0.98 7737 0.6835 
Table 54 Self-training sample from pool with trash filter grid-search results 

Here we see that we now get a top result with 0.154% increase in performance and top 3 are all increasing 

in performance from baseline. Overall the performance is improved with the trash filter and we also 

observe that we get a considerable lower amount of samples added in the lower ranked results indicating 

that we have curbed some of the reinforcement phenomenon we saw with label 92. 

Let us look at the pseudo-label distributions. 
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Here we see that our trash filter have effectively eliminated all 

samples from the trash labels something we should be wary of. 

We see a stronger distribution over the other major labels 

where now label 12 is the largest label which correlates with the 

labeled data distribution. We do not see the same degree of 

reinforcement phenomenon in label 12 as we did with label 92. 

6.2.5. Conclusion 
We have seen that our self-training method has problems 

gaining any advantage from the unlabeled data. It is difficult to 

get samples that we can be confident about and when lowering 

confidence we see that performance deteriorates. We have also 

seen that we get a disproportionate amount of samples with 

pseudo-label 92. This trend was also present in the run where 

we just classified 30 samples and added if performance on 

validation set improved, but here accompanied by the other two 

‘trash’ labels, 91 and 93. By doing a classification over the entire 

unlabeled corpus we saw that we have a strong indication that 

there is a different distribution of the ‘trash’ labels in the 

unlabeled corpus from the labeled corpus. 

We created a ‘trash’ filter and we saw that applying this 

increased performance and eliminated the disproportion and 

reinforcement phenomenon in trash labels, but we also 

eliminated any potential learning from 50% of the unlabeled 

data. 

We will apply the ‘trash’ filter to our further experiments. 

 

 

 

 

 

 

 

 

 

 

Pseudo-label Top rank Bot. rank 

1 0 0 

2 0 0 

3 119 985 

4 0 15 

5 0 0 

6 7 247 

7 0 5 

8 21 293 

9 4 34 

10 51 443 

12 670 4811 

13 0 3 

14 0 6 

15 0 53 

16 76 748 

17 0 38 

18 0 0 

19 0 0 

20 0 43 

21 0 0 

23 0 3 

24 0 1 

25 0 9 

26 0 0 

91 0 0 

92 0 0 

93 0 0 
Table 55 Self-training sample from pool with 
trash filter pseudo-label distribution 
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6.3. Self-training, multiple models 
Inspired by co-training and Random Forrest algorithm [30] we will now try and train multiple models and 

see if we can gain some benefits by creating diversity in the models predictions by either splitting the 

feature space or sample space. 

6.3.1. Multiple models, feature-split 
First we will create a method of splitting the feature space in two or more separate views in a semi-

randomized fashion. We will use chi-squared scoring of the features and rank them according to score. 

Then we take the top n ranked features and evenly distribute them among the views so that each view 

gets similar distributions of top ranked features. We do this by simply taking the ranked position modulus 

the number of views to decide which view to assign the feature. The rest of the features not in the top n 

ranked we assign randomly, but even among views. 

When features are split we train a model for each view using the split feature-sets as vocabulary in the 

vectorization stage. We will also try using different models for our views to see if different styles of 

classification algorithms could be beneficial. We will also see if using word-embeddings as a separate view 

is beneficial in combination with regular bag-of-words representations.  

We now have a set of parameters for our feature-split algorithm that we should perform a grid-search on 

to see how it performs. But before we do this we want to create a metric measuring the aspect of the 

algorithm that we consider important. This way we have a way of ranking our results from the grid-search. 

We have seen in previous experiments that when using probabilities for measuring confidence in sample 

predictions there is a natural tendency to end up with an overrepresentation of samples from the majority 

labels when we set a high threshold of confidence. This threshold is necessary because we also see that 

lowering it will result in too many misclassifications and the model deteriorates quickly. There is also 

possibilities of negative reinforcement phenomena where one label reinforce itself and quickly become 

so dense or get such a large prior that it dwarfs all other classes and performance deteriorates. 

So what we want to see in our algorithm is as evenly distributed pseudo-labels as possible with as little 

bias towards any one label and with as many labels represented as possible. We propose that such a 

metric could be created by taking the entropy of the pseudo-label-counts (number of predictions per 

pseudo-label) that meet the confidence threshold. The entropy will be small when any pseudo-label is 

overrepresented and larger when the pseudo-label-counts are as even as possible. This again we multiply 

with the number of unique pseudo-labels that met the confidence threshold, because it is most important 

to get as broad a distribution as possible. 

Our metric is then set so that we can rank our grid-search results and get the algorithm that creates the 

most broadly distributed pseudo-labels while dampening the bias towards the majority labels as much as 

possible. 

When we have the predictions and probabilities from our feature-split algorithm we also need to tune the 

threshold we set for what we consider confident predictions. This can be done by a stepwise function 

where we iteratively lower the threshold from 1 by some value and check the accuracy of the resulting 

confident pseudo-labeled samples using the validation set labels. When we reach a desired accuracy we 

break the step-function and return the threshold. 
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In considering what is a confident sample we can also choose whether to let all the models meet the 

probability threshold or let at least one model meet the threshold. We will perform the grid-search 

separately for each of these alternatives (we call them ‘all’ and ‘any’). 

So now we have described our feature-split algorithm and the parameters we want to perform grid-search 

on. 

6.3.1.1. Parameter tuning 

 

Parameter Values 
‘top_n’ [200, 500, 2000] 
‘splits’ [1, 2, 3] 
‘wordembedding’ [True, False] 
‘models’ [‘quick_model’, ‘baseline_model’, ‘quick_model+baseline_model’] 
‘accuracy’ [0.98, 0.99] 
‘confidence’ [‘all’, ‘any’] 

Table 56 Multiple models, feature-split grid-search values 

Here we see the parameters and values for our grid-search. The ‘splits’ parameter decides how many 

feature splits and models are created. We have 1 as a value here because in combination with 

‘wordembedding’=True will give us the combination of bag-of-words representation and word-embedded 

representation as two separate views. The feature space will not be split between the two models in this 

case. 

When we get the combination ‘models’=’quick_model’ and ‘splits’=2 for instance then we will have 2 

quick_models trained on their respective split of the feature space. 

When ‘models’=’quick_model+baseline_model’ and ‘splits’=3 we will get a feature space split in 3 for 2 

quick_models and 1 baseline_model. 

The case where ‘wordembedding’=False and ‘splits’=1 will just create a single regular classification model 

as in earlier experiments. We include this for reference. 

Accuracy here refers to the target accuracy in validation set when performing probability confidence 

threshold tuning. 

We will view the results grouped by ‘accuracy’ and ‘confidence’ separately as we consider these 4 groups 

of results to be in their own confidence group. Where ‘accuracy’=0.99 and ‘confidence’=’all’ is considered 

the most confident group and so on. We will refer to the different groups as Group A, B, C and D. We 

include the top 5 and bottom 5 ranked by our metric in the tables for reference. 
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Group A 

Results for ‘accuracy’=0.99 and ‘confidence’=’all’ below: 

‘top_n’ ‘splits’ ‘word 
embedding’ 

‘models’ ‘accuracy’ ‘confidence’ Metric 

200 2 False ‘baseline_model’ 0.99 ‘all’, 0.928 29.323 

200 2 False ‘quick_model+baseline_model’ 0.99 ‘all’, 0.909 25.002 

0 1 False ‘baseline_model’ 0.99 ‘all’, 0.962 23.348 

2000 2 False ‘baseline_model’ 0.99 ‘all’, 0.939 22.529 

500 2 True ‘quick_model+baseline_model’ 0.99 ‘all’, 0.896 21.500 

… … … … … … … 

200 3 False ‘quick_model’ 0.99 ‘all’, 0.929 5.510 

2000 2 False ‘quick_model’ 0.99 ‘all’, 0.982 4.081 

500 3 False ‘quick_model+baseline_model’ 0.99 ‘all’, 0.904 4.065 

500 3 True ‘quick_model’ 0.99 ‘all’, 0.889 3.954 

500 3 False ‘quick_model’ 0.99 ‘all’, 0.899 3.816 
Table 57 Multiple models, feature-split grid-search results for Group A 

This could be considered the most conservative group as it has the highest accuracy and requires all 

trainers to be above the confidence threshold. We include the resulting probability threshold under the 

‘confidence’ column for this table. 

It might be a little confusing when we talk about 

accuracy and confidence at this point so let us clarify this 

a bit more. As mentioned above we use a step function 

where we iteratively lower the threshold for the 

classification probability or confidence on predictions on 

the validation set. We chose the steps to be 0.001. We 

will then first set the threshold to 0.999, then we check 

if there are any samples that meet the threshold, if not 

we continue to next step, 0.998, and so on. When we get 

samples that meet the threshold we calculate the 

accuracy of the samples predictions using the y-labels 

from the validation set. We continue lowering the 

threshold until we reach the accuracy we set as 

parameter, i.e. 0.99 or 0.98.  

When we do this to the cases where we have only 1 split 

and ‘wordembedding’=False we are technically just 

empirically checking the validity of the classification 

probabilities. We get a couple interesting insights from 

this. 

First we can see that the quick_model that is based on 

ComplementNB is pretty much spot on with its 

probabilities, meaning the threshold is at 0.99 when accuracy is at 0.99. The baseline_model tends to get 

Pseudo-label #1 #2 #3 #4 #5 

3 29 30 23 23 17 

4 1 1  1 1 

6 10 12 9 6 9 

7  2 2 1 1 

8 6 5 7 5 4 

9 2 3    

10 23 15 17 17 18 

12 128 131 95 93 126 

15 6 4 1 3 6 

16 22 29 16 13 13 

17 2  2 1  

20 7 10 5 5 11 

25 1     

26 1 1    

91 2 2 2 1 1 

92 45 30 26 25 27 

93 1  1  1 

SUM 287 275 206 194 235 

Table 58 Multiple models, feature-split grid-search 
results pseudo-label distributions for top 5 from Group A 
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a lower threshold then accuracy, approx. 0.03 or 3%. This effect is because the baseline_model uses a 

SVM classifier and SVM focus on the samples close to the decision border. It is therefore hard to calibrate 

it properly at the extremes of probability (close to 0 or 1) [31]. So we have learned that our NB based 

model gives more reliable probabilities then our SVM based model. 

We can also see that threshold decreases significantly with the number of splits. At 3 splits we can see 

that the threshold drops to 0.929 to get an accuracy of 0.99 for the NB based quick_model. We could infer 

from this that if we assume independence between models then according to the multiplication rule of 

independent probabilities using the formula 1-(1-x)^3=0.99 and solve for x we get that x=0.785. This is 

what we should have as threshold if our models were perfectly independent. Then when we look at what 

we got empirically we can see that we are off from these numbers. This tells us that we can not assume 

independence between our models, though we can not tell how strongly they are dependent. 

Now we look at the pseudo-label distributions and we see that our metric is working well, it prioritize 

number of different labels in the predictions over number of samples as we can see by looking at rank #5 

that has more samples then both rank #3 and #4. When number of different labels is the same as with 

rank #3 and #4, it prioritize the one with the most even distribution. 

Following is the tables for the rest of the groups: 

Group B 

Results for ‘accuracy’=0.98 and ‘confidence’=’all’ below: 

‘top_n’ ‘splits’ ‘word 
embedding’ 

‘models’ ‘accuracy’ ‘confidence’ Metric 

200 2 False ‘baseline_model’ 0.98 ‘all’, 0.902 43.193 

200 3 False ‘baseline_model’ 0.98 ‘all’, 0.893 35.068 

0 1 False ‘baseline_model’ 0.98 ‘all’, 0.943 33.872 

500 3 False ‘baseline_model’ 0.98 ‘all’, 0.893 33.215 

200 2 False ‘baseline_model’ 0.98 ‘all’, 0.901 32.280 

… … … … … … … 

2000 3 True ‘quick_model’ 0.98 ‘all’, 0.894 5.670 

0 1 True ‘quick_model’ 0.98 ‘all’, 0.977 5.668 

200 3 False ‘quick_model’ 0.98 ‘all’, 0.929 5.510 

500 3 True ‘quick_model’ 0.98 ‘all’, 0.883 4.036 

500 3 False ‘quick_model’ 0.98 ‘all’, 0.899 3.817 
Table 59 Multiple models, feature-split grid-search results for Group B 
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Group C 

Results for ‘accuracy’=0.99 and ‘confidence’=’any’ below: 

‘top_n’ ‘splits’ ‘word 
embedding’ 

‘models’ ‘accuracy’ ‘confidence’ Metric 

200 3 False ‘quick_model+baseline_model’ 0.99 ‘any’, 0.984 26.996 

200 3 True ‘quick_model+baseline_model’ 0.99 ‘any’, 0.984 26.580 

0 1 False ‘baseline_model’ 0.99 ‘any’, 0.962 25.168 

0 1 True ‘baseline_model’ 0.99 ‘any’, 0.977 21.969 

200 2 False ‘baseline_model’ 0.99 ‘any’, 0.966 20.162 

… … … … … … … 

2000 3 True ‘quick_model+baseline_model’ 0.99 ‘any’, 0.997 8.862 

2000 2 True ‘quick_model+baseline_model’ 0.99 ‘any’, 0.993 7.613 

2000 2 False ‘quick_model+baseline_model’ 0.99 ‘any’, 0.993 7.490 

500 2 False ‘quick_model+baseline_model’ 0.99 ‘any’, 0.998 6.758 

500 2 True ‘quick_model+baseline_model’ 0.99 ‘any’, 0.998 6.758 
Table 60 Multiple models, feature-split grid-search results for Group C 

Group D 

Results for ‘accuracy’=0.98 and ‘confidence’=’any’ below: 

‘top_n’ ‘splits’ ‘word 
embedding’ 

‘models’ ‘accuracy’ ‘confidence’ Metric 

2000 2 False ‘baseline_model’ 0.98 ‘any’ 43.576 

200 3 True ‘quick_model+baseline_model’ 0.98 ‘any’ 43.258 

200 3 False ‘quick_model+baseline_model’ 0.98 ‘any’ 43.217 

2000 3 False ‘baseline_model’ 0.98 ‘any’ 41.618 

500 2 False ‘baseline_model’ 0.98 ‘any’ 39.800 

… … … … … … … 

200 3 False ‘baseline_model’ 0.98 ‘any’ 10.767 

2000 2 True ‘quick_model+baseline_model’ 0.98 ‘any’ 7.612 

2000 2 False ‘quick_model+baseline_model’ 0.98 ‘any’ 7.490 

500 2 False ‘quick_model+baseline_model’ 0.98 ‘any’ 6.758 

500 2 True ‘quick_model+baseline_model’ 0.98 ‘any’ 6.758 
Table 61 Multiple models, feature-split grid-search results for Group D 
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And pseudo-label distributions for groups B, C and D: 

Pseudo-label #1 #2 #3 #4 #5 

1    1  

3 45 36 36 36 43 

4 4 2 4 1 1 

6 16 11 11 13 13 

7 3 2 3 1 2 

8 11 10 11 12 10 

9 4 2 5   

10 32 27 33 34 29 

12 183 155 163 139 170 

13 1     

14 1  1   

15 10 8 9 3 8 

16 36 29 47 30 25 

17 6 2 4 2 4 

20 12 9 7 8 8 

23 1 2   2 

24 1     

25 3 1 1 1 1 

26 1 1  1 1 

91 11 7 8 10 10 

92 71 56 57 62 64 

93 3 3 3 4 2 

SUM 455 363 403 358 393 
Table 62 Multiple models, feature-split grid-search results pseudo-label distributions for top 5 from Group B 
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Pseudo-label #1 #2 #3 #4 #5 

3 13 14 23 20 19 

4 1 1    

5 1 1    

6 3 3 9 6 5 

7 1 1 2 2  

8 4 5 7 7 7 

9 1 1 1  1 

10 8 8 17 11 12 

12 105 109 96 105 90 

15 1 1 1 2 3 

16 18 18 16 18 16 

17 2 1 2 2 1 

20 3 3 5 4 3 

24 1 1    

26    1  

91 1 1 1 1 1 

92 10 10 26 29 20 

93 3 3 1   

SUM 176 181 207 208 178 
Table 63 Multiple models, feature-split grid-search results pseudo-label distributions for top 5 from Group C 
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Pseudo-label #1 #2 #3 #4 #5 

3 46 61 54 47 45 

4 4 6 6 6 1 

5  2 2   

6 16 13 13 18 17 

7 3 5 5 3 3 

8 12 14 14 13 11 

9 6 3 3 5 3 

10 39 43 36 44 34 

12 183 245 232 194 181 

13 1 1 1 2 1 

14 1   1 2 

15 10 7 7 9 10 

16 42 54 49 57 43 

17 6 7 7 6 3 

19 1     

20 8 19 18 8 9 

23 1 5 5 3 1 

24  3 3  1 

25 2 1 1 2  

26 3 2 2 1 1 

91 10 8 5 13 7 

92 66 69 62 76 60 

93 3 17 17 4 4 

SUM 463 585 542 512 437 
Table 64 Multiple models, feature-split grid-search results pseudo-label distributions for top 5 from Group D 

If we look at the tables for group C and D we see that even though intuitively we considered these less 

strict because of the ‘any’ condition, it turns out this only forced the models to be even more confident 

to compensate for this condition. It is interesting to see that this gave us different constellations of models 

then in the ‘all’ condition groups. We also see that lowering our accuracy to 0.98 approximately doubles 

the amount of samples that meet the criteria. 

Now we will test our best model from each of the four groups on the test set to see how they perform. 

We can perhaps expect that our models are somewhat overfit to our validation set. 
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6.3.1.2.  Performance on test set 

In the table below we see the 4 best performing models from our 4 groups. In the column ‘accuracy’ we 

see the target accuracy that we tuned our confidence threshold to meet. The values that come most close 

to this target accuracy is made out in bold. 

Group ‘top_n’ ‘splits’ ‘word 
embedding’ 

‘models’ ‘accuracy’ ‘confidence’, 
‘threshold’ 

Acc. 
on test 
set 

A 200 2 False ‘baseline_model’ 0.99 ‘all’, 0.928 0.990 

B 200 2 False ‘baseline_model’ 0.98 ‘all’, 0.902 0.985 

C 200 3 False ‘quick_model+ 
baseline_model’ 

0.99 ‘any’, 0.984 0.971 

D 2000 2 False ‘baseline_model’ 0.98 ‘any’, 0.938 0.980 
Table 65 Multiple models, feature-split best models performance on test set. 

As we can see models A and D was spot on with their target accuracies, while model B overshot it a tiny 

bit. Model C is the model that is most off, but it is also the most complex of all the models and therefore 

probably most overfit to the validation set. 

Looking at the pseudo-label distributions we see no surprises. 

We are happy with our results and now we will see how these 

feature-split models perform on unlabeled data using the best 

performing self-training method we got in previous 

experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudo-labels A B C D 

1    1 

3 30 53 16 56 

4  3  4 

6 8 17 4 18 

7  1 2 2 

8 9 16  18 

9 1 1  3 

10 14 27 6 30 

12 127 183 129 183 

13 2 3  3 

14  1   

15 5 12 2 13 

16 28 48 19 58 

17 2 6 1 6 

20 4 10 3 7 

23  1   

24  1 1  

25  1  1 

26   1  

91 3 11 1 10 

92 52 78 19 79 

93 1 3 5 4 

SUM 286 476 209 496 
Table 66 Multiple models, feature-split best 
models performance on test set pseudo-label 
distribution 
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6.3.1.3. Performance in self-training 

We will run our feature-split model from group A and group D in a self-training method to see if we get 

any better results. The column ‘Model’ refers to the model from that group. 

Sample size Iterations Model Total samples 
added 

Final acc. on test 
set 

50 000 10 A 20 838 0.6780 

50 000 10 D 44 864 0.6800 
Table 67 Multiple models, feature-split in self-training method initial results 

As we can see our initial results with the calibrated thresholds did not 

improve results and surprisingly the model D, calibrated for 0.98 

accuracy gave the best results, but with a 4.521% decrease in 

performance from baseline. 

We will have to tune our threshold parameter further with the self-

training method. We will do so manually incrementally and see if the 

accuracy converges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudo-label A B 

1 5 38 

2  4 

3 2799 6382 

4 163 746 

5 1 19 

6 847 1946 

7 46 231 

8 764 1799 

9 87 557 

10 1547 3649 

12 10570 17639 

13 16 208 

14 32 288 

15 412 1709 

16 2493 5950 

17 183 672 

19 21 247 

20 690 1955 

23 48 194 

24 20 112 

25 72 309 

26 12 163 

91 3 13 

92 5 10 

93 2 24 

SUM 20838 44864 

Table 68 Multiple models, feature-
split in self-training method initial 
results pseudo-label distribution 



54 
 

Sample size Iterations Group Threshold Total samples 
added 

Final acc. on 
test set 

50 000 10 A 0.96 6063 0.6941 

50 000 10 A 0.98 1273 0.7002 

50 000 10 A 0.99 264 0.7000 

50 000 10 D 0.96 18312 0.6814 

50 000 10 D 0.98 4273 0.6918 

50 000 10 D 0.99 880 0.6942 

50 000 10 D 0.995 193 0.6952 
Table 69 Multiple models, feature-split in self-training method manual threshold tuning results 

As we can see increasing the threshold improves performance peaking in model A with threshold at 0.98 

getting a 1.685% decrease in performance from baseline. We did not achieve convergence with model D, 

but judging by the number of samples added and the level of improvement there is not much chance of 

it ever gaining any traction to give it any more significant improvements. Another thing we can observe is 

that the total number of samples decreased dramatically in the better performing threshold, ending up 

with only samples coming from the major labels 3, 10, 12 and 16. With a severe overrepresentation of 

samples from label 12. 

Note, we performed the manual tuning of the threshold using the test set as reference and therefore 

these numbers should be considered optimistic. 

6.3.1.4. Conclusion 

I think we can conclude that multiple models with feature-split in the manner we have tried here did not 

succeed in gaining any advantage over the single-model approach. Splitting the feature space probably 

decreased each models performance and ability to correctly classify more then the advantage of having 

separate classifiers agree on predictions. We also saw good indications that the feature splits were far 

from being independent, as indicated by the multiplication rule of independent probabilities, which was 

expected, but probably to a degree in this corpus that made it difficult to make any advantage. 

6.3.2. Multiple models, sample split 
Our next approach is rather then splitting the feature space we split the sample space. By partitioning the 

samples on different heuristics we hope to create two different learners that have separate knowledge 

about the sample space as a whole. 

We will compare two different heuristics and compare them to each other and also do a random split and 

in the end see how they compare when put in a self-training method. 
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6.3.2.1. Random split 

For reference we will first perform a random split of the sample space into two partitions that we train 

two separate trainers on. We use the ‘all’ method for agreeing on predictions, meaning both trainers must 

agree on prediction. Then we filter on a threshold of prediction probability. 

 

 

Figure 17 Sample space split, random split on synthetic data for illustration, 3 labels 

With these parameters we run a self-training method for 10 iterations and check our results. 

Sample size Iterations Threshold Total samples 
added 

Final acc. on test 
set 

50 000 10 0.98 1675 0.7077 
Table 70 Sample space random split results in self-training method 

Here we get a 0.632% decrease in performance from baseline. Not an improvement, but we do get 

better scores then from our attempts at doing feature split. 

6.3.2.2. Entropy split 

This heuristic we will find by first performing a stratified split of the training data in two sets of same size. 

We then train a classifier separately on each split and perform classification on the other set. We then 

have predictions and probabilities for each sample. We join the two splits back together into one training 

set again with the probabilities stored and based on the heuristic of entropy in the probabilities for each 

sample we split the training set again into two separate train sets. 

The intuition of this approach is that samples with a high entropy in probabilities are harder to explain 

then samples with low entropy. This would translate to samples being closer and further away from the 

decision border in feature space. If we then split on a threshold of entropy, here we will use the mean 

entropy of all the samples, we will then have a learner that see only samples closer to the decision border 

and a learner that see only samples further away from decision border. 
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Figure 18 Sample space split, split on entropy mean on synthetic data, 3 labels 

Above we can see from the figure that we get a nice partitioning of the feature space where the red and 

blue dots represents samples in the two different splits of the sample space. 

We are using the baseline model for classification in both learners. 

Sample size Iterations Threshold Total samples 
added 

Final acc. on test 
set 

50 000 10 0.55 3541 0.7079 
Table 71 Sample space entropy split results in self-training method 

Here we got a 0.604% decrease in performance from baseline, but we got more then double the amount 

of samples compared to the random split. We also see that we need a much lower threshold here because 

the trainer that is taught on the samples above the entropy threshold has a much lower confidence for its 

predictions with a mean of about 0.30, compared to the trainer with samples below entropy threshold 

that has a mean probability of 0.66 in its predictions. 

Another thing to note about these predictions is the distribution. 

It is very different from the previous distributions that were very 

biased towards the major labels. Here we see much better spread. 

The most samples come with pseudo-label 20 which is not seen 

before. 

This an interesting result, judging by the small decrease in 

performance compared to the amount of samples added we 

could consider the quality of the samples to be pretty good. 

 

Pseudo-l.  Pseudo-l.  

2 52 17 99 

2 53 19 199 

5 142 20 1568 

6 21 23 93 

7 3 24 19 

10 13 25 20 

12 611 91 11 

13 199 92 4 

14 155 93 2 

15 213   

16 64   
Table 72 Sample space entropy split result 
pseudo-label distribution 
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6.3.2.3. Support vector split 

With the same intuition as with the entropy split we can do a split on distance to the hyper-plane in a SVM 

model of the train data. We first fit a SVM model on the train data and then we calculate the absolute 

distance to the hyper-plane and based on a threshold we split the data in two. One split contains data 

closer to the hyper-plane the other further away. 

 

Figure 19 Sample space split, distance to hyper-plane split on synthetic data, 3 labels 

As we can see from the illustration the split is much like the entropy based split, but less smooth and we 

get some sections with samples mixing in labels. 

Let us see how it performs in the self-training method. 

Sample size Iterations Threshold Total samples 
added 

Final acc. on test 
set 

50 000 10 0.88 1548 0.7118 
Table 73 Sample space support vector split results in self-training method 

We got a 0.056% decrease in performance while adding 1548 samples and this is so far the best result of 

the sample split methods. Let us look at the pseudo-label distribution. 
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The pseudo-label distribution is also good, showing a good spread 

of labels. We do not get a spike in one of the pseudo-labels as in 

the entropy split did with pseudo-label 20. 

 Here we also needed to lower threshold because of the average 

probabilities in predictions for the model trained on samples above 

the threshold for distance to the hyper-plane were lower on 

average. 

6.3.3. Conclusion 
In conclusion for all our attempts at multiple models by doing both 

feature and sample splits we have not been able to gain any 

advantage in performance. But we have gained some insights to 

our problem by doing so. From earlier experiments we saw that 

lowering threshold of confidence in pseudo-labeled samples 

caused rapid deterioration in performance. And by keeping the 

confidence level high we only gained pseudo-labeled samples from 

the already majority labels only enforcing the negative effects of 

the imbalance in labels. But we found that by using the entropy and support vector hyper-plane distance 

splits we were able to amass pseudo-labels from a broader distribution without a major deterioration in 

performance. 

 

Figure 20 Sample space split, distance to hyper-plane split on synthetic data, 3 labels. Here shown with correct predictions in 
green and wrong predictions in black. Illustrating confidence threshold levels effect on predictions distance from hyper-plane. 

Our problem is in the dilemma of confidence vs distribution and we also need to consider that in order to 

improve our model with new samples we will need to gain samples with new and valuable information. 

This would translate in our SVM models to samples closer to the hyper-plane to better define the decision 

border. But samples closer to the hyper-plane are also samples with low probability in prediction so by 

having a high threshold will remove them from our pseudo-labeled candidates. 

Pseudo-l.  Pseudo-l.  

1 6 17 101 

3 550 19 1 

4 35 20 24 

6 161 23 43 

7 24 25 11 

8 167 26 3 

9 5 93 6 

10 165   

12 180   

13 1   

14 6   

15 13   

16 46   

Table 74 Sample space support vector split 
results pseudo-label distribution 
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We need to further investigate our definition of confidence threshold and also look into how to mitigate 

the negative effects of gaining badly predicted pseudo-labels if we attempt to move towards the hyper-

plane for our pseudo-labeled samples. 

6.4. Dynamic thresholding 
As mentioned earlier we should look into how we define our threshold for confidence in probability of 

our predictions. One such way could be to look at each of the pseudo-label predictions maximum 

probability. 

By doing predictions on the validation set we see that we have a variety of maximum values with a good 

correlation between number of samples in training data and maximum probability for predictions of that 

label. More training data give higher maximum probability. This is intuitive as there are more data to 

properly align the hyper-plane and also there is a higher distribution of the major labels in the corpus 

therefore more chances to get a higher probability sample in the validation set. This confirms the bias 

towards the major labels. 

We can then make a dictionary of these maximum values for each label and instead of setting a flat 

threshold over all labels we set a ratio of the maximum value for each individual label. This way we siphon 

samples distributed over all labels mitigating our problem with only getting the major labels in our 

resulting pseudo-labeled candidates. 

6.4.1. Tuning ratio 
Of course this will also result in a greater risk of mislabeling so we will run a sequence of ratios from 0.5 

to 1 in increments of 0.001. The threshold is then set per label with the formula; maximum probability 

multiplied with ratio. This is from predictions on the validation set. 

Here in the graph on the left we see a plot of the ratio 

barely visible in yellow with the maximum threshold 

from all labels following tightly. We see the mean 

threshold over labels in red and the minimum threshold 

in green indicating the span over which the labels 

probability cover. In blue we see the resulting accuracy 

of the subset of predictions meeting their thresholds. 

The X-axis is the ratio. 

As we can see the accuracy dips right before the end, 

with peak exactly at ratio=0.98.  

Figure 21 Dynamic thresholding results on validation set 
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Figure 22 Dynamic thresholding results on validation set, predictions grouped by label 

Above we see plots of the min, max and mean number of predictions per label with ratio as X-axis. From 

this graph we see that we still have a large difference in the number of samples per label, though 

decreasing rapidly as the ratio moves close to 1 resulting in only the samples with maximum probability 

in each label (mostly 1 per label).  

Now we look at the results we get at ratio=0.98, which had a peak 

accuracy=0.9882 for the resulting subset of predictions on validation 

set we see that we get a total of 170 samples, and only 2 samples 

mislabeled from the labels 6 and 8. 

We run dynamic thresholding on the test set with ratio=0.98 and we 

get an accuracy=0.9940 and a pseudo-label distribution almost 

identical to the validation set. 

Before we try dynamic thresholding in a self-training method we will 

also implement a method for mitigating the imbalance we get in 

pseudo-labels. But now we have a method of getting a better 

distribution of pseudo-labels. 

6.5.  Ensemble, bagging 
To mitigate the imbalance we get in pseudo-label distribution we will 

create an ensemble structure containing a number of models trained 

on separate combinations of the labeled training data and a stratified 

random subset of available pseudo-labeled data. This way we can both 

regulate the number of pseudo-labeled samples we add to the training 

data, but we also get good regularization by combining the predictions 

from several models mitigating the destabilizing effect of mislabeled samples. 

Pseudo-l.  Pseudo-l.  

12 49 26 3 

92 17 17 3 

3 15 13 2 

16 10 2 2 

91 8 21 2 

15 8 24 2 

6 7 7 2 

8 6 93 1 

10 6 5 1 

20 6 18 1 

9 5 19 1 

23 5 1 1 

4 4   

14 5   
Table 75 Dynamic thresholding results 
on validation set with ratio=0.98 
prediction subset pseudo-label 
distribution 
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6.5.1. Algorithm 
We first initialize the pseudo-labeled pool by performing predictions and probabilities with our baseline 

model on the unlabeled data. We then run these predictions and probabilities through our dynamic 

thresholding method and get our pseudo-labeled candidates in return. We then add these candidates to 

the pseudo-labeled pool. Then we iterate the number of models we want to fit with training data 

combined with a random sample from the pool of pseudo-labeled data. We do this sample stratified by 

iterating over the labels in the training data and counting the number of samples per label, this number 

we multiply with a set sample rate and we get the number of samples we pick from the pool. If there are 

less samples then what the sample rate indicate, we choose to add all the samples from the pool. 

We then have a number of models trained with different combinations of labeled and pseudo-labeled 

data. By using a sample rate we can regulate how much pseudo-labeled data we put in the mix and we 

can tune this parameter to get as stable models as possible. 

When the models have been fit they perform predictions and probabilities on either more unlabeled data 

or the final test set. We combine all the probabilities from each model in a tensor and get the mean 

probabilities for each sample and this way we get the regularization of the predictions. 

We have then some parameters to tune. The ratio parameter for the dynamic threshold, this controls how 

much pseudo-labeled data we get in the pool and to an extent how close the samples will get to the hyper-

plane. The number of models we want to train in our ensemble, this controls how much regularization we 

get. The sample rate for controlling how much pseudo-labeled data we add proportional to the number 

of samples per label in the training data. We can also perform individual sample rates per label or for sets 

of labels if we want to counter the imbalance already in the training data by adding more pseudo-labeled 

samples. This could also be done for the dynamic thresholding, as we could set individual threshold levels 

per label or groups of labels. 

6.5.2. Parameter tuning 
We will run a sparse grid-search over the parameters for number of ensembles, the sample rate and the 

dynamic threshold ratio. For this grid search we use the validation set as we will not be using validation 

inside the loop at any point. We also only run this for 1 iteration, meaning we only add pseudo-labeled 

samples to the pool once before we run the ensemble on the validation set. We do predictions on all the 

unlabeled data. 

 

Parameter Values 
Number of ensembles [5, 10] 
Sample rate [0.5, 1, 2] 
Dynamic threshold ratio [0.65, 0.80, 0.98] 

Table 76 Ensemble sparse grid-search parameter values 
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Grid-search results on validation set, showing top 5 and bottom 5 entries for reference. 

Number of ensembles Sample rate Dynamic threshold 
ratio 

Accuracy on validation 
set 

5 0.5 0.65 0.7078 

5 0.5 0.80 0.7077 

10 0.5 0.65 0.7077 

10 0.5 0.80 0.7072 

10 1 0.65 0.7069 

… … … … 

10 0.5 0.98 0.7029 

10 1 0.98 0.7025 

5 1 0.98 0.7014 

10 2 0.98 0.6995 

5 2 0.98 0.6990 
Table 77 Ensemble sparse grid-search results 

Here we can see that we clearly get a benefit from a lower dynamic threshold ratio. We are therefore able 

to learn from samples more close to the hyper-plane and mitigate the mis-labeling with the regularization. 

The top ranked gets a 0.568% increase in performance over baseline model on validation set, and we see 

that all the top 5 and in fact all the way to rank 12 have an improvement. 

If we look at the pseudo-label distribution for the top ranked 

model with dynamic threshold ratio of 0.65 we see that we 

have plenty of pseudo-labeled samples to pick from and 

especially from the major labels. We could easily increase 

the dynamic threshold ratio for some of the top labels so 

that their pseudo-labeled samples had a slight higher 

confidence. This will result in samples being further from the 

hyper-plane. But if we assume that the major labels already 

have a reasonable amount of samples to properly align the 

hyper-plane doing this distinction in thresholding could be 

beneficial. We then take higher risks with the minority labels 

in an attempt at aligning the hyper-plane, while lowering the 

risk with the majority labels. 

We will create such a progressive ratio by looking at the label 

distribution and manually create increments in the ratio by 

using conditional statements on the label. We create 3 

conditional groups of labels with three increments. 

 

 

Pseudo-l.  Pseudo-l.  

12 69262 13 7412 

16 36568 14 6871 

3 35321 5 6833 

20 28888 1 6806 

10 26568 7 6760 

15 25234 24 5471 

17 17957 26 4955 

6 15257 93 3455 

8 12511 2 2644 

4 12123 91 1755 

19 9705 92 1169 

25 9580 18 579 

23 7905 21 505 

9 7754   

SUM   369848 

Table 78 Ensemble sparse grid-search top rank 
pseudo-label distribution 
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Group of labels Increment in ratio 

12 0.15 

15, 16, 20, 3 0.10 

10, 17, 19 0.05 
Table 79 Dynamic threshold label groups with incremented ratio 

If we now run again with the settings of the top ranked model on validation set, we should get the 

thresholds for label 12 = 0.95, for label 15, 16, 20 and 3 = 0.85 and so on. When we run this configuration 

we get an accuracy of 0.7081 on the validation set, a slight improvement and a 0.611% increase from 

baseline on validation set. We will keep this configuration and run it on the test set. 

Number of 
ensembles 

Sample rate Dynamic 
threshold ratio 

Conditional ratio 
groups 

Final accuracy on 
test set 

5 0.5 0.65 Yes 0.7121 
Table 80 Ensemble score on test set 

Here we can see that we got pretty much the same result as our baseline, 0.014% decrease in 

performance. 

6.5.3. Conclusion 
The results we got on both the validation and test sets are interesting, even though the performance on 

the test set did not improve. We got improvement on most configurations on the validation set and we 

pretty much maintained the level of performance on the test set. Also the better performing 

configurations had a low dynamic threshold ratio, giving us more data closer to the hyper-plane, but from 

previous experiments we have seen that lowering confidence threshold quickly deteriorates the model. 

This we managed to mitigate with regularization from the ensemble structure with random subsets of the 

pseudo-labeled samples added to each models training data, maintaining and on validation set increasing 

performance. 

6.6. Clustering 
Clustering is a unsupervised method of grouping together samples that have certain similarities. The goal 

of a clustering method is to create such groups so that all the elements in them are more similar to each 

other then elements in other groups. This is can be achieved with many different techniques, but we will 

focus on the K-Means algorithm. This algorithm has 1 parameter, the K, which decides how many clusters 

to form. To do this we create K cluster centers, called centroids, at random locations in the feature space, 

or we can pick K random samples locations as initial centroids. Then we start an iterative process of 

assigning samples to their nearest centroid based on a distance metric, when all samples are assigned we 

recalculate the centroid to be the mean of all its assigned samples. This process continues until there is 

no change in assignments to centroids (or less change then some threshold or a maximum number of 

iterations). 

Because there is no defined way of initializing the centroids, they are random, there is also no optimal 

solution to the problem and it can converge at a local optimum. Because of this it is normal to re-run the 

algorithm several times with different initial centroids and then pick the one with the smallest sum of all 

squared distances from the centroids. 

We will use an implementation of K-Means from the scikit-learn library called KMeans [32]. 
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Also because K-Means is known for poor performance in high dimensionality we will use the word-

embedding representations for clustering. 

6.6.1. Cluster features 
The way we will use clustering is to engineer additional features for us to see if we can improve 

classification with. We will cluster our samples several times using different values for K and save each 

cluster assignment as a feature. The intuition here is that there might be additional information in knowing 

what cluster a sample was in at different scales of clustering. We will sort of create a “path” from larger 

clusters down to smaller clusters. 

In addition we will see if mixing in unlabeled data with the labeled data will improve the clustering and 

give better results. 

We then have two parameters to tune, the K in K-means and number of different Ks, let us call that 

parameter N. We will tune these parameters first and then look at adding unlabeled data later. 

6.6.1.1. Tuning K and N 

We could do an exhaustive grid-search on all different K’s and N’s within some set range, but because that 

would be very time and resource consuming we will choose some values that we think might be suitable 

to what we want to achieve. We want to create clusters of different scale to create a “path” from big 

clusters down to small clusters. N controls the length of the path and K controls the scale of the clusters. 

To make it easy for us and also with a bit of hope that nature will be on our side we choose the Fibonacci 

sequence to give us our K’s. We choose some N-length subsets of this sequence to be our parameter 

values. We represent K and N as a list of K’s; [K1, K2, K3, … , Kn] 

Parameter Values 
K and N [5, 8, 13] 

[5, 8, 13, 21] 
[8, 13, 21] 
[13, 21, 34] 
[21, 34, 55, 89] 

Table 81 K and N parameter values 

Since we are using a SVM model we will have to convert the cluster assignments to one-hot 

representations for us to be able to use them as features in our model. 

We will run the parameters on the validation set and add the features to our baseline model to see the 

resulting accuracy. Below is the results ranked by accuracy. 

K and N Accuracy on validation set 
[5, 8, 13] 0.7053 
[13, 21, 34] 0.7049 
[5, 8, 13, 21] 0.7033 
[8, 13, 21] 0.7022 
[21, 34, 55, 89] 0.6967 

Table 82 Cluster features K and N tuning results 

Here we see that we get a positive result with improvement in the accuracy for the two top ranked results 

on the validation set. Let us see if the best ranked parameter also performs well on the test set. 
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K and N Accuracy on test set 
[5, 8, 13] 0.7129 

Table 83 Cluster features best K and N on test set result 

As we can see we also got an improvement on the test set with 0.098% increase in performance. 

Now we will see if we introduce unlabeled samples together with the labeled if it could improve clustering 

and give us better features. We will try with different multiples of the size of the train set to see if there 

is an optimal amount of unlabeled vs labeled data. At the end we will use all the unlabeled data. We will 

use the K and N from the best ranked of  previous results. ‘all’ in this setting means we add all the 

unlabeled data to the train set while performing clustering. 

Parameter Values 
Multiples of train set size [0.5, 1, 1.5, 2, 5, 10, all] 

Table 84 Unlabeled mix with labeled data cluster features parameter values 

Results on validation set ranked by accuracy. 

Multiple Accuracy on validation set 
10 0.7041 
All 0.7041 
5 0.7040 
1 0.7032 
1.5 0.7032 
2 0.7032 
0.5 0.7016 

Table 85 Unlabeled mix with labeled data cluster features results 

We see no improvement, but we see that the more unlabeled data we add the less the damage is. We 

will not try this with the test set as we saw no improvement. 

6.7. Other experiments 
We also tried some other techniques that had less success then the ones described earlier in this 

writing. We will shortly describe some of them here. 

6.7.1. Directed Latent Dirichlet Allocation 
Latent Dirichlet Allocation (LDA) is a popular topic modelling algorithm [33]. It is used for discovering 

latent topics in the data at hand. It could be considered a way of soft-clustering both documents and 

words into a defined number of clusters/topics so that the words that appear in similar documents are 

bundled together with probabilities of appearing in each cluster/topic. It could also be considered as 

dimensionality reduction where each document is reduced to the probabilities of appearing in the defined 

number of topics. A document could be interpreted as being 5% politics, 4% finance and 91% sports for 

instance. 

When LDA is applied on its own it is a un-supervised  algorithm where you define the number of topics 

and then LDA will discover these topics on its own. This is useful if you want to achieve some inference 

about what a corpus themes are. 
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In practice LDA is an algorithm performed on two matrices, a word-by-topic matrix and a document-by-

topic matrix. These matrices describe the probabilities for a word to belong to a topic and a document to 

belong to a topic. Usually these matrices are instantiated with random variables and through iterations 

the latent distributions are discovered. 

We can exploit the word-by-topic matrix initialization by not instantiating it randomly, but with defined 

values.  

We will be using the LDA module from the scikit-learn library [34], but we will create a super-class around 

it and modify its behavior when initializing the latent word-by-topic matrix. We will add the possibility to 

define this matrix manually. 

After enabling this functionality we will use a scoring function to score the words in our vocabulary by 

label. To do this we will iterate over each label in a one-vs-rest fashion where we create a binary label and 

score our words using chi-squared. After iterating over each label in this fashion we have our word-by-

topic matrix that we can use to instantiate the LDA. We will of course also define our topics (or 

components as the hyper-parameter is called in the module) to be the same number as the number of 

labels. 

We can also mix in unlabeled samples and leave their unique words at a set default score. 

Now we let the LDA run its course and we can transform our validation or test set to get the probabilities 

for a sample to belong to a certain topic. By remembering what topics correspond to what label when we 

instantiated we can classify either the sample by taking the topic/label with the highest probability or we 

can train a separate classifier on these probabilities using the LDA as a dimensionality reducer. 

Neither of these techniques proved beneficial to our problem as we were not able to get any performance 

over 50% accuracy. 

6.7.2. Date distribution 
As mentioned earlier in the thesis we should look at how the articles change over time. We did this in two 

different ways. We first split the corpus in half on data and trained separate models for each split, and we 

tried splitting in three with three separate models achieving nothing but less accuracy probably due to 

less training data. 

We also tried using the date as a feature directly with no luck. And we tried binning the dates in 10 bins 

and use that as a feature with no gains in performance. 

I think we can conclude that date is not discriminatory in this corpus. 
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7. Conclusion 
In this work we have presented several techniques for improving classification, both supervised and semi-

supervised. We will try and compare how well they have succeeded on our dataset. Let us first review 

some of the results in the table below. 

Method Model Pseudo-labeled 
added 

Accuracy on test 
set 

Relative to 
baseline 

Supervised 
methods 

    

Vectorization & 
classification 

TfidfVectorizer + 
LinearSVC 

 0.6759 *Initial baseline 

Feature 
selection 

chi2, 40 000  0.6704 0.325% decrease 

Sampling TomekLinks  0.6770 0.163% increase 

Word-
embedding 

model 80, 
lemmatized, TF-IDF 
weighted, min-max 
scaled 

 0.7039 4.143% increase 

Calibration CalibratedClassifierCV, 
isotonic 

 0.6800 0.607% increase 

Combined 
supervised 
model 

  0.7066 4.542% increase 
*Supervised 
baseline 

Semi-supervised 
methods 

    

Feature 
extraction 

TF-IDF weights for 
word embeddings 

 0.7122 1.007% increase 
*baseline 

Self-training, 
single model 

All unlabeled, 5 
iterations, 0.99 
confidence 

6 116 0.6951 2.401% decrease 

Self-training, 
single model 

50 000 samples from 
pool, 5 iterations, 0.99 
confidence 

786 0.7125 0.042% increase 

Self-training, 
single model 

50 000 samples from 
pool with validation, 5 
iterations, 0.99 
confidence 

178 0.7122 0% difference 

Self-training, 
single model 

250 000 samples from 
pool with validation, 
quick model, 150 
iterations, 0.98 
confidence 

37 0.7124 0.028% increase 

Self-training, 
single model 

30 samples from pool 
with validation, quick 
model, 300 iterations, 
0.00 confidence 

450 0.7118 0.056% decrease 
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Self-training, 
single model 

50 000 samples from 
pool, 5 iterations, 0.99 
confidence, trash 
filter 

948 0.7133 0.154% increase 

Self-training, 
multiple models, 
feature split 

50 000 samples from 
pool, 10 iterations, 
confidence tuning 
with validation set 

20 838 0.6800 4.521% decrease 

Self-training, 
multiple models, 
feature split 

50 000 samples from 
pool, 10 iterations, 
0.98 confidence 

1273 0.7002 1.685% decrease 

Self-training, 
multiple models, 
sample split, 
random 

50 000 samples from 
pool, 10 iterations, 
0.98 confidence 

1675 0.7077 0.632% decrease 

Self-training, 
multiple models, 
sample split, 
entropy 

50 000 samples from 
pool, 10 iterations, 
0.55 confidence 

3541 0.7079 0.604% decrease 

Self-training, 
multiple models, 
sample split, 
support vector 

50 000 samples from 
pool, 10 iterations, 
0.88 confidence 

1548 0.7118 0.056% decrease 

Self-training, 
ensemble 

Dynamic threshold 
ratio 0.65 

Sample rate=0.5 0.7121 0.014% decrease 

Cluster feature 
engineering 

 0 0.7129 0.098% increase 

Table 86 Selection of results 

As we can see among the supervised methods (or rather non-semi-supervised) word-embedding 

representation in combination with BoW clearly gave the best performance increase. 

Among the semi-supervised methods tried in this work the TF-IDF feature extraction for weighting the 

word-embedding vectors gave the best improvement from the combined supervised model. 

It has proven difficult to gain any extra learning from the unlabeled samples in this dataset using the basic 

wrapper self-training approach, but we did achieve increases in performance with some of the methods. 

We should also consider that increments in accuracy would get progressively more difficult to gain. As we 

are adding our semi-supervised methods on top of the supervised baseline. 

Our best results with self-training were the single model with a flat confidence threshold, but this model 

would only append pseudo-labels from the majority labels and would in the long run only enforce the 

imbalance problem further. 

Our ensemble approach did not succeed in improving accuracy on the test set, but it did for many 

configurations on the validation set. This could indicate that there is less accuracy to be gained on this 
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particular split of test data. The validation accuracy is approximately 1% less then on the test set giving 

more room for cheaper gains in accuracy here. 

We were able to counter the challenges we had with distribution in confident pseudo-labels and also 

found an effective way of mitigating the destabilizing effect of mislabeled samples. 

If we compare the results of our semi-supervised techniques with the common supervised sampling 

techniques we see that our semi-supervised methods are at least comparable if not better.  

A weakness in our strategy could be that even though we did not use the test set for parameter-tuning at 

most stages, we did use it to draw conclusions about individual components of the final models, so our 

results should be considered somewhat optimistic. 

Ansver Q1: Yes, we are able to create an algorithm that is able to extract additional learning from the 

unlabeled data. 

Ansver Q2: Yes, we are able to make use of unsupervised pre-processing techniques 

Ansver Q3: Applying these techniques can improve accuracy. 

We can conclude that it is possible to gain extra learning using the unlabeled data and that it is also 

possible to mitigate the imbalance problem, but further work needs to be done to find the correct balance 

between confidence, distribution and getting samples that are closer to the decision border. 

Files used in this thesis can be found at this repository: https://github.com/nmfoss/master_public 

8. Future work 
We think that the most interesting direction for future work would be in exploring the multiple models 

approach with focus on how to create better diversity in the trainers to counter the dilemma of confidence 

vs. distance to decision border. 

We also think that the ensemble and dynamic threshold approach should be further explored to find the 

optimal balance of regularization and sample rate. As well as different techniques for filling the pseudo-

labeled pool. 
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