

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:

Computer Science

Reliable and Secure Systems

Spring semester, 2020

Open

Authors: Kristian Gingstad and Øyvind Jekteberg

Programme coordinator: Krisztian Balog

Supervisor(s): Krisztian Balog

Title of master’s thesis:

ArXivDigest: A Living Lab for Personalized Scientific Literature Recommendation

Credits: 30

Keywords: Living Lab, Recommender

systems, personalized recommendations,

Online evaluation, Topic extraction

Number of pages: 125

+ supplemental material/other:

 Code included in PDF

Stavanger, 15/06/20

Title page for master’s thesis

Faculty of Science and Technology

Abstract

The purpose of this thesis is to explore different methods for recommending scientific
literature to scientists and to explore different methods for doing topic extraction. We
will update and use the already existing arXivDigest platform, which uses feedback from
real users to evaluate article recommendations, to evaluate and compare these methods.

We introduce scientific literature recommendation methods based on term-based scoring,
query expansion, semantic similarity and similar authors. While on topic recommendation
we explore the RAKE and TextRank algorithms for topic extraction and TF-IDF weighting
for topic similarity matching. These methods are all running live on the arXivDigest
platform where we collect user feedback on the recommendations they provide.

We were able to get some users to sign up and use our platform, but they were unfortu-
nately not active enough to generate sufficient interaction data by the time of submission
to draw any reliable conclusions about system performance. We can however see that
the arXivDigest platform is performing as it should and recommendations are submitted
daily.

Acknowledgements

We would like to thank Krisztian Balog, Professor at the Department of Electrical
Engineering and Computer Science at the University of Stavanger, for being our supervisor.
We greatly appreciate the invaluable feedback and guidance we have received during our
weekly progress meetings. His passion for the project motivated us to challenge ourselves
throughout our work on this thesis.

iii

Contents

Abstract i

Acknowledgements iii

Abbreviations ix

1 Introduction 1
1.1 Project History . 2
1.2 Objectives . 2

1.2.1 Infrastructure Development . 3
1.2.2 Article Recommendation . 3
1.2.3 Topic Recommendation . 4

1.3 Main Contributions . 4
1.4 Outline . 5

2 Related Work 7
2.1 Information Retrieval . 7

2.1.1 Text Preprocessing . 7
2.1.2 Indexing . 8
2.1.3 Term Importance Weighting . 9
2.1.4 Retrieval Models . 10

2.2 Academic Literature Search . 12
2.2.1 Ad Hoc Scientific Document Retrieval 12
2.2.2 Scientific Literature Recommendation 13
2.2.3 Explainable Recommendations . 13

2.3 Extracting Metadata . 14
2.3.1 Topic Extraction . 14

2.4 Evaluation . 15
2.4.1 Offline vs. Online Evaluation . 15
2.4.2 A/B Testing . 16
2.4.3 Interleaving . 17
2.4.4 Multileaving . 18
2.4.5 Evaluating Performance . 20
2.4.6 Living Labs . 20

v

vi CONTENTS

3 Infrastructure Development 23
3.1 Overview . 23
3.2 Explanations . 24
3.3 Topics . 26

3.3.1 Topic API Endpoints . 26
3.3.2 Submitting a Topic Recommendation 30
3.3.3 Topics in the Database . 31
3.3.4 Frontend Topic Implementation . 32
3.3.5 Topic Interleaving . 34
3.3.6 Initial List of Topics . 34
3.3.7 Types of Topic Feedback . 35

3.4 User Feedback . 36
3.5 ArXivDigest Package . 38
3.6 Living Labs and Systems . 40

3.6.1 Evaluation . 41
3.6.2 Evaluation Web Interface . 42
3.6.3 Feedback Web Interface . 43

3.7 Miscellaneous Other New Features . 43
3.7.1 Interleaving Update . 44
3.7.2 API Settings . 45
3.7.3 ArXivDigest Connector . 45
3.7.4 Email Verification . 47
3.7.5 Unsubscribe from Digest Email . 48
3.7.6 ArXiv Scraper Update . 48

3.8 Final Architecture . 50
3.8.1 Submitting an Article Recommendation 50
3.8.2 API Endpoints Overview . 51

4 Article Recommendation 53
4.1 Overview . 53
4.2 Baseline System . 55
4.3 Shared Article Recommender System Code 57
4.4 Query Expansion Based System . 57

4.4.1 Background . 57
4.4.2 Implementation . 59

4.5 Semantic Reranking Based System . 61
4.5.1 Background . 61
4.5.2 Implementation . 62

4.6 Author Based System . 66
4.6.1 Background . 66
4.6.2 Implementation . 66

5 Topic Recommendation 69
5.1 Overview . 69
5.2 Common Functions . 69

5.2.1 Fetching User Information . 70
5.2.2 Text Preprocessing . 72

CONTENTS vii

5.2.3 Base Topic Recommender Class . 73
5.3 Topic Recommendation Algorithms . 75

5.3.1 RAKE . 75
5.3.2 TextRank . 79
5.3.3 TF-IDF Weighting . 83

6 Experimental Evaluation 87
6.1 Experimental Setup . 87

6.1.1 Evaluation Methodology . 87
6.1.2 Users . 88
6.1.3 Articles . 88
6.1.4 Experimental Recommender Systems 89
6.1.5 User Feedback . 89

6.2 Results . 91
6.2.1 Article Recommendations . 92
6.2.2 Topic Recommendations . 96

7 Conclusion 99
7.1 Infrastructure Development . 99
7.2 Article Recommendation . 100
7.3 Topic Extraction . 100
7.4 Inaccuracies and Improvements . 100
7.5 Future Directions . 101

A Additional Plots and Figures 103

B Attachments 107

Bibliography 109

Abbreviations

IR Information Retrieval

RAKE Rapid Aautomatic Keyword Extraction

POS Part Of Speech

BM25 Best Matching 25

API Application Programming Interface

TF-IDF Term Frequency - Inverse Document Frequency

NLTK Natural Language Tool Kit

LM Language Model

UUID Universally Unique IDentifier

JSON JavaSscript Object Notation

CTR Click-Through Rate

RSS Rich Site Summary

URL Uniform Resource Locator

SQL Structured Query Language

DOI Digital Object Identifier

AJAX Asynchronous Javascript And XML

DB DataBase

XML EXtensible Markup Language

CSV Comma-Separated Values

HIN Heterogeneous Information Network

URI Uniform Resource Identififer

PDF Portable Document Format

ix

Chapter 1

Introduction

Research papers, reports, experiments, and many other forms of scientific literature are
created and released every day. For an every-day scientist or science enthusiast, it is quite
a lot of work finding these new publications and keep up with the newest information
available. Fortunately, there exists a service called arXiv [1] which is an open access
archive and free distributor of scientific literature. The problem with this service, is that
a scientist must filter though a lot of non-relevant papers each day to find the papers
that are of interest to them. There are a lot of new publications released each day and
this filtering process takes a long time to do by hand. Different platforms have therefore
emerged to try fix this problem. CiteSeerX [2], Semantic Scholar [3], ArnetMiner [4]
and arXiv Sanity Presever [5] are some examples of platforms that help their users sort
trough scientific literature and find literature that are relevant for them. Some of these
platforms also provide scientific literature recommendations to their users. Services like
these helps scientists use their valuable time reading relevant scientific literature instead
of wasting it on finding relevant literature to read.

Creating good recommendations is not always easy however. Many different algorithms
and approaches exist to serve this purpose and newer algorithms or modifications to older
algorithms are created frequently. Testing the different algorithms and getting accurate
real world performance measurements is often difficult without testing the algorithm in a
live setting because of the many factors that must be accounted for [6]. It would therefore
be beneficial to have a platform where real users can interact with recommendations
from a lot of different recommendation algorithms at once. This way, one could create
statistics about each algorithm based on the users interactions with the recommendations
and use these statistics for improving the algorithms. This would both benefit users,
which would get better recommendations, and researchers who would get a service to
test their new algorithm ideas in a live setting. Taking this a step further, it would

1

Chapter 1 Introduction

also be useful having explanations for the recommendations. It has been shown that
having explanations increases the persuasiveness of a recommendation, the users trust in
the system and makes the user more forgiving towards bad recommendations [7, 8]. It
would also be useful to recommend topics of interests to users based on their publications
or reading history as having more topics gives the recommendation algorithms more
information to work with. This would include topics that the users might forget to add
to their profiles or topics that specifies their interests further. These are the problems
we would like to address in this project.

1.1 Project History

Two years ago, in 2018, we created the arXivDigest platform [9]. This platform already
performs many of the tasks that were described in the previous section. First, it provides
a web interface for scientists and others with interest for scientific literature to use. Here,
they can create their own profiles and receive scientific literature recommendations based
on what personal information they provide. Secondly, arXivDigest also provides an
API for connecting experimental recommender systems. This API has endpoints for
fetching user information, information about the newest released scientific literature
and for submitting personalized article recommendations. Recommendations submitted
through the API are combined from multiple recommender systems in a way that makes it
possible to compare user interaction with different recommender systems and use this to
evaluate the performance of the recommender systems. The API is secured by API-keys,
but anyone with the intent of creating and evaluating real recommender systems may
apply for an API-key. This is the state we left the project at after the bachelor thesis.

1.2 Objectives

There are three main objectives in this thesis. First, we want to upgrade the arXivDigest
platform infrastructure to support explanations for article recommendations, to allow
for topic recommendation and some quality-of-life features for users. While doing this,
we will also need to fix and improve some of the old features which could have been
implemented better. Secondly, we want to research and develop novel recommender
algorithms to generate scientific literature suggestions to our users. In addition, we will
need to be able to create explanations for why the algorithms recommend each piece of
literature. Lastly, we want to research and develop some algorithms to automatically
recommend different topics that our users can add to their profiles.

3

1.2.1 Infrastructure Development

The application infrastructure from our bachelor thesis need to be upgraded and expanded
upon to support the new features that we want to implement. The novel recommender
systems that are going to interact with our application will from now on provide an
explanation on the recommendations they make. We therefore need to extend the frontend
web application, the API and the digest email to handle and show these explanations
along with the recommendations. Since the application is going to go live, we want users
to be able to leave feedback through a feedback form. The users should be able to use this
feedback form to report problems or address issues with certain recommendations they
were given. Other frontend changes we want are email verification of users on signup,
the ability for users to unsubscribe from the digest emails and some more plots that
show the performance of the different experimental recommender systems for admins
and users that own recommender systems. The last major change we want to implement
is to automatically recommend topics to the users. This include some new endpoints
for the new topic recommender systems to interact with on the API side and a way of
showing these topic recommendations to the users on the frontend side.

In short, our infrastructure objectives are:

• Support for explanations on recommendations.

• Feedback form.

• Verification of users on signup.

• Unsubscribe from digest emails.

• Extend API for topic support.

• Support for topics on the web interface.

• More statistic plots on experimental recommender systems performance.

• Code quality improvements, including modularity and robustness.

More infrastructure changes are most likely going to be added as we work on getting the
system up an running and discover other changes that needs to be done.

1.2.2 Article Recommendation

Since the application is going to go live, we need to create some recommendation
algorithms to provide recommendations to our users. These algorithms will run outside

Chapter 1 Introduction

the arXivDigest platform and will connect with the arXivDigest API. The new algorithms
must also be able to provide simple explanations on why they recommended each article.
The goal is to create three or more of these recommendation algorithms that all use
different approaches or techniques. At the end of the project, we can use user feedback
to check each systems’ performance and see how they compare to each other.

In short, our article recommendation objectives are:

• Create three or more recommendation algorithms.

• Provide an explanation with each recommendation.

• Use user feedback to compare system performance.

1.2.3 Topic Recommendation

The last main objective is to recommend topics to our users. Since article recommen-
dations are often based on users’ topics, it is important for the quality of the article
recommendations that the users have many good topics on their profile. We want to
create some recommendation algorithms for the topics, in the same spirit as we will do
for the articles. Information on users for the creation of these topic recommendations
will be fetched from the user profiles on arXivDigest and other web pages. These topics
will then be shown to the users and they will have the choice of rejecting them or adding
them to their profiles. The goal here is also to create two or three topic recommendation
algorithms. Then, at the end of the project, we can use the user feedback to check which
of the systems recommends the best topics.

In short, our topic recommendation objectives are:

• Create two or three topic recommendation algorithms.

• Fetch information about the users from other web pages.

• Use user feedback to compare the algorithms’ performances.

1.3 Main Contributions

The arXivDigest infrastructure has been extended with new functionality for accommo-
dating explanations for article recommendations and an API and user interface for topic
recommendations from recommender systems. In addition to many small changes like
email verification on sign-up, a feedback form, option to unsubscribe from the digest

5

mail and more. There were also several technical improvements for example changing
the platform to be an installable package instead of folders with separate script files.
This made it much easier to import files and functions from other directories in our
application structure. A connector was also made that is installed with the arXivDigest
package and can be used to make connection to the arXivDigest API easier. It provides
functions for creating a connection and easier fetching and sending of data without
needing complicated code in the specific recommender system files.

For the article recommendation objective we created four different experimental recom-
mender systems. All based on different methods for recommending the articles.

• A system that uses term-based ranking for scoring articles, using Elasticsearch.

• A System that performs query expansion on the users liked articles before scoring
with Elasticsearch.

• A system that uses word2vec to semantically rerank articles.

• A system that recommends articles based on author citations.

The topic recommender systems were created in a similar manner to the article recom-
mender systems. We ended up making three different topic recommendation algorithms
in total. The topic recommender systems also comes with functions to scrape external
websites for information about the users. This user information is mainly the titles of
their previously published articles. The systems we created are listed below.

• A system based on the RAKE algorithm.

• A system based on the TextRank algorithm.

• A system that recommends already created topics using TF-IDF weights.

The service is running at https://arxivdigest.org/ and the source code is available
under a license at https://github.com/iai-group/arXivDigest.

1.4 Outline

The remainder of this thesis is structured as follows:

Chapter 2 Introduces different information retrieval concepts and other work related to
scientific literature recommendation and topic extraction.

https://arxivdigest.org/
https://github.com/iai-group/arXivDigest

Chapter 1 Introduction

Chapter 3 goes more in depth on the infrastructure development we did to the arXivDigest
platform to accommodate the new features and a smoother overall experience.

Chapter 4 presents the work done on the article recommender systems and algorithms.

Chapter 5 goes into detail about the topic recommendation systems and algorithms.

Chapter 6 presents the statistics we have collected on the experimental recommender
systems that we created and discusses the results.

Chapter 7 concludes and presents suggestions for further work.

Chapter 2

Related Work

2.1 Information Retrieval

Information retrieval is the field of study concerning retrieving relevant information
that satisfies an information need from a large collection. This can be elements such as
images, videos, text documents and other types of information [10, 11]. In this project
we are only concerned with text based information retrieval, more specifically scientific
literature retrieval, and will thus only focus on the techniques relevant for this.

2.1.1 Text Preprocessing

Before any information retrieval techniques can be applied to any given query and
document corpus, it is important to preprocess the text. The purpose of preprocessing
text is to standardize the format of the input text and removing inconsistent and irrelevant
information. This will increase the precision of the information retrieval techniques that
will be applied later [12]. Preprocessing can be as simple as just lowercasing the text,
but more advanced techniques may also be applied such as trying to reduce different
forms of a word into a base form. We will go over the most common techniques of text
preprocessing in the following sections.

Tokenization

Tokenization is the process of breaking the text up into lexical units, named tokens. The
tokens may be words, numbers, symbols or sometimes more advanced units such as "New
York" [12]. A naive way of tokenizing a text may be to simply split tokens on spaces.
However, this may miss tokens such as hyphenated words. Splitting on symbols may

7

Chapter 2 Related Work

fix this issue, but will again introduce new problems like splitting URIs and emails into
multiple tokens. Tokenization is thus not as trivial as it first may seem, because of edge
cases like these, and the fact that each language has different rules for how tokens are
divided [11, 12].

Stopwords

Stopwords are words in a text that add so little value differentiating documents that
they can be safely excluded without affecting the end result too much. Most of them are
unimportant because they appear so often that most texts will include them regardless
of content, but it can also be words that hold little semantic meaning [11]. Common
examples of stopwords are words like ’the’, ’a’, ’and’, ’is’ etc. One common way to
identify stopwords is by the frequency of the words in the text. The most common words
are often the words with less semantic meaning and can for this reason be removed. This
may be combined with manual filtering of a stopword list for the best results [11].

One may choose to use a predefined stopword list or to create a corpus specific stopword
list. The advantage of a corpus specific stopword list is that different corpus may have
different word frequencies and different words may be important. Different tasks may
require different amounts of stopwords, but the general trend in IR seems to be going for
smaller stopword lists [10, 11].

Stemming and Lemmatization

In texts, the same word may appear in many different forms, verbs have different tenses,
nouns may be singular or plural etc. When retrieving documents, it will often be
beneficial to also look for documents containing other forms of a queried word. In this
situation it is therefore useful to apply stemming or lemmatization to the text. The goal
of both stemming and lemmatization is to reduce the different forms of a word into one
common form, often called the stem or the root [12]. They achieve this using different
methods. Stemming usually works by cutting of the ends of the words according to
certain rules in a hope of achieving a common form. Meanwhile, lemmatization often
uses a vocabulary and differentiates based on the part of speech(POS) of a word to more
accurately determine the base form of a word [11].

2.1.2 Indexing

When looking for a document containing a specific term, it will be quite slow to scan
through all the terms of all the documents just to find the documents containing the

9

one specific term. This is where an index may be useful. An index is a mapping from
terms to documents containing each term. In information retrieval this structure is often
referred to as an inverted index. The index is built in advance such that on search-time
one may just find the term in the index to get all the documents containing that term. By
building an index, the runtime cost of finding documents with a term has been replaced
by an upfront cost of building the index [11].

2.1.3 Term Importance Weighting

Many information retrieval techniques also weights terms rather than just checking
whether a term is present in a document or not. TF-IDF is a common weighing scheme
in IR. In TF-IDF, we do not care about the ordering of the terms in the document, but
only look at the number of occurrences of each term. This is also known as a bag of
words model [10, 11].

TF stands for term frequency and is as the name imply the a measure of how frequently
a term appears in a document. The reasoning behind this is that the more often a
term appears in document, the more relevant this term is for the document. TF may
also sometimes be normalized by document length such that long documents do not
get an unfair advantage over shorter documents just because they contain more terms
in general [11, 13]. Equation 2.1 details how document length normalized TF can be
calculated by taking the frequency ft,d of a term t in a document d, then dividing it by
the total number of terms in the document.

tft,d = ft,d∑
t′∈d ft′,d

(2.1)

IDF is an abbreviation for inverse document frequency and is meant to reward terms
that appear less frequently in the corpus. IDF builds on some of the same motivation as
stopwords, being that terms that appear in most documents are almost useless when
determining relevance. This intuitively makes sense when searching for e.g. "the Beatles".
Here the common word "the" will match most documents, while the more uncommon
word "Beatles" will be far more likely to find relevant documents about the Beatles.
As the name implies the IDF of a term t is calculated by dividing the total number of
documents N by the number of documents containing the term nt. Then the logarithm
is applied to the result to provide a dampening effect [11, 13]. This can be seen in
Equation 2.2. Note that there exists different variations.

idft = log(N
nt

) (2.2)

Chapter 2 Related Work

TF and IDF are then combined into the final TF-IDF measure by using the formula in
Equation 2.3. Here, the TF-IDF score is calculated for a single term in a single document
in the collection of documents by multiplying the TF score with the IDF score. This
will give a measure that takes into consideration both the isolated term frequency of the
document and the IDF term that considers the whole document collection [14].

tf -idft,d = tft,d · idft (2.3)

2.1.4 Retrieval Models

Retrieval models define the notion of relevance of documents for queries and a retrieval
function scores documents based on a relevance model. This makes it possible to rank
documents by relevance and is at the core of information retrieval [10].

Reranking First-Pass Retrieval Results

For certain retrieval functions, it would not be feasible to apply the function to all
documents in a corpus because this would be too inefficient. A normal solution for this
is to use a more efficient ranker to retrieve a first-pass result which can then be reranked
using the more expensive function. A ranker may be any system or algorithm for ranking
documents based on some criteria, like relevance. This approach is extremely effective for
improving the efficiency of the ranking, but it is not without drawbacks. It is impossible
for a reranking algorithm to retrieve a document not available in the first-pass result.
This essentially means that the first-pass ranker acts as a filter. Because of this, a bad
first-pass ranker may be detrimental to a retrieval model [15].

BM25

BM25 is a popular retrieval function for scoring documents or texts with respect to an
input query [10, 16]. This retrieval function is based on TF, IDF and document text
length normalization [17]. BM25 uses a bag-of-words representation of text which means
that each term is scored independently and the order of terms are not accounted for [10].
There are two parameters which we can tune in BM25. The k1 parameter which limits
how much a single query term can contribute to the score of a document and is achieved
by letting the score approach an asymptote. The notion for this is that the frequency of
a term’s appearance has diminishing returns on the relevance of a document and should
therefore also have diminishing returns on the score of a document [10, 16, 17]. The b

11

parameter controls the amount of length normalization applied to a document. When b
is set to 0 there is no length normalization, but when b is set to a value greater than 0
the shorter documents are rewarded while longer documents are penalized [10].

In Equation 2.4 we can see the formula for calculating BM25 score for a document-query
pair [10, 17].

score(d, q) =
∑
t∈q

ft,d · (1 + k1)
ft,d + k1(1− b+ b |d|

avgDocLen)
· idft (2.4)

LM

Another popular retrieval model is the query likelihood model. This model takes a
probabilistic approach to retrieval, also known as language modeling. In this model, the
documents are ranked by the probability that a user would use a particular query to find
a particular document. As with BM25, it is assumed that terms are independent and
order is not preserved [10].

The probability of a term appearing in a document can be calculated as seen in Equa-
tion 2.5, but this probability is almost always smoothed with collection statistics before
use. This is because one term with a zero probability will give the entire query a
probability of zero, as the probabilities are multiplied. Jelinik-Mercer smoothing is one
such form of smoothing, and can be seen in Equation 2.6 [10].

P (t|d) = ft,d

|d|
(2.5)

P (t|θd) = (1− λ)P (t|d) + λ

∑
d′ ft,d′∑
d′ |d′|

(2.6)

The final score is calculated by multiplying all the term probabilities. Multiplying
small probabilities together will often lead to very small numbers, which could lead to a
arithmetic underflow. Because of this, the probability is most often transformed into
log-space, as can be seen in Equation 2.7 [10].

score(d, q) =
∑
t∈q

logP (t|θd) · ft,q (2.7)

Chapter 2 Related Work

Figure 2.1: Different literature services and what they provide.

2.2 Academic Literature Search

As outlined in the introduction, the main goal of this project is to facilitate easier
discovery of relevant academic literature. Tackling this problem using IR techniques
gives us two choices for how to deliver this information to the users, push or pull [11].

A system in pull mode lets users take the initiative to find the information, typically
by issuing a query to a search engine or by browsing through articles within a specific
field of study. This mode of information retrieval is best suited for a temporary, ad hoc
information need that typically will be resolved after finding something specific [10].

Push mode however, is initiated by the system. Examples of this may be a movie site
recommending movies based on a users watch history on the main page or a news site
sending out email notifications on news that matches a users interest profile. This mode
of finding relevant information is typically more useful in fulfilling a long term information
need [10].

2.2.1 Ad Hoc Scientific Document Retrieval

Ad hoc document retrieval addresses a temporary information need and is thus most
often best solved by pull-based techniques like querying and browsing. There exists
several services that provides features like this for finding scientific literature. Semantic
scholar [3], arXiv Sanity Preserver [5], ArnetMiner [4] and CiteSeerX [2] all have features
for searching for articles and authors, browsing similar articles and saving articles.
Semantic scholar [3] also provides more advanced features like showing the influence
of articles and authors. An overview of features from the different sites can be seen in
Figure 2.1.

13

2.2.2 Scientific Literature Recommendation

As recommendations usually focus more on the long term information needs of the users,
it is more natural to employ push based techniques in our scenario. For example, if the
goal is to recommend content from a continuous stream of articles, it is not natural to
expect users to continuously watch or query the system with the same query. Seeing that
the users’ long term information needs usually stay relatively constant, it is possible to
build an interest profile for each of the users. Then this can be used for determining the
relevance of each article and alert the user when an article matches their profile.

There exists two main approaches for recommending content to users. The first one is
content based filtering. Content based approaches bases the recommendations on the
users profile and the contents metadata. This approach may also exploit information
about what a user has previously shown interest for. However, this requires rich and
accurate metadata for the content to provide reliable recommendations [18].

The other approach is collaborative filtering. In this approach, we do not need metadata
for the items nor a profile for the users. Instead, content relevance is modeled based on
user interaction. The recommendations are then based on what like-minded users show
interest for [18].

Of the services we looked into, only CiteSeerX [2] and arXiv Sanity Preserver [5] provides
personal recommendations.

2.2.3 Explainable Recommendations

The goal of explanations on recommendations is to help users understand why the item
was recommended to them by the system. It also makes it easier for system designers to
debug the systems [7]. Explanations make the system more transparent to the user, makes
the recommendations more persuasive and increases users’ trust in the system [7, 8]. It
has been shown that users are more forgiving towards recommendations they disagree
with, if served together with an explanation [8].

There are two approaches for explaining recommendations. The first approach is to
develop interpretable models. As the models inner workings are transparent, it is easy to
see which decisions lead to the recommendations and this can therefore be converted
directly into an explanation [7]. BM25 is an example of an interpretable model. The
other approach is a model-agnostic approach, sometimes called post-hoc explanations.
With this approach, the recommendation may be created first and then the system
attempts to find a fitting explanation for the recommendation afterwards. This is useful
for models that are hard to explain or inherently unexplainable [7].

Chapter 2 Related Work

2.3 Extracting Metadata

Extracting data and knowledge from documents is a common objective for applications
that collect and present scientific literature. This is done not only for displaying the
extracted data to the users along with the documents, but also for use in building
knowledge databases. A knowledge database is a structure used to store information that
is used by a computer system. These knowledge databases can help to connect different
documents, explore related documents, search for documents and discover other statistical
properties of the document collection. The services we mentioned earlier in Figure 2.1
all use some form of metadata extraction to populate their knowledge databases. The
document PDF files they collect sometimes comes with correctly formated metadata,
but many PDFs provide incomplete metadata or no metadata at all. All the literature
services therefore have different ways of dealing with this problem.

Semantic Scholar for example, uses the ScienceParse system to predict the missing
metadata from a PDF with incorrect metadata. This metadata is needed to complete
the knowledge database that Semantic Scholar uses for their scientific literature. The
ScienceParse system predicts the missing paper title, list of authors and list of references
for each paper using recurrent neural networks(RNN). The PDF is split into each
individual word before then being fed into the RNN along with some constants such as
page number and numbers detailing if the letters are uppercase or not. The RNN uses
this information to predict the mentioned metadata [19].

Another way of getting document metadata is by using another service that provides
document with already extracted metadata available. This is provided by both ArXiv [1]
and Semantic Scholar [3] though their APIs.

2.3.1 Topic Extraction

The paper title, authors and references etc. are not the only metadata that can be
extracted from a document. Another type of extractable metadata are entities or topics
for a specific document. These topics can be used in the knowledge databases to link
documents together and to help find related documents.

Some of the earlier approaches to extracting topics from documents were to use statistics
about single words. One could then select the most statistically discriminating words
from a vocabulary of unique words extracted from all the documents in the corpus. Later
this evolved to also compare against a vocabulary of unique words from a standardized
reference corpus. These methods are called corpus-oriented methods for topic extrac-
tion [20]. However, there are some downsides to this type of approach. First, these

15

methods only operated on single-word topics and not topics consisting of multiple words.
Secondly, topics that occur in many documents in the corpus will not be selected as they
are not statistically discriminating for a single document [20]. However, this might not
be a a downside at all unless one wish to assign one specific topic to many documents in
the corpus.

To overcome some of the problems with the corpus-oriented approach, there exists
another type of topic extraction called document-oriented methods. These methods focus
on words in one individual document only and do not take in consideration the other
documents in the corpus at the same time. This has the consequence of allowing these
methods to select the same topics for multiple documents in the same corpus, avoiding
the second mentioned drawback of the corpus-oriented methods. Previous works on these
methods include selecting topics using POS tags, calculating word co-occurrences using
a chi-square measure [21], TextRank [22] and RAKE [20].

In later times, neural networks have also been used to extract topics from a document.
The neural networks can be trained on a set of reference documents with manually
defined topics, where the input to the network is the documents PDFs and other available
information. The result is a trained neural network that can predict the most useful topics
or categories for any given document. This has been explored by Semantic Scholar [19]
and in the paper ’Domain-Independent Extraction of Scientific Concepts from Research
Articles’ [23].

2.4 Evaluation

Part of the goal with arXivDigest is to evaluate experimental recommender systems.
ArXivDigest can support several experimental recommender systems running at once
and we need a way of measuring the performance of these recommender systems. We also
need to ensure that all systems get their fair share of exposure to users in an unbiased
way and that measurement of performance and the comparisons between the systems are
fair. In this section we will therefore look into the different evaluation methodologies
available.

2.4.1 Offline vs. Online Evaluation

There are three main ways to evaluate the quality of recommendation algorithms, also
known as rankers. These main ways are user studies, offline evaluation and online
evaluation.

Chapter 2 Related Work

User studies are often carried out in a lab setting on recruited users. They have some
advantages over other evaluation methods in that it is possible to measure unique data
such as the users’ eye movement or brain activity in these controlled environments. At
the same time they are often expensive, do not scale well and might not be generalizable
to the userbase of a platform [24].

For offline evaluation methods, it is common to have experts create data sets and queries
with relevance judgements. This makes it easy to compare systems against each other. At
the same time it is expensive to obtain these relevance judgments, and these judgments
may not always reflect real users’ opinions [24].

Online evaluation uses real user interactions in a real system to evaluate the performance
of a ranker. Both implicit and explicit interaction data are collected and used for
evaluation. Explicit interaction data is when the user performs explicit actions like
marking a document as relevant, for example through liking documents or a score system.
This gives easy to interpret data, but often has the downside of disturbing the users’
normal workflow. Meanwhile, implicit interaction data is for example actions like query
reformulation and mouse movements. Implicit interaction data is much more abundant,
as it is generated by many different user interactions, but is also harder to evaluate [24].

Joeran Beel et al. [25] compare the effectiveness of online vs. offline evaluation on
recommendation algorithms. They measure the recommendation algorithms based on
click-through rate (CTR), i.e. the ratio of clicked recommendations. For instance, if
a system displays 10,000 recommendations and 120 of them are clicked, the CTR is
1.2%. In their paper they state that offline evaluation often does not reliably predict
an algorithms’ CTR compared to an online evaluation. One of the reasons for this is
the influence of human factors. Humans might not always make the ’correct’ answers
when it comes to selecting recommendations and interests might shift over time. Another
reason for the offline evaluations’ worse performance comes from imperfections in the
datasets they use. There are many different reasons for why a dataset might be bad but
the consequences are often the same. In offline evaluation, the ranker algorithms are
limited by the dataset they have been trained against, so having a bad dataset will lead
to worse performing ranker algorithms. ArXivDigest is an online evaluation service and
we will thus focus on online evaluation from this point on.

2.4.2 A/B Testing

One of the simplest, yet very popular methods of online evaluation is A/B testing. With
this method, users are divided into random groups, where one group is shown results from

17

Figure 2.2: A/B testing illustration

one system and another group is shown results from another system. Evaluation is then
performed by measuring differences in user interactions with the different systems [24, 26].

2.4.3 Interleaving

Because user behavior can vary much from user to user, A/B testing typically require
a large amount of observations and users. Interleaving is one of the methods that as
been proposed for combating this problem. Interleaving is performed by giving each user
results from two rankers instead of just one. It has been shown that this significantly
reduces the variance in measurements and the required sample size [24].

Figure 2.3: Team Draft Interleaving illustration

There exists several algorithms for interleaving. Algorithm 2.1 shows the pseudo code for
one such method called Team Draft Interleave. The first step of Team Draft Interleave is
to add the common prefix between the rankers list to the result. For this common prefix,
no ranker is given credit. After this, the rankers add their best items to the result in
turns until the result reaches a specific length or the rankers are out of items. The order
of each turn is randomized to give all rankers a fair chance of getting results early in the
result list. The rankers are given credit for the items they commit during these rounds.

Chapter 2 Related Work

Algorithm 2.1 Team Draft Interleave [24]
Input: Rankings A = (a1, a2, ...) and B = (b1, b2, ...)

1: Init: L← (); TeamA← ∅; TeamB ← ∅; i← 1
2: while A[i] = B[i] do
3: L← L+A[i]
4: i← i+ 1
5: end while
6: while (∃i : A[i] /∈ L) ∧ (∃j : B[j] /∈ L) do
7: if (|TeamA| < |TeamB|) ∨ ((|TeamA| = |TeamB|) ∧ (RandBit() = 1)) then
8: k ← mini{i : A[i] /∈ L}
9: L← L+A[k]

10: TeamA← TeamA ∪ {A[k]}
11: else
12: k ← mini{i : b[i] /∈ L}
13: L← L+B[k]
14: TeamB ← TeamB ∪ {B[k]}
15: end if
16: end while
17: return Interleaved ranking L, TeamA, TeamB

This credit is used later in the evaluation stage. An example of a Team Draft Interleave
result list can be seen in Figure 2.3.

2.4.4 Multileaving

The last evaluation method we discuss is called multileaving, which is an extension
of interleaving that makes it possible to evaluate more than just two rankers at the
same time. Multileaving is designed to more quickly compare many rankers again each
other [24]. Another advantage of multileaving is that it lessens the effect of the presence
of a bad ranker. In A/B testing, having a bad ranker will lead to half of the users getting

Figure 2.4: Team Draft Multileaving illustration

19

bad results. In interleaving, it will only lead to half of each users results being bad.
Finally, in multileaving only 1/n of each users results will be bad, where n is the number
of rankers [24].

As with interleaving, there also exist several algorithms for multileaving. In algorithm 2.4
we can see a version of Team Draft Multileave proposed by Schuth et al. [24] extended
for use in the arXivDigest platform [9]. This version multileaves multiple systems, gives
no credit for common prefixes and also limits the number of systems in each users results
to a set number N systems. The algorithm uses the same working principles as Team
Draft Interleaving, except for the listed changes. An example of a Team Draft Multileave
result list can be seen in Figure 2.4.

Algorithm 2.2 Commonprefix [9]
Input: set of rankings R

1: cp← []
2: for i← 0 to |R0| do
3: for each Rx in R do
4: if i >= |Rx| then
5: return cp
6: end if
7: if R0[i] 6= Rx[i] then
8: return cp
9: end if

10: end for
11: L← L+ [R0[p]]
12: end for
13: return cp

Algorithm 2.4 Team Draft Multileave limit number of systems per multileaving [9]
1: SAVED STATE: impressions ← dictionary/map - default value: 0
Input: set of rankings R, multileaving length k, systems per list s

2: lists← []
3: while |lists| < s do
4: select Rx randomly s.t |impressionsx| is minimized
5: lists← lists+ [Rx]
6: impressionsx ← impressionsx + 1
7: end while
8: return Team Draft Multileave ignore common prefix(lists,k)

Chapter 2 Related Work

Algorithm 2.3 Team Draft Multileave ignoring common prefix [9]
Input: set of rankings R, multileaving length k

1: cp ← Commonprefix(R)
2: L← cp
3: ∀Rx ∈ R : Tx ← ∅
4: while |L| < k do
5: select Rx randomly s.t |Tx| is minimized
6: p← 0
7: while Rx[p] ∈ L and p < k − 1 do
8: p← p+ 1
9: end while

10: if Rx[p] /∈ L then
11: L← L+ [Rx[p]]
12: Tx ← Tx ∪Rx[p]
13: end if
14: end while
15: return L, T

2.4.5 Evaluating Performance

Creating interleaved rankings serves little purpose if we do not have any metrics to
evaluate the user preference for the different rankers. One way of evaluating interleavings
is by counting wins, losses and ties for each interleaving. A win is given to the best
performing system in a interleaving, a loss to the worst performing system and a tie
is given when they performed equally. We score the systems based on the amount of
user interaction, where some types of user interactions contributes more to the score
than other. The best performing system is the system with the highest score in the
interleaving and the worst performing system is the one with the lowest score. This is
then used to calculate the outcome, which is the metric that we can compare systems by.
Outcome is calculated as #Wins/(#Wins + #Losses). Another important metric is
the number of impressions a system has. Impressions is the the total number of unique
interleavings a system has been part of, or can alternatively be defined as the sum of
wins, ties and losses for a system. It is useful to know, as it tells us about the sample
size when checking the significance of the results [24].

2.4.6 Living Labs

The idea behind the "living lab" concept is to let researches test their ideas directly on
real users (without their knowledge) [6]. Testing methods on real users is not a new idea
by itself as this is the foundation of online evaluation, which we discussed earlier. In fact,
all major search engines can be described as living labs [27]. The problem with these
living labs is that access is usually limited to those who work at the organization hosting

21

these search engines. Which again means most academic researchers have to resort to
simulated users or other offline methods [27]. This also affect the industry negatively as
it takes a longer time before many of the ideas though of in academia become available
to the industry [6]. The argument for living labs is that by giving academic researchers
access to real users, it will lead to better algorithms and approaches, which can then be
used by the industry to provide better services for the users [6, 27, 28]. Also by letting
research groups share a common, well maintained service for evaluation, they can gather
a larger user base and focus more on the research than they would be able to with the
overhead of maintaining a service themselves [27].

There exists several implementations of living labs. TREC OpenSearch implements
a system that lets third party research groups interleave their search results with the
production system in an academic literature search engine [27]. The CLEF NewsREEL
challenge provided a living lab with potentially millions of users for the development of
news recommendation algorithms [6]. The Living Labs for Information Retrieval (LL4IR)
CLEF lab is a platform that acts as a middleman between commercial organizations and
experimental systems for two use cases, product search and web search. This platform
facilitates data exchange and comparisons between participating systems [6].

Chapter 3

Infrastructure Development

The original arXivDigest application needed some updates to support the objectives we
set in Section 1.2.1. Work had to be done on all parts of the application and we also
used this opportunity to improve some of the already existing code.

3.1 Overview

First let us introduce arXivDigest. ArxivDigest is an application that we created for our
bachelor thesis in 2018 [9]. The purpose of the application is to provide a platform for
evaluation and development of new recommendation algorithms for scientific literature.
It also serves as a service for scientists and science enthusiasts where they can receive
personal recommendations on newly published scientific literature. The application is
structured as several different modules that interact together trough a shared MySQL
database. In Figure 3.1 we show an overview of what the old application structure looked
like.

ArXivDigest uses a website as an interface between the users and the rest of the application.
Here users can check their personal recommendations and create new experimental
recommender systems for recommending scientific literature to other users. This scientific
literature is harvested from the arXiv [1] stream each day through a separate script. To
access the user information and the scientific literature available for recommendation, the
experimental recommender systems can connect to the arXivDigest application through
the arXivDigest API. This API is also used by the experimental recommender systems
for submitting the scientific literature recommendations. The recommendations must be
submitted during a fixed time slot each day.

23

Chapter 3 Infrastructure Development

Figure 3.1: Overview of the original arXivDigest platform.

After this fixed time slot, an interleaver script will be executed. This script uses the
Team Draft Multileaving method, as discussed in Section 2.4.4, to create interleaved
recommendations from many experimental recommender systems for each user. After
this the interleaving script will also send out an email to all users with a digest of their
newly generated recommendations. The final part of the application is a script that can
be run to evaluate the performance of the different systems over specified time periods.
This script uses the users’ feedback and interactions with their recommendation to score
each experimental recommender system. A list of all the systems and their final scores
are displayed at the end.

This is a summary of how the original implementation of arXivDigest worked and
was structured. Now we will detail the changes and upgrades we did to the original
implementation during this thesis.

3.2 Explanations

In the old infrastructure there was no feature for letting recommender systems explain
their recommendations. As one of the features we wanted to provide to our users were
explanations for the recommendations, we had to update the platform to accommodate
this. We felt that by giving explanations to the users, the systems would be more
transparent to the user and it would be easier to understand why a recommended article
might be relevant for that specific user.

25

Figure 3.2: Explanation shown beneath an article recommendation.

Figure 3.3: Explanation shown beneath an article recommendation on the digest email.

First we had to update the API to require an explanation field for each recommended
article in the endpoint for submitting recommendations. We added a new configuration
option to the main configuration file, which controlled the maximum allowed length of
the explanations. This way we could adjust the maximum length of the explanations to
fit our database and web frontend fields. The maximum explanation length is enforced
by the API before it accepts any new recommendations. If the explanation is too long
or if the explanation is missing, the API will return an error message. We also had to
update the database tables related to article recommendations with a new field to store
this new explanation information.

We added explanations to the web interface below the abstracts of each article as shown
in Figure 3.2 and to the digest mail below the author names as seen in Figure 3.3. Both
of these are generated through the Jinja2 templating language. Using Jinja2, the new
explanation values could easily be inserted into the template by fetching the explanation
together with the article data and referring to it directly in the template file. We also
wanted to let systems use bold text in the explanations to make it easier to see the
important parts of the explanation. Jinja2 automatically escapes any HTML tags in
inserted text and this is a security feature we want to keep as we do not want the systems
to be able to perform HTML injections. At the same time this security feature limits us
from letting systems use the tag directly. Our solution to this was to let systems mark
text that they want to boldface with asterisks as **this** markdown style. Then we
could convert it to tags ourselves via Jinja filters. A Jinja filter simply applies some
function to text when converting it to HTML. In Listing 3.1 it is shown how we replace
the asterisks with opening and closing tags and registers it as a filter in the frontend app.

Chapter 3 Infrastructure Development

@app. template_filter ('md_bold ')
def md_bold (text):

text = str(escape (text))
text = re.sub('**(.*?)** ', r'\1 ', text)
return Markup (text)

Listing 3.1: Jinja boldface filter.

3.3 Topics

Article recommendations from the experimental recommender systems are often based
on the topics the users have listed on their profiles. The experimental recommender
systems are therefore dependent on the users having good topics on their user-profile
to give good and accurate recommendations. Originally, we had created a text area for
the users to manually input topics they wanted on their profile. One problem with users
manually inputting topics is that it is tedious, error prone and hard to accurately capture
ones interest this way. This may cause users to not put much effort into adding many
topics to their profiles or they may be unable to come up with good topics. Also, the
users might not bother to modify their profiles to add new topics after the initial profile
creation. There is also the problem of users misspelling the topics they manually input,
which will possibly lead to erroneous recommendations. To fix all these problems we
wanted a better system in place which would make it easier and quicker for the users to
add topics to their profiles.

Since we already had implemented support for experimental recommender systems that
recommended articles to the users, we figured that we could easily extend the API to also
accept topic recommendations the same way as article recommendations. This meant
that the experimental recommender systems would also be able to recommend topics to
the users and the users would have another way of enriching their profile with topics by
accepting or rejecting these topic recommendations. This functionality involved extending
the API with new endpoints mostly mirroring the existing article recommendation API,
adding tables for topics in the database and creating a user interface for interacting with
the topic recommendations on the website.

3.3.1 Topic API Endpoints

Below are detailed information about the newly created endpoints related to topics in
the arXivDigest API.

27

GET /recommendations/topics

This endpoint returns the previous topic recommendations for one or several users.

• Parameters

– user_id: User ID, or a list of up to 100 user IDs, separated by commas

• Fields returned for each user:

– topic: The topic that was recommended.

∗ score: Score of the topic for this user.

∗ date: Date this recommendation was given.

∗ system_id: The system which gave this recommendation.

- Request:

'GET / recommendations / topics ? user_id =123 '
'header ':{" api_key ": "355 b36dc -7863 -4 c4a -a088 - b3c5e297f04f "}

Listing 3.2: Get topic recommendations request.

- Response:

{
" users ": {

"123": {
" Information Retrieval ":[

{" system_id ":2,
" score ": 3,
"date": "2020 -01 -17 17:06:23 "},
{" system_id ":33 ,
" score ": 2,
"date": "2020 -01 -17 17:06:23 "}

] ,...
}

}
}

Listing 3.3: Response to get topic recommendations request

POST /recommendations/topics

This endpoint is used for inserting recommendations of topics to users. Each recommen-
dation should have a score describing how well it matched the users information.

Chapter 3 Infrastructure Development

• JSON

– user_id: List of recommendations for user with this ID

∗ topic: Topic to recommend, containing only a..z, 0..9, space and dash

∗ score: Score of the recommendation

• Fields returned

– success: True if the insertion was successful

– error: Describing the problem if something went wrong.

- Request:

'POST /api/ recommendations '
'header ':{

"Content -Type": " application /json",
" api_key ": "355 b36dc -7863 -4 c4a -a088 - b3c5e297f04f "

}
'JSON ':{

" recommendations ": {
user_id : [

{" topic ": " Information Retrieval ", " score ": 2},
{" topic ": " Entity Oriented Search ", " score ": 3},
{" topic ": " Retrieval models ", " score ": 2}
] ,...
}

}

Listing 3.4: Insert topic recommendations request

- Response:

{
" success ": True ,
" error " : "Some error "

}

Listing 3.5: Response to insert topic recommendations request

29

GET /user_feedback/topics

This endpoint returns the feedback on topic recommendations recorded for a given user (or

list of users).

• Parameters

– user_id: User ID, or a list of up to 100 user IDs, separated by commas

• Fields returned for each user:

– topic: The topic recommended to the user.

∗ seen: Datetime of when topic was seen or null if not seen.

∗ clicked: Datetime of when topic was clicked or null if not clicked.

∗ state: What the user did with the topic recommendation.

∗ recommendation_date: Datetime of when the topic was recom-
mended.

∗ interleaving_order: The order the topic got in the interleaving.

- Request:

'GET / user_feedback / topics ? user_id =1 ,2 ,3 '
'header ':{" api_key ": "355 b36dc -7863 -4 c4a -a088 - b3c5e297f04f "}

Listing 3.6: Get user topics feedback request

- Response:

{
" user_feedback ": {

"1": {
{

" higher education and career education ": {
" clicked ": "2020 -03 -17 18:12:45 ",
"seen": "2020 -03 -17 17:13:53 ",
" state ": " SYSTEM_RECOMMENDED_ACCEPTED ",
" interaction_time ": "2020 -03 -17 18:12:45 ",
" recommendation_time ": "2020 -03 -15 11:16:53 "
" interleaving_order ": 8

}
},
{

" transportation planning ": {
" clicked ": null ,
"seen": "2020 -03 -17 17:13:53 ",
" state ": " REFRESHED ",
" recommendation_time ": "2020 -03 -15 11:16:53 "
" interleaving_order ": 4

}
}

},
"2": {

{

Chapter 3 Infrastructure Development

" transportation planning ": {
" interaction_date ": "2020 -03 -23 22:27:43 ",
" state ": " USER_ADDED "

}
}

},
"3": {}

}
}

Listing 3.7: Response to user topic feedback request

GET /topics

This endpoint returns a list of all the topics currently stored in the arXivDigest database.

• Return value:

– topics: List of all topics.

- Request:

'GET /api/ topics '
'header ':{" api_key ": "355 b36dc -7863 -4 c4a -a088 - b3c5e297f04f "}

Listing 3.8: Get articles from date request

- Response:

{
" topics ": [

topic1 , topic2 , topic3 ,
]

}

Listing 3.9: Response to get topics request

3.3.2 Submitting a Topic Recommendation

To submit a topic recommendation to arXivDigest, one first needs to have an API key.
This can be acquired by visiting https://arxivdigest.org/livinglab and registering
a new system. An API key is then provided on the web page and sent by email once
your system has been approved by an administrator. After one has acquired an API key,
one may follow these steps to submit topic recommendations.

https://arxivdigest.org/livinglab

31

1. Call GET / to get the settings of the API.

2. Call GET /users?from=0 to get a batch of user IDs. Increment the offset to get
new batches.

3. Call GET /user_info?ids=... with the user IDs as a parameter to get information
about the users.

4. Call GET /user_feedback/topics?ids=... with the user IDs as a query parame-
ter to get information about the users interaction with previous topic recommenda-
tions. These previous topic recommendations can not be submitted again, so make
sure to filter these recommendations out of your own recommendations.

5. One can also call GET /topics to get the list of topics that already exist in the
arXivDigest database if one wish to recommend already existing topics to new
users.

6. Use the available data about the users and topics to create topic recommendations
for each user.

7. Submit the generated topic recommendations to
POST /recommendations/topics in batches of the maximum number of users
which is specified by the API.

8. Repeat step 2 to 6 until all user batches have been given recommendations.

3.3.3 Topics in the Database

These topic recommendations from the API also needed to be stored in the database.
We added some more tables that stored the topics, the topic recommendations and the
users’ interactions with the topics. This ended up being three different tables. We have
the topics table that stores each topic string along with their unique ID. The topics

table also has a filtered column that can be used in the future to filter out explicit topics.
Then we have the user_topics table which stores the topics related to each user and
what action the user has taken with that topic. The different actions are described more
closely in Section 3.3.7. The user_id and topic_id fields are combined to a primary
key for this table. Lastly, we have the topic_recommendations table where we store
the topic recommendations for each user and which system made the recommendation.
Here we also store the scores of that recommendation, the interleaving order if the topic
recommendation was interleaved and also some feedback flags telling us if the user has
seen or clicked the topic recommendation. The last interleaving_batch field is used to
keep track of which interleaving a recommendation is part of if any as a date and time
value. These tables are displayed in Figure 3.4

Chapter 3 Infrastructure Development

Figure 3.4: Diagram of new topic database tables.

3.3.4 Frontend Topic Implementation

Now that we could accept and store topic recommendations, we needed a way to show
these recommendations to the users. On the frontend, we created a section on the
main page where we could list these topic recommendations right alongside the article
recommendations. In this list, the users can reject topics to make them disappear, or
accept the topics which adds them to their profile. There is also an option to refresh the
list of topics which will remove all the current topic recommendations and replace them
with new ones. This is possible as the topic interleaving is done on demand until there
are no more new recommendations available. Topics are also automatically refreshed
once every day if the user has logged in, such that the user regularly sees new topics
even whiteout interacting with the list. The topic recommendation interface is shown in
Figure 3.5.

We also replaced the text area for adding topics to the users profiles on the signup
and modify profile pages with an input field that has an auto-complete feature. Users
can now start typing a topic in the topic input box and the auto-complete feature will
automatically suggest topics from the topics table in the database that are similar to
what the user has written. Example of this can be seen in Figure 3.6. This is achieved
by using the SQL LIKE operator as shown in Listing 3.10.

sql = ''' SELECT topic FROM topics WHERE topic

LIKE CONCAT (LOWER (topic_search_string), '%') LIMIT max_results '''

Listing 3.10: MySQL query for topics auto-complete.

33

Figure 3.5: The list of recommended topics on the main web page.

Figure 3.6: Auto-complete list of suggested topics in the profile forms.

Chapter 3 Infrastructure Development

3.3.5 Topic Interleaving

In contrast to the article interleaving that runs once a day, the topic interleaving is only
run when we need it to run. It might be once every several days or several times in one
day. This depends on the users’ activity, as the user has more control over the topic
interleaving and is even able to create new interleavings whenever they desire new topic
suggestions. Except for the different running intervals, the topic interleaver works in the
same way as the article interleaver. It uses topic recommendations from different systems
that each have a score and then creates one new interleaved list of topic recommendations
with a new set of scores. More on how interleaving works can be found in Section 2.4.4
and in Section 3.7.1.

When a user loads the main arXivDigest web page, we check how old the latest topic
suggestions are. If they are older than 24 hours, we interleave the next topic recom-
mendations so that we can present new suggested topics for the users. If they are not
older than 24 hours, we just show the newest suggested topics already in the database.
The age of the last interleaving can be found in the interleaving_batch field in the
topic_recommendations table in the database. This is a datetime field which holds
the date and time of when the topic recommendations were last interleaved. Another
way of interleaving new topic suggestions is to press the refresh button in the top right
corner of the suggested topics list shown in Figure 3.5. This will start a new interleaving
of topics and give the user a new set of suggested topics.

3.3.6 Initial List of Topics

When the arXivDigest application is started from scratch, there are no topics stored in
the database and the auto-complete topics feature on the signup form will therefore not
suggest anything to the users. To fix this, we created a list of pre-made topics that is
bundled with the application. The topics on this list are taken from a website that has
a selection of many different topics for a lot of different research fields [29]. We scrape
this page for all the topics to use them as our initial topic list. For this purpose, we use
the Python requests library [30] and the Beautifulsoup library. Beautifulsoup is a tool
used to parse HTML or XML structured text into a data structure that is easier to work
with [31]. Beautifulsoup also allows us to search the data structure for different types
of elements and text. First we request the website that has the list of topics [29]. The
way they organize their topics is with a table structure where the row furthest to the
right has the most specific topics. When we get the response, we can therefore parse it
with Beautifulsoup and then select the last column in each row of the table to get all the

35

specific topics. Finally, we can then store this list as a .csv file for easy file modification
and reading in the future.

This .csv file is then the file that is bundled with the arXivDigest application. It can be
directly inserted into the database after the database has been created by executing the
init_topic_list.py script that is located in the scripts folder the the arXivDigest
repository.

python scripts / init_topic_list .py

Listing 3.11: Initialize pre-made topics

3.3.7 Types of Topic Feedback

As we keep track of different user interactions with article recommendations, we also
store information about the different ways users interact with the topic recommendations.
We track if the user has seen or clicked a topic recommendation and these flags are stored
in the topic_recommendations table. In addition, we also wanted to store which type
of action a user performed for a topic. Since some of these interactions are performed
against topics that are not recommended to a user, we decided to store this in the
user_topics table, which dictates the users’ relationship to a given topic. Here we
store the action performed in the state field, and the time of the interaction in the
interaction_time field. The state field is an enum, and the possible values and their
meaning is listed below.

• USER_ADDED: The topic was added to the users profile manually by the user.

• USER_REJECTED: The topic was added to the users profile manually by the user but
then removed again by the user.

• SYSTEM_RECOMMENDATION_ACCEPTED: The topic was recommended by a system,
was accepted by the user and added to their profile.

• SYSTEM_RECOMMENDATION_REJECTED: The topic was recommended by a system but
was rejected by the user.

• REFRESHED: The topic was recommended by a system but the user refreshed the
suggested topic list without interacting with it.

• EXPIRED: The topic was recommended by a system but the user did not interact
with it within 24 hours.

Chapter 3 Infrastructure Development

Figure 3.7: The basic feedback page.

Figure 3.8: The basic feedback page options.

Some of these values are used directly by the platform to keep track of which topics are part
of a users profile, like USER_ADDED, USER_REJECTED, SYSTEM_RECOMMENDATION_ACCEPTED

and SYSTEM_RECOMMENDATION_REJECTED. The value SYSTEM_RECOMMENDATION_ACCEPTED

is also used when evaluating the performance of a system. Meanwhile, refreshed and
expired were implemented just to get a more detailed view into why users choose not to
accept topics when generating statistics and are not used for anything specific at the
moment.

3.4 User Feedback

When the application went live, we wanted a place where the users could leave feedback
on different issues they might be having. We therefore created a new feedback page
where the users can leave feedback on the service in general, report bugs or suggest
features. The basic feedback page can be accessed through the link in the footer of the
arXivDigest web page and an image of what this page looks like can be seen in Figure 3.7.
In this form, users can choose between different feedback types from a drop down menu.
The default value here is ’Found a bug’ and the other possible values can be seen in
Figure 3.8.

37

Figure 3.9: The article feedback page.

In addition to this basic feedback page, we created another page specifically for users to
leave feedback on article recommendations they get. It is easier for both the user and us
if this page is used for feedback on specific recommendations since the resulting feedback
will be connected with a specific article recommendation. This also made it possible to
create feedback options specifically tailored for article recommendations. In this form we
added several multiple choice questions about the quality of the recommendation. These
are easy for the user to answer, and they make it easy for us to get a general idea about
the users opinion since it is in a standardized format. The user is required to answer at
least one of the questions or give a free-text answer before being able to submit. This
article feedback page can be seen in Figure 3.9.

Chapter 3 Infrastructure Development

To store the feedback, we added an extra table called feedback to the database. The
feedback will have a foreign key to a user if the user is logged in while leaving feedback,
if not this field may be null. All feedback has one of four types, which are shown in the
list below.

• Recommendation: This is feedback on an article recommendation.

• Bug: This is a bug report.

• Feature: This is a feature request.

• Other: This is feedback that does not fit into any of the other categories.

The Recommendation type will always have a foreign key to an article, this field is null
for the other feedback types. There is also a feedback_text field. This field holds the
free-text feedback if the user left any. The last field is the feedback_values field. In
this field we store structured data in key-value pairs. This is the field that holds the
answers for the multiple choice questions in the feedback form. An example of this can
be seen in Listing 3.12.

relevance :0,
expl_satisfaction :1,
expl_persuasiveness :0,
expl_transparency :2,
expl_scrutability :1

Listing 3.12: Values stored for the multiple choice article recommendation feedback

3.5 ArXivDigest Package

In the old arXivDigest platform architecture, we used relative imports to import functions
from other files and directories. For the most part this worked fine for development
and even deployment, however sharing code between different parts of the application
became increasingly harder and more fragile as time went on, especially when we
started deploying the application. For example, when we ran the application from the
University of Stavanger’s Unix servers, we discovered that the relative imports there
worked differently from how they worked in our Windows workspaces. We could easily
fix this by adding a few extra lines of code, telling the system where to look, but we
felt this would just make the problem even harder to deal with in the future if a new
problem occurred. Instead we opted to solve the problem in a more robust way by using
installable python packages.

39

We created a package called arxivdigest where we put all the code for the platform
except for the scripts responsible for launching individual parts. These scripts import the
launch function for whatever part of the platform they are responsible for launching and
run this function. By having these lightweight launch scripts we are able to update the
entire platform without having to reconfigure the scheduling and execution of different
tasks, as long as the interface of the launch functions stays the same. This makes both
installing and updating the platform much easier, as most of this can be handled by the
setup script. For example, earlier we needed to make sure the dependencies of the platform
were installed before running anything. Now this installation is handled automatically
by the setup script. The dependencies are loaded from a requirements.txt file in the
arXivDigest directory and installed automatically before the arXivDigest package itself is
installed. The setup for the package installation can be seen in Listing 3.13. As a result
of converting arXivDigest into a package, sharing code between the different parts of the
platform is much easier. It is also stable and easy to use both for Windows and Unix.
Static files are also handled by the package, which makes sharing of these easier as well.

from setuptools import find_packages
from setuptools import setup
with open ('requirements .txt ') as f:

requirements = f.read (). splitlines ()
setup (

name='arxivdigest ',
version ='1.0 ',
packages = find_packages (),
package_data ={ 'arxivdigest .core.mail ': ['templates /*. tmpl '],

'arxivdigest . frontend ': ['templates /*. html ',
'templates / Macros /* ',
'uncompiled_assets /css /* ',
'uncompiled_assets / javascript /* ',
'static /* ',
'static / icons /* ',
],

},
url='https :// github .com/iai - group / arXivDigest ',
author ='Oyvind Jekteberg and Kristian Gingstad ',
install_requires = requirements

)

Listing 3.13: Setup file for installing the arXivDigest package

In the package, we include the arXivDigest frontend application, the arXivDigest API,
the arXivDigest connector which is described in Section 3.7.3 below and other core
functionality. This core functionality include the code for interleaving article- and topic
recommendations, the code for scraping the arXiv feed and the code for email services.
See Figure 3.10 for the folder structure in the arXivDigest package and what’s included.

Chapter 3 Infrastructure Development

Figure 3.10: Folder overview of the arXivDigest package.

The package can be installed in two different ways. One can either install the package
as a normal package in the Python path with the command found in Listing 3.14. The
other option is to install the package in the current directory for development purposes
with the command found in Listing 3.15. For both these commands, one must be in the
repository path of arXivDigest when executing them.

pip install .

Listing 3.14: Install the arXivDigest package

pip install -e .

Listing 3.15: Install the arXivDigest package for development purposes

3.6 Living Labs and Systems

Experimental recommender systems have always been an important part of arXivDigest,
but the original implementation felt a bit lacking on the system owners side. Earlier the
platform only provided system owners with the option of registering systems and access
to the API. While most of the statistics can be calculated by using data from the API, it
feels clunky, and each system owner has to create their own code to transform the data
into something useful. There was also no easy way to see which systems one owns and
the API-keys, except for in the original mail sent by arXivDigest. To fix these problems
we decided to make several changes to how the experimental recommender systems were
handled.

Earlier, the experimental recommender systems were completely separated from the users.
While there may be benefits for not tying users and systems together, it also made it
a lot harder to implement web interfaces for systems where owners can manage their
systems and see system statistics. In the end, we could not find any good reasons for
keeping this separation and decided that each system would belong to a user. We could

41

Figure 3.11: Living labs web page.

then delete the registration form for recommender systems, and start from scratch with
the recommender systems web interface. How systems interacts with the API stayed
the same as before. We could also remove the contact_name, organization and email

from the experimental recommender system, as we would instead take this information
from the user that creates and owns the system.

Although the recommender system concept always fit the description of a living lab [6],
which we discuss more in Section 2.4.6, we wanted to make it more evident that this is
part of what our service offer. This would also entail making a more unified experience
for the system owners using our service. The first step of this process was to create
a living labs page where users can create new systems and see their existing systems,
API-keys and statistics about their systems. The main living labs web page can be seen
in Figure 3.11.

3.6.1 Evaluation

An important part of a living lab is being able to evaluate system performance. In the
old version of arXivDigest [9], we used outcome as a metric for comparing performance of
systems. One problem we noticed when applying this metric to multileaved comparisons
was that it produced unreasonably many ties. We felt that much valuable information
was lost when such a low amount of impressions ended up as a win or a loss. Because of
this, we propose a new metric that we call reward. The intuition behind reward is that
instead of having a winner takes it all, loser loses all situation, it will be more fair to
divide the points equally based on the amount of user interaction with each system in
the interleaving.

Chapter 3 Infrastructure Development

The reward of a system in an interleaving is defined as the weighted sum of actions
towards that system. E.g. if a click is worth 2 points and a like is worth 5 points. The
example system has 4 clicked articles and 2 saved articles in an interleaving, the reward
of this system would be 2 ∗ 4 + 5 ∗ 2 = 18.

normalized_rewards = rewards∑
i∈I rewardi

(3.1)

In Equation 3.1 it is shown how the normalized reward of a system s in an interleaving I
can be calculated. The score is normalized by each interleaving such that interleavings
with more interaction do not get more points than interleavings with fewer interactions.
This ensures each interleaving having exactly one point to divide among the participating
systems.

We can then calculate the mean normalized reward for a system over a set time period
by taking the mean of the normalized reward accumulated over the given period. This is
the same as the sum of normalized reward divided by the number of impressions. We
should be able to compare systems performance in relation to each other by comparing
this metric. This comparison is dependent on all the multileavings having the same
expected rewards and being sufficiently random. These are properties we try to ensure
in our multileaver, given enough recommendations to choose from.

3.6.2 Evaluation Web Interface

In the old application, all evaluation was handled by a Python script which would access
the database to get the statistics and print them to the console. This was problematic on
several levels. Firstly, this makes the statistics hard to share with system owners. It is
also far less elegant to run a script and read the console output than having it available
on a web interface. In addition, it was much harder to include detailed information in
a console than it is to provide the same information with graphs and plots on a web
interface. Because of these reasons and the fact that we wanted to make a more unified
experience for system owners, we decided to replace the evaluation script with a web
interface.

We show the number of impressions and the mean normalized reward in a plot on the
web interface. The plot has several options to choose from. The user can toggle between
article and topic statistics, choose a start and end date for the evaluation and choose
whether to calculate mean normalized reward over a period with length of days, weeks
or months. This evaluation interface is shown in Figure 3.12. The accurate numbers for
the plots can be seen by hovering the mouse pointer over the bars and blue points. A

43

Figure 3.12: Plot for evaluation statistics about a system.

user can access the evaluation interface for their systems through the Living Labs page.
The same interface is also available for admins through the admin page. The admins are
able to see statistics for all systems registered on arXivDigest.

3.6.3 Feedback Web Interface

We also created plots that shows the amount and types of feedback received for each
system over a period. These plots use the exact same interface and has the same options
as the evaluation interface and they are also accessible from the living lab page and the
admin page. On the admin interface it is also possible to show the total number of each
feedback type for all systems in one plot to see the overall activity on the platform.

The plot showing feedback on article recommendation is shown in Figure 3.13. This plot
shows how many of the article recommendations from an experimental recommender
system has been seen, clicked and saved by the users. In Figure 3.14 we can see the
feedback on the topic recommender systems. This plot shows how many of the topic
recommendations from a experimental recommender system has been accepted, rejected,
refreshed or expired by the users actions.

3.7 Miscellaneous Other New Features

While working on the recommender systems and the other parts of the infrastructure
development, we made some other smaller changes to the platform code. Some of these
changes were necessary to make other features work properly and some of these were
purely quality of life improvements either for the users of the service or us the developers.

Chapter 3 Infrastructure Development

Figure 3.13: Plot for feedback on article recommender systems.

Figure 3.14: Plot for feedback on topic recommender systems.

3.7.1 Interleaving Update

After creating the topic recommender systems, we also needed to interleave these recom-
mendations the same way we interleaved the articles. However, the original multileaver
was a bit too tightly connected to the article recommendations. We therefore had to
separate the multileaving logic into its own class, allowing it to work with all types of
recommendations. An added bonus was that we were able to easily create some unit
tests for the logic, so that we could be more confident about the multileavings being fair.
The end result was a multileaver that can multileave any type of items and we can have
more confidence in it multileaving correctly.

The article recommendations are interleaved once a day as they originally were in the

45

previous implementation. However we did decide that systems would be allowed to
recommend articles from the last week, not just the current day. We felt that this would
let the systems be a bit more flexible in their recommendations and that days with few
good recommendations would be more rare if the recommender systems had a bigger
pool of articles to recommend from. This also meant that we could remove the time slot
limit when accepting recommendations which gives the systems more time each day to
create recommendations.

When separating the multileaving logic from the rest of the interleaver script, we also
ended up separating out the email sending code into a separate script. This made the
code easier to read and manage and it also made it possible to schedule the email sending
independently of the interleaving process.

3.7.2 API Settings

The API has settings for a lot of variables that directly affects the recommender systems.
Examples of these settings are the maximum number of users per request or the max
number of recommendations that can be submitted per user. Originally, the experimental
recommender systems developers had to visit the arXivDigest documentation to get
these values and then directly code them into their experimental recommender systems.
When we started to develop our own experimental recommender systems, we realised
that it would be easier for the developers of recommender systems if the API returned
these API settings through one of the endpoints. Since we already had the https:

//api.arxivdigest.org/ endpoint, that is used to check if the API is online, we
decided to send the API settings variables in the response from this endpoint. Now the
experimental recommender systems can automatically request these API settings and
and also update them automatically if the settings change in the future.

3.7.3 ArXivDigest Connector

When we started working on the individual experimental recommender systems, we
realised that it might be beneficial to create a separate module for easier connection with
the arXivDigest API. This would reduce the amount of code in each recommender system
and also make the API connection cleaner and easier in the recommender systems code.

What we ended up creating is an arXivDigestConnector class that is installed together
with the main arXivDigest package. This makes the connector easily shareable between
all recommender systems. The connector is easy to initialize and use and an example of
fetching user info by using the connector can be seen in Listing 3.16.

https://api.arxivdigest.org/
https://api.arxivdigest.org/

Chapter 3 Infrastructure Development

from arxivdigest . connector import ArxivdigestConnector

arxivdigest_connector = ArxivdigestConnector (api_key ,
'https :// api. arxivdigest .org/')

Example of use : fetching information about users 1, 2 and 3 from the API

user_info = arxivdigest_connector . get_user_info ([1 ,2 ,3]])

Listing 3.16: Initialize an arXivDigestConnector object.

When initializing the arXivDigestConnector object, it automatically tests the connec-
tion with the arXivDigest API to make sure it has been configured with the correct
URL and a valid API key. The connector also parses the API settings mentioned in
Section 3.7.2 above. These settings are saved in the arXivDigestConnector object and
are used by the connector to comply with the API settings. The settings can also be
accessed from the connector object at at any time.

The full list of functions available for the arXivDigestConnector object is available below.

• get_numbers_of_users(): Returns total number of arXivDigest users.

• get_user_ids(offset): Returns user ids to the one hundred first users starting
at the offset.

• get_user_info(user_ids): Returns the user data for the users in the user_ids

list.

• get_article_ids(): Returns a list of article ids that are candidate for recommen-
dation from arXivDigest.

• get_article_data(article_ids): Returns the article data for the articles in the
article_ids list.

• get_article_feedback(user_ids): Returns a dictionary with the users feedback
on earlier article recommendations for each user in the user_ids list.

• get_interleaved_articles(user_ids): Returns the earlier interleaved articles
for each user in the user_ids list.

• send_article_recommendations(recommendations): Sends article recommenda-
tions to the arXivDigest API.

• get_article_recommendations(user_ids): Returns the earlier article recom-
mendations to a user for each user in the user_ids list.

• get_topics(): Returns a list of all topics in arXivDigest.

47

• get_topic_feedback(user_ids): Returns a dictionary with the users feedback
on earlier topic recommendations for each user in the user_ids list.

• send_topic_recommendations(recommendations): Sends topic recommendations
to the arXivDigest API.

• get_topic_recommendations: Returns the earlier topic recommendations to a
user for each user in the user_ids list.

3.7.4 Email Verification

In the original application, the new users were not verified in any way. As a minimum,
we wanted to verify that the user has access to the email they sign up with. This helps
the user to keep control of their account by ensuring that they have access to the signup
mail and also makes it a bit more tedious to create non-serious accounts. When a user
signs up, they get sent a mail with a unique link that activates their account. Before
the account is activated, the user is unable to use most features of arXivDigest, except
for changing their email and resending the verification mail. The interface for this can
be seen in Figure 3.15 and the verification email can be seen in figure Figure 3.16. To
ensure that the activation link is unique and also not guessable, we generate a UUID
for each user that is used as part of the verification link. This UUID is also stored in
the database together with the users information, thereby making it easy to know which
account to activate based on the UUID sent to the activation endpoint.

Figure 3.15: Web page for waiting on user verification.

Figure 3.16: Verification email.

Chapter 3 Infrastructure Development

Figure 3.17: Unsubscribe option in the modify user web page.

3.7.5 Unsubscribe from Digest Email

Another thing we realised was that some users might not want to receive the digest
emails at all. Originally, there only existed options for receiving digest emails daily or
digest emails weekly. We decided to add the option of never receiving a digest email for
the users that might not want their email inbox full of arXivDigest emails. However, this
option is not available on signup. If a user does not want to receive digest emails at all,
he or she can choose this by selecting this option through modifying their profile. The
new option on the profile modification page can be seen in figure Figure 3.17. Another
way of unsubscribing from the digest emails is to click the unsubscribe link at the bottom
of each digest email as seen in figure Figure 3.18. This is implemented in the same way
as the email verification which is by using an UUID to keep track of which user wants to
unsubscribe and including this UUID in the unsubscribe link in the email.

Figure 3.18: Unsubscribe link on the bottom of the digest email.

3.7.6 ArXiv Scraper Update

We also ended up making a couple of changes to the process that fetches article information
from arXiv [1]. In the original implementation, the scraper would only fetch articles from
the previous day, but we found out that it could also be useful to fetch articles from a
configurable time period. Most of the functionality needed for this was already present,
but we had to make some structural changes and create some configuration options to
make it easy choose which period to download articles for. We also stopped using the
RSS stream for finding articles, as it seemed to bring little value over just using the
OAI-PMH API directly for finding and fetching articles.

The other change we made was how category names are added to the application. In the
original implementation we had to find and update category names manually as the arXiv
APIs only provide category IDs. This is not a big problem as the categories are rarely
updated, but the process was tedious and if we do not notice and update it, it may take

49

Figure 3.19: Selection from the ArXiv category translation list.

some time for a category to get a name. ArXiv does have a page [32] that provides these
category names and the reason why we did not originally use this list is that it is made
for humans and not machines. Therefore it is harder to parse and might break with an
update. Even with these problems, we felt it would be worth it to automatically scrape
categories from this page. The categories are written in a format that is reasonably easy
to parse and an excerpt of the category list is shown in Figure 3.19. To not be affected
too much by an update of this page, we decided to leave the old system as a fallback
option. This way it is easier for us as long as the page stays the same and if they change
the page it is not any harder than it was earlier.

Figure 3.20: Updated overview of the arXivDigest platform.

Chapter 3 Infrastructure Development

3.8 Final Architecture

In Figure 3.20 we can see the final arXivDigest overview. If we compare it with the
old overview in Figure 3.1, we can notice some of the differences we mentioned in this
chapter. The RSS feed is missing from the scraping part, the new process for sending
digest emails, the arXivDigest connector and the new script for initializing the topics list
are some of the notable differences. We also updated the frontend with what emails they
send out. Note the possibility of connecting through the API either directly or through
the arXivDigest connector.

3.8.1 Submitting an Article Recommendation

The steps for submitting article recommendations have also had some changes because
of the updates. The process of registering a system and acquiring an API key has been
moved to the living labs interface, together with the topic recommender systems. All the
same features that are provided to the topic recommender systems are available for the
article recommender systems through this interface. After one has acquired an API key,
these are the steps for submitting article recommendations.

1. Call GET / to get the settings of the API.

2. Call GET /users?from=0 to get a batch of user IDs, the offset may be incremented
to get new batches.

3. Call GET /user_info?ids=... with the user IDs as a query parameter, to get
information about the users.

4. Call GET /articles To get the IDs of articles that are candidates for recommen-
dation.

5. Call GET /article_data?article_id=... with the article as a query parameter,
to get information about the articles.

6. Call GET /user_feedback/articles?user_id=... with the user IDs as a query
parameter to get information about what recommendations has already been shown
to a user. These articles should be filtered out as they will be ignored by the
platform.

7. Use the available data about users and articles to create personalized recommenda-
tions with explanations for each user. Important parts of the explanations may be
boldfaced by surrounding it by asterisks like: **text**.

51

8. Submit the generated article recommendations to
POST recommendations/articles in batches of the size defined by the API set-
tings.

9. Repeat step 2 to 6 until all user batches have been given recommendations.

3.8.2 API Endpoints Overview

There has been quite a few updates to the API during the update of arXivDigest. In
Table 3.1 we can see a summary of the new endpoints added to the API. Table 3.2 shows
a summary of the original arXivDigest API endpoints where changes to the endpoints
are highlighted.

Endpoint Description Input Return
Value

GET /topics Endpoint that returns
all the topics available
at arXivDigest

None List of
arXivDigest
topics.

POST
/recommendations/topics

Endpoint for
recommending topics
to users.

JSON of user
IDs to lists of
dictionaries
with topics
and scores.

Error
message if
something
went wrong.

GET
/recommendations/topics

Endpoint that returns
information about
topic
recommendations for a
batch of users.

List of user
IDs as query
parameter.

Scores, date
and system
ID for each
topic recom-
mendation to
each user.

GET
/user_feedback/topics

Endpoint that returns
the feedback on all
topics a user has
interacted with for
batch of users.

List of user
IDs as query
parameter.

Interaction
data with
dates for each
topic for each
user.

Table 3.1: Table of new API endpoints.

Chapter 3 Infrastructure Development

Endpoint Description Input Return
Value

GET / Endpoint that returns
a welcome message
and settings that
should be used when
interacting with the
API.

None Welcome
message and
API settings.

GET /users Endpoint that returns
batches of user IDs
from a given starting
point.

’from’ as
query
parameter.

List of user
IDs.

GET /user_info Endpoint that returns
detailed information
about users.

List of user
IDs as query
parameter.

Details about
the users.
Updated with
external
profiles and
topics.

GET /articles Endpoint that returns
the IDs of articles that
are eligible for
recommendation.

None List of article
IDs.

GET /article_data Endpoint that returns
detailed information
about articles.

List of article
IDs as query
parameter.

Detailed
information
about each
article.

POST
/recommendations/articles

Endpoint for
recommending articles
to users.

JSON of user
IDs to lists of
dictionaries
with
article_ids,
score and
explanation.

Error
message if
something
went wrong.

GET
/recommendations/articles

Endpoint that that
returns information
about article
recommendations for a
batch of users.

List of user
IDs as query
parameter.

Scores, date
and system
ID for each
article recom-
mendation to
each user.

GET
/user_feedback/articles

Endpoint that returns
the feedback for all
multileaved article
recommendations for
batch of users.

List of user
IDs as query
parameter.

Interaction
data with
dates for each
multileaving
for each user.

Table 3.2: Updated table of original API endpoints.

Chapter 4

Article Recommendation

This chapter starts by giving an overview of our work with recommender systems.
Afterwards we explain the reasoning and implementation of the four different recommender
systems we created.

4.1 Overview

The arXivDigest platform in itself brings little value to neither information retrieval
researchers nor users. The platform is dependent on external experimental recommender
systems that recommends articles to users based on their profiles. We wanted to create
a few different systems that would be providing recommendations to users when we
launched the platform. This was to ensure a good user experience at launch, before any
recommender systems from independent researchers or organizations are added. The
platform also needs several systems to actually make use of the multileaving features
that are implemented. It also allows us to gather data on how users interact with the
different systems from the start, which will let us compare the performance of systems
over time.

We decided to write all our systems in Python, in part because it is the main language
for all the other parts of the platform, and in part because Python has many existing
packages that would help in developing the systems. All recommender systems, including
our own, are required to perform all communication with the platform through the
arXivDigest API. This can be done either by using pure http request directly to the
API, or by using the arXivDigest Connector that we included with the platform. As we
were using Python, it was an obvious choice for us to use the arXivDigest Connector
(Section 3.7.3) to handle the communication.

53

Chapter 4 Article Recommendation

Figure 4.1: Overview of article recommender systems structure.

Most systems will follow the process below when recommending articles, where step 4
will be the main difference between systems. Step 4 is therefore vaguely defined, letting
each system decide the best approach.

1. Query arXivDigest for articles eligible articles for recommendations.

2. Index the available data for the articles.

• Additional data may optionally be collected for articles from external services,
like Semantic Scholar [3].

3. Query arXivDigest for information about the users.

• The system may optionally gather additional data based on the available user
profiles at external services.

4. Use the available data about users and articles to create recommendations with ex-
planations for each user, the system may choose to ignore users missing information
vital for its recommendation method.

5. Query arXivDigest for recommendations already shown to each user and filter these
out.

6. Submit the final recommendations to arXivDigest.

55

4.2 Baseline System

The main goal when developing the our first recommender system was to create a simple
system, that could be shipped with the platform code, as an example of how to a system
could be implemented. Because of this, we wanted to keep the recommendation logic
quite simple as to not make it any more confusing than it needed to be. Still, we wanted
the recommendations given by the system to be useful to users and therefore we would
have to apply some minimum of IR techniques when selecting recommendations.

As previously stated, all recommendations submitted to the arXivDigest platform need
to have an attached explanation that describes why the article is relevant to the user.
We felt that the simplest way of achieving this was by recommending articles using
an explainable model, in contrast to post hoc explanations which would be a bit too
complicated for such a simple system.

With these requirements in mind, we needed to find a method that would be easy to set
up, easy to understand and that uses an explainable IR model. We decided on using
Elasticsearch [33] in conjunction with the users’ topics to achieve this. Elasticsearch is
an open source, distributed search and analytics engine. It has many useful features,
but for our purpose we are most interested in the indexing and search features. An
Elasticsearch index stores a collection of documents, in our case the documents are
scientific articles. All the stored documents are added to an inverted index, which makes
Elasticsearch really fast for full-text searches. After adding the documents to the index,
we are able to search for documents using Elasticsearch’s powerful query language. The
resulting documents retrieved for these queries are by default ranked by BM25, which
we discussed in Section 2.1.4. We felt that Elasticsearch met our requirements as it is
easy to setup and use, it uses a well established IR technique for ranking, includes many
text preprocessing techniques and gives results that can be explained. The results may
be explained by seeing which topics contributes most to the final score, as BM25 may be
seen as an explainable model.

Implementation

The baseline system is implemented as a simple Python script with one external de-
pendency. Namely, it expects that it has access to a running Elasticsearch instance.
The first step the system takes is checking that there exist an index with the correct
attributes, if not it creates such an index. We configure the Elasticsearch index to apply
standard English preprocessing to the text, as we currently only target scientific literature
published in English. By doing this, we do not have to worry about preprocessing the

Chapter 4 Article Recommendation

text in our system since the index handles this for us. The next action it performs is to
fill this index with articles that are candidates for recommendation. These articles and
their metadata are fetched from the arXivDigest API using the arXivDigest connector.
Users are then retrieved in batches by the arXivDigest connector. These steps roughly
corresponds to step 1-3 in Section 4.1. Then, the recommendations and explanations are
created for the users in these batches like stated in step 4. We will look more into how
this is done in the next paragraphs as this is the most important part of the system.

This system is supposed to score each article by the BM25 algorithm against the users’
topics using Elasticsearch. The simplest method of achieving this is by just concatenating
all the users topics into a string and use this string as the query for the Elasticsearch index.
However, this method has one problem. Even though we get the most relevant articles,
we do not know which topics contributed to the score for the retrieved articles. To get
this information, it is actually possible to search the index for each topic individually
and combining the scores afterwards. This works because the score of a query is actually
just the sum of the score of each term in BM25.

Now that we have the score of each topic for every relevant article, we can sort the articles
by the sum of their scores and select the top scoring ones as our recommendations. To
generate the explanations we can add the top scoring topics to a sentence template with
some simple rules for commas and ‘and‘ to create a natural sounding explanation, like
shown in Listing 4.1.

def create_explanation (sorted_topics , number_of_topics_in_explanation =3):
topics = sorted_topics [: number_of_topics_in_explanation]
last = topics .pop ()
topic_sting = ', '.join(topics)
topic_string += ' and ' + last if topic_string else last
explanation = 'This article seems to be about {}. '. format (topic_string)
return explanation

create_explanation (['Topic1 ', 'Topic2 ', 'Topic3 ', 'Topic4 '])
Output : "This article seems to be about Topic1 , Topic2 and Topic3 ."

Listing 4.1: Example of explanation generation.

Lastly, previously shown recommendations are filtered out before they are submitted
using the arXivDigest connector as described in step 5 and 6 in Section 4.1. Since the
system works in batches, we need to repeat step 3-6 until all users have been processed.

57

4.3 Shared Article Recommender System Code

When we started working with the next system we realized that most of the code in
the different systems, except for the actual recommendation method, would be almost
identical. To avoid having to copy-paste too much code when creating a system, we
decided to refactor the shared code into an abstract base class. This class handles things
such as removing already recommended articles from the recommendations, creating
explanations, getting user batches and sending recommendations. We are not using this
class for the baseline system for two main reasons. Firstly, we wanted to keep the baseline
system as simple as possible and not clutter it with any additional functionality from
the base class. The second reason is that the other new systems will be in a different
repository than the base system, making it harder to share code with the current setup.
Having this base class available makes creating new systems much cleaner and easier as
we can avoid writing duplicate code. It also makes updating the systems easier as we
can apply changes to every system in one place.

To implement a new system we can just extend the BaseArticleRecommenderSystem

abstract class. Before the new system can be run we need to implement the
_create_recommendations function and the run function. Setup should be added in
the run function, while the article recommendation logic needs to be added to the
_create_recommendations function.

We also found out that most of our systems would probably use an Elasticsearch index in
some way, so we decided to create an article index class with the most commonly needed
functionality. This index class contains functionality for creating the index, adding the
articles to the index, searching articles by topics or authors and other similar functions.
Combined with the abstract base system it becomes very easy to setup a simple system,
letting us instead focus on implementing advanced techniques instead of repeating code.

4.4 Query Expansion Based System

After completing the sample system and abstracting away the boilerplate code, we could
finally start focus on more interesting recommendation techniques. The first method we
decided to implement is a type of query modeling technique.

4.4.1 Background

When users specifies a query, in our case topics of interest, they try to describe a
representation of their information need. Even when trying their best, most users will be

Chapter 4 Article Recommendation

unable to provide a complete representation of this information need. There will always
be more synonyms, topics that they forget to add, related topics that they have not
heard about yet, etc. This is the problem query modeling tries to solve by using methods
such as weighting the the terms in the query and expanding the query with terms that fill
these gaps [34]. There exist many different methods for achieving this, including using
collection co-occurrence data to calculate similarity between terms and then adding the
terms that are most similar to the query-terms to the query. Other methods have used
dictionaries and grammar rules for finding similar terms that can be added to the query,
or finding new terms by extracting them from known relevant documents [34, 35].

Since all our users have a library of saved articles they have shown interest in, we have a
golden opportunity for using known relevant articles as our basis for the query expansion.
The idea being that by expanding the query with terms from articles in the users library,
we will be able to recommend articles similar to what the users already like. We now
have the known relevant documents, so the next thing we need is a method of extracting
and weighing the terms such that we can use them for building an expanded query.
Balog et al. [34] propose a method for expanding queries with weighted terms from
sample documents with promising results. The paper originally describes the method in
conjunction with language modeling, but the concept and formulas are easily generalized,
letting us use the expanded query directly with Elasticsearch. We decided to implement
this method in our system as it seemed like it would fit our need for extracting and
weighing terms from the users library.

First we need to decide which terms to expand our query with. This is done by selecting
the K terms with the highest sampling probability, P (t|S), where K is the number of
terms to expand with. P (t|S) can be calculated using using Equation 4.1, where P (t|D)
is the probability of sampling term t from document D and P (D|S) is the importance of
document D in the sample collection S [34]. If we assume the documents to be equally
important we can calculate P (D|S) as P (D|S) = 1/|S|.

P (t|S) =
∑

D∈S
P (t|D) · P (D|S) (4.1)

We can calculate P (t|D) by taking the maximum likelihood estimate of a term using
Equation 4.2, where n(t,D) is the number of occurrences of term t in document D. The
other option is to calculate it by smoothing the maximum likelihood estimate of the term
in document D with the maximum likelihood estimate of the term in the collection C,
like in Equation 4.3 [34].

59

P (t|D) = PML(t|D) = n(t,D)∑
t′ n(t′, D) (4.2)

P (t|D) = P (t|θD) = (1− λ) · PML(t|D) + λ · PML(t|C) (4.3)

Now that we know which terms to expand the query with, we need to calculate the
weight of all the terms in the new query. This also includes reweighing the terms in the
original query. We can calculate the weight to assign to each term by using Equation 4.4,
where we use P (t|θQ) as the weight. µ is the weighting of the original query compared
to the expanded terms, P (t|Q) and P (t|Q̂) are the probability of sampling term t from
the query Q and expanded query Q̂) [34].

P (t|θQ) = (1− µ) · P (t|Q̂) + µ · P (t|Q) (4.4)

P (t|Q) can be calculated using Equation 4.5 and is just based on the frequencies of terms
in the original query [34].

P (t|Q) = n(t, Q)∑
t′ n(t′, Q) (4.5)

P (t|Q̂) can be calculated using Equation 4.6 [34], which normalizes the sampling proba-
bility of term t from sample collection S for the K terms selected for expansion, such
that the sum of their probabilities becomes 1.

P (t|Q̂) =
∑
t∈K

P (t|S)∑
t′ P (t′|S) (4.6)

4.4.2 Implementation

As earlier stated, we had most of the basic functionality for a system already implemented
in the system base class, article index class and the arXivDigest connector. That meant we
could start directly on implementing the query expansion method. The only information
we needed to calculate which terms to use for expansion and their weights was the term
counts of all the terms in the saved articles and topics. Both of which are easy enough
to get as the arXivDigest API exposes endpoints for fetching topics, saved article ids,
and the content of the articles.

Chapter 4 Article Recommendation

Figure 4.2: First 10 expanded terms and their weights

quantum (0.077), computers (0.068), we (0.063), from (0.054), states (0.054),
our (0.047), classical (0.043), can (0.039), provides (0.039), which (0.035)

However, when doing this we discovered a problem. When counting terms we first want
to stem the terms in a way such that house and houses are treated as the same term,
as they would be when we search using them anyway. The problem is that when we
stem a word we are not guaranteed to get a real word back, in this case the result of the
stemming would be hous. This is not ideal seeing that we are going to include them in
the human readable explanations later. Our solution for this was to count how many of
each term gets stemmed to each stem. After we are done counting, we select the most
common unstemmed version of each term as the human readable version. This is not a
perfect solution as the most common form is not guaranteed to be the best form to use in
an explanation, but we believe it is the most fair since this is the form that contributed
the most to the result.

We can then input the term counts directly in the formulas from the previous section to
find the expanded topics and their weights. The next step is to query the Elasticsearch
index with the weighted topics and the expanded topics. We can apply weights to an
Elasticsearch query by using the following syntax: (term)^weight. While implementing
the system, we created a fictional user to test the query expansion method on. This user
had an interest for quantum computing and had therefore liked several articles about
this topic. The top 10 expanded terms can be seen in Figure 4.2.

One of the first things we noticed was that many of the expanded terms hold very
little discriminatory value, like we, from, our and can. This is despite the fact that
Elasticsearch has removed some stopwords already. Having this many words of little
discriminatory value in the expanded query is problematic as instead of adding value to
the query, it just adds noise.

To try to combat this problem we created our own domain specific stopword list. Elastic-
search saves document frequency for all terms, so it is not to hard to check if a term is
frequent or not. However, Elasticsearch does not provide an easy method of getting all
terms present in an index. Turns out this is not huge problem as we are only interested
in the common terms anyway. We can get a list of most common terms appearing in the
index by finding all the terms appearing in a large sample of random documents, which
we can get. Then we can get the document frequency of a term by dividing the number
of documents the term appears in by the total number of documents in the index, both

61

of which we can find by using the term vectors API of Elasticsearch. The final step in
selecting the stopwords is just to select a threshold for the document frequency of a term.
Normally we would not set this threshold too low, as many frequent terms may still hold
some value to a query. However, we are not afraid of losing some common but useful
terms in this case since we are more interested in the terms that are more common in
the saved articles and less common in the collection overall.

In Figure 4.3 we can see the top 10 expanded terms after filtering with the domain
specific stopword list. Now most of the terms are more descriptive of the topics of the
saved articles, even though there still exist some terms that do not tell us too much like
become and even.

Figure 4.3: First 10 expanded terms and their weights after applying stopwords

quantum (0.103), classical (0.057), protocol (0.047), information (0.047), interact-
ing (0.046), security (0.046), become (0.043), even (0.041), implementations (0.041),
expected (0.040)

4.5 Semantic Reranking Based System

4.5.1 Background

Up until now we have treated words as atomic units. The words ’king’ and ’queen’ are two
completely separate entities with no relation, even though both are a form of monarch.
Another method of representing words which has some interesting properties, is to build
low dimensional vector representations of words also known as word embeddings [36].
It has been shown that by learning vector representations of words from large amount
of unstructured text data, one can get vectors with an understanding of relationships
between words. An example of this is by subtracting the vector of ’Spain’ from the vector
of ’Madrid’ and adding the vector of ’France’ gives a resulting vector that is closer to the
vector of ’Paris’ than to any other word [37]. The similarity between words vectors can
be measured by calculating the cosine similarities of the vectors [36]. Cosine similarity
is a measure of how much the direction of two vectors differ and can be calculated by
taking the cosine of the angle between the vectors [38].

It is also possible to use word embeddings to compare documents instead of just single
words. The simplest method of creating a vector representation of a document is to sum
the embeddings of each word in the document and divide it by the number of words.
The resulting document vectors can then be compared to each other or the vector of

Chapter 4 Article Recommendation

a query by using cosine similarity [39]. Having word embeddings for documents and
queries makes it possible to give high retrieval scores to documents that have few or none
common terms with the query because they have a similar semantics [39].

As we discussed in the query expansion system, there will almost always exist gaps in
the users query either though missing synonyms, missing closely related topics and many
other reasons. Because of this, we thought word embedding seemed like an interesting
method of trying to fill the gap between the query and the information need by focusing
more on the semantics of the query instead of the exact wording.

4.5.2 Implementation

We decided that it would be best to rerank a first-pass result, instead of creating and
comparing word embeddings for all documents available for recommendation. This
first pass result is just based on the regular user topics. The first-pass results are then
reranked based on the similarity of the word embeddings of the result’s titles against
the word embeddings of the user’s topics. There are two reasons for not reranking all
documents. The first reason being that this could get very computationally demanding
with increasing number of documents, while the second reason is that as most users
will have many topics, most relevant documents will share at least one common topic.
The reason we chose to rerank the documents based on just the title instead of the
whole document is that we are not quite sure how well this simple method of combining
word embeddings scales with longer documents. For the word embedding library to use,
We chose Word2vec through Gensim [40]. Word2vec is one of the most popular word
embedding approaches, which have shown promising results in earlier works [37]. This
library provides several high quality pre-trained models, but also provides an easy to use
interface for training models on our own data.

def calculate_sentence_vectors (sentences):
vectors = []
for sentence in sentences :

tokens = gensim . utils . simple_preprocess (sentence)
tokens = [t for t in tokens if t in model . vocab]
vectors . append (sum ([model [token] for token in tokens]))

return vectors

Listing 4.2: Functions for calculating sentence embedding.

In Listing 4.2 we can see the the function we use for calculating sentence embeddings.
To do this we first preprocess the sentence using a preprocessing method provided by
Gensim for better compatibility with the pre-trained models. Then we sum the word
vector for every word in the sentence.

63

def calculate_ranking (titles , topics , threshold):
topic_vecs = calculate_sentence_vectors (topics)
title_vecs = calculate_sentence_vectors (titles)
title_scores = defaultdict (list)
for topic , vector in zip(topics , topic_vecs):

scores = model . cosine_similarities (vector , title_vecs)
for title , score in zip(title , scores):

if score > threshold :
title_scores [title]. append ((score , topic))

return title_scores

Listing 4.3: Functions for ranking titles by topics using word embedding.

We can then calculate the score of every topic to every title like shown in Listing 4.3 by
computing the cosine similarity. The final score of each title is calculated by summing
together the scores of each topic. When implementing this function, we had to incorporate
a threshold for how similar two embeddings must be to contribute to the score. This
is because even very different vectors will have some similarity when measuring cosine
similarity. By thresholding the scores, we can make sure that only topics that match the
title by a meaningful amount gets to contribute. Not thresholding scores would create
very misleading explanations for titles that have a low similarity to all topics. This would
especially be a problem if there are few relevant articles for a user one day. Then one of
these misleading explanations might show up in their recommendations on arXivDigest.

Verifying the Implementation

Table 4.1: Sample titles

Fauna diversity in equatorial habitats.
How forests affect climate change.

Frogs live in the swamp, near water.
Computers are built from electronics and transistors.

Cultures around the world.
Black holes are formed when stars collapses.

Table 4.2: Sample topics

Rainforest climate
Tropical species

Climate change and endangered species

Before we tried to incorporate this method into a system, we wanted to test it with
some sample titles and queries. This was done because we wanted to get a better
understanding of how the method works, as this will be more difficult to do when it is

Chapter 4 Article Recommendation

implemented as a system. The experiments we performed were in no way comprehensive
enough to give accurate performance results for the method, but they were designed to
help us understand the method and check if our implementation showed some potential.
In Table 4.1 and Table 4.2 we can see the titles and topics created for one of these
experiments. The topics are centered around climate change and species in the rainforest.
If the method works, we expect high scores for the first two titles. The third title is in the
grey zone, so while it should be above the threshold we would expect it to have a lower
score. We do not expect the last three titles to score above the threshold at all, as they
are not related to the topics in any way. In the experiment we used the google-news-300
pre-trained embeddings and a threshold of 0.4. We found that this threshold value varied
much from embedding to embedding, but a threshold between 0.35 and 0.45 seemed to
work good for our purpose using this model.

In Figure 4.4 we can see the result of the sample ranking. The ranking matched our
initial expectations, and seemed quite promising. Because of this, we decided to move
forward with implementing this as a recommender system.

Figure 4.4: Final ranking of sample titles and topics with scores

• Fauna diversity in equatorial habitats. (2.03)

– Tropical species (0.72)
– Climate change and endangered species (0.66)
– Rainforest climate (0.64)

• How forests affect climate change. (1.75)

– Climate change and endangered species (0.70)
– Rainforest climate (0.65)
– Tropical species (0.41)

• Frogs live in the swamp, near water. (0.91)

– Tropical species (0.47)
– Climate change and endangered species (0.44)

• Computers are built from electronics and transistors. (0)

• Cultures around the world. (0)

• Black holes are formed when stars collapses. (0)

65

Training Our Own Model

The google-news-300 embeddings are trained on a large corpus of news articles. While
this embedding delivers impressive performance, we find it reasonable to assume that the
terms and topics varies greatly between news articles and scientific literature. Because of
this, we decided to train our own embedding. Getting the data to train an embedding is
not a big problem, as we have access to almost two million articles from arXiv [1]. We
also have the needed functionality for downloading them through the scraping part of
arXivDigest. Downloading all the articles was quite slow, so we decided to implement
some simple caching in case we wanted to rebuild the model with updated data. The
cache is just a collection of files sorted by dates and that way we can keep downloading
articles from the point where we stopped the previous time the script was run. For
simpler training, we merge all the titles and abstract of the articles into a single file
with one line per article. Using Gensim makes the actual training part very easy and
the code we used for training the embedding can be seen in Listing 4.4. The embedding
training is a standalone script which should be run at regular intervals, to accommodate
the evolving vocabulary of scientific literature.

class SentenceIterator :
""" Preprocesses and yields line by line for input file ."""

def __init__ (self , filepath):
self. filepath = filepath

def __iter__ (self):
with open (self. filepath) as file :

for line in file :
yield gensim . utils . simple_preprocess (line)

model = Word2Vec (SentenceIterator (CORPUS_FILE))

Listing 4.4: Code for training a word2vec embedding using gensim.

The embedding seemed to pickup some language patterns from the dataset, one example
of this can be seen in Figure 4.5, where the top 10 similar terms to the term AES is
shown. AES is an encryption standard, so it makes sense that most of the terms are
either related to cryptography or cryptography methods. We will have to wait for results
from the living lab for further validation of the method and model, as we do not have
any labeled data to compare against.

Implementing the Recommender System

To finish the system we just need to combine the base system class, the article index
class, the trained embedding and the ranking function defined in Listing 4.3. The first

Chapter 4 Article Recommendation

Figure 4.5: Top 10 similar terms AES.

decryption (0.703), cipher (0.695), encryption, (0.687), paillier (0.680), ecdsa (0.672),
mceliece (0.669), cryptosystem (0.668), rijndael (0.666), elgamal (0.666),
encryptions (0.653)

thing we have to do when we initialize the system is to load the word2vec embedding,
which should already be trained. Then the system queries the article index for a first-pass
result based on each users’ topics. This first-pass result is scored against each topic like
in Listing 4.3. The articles in the first-pass result are then sorted by the sum of the topic
scores and the top articles are selected as recommendations. Explanations are generated
as in the other systems, where the topics contributing the most gets included in the
explanations.

4.6 Author Based System

4.6.1 Background

For the sake of variety we also wanted to provide the users with recommendations that
are not based on topics in any way. We considered techniques like implementing a system
based on similarities of paths between objects in a heterogeneous information network
(HIN) as shown in [41]. A HIN is a network of objects and their connections. This can
be objects like authors, venues, citations and connections like authored by, cited by and
published at. Similarity between objects can be measured by by evaluating the number
of paths connecting them [41]. In the end, because of time constraints, we decided to go
for a simpler approach that works based on the same premise.

We chose to implement a system that recommends articles based on the authors of
the users earlier saved articles. The reason being that an author often write articles
concerning the same field of study and it is therefore not unreasonable to assume that
the user may be interested in other works by the same author.

4.6.2 Implementation

The system is built using the base system class and the article index class, same as the
other systems. We now needed to add the article authors to the article index, preferably
as a list of authors for each article. However, this leads to a problem if we were to use

67

the normal Elasticsearch data types to store and search for authors. Due to how Elastic
search handles inner objects, the association between values are lost. This means that if
we add the authors Alice Jones and John Smith to an article, it would actually match
Alice Jones, Alice Smith, John Smith and John Jones. Fortunately, Elasticsearch provides
a solution to this problem, which is using nested objects and queries [42]. By using these
we can query authors independently. We add functions both for adding nested authors
to articles while indexing articles, and for searching for authors to the article index class.

We can then get all the authors of articles saved by a user through looking up which
articles a user has has saved using the arXivDigest connector. Which we can then get the
author information for by using the arXivDigest connector again. The system searches
for articles matching these authors using the author search function from the article
index for each author. Explanations are then generated using the same approach as in
Listing 4.1, only this time we replace the explanation template with: ’You have previously
saved articles authored by .’.

Chapter 5

Topic Recommendation

5.1 Overview

As we have seen in Chapter 4, many of the article recommendation systems are based
on the topics the users have listed on their profiles. Therefore, both the quality and
accuracy of article recommendations from these systems are dependent on the quality
and accuracy of the users’ topics. The better users’ topics fit their interest profile, the
better article recommendations provided by these systems will be. To increase the quality
and quantity of topics on the users’ profiles, we decided to implement the possibility of
recommending topics to the users in the same way we recommend articles. This would
provide better topic auto-complete on sign-up and also suggest topics to users whenever
they visit the web interface. The process of actually recommending these topics were
left to external topic recommender systems, much in the same way as recommending
articles are left to external article recommender systems. These systems will have access
to all the same user information as the article recommender systems as well as the users
feedback on previous topics.

5.2 Common Functions

The different topic recommender systems will have a bit of shared code between them.
This includes the fetching of user information, the text preprocessing they use and the
sending of topic recommendations back to the arXivDigest API. We describe these shared
components in this section before going on to explain each topic recommendation method
we implemented.

69

Chapter 5 Topic Recommendation

5.2.1 Fetching User Information

Before we could recommend any topics to users, we needed some user information to
base the topic recommendations on. The arXivDigest API provides user information like
topic interaction data, article interaction data, the users’ interest for arXiv categories and
links to the users’ profiles at external services. This is the starting point for most topic
recommendation. We consider two main ways of using this information for recommending
topics. The first method we consider is to extract topics from text that is relevant to the
user, which in our case will most likely be scientific literature they are interested in. The
other method is to match topics from a pre-existing list of topics to a user profile based
on some similarity metric.

There were two main sources for relevant scientific literature for a user that we could
think of. We find it reasonable to assume that the library of saved articles each user has
on arXivDigest, contains literature relevant to the user. For the users that have links to
services containing published papers, we can also find it reasonable to assume that the
user is interested in the topics mentioned in their published papers. The arXivDigest
platform lets users add links to four of these services. These four services are their
personal website, their DBLP profile, their Google Scholar profile and their Semantic
Scholar profile. We did not bother with using the personal websites for this project,
as these can come in many different and possibly unique formats. We also had to skip
Google Scholar because it lacked a good API for fetching the data we wanted and the
website was created dynamically with extra requests which made it difficult to scrape
the titles directly. However, both DBLP and Semantic Scholar provides easy to use APIs
for fetching the titles of a user’s publications, which should be enough to extract some
relevant topics from.

DBLP

DBLP has an API in place to fetch all the data for one user as an XML file. However,
to use this API and get the data, we need the user’s persistent profile URL. Through
the arXivDigest’s API we only have the users general DBLP profile page link. So before
we could download the user data, we needed to use the general DBLP profile page link
to get the users persistent profile URL. This persistent profile URL can be found in a
drop-down menu on the users DBLP profile as seen in Figure 5.1. We get this URL by
using the Beautifulsoup library [31] to parse the profile page of the user and then search
for the persistent URL. Once we had the persistent URL, we could add .xml to the end
of this URL to get the link to a XML file containing all the user’s DBLP profile data.
We used Beautifulsoup again to search for all the title tags in the XML file to get all

71

Figure 5.1: Location of persistent URL on DBLP.

the titles of the user’s publications. An example of how to find these titles can be seen
in Listing 5.1.

resp = requests .get(persistent_profile_URL + '.xml ')

soup = BeautifulSoup (resp.content , 'lxml ')

titles = soup. find_all ('title ')

Listing 5.1: Using Beautifulsoup to find user titles.

Semantic Scholar

Semantic Scholar also has an API in place for providing data about its authors. However,
the Semantic Scholar API only needs the user’s Semantic Scholar author ID to complete
its request. This ID can be found as a part of the user’s Semantic Scholar profile URL
that we have from the user’s profile on arXivDigest. We only need to split the Semantic
Scholar profile URL on ’/’ and we have the Semantic Scholar author ID. This ID is then
used in a request to the Semantic Scholar API using the URL
https://api.semanticscholar.org/v1/author/[S2AuthorId]. Semantic Scholar
then returns a JSON object with the user’s information. We can search for the title

tag in the JSON object to fetch the titles of the users publications. Example of how to
find these titles can be seen in Listing 5.2.

API_URL = 'https :// api. semanticscholar .org/v1/ author /'
resp = requests .get(API_URL + semantic_scholar_author_id)

author_info = json. loads (resp. content)
titles = []

for paper in author_info ['papers ']:
titles . append (paper ['title '])

Listing 5.2: Fetching publication titles from Semantic Scholar API.

Chapter 5 Topic Recommendation

5.2.2 Text Preprocessing

We use the same text preprocessing in all of the topic extraction algorithms so we will
also cover the preprocessing before we look into the specific extraction algorithms. We
decided to make the preprocessing the same for each of the extraction methods to give
them an equal starting point for a more fair comparison of the results. The preprocessing
method we went for in the topic recommender systems is heavily inspired by Jishnu Ray
Chowdhury’s implementation of TextRank where he also included some preprocessing
steps in his implementation [43].

Tokenization

There are several steps involved in our text preprocessing for the topic extraction systems.
The first step is to clean the provided text for all non-printable characters. We do this
with the printable constant from the string library. In this step we also tokenize
the text with the word_tokenize function from the NLTK library [44] and convert all
the characters to lowercase. An example of the word_tokenize function and how we
lowercase the characters can be seen in Listing 5.3. (See Section 2.1.1 for an explanation
on what tokenization is and why we do it.)

from nltk import word_tokenize

tokenized_text = word_tokenize (text. lower ())

Listing 5.3: Word_tokenize example

Lemmatization

Next, we lemmatize each words in the cleaned text using the wordnetlemmatizer from
the NLTK library. For more on lemmatization see Section 2.1.1. We also use the
pos_tags function from NLTK to get the POS tags of a word. Using these POS tags,
we can figure out if the word is a noun, verb, adjective etc. and we can supply this
information along with the word to the wordnetlemmatizer. This will give us a more
accurate lemmatization for each word. The lemmatzation process is shown in Listing 5.4.

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer ()

POS_group = get_word_POS (word)
lemmatized_word = lemmatized . lemmatize (word , POS_group)

Listing 5.4: Wordnetlemmatizer example

73

One problem that this lemmatization creates is that while it helps making the algorithms
more accurate, the resulting lemmatized topics may not always make sense grammatically.
To solve this, we need to be able to translate the lemmatized topic recommendations
back into non-lemmatized words for the final topics. We try to tackle this problem much
in the same way that we tackled it for stemming in Section 4.4.2. As with stemming,
one lemmatized word might come from several different forms of the unlemmatized
word and we do not know which of these forms to translate it back into. Again, we
use a translation dictionary to keep track of which lemmatized word stems from which
original word and a counter of how many times the original word was lemmatized into
that specific lemmatized word. Then, when we translate the lemmatized word back,
we can choose the translation back to the original form of the word with the highest
counter. This ensures that we have a higher chance of making a translation into a topic
recommendation that makes more sense grammatically.

Stopwords

As a final step of the preprocessing, we create our stopword list. We chose to implement
a hybrid version of a stopword list which uses both a predefined list of stopwords and
also a generated list of stopwords. The predefined stopword list contain most of the basic
stopwords one would find elsewhere, but no advanced words or phrases. We use this
predefined list to guarantee that all these basic words will be filtered out. To get an even
better final stopword list, we also generate our own stopwords based on the provided
text. The way we generate this stopword list is by looking at the words’ POS tags. Usual
topics are often noun, adjectives or foreign words [43]. We therefore add all words that
are not noun, adjectives or foreign words to the already existing predefined stopword list.
This gives us a stopword list tailored for the texts we extract topics from. The advantage
of this self-generated stopword list is that the stopwords change to fit the texts of each
user. Because of this, we are able to remove words that are less likely to create good
topics based on the words’ properties. This will be important later, especially because
one of the methods we will try using for extracting topics uses stopwords as a separator
between topics [20].

5.2.3 Base Topic Recommender Class

When we implemented the different topic recommendation algorithms, we needed a
framework to support the algorithms and provide them with the necessary information
such as information about the users and existing topics. Most of this code would be
identical for all topic systems, like fetching user data and topic data from the arXivDigest

Chapter 5 Topic Recommendation

API or submitting topic recommendations. Making a shared framework structure for all
the topic recommender systems therefore seemed like the most efficient approach. This
would reduce a lot of duplicate code between the topic recommender systems and also
make it easier to implement new systems in the future.

We created a BaseTopicRecommenderSystem class that is responsible for handling all of
the duplicate code between the topic recommender systems. This included fetching user in-
formation from the arXivDigest API, scraping the profile of the users’ external services for
text to use in the topic extraction algorithms and sending the finished topic recommenda-
tions back to the arXivDigest API. The only unfinished function is the recommend_topics

function that creates the topics recommendations. The BaseTopicRecommenderSystem

also includes a run function that is used to execute the topic recommender system.

To create a new topic recommender system, we have to create a new class for that specific
topic recommender system. This new class should extend the BaseTopicRecommenderSystem

class, which gives the topic recommender system access to all the functions from the
BaseTopicRecommenderSystem that we mentioned above. The only function we need
to implement in the new topic recommender class is the abstract recommend_topics

function. Here we implement the specific topic extraction method that we are going to
use for that topic recommender system.

Most topic recommender systems will follow the steps outlined in the list below, these
steps are also shown in Figure 5.2 with numbers corresponding to the list. These are
the steps that we have tried following when implementing the base system to make it as
generalized as possible. Step 3 is where the actual recommendation happens and it is
thus up to the system developers to define. This is reflected in the base class, where the
unfinished function recommend_topics may be compared to step 3.

1. Query arXivDigest for users and their information.

2. The system may optionally collect extra user data from external services like
Semantic Scholar or DBLP, if the user has provided links to any services like this.

3. Use the collected user information to recommend topic to each user with a method
of choice.

4. Clean all the topics so that they conform to arXivDigest’s standard. This include
removing illegal symbols, too long topics and topics that a user already has seen.
Data for this standard is provided by the arXivDigest connector.

5. Send the top scoring topics for each user back to arXivDigest.

75

Figure 5.2: Overview of topic recommender systems structure.

5.3 Topic Recommendation Algorithms

We decided to implement a selection of two different topic extraction algorithms and one
method for recommending topics from a list of existing topics. The two topic extraction
algorithms we selected are from the document-oriented methods that we talked about
earlier in Section 2.3.1. We selected RAKE [20] and TextRank [22] because the algorithms
are both able to extract phrases instead of only single words, and because they have
shown promising results earlier.

5.3.1 RAKE

The first topic extraction method we implemented was the RAKE algorithm proposed
by Stuart Rose et al. [20]. This algorithm was suggested to us by our supervisor and
after reading the paper we chose to implement this algorithm because it seemed to suit
our needs well. According to the source paper RAKE works well on different domains
and also operates well on multiple different types of documents, particularly those that
do not follow specific grammar conventions [20]. This is good for us since we were going
to use titles of scientific articles as the input texts for this algorithm and article titles
are often written with different structure and wording than normal sentences.

Algorithm

RAKE begins with creating candidate topics from the preprocessed text. These are
unique phrases that are considered as allowed topics. To do this, RAKE takes the
preprocessed text list and uses phrase delimiters (punctuations) and stopwords to divide

Chapter 5 Topic Recommendation

the text into shorter phrases which will be our candidate topics [20, 45]. After this
first step, we have a list of unique candidate topics with varying lengths. One problem
with using delimiters and stopwords to separate candidate topics is that the resulting
candidate topics can not contain an interior stopword. This was described as the ’axis
of evil’ problem in the original paper [20], since ’axis of evil’ would never be selected
as a candidate topic because of the ’of’ stopword in the middle. To solve this problem,
we also keep track of all the possible adjoining topic combinations and the number of
times they appear in the text. Then, after we have fully processed all the texts, we select
the adjoining topics from all the possible adjoining topic combinations that satisfy our
requirements. These adjoining topic requirements include appearing in the document a
certain number of times, being under a certain maximum length and neither starting or
ending with a stopword. The adjoining topics are then added to the previously made list
of candidate topics [20].

After we have the list of candidate topics it is time to calculate the score of each candidate.
To do this, we have the choice between three scoring metrics. These metrics are word
frequency, word degree and word degree divided by word frequency [20].

• Word frequency is simply the number of times a single word occurs in all the
candidate topics. This metric favors words that frequently occur regardless of
which candidate topic they come from.

• Word degree also takes into consideration the neighboring words that often occur
together. This is calculated as a matrix with all the single words from all candidate
topics along each axis. We then count what words occur together in a text. The
final degree score for a word is achieved by adding together the numbers for one
word in one row in the degree matrix. Degree favors the words that occur often
and also often in longer candidate topics.

• Word degree divided by word frequency is as simple as it sounds. To calculate this,
simply divide the word’s degree score on the word’s frequency score. This metric
favors the words that mostly only occur in longer candidate topics.

Finally we can compute the scores of the candidate topics by taking the sum of the
score of each word in the candidate topic. This will give a final score for the candidate
topic that is the sum of all the scores of the individual words it contains. We then sort
the candidate topics based on their final scores and that is the output of the RAKE
algorithm [20].

77

Implementation

We decided to implement RAKE as its own class. This allow us to create a RAKE object
with specific parameters that we can keep reusing for each user in our recommendation
system. It also keeps the RAKE functions isolated in the class, away from the rest of our
recommender system. Since we were going to work with the titles of the users’ saved and
published articles, we chose to let the input value of the RAKE algorithm be a list of
sentences. In our case, this would be the list of titles of relevant articles to a user. In
Listing 5.5, we show how we create a RAKE object and how we execute the algorithm
with a list of titles by using the run_rake function. The extracted topics and their scores
can be fetched with the get_keywords_with_score function.

from rake import Rake , Metric

scoring_metric = Metric . WORD_FREQUENCY
r = Rake(max_length ,

stopwords_file ,
scoring_metric ,
punctuations ,
min_occurrences)

r. run_rake (title_list)

sorted_final_scores = r. get_keywords_with_score ()

Listing 5.5: Initialize and use RAKE

As we explained in Section 5.3.1, RAKE can use three different scoring metrics to score
the extracted topics. We implemented this as an enum as seen in Listing 5.6. This way
we could use the names of the metrics to make the code more understandable while also
reduce the risks of crashing the program due to spelling errors.
class Metric (Enum):

""" Different metrics that can be used for scoring the extracted topics . """

DEGREE_TO_FREQUENCY_RATIO = 0
WORD_DEGREE = 1
WORD_FREQUENCY = 2

Listing 5.6: Creating the metric enum

We can use the text in Figure 5.3 as an example. This is what the RAKE algorithm
will use to create the candidate topics. In this example, the candidate topics created
by RAKE can be seen in Figure 5.4. The top five final scoring topics from our RAKE
implementation can be seen in figure Figure 5.5. This result was calculated using the
word degree divided by word frequency metric described above in Section 5.3.1. We
can confirm our results by looking at one specific topic and the score. Lets look at the
topic linear diophantine equations which got a 9.0 in score. If we use the single

Chapter 5 Topic Recommendation

Criteria of compatibility of a system of linear Diophantine equations, strict inequa-
tions, and nonstrict inequations are considered. Upper bounds for components of
a minimal-supporting set of solutions and algorithms of construction of minimal
generating sets of solutions for all types of systems are given. These criteria and the
corresponding algorithms for constructing a minimal-supporting set of solutions can
be used in solving all the considered types of systems and systems of mixed types.

Figure 5.3: Example sentence for topic extraction.

’criterion’, ’compatibility’, ’system’, ’linear diophantine equation’, ’strict inequa-
tions’, ’nonstrict inequations’, ’upper bound’, ’component’, ’minimal-supporting
set’, ’solution’, ’algorithm’, ’construction’, ’minimal generate set’, ’type’, ’give’, ’con-
struct’, ’solve’, ’mixed type’, ’criterion of compatibility’, ’system of linear’, ’bound
for component’, ’set of solution’, ’solution and algorithm’, ’algorithm of construction’,
’construction of minimal’, ’type of system’, ’system be give’, ’algorithm for construct’,
’construct a minimal-supporting’, ’system and system’, ’system of mixed’

Figure 5.4: RAKE candidate topics from example sentence.

linear diophantine equations (9.0), minimal generating set (8.667), systems of linear
(7.667), set of solutions (7.667), construction of minimal (7.0)

Figure 5.5: Top five final topics and scores from RAKE example.

’linear’ (1), ’diophantine’ (1), ’equation’ (1)

Figure 5.6: Words frequency scores from RAKE.

’linear’ (3), ’diophantine’ (3), ’equation’ (3)

Figure 5.7: Words degree scores from RAKE.

words frequency scores found in Figure 5.6 and the single words degree scores found in
Figure 5.7, we can calculate the full topics score using Equation 5.1. We observe that
this score matches the output score of the RAKE algorithm we implemented.

final score = 3
1 + 3

1 + 3
1 = 9 (5.1)

79

5.3.2 TextRank

The next algorithm we decided to implement was the TextRank algorithm. This algorithm
is specified in the paper ’TextRank: Bringing Order into Texts’ by Rada Mihalcea and
Paul Tarau [22]. We chose this algorithm for the same reasons we chose to implement
RAKE. These reasons include working well on multiple types of documents and also
supporting multi-word topics. The TextRank algorithm is based of a graph-based
algorithm called PageRank. This makes it work in a very different way from how the
RAKE algorithm works and we also thought it would be interesting to see how these two
totally different algorithms would compare against each other.

Algorithm

As we mentioned above, the TextRank topic extraction algorithm is based on another
algorithm called PageRank [46]. Knowing how this PageRank algorithm works is essential
in also understanding how TextRank works. So first lets see how the PageRank algorithm
works.

PageRank is an algorithm for measuring the relative importance of web pages based on
the links leading to and from them [46]. This algorithm represents each website as a
node in a graph, while the incoming and outgoing links between nodes are represented
as directed edges. The intuition behind PageRank is that pages with more in-links are
more popular and therefore more important than pages with fewer in-links. In addition,
the links coming from more important pages are worth more than the links coming from
less important pages [46].

The PageRank score of the pages are calculated iteratively until the scores converge.
If iterated until convergence, the initial scores of the nodes does not really matter too
much. However, more accurate initial scores will cause faster convergence [46]. For each
iteration, every node is scored according to Equation 5.2 [47] where Vi is a node and d is
a dampening factor for the case of nodes with no outgoing links. The iterative process is
repeated until the changes in the scores of the nodes are below a certain threshold. The
scores of each node at this point is the final importance of the web pages and the output
of the algorithm [46]. In essence, PageRank lets web-pages vote for the importance of
other web-pages, but votes from important web-pages are given more weight. As the
importance of web-pages changes after a vote, the process must be repeated until the
result stabilizes.

S(Vi) = (1− d) + d
∑

j∈In(Vi)

S(Vj)
|Out(Vj)| (5.2)

Chapter 5 Topic Recommendation

Now that we know how PageRank works, let us continue with the TextRank algorithm.
This works in a way that is very similar to PageRank, except the nodes in the graph are
the words in the preprocessed text. The edges between the word nodes are formed when
the words are within a certain distance of each other in the text. This distance is called
the window size. We do not use directional edges in TextRank, instead all of the edges
are considered both an in-link and an out-link [22]. To determine which words builds
up the graph we start by looking at the already preprocessed text. We iterate through
the text and all the words that are not stopwords are added into a vocabulary. If the
word is already in the vocabulary, it is ignored. The final vocabulary is the set of unique
words that appears in the preprocessed text. We use this set of words as the nodes in
the graph we create from the text. To form the edges between these nodes, we use the
preprocessed text to figure out which words are within the window size distance of each
other. An edge is then formed between these two word nodes in the graph. Figure 5.9
shows an example of a TextRank graph.

After constructing the graph, we can start the TextRank scoring algorithm. Unlike
PageRank, where each node can have a different initial weight, in TextRank each word
node is assigned an initial weight of one. The algorithm then iterates through through
all the nodes in several rounds, scoring them based on the weights and edges just like the
PageRank algorithm [22]. The scoring function for TextRank can be seen in Equation 5.3.
The iteration cycle stops when the changes in the scores are less than a certain threshold,
or a maximum number of iterations has been reached. The score of a word node at the
last iteration is then the final score for that word.

WS(Vi) = (1− d) + d
∑

j∈In(Vi)

wji∑
Vk∈Out(Vj)wjk

WS(Vj) (5.3)

After the scores of the words in the vocabulary have been calculated, we can score our
candidate topics. To get these candidate topics, we use almost the same technique as
in RAKE where we divide the preprocessed text into candidate topics delimited by
the stopwords and punctuations. The result is a set of unique candidate topics with
varying lengths. To score these candidate topics we use the scores of each word from the
vocabulary graph. The candidate topic is scored by the sum of the score of its individual
words from the TextRank graph nodes. The resulting candidate topics and final scores
are then sorted based on their scores which is then the final result of the algorithm.

81

Implementation

To match the RAKE implementation, we also implemented TextRank as its own class
with a list of sentences as the input. This way we could use the same infrastructure
code for executing both of these two algorithms. A TextRank object is created in very
much the same way as a RAKE object as seen in Listing 5.7. We then run the TextRank
algorithm with the run_textrank function with a list of article titles for one user. The
final topics and their scores can be fetched using the get_sorted_scores function.

from textrank import TextRank

t = TextRank (windowsize ,
stopwords_file ,
max_iterations ,
d,
threshold)

t. run_textrank (title_list)

sorted_final_scores = t. get_sorted_scores ()

Listing 5.7: Initialize and use TextRank

Originally we created an implementation heavily inspired by Jishnu Ray Chowdhury’s
implementation on Github [43], but we soon realized that we had to optimize this
implementation. We ran into two main problems. Firstly, the algorithm was extremely
slow which would become a problem when recommending topics to many users. The
second problem was that for big vocabularies we would start to get memory errors. There
were multiple reasons for these problems, one of them being that the text was iterated
over excessively many times. This was solved by iterating through it in a single pass,
storing data in hash-based structures such as dictionaries and sets for fast lookup. The
memory errors was caused by the Python math library Numpy struggling to allocate
huge two-dimensional arrays for storing the graph. The solution for this was to instead
store the graph as a sparse representation of edges, as most of the matrix was only
zeros anyway. This indirectly also improved the speed, as earlier when calculating the
scores, much of the time was spent iterating over the zero values that were just skipped.
By just iterating over the actual edges, the scoring became much faster. After doing
these optimizations we were sufficiently content with the speed an memory usage for our
use-case.

We will now show an example of TextRank results using the same text from Figure 5.3
as we tested RAKE on. First TextRank creates a graph from the text with words being
nodes, and edges are created between words within close proximity. The graph created

Chapter 5 Topic Recommendation

nonstrict (0.81523347), algorithm (1.2645329), compatibility (0.58448005), minimal-
supporting (1.2524251), equation (0.8203648), minimal (0.71050864), linear
(0.7854648), criterion (0.99296856), construct (0.68472433), diophantine (0.79357594),
generate (0.7015791), system (2.388677), upper (0.80486965), bound (0.7717413), con-
struction (0.7079529), component (0.7447296), strict (0.8255826), type (1.4630581),
set (1.7876948), solution (1.7439471), give (0.6762841), inequations (1.5000348),
mixed (0.5281559), solve (0.65141493)

Figure 5.8: Vocabulary and scores created by TextRank from example.

from this text can be seen in Figure 5.9. The vocabulary and resulting scores of the
words in the vocabulary can be seen in Figure 5.8.

Figure 5.9: Example of a TextRank graph.

(’algorithm’,), (’linear’, ’diophantine’, ’equation’), (’upper’, ’bound’), (’construction’,),
(’give’,), (’strict’, ’inequations’), (’solution’,), (’system’,), (’nonstrict’, ’inequations’),
(’compatibility’,), (’solve’,), (’mixed’, ’type’), (’construct’,), (’type’,), (’minimal-
supporting’, ’set’), (’component’,), (’criterion’,), (’minimal’, ’generate’, ’set’)

Figure 5.10: TextRank’s unique phrases fom example.

We can then use the sum of the scores of the individual words in the candidate topics,
that are shown in Figure 5.10, as the final score of a topic. The top five final scoring
topics from TextRank can be seen in Figure 5.11,

The score for the top scoring topic minimal generating set can be calculated using
the vocabulary scores as shown in Equation 5.4 using the values from Figure 5.8. This
result is the same as we see for the same topic in Figure 5.11.

83

minimal generating set (3.199), minimal-supporting set (3.041), linear diophantine
equations (2.399), systems (2.389), strict inequations (2.326)

Figure 5.11: Top five final topics and scores from TextRank example.

Here one can also observe the lemmatization translation that we mention in Section 5.2.2.
In the vocabulary we have generate but the final topic is generating which fits much
better for the topic minimal generating set. This shows that our lemmatization to
original text translation works in adding a better suited form of the words to the final
extracted topics.

final score = 0.71050864 + 0.7015791 + 1.7876948 ≈ 3.199 (5.4)

5.3.3 TF-IDF Weighting

The last algorithm we wanted to implement is not a topic extraction method, but rather
a method that matches existing topics to user profiles based on some similarity measure.
This gives us a way of reusing already recommended topics from our database for other
users. For this approach, we decided to simply use a TF-IDF measure to find the most
similar topics to a user profile, specifically the topics similarity to the titles of relevant
articles for the user. We described the workings of the TF-IDF measure in further detail
in Section 2.1.3.

Algorithm

We base our solution on an algorithm in a paper by Juan Ramos [48] where he uses
TF-IDF to determine the word relevance of documents queries. In his approach he has a
query and a collection of documents and the goal is to find the documents most relevant
to the query. This is done by going though each document and calculate the TF and
IDF scores for each word in the query. This calculation is detailed in Section 2.1.3. The
most relevant documents are then calculated by summarizing the TF-IDF scores for all
words in the query for each document and return the top scoring documents.

In our system we reverse the approach, by replacing the query with the preprocessed
texts from relevant articles of a user and replacing the documents with the pre-extracted
topics from arXivDigest. We then follow the approach detailed above, where we go
through each of the topics and calculate the TF-IDF score for each word in each of the
preprocessed texts. The most relevant topics are then calculated the same way, by taking

Chapter 5 Topic Recommendation

the sum of the TF-IDF score for all words in each of the preprocessed texts. We can
then select the top scoring topics as our recommendations.

Implementation

To match the RAKE and TextRank implementations, the TF-IDF algorithm was also
implemented as its own class. As with the other two algorithms, the TF-IDF uses a list
of titles the users has published as the input parameter. In addition to the users’ titles,
this approach also needs some topics to match to the users. We use topics provided
by arXivDigest as the candidates for recommendations. These can be fetched from the
arXivDigest API’s topics endpoint. The TF-IDF algorithm can be initialized as seen
in Listing 5.8. The algorithm is executed with the run_tfidf function. The final topic
scores can then be fetched using the get_topic_scores function.

To get better word matching between the preprocessed texts and the topics, we also
apply the same preprocessing steps we used on the texts to the topics. This way the
topics would better match words in the texts and we would get a more accurate TF-IDF
score. When calculating the final topic scores, we also divided the full topic score by the
number of words in the topic. This prevented longer topics from automatically getting
a better score and gave a more fair chance to shorter topics. The resulting topics and
scores are then sorted based on their scores and this is the output of the algorithm.

Function for calculating TF-IDF for all topics in all sentences can be seen in Listing 5.11.
This uses the tf function from Listing 5.9 and the idf function from Listing 5.10.

from tf_idf import TFIDF

t = TFIDF (stopwords_file)

t. run_tfidf (text_sentences , topics)

sorted_final_scores = t. get_topic_scores ()

Listing 5.8: Initialize and use TF-IDF

def tf(self , text , topic):
""" Calculates the tf of a topic in a sentence ."""

return text. count (topic) / len(text)

Listing 5.9: Calculate TF

85

def idf(self , topic , sentences):
""" Calculates idf for a topic in the collection of sentences . """

count = 0
for sentence in sentences :

if topic in sentence :
count += 1

return math.log(len(sentences) / (1 + count))

Listing 5.10: Calculate IDF

topic_stats = {}
for topic in topics :

topic_stats [topic] = []
idf = self.idf(topic , sentences)
for sentence in sentences :

tf = self.tf(sentence , topic)
topic_stats [topic]. append (tf * idf)

Listing 5.11: Calculate TF-IDF statistics

Chapter 6

Experimental Evaluation

6.1 Experimental Setup

A goal of this project was to update and launch arXivDigest as a living lab focused
on the recommendation of scientific literature. The data collected through this living
lab will be the the main method of evaluating the performance of the article and topic
recommendation methods we implemented as the other goal of this thesis.

6.1.1 Evaluation Methodology

ArXivDigest is an online evaluation platform which builds on the concept of living labs
discussed in Section 2.4.6. This means that we test our recommendation techniques on
real users on a live platform. In Section 2.4 we discuss several strategies for comparing
systems using online evaluation. For arXivDigest, we settled on using multileaving as
our strategy, as this is a technique specifically designed to handle comparisons of many
experimental recommender systems at once. Both interleaving and multileaving attempts
to solve the problem of user variance by showing results from several systems to each
user [24]. This is a very useful property, as having results from many systems to show to
the users leads to less users seeing results from each system. By reducing the variance
of the measurements it should decrease the needed amount of users for getting reliable
evaluation results.

We collect various user interaction data that we use to gauge the users interest in the
recommendations. This interaction data is discussed in more detail in Section 6.1.5. Each
system gets a score for each multileaving based on the amount of interaction it gets from
the users. This score has different weights depending on the type of interaction. For
example the ’saved’ interaction gives a higher score than the ’clicked’ interaction. This

87

Chapter 6 Experimental Evaluation

Figure 6.1: Plot over new users over time.

score is then used for calculating our performance metric, which we call mean normalized
reward. We discuss how this metric work and the intuition behind it in Section 3.6.1.
With this metric, the number of impressions a system gets and the feedback amount a
system gets are all easily available through the web interface we described in Section 3.6.2.

6.1.2 Users

As arXivDigest is an online evaluation platform, we will not be able to collect any
data without real users. We therefore got help from our supervisor to reach out to his
connections and tell them about the arXivDigest platform. The first group of users to use
the application were some of these connections, which agreed to trying the application
at an earlier stage. This were around ten people who signed up before all of the parts
of the application were up and running. We did not collect any usable data from this
period, however they did help uncover some bugs we needed to fix. Later, when the
application was fully operational, our supervisor advertised arXivDigest on the social
media platform Twitter to get some more people to try the application. We can see this
Twitter advertisement in Figure 6.1 as the date with the highest bar. The ten earlier
users signed up outside of this graphs range.

6.1.3 Articles

As we mentioned in section 3.1, we get our articles from arXiv [1] every weekday. This
includes all of the available information about the articles as well as their authors. In
Figure 6.2 it shows how we get articles Monday to Friday and then a two day break
during the weekend.

89

Figure 6.2: Plot over new articles over time.

Figure 6.3: List of current systems on arXivDigest.

6.1.4 Experimental Recommender Systems

ArXivDigest allows for all our users to create their own experimental recommender
systems, but for the purpose of this thesis we created our own experimental recommender
systems to evaluate. These systems are detailed in Chapter 4 and Chapter 5. We can
see a list of these systems in Figure 6.3. Additional systems will hopefully be added by
other researchers in the future.

6.1.5 User Feedback

To evaluate the different experimental recommender systems, we record many different
types of interactions that users can perform on the recommendations. This include

Chapter 6 Experimental Evaluation

both implicit and explicit actions. We will describe the different interactions we track
in more detail below. This information is used for evaluating systems and for general
usage statistics concerning the arXivDigest platform. We also give users the option of
giving even more detailed feedback through a feedback form and this type of feedback is
described in more detail in Section 3.4.

We track five types of user interaction with article recommendations, these interaction
types are listed below. Clicking and saving the recommendation are the interactions we
score article recommendations by.

• User has seen the recommendation on email.

• User clicked on the recommendation in email.

• User has seen the recommendation on web.

• User clicked on the recommendation in web.

• User saved the recommendation.

We only track three types of interaction for topic recommendations, however one of these
interaction types is further subdivided based on different interaction scenarios. These
interaction types are listed below. At the moment, only topic recommendations accepted
by a user are used for evaluation as this is the only positive interaction relevant for
a system. By extending the performance metric to handle negative scores it could be
possible to give negative weights to actions like rejecting topics in the future.

• User clicked on the recommendation in the suggested topic list.

• User has seen the recommendation in the suggested topic list.

• User interacted with the recommendation, we differentiate this interaction by
several different scenarios:

– Topic was recommended by a system but was rejected by the user.

– Topic was recommended by a system an was accepted by the user.

– Topic was added to the users profile manually by the user.

– Topic was added to the users profile manually by the user but then removed
again.

– Topic was recommended by a system but the user refreshed the suggested
topic list without interacting with it.

– Topic was recommended by a system but the user did not interact with it
within 24 hours.

91

Figure 6.4: Total feedback for article recommendations.

Figure 6.5: Total feedback for topic recommendations.

6.2 Results

On June 10, after the arXivDigest platform and all our experimental recommender
systems had been up and running for over one and a half month, we fetched the results
and feedback that had been created up to this point. At this point in time the arXivDigest
platform had 37 registered users and 288 707 stored articles.

The users has been signing up throughout our testing period and the distribution of
new users over time can be seen in Figure 6.1. Note the spike on May the 13. when we
advertised the application on Twitter.

The articles has been collected each weekday from arXiv [1]. This can be observed in
Figure 6.2 where we see that we collect no new articles on Saturdays and Sundays.

Chapter 6 Experimental Evaluation

Figure 6.6: Evaluation results for the baseline system.

In Figure 6.4 we see the the number of articles that were clicked on the website, clicked
in the email and saved for this period. Although we can clearly see that there has been
some activity on the platform, it is much less than we had hoped for. With the current
amount of gathered feedback it is highly doubtful we will be able to make any meaningful
comparisons of the systems. Because of this, we will not draw any conclusions on system
performance by comparing the mean normalized reward of systems. As with this little
feedback, any difference may be caused by the high variance of the feedback data. In
Figure 6.5 we see the accepted, rejected and refreshed topic recommendations for the
same period. Here we have much the same problem as with article recommendations, as
topics had a bit less interaction than article recommendations.

6.2.1 Article Recommendations

For the article recommender systems, we have one plot for evaluation of their performance
and one plot for the user feedback on the article recommendations. As showing all these
plots in this chapter would take too much space, we decided to only show the evaluation
plot. Look in Appendix A for individual feedback counts for all systems. This is because
with the limited feedback we received, there was too much variation in the data to say
anything meaningful. The one feedback plot that stands out is the author based system,
which has much less feedback than the others. But the author system also has much
fewer impressions, that also contributes to the system having less feedback.

93

Figure 6.7: Evaluation results for the query expansion based system.

Topic-based Baseline System

Figure 6.6 shows the impressions and mean normalized reward for the baseline article
recommender system. We can observe the number of impressions gradually increase over
time. The reason for this is the increasing number of users, which in turn allows the
system to gain more impressions. Confirmation of this can be seen from Figure 6.1. In
this figure we can see the number of users sharply increase on the 13. of May. This
corresponds to week 20 and the sharp increase in impressions around week 20 and week
21 in Figure 6.6. Increased impressions over time can also be seen in the results from the
other article recommender systems later.

Another thing to note here is the high mean normalized reward of the base system in
the early weeks. When we later look at the evaluations of the other article recommender
systems, we can see that they do not start before week 17. This high mean normalized
reward for the base line system in the early weeks is therefore a result of it being the
only article recommender system operational at the time.

We also see that the there is quite a bit variation in the mean normalized reward even
after week 19, when all article recommender systems became active. This is because,
with the low feedback amounts we received, even a few interactions may amount to big
changes in the results. This becomes even clearer in some of the later results.

Query Expansion Based System

Figure 6.7 shows the the impressions and mean normalized reward for the query expansion
based article recommender system. We note the same trend here as we did for the baseline

Chapter 6 Experimental Evaluation

Figure 6.8: Evaluation results for the word2vec based system.

system, with rising impressions over time. However, the sharp increase in impressions
between week 20 and 21 that we observed in the baseline system does not happen here.
The reason for this becomes clear once we understand how the query expansion system
works. This system can not provide recommendations unless the user has some previously
saved articles on arXivDigest. The reason for this being that the system needs some
saved articles to do query expansion on. The sharp increase in impressions is therefore
moved one week to between week 21 and week 22 as the new users have had some time to
save some articles. We can also see what we stated above, that this system does not start
operating before week 17. There is a higher bump in the mean normalized reward for first
two weeks and the reason for this is that there were now only two systems operational.
In week 18, when the mean normalized reward decreased again, another system were
initialized which we will look at next.

Word2Vec Based System

Figure 6.8 shows the the impressions and mean normalized reward for the word2vec
based article recommender system. This system did not start operating before week 18
which is when the mean normalized reward for the base system and query expansion
system decreased to share the reward with this new system as well.

Saved Article Author Based System

Figure 6.9 shows the the impressions and mean normalized reward for the saved article
author based article recommender system. This system also did not start operating

95

Figure 6.9: Evaluation results for the saved article author based system.

before week 18. Note the much lower number of impressions this system has compared to
the others. This comes from the fact that this system recommends articles to users from
the same authors they have previously saved. However, it is not often that an author
publishes several articles right after each other. This system might therefore often not
be able to recommend articles for every user.

Summary of Article Recommender Systems Results

In Table 6.1 we see the number of impressions and mean normalized rewards totals for
week 18-23. We can see two things of interest here, with the the first one being that the
query expansion based system and the author based system have far fewer impressions
than the other two systems. This is actually a problem for the results as it is currently
impossible that all the multileavings have three systems in them, which will affect the
quality of the result. This was an oversight during the system development phase which
we could easily have fixed. One way we could have fixed the problem was by just adding
one extra system that always gives recommendations or making it so that at least one
of these systems always give recommendations to each user. The other thing we notice
is that the mean normalised reward is very low. We would expect a mean normalized
reward of 0.33 if every system got the same amount of interaction and all interleavings
were interacted with. Getting smaller numbers is not a problem in itself, however in our
scenario it is caused by the fact that we got too little feedback, which is a problem.

Chapter 6 Experimental Evaluation

System Impressions Mean Normalized Reward
Topic-based Baseline System 566 0.075

Query Expansion Based System 237 0.092
Word2Vec Based System 543 0.061

Saved Article Author Based System 87 0.043

Table 6.1: Aggregated article recommender system results for week 18-23.

Figure 6.10: Evaluation results for the RAKE based topic system.

6.2.2 Topic Recommendations

For the topic recommender systems, we also have one plot for evaluation of their
performance and one plot for the user feedback on the topic recommendations. We
decided to only show the evaluation plots for these systems for the same reason as with
the article recommender systems, which was because we had limited feedback with much
variation. For individual feedback counts on each system look in Appendix A. However,
we include a plot with the feedback from all topic recommendations in Figure 6.5.

Rake Based Topic System

In Figure 6.10 we can see the impressions and mean normalized reward for the RAKE
based topic recommender system. From this figure we can observe that users are using
the site and generating topic recommendations because the topic recommendations are
generated on demand when users visit the website. We can also note the same increasing
impressions trend as with the article recommender systems.

97

Figure 6.11: Evaluation results for the TextRank based topic system.

TextRank Based Topic System

In Figure 6.11 we can see the impressions and mean normalized reward for the TextRank
based topic recommender system. We can observe that the impressions looks a lot
like the impressions for RAKE in Figure 6.10. This is because the impressions of
the systems are fairly equal thanks to the interleaving process trying to make the
different recommender systems contribute evenly. The interleaving process multileaves
recommendations from three systems at once and all the topic recommender systems we
have created recommends topics to every user each day. Every system should therefore
be present in every interleaving, leading to about the same amount of impressions for all
the systems.

Figure 6.12: Evaluation results for the TF-IDF based topic system.

Chapter 6 Experimental Evaluation

TF-IDF Based Topic System

The the impressions and mean normalized reward for the TF-IDF based topic recom-
mender system can be seen in Figure 6.12. We can see that this starts working one week
after the RAKE and TextRank systems.

Summary of Topic Recommender Systems Results

In Table 6.2 we see the number of impressions and mean normalized rewards totals for
week 18-23. In this table we see that most interleavings actually have enough systems
in contrast to the article recommendation interleavings. The mean normalised rewards
are also low for the topic recommendations. This is caused by the same reason as with
article recommendations which was too little user feedback.

System Impressions Mean Normalized Reward
Rake Based Topic System 92 0.039

TextRank Based Topic System 92 0.088
TF-IDF Based Topic System 88 0.140

Table 6.2: Aggregated article recommender system results for week 18-23.

Chapter 7

Conclusion

We had three main objectives when starting our work on this thesis. The first objective
was to update and maintain the arXivDigest platform so that we could use it for online
evaluation of experimental recommender systems. The second objective we had was
to explore some different methods information retrieval techniques, that we could then
implement as experimental scientific literature recommender systems. Our last objective
was to explore some techniques for topic extraction and similarity matching, that we
could also then implement as experimental topic recommender systems.

7.1 Infrastructure Development

For the development of the arXivDigest infrastructure, we have completed all of the
objectives we set in Section 1.2.1. The web page and the API has both been extended
to support the new features and it is live at https://arxivdigest.org/. We have
collected a small number of users over a period of about one and a half month, and
the platform seems to be working as intended. Basic tasks like signing up, editing ones
user profile, creating systems, etc. seems to be working and stable. Articles and topics
are interleaved and shown to users as intended both through the web page and emails,
and user interactions with the shown recommendations are tracked. We are also able to
see usage and evaluation statistics both through the admin interface and system owner
interface.

99

https://arxivdigest.org/

Chapter 7 Conclusion

7.2 Article Recommendation

We created four article recommender systems that have all been up and running alongside
the arXivDigest platform for about one and a half month. The systems provides users
with recommendations each weekday and as we can tell from Section 6.2.1, there has been
at least some user interaction with the article recommendations from each system. We
feel like we succeeded in exploring several different solutions for recommending articles,
where all seem to produce at least somewhat relevant results except for maybe the author
based system. However, was expected from the start to perform the weakest because
of its simplicity. Unfortunately, due to the nature of online evaluation, we were unable
to do any more interesting comparisons between the systems because of too little user
interaction.

7.3 Topic Extraction

We looked into two methods for topic extraction and one method for topic similar-
ity matching, which were all implemented as topic recommender systems. The topic
recommender systems have all been running for about the same period as the article
recommender systems, providing recommendations of topics every weekday. We can see in
Section 6.2.2 that there has been some user interaction with the topic recommendations
and that the topic recommender systems provide new topics every day. In the end
we feel we explored some different and interesting methods for topic recommendations.
Unfortunately, we have the same problem with user interaction towards topic recommen-
dations as towards article recommendations, which means we are also unable to draw
any meaningful conclusions about the performance of these systems as well.

7.4 Inaccuracies and Improvements

The original plan for this project was to have two testing periods after we finished
the infrastructure development parts of the project. First a month long test period
where we could test the first implementation of our recommendation algorithms and
collect feedback on them. Then we could make changes to these recommender systems
accordingly before another month test period. After this we could then collect the final
feedback and compare this with the earlier feedback to check if we had improvements.
However this did not go as planned. There were a lot more to do on the infrastructure
development part than we initially thought, so the arXivDigest application was not
ready for the first test period we had planned. Therefore, we had to cancel this first test

101

period and we were left with only a month long test period at the end of the project
instead. This lead to fewer users than we anticipated and a shorter overall test period
to collect feedback on our recommendations. We could also not make changes to our
recommendation systems based on the feedback and results since this was towards the
end of the project. The results and the recommender systems would positively benefit
from a longer test period, and this is something to consider for the future.

Our results might also be affected by the small number of users that we got, and the
users interacted with recommendations less frequently than expected. This meant much
less interaction data than anticipated, which again makes the results susceptible to user
variations in the feedback we get. Variation might come from irrelevant user behaviour
that occur from very active users or users that might try to skew the results on purpose.
The way we could improve this is by collecting more data over a larger period of time or
by getting more users on our application.

Another thing that affects the results negatively is that the multileaving is dependent
on having enough systems to interleave to create balanced and unbiased multileavings.
Having few systems, and systems that might not always be able to give recommendations,
may lead to multileavings containing too few systems. This again leads to a higher
expected reward for that multileaving. It therefore makes it so you cannot directly
compare the performance metric between these systems. Having enough systems providing
recommendations should fix this problem and this is something that we hope will be
improved in the future by researchers adding more systems to the application.

7.5 Future Directions

We believe the arXivDigest platform has a lot of potential. One part of realizing this
potential is just to keep the application up and running to collect more users and scientific
literature. Having the application up and running also brings the possibility of adding
recommender systems from external research groups which could further improve the user
experience by giving even better recommendations. We acknowledge that for realizing
this potential, there are a number of improvements that should be made to improve user
retention rate and generally to just make the platform better to use both for users and
experimental system developers.

Even though we made some changes to the design of the website to make it look a bit
better, this is something that can be further improved upon. The design of the web
pages are still a bit dull and grey, so creating a more visually pleasing design for the
website is something that should be considered.

Chapter 7 Conclusion

We also improved the evaluation of the experimental recommender systems by adding
evaluation plots to the web pages. These plots contain the basic statistics and evaluation
results of the experimental recommender systems, but nothing more. However, as we have
discussed, the arXivDigest application stores many different types of feedback. There are
probably possibilities for other more advanced statistical analysis to be performed on this
feedback data for more detailed evaluation of the experimental recommender systems.
This is something that could be explored further in the future when the arXivDigest
application has had the chance to collect even more user feedback.

Due to the modular nature of the platform it would also be possible to test out different
methods of interleaving, multileaving or A/B testing in the future, to check if this provide
better rankings than the multileaving we chose. As we store the users’ interaction data,
it is also possible to recalculate the performance scores for systems while experimenting
with different performance metrics to find out which works best for the platform.

Lastly, a thing that is missing from arXivDigest, is a page where admins can view explicit
user created feedback from the feedback forms. At the current time we need to access
the database to read the explicit user feedback that has been submitted. In the future, a
page showing this feedback should be created for easier access.

Appendix A

Additional Plots and Figures

Figure A.1: Feedback for the baseline system.

Figure A.2: Feedback for the query expansion based system.

103

Appendix A Additional Plots and Figures

Figure A.3: Feedback for the word2vec based system.

Figure A.4: Feedback for the saved article author based system.

Figure A.5: Feedback for the RAKE based topic system.

105

Figure A.6: Feedback for the rake based TextRank system.

Figure A.7: Feedback for the TF-IDF based topic system.

Appendix B

Attachments

This appendix contains all the code created during this thesis.

• The implementation of the arXivDigest platform.

– Embedded:

– Repository: https://github.com/iai-group/arXivDigest

• The implementation of the recommender systems:

– Embedded:

107

arxivdigest/api/__init__.py

arxivdigest/core/interleave/__init__.py

arxivdigest/core/mail/__init__.py

arxivdigest/core/scraper/__init__.py

arxivdigest/frontend/database/__init__.py

arxivdigest/frontend/forms/__init__.py

arxivdigest/frontend/models/__init__.py

arxivdigest/frontend/services/__init__.py

arxivdigest/frontend/views/__init__.py

arxivdigest/frontend/__init__.py

arxivdigest/__init__.py

.gitignore

.idea
.webassets-cache
_server/
__pycache__
/arXivDigest.egg-info/
/arxivdigest/frontend/static/generated/
/arxivdigest/frontend/static/webassets-external/

arxivdigest/api/app.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from datetime import datetime

from flask import Flask
from flask import g
from flask import jsonify
from flask import make_response
from flask import request

import arxivdigest.api.database as db
import arxivdigest.api.validator as validation
from arxivdigest.api.utils import CustomJSONEncoder
from arxivdigest.api.utils import getUserlist
from arxivdigest.api.utils import validateApiKey
from arxivdigest.core.config import config_api

from arxivdigest.core.config import CONSTANTS

app = Flask(__name__)

app.config.update(**config_api)
app.json_encoder = CustomJSONEncoder

@app.route('/user_feedback/articles', methods=['GET'])
@validateApiKey
@getUserlist
def user_feedback_articles(users):
 """API-endpoint for requesting user_feedback for articles, 'user_id' must be
 one or more ids separated by comma."""
 return jsonify(db.get_user_feedback_articles(users))

@app.route('/user_feedback/topics', methods=['GET'])
@validateApiKey
@getUserlist
def user_feedback_topics(users):
 """API-endpoint for requesting user feedback for topics, 'user_id' must be
 one or more ids separated by comma."""
 return jsonify(db.get_user_feedback_topics(users))

@app.route('/users', methods=['GET'])
@validateApiKey
def users():
 """API-endpoint for fetching userIDs, ids will be returned in batches
 starting from 'fromID'.
 If 'fromID' is unspecified 0 will be used as default."""
 try:
 fromID = int(request.args.get('from', 0))
 if fromID < 0:
 return make_response(jsonify({'error': '"from" must be positive'}), 400)
 except Exception:
 err = '"from" must be an integer'
 return make_response(jsonify({'error': err}), 400)

 users = db.getUserIDs(fromID, app.config['max_userid_request'])
 return make_response(jsonify({'users': users}), 200)

@app.route('/user_info', methods=['GET'])
@validateApiKey
@getUserlist
def user_info(users):
 """API-endpoint for requesting userdata, 'user_id' must be one or more ids
 separated by comma."""
 return make_response(jsonify({'user_info': db.getUsers(users)}), 200)

@app.route('/articles', methods=['GET'])
@validateApiKey
def articles():
 """API-endpoint for requesting articleIDs of articles from the last 7
 days."""
 return make_response(jsonify({
 'articles': db.get_article_ids_past_seven_days()}), 200)

@app.route('/article_data', methods=['GET'])
@validateApiKey
def article_data():
 """API-endpoint for requesting article_data, 'article_id' must be one or
 more ids separated by comma."""
 try:
 ids = request.args.get('article_id').split(',')
 except Exception:
 return make_response(jsonify({'error': 'No IDs supplied.'}, 400))
 if (len(ids) > app.config['max_articledata_request']):
 err = 'You cannot request more than %s articles at a time.' % app.config[
 'max_articledata_request']
 return make_response(jsonify({'error': err}), 400)

 articles = db.checkArticlesExists(ids)
 if len(articles) > 0:
 err = 'Could not find articles with ids: %s.' % ', '.join(articles)
 return make_response(jsonify({'error': err}), 400)

 articles = db.get_article_data(ids)
 return make_response(jsonify({'articles': articles}), 200)

@app.route('/topics', methods=['GET'])
@validateApiKey
def topics():
 """API-endpoint for requesting a list of all topics currently
 stored in arXivDigest."""
 topics = db.get_topics()
 return make_response(jsonify({'topics': topics}), 200)

@app.route('/recommendations/articles', methods=['POST'])
@validateApiKey
@validation.validate_json(validation.article_recommendation)
def make_article_recommendations():
 """API-endpoint for inserting article recommendations"""
 data = request.get_json().get('recommendations')
 now = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')
 data = [(k, v['article_id'], g.sysID, v['explanation'], v['score'], now)
 for k, v in data.items() for v in v]

 db.insert_article_recommendations(data)
 return make_response(jsonify({'success': True}), 200)

@app.route('/recommendations/topics', methods=['POST'])
@validateApiKey
@validation.validate_json(validation.topic_recommendation)
def make_topic_recommendations():
 """API-endpoint for inserting topic recommendations"""
 json = request.get_json().get('recommendations')

 now = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')
 data = []
 for user, recommendations in json.items():
 for recommendation in recommendations:
 data.append({'user_id': user,
 'topic': recommendation['topic'],
 'system_id': g.sysID,
 'date': now,
 'score': recommendation['score']})

 db.insert_topic_recommendations(data)
 return make_response(jsonify({'success': True}), 200)

@app.route('/recommendations/articles', methods=['GET'])
@validateApiKey
@getUserlist
def get_article_recommendations(users):
 """API-endpoint for requesting user-recommendations of articles,
 "user_id" must be one or more ids separated by comma."""
 users = db.get_article_recommendations(users)
 return make_response(jsonify({'users': users}), 200)

@app.route('/recommendations/topics', methods=['GET'])
@validateApiKey
@getUserlist
def get_topic_recommendations(users):
 """API-endpoint for requesting user-recommendations of topics,
 "user_id" must be one or more ids separated by comma."""
 topic_recommendations = db.get_topic_recommendations(users)
 return make_response(jsonify({'users': topic_recommendations}), 200)

@app.route('/', methods=['GET'])
def info():
 """Info response."""
 settings = {
 'user_ids_per_request': config_api['max_userid_request'],
 'max_userinfo_request': config_api['max_userinfo_request'],
 'max_articledata_request': config_api['max_articledata_request'],
 'max_users_per_recommendation': config_api[
 'max_users_per_recommendation'],
 'max_recommendations_per_user': config_api[
 'max_recommendations_per_user'],
 'max_explanation_len': config_api['max_explanation_len'],
 'max_topic_len': CONSTANTS.max_topic_length
 }

 return make_response(jsonify({'info': 'This is the arXivDigest API',
 'settings': settings}), 200)

@app.teardown_appcontext
def teardownDb(exception):
 db = getattr(g, '_database', None)
 if db is not None:
 db.close()

if __name__ == '__main__':
 app.run(port=config_api.get('dev_port'), debug=True)

arxivdigest/api/database.py

-*- coding: utf-8 -*-
from contextlib import closing

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from collections import defaultdict

import mysql.connector
from flask import g

from arxivdigest.core.config import config_sql

"""This module implements methods which the api uses to interface with the database"""

def getDb():
 db = getattr(g, '_database', None)
 if db is None:
 db = g._database = mysql.connector.connect(**config_sql)
 return db

def getUserIDs(fromID, max):
 """This method returns the total number of users,
 a list of user ids starting at 'fromID' until 'fromID' + 'max',
 and at which id the results starts."""
 cur = getDb().cursor()

 cur.execute('SELECT COUNT(*) FROM users WHERE NOT inactive')
 sql = '''SELECT user_id FROM users WHERE NOT inactive
 ORDER BY user_id ASC LIMIT %s, %s'''
 count = cur.fetchone()[0]
 cur.execute(sql, (fromID, max))
 userList = cur.fetchall()
 try:
 start = userList[0][1]
 except Exception:
 start = fromID
 users = {
 'num': count,
 'start': start,
 'user_ids': [x[0] for x in userList]
 }
 cur.close()
 return users

def getUsers(ids):
 """Takes in a list of userIDs and returns a nested dictionary
 of data about the users requested."""
 cur = getDb().cursor(dictionary=True)
 format_strings = ','.join(['%s'] * len(ids))
 sql = '''SELECT user_id, firstname as first_name, lastname as last_name,
 registered, organization, dblp_profile, google_scholar_profile,
 semantic_scholar_profile, personal_website
 FROM users WHERE user_id IN (%s)
 AND NOT inactive''' % format_strings
 cur.execute(sql, ids)

 users = {}
 for user in cur.fetchall():
 user['categories'] = []
 user['topics'] = []
 users[user.pop('user_id')] = user

 sql = 'SELECT * FROM user_categories WHERE user_id IN (%s)' % format_strings

 cur.execute(sql, ids)
 for category in cur.fetchall():
 users[category['user_id']]['categories'].append(
 category['category_id'])

 sql = '''SELECT ut.user_id, t.topic
 FROM user_topics ut NATURAL JOIN topics t WHERE user_id IN (%s)
 AND ut.state IN ('USER_ADDED', 'SYSTEM_RECOMMENDED_ACCEPTED')
 AND NOT t.filtered''' % format_strings

 cur.execute(sql, ids)
 for topic in cur.fetchall():
 users[topic.pop('user_id')]['topics'].append(topic['topic'])

 cur.close()
 return users

def get_article_ids_past_seven_days():
 """Returns a list of all article ids added the past 7 days."""
 with closing(getDb().cursor()) as cur:
 sql = '''SELECT article_id FROM articles
 WHERE datestamp > date_sub(now(), INTERVAL 1 WEEK)
 ORDER BY article_id ASC'''
 cur.execute(sql)
 return [x[0] for x in cur.fetchall()]

def checkArticlesExists(ids):
 """Takes in a list of articleIDs and returns a list of the IDs that did not
 match any articles in the database."""
 cur = getDb().cursor()
 format_strings = ','.join(['%s'] * len(ids))

 sql = "SELECT article_id FROM articles WHERE article_id IN (%s)" % format_strings
 cur.execute(sql, ids)
 articles = [x[0] for x in cur.fetchall()]

 cur.close()
 return list(set(ids).difference(articles))

def checkUsersExists(ids):
 """Takes in a list of userIDs and returns a list of the IDs that did not match any users
 in the database."""
 cur = getDb().cursor()
 format_strings = ','.join(['%s'] * len(ids))

 sql = '''SELECT user_id FROM users WHERE user_id IN (%s)
 AND NOT inactive''' % format_strings
 cur.execute(sql, ids)
 users = [str(x[0]) for x in cur.fetchall()]

 cur.close()
 return list(set(ids).difference(users))

def get_article_data(ids):
 """Takes in a list of articleIDs and returns a nested dictionary
 of data about the articles requested."""
 cur = getDb().cursor()
 format_strings = ','.join(['%s'] * len(ids))

 sql = "SELECT * FROM articles WHERE article_id IN (%s)" % format_strings
 cur.execute(sql, ids)
 articleList = cur.fetchall()
 articles = {}
 for article_data in articleList:
 articles[article_data[0]] = {
 'title': article_data[1],
 'abstract': article_data[2],
 'doi': article_data[3],
 'comments': article_data[4],
 'license': article_data[5],
 'journal': article_data[6],
 'date': article_data[7],
 'authors': [],
 'categories': [],
 }
 sql = "SELECT * FROM article_categories WHERE article_id IN (%s)" % format_strings
 cur.execute(sql, ids)
 articleCategories = cur.fetchall()

 for c in articleCategories:
 articles[c[0]]['categories'].append(c[1])
 sql = "SELECT * FROM article_authors WHERE article_id IN (%s)" % format_strings
 cur.execute(sql, ids)
 authors = cur.fetchall()
 authorlist = {x[0]: [] for x in authors}
 format_strings = ','.join(['%s'] * len(authorlist))
 sql = "SELECT * FROM author_affiliations WHERE author_id IN (%s)" % format_strings
 cur.execute(sql, list(authorlist.keys()))
 affiliations = cur.fetchall()

 for a in affiliations:
 authorlist[a[0]].append(a[1])

 for a in authors:
 articles[a[1]]['authors'].append(
 {'firstname': a[2],
 'lastname': a[3],
 'affiliations': authorlist[a[0]]})

 cur.close()
 return articles

def get_topics():
 cur = getDb().cursor()
 sql = "SELECT topic FROM topics"
 cur.execute(sql)
 topics = [topic[0] for topic in cur.fetchall()]
 return topics

def insert_article_recommendations(recommendations):
 """Takes in a list of tuples containg (userID,articleID,systemID,score,timestamp),
 and inserts them into the system_recomendation table, replacing duplicate primary keys."""
 conn = getDb()
 cur = conn.cursor()

 sql = '''REPLACE INTO article_recommendations
 (user_id, article_id, system_id, explanation, score, recommendation_date)
 VALUES (%s, %s, %s, %s, %s, %s)'''
 cur.executemany(sql, recommendations)
 cur.close()
 conn.commit()

 return True

def insert_topic_recommendations(recommendations):
 """Takes in a list of dictionaries containing the following keys:
 user_id, topic, system_id, date, score

 Each dictionary is inserted into the topic_recommendations table, updating
 score and date on duplicate primary keys."""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 topics = [(r['topic'],) for r in recommendations]
 cur.executemany('INSERT IGNORE INTO topics(topic) VALUE(%s)', topics)

 sql = '''INSERT INTO topic_recommendations(
 user_id, topic_id, system_id, datestamp, system_score)
 VALUES(%(user_id)s,
 (SELECT topic_id FROM topics WHERE topic = %(topic)s),
 %(system_id)s, %(date)s, %(score)s)
 ON DUPLICATE KEY UPDATE system_score = values(system_score),
 datestamp = values(datestamp);'''
 cur.executemany(sql, recommendations)
 conn.commit()

def getSystem(apiKey):
 """Returns the systemID and systemname for the given apikey, if the key is invalid
 it returns none."""
 cur = getDb().cursor(dictionary=True)
 cur.execute("SELECT * FROM systems WHERE api_key=%s", (apiKey,))
 result = cur.fetchone()
 cur.close()
 return result

def get_article_recommendations(ids):
 """Returns recomendationdata for the requested userIDs in this format: {userid:{articleID:[data,data,...]}}"""
 cur = getDb().cursor()
 format_strings = ','.join(['%s'] * len(ids))

 sql = "SELECT * FROM article_recommendations WHERE user_id IN (%s)" % format_strings
 cur.execute(sql, ids)
 users = defaultdict(lambda: defaultdict(list))
 for u in cur.fetchall():
 val = {'system_id': u[2], 'score': u[3], 'date': u[4]}
 users[u[0]][u[1]].append(val)

 cur.close()
 return users

def get_topic_recommendations(ids):
 """Returns topic recommendation data for the requested userIDs in this
 format: {userid: { topic: [{'system_id': x, 'score': x, 'date': x],...}}"""
 with closing(getDb().cursor(dictionary=True)) as cur:
 sql = """SELECT tr.user_id, tr.system_id, tr.datestamp as date,
 tr.system_score as score, t.topic
 FROM topic_recommendations tr NATURAL JOIN topics t
 WHERE user_id IN (%s)""" % ','.join(['%s'] * len(ids))

 cur.execute(sql, ids)
 users = {int(u_id): defaultdict(list) for u_id in ids}
 for u in cur.fetchall():
 users[u.pop('user_id')][u.pop('topic')].append(u)

 return users

def get_user_feedback_articles(ids):
 """Returns article feedback data for the requested userIDs in this format:
 {userid:
 date: [
 {articleID: {
 'seen_email': date or None,
 'seen_web': date or None,
 'clicked_email': date or None,
 'clicked_web': date or None,
 'saved': date or None,
 }, ...
 }, ...
], ...
 }
 """
 cur = getDb().cursor(dictionary=True)
 format_strings = ','.join(['%s'] * len(ids))

 sql = "SELECT user_id, article_id, DATE(recommendation_date) AS date, " \
 "seen_email, seen_web, clicked_email, clicked_web, saved, score " \
 "FROM article_feedback WHERE user_id IN (%s) ORDER BY score DESC" % format_strings
 cur.execute(sql, ids)
 result = defaultdict(lambda: defaultdict(list))
 for feedback in cur.fetchall():
 user = feedback['user_id']
 date = feedback['date'].strftime('%Y-%m-%d')
 article = feedback['article_id']

 article_feedback = {
 'seen_email': feedback['seen_email'],
 'seen_web': feedback['seen_web'],
 'clicked_email': feedback['clicked_email'],
 'clicked_web': feedback['clicked_web'],
 'saved': feedback['saved']
 }

 result[user][date].append({article: article_feedback})
 return {'user_feedback': result}

def get_user_feedback_topics(ids):
 """Returns topic feedback data for the requested userIDs in this format:
 {userid: {
 topic: {
 'seen': date, None or not existing,
 'clicked': date, None or not existing,
 'state': varchar, None or not existing,
 'recommendation_date': date, None or not existing,
 'interaction_date': date, None or not existing
 }, ...
 }, ...
 }
 """
 with closing(getDb().cursor(dictionary=True)) as cur:
 tr_sql = '''SELECT tr.user_id, t.topic, tr.datestamp
 as recommendation_date,
 tr.seen, tr.clicked, tr.interleaving_order
 FROM topic_recommendations tr INNER JOIN topics t
 ON t.topic_id = tr.topic_id
 WHERE tr.user_id in ({})
 AND interleaving_order IS NOT null
 ORDER BY tr.interleaving_order
 DESC'''.format(','.join(['%s'] * len(ids)))

 cur.execute(tr_sql, ids)
 feedback = {int(u_id): defaultdict(dict) for u_id in ids}
 for u in cur.fetchall():
 feedback[u.pop('user_id')][u.pop('topic')].update(u)

 ut_sql = '''select ut.user_id, t.topic, ut.interaction_time
 as interaction_date, ut.state from user_topics ut
 inner join topics t on
 t.topic_id = ut.topic_id where ut.user_id in ({})
 order by ut.interaction_time
 desc'''.format(','.join(['%s'] * len(ids)))

 cur.execute(ut_sql, ids)
 for u in cur.fetchall():
 feedback[u.pop('user_id')][u.pop('topic')].update(u)

 return {'user_feedback': feedback}

arxivdigest/api/README.md

arXivDigest API

The arXivDigest API provides a set of endpoints for experimental recommender systems to get access to articles and user profiles, and to upload personalized recommendations for online evaluation.

Systems must have an active API key to access these endpoints.

Endpoints

* [General](#general)
 + [Index](#index)
* [User data](#user-data)
 + [List of users](#list-of-users)
 + [User information](#user-information)
 + [User feedback articles](#user-feedback-articles)
 + [User feedback topics](#user-feedback-topics)
* [Article data](#article-data)
 + [List of articles](#list-of-articles)
 + [Article data](#article-data-1)
* [Recommendations](#recommendations)
 + [Insert article recommendations](#insert-article-recommendations)
 + [Article recommendation data](#article-recommendation-data)
 + [Insert topic recommendations](#insert-topic-recommendations)
 + [Topic recommendation data](#topic-recommendation-data)

General

Index

`GET /`

Endpoint that returns a welcome message and settings that should be used when interacting with the API.

Fields returned:
 - `info`: Welcome message.
 - `settings`: Settings that should be used when interacting with the API.
 - `user_ids_per_request`: How many users ids that are sent each request.
 - `max_userinfo_request`: How many users one can request info for at once.
 - `max_articledata_request`: How many articles one can request data for at once.
 - `max_users_per_recommendation`: How many users one can send recommendations for at once.
 - `max_recommendations_per_user`: How many recommendations that can be submitted per user at once.
 - `max_explanation_len`: The maximum length of explanations.

Example:

 - Request: `GET /`

 - Response:
    ```
    {
    "info": "This is the arXivDigest API"
    "settings": {
        "user_ids_per_request": 1000,
        "max_userinfo_request": 100,
        "max_articledata_request": 100,
        "max_users_per_recommendation": 100,
        "max_recommendations_per_user": 10,
        "max_explanation_len": 400
        }
    }
    ```

User data

List of users

`GET /users`

Returns the list of user IDs, in batches of up to 10000, this limit can be [configured](#configurations)..

Parameters:
 - `from` start index of listing (default: 0)

Fields returned:
 - `num`: total number of users
 - `start`: start index of listing
 - `user_ids`: list of user IDs
 - `error`: if something went wrong

Example:

 - Request: `GET /users?from=1000`
 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```
    {
      "users": {
        "num": 1250,
        "start": 1000,
        "user_ids": [
          1001, 1002, 1004, 1005, 1006, ...
        ]
      }
    }
    ```

User information

`GET /user_info`

Returns the details of a given user (or list of users). Limited to 100 per request by default, this values can be [configured](#configurations).

Parameters:
 - `user_id` user ID, or a list of up to 100 user IDs, separated by a comma

Fields returned for each user:
 - `first_name`: first name
 - `last_name`: last name
 - `registered`: date of sign-up
 - `dblp_profile`: DBLP profile
 - `google_scholar_profile`: Google Scholar profile
 - `semantic_scholar_profile`: Semantic Scholar profile
 - `personal_website`: personal/organizational website
 - `topics`: list of topics user is interested in
 - `categories` : list of arXiv categories user is interested in
 - `organization`: the organization the user registered with

Other fields:
 - `error`: if something went wrong

Example:

 - Request: `GET /user_info?user_id=1,7`
 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```
    {
      "user_info": {
        "1": {
          "first_name": "John",
          "last_name": "Smith",
          "registered": "2020-01-17 17:06:23",
          "organization": "arXivDigest",
          "dblp_profile": "dblp.org/...",
          "google_scholar_profile": "scholar.google.com/...",
          "semantic_scholar_profile": "semanticscholar.org/author/..",
          "personal_website": "www.example.com",
          "categories": ["math","cs","cs.AI","astro-ph.CO"],
          "topics": [ "information retrieval",
                      "retrieval models",...
                    ]

            },...
          ]     
        }
        "7": {
          ...
        }
      }
    }
    ```

User feedback articles

`GET /user_feedback/articles`

Returns the feedback on article recommendations recorded for a given user (or list of users).

Parameters:
 - `user_id` user ID, or a list of up to 100 user IDs, separated by a comma

Fields are returned in a JSON in the format, the article IDs are sorted descending by score:
```
    {
      "user_feedback": {
        user_id: {
           date: [
            {article_id: feedback},
            {article_id: feedback},
           ]
        }
      }
    }
```
Fields returned for each user:
 - `user_id`: ID of the user
 - `date`: Date the recommendation was originally given to the user
 - `article_id`: ID of the article
 - `feedback`: is the feedback stored in a dictionary of feedbak_type: datetime
 - "seen_email": datetime of when article was seen on email
 - "seen_web": datetime of when article was seen on web
 - "clicked_email":datetime of when article was clicked in email
 - "clicked_web": datetime of when article was clicked on web
 - "saved": datetime of when article was saved

Other fields:
 - `error`: if something went wrong

Example feedback:

```
  "seen_email": null,
  "seen_web": 'Mon, 16 Mar 2020 00:00:00 GMT',
  "clicked_email": null,
  "clicked_web": 'Mon, 16 Mar 2020 00:00:00 GMT',
  "saved": null
````

Example request:

 - Request: `GET /user_feedback/articles?user_id=1,7`
 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```
    {
      "user_feedback": {
        "1": {
          "2020-03-17": [
          {"article-123":
            {
              "seen_email": null,
              "seen_web": '2020-03-17 17:13:53',
              "clicked_email": null,
              "clicked_web": '2020-03-17 17:13:53',
              "saved": null
            }
          },
          {"article-012": 1
            {
              "seen_email": null,
              "seen_web": '2020-03-17 17:13:53',
              "clicked_email": null,
              "clicked_web": '',
              "saved": null
            }
          },
          ...
           ]
        }
        "7": {
          ...
        }
      }
    }
    ```

User feedback topics

`GET /user_feedback/topics`

Returns the feedback on topic recommendations recorded for a given user (or list of users).

Parameters:
 - `user_id` user ID, or a list of up to 100 user IDs, separated by a comma

Fields are returned in a JSON in the format, the topics are sorted descending by score:
```
    {
      "user_feedback": {
        user_id: {
          topic: feedback_dictionary,
          topic: feedback_dictionary,
        }
      }
    }
```
Fields returned for each user:
 - `user_id`: ID of the user
 - `topic`: topic that was recommended
 - "seen": datetime of when article was seen or null if not seen
 - "clicked": datetime of when topic was clicked or null if not clicked
 - "state": USER_ADDED, USER_REJECTED, EXPIRED, REFRESHED, SYSTEM_RECOMMENDED_ACCEPTED, SYSTEM_RECOMMENDED_REJECTED
 - "recommendation_date": datetime of when the topic was recommended
 - "interaction_date": datetime of when the user last ineracted with the topic
 - "interleaving_order": the score that recommendation got compared to recommendations from other systems in that recommendation batch. Values depend on batch size, default is from 1 to 10
These are the possible fields that can be returned for each topic, but depending on the state of each topic, the field might not exist. For example a topic that the user adds manually does not have a recommendation_date field. Look to the example request further down.

Explanations of different states:
 - USER_ADDED: The user added the topic themselves by writing it.
 - USER_REJECTED: The user removed a topic from their profile that was previously USER_ADDED.
 - EXPIRED: The topic was recommended, but the user did not interact with it within 24 hours of seeing this recommendation.
 - REFRESHED: The topic was recommended, but the user refreshed the topic suggestion list without interacting with it.
 - SYSTEM_RECOMMENDED_ACCEPTED: The topic was recommended and the user accepted it from the list.
 - SYSTEM_RECOMMENDED_REJECTED: The topic was recommended an the user rejected it from the list or manually removed it after first accepting it.

Other fields:
 - `error`: if something went wrong

Example request:

 - Request: `GET /user_feedback/topics?user_id=1,2,3`
 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```json
    {
      "user_feedback": {
        "1": {
          {
            "higher education and career education": {
              "clicked": "2020-03-17 18:12:45",
              "seen": "2020-03-17 17:13:53",
              "state": "SYSTEM_RECOMMENDED_ACCEPTED",
              "ineraction_time": "2020-03-17 18:12:45",
              "recommendation_time": "2020-03-15 11:16:53"
              "interleaving_order": 8
            }
          },
          {
            "transportation planning": {
              "clicked": null,
              "seen": "2020-03-17 17:13:53",
              "state": "REFRESHED",
              "recommendation_time": "2020-03-15 11:16:53"
              "interleaving_order": 4
            }
          }
        },
        "2": {
          {
            "transportation planning": {
              "interaction_date": "2020-03-23 22:27:43",
              "state": "USER_ADDED"
            }
          }
        },
        "3": {}
      }
    }
    ```

Article data

List of articles

`GET /articles`

Returns a list of articles, which are candidates for recommendation, from the previous week.

Data returned:
 - `article_ids`: list of article ids:
 - `error`: if something went wrong

Example:

 - Request: `GET /articles`
 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```
    {
      "articles": [
          1111.2174, 1302.5663, 1407.6169, ...
        ]
    }
    ```

Article data

`GET /article_data`

Returns data for a given article (or list of articles). This is by default limited to 100 articles per request, but can be [configured](#configurations).

Parameters:

- `article_id` article ID, or a list of up to 100 article IDs, separated by a comma

Fields returned for each article:

 - `title`: title of article
 - `abstract`: description of article content
 - `license`: license
 - `date`: date article was added to arXivDigest
 - `doi`: the doi of the article (if available)
 - `comments`: arXiv comments on article (if available)
 - `journal-ref` : journal references (if available)
 - `authors`: list of authors
 - `firstname`: firstname of author (if available)
 - `keyname` :keyname of author (if available)
 - `affiliations`: for each author a list of their affiliations
 - `categories` : list of categories

Other fields:
 - `error`: if something went wrong

Example:

 - Request: `GET /article_data?article_id=123`
 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```
    {
      "articles": {
        "123": {
          "title": "XXX",
          "abstract": "XXX",
          "doi": "XXX",
          "comments": "XXX",
          "license": "XXX",
          "journal-ref": "XXX",
          "date":"2020-03-17",
          "authors":[
            {"firstname":"XXX",
             "keyname":"XXX",
             "affiliations":["XXX","XXX"]
            },
             {"firstname":"XXX",
             "keyname":"XXX",
             "affiliations":["XXX","XXX"]
            }
          ],
          "categories": ["cs.AI","astro-ph.CO"]
        }
      }
    }
    ```


Recommendations

Insert article recommendations

`POST /recommendations/articles`

Insert recommendations for articles to users, with a score describing how well it matches the users interests. Sending the same recommendation multiple times will update the score and explanations to the last received values. This allows reordering of already submitted recommendations, but assumes comparable scores across submissions. See the [recommendation submission guide](/../../#howto-for-experimental-recommender-systems) for more information on how to submit recommendations.

The maximal number of users that can be given recommendations in a single request, maximal number of recommendations per user and maximal length of explanations can be [configured](#configurations).

Header:
- `api-key` used to identify which system the recommendations come from

JSON:
 - `user_id` id of the user
 - `article_id` id of the article
 - `explanation` explanation for recommending this article
 - `score` score of the recommendation

Data returned:
 - `error`: if something went wrong
 - `article_ids`: list of article ids:

Example:
 - Request: `POST /recommendations/articles`

 - Header:
    ```
    {"Content-Type": "application/json",
     "api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - JSON:
    ```
    {
        "recommendations": {user_id: [
            {"article_id": "1107.2529", "score": 2, "explanation" : "reason"},
            {"article_id": "1308.1196", "score": 3, "explanation" : "reason"},
            {"article_id": "1312.5699", "score": 2, "explanation" : "reason"}
        ],
        user_id: [
            {"article_id": "1308.1196", "score": 10, "explanation" : "reason"},
            {"article_id": "1506.07383", "score": 6, "explanation" : "reason"}
        ]
      }
    }
      ```
 - Response:
    ```
    {
      "success": True
      "error" : "Some error"
    }
    ```
Article recommendation data

`GET /recommendations/articles`

Returns article recommendation data for a given user (or list of users). By default it is limited to 100 users per request, but this can be [configured](#configurations).

Parameters:

- `user_id` User ID, or a list of up to 100 user IDs, separated by a comma

Fields returned for each user:

- `article_id`: id of article
- `score`:score of article for this user
- `date`: date this recommendation was given
- `system_id`: id of the system which gave this recommendation

Other fields:
 - `error`: if something went wrong

Example:

 - Request: `GET /recommendations/articles?user_id=123`

 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```
    {
      "users": {
        "123": {
          "1151.1232":[
          {"system_id":"XXX",
          "score": "XXX",
          "date": "XXX"},
          {"system_id":"XXX",
          "score": "XXX",
          "date": "XXX"}
          ]
        }
      }
    }
    ```

Insert topic recommendations

`POST /recommendations/topics`

Insert recommendations for topics to users, with a score describing how well it matches the users interests. Will only accept topics that have not been interleaved and shown to the user before or is added manually by the user. Sending the same recommendation multiple times will update the score to the last received value if the recommendation has not been shown to the user. This allows reordering of already submitted recommendations, but assumes comparable scores across submissions. See the [recommendation submission guide](/../../#howto-for-experimental-recommender-systems) for more information on how to submit recommendations.

The maximal number of users that can be given recommendations in a single request and the maximal number of recommendations per user can be [configured](#configurations).

Header:
- `api-key` used to identify which system the recommendations come from

JSON:
 - `user_id` id of the user
 - `topic` topic to recommend, containing only a..z, 0..9, space and dash
 - `score` score of the recommendation

Data returned:
 - `error`: if something went wrong

Example:
 - Request: `POST /recommendations/topics`

 - Header:
    ```
    {"Content-Type": "application/json",
     "api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - JSON:
    ```
    {
        "recommendations": {
        user_id: [
            {"topic": "Information Retrieval", "score": 2},
            {"topic": "Entity Oriented Search", "score": 3},
            {"topic": "Retrieval models", "score": 2}
        ],...
      }
    }
      ```
 - Response:
    ```
    {
      "success": True
      "error" : "Some error"
    }
    ```
Topic recommendation data

`GET /recommendations/topics`

Returns topic recommendation data for a given user (or list of users). By default it is limited to 100 users per request, but this can be [configured](#configurations).

Parameters:

- `user_id` User ID, or a list of up to 100 user IDs, separated by a comma

Fields returned for each user:

- `topic`: topic that was recommended
- `score`: score of the topic for this user
- `date`: date this recommendation was given
- `system_id`: id of the system which gave this recommendation

Other fields:
 - `error`: if something went wrong

Example:

 - Request: `GET /recommendations/topics?user_id=123`

 - Header:
    ```
    {"api-key": "355b36dc-7863-4c4a-a088-b3c5e297f04f"}
    ```
 - Response:
    ```
    {
      "users": {
        "123": {
          "Information Retrieval":[
              {"system_id":2,
              "score": 3,
              "date": "2020-01-17 17:06:23"},
              {"system_id":33,
              "score": 2,
              "date": "2020-01-17 17:06:23"}
          ],...
        }
      }
    }
    ```

Configurations

These are the values that can be configured in the APIsection of config.json.

- `dev_port`: Port the server while be launched on while running in development mode.
- `max_content_length`: Maximum request size.
- `max_userinfo_request`: The maximal amount of users that info can be retrieved for in one request. More info on [endpoint](#user-information).
- `max_userid_request`: The maximal amount of userIds that can be retrieved in one request. More info on [endpoint](#list-of-users).
- `max_articledata_request`: The maximal amount of articles that info can be retrieved for in one request. More info on [endpoint](#article-data).
- `max_users_per_recommendation`:The maximal amount of users that recommendations can be submitted for in each request. More info on [endpoint](#insert-recommendations).
- `max_recommendations_per_user`: The maximal amount of articles that info can be recommended to each user in one request. More info on [endpoint](#insert-recommendations).
- `max_explanation_len`: The maximal length of an explanation for a recommendation. More info on [endpoint](#insert-recommendations).

arxivdigest/api/utils.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from datetime import date
from datetime import datetime
from functools import wraps
from uuid import UUID

from flask import g
from flask import jsonify
from flask import make_response
from flask import request
from flask.json import JSONEncoder

import arxivdigest.api.database as db
from arxivdigest.core.config import config_api

def validateApiKey(f):
 """Decorator for validating API keys. If the API key is invalid it will return 401 to the client,
 else it will store information about the system in g."""

 @wraps(f)
 def wrapper(*args, **kwargs):
 key = request.headers.get('api-key', None)
 if not key:
 return make_response(jsonify({'error': 'No API key received.'}),
 401)

 try:
 UUID(key, version=4)
 except ValueError:
 return make_response(jsonify({'error': 'Malformed API key.'}), 401)
 system = db.getSystem(key)
 if system is None:
 return make_response(jsonify({'error': 'Invalid API key.'}), 401)
 if not system['active']:
 return make_response(jsonify({'error': 'System is inactive.'}), 401)
 g.apiKey = system['api_key']
 g.sysName = system['system_name']
 g.sysID = system['system_id']
 return f(*args, **kwargs)

 return wrapper

def getUserlist(f):
 """Decorator for getting user IDs from url, and validating them."""

 @wraps(f)
 def wrapper(*args, **kwargs):
 try:
 ids = request.args.get('user_id').split(',')
 except:
 return make_response(jsonify({'error': 'No IDs supplied.'}, 400))
 if not all([x.isdigit() and int(x) > 0 for x in ids]): # checks that all ids are valid
 return make_response(jsonify({'error': 'Invalid ids.'}), 400)
 if len(ids) > config_api['max_userinfo_request']:
 err = 'You cannot request more than %s users at a time.' % config_api[
 'max_userinfo_request']
 return make_response(jsonify({'error': err}), 400)

 users = db.checkUsersExists(ids)
 if len(users) > 0:
 err = 'No users with ids: %s.' % ', '.join(users)
 return make_response(jsonify({'error': err}), 400)
 kwargs['users'] = ids
 return f(*args, **kwargs)

 return wrapper

class CustomJSONEncoder(JSONEncoder):
 """Custom JSON encoder that formats dates in YYYY-MM-dd hh:mm:ss format."""

 def default(self, obj):
 try:
 if isinstance(obj, datetime):
 return obj.strftime('%Y-%m-%d %H:%M:%S')
 elif isinstance(obj, date):
 return obj.strftime('%Y-%m-%d')
 iterable = iter(obj)
 except TypeError:
 pass
 else:
 return list(iterable)
 return JSONEncoder.default(self, obj)

arxivdigest/api/validator.py

-*- coding: utf-8 -*-
import re

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from functools import wraps

from flask import current_app as app
from flask import jsonify
from flask import make_response
from flask import request

import arxivdigest.api.database as db
from arxivdigest.core.config import CONSTANTS

def validate_json(validator_func):
 """Decorator for validating submitted json using supplied validator function.
 Validator functions should take a json as input argument, and return none
 if valid, or a (msg,status) tuple if something is invalid."""

 def decorator(f):
 @wraps(f)
 def wrapper(*args, **kwargs):
 json = request.get_json()
 if not json:
 return make_response(
 jsonify({'success': False, 'error': 'No JSON submitted.'}),
 400)
 error = validator_func(json)
 if error:
 return make_response(
 jsonify({'success': False, 'error': error[0]}), error[1])
 return f(*args, **kwargs)

 return wrapper

 return decorator

def article_recommendation(json):
 """Validator function for json submitted to the recommendation insertion
 endpoint."""
 json = json.get('recommendations')
 if not json:
 return 'No recommendations submitted.', 400

 if len(json) > app.config['max_users_per_recommendation']:
 return 'Requests must not contain more than %s users.' % app.config[
 'max_users_per_recommendation'], 400

 check_funcs = {nonexistent_users,
 # functions that validate different properties of the json
 too_many_recommendations,
 contains_ineligible_articles,
 score_is_not_float,
 missing_explanation,
 too_long_explanation, }

 for check_func in check_funcs:
 err = check_func(json)
 if err:
 return err
 return None

def topic_recommendation(json):
 """Validator function for json submitted to the topic recommendation
 endpoint."""
 json = json.get('recommendations')
 if not json:
 return 'No recommendations submitted.', 400

 if len(json) > app.config['max_users_per_recommendation']:
 return 'Requests must not contain more than %s users.' % app.config[
 'max_users_per_recommendation'], 400

 # functions that validate different properties of the json
 check_funcs = {nonexistent_users,
 too_many_recommendations,
 contains_ineligible_topics,
 score_is_not_float,
 duplicate_topic_suggestion,
 }

 for check_func in check_funcs:
 err = check_func(json)
 if err:
 return err
 return None

def duplicate_topic_suggestion(json):
 """Returns false if all topics are original suggestions
 for that user. Returns error message if there are topics
 that have been suggested previously and status code."""
 user_ids = [user_id for user_id in json]
 prev_topics = db.get_user_feedback_topics(user_ids)
 error_msg = ('Some of the recommended topics have '
 'already been recommended for users:')
 error = False
 for user_id in user_ids:
 new_topics = set([topic['topic'] for topic in json[user_id]])
 old_topics = set(prev_topics['user_feedback'][int(user_id)].keys())
 intersecting_topics = new_topics & old_topics
 if (intersecting_topics):
 error = True
 error_msg += ' user_id: '+user_id+', topics: %s.' % (', '
 '').join(intersecting_topics)
 if error:
 return error_msg, 400
 return False

def nonexistent_users(json):
 """Returns false if all users exist.
 Returns errormessage and status code if not."""
 user_ids = [user_id for user_id in json]
 if len(user_ids) is 0:
 return 'Request must contain at least one user.', 400
 not_found_users = db.checkUsersExists(user_ids)
 if len(not_found_users) > 0:
 return 'No users with ids: %s.' % ', '.join(not_found_users), 400
 return False

def too_many_recommendations(json):
 """Returns false if no user got more recommendations then the limit.
 Returns errormessage and status code if not."""
 err_msg = 'Requests must not contain more than {} recommendations per user.'
 err_msg = err_msg.format(app.config['max_recommendations_per_user'])

 for recs in json.values():
 if len(recs) > app.config['max_recommendations_per_user']:
 return err_msg, 400

def contains_ineligible_articles(json):
 """Returns false if all articles are eligible for recommendation.
 Returns errormessage and status code if not."""
 article_ids = [article['article_id'] for user in json.values() for article
 in user]
 if len(article_ids) is 0:
 return 'No articles submitted.', 400
 not_found_articles = db.checkArticlesExists(article_ids)
 if len(not_found_articles) > 0:
 return 'Could not find articles with ids: %s.' % ', '.join(
 not_found_articles), 400

 eligible_ids = set(db.get_article_ids_past_seven_days())
 ineligible_ids = set(article_ids) - eligible_ids
 if ineligible_ids:
 return 'These articles are not from the past seven days: {}.' \
 .format(', '.join(ineligible_ids)), 400
 return False

def contains_ineligible_topics(json):
 """Returns false if all topics are eligible for recommendation.
 Returns errormessage and status code if not."""
 topics = [topic['topic'] for user in json.values() for topic in user]
 if len(topics) is 0:
 return 'No topics submitted.', 400
 for topic in topics:
 if re.search('[^a-zA-Z0-9\-]', topic):
 return 'Topics can only contain a..z, 0..9, space and dash.', 400
 if len(topic) > CONSTANTS.max_topic_length:
 msg = 'Topics must be shorter than {}.'
 return msg.format(CONSTANTS.max_topic_length), 400
 return False

def score_is_not_float(json):
 """Returns false if all scores are float numbers.
 Returns errormessage and status code if not."""
 for recommendations in json.values():
 for rec in recommendations:
 try:
 float(rec['score'])
 except (ValueError, KeyError):
 return 'Score must be a float', 400
 return False

def missing_explanation(json):
 """Returns false if all recommendations have an explanation.
 Returns errormessage and status code if not."""
 for recommendations in json.values():
 for rec in recommendations:
 if 'explanation' not in rec:
 return 'Recommendations must include explanation.', 400
 return False

def too_long_explanation(json):
 """Returns false if all explanations are shorter than the limit.
 Returns errormessage and status code if not."""
 for recommendations in json.values():
 for rec in recommendations:
 if len(rec['explanation']) > app.config['max_explanation_len']:
 return 'Explanations must be shorter than %s.' % app.config[
 'max_explanation_len'], 400
 return False

arxivdigest/connector/exceptions.py

-*- coding: utf-8 -*-

class ArxivdigestConnectorException(Exception):
 """Base class for all ArxivdigestConnector exceptions."""

class ConnectionError(ArxivdigestConnectorException):
 """Unable to establish a connection to the arXivDigest API."""

class ApiKeyError(ArxivdigestConnectorException):
 """There was a problem with the api key."""

arxivdigest/connector/__init__.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2018, 2020, The arXivDigest project'

import logging

import requests

from arxivdigest.connector import exceptions

class ArxivdigestConnector:

 def __init__(self,
 api_key,
 api_url='https://api.arxivdigest.org/'):
 """Creates a ArxivdigestConnector object.

 :param api_key: A arXivDigest API key.
 :param api_url: The base url of the arXivDigest API.
 """
 self.api_key = api_key
 self.api_url = api_url if api_url.endswith('/') else api_url + '/'
 settings = self.test_connection()
 self.user_ids_per_request = settings['user_ids_per_request']
 self.max_userinfo_request = settings['max_userinfo_request']
 self.max_articledata_request = settings['max_articledata_request']
 self.users_per_recommendation = settings['max_users_per_recommendation']
 self.recommendations_per_user = settings['max_recommendations_per_user']
 self.max_explanation_len = settings['max_explanation_len']
 self.max_topic_len = settings['max_topic_len']

 self.validate_api_key()

 def test_connection(self):
 """Tests the connection to the arXivDigest instance.
 :raises: connector.exceptions.ConnectionError if unable to
 establish a valid connection.
 :return: True if connected successfully
 """
 r = requests.get(self.api_url)
 try:
 r.raise_for_status()
 except requests.exceptions.HTTPError as e:
 raise exceptions.ConnectionError from e

 if r.ok and 'arXivDigest API' in r.json()['info']:
 return r.json()['settings']
 else:
 raise exceptions.ConnectionError(
 'A connection was made, but the connector '
 'was unable to verify the response was from '
 'an arXivDigest API instance.')

 def validate_api_key(self):
 """Validates the API key.
 :return: True if valid.
 :raises: exceptions.ApiKeyError If something is wrong with the API key
 """
 r = requests.get(self.api_url + 'users',
 headers={'api-key': self.api_key})
 if r.ok:
 return True
 if 'error' in r.json():
 raise exceptions.ApiKeyError(r.json()['error'])
 try:
 r.raise_for_status()
 except requests.exceptions.HTTPError as e:
 raise exceptions.ArxivdigestConnectorException from e
 raise exceptions.ArxivdigestConnectorException('Something unexpected '
 'went wrong.')

 def get_number_of_users(self):
 """Queries the arXivDigest API for user ids.
 :return: Total number of arXivDigest users.
 """
 r = requests.get(self.api_url + 'users',
 headers={'api-key': self.api_key})
 return r.json()['users']['num']

 def get_user_ids(self, offset=0):
 """Queries the arXivDigest API for user ids.
 :param offset: Offset to start retrieval at.
 :return: List of arXivDigest user ids sorted ascending.
 """
 r = requests.get(self.api_url + 'users', params={'from': offset},
 headers={'api-key': self.api_key})
 return r.json()['users']['user_ids']

 def get_topics(self):
 """Queries the arXivDigest API for a full list of topics
 currently stored on the platform. Returns a list with all
 topics as strings."""
 r = requests.get(self.api_url + 'topics',
 headers={'api-key': self.api_key})
 return r.json()['topics']

 def get_user_info(self, user_ids):
 """Queries the arXivDigest API for userdata for the given 'user_ids'.
 :param user_ids: List of user ids to retrieve info for.
 :return: Dictionary with user info for each user id."""
 user_info = {}
 batch_size = self.max_userinfo_request
 for i in range(0, len(user_ids), batch_size):
 id_batch = ','.join([str(u) for u in user_ids[i:i + batch_size]])
 r = requests.get(self.api_url + 'user_info',
 params={'user_id': id_batch},
 headers={'api-key': self.api_key})

 user_info.update(r.json()['user_info'])
 return user_info

 def get_article_ids(self):
 """Queries the arXivDigest API for article ids.
 :return: List of arXivDigest article ids.
 """
 r = requests.get(self.api_url + 'articles',
 headers={'api-key': self.api_key})
 return r.json()['articles']

 def get_article_data(self, article_ids):
 """Queries the arXivDigest API for article data for the given
 'article_ids'.
 :param article_ids: List of article ids to retrieve data for.
 :return: Dictionary with article data for each article id."""
 batch_size = self.max_articledata_request
 article_data = {}
 for i in range(0, len(article_ids), batch_size):
 id_batch = ','.join(article_ids[i:i + batch_size])
 r = requests.get(self.api_url + 'article_data',
 params={'article_id': id_batch},
 headers={'api-key': self.api_key})

 article_data.update(r.json()['articles'])
 return article_data

 def get_article_feedback(self, user_ids):
 """Queries the arXivDigest API for article feedback for the given
 'user_ids'.
 :param user_ids: List of user ids to retrieve data for.
 :return: Dictionary with article feedback for each user id."""
 batch_size = self.max_userinfo_request
 article_feedback = {}
 for i in range(0, len(user_ids), batch_size):
 id_batch = ','.join([str(u) for u in user_ids[i:i + batch_size]])
 r = requests.get(self.api_url + 'user_feedback/articles',
 params={'user_id': id_batch},
 headers={'api-key': self.api_key})
 article_feedback.update(r.json()['user_feedback'])
 return article_feedback

 def get_interleaved_articles(self, user_ids):
 """Queries the arXivDigest API for interleaved articles for the given
 'user_ids'.
 :param user_ids: List of user ids to retrieve data for.
 :return: List of interleaved article ids for each user id."""
 article_feedback = self.get_article_feedback(user_ids)
 interleaved_articles = {str(user_id): [] for user_id in user_ids}
 for user_id, date_batch in article_feedback.items():
 for date, article_list in date_batch.items():
 for article in article_list:
 article_id, _ = article.popitem()
 interleaved_articles[user_id].append(article_id)
 return interleaved_articles

 def send_article_recommendations(self, recommendations):
 """Sends the recommendations to the arXivDigest API.

 :param recommendations: Dictionary of user id to recommendation pairs
 like: user_id:{[{'article_id': x, score': x, 'explanation': x},..],..}
 :return List of users which recommendations failed for.
 """
 batch_size = self.users_per_recommendation
 failed_users = []
 recommendations = list(recommendations.items())
 for i in range(0, len(recommendations), batch_size):
 recommendation_batch = dict(recommendations[i:i + batch_size])

 r = requests.post(self.api_url + 'recommendations/articles',
 json={'recommendations': recommendation_batch},
 headers={'api-key': self.api_key})
 try:
 r.raise_for_status()
 except requests.exceptions.HTTPError:
 failed_users.append(recommendation_batch.keys())
 logging.error('Failed recommending batch of users: {}'.format(
 ', '.join(recommendation_batch.keys())))
 logging.error(r.json())
 return failed_users

 def get_article_recommendations(self, user_ids):
 """Queries the arXivDigest API for article recommendations for the given
 'user_ids'.
 :param user_ids: List of user ids to retrieve data for.
 :return: Dictionary with article recommendations for each user id."""
 batch_size = self.max_userinfo_request
 article_recommendations = {}
 for i in range(0, len(user_ids), batch_size):
 id_batch = ','.join([str(u) for u in user_ids[i:i + batch_size]])
 r = requests.get(self.api_url + 'recommendations/articles',
 params={'user_id': id_batch},
 headers={'api-key': self.api_key})
 article_recommendations.update(r.json()['users'])
 return article_recommendations

 def send_topic_recommendations(self, recommendations):
 """Sends the recommendations to the arXivDigest API.
 :param recommendations: Dictionary of user id to recommendation pairs
 like: user_id:[{topic: x, score: x}]
 :return List of users which recommendations failed for.
 """
 batch_size = self.users_per_recommendation
 failed_users = []
 recommendations = list(recommendations.items())
 for i in range(0, len(recommendations), batch_size):
 recommendation_batch = dict(recommendations[i:i + batch_size])
 r = requests.post(self.api_url + 'recommendations/topics',
 json={'recommendations': recommendation_batch},
 headers={"api-key": self.api_key})
 try:
 r.raise_for_status()
 except requests.exceptions.HTTPError:
 failed_users.append(recommendation_batch.keys())
 logging.error('Failed recommending batch of users: {}'.format(
 ', '.join(recommendation_batch.keys())))
 logging.error(r.json())
 return failed_users

 def get_topic_feedback(self, user_ids):
 """Queries the arXivDigest API for topic feedback for the given
 'user_ids'.
 :param user_ids: List of user ids to retrieve data for.
 :return: Dictionary with topic feedback for each user id."""
 batch_size = self.max_userinfo_request
 topic_feedback = {}
 for i in range(0, len(user_ids), batch_size):
 id_batch = ','.join([str(u) for u in user_ids[i:i + batch_size]])
 r = requests.get(self.api_url + 'user_feedback/topics',
 params={'user_id': id_batch},
 headers={'api-key': self.api_key})
 topic_feedback.update(r.json()['user_feedback'])
 return topic_feedback

 def get_topic_recommendations(self, user_ids):
 """Queries the arXivDigest API for topic recommendations for the given
 'user_ids'.
 :param user_ids: List of user ids to retrieve data for.
 :return: Dictionary with topic recommendations for each user id."""
 batch_size = self.max_userinfo_request
 topic_recommendations = {}
 for i in range(0, len(user_ids), batch_size):
 id_batch = ','.join([str(u) for u in user_ids[i:i + batch_size]])
 r = requests.get(self.api_url + 'recommendations/topics',
 params={'user_id': id_batch},
 headers={'api-key': self.api_key})
 topic_recommendations.update(r.json()['users'])
 return topic_recommendations

arxivdigest/core/config.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import json
import os
import sys

__file_locations = [
 os.path.expanduser('~') + '/arxivdigest/config.json',
 '/etc/arxivdigest/config.json',
 os.curdir + '/config.json',
]

def find_config_file(file_locations):
 """Checks the given list of file paths for a config file,
 returns None if not found."""
 for file_location in file_locations:
 if os.path.isfile(file_location):
 print('Found config file at: {}'.format(
 os.path.abspath(file_location)))
 return file_location
 return None

config_file = find_config_file(__file_locations)
if not config_file:
 print('No config-file found in any of the following locations:')
 for location in __file_locations:
 print(os.path.abspath(location))
 print('Exiting.')
 sys.exit()

with open(config_file) as file:
 config = json.load(file)

_base_url = config.get('web_address')

config_web_address = _base_url if _base_url.endswith('/') else _base_url + '/'
config_sql = config.get('sql_config')
config_email = config.get('email_config')
config_api = config.get('api_config')
config_interleave = config.get('interleave_config')
config_frontend = config.get('frontend_config')
config_evaluation = config.get('evaluation_config')
config_arxiv_scraper = config.get('arxiv_scraper_config')

jwtKey = config_frontend.get('jwt_key')
secret_key = config_frontend.get('secret_key')

class Constants:
 """This class contains constants that are not configurable."""

 def __init__(self):
 # General
 self.max_human_name_length = 60
 self.max_system_name_length = 40
 self.max_email_length = 60
 self.max_url_length = 120
 self.min_url_length = 5

 # Users
 self.min_topics_per_user = 3
 self.max_organization_length = 100

 # Topics
 self.max_topic_length = 50

 # Articles
 self.max_title_length = 300
 self.max_journal_length = 300
 self.max_license_length = 120
 self.max_affiliation_length = 300

CONSTANTS = Constants()

arxivdigest/core/database/users_db.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from contextlib import closing
from uuid import uuid4

from arxivdigest.core import database

def get_number_of_users():
 """This method returns the number of users in the database."""
 with closing(database.get_connection().cursor()) as cur:
 cur.execute('SELECT count(*) FROM users')
 return cur.fetchone()[0]

def get_users(limit, offset):
 """Fetches users in batches.

 :param limit: Number of users to retrieve.
 :param offset: An offset to the first user returned.
 :return: A dictionary of user_ids: {email, name, notification_interval}.
 """
 with closing(database.get_connection().cursor(dictionary=True)) as cur:
 sql = '''SELECT u.user_id, u.email, u.firstname as name,
 u.notification_interval, unsubscribe_trace FROM users u ORDER BY user_id
 LIMIT %s OFFSET %s'''
 cur.execute(sql, (limit, offset))
 return {u.pop('user_id'): u for u in cur.fetchall()}

def assign_unsubscribe_trace(user_id):
 """Gives a user an unsubscribe trace if they dont have one."""
 trace = str(uuid4())
 connection = database.get_connection()
 with closing(connection.cursor(dictionary=True)) as cur:
 sql = '''update users set unsubscribe_trace = %s where user_id = %s'''
 cur.execute(sql, (trace, user_id))

 connection.commit()
 return trace

arxivdigest/core/database/__init__.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'
from types import SimpleNamespace

from mysql import connector

from arxivdigest.core.config import config_sql

_db = SimpleNamespace()
_db.connection = None

def get_connection():
 """Returns an active database connection."""
 if not _db.connection:
 _db.connection = connector.connect(**config_sql)
 if not _db.connection.is_connected():
 _db.connection.reconnect()
 return _db.connection

arxivdigest/core/interleave/multileave_articles.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import logging
from collections import defaultdict
from contextlib import closing
from datetime import datetime

from arxivdigest.core import database
from arxivdigest.core.config import config_interleave
from arxivdigest.core.database import users_db
from arxivdigest.core.interleave.team_draft_multileave import TeamDraftMultiLeaver

RECOMMENDATIONS_PER_USER = config_interleave.get('recommendations_per_user')
SYSTEMS_PER_USER = config_interleave.get('systems_multileaved_per_user')
BATCH_SIZE = config_interleave.get('users_per_batch')
ARTICLES_PER_DATE_IN_MAIL = config_interleave.get('articles_per_date_in_email')

def run():
 """Multileaves article recommendations and inserts the new lists into the
 database."""
 interleaving_time = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')
 multi_leaver = TeamDraftMultiLeaver(RECOMMENDATIONS_PER_USER,
 SYSTEMS_PER_USER)

 n_users = users_db.get_number_of_users()
 logging.info('Starting multileaving for {} users.'.format(n_users))
 for i in range(0, n_users, BATCH_SIZE):

 recommendations = multi_leave_articles(BATCH_SIZE,
 i,
 multi_leaver,
 interleaving_time)
 if recommendations:
 insert_article_recommendations(recommendations)

def multi_leave_articles(limit,
 offset,
 multileaver,
 time):
 """Multileaves the given systemRecommendations and returns
 a list of article_feedback."""
 article_feedback = []
 articles, explanations = get_article_recommendations(limit, offset)
 users = users_db.get_users(limit, offset)
 for user_id in users:
 lists = articles[user_id]
 if not lists:
 logging.info('User {}: skipped (no recommendations).'.format(
 user_id))
 continue

 ranking, credit = multileaver.team_draft_multileave(lists)
 # prepare results for database insertion
 for index, (article, system) in enumerate(zip(ranking, credit)):
 score = multileaver.ranking_length - index
 explanation = explanations[user_id][system][article]
 rec = (user_id, article, system, explanation, score, time)

 article_feedback.append(rec)
 logging.info('User {}: Interleaved {} articles.'.format(user_id,
 len(ranking)))
 return article_feedback

def get_article_recommendations(limit, offset):
 """Fetches article recommendation for articles released the past week.

 :param limit: Number of users to retrieve recommendations for.
 :param offset: An offset to the first user returned.
 :return: Article recommendations (rankings) in the following format
 sorted by score descending:
 {user_id:
 {system_id:[article_id, article_id, article_id, ...], ...
 }, ...
 }
 And explanations in the format:
 {user_id: {system_id: {article_id: explanation, ...}, ...}, ...}
 """
 with closing(database.get_connection().cursor(dictionary=True)) as cur:
 sql = '''SELECT ar.user_id, ar.system_id, ar.article_id, ar.explanation
 FROM article_recommendations ar Left JOIN article_feedback af
 on ar.article_id = af.article_id AND ar.user_id = af.user_id
 JOIN users u on ar.user_id = u.user_id
 JOIN articles a on a.article_id = ar.article_id
 RIGHT JOIN (SELECT user_id FROM users ORDER BY user_id
 LIMIT %s OFFSET %s) limit_u on limit_u.user_id = ar.user_id
 WHERE af.score is null
 AND a.datestamp > DATE_SUB(UTC_DATE(), INTERVAL 7 DAY)
 AND u.last_recommendation_date < UTC_DATE() ORDER BY ar.score DESC;'''
 cur.execute(sql, (limit, offset))

 rankings = defaultdict(lambda: defaultdict(list))
 explanations = defaultdict(lambda: defaultdict(dict))
 for row in cur.fetchall():
 user_id = row['user_id']
 article_id = row['article_id']
 system_id = row['system_id']
 explanation = row['explanation']

 rankings[user_id][system_id].append(article_id)
 explanations[user_id][system_id][article_id] = explanation
 return rankings, explanations

def insert_article_recommendations(recommendations):
 """Inserts the recommended articles into the article feedback table."""
 connection = database.get_connection()
 with closing(connection.cursor(dictionary=True)) as cur:
 sql = '''INSERT INTO article_feedback (user_id, article_id, system_id,
 explanation, score, recommendation_date)
 VALUES(%s, %s, %s, %s, %s, %s)'''
 cur.executemany(sql, recommendations)

 users = list({x[0] for x in recommendations})
 sql = '''UPDATE users SET last_recommendation_date=UTC_DATE()
 WHERE user_id in ({})'''.format(','.join(['%s'] * len(users)))
 cur.execute(sql, users)
 connection.commit()

arxivdigest/core/interleave/multileave_topics.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from collections import defaultdict
from contextlib import closing
from datetime import datetime

from arxivdigest.core import database
from arxivdigest.core.config import config_interleave
from arxivdigest.core.database import users_db
from arxivdigest.core.interleave.team_draft_multileave import TeamDraftMultiLeaver

TOPICS_PER_USER = config_interleave.get('topics_multileaved_per_batch')
SYSTEMS_PER_USER = config_interleave.get('systems_multileaved_per_user')

def run(user_id):
 """Multileaves topic suggestions for one user and inserts the result
 into the database."""
 interleaving_time = datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')
 multi_leaver = TeamDraftMultiLeaver(TOPICS_PER_USER,
 SYSTEMS_PER_USER)

 suggested_topics = multi_leave_topics(multi_leaver,
 user_id, interleaving_time)

 if suggested_topics:
 insert_topic_suggestions(suggested_topics)

def multi_leave_topics(multileaver, user_id, time):
 """Multileaves a number of suggested topics for a user and returns
 the results."""
 topics = get_user_suggested_topics(user_id)
 if not topics:
 return None
 ranking, credit = multileaver.team_draft_multileave(topics)

 topic_recommendations = []
 # prepare results for database insertion
 for index, (topic, system) in enumerate(zip(ranking, credit)):
 score = multileaver.ranking_length - index
 rec = (score, time, user_id, topic, system)

 topic_recommendations.append(rec)
 return topic_recommendations

def get_user_suggested_topics(user_id):
 """Gets suggested topics per system for one user.
 Returns {system_id:[topic_id, topic_id, topic_id, ...], ...
 } with score decending"""
 connection = database.get_connection()
 with closing(connection.cursor(dictionary=True)) as cur:
 sql = '''select topic_recommendations.topic_id,
 topic_recommendations.system_id from
 topic_recommendations inner join topics on
 topics.topic_id = topic_recommendations.topic_id
 left join user_topics on user_topics.topic_id =
 topic_recommendations.topic_id and user_topics.user_id =
 topic_recommendations.user_id where
 user_topics.state is NULL and topic_recommendations.user_id
 = %s and topic_recommendations.interleaving_batch is NULL
 order by topic_recommendations.system_score DESC'''
 cur.execute(sql, (user_id,))

 rankings = defaultdict(list)
 for row in cur.fetchall():
 topic_id = row['topic_id']
 system_id = row['system_id']

 rankings[system_id].append(topic_id)
 return rankings

def insert_topic_suggestions(suggested_topics):
 """Inserts the score for the interleaved topic suggestions into
 the database along with the datetime they were interleaved"""
 connection = database.get_connection()
 with closing(connection.cursor(dictionary=True)) as cur:
 sql = '''update topic_recommendations set interleaving_order = %s,
 interleaving_batch = %s where user_id = %s and topic_id = %s
 and system_id = %s'''
 cur.executemany(sql, suggested_topics)
 connection.commit()

arxivdigest/core/interleave/team_draft_multileave.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import random
from collections import defaultdict
from collections import deque
from random import choice

class TeamDraftMultiLeaver:
 """A class that performs team draft multileaving of rankings from different
 systems.

 The multileaver will select systems at random for each multileaving,
 but systems that have fewer impressions will be preferred.
 This ensures that all systems will get a fair chance to be in approximately
 the same amount of multileavings.

 The multileaving is performed by letting systems propose elements in
 rounds, the order of the rounds are randomised each round. This is done
 until the multileaved rankings is the desired length, or the systems
 rankings are empty.

 Systems are give credit for elements they propose. The only exception for
 this is if there is a common prefix in the rankings included in the
 multileaving, then the common prefix is added to the multileaving
 without giving credit to any system.
 """

 def __init__(self, ranking_length, systems_per_ranking,
 common_prefix=False):
 """Creates a team draft multileaver object.
 :param ranking_length: The desired length of the resulting ranking.
 :param systems_per_ranking: The desired number of systems multileaved
 per ranking.
 :param common_prefix: Whether common prefixes will give credit or not.
 """
 self.ranking_length = ranking_length
 self.systems_per_ranking = systems_per_ranking
 self.common_prefix = common_prefix
 self.impressions = defaultdict(int)

 def select_systems_for_multileaving(self, systems):
 """Selects systems randomly from `systems`, systems with fewer
 impressions will be prioritized.

 :param systems: A list of system ids eligible for multileaving.
 :return: A list of system ids that are candidates for multileaving.
 """
 impressions = {system: self.impressions[system] for system in systems}

 multileaving_candidates = []
 while (len(multileaving_candidates) < self.systems_per_ranking
 and len(impressions) > 0):
 # Select the systems with the fewest impression.
 candidate_systems = [system for system, impression in
 impressions.items()
 if impression == min(impressions.values())]
 # Pick random candidate from systems with the fewest impressions
 system = choice(candidate_systems)

 # Remove system when selected, to not select it twice.
 del impressions[system]
 multileaving_candidates.append(system)
 self.impressions[system] += 1

 return multileaving_candidates

 def team_draft_multileave(self, rankings):
 """Team draft multileaves rankings.

 :param rankings: A dictionary of system_id : ranking_list pairs.
 :return: Multileaved rankings list and system credit list
 """
 systems = [system for system, ranking in rankings.items() if ranking]
 systems = self.select_systems_for_multileaving(systems)
 rankings = {system: deque(rankings[system]) for system in systems}
 round_queue = None
 multileaved_ranking = []
 credit = []

 if self.common_prefix:
 multileaved_ranking.extend(common_prefix(rankings.values()))
 credit.extend([None for uncredited_element in multileaved_ranking])

 while len(multileaved_ranking) < self.ranking_length and systems:
 if not round_queue: # New round, if no system in queue.
 round_queue = random.sample(systems, len(systems))
 system = round_queue.pop()
 for i, element in enumerate(rankings[system].copy()):
 if element in multileaved_ranking:
 rankings[system].popleft()
 continue
 else:
 multileaved_ranking.append(element)
 credit.append(system)
 break
 if not rankings[system]:
 systems.remove(system)

 return multileaved_ranking, credit

def common_prefix(lists):
 """Given an iterable of iterables, returns the longest common prefix.
 Finds the first and last sublist when sorted lexicographically. Then
 compare how many elements these share, every sublist between these will
 share at least this common prefix."""
 first_sublist = list(min(lists))
 last_sublist = list(max(lists))
 for i, element in enumerate(first_sublist):
 if element != last_sublist[i]:
 return first_sublist[:i]
 return first_sublist

arxivdigest/core/mail/digest_mail.py

-*- coding: utf-8 -*-
import logging
import math

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import calendar
from collections import defaultdict
from contextlib import closing
from datetime import datetime
from uuid import uuid4

from arxivdigest.core import database
from arxivdigest.core.config import config_email
from arxivdigest.core.config import config_interleave
from arxivdigest.core.config import config_web_address
from arxivdigest.core.database import users_db
from arxivdigest.core.mail.mail_server import MailServer

RECOMMENDATIONS_PER_USER = config_interleave.get('recommendations_per_user')
SYSTEMS_PER_USER = config_interleave.get('systems_multileaved_per_user')
BATCH_SIZE = config_interleave.get('users_per_batch')
BASE_URL = config_web_address
ARTICLES_PER_DATE_IN_MAIL = config_interleave.get('articles_per_date_in_email')

def send_digest_mail():
 """Sends emails to users about new recommendations."""
 article_data = get_article_data()
 server = MailServer(**config_email)
 n_users = users_db.get_number_of_users()
 n_batches = math.ceil(n_users / BATCH_SIZE)
 for offset in range(0, n_users, BATCH_SIZE):
 batch = int(offset / BATCH_SIZE) + 1
 logging.info('Sending mails for batch {} of {}.'.format(batch,
 n_batches))

 mail_batch, trace_batch = create_mail_batch(offset, article_data)
 if not mail_batch:
 logging.info('Batch {} was empty.'.format(batch))
 continue

 # mark all articles as seen in database and send all mails
 insert_mail_trackers(trace_batch)
 for mail in mail_batch:
 server.send_mail(**mail)
 logging.info('Batch {} sent.'.format(batch))

 server.close()

def create_mail_batch(offset, article_data):
 """ Creates a batch of emails for users starting from 'start_id'.

 :param offset: The id to start from.
 :param article_data: Data about all the articles that are recommended.
 :return:
 A batch of emails that can be sent by a 'MailServer'
 and a list of traces that should be inserted into the database, used
 for tracing mail interaction from users.
 """
 users = users_db.get_users(BATCH_SIZE, offset)
 recommendations = get_multileaved_articles(BATCH_SIZE, offset)
 mail_batch = []
 trace_batch = []
 for user_id, user in users.items():
 top_articles = get_top_articles_each_date(recommendations[user_id])

 articles = {}
 if user['notification_interval'] == 1:
 weekday = datetime.utcnow().date().weekday()
 articles = {weekday: top_articles.get(weekday, [])}
 elif user['notification_interval'] == 7:
 if datetime.utcnow().weekday() == 4:
 articles = top_articles
 else:
 logging.info('User {}: skipped (notification not scheduled '
 'for today).'.format(user_id))
 continue
 elif user['notification_interval'] == 0:
 logging.info(
 'User {}: skipped (user turned off notifications).'.format(
 user_id))
 continue

 if not any(articles.values()): # No articles to notify user about
 logging.info(
 'User {}: skipped (no recommendations).'.format(user_id))
 continue
 logging.info('User {}: added to batch.'.format(user_id))

 mail, trace = create_mail_content(user_id, user, articles, article_data)
 mail_batch.append(mail)
 trace_batch.extend(trace)
 return mail_batch, trace_batch

def create_mail_content(user_id, user, top_articles, article_data):
 """Creates a mail dictionary in the format accepted by `MailServer`.

 :param user_id: ID of user that will receive the mail.
 :param user: Info about user that will receive the mail.
 :param top_articles: Articles to be included in the mail
 :param article_data: Info about the articles
 :return:
 """
 if not user['unsubscribe_trace']:
 user['unsubscribe_trace'] = users_db.assign_unsubscribe_trace(user_id)

 mail_content = {'to_address': user['email'],
 'subject': 'arXivDigest article recommendations',
 'template': 'weekly',
 'data': {'name': user['name'], 'articles': [],
 'link': BASE_URL, 'unsubscribe_link':
 '%smail/unsubscribe/%s' % (BASE_URL,
 user['unsubscribe_trace'])}}
 mail_trace = []
 for day, daily_articles in sorted(top_articles.items()):
 articles = []
 for article_id, explanation in daily_articles:
 article = article_data[article_id]
 click_trace = str(uuid4())
 save_trace = str(uuid4())

 articles.append({'title': article.get('title'),
 'explanation': explanation,
 'authors': article.get('authors'),
 'read_link': '%smail/read/%s/%s/%s' % (
 BASE_URL, user_id, article_id, click_trace),
 'save_link': '%smail/save/%s/%s/%s' % (
 BASE_URL, user_id, article_id, save_trace)
 })
 mail_trace.append({'click_trace': click_trace,
 'save_trace': save_trace,
 'user_id': user_id,
 'article_id': article_id})

 mail_content['data']['articles'].append(
 (calendar.day_name[day], articles, day))

 return mail_content, mail_trace

def get_top_articles_each_date(article_recommendations):
 """Creates lists of top articles for each date.

 Creates dictionary with dates as keys and a list of top scoring articles for
 each date as values.

 :param article_recommendations: Articles that has been recommended for the
 user in a nested dictionary with format:
 {date:{ article_id:{'score' : 2, 'explanation' : "string"}}}
 :return: Dictionary with dates as keys and a list of top scoring articles
 for each date as values.
 """
 top_articles = {}
 for day, articles in article_recommendations.items():
 sorted_articles = sorted(articles.items(),
 key=lambda a: a[1]['score'],
 reverse=True)
 article_list = [(k, v['explanation']) for k, v in sorted_articles]
 top_articles[day.weekday()] = article_list[:ARTICLES_PER_DATE_IN_MAIL]

 return top_articles

def get_multileaved_articles(limit, offset):
 """Fetches multileaved article recommendations.

 :param limit: Number of users to retrieve recommendations for.
 :param offset: An offset to the first user returned.
 :return: Nested dict in format user_id: date: article_id: recommendation
 """
 with closing(database.get_connection().cursor(dictionary=True)) as cur:
 sql = '''SELECT user_id, DATE(recommendation_date) as date,
 article_id, score, explanation
 FROM article_feedback NATURAL JOIN users
 NATURAL RIGHT JOIN
 (SELECT user_id FROM users ORDER BY user_id
 LIMIT %s OFFSET %s) limit_u
 WHERE DATE(recommendation_date) >
 DATE_SUB(UTC_DATE(), INTERVAL 7 DAY)
 AND last_email_date < UTC_DATE()'''
 cur.execute(sql, (limit, offset))

 result = defaultdict(lambda: defaultdict(dict))
 for r in cur.fetchall():
 result[r.pop('user_id')][r.pop('date')][r.pop('article_id')] = r
 return result

def get_article_data():
 """Returns a dictionary of article_ids: title and authors."""
 with closing(database.get_connection().cursor()) as cur:
 sql = '''SELECT article_id,title,
 GROUP_CONCAT(concat(firstname,' ',lastname) SEPARATOR ', ')
 FROM articles NATURAL LEFT JOIN article_authors
 WHERE datestamp >=DATE_SUB(UTC_DATE(),INTERVAL 8 DAY)
 GROUP BY article_id'''
 cur.execute(sql)
 return {x[0]: {'title': x[1], 'authors': x[2]} for x in cur.fetchall()}

def insert_mail_trackers(article_traces):
 """Inserts mail trackers into the article feedback table."""
 connection = database.get_connection()
 with closing(connection.cursor(dictionary=True)) as cur:
 sql = '''UPDATE article_feedback af, users u
 SET af.seen_email = CURRENT_TIMESTAMP,
 af.trace_click_email = %(click_trace)s,
 af.trace_save_email= %(save_trace)s,
 u.last_email_date=UTC_DATE()
 WHERE af.user_id=%(user_id)s AND af.article_id=%(article_id)s
 AND u.user_id = %(user_id)s'''
 cur.executemany(sql, article_traces)

 connection.commit()

arxivdigest/core/mail/mail_server.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import smtplib
from email.mime.text import MIMEText

from jinja2 import Environment
from jinja2 import PackageLoader

import arxivdigest

def assemble_mail(message, to_address, from_address, subject):
 """Adds to and from address and subject to mail"""
 message = MIMEText(message, 'html')
 message['From'] = from_address
 message['To'] = to_address
 message['Subject'] = subject
 return message.as_string()

class MailServer:

 def __init__(self, from_address, password, host, port):
 """Starts and logs into mail server"""
 self.from_address = from_address
 if port == 465:
 self.server = smtplib.SMTP_SSL(host, port, timeout=5)
 else:
 self.server = smtplib.SMTP(host, port, timeout=5)
 self.server.starttls()
 self.server.login(self.from_address, password)
 self.env = Environment(loader=PackageLoader(__name__, 'templates'))
 self.env.filters['md_bold'] = arxivdigest.core.md_bold

 def close(self):
 self.server.quit()

 def send_mail(self, to_address, subject, data, template):
 """Creates mail and sends it"""
 template = self.env.get_template(template + '.tmpl')
 content = template.render(data)
 mail = assemble_mail(content, to_address, self.from_address, subject)
 return self.server.sendmail(self.from_address, to_address, mail)

arxivdigest/core/mail/templates/confirm_email.tmpl

{% extends "email_base.tmpl" %} {% block content %}

<div class="text">
 <h2>Please click this link to activate your account:</h2>

 <p>Activate account</p>

</div>

{% endblock %}

arxivdigest/core/mail/templates/email_base.tmpl

 arXivDigest

 {% block content %} {% endblock %}

 You are receiving this email because you have registered with arXivDigest

 {%if articles%}
 Unsubscribe from digest emails (you'll still be able to see recommendations on the website)

 {%endif%}

arxivdigest/core/mail/templates/systemActivation.tmpl

{% extends "email_base.tmpl" %} {% block content %}

<div class="text">
 <h2>Hi {{name}}</h2>
 <p>Your system has been activated and can be used via the following API-key:</p>
</div>
<hr>
<div class="content text">
 {{key}}
</div>

{% endblock %}

arxivdigest/core/mail/templates/weekly.tmpl

{% extends "email_base.tmpl" %} {% block content %}

<div class="text">
 <p>{{name}}, here are personalized suggestions for articles to read based on your arXivDigest profile:</p>
</div>
<hr>
<div class="content text">

 {% for day in articles %}
 <h2>{{ day[0] }}</h2>
 {%for article in day[1] %}

 <h3>{{article.title}}</h3>

 {{ article.authors }}

 {{ article.explanation | md_bold }}

 Add to library

 {%endfor%} {% endfor %}

</div>

{% endblock %}

arxivdigest/core/scraper/categories.py

-*- coding: utf-8 -*-
"""This script gathers category names from 'https://arxiv.org/category_taxonomy'
If problems occur gathering names one may
also consider 'https://arxiv.org/help/api/user-manual#subject_classifications'
"""

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import logging
import re

import requests
from bs4 import BeautifulSoup

ARXIV_CATEGORY_TAXONOMY_URL = 'https://arxiv.org/category_taxonomy'

Write category names in this dictionary to override the automatically
scraped names. These will also be used as a backup if scraping fails.
OVERRIDE_CATEGORIES = {}

def get_categories(url):
 """Find all arXiv categories on the arXiv category page.
 :param url: Url for arXiv categegory page.
 :return: Dict of catgory_id: category_name pairs.
 """
 try:
 resp = requests.get(url)
 soup = BeautifulSoup(resp.content, "html.parser")
 category_list = soup.find(id="category_taxonomy_list")
 category_elements = category_list.findChildren("h4", recursive=True)
 except Exception as e:
 category_elements = []
 logging.exception(e)

 categories = {}
 for category in category_elements:
 match = re.search(r'([,\w\-]+) \((.+)\)',
 category.text)
 if match:
 categories[match[2]] = match[1].strip()
 if not categories:
 print('No categories found, this could be caused by arxiv.com',
 'changing their category website.')
 categories.update(OVERRIDE_CATEGORIES)
 return categories

sub_category_names = get_categories(ARXIV_CATEGORY_TAXONOMY_URL)

arxivdigest/core/scraper/README.md

Scraper

Scraping is facilitated by the [OAI-api](https://arxiv.org/help/oa/index) provided by [arXiv](https://arxiv.org/) and the RSS stream. The [OAI-api](https://arxiv.org/help/oa/index) was chosen because it contains well-formatted metadata, and it also provided easy mechanisms for bulk harvesting.

If the scraper is unable find a name for a category on arXiv or in its configured category names it will use the categoryID as its name. This should be manually resolved,by updating the configured categories and the name in the database, to give the best user experience.

arxivdigest/core/scraper/scrape_metadata.py

-*- coding: utf-8 -*-
"""This module contains the the methods related to scraping articles from arXiv.
To only scrape the metadata from the articles in the rss-stream use the
harvestMetaDataRss method.
It's also possible to scrape articles between any two dates,
to accomplish this use the get_records_by_date method."""
import datetime

import requests

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import urllib
import xml.etree.ElementTree as ET
from time import sleep
from urllib.request import urlopen

import feedparser

OAI = '{http://www.openarchives.org/OAI/2.0/}'
ARXIV = '{http://arxiv.org/OAI/arXiv/}'

def prepare_record(record):
 """Formats the data to a dictionary structure that is easy to work with."""
 if record.find(OAI + 'header').get('status', None) == 'deleted':
 return {}
 info = record.find(OAI + 'metadata').find(ARXIV + 'arXiv')
 result = {'title': info.find(ARXIV + 'title').text.replace('\n', ' '),
 'description': info.find(ARXIV + 'abstract').text.replace('\n', ' '),
 'id': info.find(ARXIV + 'id').text,
 'categories': info.find(ARXIV + 'categories').text.split(),
 }
 doi = info.find(ARXIV + 'doi')
 comments = info.find(ARXIV + 'comments')
 licenses = info.find(ARXIV + 'license')
 journal = info.find(ARXIV + 'journal-ref')

 # check that element is not None before trying to access the text
 result['doi'] = doi.text if doi is not None else None
 result['comments'] = comments.text if comments is not None else None
 result['license'] = licenses.text if licenses is not None else None
 result['journal'] = journal.text if journal is not None else None

 authors = []
 for author in info.find(ARXIV + 'authors'):
 a = {}
 firstname = author.find(ARXIV + 'forenames')
 a['firstname'] = '' if firstname is None else firstname.text
 a['lastname'] = author.find(ARXIV + 'keyname').text
 a['affiliations'] = []
 for affiliation in author.findall(ARXIV + 'affiliation'):
 a['affiliations'].append(affiliation.text)

 authors.append(a)
 result['authors'] = authors
 datestamp = record.find(OAI + 'header').find(OAI + 'datestamp')
 result['datestamp'] = datestamp.text
 return result

def get_records_by_date(start_date, end_date=None):
 """Scrapes the OAI-api for articles submitted from the n previous days."""
 base_url = 'http://export.arxiv.org/oai2'
 params = {'verb': 'ListRecords',
 'metadataPrefix': 'arXiv',
 'from': start_date}
 if end_date:
 params['until'] = end_date

 result = {}
 while True:
 r = requests.get(base_url, params=params)
 print('Fetching', r.url)
 if r.status_code == 503:
 time_out = int(r.headers.get('retry-after', 5))
 msg = '503: Have to wait before further requests. Retrying in {} seconds.'
 print(msg.format(time_out))
 sleep(time_out)
 continue

 # generate elementtree from responsedata
 root = ET.fromstring(r.text)
 # parse the response and add it to result
 for record in root.find(OAI + 'ListRecords').findall(OAI + 'record'):
 element = prepare_record(record)
 if element:
 result[element['id']] = element
 # If the xmlfile contains more than 1000 articles arXiv will add a
 # resumptiontoken to the response, if we already have all the articles
 # there will be no resumptiontoken and we can safely break
 token = root.find(OAI + 'ListRecords').find(OAI + 'resumptionToken')
 if token is None or token.text is None:
 break
 # update url to use resumptiontoken in the next request
 params = {'verb': 'ListRecords', 'resumptionToken': token.text}
 return result

def get_record(id):
 """Gets metadata for a single record."""
 url = 'http://export.arxiv.org/oai2?verb=GetRecord&identifier=oai:arXiv.org:%s&metadataPrefix=arXiv' % id
 print('Fetching', url)
 response = urlopen(url)
 root = ET.fromstring(response.read())
 record = root.find(OAI + 'GetRecord').find(OAI + 'record')
 return prepare_record(record)

def get_categories():
 """Returns a dict of all the main categories available with info."""
 url = 'http://export.arxiv.org/oai2?verb=ListSets'
 print('fetching', url)
 while True:
 try:
 response = urlopen(url)
 except urllib.error.HTTPError as e:
 if e.code == 503:
 timeOut = int(e.headers.get('retry-after', 30))
 print(
 '503: Have to wait before further requests. Retrying in %d seconds.' % timeOut)
 sleep(timeOut)
 continue
 else:
 raise
 break
 root = ET.fromstring(response.read())
 categories = root.find(OAI + 'ListSets').findall(OAI + 'set')
 result = {}
 for category in categories:
 categoryID = category.find(OAI + 'setSpec').text
 categoryName = category.find(OAI + 'setName').text
 categoryInfo = {'name': categoryName}
 categoryID = categoryID.split(':')
 if len(categoryID) > 1:
 categoryInfo['masterCategory'] = categoryID[0].capitalize()
 result[categoryID[-1]] = categoryInfo

 return result

def get_id_from_rss():
 """Returns a set of all the article-ids found in the rss stream, which will
 be approximately the same as the articles uploaded the previous day."""
 rssUrl = 'http://export.arxiv.org/rss/'
 result = set()
 for category in get_categories():
 print('Fetching IDs from the %s rss-feed' % category)
 feed = feedparser.parse(rssUrl + category)
 for entry in feed['entries']:
 id = entry['link'].split('abs/')[1]
 result.add(id)
 return result

def harvest_metadata_rss():
 """This function will return the metadata from all the articles present
 in any of the arXiv rss-streams."""
 rss_ids = get_id_from_rss()
 yesterday = datetime.datetime.utcnow().date() - datetime.timedelta(days=1)
 articles = get_records_by_date(yesterday)
 result = {}
 for item in rss_ids:
 if item not in articles: # download missing articles, if any
 element = get_record(item)
 result[element['id']] = element
 else:
 result[item] = articles[item]
 return result

arxivdigest/core/scraper/store_metadata.py

-*- coding: utf-8 -*-
"""This module implements the methods used for storing scraped metadata
from arXiv into a mySQL database."""

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from arxivdigest.core import database
from arxivdigest.core.config import CONSTANTS
from arxivdigest.core.scraper.categories import sub_category_names
from arxivdigest.core.scraper.scrape_metadata import get_categories

def insert_into_db(metaData):
 """Inserts the supplied articles into the database.
 Duplicate articles are ignored."""
 print('Trying to insert %d elements into the database.' % len(metaData))
 conn = database.get_connection()
 cur = conn.cursor()
 try:
 insert_categories(metaData, cur)
 article_category_sql = 'insert into article_categories values(%s,%s)'

 for i, (article_id, article) in enumerate(metaData.items()):
 insert_article(cur, article_id, article)

 if cur.rowcount == 0: # Ignore article already in database
 continue
 for category in article['categories']:
 cur.execute(article_category_sql, (article_id, category))
 for author in article['authors']:
 insert_author(cur, article_id, author['firstname'],
 author['lastname'], author['affiliations'])

 conn.commit()
 print('\rInserted {} elements.'.format(i), end='')
 print('\nSuccessfully inserted the elements.')
 finally:
 cur.close()
 conn.close()

def truncate_value(value, max_length):
 err_msg = 'Value: {} was to long for column and was truncated to {}.'
 if value and len(value) > max_length:
 old_value = value
 value = value[:CONSTANTS.max_human_name_length]
 print(err_msg.format(old_value, value))
 return value

def insert_article(cur, article_id, article):
 """Inserts article into articles table."""
 sql = 'INSERT IGNORE INTO articles VALUES(%s,%s,%s,%s,%s,%s,%s,%s)'
 title = truncate_value(article['title'], CONSTANTS.max_title_length)
 journal = truncate_value(article['journal'], CONSTANTS.max_journal_length)
 license = truncate_value(article['license'], CONSTANTS.max_license_length)

 data = [article_id, title, article['description'], article['doi'],
 article['comments'], license, journal, article['datestamp']]
 cur.execute(sql, data)

def insert_author(cur, article_id, firstname, lastname, affiliations):
 """Inserts author into authors table."""

 sql = 'INSERT INTO article_authors VALUES(null,%s,%s,%s)'
 firstname = truncate_value(firstname, CONSTANTS.max_human_name_length)
 lastname = truncate_value(lastname, CONSTANTS.max_human_name_length)

 cur.execute(sql, (article_id, firstname, lastname))
 insert_affiliations(cur, cur.lastrowid, affiliations)

def insert_affiliations(cur, author_id, affiliations):
 """Inserts affiliations for author into author_affiliations."""
 sql = 'INSERT INTO author_affiliations VALUES(%s,%s)'
 data = []
 for affiliation in affiliations:
 affiliation = truncate_value(affiliation,
 CONSTANTS.max_affiliation_length)
 data.append((author_id, affiliation))
 cur.executemany(sql, data)

def insert_categories(metaData, cursor):
 """Inserts all categories from the metaData into the database"""
 categories = set()
 categoryNames = get_categories()
 for value in metaData.values():
 for category in value['categories']:
 c = category.split('.')

 try:
 categoryName = categoryNames[c[0]]['name']
 except KeyError:
 categoryName = c[0]
 print(
 'Update category name manually: could not find name for %s' % c[0])
 # generate natural name for category
 try:
 subcategoryName = sub_category_names[category]
 except KeyError:
 subcategoryName = category
 print('Could not find name for category: %s.' % category)
 name = categoryName
 name += '.' + subcategoryName if len(c) > 1 else ''
 # add both main category and sub category to database
 categories.add((category, c[0], (c[1:] + [None])[0], name))
 categories.add((c[0], c[0], None, categoryName))

 sql = 'replace into categories values(%s,%s,%s,%s)'
 cursor.executemany(sql, list(categories))

arxivdigest/core/__init__.py

-*- coding: utf-8 -*-

import re

from jinja2 import escape
from markupsafe import Markup

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

def md_bold(text):
 """Replaces **text** with bold tags."""
 text = str(escape(text))
 text = re.sub('**(.*?)**', r'\1', text)
 return Markup(text)

arxivdigest/frontend/app.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import os
import pathlib
import shutil

import jwt
from flask import Flask
from flask import g
from flask import request
from flask_assets import Bundle
from flask_assets import Environment
from flask_wtf import CSRFProtect

import arxivdigest
from arxivdigest.core.config import config_frontend
from arxivdigest.core.config import jwtKey
from arxivdigest.core.config import secret_key
from arxivdigest.frontend.views import admin
from arxivdigest.frontend.views import articles
from arxivdigest.frontend.views import evaluation
from arxivdigest.frontend.views import general
from arxivdigest.frontend.views import topics
from arxivdigest.frontend.views.articles import topic_flag

app = Flask(__name__)
app.secret_key = secret_key
app.register_blueprint(general.mod)
app.register_blueprint(articles.mod)
app.register_blueprint(evaluation.mod)
app.register_blueprint(admin.mod, url_prefix='/admin')
app.config['max_content_length'] = config_frontend.get('max_content_length')

if topic_flag:
 app.register_blueprint(topics.mod)

csrf = CSRFProtect(app)
assets = Environment(app)
if config_frontend.get('data_path', None):
 data_path = config_frontend['data_path']
 cache_path = os.path.join(data_path, 'cache', '.webassets-cache')
 static_path = os.path.abspath(os.path.join(data_path, 'static'))

 pathlib.Path(cache_path).mkdir(parents=True, exist_ok=True)

 assets.cache = os.path.abspath(cache_path)
 assets.directory = os.path.abspath(static_path)
 app.static_folder = static_path

 if os.path.exists(static_path):
 shutil.rmtree(static_path)
 shutil.copytree(os.path.join(app.root_path, 'static'), static_path)

Do not automatically build assets in deployment for performance
assets.auto_build = False
assets.append_path(os.path.join(app.root_path, 'uncompiled_assets'))

js_bundle = Bundle('javascript/autocomplete.js',
 'javascript/evaluation.js',
 'javascript/utils.js',
 'javascript/forms.js',
 'javascript/articlelist.js',
 'javascript/admin.js',
 filters='jsmin',
 output='generated/js/base.%(version)s.js')

if topic_flag:
 js_bundle = Bundle('javascript/autocomplete.js',
 'javascript/evaluation.js',
 'javascript/utils.js',
 'javascript/forms.js',
 'javascript/articlelist.js',
 'javascript/admin.js',
 'javascript/topics.js',
 filters='jsmin',
 output='generated/js/base.%(version)s.js')

css_bundle = Bundle('css/style.css',
 filters='cssmin',
 output='generated/css/base.%(version)s.css')

assets.register('js_base', js_bundle)
assets.register('css_base', css_bundle)
js_bundle.build()
css_bundle.build()

@app.template_filter('md_bold')
def md_bold(text):
 """Replaces **text** with bold tags."""
 return arxivdigest.core.md_bold(text)

@app.before_request
def before_request():
 """Checks authTokens before requests to check if users are logged in or not"""
 authToken = request.cookies.get("auth")
 try:
 payload = jwt.decode(authToken, jwtKey)
 g.user = payload.get('sub', None)
 g.email = payload.get('email', None)
 g.admin = payload.get('admin', False)
 g.inactive = payload.get('inactive', True)
 g.loggedIn = True
 except Exception:
 g.user = None
 g.email = None
 g.admin = False
 g.loggedIn = False
 g.inactive = True

@app.teardown_appcontext
def teardownDb(exception):
 """Tears down the database connection after the request is done."""
 db = getattr(g, '_database', None)
 if db is not None:
 db.close()

if app.debug: # If started by a debugger
 assets.auto_build = True
 app.config['ASSETS_DEBUG'] = True

if __name__ == '__main__':
 assets.auto_build = True
 app.config['ASSETS_DEBUG'] = True
 app.run(port=config_frontend.get('dev_port'), debug=True)

arxivdigest/frontend/database/admin.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import datetime

from arxivdigest.frontend.database.db import getDb

def isAdmin(id):
 '''Returns True if if the user with user_id of id is an admin and false if not.'''
 cur = getDb().cursor()
 cur.execute('SELECT admin FROM users where user_id=%s', (id,))
 admin = cur.fetchone()[0]
 cur.close()
 return True if admin is 1 else False

def getSystems():
 """Returns list of all recommending systems with null values if
 the systems are not connected to a user."""
 cur = getDb().cursor(dictionary=True)
 cur.execute('''select system_id, api_key, active, email, firstname, lastname,
 organization, system_name from systems left join users
 on users.user_id = systems.admin_user_id;''')
 systems = cur.fetchall()
 cur.close()
 return systems

def getSystem(ID):
 '''Returns requested system.'''
 cur = getDb().cursor(dictionary=True)
 cur.execute('''SELECT * FROM systems left join users
 on users.user_id = systems.admin_user_id
 where system_id = %s''', (ID,))
 data = cur.fetchone()
 cur.close()
 return data

def toggleSystem(systemID, value):
 '''Sets active to value for given system. Returns true if successful, false if unsuccessful'''
 cur = getDb().cursor()
 sql = 'UPDATE systems SET active=%s WHERE system_id = %s'
 cur.execute(sql, (value, systemID,))
 if cur.rowcount == 0:
 return False
 getDb().commit()
 cur.close()
 return True

def getUserStatistics():
 '''Returns statistics about the users'''
 cur = getDb().cursor()
 sql = 'select count(*), DATE(registered) from users group by DATE(registered) order by registered desc limit 30'
 cur.execute(sql)
 usersByDate = cur.fetchall()
 cur.execute('SELECT count(*) from users')
 total = cur.fetchall()[0][0]

 today = datetime.datetime.today()
 dateList = [(today - datetime.timedelta(days=x)).strftime("%Y-%m-%d")
 for x in range(0, 30)]
 i = 0
 users = []
 for x in dateList:
 if str(usersByDate[i][1]) == x:
 users.append(usersByDate[i][0])
 i += 1
 else:
 users.append(0)

 users.reverse(),
 dateList.reverse(),
 result = {'users': users,
 'dates': dateList,
 'total': total}
 cur.close()
 return result

def getArticleStatistics():
 '''Returns statistics about the articles '''
 cur = getDb().cursor()
 sql = 'select count(*), datestamp from articles group by datestamp order by datestamp desc limit 30'
 cur.execute(sql)
 articlesByDate = cur.fetchall()
 cur.execute('SELECT count(*) from articles')
 total = cur.fetchall()[0][0]

 today = datetime.datetime.today()
 dateList = [(today - datetime.timedelta(days=x)).strftime("%Y-%m-%d")
 for x in range(0, 30)]
 i = 0
 articles = []
 for x in dateList:
 if i < len(articlesByDate) and str(articlesByDate[i][1]) == x:
 articles.append(articlesByDate[i][0])
 i += 1
 else:
 articles.append(0)

 articles.reverse(),
 dateList.reverse(),
 result = {'articles': articles,
 'dates': dateList,
 'total': total}
 cur.close()
 return result

def getAdmins():
 '''Returns admin users id, email and names'''
 cur = getDb().cursor(dictionary=True)
 sql = 'select user_id, email, firstname, lastname from users where admin=1'
 cur.execute(sql)
 admindata = cur.fetchall()
 cur.close()
 return admindata

arxivdigest/frontend/database/articles.py

-*- coding: utf-8 -*-
from contextlib import closing

from flask import g

from arxivdigest.frontend.database.db import getDb

def getSavedArticles(userid, interval, order, start, n):
 '''Returns saved articles for user with userid and total number of saved articles in the result set. Interval is the number of days before today which should be included in the result,
 order should be one of "titleasc","titledesc","scoreasc" and "scoredesc" and decides the order the resulting articles are sorted,
 start the position in the result set the returned result begins at, and n is the number of recomendations returned.'''
 cur = getDb().cursor(dictionary=True)
 orders = {'titleasc': 'title ASC', 'titledesc': 'title DESC',
 'scoreasc': 'score ASC', 'scoredesc': 'score DESC'}

 # IMPORTANT sanitizes order, against sql injection
 order = orders.get(order.lower(), 'recommendation_date DESC')
 sql = '''SELECT SQL_CALC_FOUND_ROWS article_id,saved,title,abstract,explanation, GROUP_CONCAT(concat(firstname," ",lastname) SEPARATOR ', ') as authors
 FROM article_feedback
 NATURAL JOIN articles NATURAL JOIN article_authors
 WHERE user_id = %s AND saved IS NOT NULL AND DATE(recommendation_date) >= DATE_SUB(UTC_DATE(), INTERVAL %s DAY)
 group by article_id ORDER BY {} LIMIT %s,%s'''.format(order)
 cur.execute(sql, (userid, interval, start, n,))
 articles = cur.fetchall()
 cur.execute('SELECT FOUND_ROWS() as total',)
 total = cur.fetchone()['total']
 cur.close()
 return articles, total

def getUserRecommendations(userid, interval, order, start, n):
 '''Returns recommended articles for user with userid and total number of recomendations in the result set. Interval is the number of days before today which should be included in the result,
 order should be one of "titleasc","titledesc","scoreasc" and "scoredesc" and decides the order the resulting articles are sorted,
 start the position in the result set the returned result begins at, and n is the number of recomendations returned.'''
 cur = getDb().cursor(dictionary=True)
 orders = {'titleasc': 'title ASC', 'titledesc': 'title DESC',
 'scoreasc': 'score ASC', 'scoredesc': 'score DESC'}

 # IMPORTANT sanitizes order, against sql injection
 order = orders.get(order.lower(), 'score DESC')
 sql = '''SELECT SQL_CALC_FOUND_ROWS article_id,saved,title,abstract,explanation, GROUP_CONCAT(concat(firstname," ",lastname) SEPARATOR ", ") as authors
 FROM article_feedback
 NATURAL JOIN articles NATURAL JOIN article_authors
 WHERE user_id = %s AND DATE(recommendation_date) >= DATE_SUB(UTC_DATE(), INTERVAL %s DAY)
 group by article_id ORDER BY {} LIMIT %s,%s'''.format(order)
 cur.execute(sql, (userid, interval, start, n,))

 articles = cur.fetchall()
 cur.execute('SELECT FOUND_ROWS() as total',)
 total = cur.fetchone()['total']
 cur.close()

 return articles, total

def saveArticle(articleId, userid, setTo):
 '''Sets saved to setTo for given article and user. Returns true if successful save, false if unsuccessful'''
 cur = getDb().cursor()
 if setTo:
 sql = 'UPDATE article_feedback SET saved=CURRENT_TIMESTAMP WHERE article_id = %s AND user_id = %s'
 else:
 sql = 'UPDATE article_feedback SET saved=null WHERE article_id = %s AND user_id = %s'
 cur.execute(sql, (articleId, userid,))
 if cur.rowcount == 0:
 return False
 getDb().commit()
 cur.close()
 return True

def saveArticleEmail(articleId, userid, trace):
 '''Sets saved to true for given article,user and trace. Returns True on succes and False on failure.'''
 conn = getDb()
 cur = conn.cursor()
 result = 0
 sql = 'UPDATE article_feedback SET saved=CURRENT_TIMESTAMP WHERE article_id = %s AND user_id = %s AND trace_save_email = %s'
 cur.execute(sql, (articleId, userid, trace))
 result = cur.rowcount

 cur.close()
 conn.commit()

 return True if result > 0 else False

def clickedArticleEmail(articleId, userid, trace):
 '''Sets clicked_email to true for given article,user and trace. Returns True on success and False on failure.'''
 conn = getDb()
 cur = conn.cursor()

 sql = 'UPDATE article_feedback SET clicked_email=CURRENT_TIMESTAMP WHERE article_id = %s AND user_id = %s AND trace_click_email = %s'
 cur.execute(sql, (articleId, userid, trace))
 result = cur.rowcount

 cur.close()
 conn.commit()

 return True if result > 0 else False

def clickArticle(articleId, userid):
 '''Sets clicked_web to true for given article and user. Returns True on success.'''
 conn = getDb()
 cur = conn.cursor()
 sql = 'UPDATE article_feedback SET clicked_web=CURRENT_TIMESTAMP WHERE article_id = %s AND user_id = %s'

 cur.execute(sql, (articleId, userid,))
 cur.close()
 conn.commit()
 return True

def seenArticle(articles):
 '''Sets seen_web to true for given articles and useres. Returns True on success.
 <articles> should be a list of tuples: [(article,user),(article,user)].'''
 conn = getDb()
 cur = conn.cursor()
 sql = 'UPDATE article_feedback SET seen_web=CURRENT_TIMESTAMP WHERE article_id=%s AND user_id = %s'
 cur.executemany(sql, articles)
 cur.close()
 conn.commit()
 return True

def article_is_recommended_for_user(article_id):
 """Checks if article has been shown to user."""
 with closing(getDb().cursor()) as cur:
 cur.execute('''SELECT EXISTS(SELECT article_id FROM article_feedback
 WHERE user_id = %s AND article_id = %s)''',
 (g.user, article_id))
 return cur.fetchone()[0] == 1

def get_article_feedback(article_id):
 """Checks if article has been shown to user."""
 with closing(getDb().cursor(dictionary=True)) as cur:
 cur.execute('''SELECT * FROM articles NATURAL JOIN article_feedback
 WHERE article_id = %s AND user_id = %s''',
 [article_id, g.user])
 return cur.fetchone()

def get_article_feedback_by_date(start_date, end_date, system=None):
 """Gets all article feedback between start and end date."""
 cur = getDb().cursor(dictionary=True)
 sql = '''SELECT user_id, system_id, DATE(recommendation_date) as date,
 clicked_email, clicked_web, saved, seen_web, seen_email
 FROM article_feedback WHERE DATE(recommendation_date) >= %s AND
 DATE(recommendation_date) <= %s'''
 if system:
 sql += 'AND system_id = %s'
 cur.execute(sql, (start_date, end_date, system))
 else:
 cur.execute(sql, (start_date, end_date))
 return cur.fetchall()

arxivdigest/frontend/database/db.py

-*- coding: utf-8 -*-
from flask import g
from mysql import connector

from arxivdigest.core.config import config_sql

def getDb():
 """Sets up a database connection."""
 db = getattr(g, '_database', None)
 if db is None:
 db = g._database = connector.connect(**config_sql)
 return db

arxivdigest/frontend/database/general.py

-*- coding: utf-8 -*-
from flask import g

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import datetime
from contextlib import closing
from datetime import datetime
from uuid import uuid4

import mysql.connector
from mysql import connector
from mysql.connector import errorcode
from passlib.hash import pbkdf2_sha256

from arxivdigest.frontend.database.db import getDb
from arxivdigest.core.interleave import multileave_topics

def get_user(user_id):
 """Gets userdata.

 :param user_id: Id of user to get.
 :return: User data as dictionary.
 """
 cur = getDb().cursor(dictionary=True)
 sql = '''SELECT user_id, email, firstname, lastname, organization,
 notification_interval, registered, last_email_date,
 last_recommendation_date, dblp_profile, google_scholar_profile,
 semantic_scholar_profile, personal_website
 FROM users WHERE user_id = %s'''
 cur.execute(sql, (user_id,))
 user = cur.fetchone()
 if not user:
 return None
 # Add categories to user
 sql = '''SELECT u.category_id,c.category_name FROM user_categories u
 NATURAL JOIN categories c WHERE u.user_id = %s'''
 cur.execute(sql, (user_id,))
 user['categories'] = sorted(cur.fetchall(),
 key=lambda x: x['category_name'])

 # Add topics to user
 sql = '''SELECT t.topic_id, t.topic FROM user_topics ut
 NATURAL JOIN topics t WHERE user_id = %s AND NOT t.filtered
 and ut.state in ('USER_ADDED','SYSTEM_RECOMMENDED_ACCEPTED')'''
 cur.execute(sql, (user_id,))
 user['topics'] = sorted(cur.fetchall(), key=lambda x: x['topic'])
 cur.close()
 return user

def updatePassword(id, password):
 """Hash and update password to user with id. Returns True on success\""""
 conn = getDb()
 cur = conn.cursor()
 passwordsql = 'UPDATE users SET salted_hash = %s WHERE user_id = %s'
 password = password.encode('utf-8')
 hashedPassword = pbkdf2_sha256.hash(password)
 cur.execute(passwordsql, (hashedPassword, id,))
 cur.close()
 conn.commit()
 return True

def insertUser(user):
 """Inserts user object into database.

 :param user: User-object to insert.
 :return: ID of inserted user.
 """
 user.hashed_password = pbkdf2_sha256.hash(user.password.encode('utf-8'))
 user.registered = datetime.utcnow().strftime('%Y-%m-%d-%H-%M-%S')

 conn = getDb()
 with closing(conn.cursor()) as cur:
 sql = '''INSERT INTO users(email, salted_hash, firstname, lastname,
 notification_interval, registered, organization,
 dblp_profile, google_scholar_profile,
 semantic_scholar_profile, personal_website, unsubscribe_trace)
 VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)'''

 cur.execute(sql, (user.email, user.hashed_password, user.firstname,
 user.lastname, user.notification_interval,
 user.registered, user.organization, user.dblp_profile,
 user.google_scholar_profile,
 user.semantic_scholar_profile, user.personal_website,
 str(uuid4())))

 user_id = cur.lastrowid

 set_user_categories(user_id, user)
 set_user_topics(user_id, user)

 conn.commit()
 return user_id

def insertSystem(system_name, user_id):
 """Inserts a new system into the database, name will be used as Name for the system,
 and using uuid a random API-key is generated. Returns None, key if successfull and an error, None if not."""
 conn = getDb()
 cur = conn.cursor()
 sql = 'INSERT INTO systems VALUES(null, %s, %s, False, %s)'
 key = str(uuid4())
 try:
 cur.execute(sql, (key, system_name, user_id))
 except connector.errors.IntegrityError as e:
 col = str(e).split("key ", 1)[1]
 if col == "'system_name'":
 return "System name already in use by another system.", None
 else:
 return "Error, can not connect to server. Try again later", None
 conn.commit()
 return None, key

def update_user(user_id, user):
 """Update user with user_id. User object contains new info for this user."""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 sql = '''UPDATE users SET email = %s, firstname = %s, lastname = %s,
 organization = %s, personal_website = %s, dblp_profile = %s,
 google_scholar_profile = %s, semantic_scholar_profile = %s,
 notification_interval = %s
 WHERE user_id = %s'''
 cur.execute(sql, (user.email, user.firstname, user.lastname,
 user.organization, user.personal_website,
 user.dblp_profile, user.google_scholar_profile,
 user.semantic_scholar_profile,
 user.notification_interval, user_id))
 set_user_categories(user_id, user)
 set_user_topics(user_id, user)
 conn.commit()

def set_user_categories(user_id, user):
 """Helper function for setting user categories does not
 commit."""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 cur.execute('DELETE FROM user_categories WHERE user_ID = %s', [user_id])
 data = [(user_id, category_id) for category_id in user.categories]
 cur.executemany('INSERT INTO user_categories VALUES(%s, %s)', data)

def set_user_topics(user_id, user):
 """Helper function for setting user topics, does not
 commit."""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 cur.executemany('INSERT IGNORE INTO topics(topic) VALUE(%s)',
 [(t,) for t in user.topics])

 placeholders = ','.join(['%s']*len(user.topics))
 select_topics = '''SELECT topic_id FROM topics where topic
 in ({})'''.format(placeholders)

 cur.execute(select_topics, user.topics)
 topic_ids = cur.fetchall()

 current_time = datetime.utcnow()
 topic_ids = [t[0] for t in topic_ids]

 topic_update_sql = '''insert ignore into user_topics(user_id, topic_id, state,
 interaction_time) values(%s, %s, 'USER_ADDED', %s)'''
 cur.executemany(topic_update_sql, [(user_id, t, current_time) for t in topic_ids])

 topic_update_sql = '''update user_topics set state = 'USER_REJECTED',
 interaction_time = %s where
 user_id = %s and state = 'USER_ADDED' and topic_id
 not in ({})'''.format(placeholders)
 cur.execute(topic_update_sql, [current_time, user_id, *topic_ids])

 topic_update_sql = '''update user_topics set state = 'SYSTEM_RECOMMENDED_REJECTED',
 interaction_time =%s where
 user_id = %s and state = 'SYSTEM_RECOMMENDED_ACCEPTED' and topic_id
 not in ({})'''.format(placeholders)
 cur.execute(topic_update_sql, [current_time, user_id, *topic_ids])

 topic_update_sql = '''update user_topics set state = 'USER_ADDED',
 interaction_time = %s where
 user_id = %s and state in ('SYSTEM_RECOMMENDED_REJECTED', 'EXPIRED',
 'REFRESHED') and topic_id in ({})'''.format(placeholders)
 cur.execute(topic_update_sql, [current_time, user_id, *topic_ids])

 topic_update_sql = '''update user_topics set state = 'USER_ADDED',
 interaction_time = %s where
 user_id = %s and state = 'USER_REJECTED' and topic_id
 in ({})'''.format(placeholders)
 cur.execute(topic_update_sql, [current_time, user_id, *topic_ids])

def validatePassword(email, password):
 """Checks if users password is correct. Returns userid if correct password,
 none if user does not exists and false if incorrect password"""
 cur = getDb().cursor()
 sql = 'SELECT user_id,salted_Hash FROM users WHERE email = %s'
 cur.execute(sql, (email,))
 user = cur.fetchone()
 cur.close()

 if not user:
 return None
 if pbkdf2_sha256.verify(password.encode('utf-8'), user[1].encode('utf-8')):
 return user[0]
 return False

def userExist(email):
 """Checks if email is already in use by another user.
 Returns True if in use and False if not."""
 cur = getDb().cursor()
 sql = 'SELECT user_id FROM users WHERE email = %s'
 cur.execute(sql, (email,))
 row = cur.fetchone()
 cur.close()
 if not row:
 return False
 return False if row[0] == g.user else True

def getCategoryNames():
 """Returns list of article categories available in the database"""
 cur = getDb().cursor()
 cur.execute('SELECT category_id,category_name FROM categories')
 data = cur.fetchall()
 cur.close()
 return [[x[0], x[1]] for x in data]

def insertFeedback(user_id, article_id, type, feedback_text, feedback_values):
 """Inserts feedback into the database.

 :param user_id: ID of user that gave feedback or None if unknown.
 :param article_id: ID of article feedback is about if article
 recommendation feedback
 :param type: Type of feedback
 :param feedback_text: Freetext feedback
 :param feedback_values: Dictionary of key: value feedback pairs
 :return None or error string
 """
 conn = getDb()
 cur = conn.cursor()
 feedback_values = ','.join(['{}:{}'.format(k, v)
 for k, v in feedback_values.items()])

 try:
 cur.execute('''INSERT INTO feedback
 (user_id, article_id, type, feedback_text, feedback_values)
 VALUES(%s, %s, %s, %s, %s)''',
 (user_id, article_id, type, feedback_text, feedback_values))

 except mysql.connector.errors.IntegrityError as e:
 if e.errno == errorcode.ER_NO_REFERENCED_ROW_2:
 return "Unknown article id."
 raise
 conn.commit()
 cur.close()

def get_freetext_feedback(user_id):
 """Get freetext feedback from given user.
 :param user_id: User to get feedback for.
 :return: List of feedback instances.
 """
 cur = getDb().cursor(dictionary=True)
 sql = '''SELECT article_id, type, feedback_text, feedback_values
 FROM feedback WHERE user_id = %s'''
 cur.execute(sql, (user_id,))
 return cur.fetchall()

def get_article_recommendations(user_id):
 """Get article recommendations for given user. Includes user interaction
 data if the recommendation has been shown to the user.

 :param user_id: User to get feedback for.
 :return: List of system recommendation instances.
 """
 cur = getDb().cursor(dictionary=True)
 sql = '''SELECT sr.article_id, s.system_name, sr.explanation,
 sr.score AS system_score, ur.score AS recommendation_order,
 ur.seen_email, ur.seen_web, ur.clicked_email, ur.clicked_web,
 ur.saved, sr.recommendation_date
 FROM article_recommendations sr
 NATURAL JOIN systems s
 LEFT JOIN article_feedback ur
 ON sr.article_id = ur.article_id
 AND sr.user_id = ur.user_id
 AND sr.system_id = ur.system_id
 WHERE sr.user_id = %s
 ORDER BY sr.recommendation_date desc,
 s.system_name desc, sr.score desc'''
 cur.execute(sql, (user_id,))
 return cur.fetchall()

def get_topic_recommendations(user_id):
 """Get topic recommendations for given user. Includes user interaction data
 if the recommendation has been shown to the user.

 :param user_id: User to get feedback for.
 :return: List of system recommendation instances.
 """
 cur = getDb().cursor(dictionary=True)
 sql = '''SELECT topic, system_name, datestamp, system_score,
 interleaving_order, seen, clicked, state, interaction_time
 FROM topic_recommendations tr
 NATURAL JOIN topics t
 NATURAL LEFT JOIN user_topics ut
 NATURAL LEFT JOIN systems s
 WHERE user_id = %s
 ORDER BY datestamp desc, system_name desc, system_score desc;'''
 cur.execute(sql, (user_id,))
 return cur.fetchall()

def get_systems(user_id):
 """Gets systems belonging to a user.

 :param user_id: User to get feedback for.
 :return: List of system dictionaries.
 """
 with closing(getDb().cursor(dictionary=True)) as cur:
 sql = '''SELECT system_id, system_name, api_key, active
 FROM systems WHERE admin_user_id = %s'''
 cur.execute(sql, (user_id,))
 return cur.fetchall()

def get_all_userdata(user_id):
 """Get all data for the given user as a dictionary.

 :param user_id: Id of the user to retrieve data for.
 :return: Dictionary of userdata.
 """

 return {'user': get_user(user_id),
 'freetext_feedback': get_freetext_feedback(user_id),
 'topic_recommendations': get_topic_recommendations(user_id),
 'article_recommendations': get_article_recommendations(user_id),
 'systems': get_systems(user_id)}

def get_user_systems(user_id):
 """Gets systems belonging to a user."""
 conn = getDb()
 cur = conn.cursor(dictionary=True)
 sql = '''select system_id, api_key, active, email, firstname, lastname,
 organization, system_name from systems left join users on
 users.user_id = systems.admin_user_id where users.user_id = %s'''
 cur.execute(sql, (user_id,))
 systems = cur.fetchall()
 cur.close()
 return systems

def search_topics(search_string, max_results=50):
 """Searches the topics table for topics starting with `search_string`.

 :param search_string: String topics should start with.
 :param max_results: Number of results to return.
 :return: List of topics.
 """
 with closing(getDb().cursor()) as cur:
 sql = '''SELECT topic FROM topics WHERE topic
 LIKE CONCAT(LOWER(%s), '%') LIMIT %s'''
 cur.execute(sql, (search_string, max_results))
 return [x[0] for x in cur.fetchall()]

def get_user_topics(user_id):
 """Returns list of top nr recommended topics for a user and marks
 these topics as seen."""
 conn = getDb()
 with closing(conn.cursor(dictionary=True)) as cur:
 sql = '''SELECT tr.topic_id, t.topic
 FROM topic_recommendations tr INNER JOIN topics t
 ON t.topic_id = tr.topic_id
 LEFT JOIN user_topics ut
 ON ut.topic_id = tr.topic_id AND tr.user_id = ut.user_id
 WHERE tr.user_id = %s
 AND ut.state IS NULL
 AND tr.interleaving_batch = (
 SELECT max(interleaving_batch)
 FROM topic_recommendations
 WHERE user_id = %s
 AND interleaving_batch >
 DATE_SUB(%s, INTERVAL 24 HOUR))
 ORDER BY tr.interleaving_order DESC'''
 cur.execute(sql, (user_id, user_id, datetime.utcnow()))
 topics = cur.fetchall()

 if not topics:
 # Marks any previous suggested topics as expired if any.
 # Then runs topic interleaver for new topics
 clear_suggested_user_topics(user_id,'EXPIRED')
 multileave_topics.run(user_id)
 cur.execute(sql, (user_id, user_id,datetime.utcnow()))
 topics = cur.fetchall()

 seen_sql = '''update topic_recommendations set
 seen = %s where topic_id = %s
 and user_id = %s and interleaving_batch is
 not NULL and seen is NULL'''
 current_time = datetime.utcnow()
 data = [(current_time, topic['topic_id'], user_id) for topic in topics]
 cur.executemany(seen_sql, data)
 conn.commit()

 return topics

def clear_suggested_user_topics(user_id, state):
 """Clears the users current suggested topics by setting the values for that topic
 to the supplied state(REFRESHED/EXPIRED) for that user"""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 select_topics_sql = '''SELECT tr.topic_id
 FROM topic_recommendations tr LEFT JOIN
 user_topics ut ON ut.topic_id = tr.topic_id
 AND ut.user_id = tr.user_id
 WHERE ut.state IS NULL
 AND tr.interleaving_batch IS NOT NULL
 AND tr.user_id = %s'''
 cur.execute(select_topics_sql, (user_id,))
 topics = cur.fetchall()

 clear_sql = '''insert into user_topics (user_id, topic_id, state, interaction_time)
 values(%s, %s, %s, %s)'''
 current_time = datetime.utcnow()
 data = [(user_id, int(topic[0]), state, current_time) for topic in topics]
 cur.executemany(clear_sql, data)
 conn.commit()

def update_user_topic(topic_id, user_id, state):
 """Sets interaction time, state and seen flag for the supplied topic
 to the current datetime."""
 conn = getDb()
 with closing(conn.cursor(dictionary=True)) as cur:
 user_topics_sql = '''insert into user_topics values (%s,%s,%s,%s)'''
 topic_recommendations_sql = '''update topic_recommendations set clicked = %s
 where user_id = %s and topic_id = %s and interleaving_order is not null'''
 current_time = datetime.utcnow()
 cur.execute(user_topics_sql, (user_id, topic_id, state, current_time))
 cur.execute(topic_recommendations_sql, (current_time, user_id, topic_id))
 conn.commit()
 return cur.rowcount == 1

def is_activated(user_id):
 """Checks if a user has activated their account. Returns True or false"""
 cur = getDb().cursor()
 cur.execute('SELECT inactive FROM users where user_id=%s', (user_id,))
 inactive = cur.fetchone()[0]
 cur.close()
 return False if inactive is 1 else True

def add_activate_trace(trace, email):
 """Connects the trace from the activation email to the user."""
 conn = getDb()
 cur = conn.cursor()
 sql = '''update users set activate_trace = %s where email = %s'''
 cur.execute(sql, (trace, email))
 conn.commit()
 cur.close()

def activate_user(trace):
 """Activates the user with the supplied trace."""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 sql = '''update users set inactive = 0 where activate_trace = %s'''
 cur.execute(sql, (trace,))
 conn.commit()
 return cur.rowcount == 1

def update_email(email, user_id):
 """Updates the email for a user."""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 sql = '''update users set email = %s where user_id = %s'''
 cur.execute(sql, (email, user_id))
 conn.commit()

def digest_unsubscribe(trace):
 """Unsubscribes the user with the supplied trace from the
 digest email and assigns a new unsubscribe trace to the user."""
 conn = getDb()
 with closing(conn.cursor()) as cur:
 sql = '''update users set notification_interval = 0,
 unsubscribe_trace = %s where unsubscribe_trace = %s'''
 cur.execute(sql, (str(uuid4()) , trace))
 conn.commit()
 return cur.rowcount == 1

def get_topic_feedback_by_date(start_date, end_date, system=None):
 """Gets all topic feedback between start and end date."""
 cur = getDb().cursor(dictionary=True)
 sql = '''SELECT tr.user_id, tr.system_id, tr.interleaving_batch, ut.state
 FROM topic_recommendations tr JOIN user_topics ut
 ON tr.user_id = ut.user_id AND tr.topic_id = ut.topic_id
 WHERE tr.interleaving_order IS NOT NULL AND
 tr.interleaving_batch >= %s AND tr.interleaving_batch <= %s'''
 if system:
 sql += 'AND tr.system_id = %s'
 cur.execute(sql, (start_date, end_date, system))
 else:
 cur.execute(sql, (start_date, end_date))
 return cur.fetchall()

arxivdigest/frontend/forms/feedback_form.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from flask_wtf import FlaskForm
from wtforms import HiddenField
from wtforms import RadioField
from wtforms import SelectField
from wtforms import TextAreaField
from wtforms.validators import AnyOf
from wtforms.validators import DataRequired
from wtforms.validators import Length

from arxivdigest.frontend.forms.validators import RequireAnyInGroup

class FeedbackForm(FlaskForm):
 """Form used by users to give feedback on the service."""

 feedback_type = SelectField('Feedback type',
 choices=[('Bug', 'Found a bug'),
 ('Feature', 'Feature request'),
 ('Other', 'Other')],
 validators=[DataRequired()]
)

 feedback_text = TextAreaField('Feedback:',
 validators=[
 RequireAnyInGroup(group='feedback'),
 Length(max=2500)
],
 render_kw={'maxlength': '2500'})

class ArticleFeedbackForm(FeedbackForm):
 """Form used by users to give feedback on articles."""

 feedback_type = HiddenField('Feedback type', default='Recommendation',
 validators=[DataRequired(),
 AnyOf(['Recommendation'])]
)
 relevance = RadioField(
 'How relevant is this recommendation to you?',
 validators=[
 RequireAnyInGroup(group='feedback'),
],
 coerce=lambda i: None if i in [None, 'None'] else int(i),
 choices=[(None, 'No opinion'), (0, 'Not relevant at all'),
 (1, 'Somewhat'), (2, 'Highly')
],
 default=None
)

 expl_satisfaction = RadioField(
 'This explanation is useful.',
 validators=[
 RequireAnyInGroup(group='feedback'),
],
 coerce=lambda i: None if i in [None, 'None'] else int(i),
 choices=[(None, 'No opinion'), (0, 'Not at all'),
 (1, 'Somewhat'), (2, 'Very much')
],
 default=None
)

 expl_persuasiveness = RadioField(
 'This explanation sounds convincing.',
 validators=[
 RequireAnyInGroup(group='feedback'),
],
 coerce=lambda i: None if i in [None, 'None'] else int(i),
 choices=[(None, 'No opinion'), (0, 'Not at all'),
 (1, 'Somewhat'), (2, 'Very much')
],
 default=None
)

 expl_transparency = RadioField(
 'This explanation helps me understand the reasoning behind this recommendation.',
 validators=[
 RequireAnyInGroup(group='feedback'),
],
 coerce=lambda i: None if i in [None, 'None'] else int(i),
 choices=[(None, 'No opinion'), (0, 'Not at all'),
 (1, 'Somewhat'), (2, 'Very much')
],
 default=None
)

 expl_scrutability = RadioField(
 'This explanation allows me to tell the system if it misunderstood my preferences.',
 validators=[
 RequireAnyInGroup(group='feedback'),
],
 coerce=lambda i: None if i in [None, 'None'] else int(i),
 choices=[(None, 'No opinion'), (0, 'Not at all'),
 (1, 'Somewhat'), (2, 'Very much')
],
 default=None
)

arxivdigest/frontend/forms/validators.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from collections import Counter

from wtforms import ValidationError

class RequireAnyInGroup(object):
 """Validator which only accepts form if at least one field in each group is
 filled out.
 Default null values are, ['', None]
 """

 def __init__(self, group=1, message=None, null_values=None):
 if not null_values:
 null_values = ['', None]
 self.null_values = null_values
 self.group = group
 self.message = message if message else \
 'You must fill out at least one field in the {} group.'.format(
 group)

 def __call__(self, form, field):
 non_empty_fields_in_group = Counter()
 for field_name in form.data.keys():
 for validator in form[field_name].validators:
 if isinstance(validator, RequireAnyInGroup):
 field_data = form.data[field_name]
 if field_data in validator.null_values:
 continue
 non_empty_fields_in_group[validator.group] += 1

 for validator in field.validators:
 if isinstance(validator, RequireAnyInGroup):
 if not non_empty_fields_in_group[validator.group]:
 raise ValidationError(self.message)

arxivdigest/frontend/models/errors.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

class ValidationError(Exception):
 def __init__(self, message):
 self.message = message

arxivdigest/frontend/models/system.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from arxivdigest.frontend.models.errors import ValidationError
from arxivdigest.frontend.models.validate import validEmail
from arxivdigest.frontend.models.validate import validString

class System():
 '''User class containing most user attributes'''

 def __init__(self, system):
 self.email = system.get('email')
 self.contact = system.get('contact')
 self.name = system.get('name')
 self.organization = system.get('organization')

 @property
 def email(self):
 return self._email

 @email.setter
 def email(self, email):
 '''Checks if email is valid email format'''
 if not validEmail(email):
 raise ValidationError('Invalid email.')
 self._email = email

 @property
 def contact(self):
 return self._contact

 @contact.setter
 def contact(self, contact):
 '''Checks if contact seems valid'''
 if not validString(contact, 1, 255):
 raise ValidationError('Invalid contact name.')
 self._contact = contact

 @property
 def name(self):
 return self._name

 @name.setter
 def name(self, name):
 '''Checks if name seems valid'''
 if not validString(name, 1, 255):
 raise ValidationError('Invalid system name.')
 self._name = name

 @property
 def organization(self):
 return self._organization

 @organization.setter
 def organization(self, organization):
 '''Checks if organization seems valid'''
 if not validString(organization, 1, 255):
 raise ValidationError('Invalid organization name')
 self._organization = organization

arxivdigest/frontend/models/user.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import re

from arxivdigest.core.config import CONSTANTS
from arxivdigest.frontend.models.errors import ValidationError
from arxivdigest.frontend.models.validate import validEmail
from arxivdigest.frontend.models.validate import validPassword
from arxivdigest.frontend.models.validate import validString

class User():
 """User class containing most user attributes"""

 def __init__(self, user, require_password=True):
 self.require_password = require_password
 self.email = user.get('email')
 self.password = user.get('password')
 self.firstname = user.get('firstname')
 self.lastname = user.get('lastname')
 self.organization = user.get('organization')
 self.dblp_profile = user.get('dblp_profile', '')
 self.google_scholar_profile = user.get('google_scholar_profile', '')
 self.semantic_scholar_profile = user.get('semantic_scholar_profile', '')
 self.personal_website = user.get('personal_website', '')
 self.topics = user.get('topics')
 self.categories = user.get('categories')
 self.notification_interval = user.get('notification_interval')

 @property
 def email(self):
 return self._email

 @email.setter
 def email(self, email):
 """Checks if email is valid email format"""
 if len(email) > CONSTANTS.max_email_length or not validEmail(email):
 raise ValidationError('Invalid email.')
 self._email = email

 @property
 def password(self):
 return self._password

 @password.setter
 def password(self, password):
 if self.require_password and not validPassword(password):
 raise ValidationError('Invalid password format.')
 self._password = password

 @property
 def firstname(self):
 return self._firstname

 @firstname.setter
 def firstname(self, firstname):
 """Checks if firstname seems valid"""
 if not validString(firstname, 1, CONSTANTS.max_human_name_length):
 raise ValidationError('Invalid firstname format.')
 self._firstname = firstname

 @property
 def lastname(self):
 return self._lastname

 @lastname.setter
 def lastname(self, lastname):
 """Checks if lastname seems valid"""
 if not validString(lastname, 1, CONSTANTS.max_human_name_length):
 raise ValidationError('Invalid lastname fromat.')
 self._lastname = lastname

 @property
 def organization(self):
 return self._organization

 @organization.setter
 def organization(self, organization):
 """Checks if organization name seems valid"""
 if not validString(organization, 1, CONSTANTS.max_organization_length):
 raise ValidationError('Invalid organization name format.')
 self._organization = organization

 @property
 def dblp_profile(self):
 return self._dblp_profile

 @dblp_profile.setter
 def dblp_profile(self, dblp_profile):
 if not dblp_profile:
 self._dblp_profile = ''
 return

 min_length = CONSTANTS.min_url_length
 max_length = CONSTANTS.max_url_length
 if not validString(dblp_profile, min_length, max_length):
 raise ValidationError('Invalid DBLP profile.')

 allowed_prefixes = ('https://dblp.org/', 'https://dblp.uni-trier.de/',
 'dblp.uni-trier.de/', 'dblp.org/')
 if not dblp_profile.startswith(allowed_prefixes):
 raise ValidationError('DBLP url prefix does not match DBLP links.')

 dblp_profile = dblp_profile.replace('dblp.uni-trier.de', 'dblp.org')
 self._dblp_profile = dblp_profile

 @property
 def google_scholar_profile(self):
 return self._google_scholar_profile

 @google_scholar_profile.setter
 def google_scholar_profile(self, google_scholar_profile):
 if not google_scholar_profile:
 self._google_scholar_profile = ''
 return

 min_length = CONSTANTS.min_url_length
 max_length = CONSTANTS.max_url_length
 if not validString(google_scholar_profile, min_length, max_length):
 raise ValidationError('Invalid Google Scholar profile.')

 allowed_prefixes = ('scholar.google.com/', 'https://scholar.google.com/')
 if not google_scholar_profile.startswith(allowed_prefixes):
 raise ValidationError('Google Scholar url prefix does not match Google Scholar links.')
 self._google_scholar_profile = google_scholar_profile

 @property
 def semantic_scholar_profile(self):
 return self._semantic_scholar_profile

 @semantic_scholar_profile.setter
 def semantic_scholar_profile(self, semantic_scholar_profile):
 if not semantic_scholar_profile:
 self._semantic_scholar_profile = ''
 return

 min_length = CONSTANTS.min_url_length
 max_length = CONSTANTS.max_url_length
 if not validString(semantic_scholar_profile, min_length, max_length):
 raise ValidationError('Invalid Semantic Scholar profile.')

 allowed_prefixes = ('semanticscholar.org/author/',
 'https://www.semanticscholar.org/author/',
 'www.semanticscholar.org/author/',
 'https://semanticscholar.org/author/')
 if not semantic_scholar_profile.startswith(allowed_prefixes):
 raise ValidationError('Semantic Scholar url prefix does not match Semantic Scholar links.')

 semantic_scholar_profile = semantic_scholar_profile.replace('www.','')
 self._semantic_scholar_profile = semantic_scholar_profile

 @property
 def personal_website(self):
 return self._personal_website

 @personal_website.setter
 def personal_website(self, personal_website):
 if not personal_website:
 self._personal_website = ''
 return
 min_length = CONSTANTS.min_url_length
 max_length = CONSTANTS.max_url_length
 if not validString(personal_website, min_length, max_length):
 raise ValidationError('Invalid personal website.')
 self._personal_website = personal_website

 @property
 def categories(self):
 return self._categories

 @categories.setter
 def categories(self, categories):
 if isinstance(categories, str):
 categories = [x for x in categories.splitlines() if x is not '']
 self._categories = categories

 @property
 def topics(self):
 return self._topics

 @topics.setter
 def topics(self, topics):
 min_topics = CONSTANTS.min_topics_per_user
 max_length = CONSTANTS.max_topic_length

 if isinstance(topics, str):
 topics = [topic.strip() for topic in topics.lower().splitlines()]
 else:
 raise ValidationError('Topics must be a newline separated string.')
 if len(topics) < min_topics:
 raise ValidationError('You need to provide at least {} '
 'topics.'.format(min_topics))

 for topic in topics:
 if not validString(topic, 1, max_length):
 raise ValidationError(
 'Topics must be shorter than {}.'.format(max_length))
 if not re.match('^[0-9a-zA-Z\-]+$',topic):
 raise ValidationError('Topics must not contain special characters.')

 self._topics = topics

 @property
 def notification_interval(self):
 return self._notification_interval

 @notification_interval.setter
 def notification_interval(self, notification_interval):
 """Sets value of notification_interval"""
 if notification_interval == '7':
 notification_interval = 7
 elif notification_interval == '0':
 notification_interval = 0
 elif notification_interval == '1':
 notification_interval = 1
 if notification_interval not in [1, 7, 0]:
 raise ValidationError('Invalid value:Digest Frequency')
 self._notification_interval = notification_interval

arxivdigest/frontend/models/validate.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import re

def validEmail(email):
 '''Checks if email is valid email format, returns true if valid, false if not.'''
 return re.match('^[a-zA-Z0-9.!#$%&’*+\/=?^_`{|}~-]+@[a-zA-Z0-9-]+(?:\.[a-zA-Z0-9-]+)*$', email) is not None

def validPassword(password):
 '''Returns tue if password is valid, false if invalid.'''
 return re.match('(?=^.{9,256}$)(?=.*\d)(?=.*\W+)(?![.\n])(?=.*[A-Z])(?=.*[a-z]).*$', password) is not None

def validString(string, minLength, maxLength):
 if not isinstance(string, str) or len(string) < minLength or len(string) > maxLength:
 return False
 return True

arxivdigest/frontend/README.md

arXivDigest front-end

The front-end (running at http://arxivdigest.org) is implemented as a Flask application. It provides users with a website for viewing and interacting with the recommendations created for them. The recommendated science papers can be sorted on time intervals such as today, this week, this month and all time. They can also be sorted by title or score. It also includes an admin panel for managing experimental recommender systems.

Overview

Routes available:

``/ @requiresLogin``

>Returns index page and dirctionary of index page settings, drop down values and articles as sub dictionary.

``/signup [GET]``

>Returns signup page if you're not logged in. Else returns index page.

``/signup [POST]``

>Goes to signup function. Returns a jwt token and index page if successful. Else returns error message and signup page.

``/logout [GET]``

>Goes to logout function. Logs out user and sets token expires=0. Returns index page.

``/profile [GET] @requiresLogin``

>Returns user profile page with user information.

``/modify [GET] @requiresLogin``

>Returns modify user page.

``/modify [POST] @requiresLogin``

>Returns user profile page if successful. Else return error and modify page.

``/passwordChange [GET] @requiresLogin``

>Returns page for change of password.

``/passwordChange [POST] @requiresLogin``

>Returns profile page if successful. Else returns error and password change page.

``/login [GET]``

>Returns login page if you're not logged in. Else returns index page.

``/login [POST]``

>Returns token in successful login. Else returns error and loginpage.

``/savedarticles [GET] @requiresLogin``

>Returns saved articles page with dictionary of saved articles.

``/save/<articleID>/<state> [GET] @requiresLogin``

>Saves or removes articles from web, depending on current state. Returns "Success" or "Fail".

``/mail/save/<int:userID>/<string:articleID>/<uuid:trace> [GET]``

>Saves article directly from email based on userid, articleid and a trace from the email.

``/mail/read/<int:userID>/<string:articleID>/<uuid:trace> [GET]``

>Records if article was clicked from email.

``/click/<string:articleId> [GET] @requiresLogin``

>Records if article was clicked from web. Returns redirect to arXiv info page or article pdf depending on where user clicked.

``/admin [GET] @requiresLogin``

>Return admin page and dictionary of systems in database.

``/systems/get [GET] @requiresLogin``

>Returns list of systems from db.

``/admins/get [GET] @requiresLogin``

>Returns list of admins from db.

``/systems/toggleActive/<int:systemID>/<state> [GET] @requiresLogin``

>Activate/deactivate system with systemID depending on state.

``/general [GET] @requiresLogin``

>Returns number of users and articles.

``/system/register [POST]``

>Sends new systems data from web form to database function. Returns register system page or error.

``/system/register [GET]``

>Returns page for system registration.

``/update_topic/<topic_id>/<state> [PUT]``

>Updates the state of a topic recommended to a user.

``/refresh_topics [GET]``

>Refreshes the list of topics recommended to a user by running the topic interleaving process.

``@requiresLogin``

>Decorator that checks if you are logged in before accessing the route it is used on. If you are not logged in it returns login page and error message.

Configurations

These are the values that can be configured in the frontend-section of config.json.

- `data_path`: Path where the application will store caches and compiled static files. There will be created folders named 'static' and 'cache' in this location, or if these folders already exist the content will be deleted. Files will be created inside of package install location if left empty.
- `dev_port`: Port the server while be launched on while running in development mode.
- `max_content_length`: Maximum request size.
- `jwt_key`: Secret key for signing JWTs.
- `secret_key`: Secret key used by flask.

Database

Tables	Fields
users	user_id, email, salted_hash, firstname, lastname, notification_interval, last_recommendation_date, last_email_date, registered, admin, organization, dblp_profile, google_scholar_profile, semantic_scholar_profile, personal_website
user_categories	user_id, category_id
user_topics	user_id, topic_id, state
topics	topic_id, topic, filtered
articles	article_id, title, abstract, doi, comments, licence, journal, datestamp
article_authors	author_id, article_id, firstname, lastname
article_categories	article_id, category_id
author_affiliations	author_id, affiliation
categories	category_id, category, subcategory, category_name
article_recommendations	user_id, article_id, system_id, score, recommendation_date, explanation
systems	system_id, api_key, system_name, active, admin_user_id
article_feedback	user_id, article_id, system_id, score, recommendation_date, seen_email, seen_web, clicked_email, clicked_web, saved, trace_save_email, trace_click_email, explanation
feedback	feedback_id, user_id, article_id, type, feedback_text
topic_recommendations	recommendation_id, user_id, topic_id, system_id, datestamp, system_score, interleaving_order, seen, clicked

Setup

Read the [Setup guide](../../Setup.md).

Dependencies

Python
- [Mysql connector for python](https://dev.mysql.com/doc/connector-python/en/)
- [Json Web Tokens](https://github.com/jpadilla/pyjwt)
- [Flask](http://flask.pocoo.org/)
- [Passlib](https://passlib.readthedocs.io/en/stable/index.html)

Javascript
- [Bootstrap 3](https://getbootstrap.com/docs/3.3/)
- [Chart.js](https://www.chartjs.org/)
- [jQuery](https://jquery.com/)
- [jQuery UI](https://jqueryui.com/)
- [MathJax](https://github.com/mathjax/MathJax)

arxivdigest/frontend/services/evaluation_service.py

-*- coding: utf-8 -*-
import datetime
from collections import Counter
from collections import defaultdict

from arxivdigest.core.config import config_evaluation
from arxivdigest.frontend.database import articles as article_db
from arxivdigest.frontend.database import general as general_db
from arxivdigest.frontend.utils import date_range

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

def get_article_interleaving_reward(start_date, end_date):
 """Gets rewards for each system in each interleaving."""

 score_list = defaultdict(lambda: defaultdict(lambda: defaultdict(int)))
 for item in article_db.get_article_feedback_by_date(start_date, end_date):
 score = 0 # give weighted score to each user interaction
 if item['clicked_email']:
 score += 1 * config_evaluation.get('clicked_email_weight')
 if item['clicked_web']:
 score += 1 * config_evaluation.get('clicked_web_weight')
 if item['saved']:
 score += 1 * config_evaluation.get('saved_weight')

 date = item['date']
 user = item['user_id']
 system = item['system_id']

 score_list[date][user][system] += score
 return score_list

def get_topic_interleaving_reward(start_date, end_date):
 """Gets rewards for each system in each interleaving."""
 score_list = defaultdict(lambda: defaultdict(lambda: defaultdict(int)))
 for item in general_db.get_topic_feedback_by_date(start_date, end_date):
 state = item.get('state', '')
 score = config_evaluation['state_weights'].get(state, 0)

 date = item['interleaving_batch']
 user = item['user_id']
 system = item['system_id']

 score_list[date][user][system] += score
 return score_list

def get_normalized_rewards(rewards, start_date, end_date, system,
 fill_gaps=True):
 """Returns a dictionary containing the number of impressions, wins,
 ties and losses for the given system for the supplied period. """
 impressions = {} # Number of unique interleavings system has been part of.
 normalized_rewards = {}

 if fill_gaps:
 is_datetime = isinstance(list(rewards.keys())[0], datetime.datetime)
 for date in date_range(start_date, end_date, date_time=is_datetime):
 rewards.setdefault(date, {})

 for date, interleavings in rewards.items():
 impressions.setdefault(date, 0)
 normalized_rewards.setdefault(date, [])
 for user, systems in interleavings.items():
 if system not in systems:
 continue
 impressions[date] += 1
 if sum(systems.values()):
 normalized_rewards[date].append(systems[system] / sum(
 systems.values()))
 else:
 normalized_rewards[date].append(0)

 return impressions, normalized_rewards

def get_topic_feedback_amount(start_date, end_date, system_id, fill_gaps=True):
 """Gets the amount of feedback given on topics each day."""
 topic_feedback = general_db.get_topic_feedback_by_date(start_date,
 end_date, system_id)
 feedback = defaultdict(Counter)
 for item in topic_feedback:
 feedback[item['state']][item['interleaving_batch']] += 1

 if fill_gaps:
 for state, counts in feedback.items():
 is_datetime = isinstance(list(counts.keys())[0], datetime.datetime)
 for date in date_range(start_date, end_date, date_time=is_datetime):
 feedback[state].setdefault(date, 0)
 return feedback

def get_article_feedback_amount(start_date, end_date, system_id,
 fill_gaps=True):
 """Gets the amount of feedback given on articles each day."""
 topic_feedback = article_db.get_article_feedback_by_date(start_date,
 end_date,
 system_id)
 feedback = defaultdict(Counter)
 for item in topic_feedback:
 if item['saved']:
 feedback['saved'][item['saved']] += 1
 if item['seen_web']:
 feedback['seen_web'][item['seen_web']] += 1
 if item['clicked_web']:
 feedback['clicked_web'][item['clicked_web']] += 1
 if item['seen_email']:
 feedback['seen_email'][item['seen_email']] += 1
 if item['clicked_email']:
 feedback['clicked_email'][item['clicked_email']] += 1

 if fill_gaps:
 for state, counts in feedback.items():
 is_datetime = isinstance(list(counts.keys())[0], datetime.datetime)
 for date in date_range(start_date, end_date, date_time=is_datetime):
 feedback[state].setdefault(date, 0)
 return feedback

def aggregate_data(data, mode='day', date_format='%Y-%m-%d', sum_result=True):
 """Aggregates the data by time periods.

 :param sum_result: Whether to return the aggregated result as a sum or a list.
 :param data: Dictionary of dates to numbers.
 :param mode: Whether to aggregate data for 'day', 'week' or 'month'.
 :param date_format: Format to convert dates to.
 :return: List of aggregated values, and labels for each value
 """
 results = []
 labels = []
 label = None
 old_label = None
 result = 0 if sum_result else []
 for date, value in sorted(data.items()):
 if mode == 'month':
 label = date.strftime("%B %Y")
 elif mode == 'week':
 label = 'Week ' + str(date.isocalendar()[1]) + date.strftime(" %Y")
 else:
 label = date.strftime(date_format)

 if old_label is None:
 old_label = label

 if label != old_label:
 labels.append(old_label)
 results.append(result)
 result = 0 if sum_result else []
 old_label = label
 if sum_result:
 result += value
 else:
 result.append(value)

 labels.append(label)
 results.append(result)
 return results, labels

arxivdigest/frontend/static/icons/checkmark.png

arxivdigest/frontend/static/icons/icon_feedback.png

arxivdigest/frontend/static/icons/icon_pdf.png

arxivdigest/frontend/static/icons/icon_remove.png

arxivdigest/frontend/static/icons/icon_save.png

arxivdigest/frontend/static/icons/read.png

arxivdigest/frontend/templates/about.html

{% extends "base.html" %} {% block content %}

 {% include 'about_arxivdigest.html' %}
 Creators

 ArXivDigest is developed and operated by the IAI group at the University of Stavanger.
 Specifically, the development is led by Krisztian Balog,
 and the implementation is being done by Øyvind Jekteberg and Kristian Gingstad as part of their
 former BSc and current MSc thesis projects.

{% endblock %}

arxivdigest/frontend/templates/about_arxivdigest.html

What is arXivDigest?

A scientific literature recommendation service

Motivated by the accelerating pace at which scientific knowledge is being produced, we aim to provide
 a recommendation service that helps researchers to keep up with scientific literature.
 Specifically, we create a personalized email digest of the most recent papers published at
 arXiv.org at regular intervals, based
 on your interest profile. Based on your interactions with the recommendations, we can improve the
 service to serve you with even better recommendations in the future.

We provide the service for free. Well, almost. You pay for it by donating the data you
 generate for research purposes. Basically, you allow us to disclose, via our API, your profile information (name,
 websites, and topics of interest), the recommendations you received, and how you interacted with
 those recommendations. Note that you can download your personal data any time from the system to see
 what information is stored about you. And, of course,
 you have a right to be forgotten and be removed from our system.
 Please have a look at our Privacy Policy, then hit signup if you're ready to give it a try.

For those that are curious, all the code behind this site and service is open source and is available
 on GitHub.

A living lab

ArXivDigest operates as a living lab platform. It means that third-party researchers can experiment
 with novel recommendation approaches ("recommendations AI"), and the generated suggestions will be
 shown to users of the arXivDigest service. This allows for realistic, in situ evaluation with real
 users. Further, user interactions can be utilized for improving recommendation and explanation capabilities.

If you are a researcher who is interested in participating, then check out our
 GitHub pages for more information.

arxivdigest/frontend/templates/admin.html

{% extends "base.html" %} {% block content %}

 			
 General

			
 Manage systems

			
 Evaluation

			
 Feedback

			
 Admins

 List of systems:

 			ID			Name			Contact name			Organization name			Email			API-key			Active

 			User ID			Email			Name

{% endblock %}

arxivdigest/frontend/templates/articlelist.html

 Showing articles from{% for v in timeDropDown %} {% if interval==v[0] %} {{ v[1].lower() }}
 {% endif %} {% endfor %}

 Toggle Dropdown

Select sorting method

 {% for v in timeDropDown %}
 			
 {{ v[1] }}

 {% endfor %}

 Sorted by{% for v in sortDropDown %} {% if sortBy==v[0] %} {{ v[1].lower() }} {% endif %} {% endfor %}

 Toggle Dropdown

Select sorting method

 {% for v in sortDropDown %}
 			
 {{ v[1] }}

 {% endfor %}

{% if articles %} {% for article in articles %}

 {{ article.title }}

 {{ article.authors }}

 {{ article.abstract }}

 {{ article.explanation | md_bold }}

 {% if article.saved %}
 [image:]
 {% else %}
 [image:]
 {% endif %}

 [image:]

 [image:]

{% endfor %} {% else %}

 There are no recommendations for you in the selected period

{% endif %}

 {% if currentPage == 1 %}
 			
 Previous

 {% else %}
 			
 Previous

 {% endif %} {% for page in pages %} {% if currentPage==page %}
 			
 {{ page }}

 {% elif page==-1 %}
 			
 ...

 {% else %}
 			
 {{ page }}

 {% endif %} {% endfor %} {% if currentPage==((count/5)|round(0, 'ceil')|int) %}
 			
 Next

 {% else %}
 			
 Next

 {% endif %}

arxivdigest/frontend/templates/base.html

 {% assets "css_base" %}

 {% endassets %}

 Toggle navigation

 arXivDigest

 {% if g.loggedIn %}
 			
 Recommendations

			
 Library

			
 Profile

 {% if g.admin %}
 			
 Admin

 {% endif %} {% endif %}

 {% if g.loggedIn %}
 			
 Logged in as {{ g.email }}

			
 Log out

 {% else %}
 			
 Login

			
 Signup

 {% endif %}

 {% with messages = get_flashed_messages(with_categories=true) %} {% if messages %}
 {% for category, message in messages %}

 {{ message }}

 {% endfor %} {% endif %} {% endwith %}

{% block content %} {% endblock %}

 About
 |
 Terms and Conditions
 |
 Privacy Policy
 |
 Living Lab
 |
 Leave us feedback

 Copyright (c) IAI group, University of Stavanger

{% assets "js_base" %}

{% endassets %}

arxivdigest/frontend/templates/confirm_email.html

{% extends "base.html" %} {% block content %}

 We will send send you an email. Activate your account by clicking the link in this email

 If you registered using the wrong email you can modify it here or click the button to send the mail again.

 			

 Your email address will not be shared with anyone!

 			

 			

{% endblock %}

arxivdigest/frontend/templates/feedback.html

{% extends "base.html" %} {% block content %}
 {% import 'macros/form.html' as macros %}

 {% if article %}
 Feedback on article recommendation

 Recommendation

 Article ID:

 {{ article.article_id }}

 Article title:
 {{ article.title }}

Explanation:
 {{ article.explanation }}

 {% else %}
 Feedback

 {% endif %}

 {% call macros.render_form(form, action_text='Send feedback',
 class_='') %}
 {{ form.csrf_token }}
 {{ macros.render_field(form.feedback_type) }}

 {% if article %}

 {{ macros.render_radio_field(form.relevance, 'radio-inline') }}
 {{ macros.render_radio_field(form.expl_satisfaction, 'radio-inline') }}
 {{ macros.render_radio_field(form.expl_persuasiveness, 'radio-inline') }}
 {{ macros.render_radio_field(form.expl_transparency, 'radio-inline') }}
 {{ macros.render_radio_field(form.expl_scrutability, 'radio-inline') }}
 {% endif %}

 {{ macros.render_field(form.feedback_text) }}

 {% endcall %}

{% endblock %}

arxivdigest/frontend/templates/index.html

{% extends "base.html" %} {% block content %}
{% if topic_flag %}

{% endif %}

 {% if topic_flag %}

 {% else %}

 {% endif %}

 Your personal article recommendations

 {% include 'articlelist.html' %}

 {% if topic_flag %}

 {% endif %}

{% endblock %}

arxivdigest/frontend/templates/living_lab.html

{% extends "base.html" %} {% block content %}

 			
 Living Lab

			
 Evaluation

			
 Feedback

 Living Lab

 ArXivDigest operates as a living lab.

 Your systems:

 Contact
 name: {{ user.firstname }} {{ user.lastname }}. |
 Organization: {{ user.organization }}. | Email: {{ user.email }}

 			ID			Name			API-key			Activated

 {% for system in systems %}
 			{{ system.system_id }}			{{ system.system_name }}			{{ system.api_key }}

 {% if system.active == 1 %}
 			Yes

 {% else %}
 			No

 {% endif %}

 {% endfor %}

 Add a new system

{% endblock %}

arxivdigest/frontend/templates/login.html

{% extends "base.html" %} {% block content %}
 Please note that the arXivDigest service is still very much under
 construction.
 Currently, we are rolling out changes on a daily basis.
 You may experience issues and that certain features do not work as expected.
 So please bear with us and give us feedback.

 {% include 'about_arxivdigest.html' %}

 Login

 			Email:
 			

			Password:			

						

{% endblock %}

arxivdigest/frontend/templates/macros/form.html

{% macro render_field(field, label_visible=true) -%}

 {% if (field.type != 'HiddenField' and field.type !='CSRFTokenField') and label_visible %}

 {{ field.label.text }}

 {{ field(class_='form-control', **kwargs) }}
 {% if field.errors %}
 {% for e in field.errors %}
 {{ e }}

 {% endfor %}
 {% endif %}

 {% else %}
 {{ field(class_='form-control', **kwargs) }}
 {% endif %}

{%- endmacro %}

{% macro render_checkbox_field(field) -%}

 {{ field(type='checkbox', **kwargs) }} {{ field.label }}

{%- endmacro %}

{% macro render_radio_field(field, class_='radio') -%}

 {{ field.label.text }}

 {% for value, label, _ in field.iter_choices() %}

 {{ label }}

 {% endfor %}
 {% for e in field.errors %}
 {{ e }}

 {% endfor %}

{%- endmacro %}

{% macro render_form(form, action_url='', action_text='Submit', class_='', btn_class='btn btn-primary') -%}

 {{ form.hidden_tag() if form.hidden_tag }}
 {% if caller %}
 {{ caller() }}
 {% else %}
 {% for f in form %}
 {% if f.type == 'BooleanField' %}
 {{ render_checkbox_field(f) }}
 {% elif f.type == 'RadioField' %}
 {{ render_radio_field(f) }}
 {% else %}
 {{ render_field(f) }}
 {% endif %}
 {% endfor %}
 {% endif %}
 {{ action_text }}

{%- endmacro %}

arxivdigest/frontend/templates/modify.html

{% extends "base.html" %} {% block content %}

 Modify profile:

 {% include 'user_profile_form.html' %}
 						

 			

{%endblock%}

arxivdigest/frontend/templates/password_change.html

{% extends "base.html" %} {% block content %}

 Change Password:

 			Old password: *			

			
 Password: *
 			

 Password must contain atleast one lowercase character, one uppercase character, one number, one symbol
 and be more than 8 charcters long.

						

{%endblock%}

arxivdigest/frontend/templates/privacy_policy.html

{% extends "base.html" %} {% block content %}

 Privacy Policy

 (last revision: 2020-03-20)

 We are committed to maintaining your confidence and trust with respect to your privacy. Please read
 this privacy policy carefully to understand our practices about how we collect, use and share your
 personal information.

 This privacy policy applies when you visit or use our websites and other services
 that refer or link to this privacy policy (each, a “Service”). If you do not agree with the
 terms of this privacy policy, do not access or use the Services. This privacy policy may be
 supplemented by additional privacy statements, terms or notices provided to you.

 Information we collect

 Anonymous browsing information: We automatically collect certain information from
 you when you visit arXivDigest. This data is used to gather metrics on site usage including
 geographic location of visitors (IP address), pathways navigated through the website, what type of
 internet browser is used (user-agent). No attempt is made to deanonymize information we collect.

 Personal information: To use our Service, we require you to register as a User.
 The types of personal information that we collect directly from you may include:

			Contact details, such as your name, email, affiliation, websites;

			Account login credentials, such as usernames and passwords, password hints and similar security
 information;

			Other account registration and profile information, including educational, professional and
 other background information, such as research area and topics of interests;

			Information that you communicate to us, such as questions or feedback either via online forms or
 in email sent to admin@arxivdigest.org;

			Data that you provide to us as part of interacting with the Service, such as recommendations you
 click on and save, and/or search queries;

			Communications preferences, such as the frequency, type and format of the alerts you sign up to
 receive.

 All information associated with your user account can be viewed and downloaded from your
 user profile.
 We retain your information for as long as necessary to provide the Service. Your information will be
 stored and processed by the IAI research group at the University of Stavanger, in Norway.

 How we use your information

 We use gathered information to track user behavior and site usage with the overall goal of improving
 our visitors’ experience and optimizing our services. More specifically, we use information to
 conduct scientific research, offer you customized content and other personalization to make the
 Service more efficient for you, and develop and provide additional features. We also use the
 information to administer this website and prevent abuse.

 With whom we share your information

 Information we gather may be shared with third-parties via the arXivDigest API for the purpose
 of academic research. However, we will not sell this data to third-parties for their use in direct
 marketing, advertising, or for the promotion of their products and services.

 Information shared via the API:
 Approved users of the arXivDigest API may get access to the following information:

			Your name, affiliation, websites, research areas, and topics of interest provided on your
 profile;

			The recommendations you have received, and how you interacted with them (specifically, whether
 you clicked on them and/or saved them, with timestamps).

 We will not share:
 			Your email address;

			Free text feedback you have provided either via the Feedback form or via email.

 Users of the arXivDigest API are subject to the API Terms of Service, and are required to
 update arXivDigest content daily, and are not allowed to store user-specific data for more than 24
 hours. Data obtained via the arXivDigest API may only may be displayed to others or published in a
 scientific or technical context, solely for the purpose of describing the research and development and
 related issues, provided that specific individuals cannot be identified.

 Cookies

 We use cookies to keep you logged into secure areas of the website and/or to keep track of
 your preferences as you interact with certain services. We also use Google Analytics for collecting
 anonymized data on our visitors.

 You can control cookies through your browser’s settings and other tools. However, if you choose to
 block certain cookies, you may not be able to register, login, or access certain parts or make full
 use of the Service.

 Protecting your information

 ArXivDigest follows standard practices to protect against the loss, misuse, or alteration of the
 information that is under our control.

 Special Notice for EU Residents

 If you are located within the European Economic Area (European Union, Norway, Liechtenstein, and
 Iceland), we acknowledge the rights granted to you under the General Data Protection Regulation
 (GDPR).

 These rights may include:

			Right to access your information held by us.

			Right to correct inaccurate or incorrect information about you.

			Right to the erasure of your information when it is no longer necessary for us to retain it.

			Right to restrict processing of your personal information in specific situations.

			Right to object to processing your information, including sending you communications that may be
 considered direct-marketing materials.

			Right to object to automated decision-making and profiling, where applicable.

			Right to complain to a supervisory authority in your jurisdiction within the EU.

 Contact

 For questions about arXivDigest privacy policies or technical support please contact:
 admin@arxivdigest.org

{% endblock %}

arxivdigest/frontend/templates/profile.html

{% extends "base.html" %} {% block content %}

Profile

 			Name:			
 {{ user.firstname }} {{ user.lastname }}

			Email:			
 {{ user.email }}

			Organization:			
 {{ user.organization }}

			Personal/organizational website:			
 {{ user.personal_website }}

			DBLP profile:			
 {{ user.dblp_profile }}

			Google Scholar profile:			
 {{ user.google_scholar_profile }}

			Semantic Scholar profile:			
 {{ user.semantic_scholar_profile }}

			Topics:			
 {% for topic in user.topics %}
 {{ topic['topic'] }}

 {% endfor %}

			Interests:			
 {% for category in user.categories %}
 {{ category['category_name'] }}

 {% endfor %}

			Notification Interval:			{% if user.notification_interval == 1 %}daily
 {% elif user.notification_interval == 7 %}weekly
 {% else %}never
 {% endif %}

 			 Modify profile

			Change password

			 Download your personal data

{% endblock %}

arxivdigest/frontend/templates/register_system.html

{% extends "base.html" %} {% block content %}

 Register system:

 			
 System name: *
 			

						

{%endblock%}

arxivdigest/frontend/templates/saves.html

{% extends "base.html" %} {% block content %}

 Your saved articles:

 {%include 'articlelist.html'%}

 {% endblock %}

arxivdigest/frontend/templates/signup.html

{% extends "base.html" %} {% block content %}

 Sign up

 Create a user account by filling out this form. The fields marked with * are mandatory.

 {% include 'user_profile_form.html' %}
 			
 Terms and Conditions: *
 			

 I have read and accepted the
 Terms and
 Conditions and
 Privacy Policy

 			

 						

 			

{% endblock %}

arxivdigest/frontend/templates/terms_and_conditions.html

{% extends "base.html" %} {% block content %}

 Terms and Conditions

 (Last updated: 2020-03-20)

 1. Introduction

 This website and all other related websites and services under the main domain arxivdigest.org
 (together or individually “Service”) are provided to you by the IAI group at the University
 of Stavanger (“IAI” or “Us”).

 Our Privacy Policy also governs your use of our
 Service and explains how we collect, safeguard and disclose information that results from your use
 of our service.

 Your agreement with us includes these Terms and our Privacy Policy (“Agreements”). You acknowledge
 that you have read and understood Agreements, and agree to be bound of them.

 If you do not agree with (or cannot comply with) Agreements, then you may not use the Service, but
 please let us know by emailing at admin@arxivdigest.org so we can try to find a solution. These
 Terms apply to all visitors, users and others who wish to access or use Service.

 2. Communications

 By using our Service, you agree to subscribe to newsletters and other information we may send.
 However, you may opt out of receiving any, or all, of these
 communications from us by following the unsubscribe link or by emailing at
 admin@arxivdigest.org.

 3. Content

 Content found on or through this Service are the property of arXivDigest or used with permission. You
 may not distribute, modify, transmit, reuse, download, repost, copy, or use said Content, whether in
 whole or in part, for commercial purposes or for personal gain, without express advance written
 permission from us.

 4. Prohibited Uses

 You may use Service only for lawful purposes and in accordance with Terms. You agree not to use
 Service:

			In any way that violates any applicable national or international law or regulation.

			For the purpose of exploiting, harming, or attempting to exploit or harm minors in any way by
 exposing them to inappropriate content or otherwise.

			To transmit, or procure the sending of, any advertising or promotional material, including any
 “junk mail”, “chain letter,” “spam,” or any other similar solicitation.

			To impersonate or attempt to impersonate Us, another user, or any other person or entity.

			In any way that infringes upon the rights of others, or in any way is illegal, threatening,
 fraudulent, or harmful, or in connection with any unlawful, illegal, fraudulent, or harmful
 purpose or activity.

			To engage in any other conduct that restricts or inhibits anyone’s use or enjoyment of Service,
 or which, as determined by us, may harm or offend Us or users of Service or expose them to
 liability.

 Additionally, you agree not to:
 			Use Service in any manner that could disable, overburden, damage, or impair Service or interfere
 with any other party’s use of Service, including their ability to engage in real time activities
 through Service.

			Use any robot, spider, or other automatic device, process, or means to access Service for any
 purpose, including monitoring or copying any of the material on Service.

			Use any manual process to monitor or copy any of the material on Service or for any other
 unauthorized purpose without our prior written consent.

			Use any device, software, or routine that interferes with the proper working of Service.

			Introduce any viruses, trojan horses, worms, logic bombs, or other material which is malicious
 or technologically harmful.

			Attempt to gain unauthorized access to, interfere with, damage, or disrupt any parts of Service,
 the server on which Service is stored, or any server, computer, or database connected to
 Service.

			Attack Service via a denial-of-service attack or a distributed denial-of-service attack.

			Take any action that may damage or falsify Service rating.

			Otherwise attempt to interfere with the proper working of Service.

 5. Analytics

 We may use third-party Service Providers to monitor and analyze the use of our Service.

 6. No Use By Minors

 Service is intended only for access and use by individuals at least eighteen (18) years old. By
 accessing or using Service, you warrant and represent that you are at least eighteen (18) years of
 age and with the full authority, right, and capacity to enter into this agreement and abide by all
 of the terms and conditions of Terms. If you are not at least eighteen (18) years old, you are
 prohibited from both the access and usage of Service.

 7. Accounts

 When you create an account with us, you guarantee that you are above the age of 18, and that the
 information you provide us is accurate, complete, and current at all times. Inaccurate, incomplete,
 or obsolete information may result in the immediate termination of your account on Service.

 You are responsible for maintaining the confidentiality of your account and password, including but
 not limited to the restriction of access to your computer and/or account. You agree to accept
 responsibility for any and all activities or actions that occur under your account and/or password,
 whether your password is with our Service or a third-party service. You must notify us immediately
 upon becoming aware of any breach of security or unauthorized use of your account.

 You may not use as a username the name of another person or entity or that is not lawfully available
 for use, a name or trademark that is subject to any rights of another person or entity other than
 you, without appropriate authorization. You may not use as a username any name that is offensive,
 vulgar or obscene.

 We reserve the right to refuse service, terminate accounts, remove or edit content, or cancel orders
 in our sole discretion.

 8. Intellectual Property

 Service and its original content (excluding Content from arXiv.org and Content provided by users),
 features and functionality are and will remain the exclusive property of arXivDigest and its
 licensors. Service is protected by copyright, trademark, and other laws of and foreign countries.
 Our trademarks may not be used in connection with any product or service without the prior written
 consent of arXivDigest.

 9. Copyright Policy

 We respect the intellectual property rights of others. It is our policy to respond to any claim that
 Content posted on Service infringes on the copyright or other intellectual property rights
 (“Infringement”) of any person or entity.

 If you are a copyright owner, or authorized on behalf of one, and you believe that the copyrighted
 work has been copied in a way that constitutes copyright infringement, please submit your claim via
 email to admin@arxivdigest.org, with the subject line: “Copyright Infringement” and include in your
 claim a detailed description of the alleged Infringement as detailed below, under “DMCA Notice and
 Procedure for Copyright Infringement Claims”.

 You may be held accountable for damages (including costs and attorneys’ fees) for misrepresentation
 or bad-faith claims on the infringement of any Content found on and/or through Service on your
 copyright.

 10. DMCA Notice and Procedure for Copyright Infringement Claims

 You may submit a notification pursuant to the Digital Millennium Copyright Act (DMCA) by providing
 our Copyright Agent with the following information in writing (see 17 U.S.C 512(c)(3) for further
 detail):

			an electronic or physical signature of the person authorized to act on behalf of the owner of
 the copyright’s interest;

			a description of the copyrighted work that you claim has been infringed, including the URL
 (i.e., web page address) of the location where the copyrighted work exists or a copy of the
 copyrighted work;

			identification of the URL or other specific location on Service where the material that you
 claim is infringing is located;

			your address, telephone number, and email address;

			a statement by you that you have a good faith belief that the disputed use is not authorized by
 the copyright owner, its agent, or the law;

			a statement by you, made under penalty of perjury, that the above information in your notice is
 accurate and that you are the copyright owner or authorized to act on the copyright owner’s
 behalf.

 You can contact our Copyright Agent via email at admin@arxivdigest.org.

 11. Error Reporting and Feedback

 You may provide us either directly at admin@arxivdigest.org or via our Feedback page with information and feedback
 concerning errors, suggestions for improvements, ideas, problems, complaints, and other matters
 related to our Service (“Feedback”). You acknowledge and agree that: (i) you shall not retain,
 acquire or assert any intellectual property right or other right, title or interest in or to the
 Feedback; (ii) IAI may have development ideas similar to the Feedback; (iii) Feedback does not
 contain confidential information or proprietary information from you or any third party; and (iv)
 IAI is not under any obligation of confidentiality with respect to the Feedback. In the event
 the transfer of the ownership to the Feedback is not possible due to applicable mandatory laws, you
 grant IAI and its affiliates an exclusive, transferable, irrevocable, free-of-charge,
 sub-licensable, unlimited and perpetual right to use (including copy, modify, create derivative
 works, publish, and distribute) Feedback in any manner and for any purpose.

 12. Links To Other Web Sites

 Our Service may contain links to third party web sites or services that are not owned or controlled
 by arXivDigest.

 ArXivDigest has no control over, and assumes no responsibility for the content, privacy policies, or
 practices of any third party web sites or services. We do not warrant the offerings of any of these
 entities/individuals or their websites.

 YOU ACKNOWLEDGE AND AGREE THAT IAI SHALL NOT BE RESPONSIBLE OR LIABLE, DIRECTLY OR INDIRECTLY,
 FOR ANY DAMAGE OR LOSS CAUSED OR ALLEGED TO BE CAUSED BY OR IN CONNECTION WITH USE OF OR RELIANCE ON
 ANY SUCH CONTENT, GOODS OR SERVICES AVAILABLE ON OR THROUGH ANY SUCH THIRD PARTY WEB SITES OR
 SERVICES.

 WE STRONGLY ADVISE YOU TO READ THE TERMS OF SERVICE AND PRIVACY POLICIES OF ANY THIRD PARTY WEB SITES
 OR SERVICES THAT YOU VISIT.

 13. Disclaimer Of Warranty

 THESE SERVICES ARE PROVIDED BY IAI ON AN “AS IS” AND “AS AVAILABLE” BASIS. IAI MAKES NO
 REPRESENTATIONS OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, AS TO THE OPERATION OF THEIR
 SERVICES, OR THE INFORMATION, CONTENT OR MATERIALS INCLUDED THEREIN. YOU EXPRESSLY AGREE THAT YOUR
 USE OF THESE SERVICES, THEIR CONTENT, AND ANY SERVICES OR ITEMS OBTAINED FROM US IS AT YOUR SOLE
 RISK.

 NEITHER IAI NOR ANY PERSON ASSOCIATED WITH IAI MAKES ANY WARRANTY OR REPRESENTATION WITH
 RESPECT TO THE COMPLETENESS, SECURITY, RELIABILITY, QUALITY, ACCURACY, OR AVAILABILITY OF THE
 SERVICES. WITHOUT LIMITING THE FOREGOING, NEITHER IAI NOR ANYONE ASSOCIATED WITH IAI
 REPRESENTS OR WARRANTS THAT THE SERVICES, THEIR CONTENT, OR ANY SERVICES OR ITEMS OBTAINED THROUGH
 THE SERVICES WILL BE ACCURATE, RELIABLE, ERROR-FREE, OR UNINTERRUPTED, THAT DEFECTS WILL BE
 CORRECTED, THAT THE SERVICES OR THE SERVER THAT MAKES IT AVAILABLE ARE FREE OF VIRUSES OR OTHER
 HARMFUL COMPONENTS OR THAT THE SERVICES OR ANY SERVICES OR ITEMS OBTAINED THROUGH THE SERVICES WILL
 OTHERWISE MEET YOUR NEEDS OR EXPECTATIONS.

 IAI HEREBY DISCLAIMS ALL WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, STATUTORY, OR
 OTHERWISE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND
 FITNESS FOR PARTICULAR PURPOSE.

 THE FOREGOING DOES NOT AFFECT ANY WARRANTIES WHICH CANNOT BE EXCLUDED OR LIMITED UNDER APPLICABLE
 LAW.

 14. Limitation Of Liability

 EXCEPT AS PROHIBITED BY LAW, YOU WILL HOLD US AND OUR OFFICERS, DIRECTORS, EMPLOYEES, AND AGENTS
 HARMLESS FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGE, HOWEVER IT ARISES
 (INCLUDING ATTORNEYS’ FEES AND ALL RELATED COSTS AND EXPENSES OF LITIGATION AND ARBITRATION, OR AT
 TRIAL OR ON APPEAL, IF ANY, WHETHER OR NOT LITIGATION OR ARBITRATION IS INSTITUTED), WHETHER IN AN
 ACTION OF CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTION, OR ARISING OUT OF OR IN CONNECTION WITH
 THIS AGREEMENT, INCLUDING WITHOUT LIMITATION ANY CLAIM FOR PERSONAL INJURY OR PROPERTY DAMAGE,
 ARISING FROM THIS AGREEMENT AND ANY VIOLATION BY YOU OF ANY FEDERAL, STATE, OR LOCAL LAWS, STATUTES,
 RULES, OR REGULATIONS, EVEN IF IAI HAS BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE. EXCEPT AS PROHIBITED BY LAW, IF THERE IS LIABILITY FOUND ON THE PART OF IAI, IT WILL BE
 LIMITED TO THE AMOUNT PAID FOR THE PRODUCTS AND/OR SERVICES, AND UNDER NO CIRCUMSTANCES WILL THERE
 BE CONSEQUENTIAL OR PUNITIVE DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF
 PUNITIVE, INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE PRIOR LIMITATION OR EXCLUSION MAY NOT APPLY TO
 YOU.

 15. Termination

 We may terminate or suspend your account and bar access to Service immediately, without prior notice
 or liability, under our sole discretion, for any reason whatsoever and without limitation, including
 but not limited to a breach of Terms.

 If you wish to terminate your account, you may simply discontinue using Service.

 All provisions of Terms which by their nature should survive termination shall survive termination,
 including, without limitation, ownership provisions, warranty disclaimers, indemnity and limitations
 of liability.

 16. Governing Law

 These Terms shall be governed and construed in accordance with the laws of Norway, which governing
 law applies to agreement without regard to its conflict of law provisions.

 Our failure to enforce any right or provision of these Terms will not be considered a waiver of those
 rights. If any provision of these Terms is held to be invalid or unenforceable by a court, the
 remaining provisions of these Terms will remain in effect. These Terms constitute the entire
 agreement between us regarding our Service and supersede and replace any prior agreements we might
 have had between us regarding Service.

 17. Changes To Service

 We reserve the right to withdraw or amend our Service, and any service or material we provide via
 Service, in our sole discretion without notice. We will not be liable if for any reason all or any
 part of Service is unavailable at any time or for any period. From time to time, we may restrict
 access to some parts of Service, or the entire Service, to users, including registered users.

 18. Amendments To Terms

 We may amend Terms at any time by posting the amended terms on this site. It is your responsibility
 to review these Terms periodically.

 Your continued use of the Service following the posting of revised Terms means that you accept and
 agree to the changes. You are expected to check this page frequently so you are aware of any
 changes, as they are binding on you.

 By continuing to access or use our Service after any revisions become effective, you agree to be
 bound by the revised terms. If you do not agree to the new terms, you are no longer authorized to
 use Service.

 19. Waiver And Severability

 No waiver by IAI of any term or condition set forth in Terms shall be deemed a further or
 continuing waiver of such term or condition or a waiver of any other term or condition, and any
 failure of IAI to assert a right or provision under Terms shall not constitute a waiver of such
 right or provision.

 If any provision of Terms is held by a court or other tribunal of competent jurisdiction to be
 invalid, illegal or unenforceable for any reason, such provision shall be eliminated or limited to
 the minimum extent such that the remaining provisions of Terms will continue in full force and
 effect.

 20. Acknowledgement

 BY USING SERVICE OR OTHER SERVICES PROVIDED BY US, YOU ACKNOWLEDGE THAT YOU HAVE READ THESE TERMS OF
 SERVICE AND AGREE TO BE BOUND BY THEM.

 21. Contact Us

 Please send your feedback, comments, requests for technical support by email: admin@arxivdigest.org.

{% endblock %}

arxivdigest/frontend/templates/unsubscribed.html

{% extends "base.html" %} {% block content %}

 Unsubscribed

 You will no longer receive notifications over email.
 You can still access recommendations via our web interface.

{% endblock %}

arxivdigest/frontend/templates/user_profile_form.html

{% macro input(name,placeholder="", value="", label="", type="text", maxlength=20, required=false) -%}

 			

 {{ label }}{% if required %} *{% endif %}

 			

 			

{%- endmacro %}

			
 Email: *
 			

 Your email address will not be shared with anyone!

 			

{% if signup %}
 			
 Password: *
 			

 Password must contain at least one lowercase character, one uppercase
 character, one number, one symbol, and be more than 8 characters long.

 			

			

 			

 			

{% endif %}

 {{ input("firstname",placeholder="Your first name..",
 label="First name:", maxlength=60, required=true,value=user.firstname
 if user else "") }}

 {{ input("lastname",placeholder="Your last name..",
 label="Last name:", maxlength=60, required=true,
 value=user.lastname if user else "") }}

 {{ input("organization",placeholder="Your Organization..",
 label="Organization:", maxlength=100, required=true,
 value=user.organization if user else "") }}

 {{ input("personal_website",placeholder="Your personal/organizational website..",
 label="Personal website:", maxlength=120,
 value=user.personal_website if user else "") }}

 {{ input("dblp_profile",placeholder="Your DBLP profile page..",
 label="DBLP profile:", maxlength=120,
 value=user.dblp_profile if user else "") }}

 {{ input("google_scholar_profile",placeholder="Your Google Scholar profile..",
 label="Google Scholar profile:", maxlength=120,
 value=user.google_scholar_profile if user else "") }}

 {{ input("semantic_scholar_profile",placeholder="Your Semantic Scholar profile..",
 label="Semantic Scholar profile:", maxlength=120,
 value=user.semantic_scholar_profile if user else "") }}

			
 Topics: *
 			

 Add

 Select topics from the suggestion list or enter your own.
 You'll need to provide at least 3 topics.

 			

			
 Interests:
 			

 Add

 Select one or multiple arXiv categories you're interested in.
 Press enter or click add to submit the currently selected category.
 You can select both categories and subcategories.

 			

			
 Notification interval: *
 			

 How often would you like receive a digest email?

 {% if not signup%}
 I dont want a digest email

 {% endif %}
 1 day

 7 days

 			

arxivdigest/frontend/uncompiled_assets/css/style.css

@import url('https://fonts.googleapis.com/css?family=Montserrat|Open+Sans:300,400,400i,600,700&display=swap');

/* Basic elements */

html {
 position: relative;
 min-height: 100%;
}

html body {
 margin-top: 50px;
 margin-bottom: 60px;
}

body,
p {
 font-family: 'Open Sans', sans-serif;
 font-weight: 300;
}

p strong {
 font-weight: 600;
}

a,
a:hover {
 color: #951a1d;
}

h2 {
 font-size: 1.5em;
 margin-top: 20px;
}

h3 {
 font-size: 1.25em;
}

h4 {
 margin-top: 1em;
 font-size: 1em;
 font-weight: bold;
 text-transform: uppercase;
}

/* Header */

#navbar .nav {
 font-family: 'Montserrat', sans-serif;
}

.navbar-header a.navbar-brand {
 font-family: 'Montserrat', sans-serif;
 color: #000000;
 font-weight: bold;
 font-size: 1.5em;
}

/* Footer */

footer {
 position: absolute;
 bottom: 0;
 width: 100%;
 height: 60px;
 background-color: #f5f5f5;
 border-top: 1px solid #b7b7b7;
 font-family: 'Montserrat', sans-serif;
 text-decoration: none;
 font-size: 0.9em;
}

/* List groups */

.list-group a:hover {
 text-decoration: none;
}

/* Forms */

form td {
 max-width: 400px;
 position: relative;
 vertical-align: top;
}

table input,
table select,
table textarea {
 width: 100%;
 margin: 0.3em 0;
 padding: 1em;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;
 resize: vertical;
 font-size: 1em;
}

textarea#feedback_text {
 resize: vertical;
 height: 10em;
}

table label {
 padding: 12px 12px 12px 0;
 display: inline-block;
}

td input[type=radio] {
 width: 20px;
 margin-left: 50px;
}

td input[type=checkbox] {
 width: 20px;
 margin-left: 0px;
}

.form_error {
 font-size: 0.9em;
 color: rgb(255, 0, 0);
 margin: 0;
}

/* Common formatting classes */

.red {
 color: #951a1d;
}

.hint {
 font-size: 0.8em;
 color: #9b9b9b;
}

.alignleft {
	float: left;
}

.alignright {
	float: right;
}

.bottom_border {
 border-bottom: 1px solid lightgrey;
 margin-bottom: 10px;
}

.rightmenu {
 margin-top: 20px;
}

/* Profile/signup page */

label.signup {
 position: absolute;
 top: 0;
}

/* STUFF TO BE REVISITED */

.article {
 background-color: #f5f5f5;
 min-block-size: 200px;
 border: 1px solid grey;
 margin-bottom: 10px;
 border-radius: 10px;
}

.article_header {
 border-bottom: 1px solid grey;
 background-color: lightcoral;
}

input[type=text]:required:valid,
.touched:valid {
 box-shadow: 0 0 5px #5cd053;
}

.touched:invalid {
 border: 1px solid red;
 box-shadow: 0 0 5px #ffaaaa;
}

:valid ~ .glyphicon-ok {
 padding: 5px;
 visibility: visible;
 color: #45a049;
}

input ~ .glyphicon-ok {
 visibility: hidden;
}

.systemList {
 width: 1000px;
 margin: 0 auto;
 margin-top: 10px;
 max-height: 1500px;
 overflow-y: auto;
 overflow-x: hidden;
}

.systemList div {
 overflow: auto;
 max-height: 300px;

}

.infobox {
 width: auto;
 height: auto;
}

.infobox input {
 width: 200px;
}

.form_list li {
 position: relative;
}

.form_list li .list_text {
 display: block;
 position: relative;
 max-width: 95%;
}

.removable_list_element {
 color: lightgrey;
 position: absolute;
 right: 0.5em;
 top: 50%;
 -ms-transform: translateY(-50%);
 transform: translateY(-50%);
 font-size: 1.3em;
}

* {
 box-sizing: border-box;
}

.autocomplete-suggestions {
 text-align: left;
 cursor: default;
 border: 1px solid #ccc;
 border-top: 0;
 background: #fff;
 box-shadow: -1px 1px 3px rgba(0, 0, 0, .1);
 position: absolute;
 display: none;
 z-index: 9999;
 max-height: 254px;
 overflow: hidden;
 overflow-y: auto;
 box-sizing: border-box;
}

.autocomplete-suggestion {
 position: relative;
 padding: 0 .6em;
 line-height: 23px;
 white-space: nowrap;
 overflow: hidden;
 text-overflow: ellipsis;
 font-size: 1.02em;
 color: #333;
}

.autocomplete-suggestion b {
 font-weight: normal;
 color: #1f8dd6;
}

.autocomplete-suggestion.selected {
 background: #f0f0f0;
}

.flexContainer {
 position: relative;
}

.flexContainer input,
.flexContainer .autocomplete-suggestions {
 width: 84%;

}

.flexContainer .autocomplete-suggestions {
 position: absolute;
 top: 3.82em;
}

form .flexContainer .btn {
 position: absolute;
 top: 0;
 right: 0;
 margin: 0.3em 0;
 width: 15%;
}

form .btn, div.btn {
 width: 100%;
 padding: 1em 0;
}

.inactiveLink {
 pointer-events: none;
 cursor: default;
}

#pageIndicator {
 color: rgb(161, 161, 161);
 float: right;
 padding-right: 20px;
}

#indexTitle {
 padding-left: 20px;
 float: left;
 margin-bottom: 20px;
}

.container .text-muted {
 margin: 20px 0;
}

code {
 font-size: 80%;
}

.flex-container {
 position: relative;
 display: flex;
 flex-wrap: wrap;
 padding: 5px;
}

#nextPage {
 border: none;
 border-radius: 10px;
 background-color: #b7b7b7;
 padding: 5px;
 cursor: pointer;
 width: 100px;
 text-align: center;
 float: right;
 margin-right: 20px;
}

#nextPage:hover {
 background-color: #9b9b9b;
}

#logoutButton,
#loginButton,
#homeButton {
 background-color: #b7b7b7;
}

.sortbutton {
 margin-top: 15px;
 margin-bottom: 5px;
 background-color: #cccccc
}

.sortDiv {
 width: 260px;
 float: right;
}

.dropdownActive {
 background-color: lightblue;
 cursor: default;
 pointer-events: none;
}

#rightSort {
 border-left: 2px solid rgb(153, 153, 153);
}

#leftSort {
 cursor: default;
}

#leftSort:hover {
 border-right: 1px solid rgb(153, 153, 153);
}

#rightSort:hover {
 background-color: #a7a6a6;
}

.articleDiv h4:hover {
 color: #951a1d;
}

.articleDiv h4{
 max-width: 700px;
}

.leftText {
 text-align: left;
}

#systemForm input[type=text] {
 margin: 5px;
 width: 200px;
}

#systemForm label {
 width: 200px;
 margin: 5px;
}

::-webkit-scrollbar {
 width: 10px;
}

::-webkit-scrollbar-track {
 background: #f1f1f1;
}

::-webkit-scrollbar-thumb {
 background: #888;
}

::-webkit-scrollbar-thumb:hover {
 background: #555;
}

.articleDiv {
 border-bottom: 1px solid #b7b7b7;
 margin-top: 5px;
 margin-bottom: 5px;
 max-width: 835px;
 min-width: 300px;
 overflow: hidden;
 margin: 0 auto;
 clear: both;
 position: relative;
}

.article_title{
 max-width: 500;
 width: 500;
}

.articleInfo {
 padding: 0px;
 padding-right: 40px;
 margin: 0px;
 max-width: 800px;
}

.articleIcons {
 position: absolute;
 top: 0;
 right: 0;
}

#indexDiv, #savedDiv {
 margin-left: 0px;
 width: 100%;
}

#paginationDiv {
 text-align: center;
 width: 100%;
}

#paginationNav {
 display: inline-block;
}

#paginationNav .pagination > .disabled > a,
#paginationNav .pagination > .disabled > a:focus,
#paginationNav .pagination > .disabled > a:hover,
#paginationNav .pagination > .disabled > span,
#paginationNav .pagination > .disabled > span:focus,
#paginationNav .pagination > .disabled > span:hover {
 cursor: default;
}

.articleDescription {
 margin-left: 40px;
 overflow: hidden;
 line-height: 1.5em;
 height: 4.6em;
}

.explanation {
 position: absolute;
 bottom: 5px;
 margin: 0px;
 color: rgb(151, 151, 151);
 font-size: 1em;
 position: relative;
 padding-right: 20%;
}

#article_id {
 font-size: 1.5em;
 color: black;
 text-decoration: none;
 position: absolute;
 top: 25%;
 font-weight: bold;
}

#article_id:hover {
 color: rgb(78, 78, 78);
}

/* Footer */

.footer > .container {
 padding-right: 15px;
 padding-left: 15px;
}

.footer_item {
 padding: 5px;
 float: left;
 margin-left: 10px;
 margin-top: 10px;
}

.showMore {
 margin-left: 40px;
 width: 80px;
 border: none;
 border-radius: 5px;
 text-align: center;
 cursor: pointer;
 font-weight: bolder;
 font-size: 0.85em;
 background-color: #c7c7c7;
 color: rgb(90, 90, 90);
}

.showMore:hover {
 background-color: #949494;
 color: rgb(59, 59, 59);
}

.feedbackButton {
 height: 40px;
 width: 40px;
}

.articleAuthors {
 color: rgb(185, 185, 185);
 font-size: 0.9em;
}

.saveButton{
 height: 40px;
 width: 40px;
 cursor: pointer;
 padding: 0;
 margin: 0;
}

.linkButton{
 height: 40px;
 width: 40px;
}

#indexDiv a, #savedDiv a {
 color: black;
 text-decoration: none;
}

.moreButton {
 margin-left: 40px;
 z-index: 999;
}

#admins .table {
 width: 500px;
 margin: 0 auto;
}

#userPlotContainer, #articlePlotContainer {
 width: 600px;
 margin: 0 auto;
 margin-top: 10px;
}

#statistics {
 margin: 0 auto;
 margin-top: 10px;
 text-align: center;
 font-size: 1.3em;
 width: 600px;
 padding: 3px;
}

.tab-pane {
 padding: 1.5em;
}

.evaluation .list-group {
 overflow: auto;
 height: auto;
 max-height: 85vh;
 padding: 0;
}

.evaluation .list-group li {
 overflow: hidden;
}

.evaluation .form-inline .form-group label,
.evaluation .form-inline .form-group + label {
 padding-right: 1em;
}

#evaluation div.form-inline,
#feedback div.form-inline {
 padding-left: 3em;
}

.no_hover {
 pointer-events: none;
}

.topic-symbol{
 cursor: pointer;
 font-size: 21px;
 margin-right: 5px;
 margin-top: 3px;
}

.topic-refresh{
 cursor: pointer;
 font-size: 21px;
 color: gray;
}

.topic-refresh:hover, .topic-symbol:hover{
 filter: brightness(75%);
}

.topic-end{
 color: #949494;
 text-align: center;
}

.topic-error{
 text-align: center;
 font-size: 0.9em;
}

arxivdigest/frontend/uncompiled_assets/javascript/admin.js

$(document).ready(function () {
 $("ul.nav a[href ='#systems']").bind("show.bs.tab", function () {
 $.getJSON("/admin/systems/get", {},
 function (data) {
 if (data.success === true) {
 generateSystemTableHtml(data.systems)
 }
 });
 });

 $("ul.nav a[href ='#admins']").bind("show.bs.tab", function () {
 $.getJSON("/admin/admins/get", {},
 function (data) {
 if (data.success === true) {
 generateAdminsTableHtml(data.admins)
 }
 });
 });

 $(".systemList tbody").on("click", ".toggleSystem", function () {
 var box = $(this);
 box.active = !box.prop("checked");
 if (!box.active) {
 var conf = confirm("Activate system: " + box.data("value") + "?");
 if (!conf) {
 box.prop("checked", false);
 return
 }
 }
 $.ajax({
 url: "/admin/systems/toggleActive/" + box.data("value") + "/" + !box.active,
 type: 'PUT',
 success: function (data) {
 if (data.result === "Success") {
 box.active = !box.active
 }
 if (data.err === "Email error") {
 alert("Failed to send email.")
 }
 }
 }).always(function (d) {
 box.prop("checked", box.active);
 box.prop("title", box.prop("checked") ? "Deactivate this system." : "Activate this system.");
 });

 });

 $("ul.nav a[href ='#general']").bind("show.bs.tab", function () {
 $.getJSON("/admin/general", {},
 function (data) {
 var ctx;
 if (data.success === true) {
 plotcontainer = $("#userPlotContainer");
 $("#userPlot").remove();
 plotcontainer.append("<canvas id='userPlot'></canvas>");
 ctx = $("#userPlot")[0].getContext('2d');
 myChart = new Chart(ctx, {
 type: 'bar',
 data: {
 labels: data.users.dates,
 datasets: [{
 label: 'User registration over time',
 data: data.users.users,
 backgroundColor: 'rgba(100, 159, 64, 0.3)'
 }]
 },
 });
 plotcontainer = $("#articlePlotContainer");
 $("#articlePlot").remove();
 plotcontainer.append("<canvas id='articlePlot'></canvas>");
 ctx = $("#articlePlot")[0].getContext('2d');
 myChart = new Chart(ctx, {
 type: 'bar',
 data: {
 labels: data.articles.dates,
 datasets: [{
 label: 'Articles scraped over time',
 data: data.articles.articles,
 backgroundColor: 'rgba(100, 159, 64, 0.3)'
 }]
 },
 });
 $("#statistics").html("Total users: " + data.users.total + "\n Total articles:" + data.articles.total + "")
 }
 });
 });

 $("ul.nav a[href ='#evaluation']").bind("show.bs.tab", function () {
 let evaluation_area = $("#evaluation");
 evaluation_area.empty();
 let system_list = create_system_list(evaluation_area, "/admin/systems/get", create_system_stats_plots, true);
 evaluation_area.append(system_list);
 });

 $("ul.nav a[href ='#feedback']").bind("show.bs.tab", function () {
 let evaluation_area = $("#feedback");
 evaluation_area.empty();
 let system_list = create_system_list(evaluation_area, "/admin/systems/get", create_system_feedback_plots, false, true);
 evaluation_area.append(system_list);
 });

 $(".nav-tabs a").click(function () {
 $(this).tab("show");
 });

 if (location.hash) { //switches tabs based on the anchor part (#) of url
 $("ul.nav a[href='" + location.hash + "']").tab("show");
 } else {
 const tabs = $(".nav-tabs li:first-child a");
 if (tabs) {
 tabs.tab("show");
 }
 }
})
;

function generateSystemTableHtml(systems) {
 let html = "<tr>";
 for (const system of systems) {
 html += "<td>" + system.system_id + "</td>";
 html += "<td>" + system.system_name + "</td>";
 html += "<td>" + system.firstname + " " + system.lastname + "</td>";
 html += "<td>" + system.organization + "</td>";
 html += "<td>" + system.email + "</td>";
 html += "<td>" + system.api_key + "</td>";
 html += "<td><input class='toggleSystem' type='checkbox' data-value=" + system.system_id
 if (system.active) {
 html += " checked"
 }
 html += system.active ? " title='Deactivate this system.'" : " title='Activate this system.'"
 html += "></td></tr>";
 }
 $(".systemList tbody").html(html)
}

function generateAdminsTableHtml(admins) {
 let html = "<tr>";
 for (const admin of admins) {
 html += "<td>" + admin.user_id + "</td>";
 html += "<td>" + admin.email + "</td>";
 html += "<td>" + admin.firstname + " " + admin.lastname + "</td>";
 html += "></td></tr>";
 }
 $("#admins tbody").html(html)
}

arxivdigest/frontend/uncompiled_assets/javascript/articlelist.js

$(document).ready(function () {
 $(".articleDescription").each(function () {
 var description = $(this);
 if (description.text().length > 450) {
 var showMore = $("<p class='showMore'>Show more</p>")
 showMore.on("click", function () {
 if ($(this).text() === "Show more") {
 $(this).text("Show less");
 description.animate({height: description.get(0).scrollHeight});
 } else {
 $(this).text("Show more");
 description.animate({height: "4.6em"});
 }
 });
 description.after(showMore);
 } else {
 description.height("auto")
 }
 });

 $(".saveButton").each(function () {
 $(this).on("click", function () {
 var button = $(this);
 var isSaved = button.hasClass("Saved");
 $.ajax({
 url: "/save/" + button.data("value") + "/" + !isSaved,
 type: 'PUT',
 success: function (data) {
 if (data.result === "Success") {
 button.toggleClass("Saved", !isSaved);
 if (isSaved) {
 button.attr("title", "Save this article");
 button.attr("src","../static/icons/icon_save.png")
 } else {
 button.html("title", "Remove this article from saved articles");
 button.attr("src","../static/icons/icon_remove.png")
 }
 }
 }
 });
 })
 });
});

arxivdigest/frontend/uncompiled_assets/javascript/autocomplete.js

function autoComplete(input, submit_button,
 suggestion_func,
 submit_func,
 set_input_value_func = value => value.trim()) {
 submit_button.on("click", function (e) {
 e.preventDefault();
 input.submit();
 input.trigger("blur");
 });
 input.attr("autocomplete", "off");
 input.suggestion_list = $("<div class='autocomplete-suggestions'></div>");
 input.suggestion_list.appendTo(input.parent());
 input.submitted = [];

 input.update_suggestionbox = function (next) {
 if (!next) {
 input.suggestion_list.scrollTop(0);
 } else {
 const sl = input.suggestion_list;
 const selectedTop = next.offset().top - sl.offset().top;
 const height = parseInt(sl.css("height"));
 if (selectedTop + next.outerHeight() >= height) {
 sl.scrollTop(next.outerHeight() + sl.scrollTop() + selectedTop - height)
 } else if (selectedTop < 0) {
 sl.scrollTop(selectedTop + sl.scrollTop())
 }
 }
 };

 input.suggestion_list.on("mouseenter", ".autocomplete-suggestion", function () {
 $(".autocomplete-suggestion.selected", input.suggestion_list).removeClass("selected");
 $(this).addClass("selected");
 });

 input.suggestion_list.on("mousedown click", ".autocomplete-suggestion", function (e) {
 const item = $(this);
 const val = item.text();
 if (val && item.hasClass("autocomplete-suggestion")) {
 onSelect(val);
 }
 input.shouldfocus = true;
 });

 input.on("blur", function () {
 input.suggestion_list.hide();
 if (input.shouldfocus) {
 input.focus();
 input.shouldfocus = false;
 }
 });

 input.on("focus", function () {
 input.prev_value = "\n";
 input.trigger("keyup");
 input.suggestion_list.show();
 });

 input.on("keydown", function (e) {
 input.suggestion_list.show();
 if ((e.which === 38 || e.which === 40) && input.suggestion_list.html()) {
 let next_element;
 let selected_element = $(".autocomplete-suggestion.selected", input.suggestion_list);
 if (!selected_element.length) {
 let list = $(".autocomplete-suggestion", input.suggestion_list);
 next_element = (e.which === 40) ? list.first() : list.last();
 next_element.addClass("selected");
 input.val(set_input_value_func((next_element.text())));
 } else {
 if (e.which === 40) {
 next_element = selected_element.next(".autocomplete-suggestion");
 } else {
 next_element = selected_element.prev(".autocomplete-suggestion");
 }
 selected_element.removeClass("selected");
 if (next_element.length) {
 next_element.addClass("selected");
 input.val(set_input_value_func((next_element.text())));
 } else {
 input.val(input.prev_value);
 next_element = 0;
 }
 }
 input.update_suggestionbox(next_element);
 return false;
 } else if (e.which === 27) { // Escape
 input.suggestion_list.hide();
 input.val(input.prev_value)
 } else if (e.which === 13 || e.which === 9) { // Enter or tab
 let selected = $(".autocomplete-suggestion.selected", input.suggestion_list);
 e.preventDefault();
 if (selected.length && input.suggestion_list.is(":visible")) {
 onSelect(selected.text())
 } else {
 input.submit()
 }
 }
 });

 input.on("keyup", function (e) {
 // Enter, escape, end, home, left, up, right, down
 if (![13, 27, 35, 36, 37, 38, 39, 40].includes(e.which)) {
 if (input.val() !== input.prev_value) {
 input.prev_value = input.val();
 input.generateSuggestionList()
 }
 }
 });

 input.generateSuggestionList = function () {
 const input_value = input.val();

 suggestion_func(input_value).then(function (suggestion_data) {
 const choices = suggestion_data["suggestions"];
 const title = suggestion_data["title"] || "";

 if (!choices.length) {
 input.suggestion_list.html("");
 return;
 }

 let search = input_value.split(/[. ,]/g).join(" ");
 search = search.replace(/[-\/\\^$*+?.()|[\]{}]/g, "\\$&");
 search = search.split(" ").join("|");
 const re = new RegExp("(" + search + ")", "gi");

 let s = "";
 for (let i = 0; i < choices.length; i++) {
 s += "<div class='autocomplete-suggestion' " +
 "data-toggle='tooltip' title='" + choices[i] + "' >";
 s += choices[i].replace(re, "$1") + "</div>";
 }
 if (title) {
 s = "<div class='autocomplete-header'>" + title + "</div>" + s;
 }
 input.suggestion_list.html(s);
 input.update_suggestionbox(0);
 });
 };

 function onSelect(value) {
 value = value.trim();
 value = set_input_value_func(value);
 input.val(value);
 input.prev_value = input.val();
 input.suggestion_list.hide();
 input.generateSuggestionList();
 }

 input.submit = function (value) {
 if (!value) {
 value = input.val();
 }
 const submit = submit_func(value);
 if (submit) {
 input.val("");
 input.prev_value = "";
 input.generateSuggestionList();
 input.suggestion_list.hide()
 }
 };

}

arxivdigest/frontend/uncompiled_assets/javascript/evaluation.js

function create_impression_outcome_plot(container, impressions, mean_normalized_reward, labels) {
 let canvas = $("<canvas></canvas>");
 container.append(canvas);
 let ctx = canvas[0].getContext('2d');
 new Chart(ctx, {
 type: 'bar',
 data: {
 labels: labels,
 datasets: [{
 label: 'Mean normalized reward',
 data: mean_normalized_reward,
 backgroundColor: 'rgba(0, 0, 0, 0)',
 pointBorderColor: 'rgba(50, 50, 200, 0.5)',
 pointBackgroundColor: 'rgba(50, 50, 200, 0.5)',
 borderColor: 'rgba(50, 50, 200, 0.5)',

 yAxisID: 'right-y-axis',
 type: 'line'
 }, {
 label: 'Impressions',
 data: impressions,
 yAxisID: 'left-y-axis',
 backgroundColor: 'rgba(100, 150, 50, 0.4)'
 }]
 },
 options: {
 scales: {
 yAxes: [{
 id: 'left-y-axis',
 type: 'linear',
 position: 'left',
 scaleLabel: {
 display: true,
 labelString: 'Impressions'
 },

 ticks: {
 beginAtZero: true,
 precision: 0
 }
 }, {
 id: 'right-y-axis',
 type: 'linear',
 position: 'right',
 scaleLabel: {
 display: true,
 labelString: 'Mean normalized reward '
 },
 ticks: {
 max: 1,
 beginAtZero: true,
 }
 }]
 },
 }
 });
}

function create_topic_feedback_plot(container, labels, system_recommended_accepted, system_recommended_rejected, refreshed, expired) {
 let canvas = $("<canvas></canvas>");
 container.append(canvas);
 let ctx = canvas[0].getContext('2d');
 new Chart(ctx, {
 type: 'bar',
 data: {
 labels: labels,
 datasets: [{
 label: 'System accepted',
 data: system_recommended_accepted,
 backgroundColor: 'rgba(100, 150, 50, 0.4)',
 }, {
 label: 'System rejected',
 data: system_recommended_rejected,
 backgroundColor: 'rgba(255, 100, 50, 0.4)',
 }, {
 label: 'Refreshed',
 data: refreshed,
 backgroundColor: 'rgba(255, 100, 200, 0.4)',
 }, {
 label: 'Expired',
 data: expired,
 backgroundColor: 'rgba(5, 100, 200, 0.4)',
 }]
 },
 options: {
 title: {
 display: true,
 text: "Topic feedback",
 position: "left"
 },
 scales: {
 yAxes: [{
 type: 'linear',
 ticks: {
 beginAtZero: true,
 precision: 0
 }
 }]
 },
 }
 });
}

function create_article_feedback_plot(container, labels, saved, seen_web, clicked_web, seen_mail, clicked_mail) {
 let canvas = $("<canvas></canvas>");
 container.append(canvas);
 let ctx = canvas[0].getContext('2d');
 new Chart(ctx, {
 type: 'bar',
 data: {
 labels: labels,
 datasets: [{
 label: 'Saved',
 data: saved,
 backgroundColor: 'rgba(100, 150, 50, 0.4)'
 }, {
 label: 'Seen web',
 data: seen_web,
 backgroundColor: 'rgba(100, 150, 255, 0.4)',
 }, {
 label: 'Clicked web',
 data: clicked_web,
 backgroundColor: 'rgba(0, 50, 150, 0.4)',
 }, {
 label: 'Seen mail',
 data: seen_mail,
 backgroundColor: 'rgba(255, 200, 50, 0.4)',
 }, {
 label: 'Clicked mail',
 data: clicked_mail,
 backgroundColor: 'rgba(230, 100, 0, 0.4)',
 }]
 },
 options: {
 title: {
 display: true,
 text: "Article feedback",
 position: "left"
 },
 scales: {
 yAxes: [{
 type: 'linear',
 ticks: {
 beginAtZero: true,
 precision: 0
 }
 }]
 },
 }
 });
}

function create_date_controls(container, create_plots) {
 let controls = $("<div class='form-inline'></div>");
 let date = new Date();
 date.setDate(date.getDate() - 30);
 create_date_selector(controls, "Start date: ", "start_date", date, true, 'end_date', "form-group", create_plots);
 create_date_selector(controls, "End date: ", "end_date", new Date(), false, 'start_date', "form-group", create_plots);

 let spacer = $("<label >Aggregate by: </label>");
 controls.append(spacer);
 controls.on("change", "input[type=radio]", function () {
 setQueryStringParameter("aggregation", this.value);
 create_plots(container)
 });

 setQueryStringParameter("aggregation", getQueryStringParameter("aggregation", "day"));
 let month_button = $("<label class='radio-inline'><input type='radio' name='aggregation' value='month'> Months</label>");
 let week_button = $("<label class='radio-inline'><input type='radio' name='aggregation' value='week'> Weeks</label>");
 let day_button = $("<label class='radio-inline'><input type='radio' name='aggregation' value='day'> Days</label>");
 controls.append(month_button);
 controls.append(week_button);
 controls.append(day_button);

 let selector = "input[value='" + getQueryStringParameter("aggregation") + "']";
 controls.children().children(selector).prop("checked", true);
 container.append(controls);
}

function create_date_selector(controls, text, id, date, is_start, other_date, classes, create_plots) {
 let div = $("<div class='" + classes + "'></div>");
 controls.append(div);

 let field = $("<label for='" + id + "'>" + text + "<input id='"
 + id + "' name='" + id + "' type='text' size='7'></label>");
 div.append(field);

 let options = {
 dateFormat: "yy-mm-dd",
 maxDate: 0,
 changeMonth: true,
 changeYear: true
 };
 if (is_start) {
 options.maxDate = parse_date(getQueryStringParameter(other_date));
 } else {
 options.minDate = parse_date(getQueryStringParameter(other_date));
 }

 let date_selector = field.children('input');
 date_selector.datepicker(options).on("change", function () {
 setQueryStringParameter(id, this.value);
 create_plots(controls.parent())
 });
 date_selector.datepicker("setDate", getQueryStringParameter(id, date));
}

function create_system_stats_plots(plot_area) {
 $.ajax({
 url: "/evaluation/system_statistics/" + getQueryStringParameter('system', 0) + window.location.search,
 type: "GET",
 success: function (data) {
 plot_area.empty();
 create_date_controls(plot_area, create_system_stats_plots);
 create_impression_outcome_plot(plot_area, data.impressions, data.mean_normalized_reward, data.labels);
 }
 });
}

function create_system_feedback_plots(plot_area) {
 let system = "/" + getQueryStringParameter('system', '');
 if (system === '/all') {
 system = '';
 }
 $.ajax({
 url: "/evaluation/system_feedback" + system + window.location.search,
 type: "GET",
 success: function (data) {
 plot_area.empty();
 create_date_controls(plot_area, create_system_feedback_plots);
 create_article_feedback_plot(plot_area, data.labels, data.saved, data.seen_web, data.clicked_web, data.seen_email, data.clicked_email);
 create_topic_feedback_plot(plot_area, data.labels, data.SYSTEM_RECOMMENDED_ACCEPTED, data.SYSTEM_RECOMMENDED_REJECTED, data.REFRESHED, data.EXPIRED);
 }
 });
}

function create_mode_controller(plot_area, create_plots) {
 setQueryStringParameter("mode", getQueryStringParameter("mode", "article"));
 let mode_selector = $("<div class='btn-group btn-group-justified' role='group' ></div>
");
 let article_choice = $("<a data-mode='article' class='btn btn-default'>Articles");
 let topic_choice = $("<a data-mode='topic' class='btn btn-default'>Topics");
 mode_selector.append(article_choice);
 mode_selector.append(topic_choice);
 let active = mode_selector.find("[data-mode=" + getQueryStringParameter("mode") + "]");
 active.addClass('active no_hover');
 active.siblings().on("click", change_mode);

 return mode_selector;

 function change_mode() {
 let other_button = mode_selector.find(".active");
 setQueryStringParameter("mode", $(this).data('mode'));
 $(this).off("click");
 $(this).addClass("active no_hover");
 other_button.on("click", change_mode);
 other_button.removeClass("active no_hover");
 create_plots(plot_area)
 }

}

function create_system_list(evaluation_area, url, create_plots, mode_selector = false, overall = false) {
 let system_list_container = $("<div class='col-md-3'></div>");
 evaluation_area.append(system_list_container);

 let plot_area = $("<div class='col-md-9'></div>");
 evaluation_area.append(plot_area);

 if (mode_selector) {
 system_list_container.append(create_mode_controller(plot_area, create_plots));
 }

 let system_list = $("<div class='list-group'></div>");
 system_list_container.append(system_list);
 if (overall) {
 system_list.append($(`<li class='list-group-item' data-id='all'
 data-toggle='tooltip' title='All systems'>All systems`));
 }

 system_list.on("click", ".list-group-item", function () {
 $(this).siblings().removeClass("active");
 $(this).addClass('active');
 setQueryStringParameter('system', $(this).data("id"));
 create_plots(plot_area)
 });

 $.ajax({
 url: url,
 type: "GET",
 success: function (data) {
 for (const system of data["systems"]) {
 const title = "" + system.system_id + " : " + system.system_name;
 let li = $(`<li class='list-group-item' data-id=${system.system_id}
 data-toggle='tooltip' title='${title}'>${title}`);
 system_list.append(li)
 }
 }
 }).always(function () {
 let system_id = system_list.find("[data-id]").first().data("id");
 if (system_list.find(`[data-id="${getQueryStringParameter("system")}"]`).length) {
 system_id = getQueryStringParameter("system")
 }
 setQueryStringParameter("system", system_id);
 let system_selector = `[data-id="${system_id}"]`;
 system_list.find(system_selector).addClass("active");
 create_plots(plot_area)
 });
}

$(document).ready(function () {
 let evaluation_area = $("#evaluate_systems");
 if (evaluation_area.length) {
 let plot_area = $("<div class='col-md-9'></div>");
 evaluation_area.empty();
 let system_list = create_system_list(evaluation_area, "/evaluation/systems/", create_system_stats_plots, true);
 evaluation_area.append(system_list);
 evaluation_area.append(plot_area);
 }
});
$(document).ready(function () {
 let evaluation_area = $("#feedback_systems");
 if (evaluation_area.length) {
 let plot_area = $("<div class='col-md-9'></div>");
 evaluation_area.empty();
 let system_list = create_system_list(evaluation_area, "/evaluation/systems/", create_system_feedback_plots, false, false);
 evaluation_area.append(system_list);
 evaluation_area.append(plot_area);
 }
});

arxivdigest/frontend/uncompiled_assets/javascript/forms.js

function inputTouched(input) {
 if (input.value === "" || input.value === null) {
 input.classList.remove("touched");
 } else {
 input.classList.add("touched");
 }
}

function removeTouched(input) {
 input.classList.remove("touched");
}

// Add autocomplete to topic input
$(document).ready(function () {

 async function suggest_topics_from_text(text) {
 if (text.length < 1) {
 return {"suggestions": []}
 }
 let result = await $.ajax({
 url: "topics/search/" + encodeURIComponent(text),

 }).done(function (data) {
 input.parent().parent().next("form_error").text('');
 }).fail(function () {
 input.parent().parent().next("form_error").text('Topic search request failed.');
 });

 return {"suggestions": result.filter(t => !input.submitted.includes(t))}
 }

 function submit_topics(value) {
 value = value.toLowerCase();
 const hidden_input = $("#hidden_topics_input");
 const interests_list = $("#topic_list");

 if (!input.submitted.some(o => o === value)) {
 if (value.length < 3) {
 input.parent().parent().next().text(
 "Topics must contain at least 3 characters.");
 input.suggestion_list.hide();
 return false;
 }
 if (!value.match(/^[0-9a-zA-Z\-]+$/)){
 input.parent().parent().next().text(
 "Topics must not contain special symbols.");
 input.suggestion_list.hide();
 return false;
 }
 input.parent().parent().next("form_error").text("");
 input.submitted.push(value);
 const li = create_removable_list_element(value, value, input, hidden_input);
 interests_list.append(li);
 hidden_input.val_with_change(input.submitted.join("\n"));
 return true;
 }
 }

 $("#hidden_topics_input").on("change", function (event) {
 if (input.submitted.length < 3) {
 input.get(0).setCustomValidity("You need to provide at least 3 topics.");
 } else {
 input.get(0).setCustomValidity("");
 }
 });

 const input = $("#topic_input");
 if (input.length) {
 input.get(0).setCustomValidity("You need to provide at least 3 topics.");
 input.submitted = [];
 autoComplete(input, $("#add_topic"), suggest_topics_from_text, submit_topics);
 if (typeof user_topics !== "undefined") {
 const is_string = typeof user_topics === "string";
 let topics = is_string ? user_topics.split(/\r?\n/) : user_topics.map(t => t['topic']);
 for (const topic of topics) {
 input.submit(topic.toLowerCase());
 }
 }
 input.suggestion_list.hide();
 }
});

// Add autocomplete to category input
$(document).ready(function () {

 async function suggest_categories_from_text(text) {
 const input_list = text.toLowerCase().split(".");
 const is_sub = input.categories.hasOwnProperty(input_list[0].toLowerCase());
 if (is_sub && input_list.length === 1) {
 input_list.push("")
 }

 let title;
 const suggestions = [];

 if (input_list.length > 2) {
 return {"title": "", "suggestions": []}
 } else if (input_list.length === 2) {
 title = suggestions.length ? " Subcategories:" : "";
 const subcategories = input.sub_categories[input_list[0]];
 for (const subcategory in subcategories) {
 const subcategory_data = subcategories[subcategory];
 if (subcategory_data[1].toLowerCase().includes(input_list[1])) {
 if (input.submitted.includes(subcategory_data[0])) {
 continue
 }
 suggestions.push(subcategory_data[1].split(".").slice(-1)[0]);
 }
 }
 } else {
 title = "";
 for (const category in input.categories) {
 const category_data = input.categories[category];
 if (category_data[1].toLowerCase().includes(input_list[0])) {
 suggestions.push(category_data[1]);
 }
 }
 }
 return {
 "title": title,
 "suggestions": suggestions,
 };
 }

 function submit_categories(input_value) {
 input_value = input_value.toLowerCase().split(".");
 const hidden_input = $("#categoriesInput");
 const interests_list = $("#interestsList");

 let category;
 if (input_value.length === 1 && input.categories[input_value[0]]) {
 category = input.categories[input_value[0]]
 } else if (input_value.length === 2 && input.sub_categories[input_value[0]][input_value[1]]) {
 category = input.sub_categories[input_value[0]][input_value[1]]
 }
 if (category && !input.submitted.some(o => o === category[0])) {
 input.submitted.push(category[0]);
 const li = create_removable_list_element(category[1], category[0], input, hidden_input);
 interests_list.append(li);
 hidden_input.val_with_change(input.submitted.join("\n"));
 return true;
 }
 }

 function set_input_value(value) {
 value = value.trim();
 let input_value = input.prev_value.split(".");
 if (input.categories.hasOwnProperty(input_value[0].toLowerCase())) {
 return input_value[0] + "." + value;
 } else
 return value;
 }

 const input = $("#interestsInput");
 if (input.length) {
 const parsed_categories = parseCategoryList(categoryList);
 input.categories = parsed_categories["categories"];
 input.sub_categories = parsed_categories["sub_categories"];
 input.category_names = parsed_categories["category_names"];
 input.submitted = [];
 autoComplete(input, $("#addCategory"), suggest_categories_from_text,
 submit_categories, set_input_value);
 if (typeof usercategories !== 'undefined') {
 let categories;
 if (typeof usercategories === "string") {
 categories = usercategories.split(/\r?\n/);
 } else {
 categories = usercategories.map(c => c['category_id']);
 }
 for (const category of categories) {
 input.submit(input.category_names[category].toLowerCase());
 }
 }
 input.suggestion_list.hide();
 }

 function parseCategoryList(data) {
 data.sort(function (a, b) {
 return (a[0] < b[0] ? -1 : (a[0] > b[0] ? 1 : 0));
 });

 let categories = {};
 let sub_categories = {};
 let category_names = {};
 for (const category of data) {
 const c = category[1].split(".");
 if (c.length === 1) {
 categories[c[0].toLowerCase()] = category;
 sub_categories[c[0].toLowerCase()] = {};
 } else {
 sub_categories[c[0].toLowerCase()][c[1].toLowerCase()] = category;
 }
 category_names[category[0]] = category[1];
 }
 return {
 "categories": categories,
 "sub_categories": sub_categories,
 "category_names": category_names
 };
 }
});

// Add events to website the website inputs
$(document).ready(function () {

 let websiteInputs = [
 {"id": "#dblp_profileInput", "prefix": ["https://dblp.org/", "https://dblp.uni-trier.de/",
 "dblp.uni-trier.de/", "dblp.org/"]},
 {"id": "#google_scholar_profileInput", "prefix": ["scholar.google.com/",
 "https://scholar.google.com/"]},
 {"id": "#semantic_scholar_profileInput", "prefix": ["semanticscholar.org/author/",
 "https://www.semanticscholar.org/author/","www.semanticscholar.org/author/",
 "https://semanticscholar.org/author/"]},
];

 for (const websiteInput of websiteInputs) {
 const input = $(websiteInput["id"]);
 input.on("blur focus", function () {
 let text = input.val();
 if (!text.length) {
 input.get(0).nextElementSibling.textContent = "";
 input.get(0).setCustomValidity("")
 } else {
 for (const address_option of websiteInput["prefix"]){
 if (text.startsWith(address_option)){
 input.get(0).nextElementSibling.textContent = "";
 input.get(0).setCustomValidity("")
 break;
 }
 else{
 let msg = "Address must start with one of the following: ";
 for (const option of websiteInput["prefix"]){
 msg += "\"" + option + "\" ";
 };
 input.get(0).nextElementSibling.textContent = msg;
 input.get(0).setCustomValidity(msg)
 }
 }
 }
 });
 }
});

function create_removable_list_element(text, data_value, input, hidden_input) {
 let li = $("<li class=\"list-group-item\">");
 li.data("val", data_value);
 let remove_button = $("");
 remove_button.click(function () {
 input.submitted.forEach(function (element, i) {
 if (element === li.data("val")) {
 input.submitted.splice(i, 1);
 }
 });
 hidden_input.val_with_change(input.submitted.join("\n"));
 li.remove();
 });
 li.html("" + text + "");
 li.append(remove_button);
 return li;
}

(function ($) {
 $.fn.val_with_change = function (val) {
 $(this).val(val);
 $(this).change();
 };
})(jQuery);

arxivdigest/frontend/uncompiled_assets/javascript/topics.js

$(document).ready(function () {
 if (top.location.pathname === '/'){
 show_topics();
 }
});

function show_topics(){
 var topic_list = $("#index_topic_list");
 topic_list.empty();
 var title = $("<li class='list-group-item'><h4 style='text-align: center;'>Suggested Topics: <div class='glyphicon glyphicon-refresh alignright topic-refresh' title='Refresh list of topics' onclick='refresh_topics()'></div></h4>");
 //var refresh = $("<div class='glyphicon glyphicon-refresh alignright topic-symbol' onclick='refresh_topics()'></div>");
 //title.append(refresh)
 topic_list.append(title);

 if (suggested_topics.length == 0){
 var end = $("<li class='list-group-item topic-end'><h5>-No more suggested topics at the moment-</h5>");
 topic_list.append(end);
 return null;
 }
 for (var i = 0; i < suggested_topics.length; i++){
 var new_topic_element = $("<li class='list-group-item'>");
 var ok_button = $("<div class='glyphicon glyphicon-ok alignright topic-symbol' title='Add this topic to your profile' data-value='"+ suggested_topics[i]['topic_id']+"' onclick='add_topic(this)' style='color:rgb(103, 134, 103);'></div>");
 var remove_button = $("<div class='glyphicon glyphicon-remove alignright topic-symbol' title='Remove this topic suggestion' data-value='"+ suggested_topics[i]['topic_id']+"' onclick='reject_topic(this)' style='color:rgb(177, 119, 119);'></div>");
 var topic_text = $("<p>"+suggested_topics[i]['topic']+"</p>");
 new_topic_element.append(remove_button);
 new_topic_element.append(ok_button);
 new_topic_element.append(topic_text);
 topic_list.append(new_topic_element);
 }
}

function add_topic(div){
 var topic_id = $(div).data()['value'];
 $("#topic_error").html('')

 $.ajax({
 url: "/update_topic/"+topic_id+"/SYSTEM_RECOMMENDED_ACCEPTED",
 type: 'PUT',
 success: function (data) {
 if (data.result == "success"){
 remove_topic(topic_id);
 }
 if (data.result == "fail"){
 $("#topic_error").html("Failed to add topic, try again later.");
 }
 }
 });
}

function reject_topic(div){
 var topic_id = $(div).data()['value'];
 $("#topic_error").html('')

 $.ajax({
 url: "/update_topic/"+topic_id+"/SYSTEM_RECOMMENDED_REJECTED",
 type: 'PUT',
 success: function (data) {
 if (data.result == "success"){
 remove_topic(topic_id);
 }
 if (data.result == "fail"){
 $("#topic_error").html("Failed to add topic, try again later.");
 }
 }
 });
}

function refresh_topics(){
 $("#topic_error").html('')

 $.ajax({
 url: "/refresh_topics",
 type: 'PUT',
 success: function (data) {
 suggested_topics = data.result;
 show_topics();
 }
 });
}

function remove_topic(topic_id){
 suggested_topics = suggested_topics.filter(function (e){
 return e['topic_id'] !== topic_id;
 });
 show_topics();
}

arxivdigest/frontend/uncompiled_assets/javascript/utils.js

function setQueryStringParameter(name, value) {
 const params = new URLSearchParams(window.location.search);
 params.set(name, value);
 let url = `${window.location.pathname}?${params}`;
 if (window.location.hash) {
 url += window.location.hash
 }
 window.history.pushState({}, "", decodeURIComponent(url));
}

function getQueryStringParameter(name, default_value) {
 const urlParams = new URLSearchParams(window.location.search);
 if (urlParams.get(name) || !default_value) {
 return urlParams.get(name);
 } else if (default_value) {
 return default_value;
 }
}

function parse_date(date) {
 try {
 date = $.datepicker.parseDate("yy-mm-dd", date);
 } catch (error) {
 date = null;
 }
 return date;
}

arxivdigest/frontend/utils.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import datetime
import gzip
from functools import wraps
from uuid import uuid4

import jwt
from flask import g
from flask import make_response
from flask import redirect
from flask import request
from flask import url_for

import arxivdigest.frontend.database.admin as admin
import arxivdigest.frontend.database.general as general
from arxivdigest.core.config import config_email
from arxivdigest.core.config import config_web_address
from arxivdigest.core.config import jwtKey
from arxivdigest.core.mail.mail_server import MailServer
from arxivdigest.frontend import database

def requiresLogin(f):
 @wraps(f)
 def wrapper(*args, **kwargs):
 """Decorator to use before paths where users must be logged in to access.
 Checks if users are logged in and redirects to login page if not."""
 if g.inactive:
 return make_response(redirect(url_for('general.confirm_email_page',
 next=request.script_root + request.full_path)))
 elif g.loggedIn:
 return f(*args, **kwargs)
 else:
 return make_response(redirect(url_for('general.loginPage',
 next=request.script_root + request.full_path)))
 return wrapper

def encode_auth_token(id, email):
 """Creates authToken for user with id and email with expire time of 10 days"""
 payload = {
 'exp': datetime.datetime.now() + datetime.timedelta(days=10),
 'sub': id,
 'admin': admin.isAdmin(id),
 'email': email,
 'inactive': not general.is_activated(id)
 }
 return jwt.encode(payload, jwtKey, algorithm='HS256').decode()

def pageinate(page, maxPage, n):
 """Helperfunction for making a pageselector, page is the current page,
 maxPage is the last page and n is the number of pages to show in the pageselector."""
 pages = [page]
 min = page-1
 max = page+1
 while len(pages) < n:
 if (2 * page - min <= max or max > maxPage) and min > 0:
 pages.append(min)
 min -= 1
 elif max <= maxPage:
 pages.append(max)
 max += 1
 else:
 break
 pages = sorted(pages)
 if maxPage > n and n > 5:
 if pages[0] != 1:
 pages[0] = 1
 pages[1] = -1
 if pages[-1] != maxPage:
 pages[-1] = maxPage
 pages[-2] = -1
 return pages

def create_gzip_response(content_bytes, filename):
 """Creates gzip-file from the 'content_bytes' with the name 'filename'
 inside a flask response object.

 :param content_bytes: Bytes that will be gziped.
 :param filename: The name of the downloadable gzip file.
 :return: Response object with downloadable gzip-file.
 """
 response = make_response()
 response.set_data(gzip.compress(content_bytes))
 response.headers['Content-Disposition'] = 'attachment;filename=' + filename
 return response

def send_confirmation_email(email):
 """Sends an email to the user to confirm their email."""
 server = MailServer(**config_email)

 trace = str(uuid4())
 mail_content = {'to_address': email,
 'subject': 'arXivDigest email confirmation',
 'template': 'confirm_email',
 'data': {'activate_link': '%semail_confirm/%s' % (config_web_address, trace),
 'link': config_web_address}}

 general.add_activate_trace(trace, email)
 server.send_mail(**mail_content)
 server.close()

def date_range(start_date, end_date, step=1, date_format=None, date_time=False):
 """Creates a range from dates.

 :param start_date: Start of range.
 :param end_date: End of range.
 :param step: Days to between dates in range.
 :param date_format: If set, dates will be stings with this format,
 else they will be date objects.
 :param date_time: Whether the data should be date or datetime, only if
 format is not specified.
 :return: Range of dates.
 """
 dates = [start_date + datetime.timedelta(days=days) for days in
 range(0, (end_date - start_date).days + 1, step)]

 if date_format:
 return [date.strftime(date_format) for date in dates]
 elif date_time:
 return [datetime.datetime(d.year, d.month, d.day) for d in dates]
 else:
 return dates

def is_owner(user_id, system_id):
 """Checks whether the user is the owner of the system."""
 for system in database.general.get_systems(user_id):
 if system['system_id'] == system_id:
 return True
 return False

arxivdigest/frontend/views/admin.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from flask import abort
from flask import Blueprint
from flask import g
from flask import jsonify
from flask import render_template

from arxivdigest.core.config import config_email
from arxivdigest.core.config import config_web_address
from arxivdigest.core.mail.mail_server import MailServer
from arxivdigest.frontend.database import admin as db
from arxivdigest.frontend.utils import requiresLogin

mod = Blueprint('admin', __name__)

@mod.before_request
def before_request():
 if not g.loggedIn or not db.isAdmin(g.user):
 return abort(404)
 return None

@mod.route('/', methods=['GET'])
@requiresLogin
def admin():
 """Returns the adminpage"""
 return render_template('admin.html')

@mod.route('/systems/get', methods=['GET'])
@requiresLogin
def getSystems():
 """Returns list of systems from db"""
 return jsonify({'success': True, 'systems': db.getSystems()})

@mod.route('/admins/get', methods=['GET'])
@requiresLogin
def getAdmins():
 """Returns list of admins from db"""
 return jsonify({'success': True, 'admins': db.getAdmins()})

@mod.route('/systems/toggleActive/<int:systemID>/<state>', methods=['PUT'])
@requiresLogin
def toggleSystem(systemID, state):
 """Endpoint for activating and deactivating systems, sets active-value
 for system with <systemID> to <state>"""
 state = True if state.lower() == "true" else False
 if not db.toggleSystem(systemID, state):
 return jsonify(result='Fail')
 if state:
 sys = db.getSystem(systemID)
 mail = {'to_address': sys['email'],
 'subject': 'System Activation',
 'template': 'systemActivation',
 'data': {'name': sys['firstname'] + " " + sys['lastname'],
 'key': sys['api_key'],
 'link': config_web_address}}

 Server = MailServer(**config_email)
 try:
 Server.send_mail(**mail)
 except Exception as e:
 return jsonify(result='Success', err='Email error')
 finally:
 Server.close()
 return jsonify(result='Success')

@mod.route('/general', methods=['GET'])
@requiresLogin
def general():
 """This endpoint returns general stats for the project"""
 return jsonify({'success': True,
 'users': db.getUserStatistics(),
 'articles': db.getArticleStatistics()
 })

arxivdigest/frontend/views/articles.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import math

from flask import Blueprint
from flask import flash
from flask import g
from flask import jsonify
from flask import redirect
from flask import render_template
from flask import request
from flask import url_for

from arxivdigest.frontend.database import articles as db
from arxivdigest.frontend.utils import pageinate
from arxivdigest.frontend.utils import requiresLogin
from arxivdigest.frontend.database.general import get_user_topics

mod = Blueprint('articles', __name__)

topic_flag = True

def genArticleList(getArticles):
 '''Returns dictionary with: current interval selection, number of articles per page(5), current page,
 current sort method, pages for pagination div, number of articles, the articles, values for timedropdown
 and values for sortdropdown. Is a helper function used for showing long list of articles save in index and savedArticles'''
 pageNr = request.args.get('pageNr', 1, type=int)
 if pageNr < 1:
 pageNr = 1
 articlesPerPage = request.args.get('articlesPerPage', 5, type=int)
 if articlesPerPage < 1:
 articlesPerPage = 5
 sortBy = request.args.get('sortBy', 'scoreDesc').lower()
 intervals = {'today': 1, 'thisweek': 7, 'thismonth': 31, 'alltime': 99999}

 def intervalCheck(value):
 if value.lower() not in intervals:
 raise ValueError
 return value
 interval = request.args.get('interval', 'thisWeek', type=intervalCheck)

 intervalDays = intervals.get(interval.lower(), 7)
 start = (pageNr-1)*articlesPerPage
 articles, count = getArticles(g.user, intervalDays, sortBy,
 start, articlesPerPage)

 db.seenArticle([(x['article_id'], g.user) for x in articles])

 numberOfPages = math.ceil(count/articlesPerPage)
 pages = pageinate(pageNr, numberOfPages, 15)

 return {'interval': interval.lower(),
 'articlesPerPage': articlesPerPage,
 'currentPage': pageNr,
 'sortBy': sortBy,
 'pages': pages,
 'count': count,
 'articles': articles,
 'timeDropDown': [('today', 'Today'), ('thisweek', 'This week'), ('thismonth', 'This month'), ('alltime', 'All time')],
 'sortDropDown': [('titleasc', 'Title ascending'), ('titledesc', 'Title descending'), ('scoreasc', 'Score ascending'), ('scoredesc', 'Score descending')]
 }

@mod.route('/')
@requiresLogin
def index():
 '''Returns index page with list of articles'''
 if topic_flag:
 return render_template('index.html', endpoint='articles.index', ** genArticleList(db.getUserRecommendations),
 suggested_topics = get_user_topics(g.user), topic_flag = topic_flag)
 return render_template('index.html', endpoint='articles.index', ** genArticleList(db.getUserRecommendations),
 topic_flag = topic_flag)

@mod.route('/savedArticles', methods=['GET'])
@requiresLogin
def savedArticles():
 '''Returns savedarticles page with list of saved articles'''
 return render_template('saves.html', endpoint='articles.savedArticles', ** genArticleList(db.getSavedArticles))

@mod.route('/save/<articleID>/<state>', methods=['PUT'])
@requiresLogin
def save(articleID, state):
 '''Endpoint for liking and unliking articles, sets save-value for article with <articleID> to <state>'''
 state = True if state.lower() == "true" else False
 if db.saveArticle(articleID, g.user, state):
 return jsonify(result='Success')
 return jsonify(result='Fail')

@mod.route('/mail/save/<int:userID>/<string:articleID>/<uuid:trace>', methods=['GET'])
def saveEmail(articleID, userID, trace):
 '''Endpoint for liking an article directly from from email.
 Uses a combination of 3 values to make randomly guessing and bruteforcing almost impossible.'''
 success = db.saveArticleEmail(articleID, userID, str(trace))
 if not success:
 return "Some error occurred."
 if g.loggedIn:
 flash("Saved article %s" % articleID, "success")
 return redirect(url_for("articles.index"))
 flash("Saved article %s" % articleID, "success")
 return redirect(url_for("general.loginPage"))

@mod.route('/mail/read/<int:userID>/<string:articleID>/<uuid:trace>', methods=['GET'])
def readEmail(articleID, userID, trace):
 '''Records clicks from email'''
 db.clickedArticleEmail(articleID, userID, str(trace))
 return redirect('https://arxiv.org/abs/%s' % articleID)

@mod.route('/click/<string:articleId>', methods=['GET'])
@requiresLogin
def click(articleId):
 '''Records if user clicks an article, redirects user to arXiv infopage for article or the article pdf depending on whether <pdf> is true or false'''
 db.clickArticle(articleId, g.user)
 pdf = request.args.get('pdf', False, type=lambda x: x.lower() == 'true')
 if pdf:
 return redirect('https://arxiv.org/pdf/%s.pdf' % articleId)
 return redirect('https://arxiv.org/abs/'+articleId)

arxivdigest/frontend/views/evaluation.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import datetime
from datetime import date

from flask import Blueprint
from flask import g
from flask import jsonify
from flask import make_response
from flask import request

from arxivdigest.core.config import config_evaluation
from arxivdigest.frontend.database import general as general_db
from arxivdigest.frontend.services import evaluation_service
from arxivdigest.frontend.utils import is_owner
from arxivdigest.frontend.utils import requiresLogin

mod = Blueprint('evaluation', __name__)

@mod.route('/evaluation/system_statistics/<int:system_id>', methods=['GET'])
@requiresLogin
def system_statistics(system_id):
 """This endpoint returns system statistics."""

 def to_date(date):
 return datetime.datetime.strptime(date, '%Y-%m-%d').date()

 if not (g.admin or is_owner(g.user, system_id)):
 return make_response(jsonify({'error': 'Not authorized for system.'}),
 401)

 start_date = date.today() - datetime.timedelta(days=30)
 start_date = request.args.get('start_date', start_date, to_date)
 end_date = request.args.get('end_date', date.today(), to_date)
 aggregation = request.args.get('aggregation', 'day')
 mode = request.args.get('mode', 'article')

 if mode == 'article':
 rewards = evaluation_service.get_article_interleaving_reward(start_date,
 end_date)
 elif mode == 'topic':
 rewards = evaluation_service.get_topic_interleaving_reward(start_date,
 end_date)
 else:
 return make_response(jsonify({'error': 'Unknown mode.'}), 400)

 impress, norm_rewards = evaluation_service.get_normalized_rewards(rewards,
 start_date,
 end_date,
 system_id)

 impressions, labels = evaluation_service.aggregate_data(impress,
 aggregation)

 norm_rewards, labels = evaluation_service.aggregate_data(norm_rewards,
 aggregation,
 sum_result=False)
 flat_norm_rewards = []
 # Flatten sublists.
 for i, period in enumerate(norm_rewards):
 flat_norm_rewards.append([])
 for interleavings in period:
 flat_norm_rewards[i].extend(interleavings)

 mean_norm_reward = [sum(norm_rewards) / impressions[i] if impressions[i]
 else 0
 for i, norm_rewards in enumerate(flat_norm_rewards)]
 return jsonify({'success': True,
 'mean_normalized_reward': mean_norm_reward,
 'impressions': impressions,
 'labels': labels,
 })

@mod.route('/evaluation/system_feedback', methods=['GET'])
@mod.route('/evaluation/system_feedback/<int:system_id>', methods=['GET'])
@requiresLogin
def system_feedback(system_id=None):
 """This endpoint returns system feedback."""

 def to_date(date):
 return datetime.datetime.strptime(date, '%Y-%m-%d').date()

 if not (g.admin or is_owner(g.user, system_id)):
 return make_response(jsonify({'error': 'Not authorized for system.'}),
 401)

 start_date = date.today() - datetime.timedelta(days=30)
 start_date = request.args.get('start_date', start_date, to_date)
 end_date = request.args.get('end_date', date.today(), to_date)
 aggregation = request.args.get('aggregation', 'day')

 feedback = evaluation_service.get_topic_feedback_amount(start_date,
 end_date,
 system_id)

 feedback.update(evaluation_service.get_article_feedback_amount(start_date,
 end_date,
 system_id))
 json = {}
 for state, data in feedback.items():
 data, label = evaluation_service.aggregate_data(data, aggregation)
 json['labels'] = label
 json[state] = data
 for state in config_evaluation['state_weights'].keys():
 json.setdefault(state, [0] * len(json.get('labels', [])))
 json.pop('USER_ADDED')
 json.pop('USER_REJECTED')
 return jsonify(json)

@mod.route('/evaluation/systems/', methods=['GET'])
@requiresLogin
def system_list():
 """This endpoint returns a list of systems owned by the user."""
 return jsonify({'success': True,
 'systems': general_db.get_systems(g.user),
 })

arxivdigest/frontend/views/general.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from flask import Blueprint
from flask import flash
from flask import g
from flask import json
from flask import jsonify
from flask import make_response
from flask import redirect
from flask import render_template
from flask import request
from flask import url_for

from arxivdigest.core.config import CONSTANTS
from arxivdigest.frontend.database import general as db
from arxivdigest.frontend.database import general as general_db
from arxivdigest.frontend.database.articles import article_is_recommended_for_user
from arxivdigest.frontend.database.articles import get_article_feedback
from arxivdigest.frontend.forms.feedback_form import ArticleFeedbackForm
from arxivdigest.frontend.forms.feedback_form import FeedbackForm
from arxivdigest.frontend.models.errors import ValidationError
from arxivdigest.frontend.models.user import User
from arxivdigest.frontend.models.validate import validPassword
from arxivdigest.frontend.utils import create_gzip_response
from arxivdigest.frontend.utils import encode_auth_token
from arxivdigest.frontend.utils import requiresLogin
from arxivdigest.frontend.utils import send_confirmation_email

mod = Blueprint('general', __name__)

@mod.route('/login', methods=['POST'])
def login():
 """Logs in user based on username and password from form. Returns proper error message on template if
 anything is wrong. Else returns index page and authToken"""
 if g.loggedIn:
 flash('You can\'t login while you\'re already logged in.', 'danger')
 return redirect(url_for('articles.index'))
 data = request.form

 user = db.validatePassword(data.get('email'), data.get('password'))
 if user is None:
 flash('User doesn\'t exist.', 'danger')
 return render_template('login.html')
 if user is False:
 flash('Invalid password.', 'danger')
 return render_template('login.html',)
 next = request.args.get('next', '')
 if next is not '':
 return make_auth_token_response(user, data.get('email'), next)
 return make_auth_token_response(user, data.get('email'),
 url_for('articles.index'))

@mod.route('/login', methods=['GET'])
def loginPage():
 """Returns login page or index page if already logged in"""
 if g.loggedIn:
 if g.inactive:
 return redirect(url_for('general.confirm_email_page'))
 else:
 return redirect(url_for('articles.index'))
 next = request.args.get('next')
 if next:
 err = 'You must be logged in to access this endpoint'
 flash(err, 'danger')
 return render_template('login.html', next=next)
 return render_template('login.html')

@mod.route('/logout', methods=['GET'])
def logout():
 """Returns login page and sets cookie expire time to 0, so that the user gets logged out"""
 resp = make_response(redirect(url_for('general.loginPage')))
 resp.set_cookie('auth', '', expires=0)
 g.user = None
 g.loggedIn = False
 return resp

@mod.route('/signup', methods=['POST'])
def signup():
 """Takes data from signup form and creates an userobject. Sends user object to signup database function. Returns
 signup page with relevant error or confirm email page and authToken"""
 if g.loggedIn:
 flash('You can not sign up while you are already logged in.', 'danger')
 return redirect(url_for('articles.index'))
 user_dict = request.form.to_dict()
 try:
 user = User(user_dict)
 except ValidationError as e:
 flash(e.message, 'danger')
 return render_template('signup.html', user=user_dict, signup=True,
 categoryList=db.getCategoryNames())
 if db.userExist(user.email):
 flash('Email already used by another account.', 'danger')
 return render_template('signup.html', user=user_dict, signup=True,
 categoryList=db.getCategoryNames())

 id = db.insertUser(user)

 send_confirmation_email(user.email)
 return make_auth_token_response(id, user.email,
 url_for('general.confirm_email_page'))

@mod.route('/signup', methods=['GET'])
def signupPage():
 """Returns signup page or index page if already logged in"""
 if g.loggedIn:
 return redirect(url_for('articles.index'))
 return render_template('signup.html', signup=True,
 categoryList=db.getCategoryNames())

@mod.route('/passwordChange', methods=['POST'])
@requiresLogin
def passwordChange():
 """Gets old and new password from form. Returns password change template with relevant error
 or profile page on success"""
 data = request.form
 if not data['password'] == data['confirmPassword']:
 flash('Passwords must match.', 'danger')
 return render_template('password_change.html')
 if not validPassword(data['password']):
 flash('New password is invalid', 'danger')
 return render_template('password_change.html')
 if not db.validatePassword(g.email, data['oldPassword']):
 flash('Old password is wrong.', 'danger')
 return render_template('password_change.html')
 db.updatePassword(g.user, data['password'])
 return redirect(url_for('general.profile'))

@mod.route('/passwordChange', methods=['GET'])
@requiresLogin
def passwordChangePage():
 """Returns password change template"""
 return render_template('password_change.html')

@mod.route('/modify', methods=['POST'])
@requiresLogin
def modify():
 """Gets new user data from form. creates user object and sends old user data and new user data to database update
 user function. Returns user modify template with relevant error or user profile template."""
 user_dict = request.form.to_dict()
 try:
 user = User(user_dict, require_password=False)
 except ValidationError as e:
 flash(e.message, 'danger')
 return render_template('modify.html', user=user_dict,
 categoryList=db.getCategoryNames())
 if db.userExist(user.email):
 flash('Email already used by another account.', 'danger')
 return render_template('modify.html', user=user_dict,
 categoryList=db.getCategoryNames())

 db.update_user(g.user, user)
 return redirect(url_for('general.profile'))

@mod.route('/topics/search/<search_string>', methods=['GET'])
def topic_search(search_string):
 """Returns a json containing topics starting with ´search_string´."""
 return jsonify(db.search_topics(search_string))

@mod.route('/modify', methods=['GET'])
@requiresLogin
def modifyPage():
 """Returns user modification template with user data filled out"""
 return render_template('modify.html', user=db.get_user(g.user),
 categoryList=db.getCategoryNames())

@mod.route('/profile', methods=['GET'])
@requiresLogin
def profile():
 """Returns user profile page with user info"""
 return render_template('profile.html', user=db.get_user(g.user))

@mod.route('/livinglab/register', methods=['POST'])
@requiresLogin
def registerSystem():
 """Registers a system or returns an error if something went wrong."""
 form = request.form.to_dict()
 if len(form['name']) > CONSTANTS.max_system_name_length:
 flash('System name must be under {} characters.'.format(
 CONSTANTS.max_system_name_length), 'danger')
 return render_template('register_system.html')
 err, key = db.insertSystem(form['name'], g.user)
 if err:
 flash(err, 'danger')
 return render_template('register_system.html')
 flash('Successfully regstered the system with key: ' + key, 'success')
 return redirect(url_for('general.livinglab'))

@mod.route('/livinglab/register', methods=['GET'])
@requiresLogin
def registerSystemPage():
 """Returns page for registering a new system"""
 return render_template('register_system.html')

@mod.route('/livinglab', methods=['GET'])
@requiresLogin
def livinglab():
 """Returns page for livinglabs with systems belonging to a user"""
 return render_template('living_lab.html',
 systems=db.get_user_systems(g.user),
 user=db.get_user(g.user))

@mod.route('/feedback/', methods=['GET', 'POST'])
def feedback():
 """Endpoint for general feedback."""
 form = FeedbackForm()
 if form.validate_on_submit():
 err = db.insertFeedback(g.user, None, form.feedback_type.data,
 form.feedback_text.data, {})
 if err:
 flash(err, 'danger')
 return render_template('feedback.html', form=form)

 flash('Successfully sent feedback.', 'success')
 return redirect('/')

 return render_template('feedback.html', form=form)

@mod.route('/feedback/articles/<article_id>', methods=['GET', 'POST'])
@requiresLogin
def article_feedback(article_id):
 """Submits the feedback form."""
 form = ArticleFeedbackForm()
 if not article_is_recommended_for_user(article_id):
 flash('You can only leave feedback on articles recommended to you.',
 'danger')
 return redirect('/')

 if form.validate_on_submit():
 feedback_vals = {}
 if form.relevance.data is not None:
 feedback_vals['relevance'] = form.relevance.data
 if form.expl_satisfaction.data is not None:
 feedback_vals['expl_satisfaction'] = form.expl_satisfaction.data
 if form.expl_persuasiveness.data is not None:
 feedback_vals['expl_persuasiveness'] = form.expl_persuasiveness.data
 if form.expl_transparency.data is not None:
 feedback_vals['expl_transparency'] = form.expl_transparency.data
 if form.expl_scrutability.data is not None:
 feedback_vals['expl_scrutability'] = form.expl_scrutability.data

 err = db.insertFeedback(g.user, article_id, form.feedback_type.data,
 form.feedback_text.data, feedback_vals)
 if err:
 flash(err, 'danger')
 return render_template('feedback.html', form=form,
 article_id=article_id)

 flash('Successfully sent feedback.', 'success')
 return redirect('/')
 return render_template('feedback.html', form=form,
 article=get_article_feedback(article_id))

@mod.route('/about/', methods=['GET'])
def about():
 """Returns about page."""
 return render_template('about.html')

@mod.route('/terms_and_conditions/', methods=['GET'])
def terms_and_conditions():
 """Returns terms and conditions page."""
 return render_template('terms_and_conditions.html')

@mod.route('/privacy_policy/', methods=['GET'])
def privacy_policy():
 """Returns privacy policy page."""
 return render_template('privacy_policy.html')

@mod.route('/personal_data/', methods=['GET'])
@requiresLogin
def download_personal_data():
 """Returns all the data collected about the currently logged in user.
 :return: gzipped json of user data.
 """
 user_data = db.get_all_userdata(g.user)
 user_data = json.dumps(user_data, sort_keys=True).encode('utf-8')
 return create_gzip_response(user_data, 'arXivDigest_Userdata.json.gz')

@mod.route('/confirm_email', methods=['GET'])
def confirm_email_page():
 """Returns page for users that have not confirmed their
 email address"""
 if not g.loggedIn:
 return redirect(url_for('general.loginPage'))

 next = request.args.get('next')
 if general_db.is_activated(g.user):
 if next is not '':
 return make_auth_token_response(g.user, g.email, next)
 return make_auth_token_response(g.user, g.email,
 url_for('articles.index'))

 if next:
 err = 'You must confirm your email to access this endpoint'
 flash(err, 'danger')
 return render_template('confirm_email.html', next=next, email=g.email)
 return render_template('confirm_email.html', email=g.email)

@mod.route('/send_email', methods=['POST'])
def send_email():
 """Updates the user with email from form and sends new email."""
 if not g.loggedIn:
 return redirect(url_for('general.loginPage'))

 email = request.form.to_dict()['email']
 if db.userExist(email):
 flash('Email is already in use.', 'danger')
 return redirect(url_for('general.confirm_email_page'))
 db.update_email(email, g.user)
 send_confirmation_email(email)
 flash('New email has been sent.', 'success')
 return make_auth_token_response(g.user, email,
 url_for('general.confirm_email_page'))

@mod.route('/email_confirm/<uuid:trace>', methods=['GET'])
def activate_user(trace):
 """Activates a user. Returns index if logged in, loginpage if not."""
 if not db.activate_user(str(trace)):
 flash('Invalid activation link.', 'danger')
 return redirect(url_for('general.confirm_email_page'))
 if g.loggedIn:
 return make_auth_token_response(g.user, g.email,
 url_for('articles.index'))
 else:
 return redirect(url_for('general.loginPage'))

@mod.route('/mail/unsubscribe/<uuid:trace>', methods=['GET'])
def unsubscribe(trace):
 if not db.digest_unsubscribe(str(trace)):
 flash('Invalid unsubscribe link.', 'danger')
 return redirect(url_for('articles.index'))
 return render_template('unsubscribed.html')

def make_auth_token_response(user_id, email, next_page):
 """Creates a Response object that redirects to 'next_page' with
 an authorization token containing the current users info.

 :param user_id: ID of the logged in user.
 :param email: Email of the logged in user.
 :param next_page: Url_path for page to redirect to.
 :return: Response object that redirects to 'next_page', with an auth_token.
 """
 auth_token = encode_auth_token(user_id, email)
 resp = redirect(next_page)
 resp.set_cookie('auth', auth_token, max_age=60 * 60 * 24 * 10)
 return resp

arxivdigest/frontend/views/topics.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

from flask import Blueprint
from flask import flash
from flask import g
from flask import redirect
from flask import jsonify
from flask import render_template
from flask import request
from flask import url_for

from arxivdigest.frontend.database import general as db
from arxivdigest.frontend.utils import requiresLogin

mod = Blueprint('topics', __name__)

@mod.route('/update_topic/<topic_id>/<state>', methods=['PUT'])
@requiresLogin
def update_topic(topic_id, state):
 """Updates the state of the topics to system approved or rejected."""
 if not db.update_user_topic(topic_id, g.user, state):
 return jsonify(result='fail')
 return jsonify(result='success')

@mod.route('/refresh_topics', methods=['PUT'])
@requiresLogin
def refresh_topics():
 """Refreshe the list of topics on the index page and returns list
 of new topics."""
 db.clear_suggested_user_topics(g.user,'REFRESHED')
 return jsonify(result = db.get_user_topics(g.user))

config.json

{
 "web_address": "http://127.0.0.1/",
 "sql_config": {
 "user": "root",
 "password": "root",
 "host": "localhost",
 "database": "arxivdigest"
 },
 "email_config": {
 "from_address": "yourfavouriteapp@gmail.com",
 "password": "3v4e576b87gnfm8904vcu324r2323r32twgee",
 "host": "smtp.gmail.com",
 "port": 587
 },
 "api_config": {
 "dev_port": 5000,
 "max_content_length": 10000000,
 "max_userinfo_request": 100,
 "max_userid_request": 10000,
 "max_articledata_request": 100,
 "max_users_per_recommendation": 100,
 "max_recommendations_per_user": 10,
 "max_explanation_len": 400
 },
 "interleave_config": {
 "systems_multileaved_per_user": 3,
 "recommendations_per_user": 30,
 "users_per_batch": 100,
 "articles_per_date_in_email": 3,
 "topics_multileaved_per_batch": 10
 },
 "frontend_config": {
 "data_path": "",
 "dev_port": 80,
 "max_content_length": 10000000,
 "jwt_key": "mn643745hb6436l,75687kj37hb26vg3wazsefewms5474.,m4nb4q23vqcxwazsmw46n3bvqcawzwab3241vcawqz,6lk4mj3hbavesww",
 "secret_key": "xPGHuUyNAQaFrlIxtupgu8bnGiSLBpMo4v2w4jcoQ8PCb32Y46WWJhMsSbM2iGzsKravX9l92waqp2qjq7BALke443jbB3uVs7WP08v4JCyrORwvufRY4jKB"
 },
 "evaluation_config": {
 "saved_weight": 5,
 "clicked_web_weight": 3,
 "clicked_email_weight": 3,
 "state_weights": {
 "USER_ADDED": 0,
 "SYSTEM_RECOMMENDED_ACCEPTED": 1,
 "SYSTEM_RECOMMENDED_REJECTED": 0,
 "REFRESHED": 0,
 "EXPIRED": 0,
 "USER_REJECTED": 0
 }
 },
 "arxiv_scraper_config": {
 "last_n_days": 1,
 "start_date": null,
 "end_date": null
 }
}

db/database_v1.sql

CREATE TABLE users(
 user_id int auto_increment,
 email varchar(60) NOT NULL UNIQUE,
 salted_hash char(87) NOT NULL,
 firstname varchar(60) NOT NULL,
 lastname varchar(60) NOT NULL,
 notification_interval int NOT NULL,
 last_recommendation_date date DEFAULT '1000-01-01',
 last_email_date date DEFAULT '1000-01-01',
 registered datetime NOT NULL,
 admin boolean DEFAULT false,
 organization varchar(100) NOT NULL,
 dblp_profile varchar(120) DEFAULT '',
 google_scholar_profile varchar(120) DEFAULT '',
 semantic_scholar_profile varchar(120) DEFAULT '',
 personal_website varchar(120) DEFAULT '',
 inactive boolean default true,
 activate_trace char(36) unique default null,
 unsubscribe_trace char(36) unique default null,
 primary key (user_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE systems(
 system_id int auto_increment,
 api_key char(36) NOT NULL UNIQUE,
 system_name varchar(40) NOT NULL UNIQUE,
 active boolean DEFAULT true,
 admin_user_id int DEFAULT NULL,
 foreign key (admin_user_id) references users (user_id),
 primary key (system_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE categories(
 category_id varchar(40) NOT NULL,
 category varchar(20) NOT NULL,
 subcategory varchar(20),
 category_name varchar(200) NOT NULL,
 primary key (category_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE user_categories(
 user_id int,
 category_id varchar(40),
 foreign key (category_id) references categories (category_id) on delete cascade,
 foreign key (user_id) references users (user_id) on delete cascade,
 primary key (user_id, category_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE articles(
 article_id varchar(20) NOT NULL,
 title varchar(300) NOT NULL,
 abstract text NOT NULL,
 doi varchar(200),
 comments text,
 license varchar(120),
 journal varchar(300),
 datestamp date NOT NULL,
 primary key (article_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE article_authors(
 author_id int auto_increment,
 article_id varchar(20) NOT NULL,
 firstname varchar(60),
 lastname varchar(60) NOT NULL,
 foreign key (article_id) references articles (article_id) on delete cascade,
 primary key (author_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE author_affiliations(
 author_id int NOT NULL,
 affiliation varchar(300) NOT NULL,
 foreign key (author_id) references article_authors (author_id) on delete cascade,
 primary key (author_id, affiliation)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE article_categories(
 article_id varchar(20) not null,
 category_id varchar(40) not null,
 foreign key (category_id) references categories (category_id) on delete cascade,
 foreign key (article_id) references articles (article_id) on delete cascade,
 primary key (article_id, category_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE article_recommendations(
 user_id int,
 article_id varchar(20),
 system_id int,
 score float NOT NULL,
 recommendation_date datetime NOT NULL,
 explanation varchar(400) NOT NULL,
 foreign key (system_id) references systems (system_id) on delete cascade,
 foreign key (article_id) references articles (article_id),
 foreign key (user_id) references users (user_id) on delete cascade,
 primary key (user_id, article_id, system_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE article_feedback(
 user_id int,
 article_id varchar(20),
 system_id int,
 score int NOT NULL,
 recommendation_date datetime NOT NULL,
 seen_email datetime DEFAULT NULL,
 seen_web datetime DEFAULT NULL,
 clicked_email datetime DEFAULT NULL,
 clicked_web datetime DEFAULT NULL,
 saved datetime DEFAULT NULL,
 trace_save_email char(36) UNIQUE,
 trace_click_email char(36) UNIQUE,
 explanation varchar(400) NOT NULL,
 foreign key (system_id) references systems (system_id) on delete cascade,
 foreign key (article_id) references articles (article_id),
 foreign key (user_id) references users (user_id) on delete cascade,
 primary key (user_id, article_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE topics(
 topic_id int auto_increment,
 topic varchar(50) NOT NULL UNIQUE,
 filtered boolean DEFAULT false,
 primary key (topic_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE user_topics(
 user_id int NOT NULL,
 topic_id int NOT NULL,
 state enum ('USER_ADDED', 'SYSTEM_RECOMMENDED_ACCEPTED', 'SYSTEM_RECOMMENDED_REJECTED', 'REFRESHED', 'EXPIRED', 'USER_REJECTED') NOT NULL,
 interaction_time datetime NOT NULL,
 foreign key (user_id) references users (user_id) on delete cascade,
 foreign key (topic_id) references topics (topic_id) on delete cascade,
 primary key (user_id, topic_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE feedback(
 feedback_id int auto_increment,
 user_id int,
 article_id varchar(20),
 type enum ('Explanation', 'Recommendation', 'Bug', 'Feature', 'Other') NOT NULL,
 feedback_text varchar(2500) NOT NULL,
 feedback_values VARCHAR(1000) NOT NULL DEFAULT '',
 foreign key (user_id) references users (user_id) on delete cascade,
 foreign key (article_id) references articles (article_id) on delete cascade,
 primary key (feedback_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE topic_recommendations(
 user_id int NOT NULL,
 topic_id int NOT NULL,
 system_id int NOT NULL,
 datestamp datetime NOT NULL,
 system_score float NOT NULL,
 interleaving_order int,
 seen datetime DEFAULT NULL,
 clicked datetime DEFAULT NULL,
 interleaving_batch datetime default null,
 foreign key (user_id) references users (user_id) on delete cascade,
 foreign key (topic_id) references topics (topic_id) on delete cascade,
 foreign key (system_id) references systems (system_id) on delete cascade,
 primary key (user_id, topic_id, system_id)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE TABLE database_version(
 current_version int not null,
 primary key (current_version)
) DEFAULT CHARSET = utf8mb4 COLLATE = utf8mb4_unicode_ci;

CREATE INDEX article_date_index on articles (datestamp);
CREATE INDEX user_admin_index on users (admin);
CREATE INDEX recommendation_date_index on article_recommendations (recommendation_date);
CREATE INDEX article_feedback_date_index on article_feedback (recommendation_date);
CREATE INDEX user_topic_state_index on user_topics (state);
CREATE INDEX topic_filtered_index on topics (filtered);
CREATE INDEX topic_date_index on topic_recommendations (datestamp);
CREATE INDEX topic_interleaving_index on topic_recommendations (interleaving_order);

INSERT INTO database_version VALUES (1);

db/README.md

Database Back-end

Tables	Fields
users	user_id, email, salted_hash, firstname, lastname, notification_interval, last_recommendation_date, last_email_date, registered, admin, organization, dblp_profile, google_scholar_profile, semantic_scholar_profile, personal_website
user_categories	user_id, category_id
user_topics	user_id, topic_id, state
topics	topic_id, topic, filtered
articles	article_id, title, abstract, doi, comments, licence, journal, datestamp
article_authors	author_id, article_id, firstname, lastname
article_categories	article_id, category_id
author_affiliations	author_id, affiliation
categories	category_id, category, subcategory, category_name
article_recommendations	user_id, article_id, system_id, score, recommendation_date, explanation
systems	system_id, api_key, system_name, active, admin_user_id
article_feedback	user_id, article_id, system_id, score, recommendation_date, seen_email, seen_web, clicked_email, clicked_web, saved, trace_save_email, trace_click_email, explanation
feedback	feedback_id, user_id, article_id, type, feedback_text
topic_recommendations	recommendation_id, user_id, topic_id, system_id, datestamp, system_score, interleaving_order, seen, clicked , interleaving_batch
database_version	current_version

LICENSE

MIT License

Copyright (c) 2020 IAI group, University of Stavanger

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Living_lab.md

Living lab

ArXivDigest operates as a living lab platform. It means that third-party researchers can experiment with novel recommendation approaches ("recommendations AI"), and the generated suggestions will be shown to users of the arXivDigest service. This allows for realistic, in situ evaluation with real users. Further, user interactions can be utilized for improving recommendation and explanation capabilities.

Methodology

ArXivDigest provides a broker infrastructure that connects *users* (people who signed up for the arXivDigest service) and *systems* (methods developed for providing content recommendations).

 * By using the service, users agree that their interest profiles, including the article recommendations they have been presented with and the implicit/explicit feedback they provided on each, would be made available to systems.
 * Systems are given a 2.5 hour window each day to download new content once it has been published on arXiv, generate recommendations for any or all registered arXivDigest users, and upload these via the [arXivDigest API](/arxivdigest/api).
 * The broker takes all recommendations created for a given user, interleaves them, and shows the top-k recommendations to the user. See the section on [interleaving](#interleaving) for the specifics.
 * System performance is monitored continuously over time. For system comparison, performance is measured during a designated evaluation period.

Components

The evaluation framework consists of the following components:

 * [arXivDigest API](/arxivdigest/api/)
 - A RESTful service for experimental recommender systems to access article and user data and to upload personalized recommendations.
 * Batch processes scheduled to run daily:
 - [Scraper](scripts/scrape_arxiv.py): Checks the arXiv RSS feed and downloads new articles.
 - [Interleaving](scripts/interleave_articles.py): combines article recommendations of multiple experimental recommender systems by interleaving them into a single list.
 - [Digest email](scripts/send_digest_mail.py): Sends personalized article recommendations to users in the form of daily/weekly digest emails.
 * Evaluation
 - Compares how users interacted with different systems over a period of time and generates statistics.

If you want to (i) operate a service yourself or (ii) set up a local copy for development purposes,
check the [Setup guide](/Setup.md) for information on how to run the system.

Guide for participants

Experimental recommender systems need to follow the following steps for submitting recommendations. The API is available at https://api.arxivdigest.org.

 1. Call [`GET /users`](/arxivdigest/api#list-of-users) to get a list of user IDs.
 1. Call [`GET /user_info?ids`](/arxivdigest/api#user-information) with user IDs as a parameter to get information about the users.
 1. Call [`GET /articles`](/arxivdigest/api#list-of-articles) to get the list of article IDs that are may be returned as recommendation.
 1. Call [`GET /article_data`](/arxivdigest/api#article-data) with article IDs as a parameter to get information about the articles.
 1. Use the gathered information to generate personalized recommendations and explanations for users. Important parts of the explanations may be boldfaced by surrounding it by asterisks like: **text**.
 1. Submit the generated recommendations to [`POST /recommendations/articles`](/arxivdigest/api#insert-article-recommendations) in batches of maximum 100 users and 10 recommendations per user. Recommendations sent outside of the [recommendation period](#daily-submission-periods) will not be considered by the daily interleaving process.

Daily submission periods

According to [arXiv's release schedule](https://arxiv.org/help/submit#availability), new articles are released Monday to Friday 00:00 UTC.

ArXivDigest accepts recommendations between 00:30 UTC and 03:00 UTC Monday til Friday.

Interleaving

Currently, there are two main types of content that can be recommended: articles and topics. The interleaving process works slightly differently for the two.

Article recommendations

At each given (week)day, the interleaving process considers, from each system, the highest scoring articles from the past 7 days that were submitted for a given user. That is, systems can think of the article recommendation process as pushing items to a priority queue, where items older than 7 days are removed from the queue.
The top recommendations from the various systems are interleaved for users daily.

Digest emails are sent out daily or weekly (depending on users' preference). The weekly digest email if essentially a concatenation of the content of the daily emails, i.e., it contains the respective interleaved lists for each day.

User may leave feedback on specific recommendations, which is made available to systems.

Topic recommendations

COMING SOON

README.md

arXivDigest

Motivated by the accelerating pace at which scientific knowledge is being produced, we aim to provide a recommendation service that helps researchers to keep up with scientific literature. Based on their interest profiles, researchers can receive a personalized email digest of the most recent papers published at arXiv at regular intervals. Further, users can give explicit feedback (by saving articles) to improve future recommendations.

Front-end (service)

After signing up, users can view the articles that are recommended to them. Articles can be saved to a personal library to improve recommendations and for easily finding these articles later.

The web front-end is implemented as Flask application (see arxivdigest/frontend/) and is available at https://arxivdigest.org.

Back-end (living lab)

ArXivDigest operates as a "living lab". It provides a broker infrastructure that connects users of the service and experimental systems that provide content recommendations. See our [living lab page](Living_lab.md) for the details.

The core of this evaluation infrastructure is the arXivDigest API, which allows systems the access user data and to upload recommendations. The API operates as a RESTful service at https://api.arxivdigest.org, with the code and documentation available under (arxivdigest/api)[arxivdigest/api].

Contributors

ArXivDigest is developed and operated by the [IAI group](https://iai.group) at the University of Stavanger. Specifically, the development is led by [Krisztian Balog](http://krisztianbalog.com), and the implementation is being done by Øyvind Jekteberg and Kristian Gingstad as part of their former BSc and current MSc thesis projects.

We welcome contributions both on the high level (feedback and ideas) as well as on the more technical level (pull requests). Feel free to reach out to us at admin@arxivdigest.org.

requirements.txt

feedparser
mysql-connector-python
PyJWT
Flask
passlib
nltk
Flask-Assets
jsmin
cssmin
elasticsearch
bs4
requests
Flask-WTF

sample/index.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2018, 2020, The arXivDigest project'

from elasticsearch.helpers import bulk

def bulk_insert_articles(es, index, article_data):
 """Bulk insert article data into the elastic search index."""
 bulk_docs = []
 for article_id, article_fields in article_data.items():
 doc = {
 '_index': index,
 '_type': '_doc',
 '_id': article_id,
 '_source': article_fields
 }
 bulk_docs.append(doc)
 bulk(es, bulk_docs, request_timeout=10)

def run_indexing(es, index, arxivdigest_connector):
 """Indexes article data for new additions to the arXivDigest
 database for the given date object, defaults to the current date."""
 article_ids = arxivdigest_connector.get_article_ids()
 article_data = arxivdigest_connector.get_article_data(article_ids)
 for article_id, article in article_data.items():
 catch_all = article['title'] + article['abstract']
 article_data[article_id]['catch_all'] = catch_all
 bulk_insert_articles(es, index, article_data)

sample/init_index.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

INDEX_SETTINGS = {
 'settings': {
 'index': {
 'number_of_shards': 1,
 'number_of_replicas': 0
 },
 },
 'mappings': {
 'properties': {
 'title': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 'abstract': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 'authors': {
 'type': 'nested',
 'properties': {
 'firstname': {'type': 'keyword'},
 'lastname': {'type': 'keyword'},
 'affiliations': {'type': 'keyword'}
 },
 },
 'categories': {
 'type': 'keyword',
 },
 'comments': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 'doi': {
 'type': 'keyword',
 },
 'journal': {
 'type': 'keyword',
 },
 'license': {
 'type': 'keyword',
 },
 'date': {
 'type': 'date',
 'format': 'date'
 },
 'catch_all': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 }
 }
}

def init_index(es, index):
 es.indices.create(index=index, body=INDEX_SETTINGS)

sample/README.md

Sample System

This folder contains a sample implementation of a baseline recommender system that scores articles based on user topics.

Overview

The system has several stages of execution:
 * First, it makes sure an Elasticsearch index with the correct mappings exist. If not it will be created.
 * Then, it queries the arXivDigest API for articles to add to the index. These are the articles that will serve as candidate recommendations later.
 * Next, the system queries the arXivDigest API for user information. This is the information that the system bases its personalized recommendations on.
 * The system then creates personalized recommendations for each user. Specifically, it searches the Elasticsearch index for the best matching articles, using the user's topics as queries. Then, it aggregates, for each article, the relevance scores of all topics.
 * Finally the articles with the highest overall score for each user are submitted to the arXivDigest API as recommendations.

Usage

 1. Download and run an [Elasticsearch](https://www.elastic.co/downloads/elasticsearch) server (version 7.5.1 or above).
 2. Download and install the [Python Elasticsearch Client](https://elasticsearch-py.readthedocs.io/en/master/).
 3. Update the constants in [system.py](sample/system.py) such that the system uses the correct API-key and API-url.
 4. Run `python system.py`.

 It is possible to override the default settings of the system by creating a config file in one of the following locations:
 * `~/arxivdigest/system_config.json`
 * `/etc/arxivdigest/system_config.json`
 * `%cwd%/system_config.json`

The file should be in JSON format and include the following keys:
 * `api_url` : Address of the arXivdigest API
 * `api_key` : An active API key for the arXivDigest API
 * `elasticsearch_host` : Address and port of the Elasticsearch server
 * `index_name` : Name of the index that will be used
 * `log_level` : Level of messages to log accepts: 'FATAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG'

Example:

```json
  {
    "api_url": "https://api.arxivdigest.org/",
    "api_key" : "4c02e337-c94b-48b6-b30e-0c06839c81e6",
    "elasticsearch_host": {"host": "127.0.0.1", "port": 9200},
    "index_name": "main_index"
  }
```


sample/system.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import json
import logging
import os
import sys
from collections import defaultdict

from elasticsearch import Elasticsearch

from arxivdigest.connector import ArxivdigestConnector
from index import run_indexing
from init_index import init_index

file_locations = [
 os.path.expanduser('~') + '/arxivdigest/system_config.json',
 '/etc/arxivdigest/system_config.json',
 os.curdir + '/system_config.json',
]

def get_config_from_file(file_paths):
 """Checks the given list of file paths for a config file,
 returns None if not found."""
 for file_location in file_paths:
 if os.path.isfile(file_location):
 print('Found config file at: {}'.format(
 os.path.abspath(file_location)))
 with open(file_location) as file:
 return json.load(file)
 return {}

config_file = get_config_from_file(file_locations)

API_KEY = config_file.get('api_key', '4c02e337-c94b-48b6-b30e-0c06839c81e6')
API_URL = config_file.get('api_url', 'https://api.arxivdigest.org/')
INDEX = config_file.get('index_name', 'main_index')
ELASTICSEARCH_HOST = config_file.get('elasticsearch_host',
 {'host': '127.0.0.1', 'port': 9200})

def get_articles_by_topic(es, topic, index, window_size=7, size=10000):
 """Retrieves articles from the Elasticsearch index mentioning 'topic',
 the 'window_size' is the number of days back in time articles will
 be included from."""
 query = {
 'query': {
 'bool': {
 'must': {
 'match': {
 'catch_all': {
 'query': topic,
 }
 }
 },
 'filter': {
 'range': {
 'date': {
 'gte': 'now-{}d'.format(window_size)
 }
 }
 }
 }
 }
 }
 res = es.search(index=index, body=query, params={"size": size})
 return res

def make_user_recommendation(es, topics, index, n_topics_explanation=3):
 """Makes recommendations based on list of topics and returns a list of
 articles. The score of each article is calculated as the sum of the score of
 each topics, and the explanation is contains all topics that matched an
 article.
 'n_topics_explanation' is how many of the top topics that will be
 included in the explanation."""
 articles = defaultdict(list)
 for topic in topics:
 topic_search = get_articles_by_topic(es, topic, index)['hits']['hits']
 logger.debug('%d articles matches topic %s', len(topic_search), topic)
 for article in topic_search:
 articles[article['_id']].append((article['_score'], topic))

 result = []
 for article_id, score_topic_list in articles.items():
 sorted_topics = [topic for _, topic in sorted(score_topic_list)]

 explanation = create_explanation(sorted_topics[:n_topics_explanation])
 result.append({'article_id': article_id,
 'score': sum([score for score, _ in score_topic_list]),
 'explanation': explanation
 })
 return result

def create_explanation(topics):
 """"Creates explanation from topics."""
 topics = ['**{}**'.format(topic) for topic in topics]
 last = topics.pop()
 topic_str = ', '.join(topics)
 topic_str += ' and ' + last if topic_str else last
 explanation = 'This article seems to be about {}.'.format(topic_str)
 return explanation

def make_recommendations(es, user_info, interleaved_articles, index,
 n_articles=10):
 """Makes recommendations for all the users in user_info based on the
 topics in user_info. Searches the elasticsearch index for candidates
 and uses the Elasticsearch score as score.
 'n_articles' is the number of articles to recommend for each user."""
 recommendations = {}
 for user, info in user_info.items():
 if not info['topics']:
 logger.info('User {}: skipped (no topics provided).'.format(user))
 continue
 logger.debug('User %s topics: %s.', user, ', '.join(info['topics']))
 articles = make_user_recommendation(es, info['topics'], index)
 articles = [article for article in articles if article['article_id']
 not in interleaved_articles[user]]
 articles = sorted(articles, key=lambda k: k['score'], reverse=True)

 recommendations[user] = articles[0:n_articles]
 n_recommended = len(recommendations[user])
 logger.info(
 'User {}: recommended {} articles.'.format(user, n_recommended))
 return recommendations

def recommend(es, arxivdigest_connector, index):
 """Makes and sends recommendations to all users."""
 total_users = arxivdigest_connector.get_number_of_users()
 logger.info(
 'Starting recommending articles for {} users'.format(total_users))
 recommendation_count = 0
 while recommendation_count < total_users:
 user_ids = arxivdigest_connector.get_user_ids(recommendation_count)
 user_info = arxivdigest_connector.get_user_info(user_ids)
 interleaved = arxivdigest_connector.get_interleaved_articles(user_ids)

 recommendations = make_recommendations(es, user_info, interleaved,
 index)

 if recommendations:
 arxivdigest_connector.send_article_recommendations(recommendations)
 recommendation_count += len(user_ids)
 logger.info('Processed {} users'.format(recommendation_count))

def run(api_key, api_url, index):
 """Runs the recommender system:
 - Updates index with new articles
 - Fetches user info for all users
 - Creates and sends recommendations for each user
 """
 es = Elasticsearch(hosts=[ELASTICSEARCH_HOST])
 arxivdigest_connector = ArxivdigestConnector(api_key, api_url)
 if not es.indices.exists(index=index):
 logger.info('Creating index')
 init_index(es, index)
 logger.info('Indexing articles from arXivDigest API.')
 run_indexing(es, index, arxivdigest_connector)
 recommend(es, arxivdigest_connector, index)
 logger.info('\nFinished recommending articles.')

if __name__ == '__main__':
 log_levels = {
 'FATAL': 50,
 'ERROR': 40,
 'WARNING': 30,
 'INFO': 20,
 'DEBUG': 10,
 }
 logger = logging.getLogger(__name__)

 logging.basicConfig(
 level=logging.ERROR,
 format='%(asctime)s [%(levelname)s] %(message)s',
 handlers=[
 logging.StreamHandler(sys.stdout)
],
)
 log_level = config_file.get('log_level', 'INFO').upper()
 logger.setLevel(log_levels.get(log_level, 20))

 run(API_KEY, API_URL, INDEX)

scripts/data/topics.csv

transportation planning
higher education and career education
soil ecology
library information systems
perioperative nursing
housing history
sports science management
emergency resuscitation science
integrated properties
behavioral neuroscience
aquatic pollution
genomic drug development
history of nursing
food culture
design and construction materials
health information
evolution/development/comparative cognition
adsorption
educational services
experimental oncology
digestive system and salivary gland
pollination/fertilization/embryogenesis
foreign language education and language policies
"upper gastroenterology (esophagus, stomach, duodenum)"
esophageal surgery
combinatorial synthesis
fuzzy theory
apiculture
sociology of education
planning/management
natural energy use
bone and cartilage metabolism
evaluation methods
phonetics/phonology
reaction/separation/refining
epitaxial growth
"spinal, peripheral nervous system or muscular disorders"
environmental geology/hydraulic geology
microeconomics
development and education
knowledge management
radiotherapy physics
rural roads
economics of education
oral physiology
marine genomics
enzyme application
human life and culture
social medicine
radiotherapy biology
dating methods
pavement/bituminous materials
fracture
metabolic networks
internal structure
"comparative constitutional law, eu law"
catalysts
neural plasticity
theories on qualified teachers/classroom research
neurotransmitters and receptors
microbial genetics/breeding
psychiatric/mental health nursing
agribioinformatics
food hygienics
farming technology management
intelligent image editing
material recycling
pharmacology
kansei recognition
material circulation/flux
multimedia information representation
mechanical measurements
environmental purification
resources/energy saving technology
3d modeling & acoustic modeling
medieval european history
cellular neuropathology
disaster nursing
fusion systems engineering
kansei information processing
adaptive and associative physiology
statistical learning theory
food sanitation
crystallization procedure
oceanian history
bio-related polymers
cellular response
creation of nanomaterials
molecular devices
ocular physiology
information-related education
earth history/planetary geology
chemistry
information science
training medical science
multiple functions in agriculture and rural community
safety propulsion/safety education
constitutional law
ocean engineering
environmental physiology
molecular and cellular neurobiology
social security
drug therapeutics
mathematical physics
biological sciences
health care
"numbness, hypesthesia"
intensive care medicine
liquefaction
structural ceramics
medical pharmaceutics
museum
nano particles/wires/sheets
history of science
chest wall surgery
nano/microbiosystems
world heritage sites
"mathematical logic and foundations, information mathematics"
polymer reaction/degradation
superconductors/semiconductors
molecular imformation
"museum information systems, museum informatics"
organic farming
genomic neuroscience
active fault
brain and rhythm
design engineering
cellular function
international security
informatics
clothing and environment
production management
drug therapy and toxicology
kidney
neurosurgical instruments
nutrition/feeding
pharmacognosy
drug information and clinical toxicology
structure/material
functional rna
self-assembled polymers
functional food
brain information processing
biomembrane
analytical pharmacology
developmental or metabolic disorders
general surgery
impact assessment on human health
research in buried cultural assets
history of costume
arithmetic geometry
ecosystem impact analysis
biomedical engineering ethics
other european literature
education excluding subject (global learning､ moral､ special activities)
drug transport mechanism
internet
neuropsychology/linguistic science
science of dementia
physical systems science
morphogenesis and simulation
information media
sustainable forestry
building equipment
radiation oncology
genetic/breeding resources/biodiversity
mother tongue retention/bilingual education
ontology
learning media
hypothesis testing
antitumor substance research and chemical biology
aquaculture
recovery of valuables
physical growth developmental science
modern and contemporary east european history
french linguistics
water and wastewater systems
cognitive model
biophysics(general)
applied mechanics
thermal engineering
growth forecasting/modeling
genome
brain function operation
cell-cell interaction
genome biotechnology
dental pharmacology
ophthalmic genetics
red tide
food chemistry
disaster mitigation and buildings
psychological assessment
pediatric neurology
urban/regional planning
solution chemistry
school system/school culture
relational database
absorption
environmental harmony
"education philosophy, thought and history"
anthropology of education
cells and replication
amorphous
communication
functional ceramics
agricultural history and comparison on farming system
production of useful material
internal medicine
illumination/lighting
backend
reacting flow
organic molecule
literature in other languages and areas
systemic relationship
world history
structural material
bioinformatics
medical welfare service
environmental remediation
structure and physiology
molecular metabolism
criminal procedure
snow and ice disasters
sustainable chemistry
"life history, seasonal adaptation"
dyeing and finishing treatment
cancer genome analysis
physiology
environmental purification/low environmental burden/sustainable materials
school education
development and genetics
law of international organizations
natural enemy
health physics/environmental safety
lifeline disaster prevention
local government
various manufacturing process
classroom instruction
food safety
feeding regulation
behavioral economics
resources/energy effective utilization technology
virtual reality
pathology/microorganism
molecular morphology
anesthesiology and resuscitology
organic/polymer analysis
first principles calculations/material design simulations
low activation material
central and south america
sensory behavior system
precautionaly principle
housing theory
mite and nematode management
corporate strategy
psychological itching
landslide
biofunctional devices
radiological technology and engineering
queueing theory
history of japanese linguistics
infection prevention
tissue culture/transplantation
regulartory science
introduced plants
cognitive information
spatial / environmental statistics
pharmacogenomics
image processing
vibration mechanics
functional polymer materials
cerebrovascular disorders
endophyte and mycorrhizal fungus/symbiotic bacteria
texture
local disaster preparedness plan and policy
hematology/oncology
physical therapy
chemoprophylaxis
sensory information
applied geology
mems･nems
lasers
computational learning theory
detectors
environmental microorganism
irrigation and drainage
polymer thin film/surface
"receptor, channel, transport system, and signal transduction system"
rural sewerage
screening
infection･ecology･vectors
access control
optical recording
aging medicine
stomatognathic function
cognitive philosophy
ecosystem functions and services
human resource management
pathogenic microorganism
pedagogy of physical education
environmental chemistry
clinical neuromorphology
hygienic tests
electromagnet
environmental planning and management
law/politics
large scale simulation
cognitive psychology
dynamics
fish nutrition
surface
self-processes
oral and maxillofacial diagnostic radiology
neural mechanism of pain
french and francophone literature
functional genomics
environmental pollution survey and evaluation
urban geography
"electrical, magnetical and optical devices"
international economic law
molecular spectroscopy
bioseparation
remote diagnosis and treatment
chemical physics(general)
elderly health
high-resolution electron microscopy
ionic conductors
general dental radiology
organelle genome
"medicine, dentistry, and pharmacy"
clinical laboratory medicine
biological energy transduction
gender education
game theory
bio-inspired system
space medicine
inorganic material synthesis and process
earthquake and volcanic disasters
misconduct/deviation
ecosystem management and conservation
gender differences/gender roles
prehistoric period/historic period
cultural anthropology of sport
materials synthesis process
functional nanomaterials
environmental stress
genetic disorders
distributed processing
history of japanese language education
thermo-hydrodynamics
"sensation, perception, kansei"
environmental conservation
crystal structure/microstructure control
sleep and arousal
connective tissue diseases
agricultural information
integrated pollution prevention and control
thin films
growth/developmental genetics
ocular histology
renewable energy
earth systems
historical information
metabolome
sedimentology/energy resource geology
organic reaction chemistry
companion animal
diagnostic imaging
control systems
crystal growth/fabrication
criminal law
environmental impact assessment on the future generation
diagnostic pathology
biosynthesis
psychopathology
infrastructure planning
leisure/recreation
special school for children with disabilities
science and technology information
oriental medicine
southeast asia
community/ecosystem diversity
electron device/integrated circuits
rural planning
anesthesiology
crystal growth
stomato-pharyngology
statistical prediction and control
social genetics
human-agent interaction
modern and contemporary literature (after meiji restoration)
group/leadership
plasma-wall interaction
phytohormones/growth and development/totipotency
"policy, arts management and creative industries"
molecular devices and materials
public economics
"transport, diffusion and accumulation of pollutants"
breeding
martial arts theory
geo-hazard
tsunami
engineering geology
physical and mental health
biosphere geochemistry
sports disorders
gene expression
livestock farming
laboratory medicine
economic development
radiation management and control
teaching methods/curriculum planning
rehabilitation and reconstruction engineering
design
evolution
prehistory/chronology
plant molecular function
education of individual subjects (japanese､ mathematics､ science､ social studies､ geography/history､ civics､ life environmental studies､ music､ art､ physical and health education､ home economics､ technology､ english､ information)
germ cells
bioresource
case study
superconductivity/density wave system
exercise/play
electric machinery
genetics/heredity/breeding
organic optical materials
geographic information system
food safety and risk management
environmental remediation and greening process
impact assessment on ecosystem
biomaterials
behaviormetrics
chinese buddhism
festivals and events
biotic stress
"history of design, product design and clothing"
sports psychology
soil fertility
sound material recycle system
ship and marine hydrodynamics
general prosthodontics
privacy protection
breeding theories/bioinformatics
semiconductors
pediatric respirology
environment and social activities
environment assessment
marketing
gene networks
functional microbiology
other quantum beam
nano/microfabrication
operating system
lifestyle
farming system
clinical isotope pharmacy
medicinal resources
earth and planetary materials
development management
x-ray/particle beam
disability science
immunity/infection/inflammation
fisheries development
administration/system
composite structure
pancreatic surgery
marine environment
neurolinguistics
career education
neutrino
synthetic resources
supramolecules
e-learning
solvent/solid-phase extraction
tissue construction
industrial engineering
transnational relations
tax accounting
toxicology
nutritional chemistry
geographic diversity
evolutionary economics
teacher's education
opto-electronics
artificial organs
organogenesis
information equipment/intelligent (smart) machine systems
service engineering
underground disposal and storage
"policy for agriculture, forestry and fishery"
nursing ethics
social pharmacy
beam application
air environment
sounds
big data analysis and utilization
energy conversion
damage
diagnostic molecular pathology
cultural property/cultural heritage
dielectric
history of religious thought
fine chemicals
intracellular chemical reactions
"stock and seed production, and plant propagation"
social security / social welfare policy
comparative law
techno-adaptability
social psychiatry
industrial history
environmental systems
japanese politics
biofunction engineering
life cycle analysis and design
environment/environmental problems
biodegradation and bioaccumulation
modern and contemporary north european history
history of geoscience
cloud computing infrastructure
interpersonal communication
physiological polymorphism
constitutional litigation
applied bioelectrochemistry
multimedia
translation
style
hospital pharmacy and pharmacy administration
migration/border crossing
health management
development environment
x-ray/γ-ray astronomy
forensic psychiatry
educational thought
neurotrauma
"terrestrial, aquatic, and atmospheric impact assessment"
proteomics
biological environment
data science
planning of housing
brain imaging
polymer･liquid crystal･gel
biological databases
assemblage
phylogenetic systematics/evolution
ethology
network entertainment
particle physics (experiment)
vision
computational surgery
plasma chemistry
architectural history
affection/emotion/motivation
epidemiology
clinical oncology
wood anatomy
carbohydrate
powder process/powder metallurgy
precision agriculture
information theory
phonetics
organelle
geriatric psychiatry
insurance
film studies
nanoparticle/quantum dots
sensing information processing
environmental adaptive capacity
reliability
molecular and gene diagnosis
system modeling
laser/photobiology
psychophysiology
endocrine disrupting substances
health administration
neurourology and urodynamics
plant growing environment
personalized medicine
management ethics and csr
genetic resources
developmental biology
functional polymeric materials
history of sociology
theory for design
economic law
early modern history (edo period)
nephrology
nursing education
textiles
agricultural sciences
statistics education
prevention and control
interface･wetting･adhesion･fracture
biomass
robotics
tracheal surgery
order-made medical treatment
phonology
exposure scenario
human genetics
biomarkers
comparative history
"insect population, community"
cultural landscape
early detection and early support
plasma applications
motility/transport
"land law, housing law"
nutritional physiology
parent-child relationship
multinuclear/cluster complexes
women participation in agriculture and social activities
clothing culture
nonlinear theory/circuits
augmented reality
biofuel plants
policy/economics
earth interior dynamics/mineral physics
immunotherapy
criminology
renewable source/energy
biolinguistics
special aircraft
income/wealth distribution
network security
fixed partial denture prosthodontics
biological function related substance
political economy
flow measurements
computational neuroscience
theory of second language acquisition
building types/district facilities
plastic forming/shaping
regenerative dentistry
history of western thought
"information design(communication, media, contents, interaction, interface)"
zoonosis
molecular components
lexicography
chemical nutrition
"organizational support to agriculture, forestry and fishery"
bioinorganic chemistry
education/school
clinical nutrition
social insects
political process
industrial symbiosis
comparative cognitive psychology
media education
bioelectronics
europe
information home appliances
anatomical education
beam physics
environmental dynamics
wood drying
breeding genetics
food physics
social interaction/social relations
x-ray/electron spectroscopy
pharmacokinetics
genomic biochemistry (genomic medical chemistry)
immunobiochemistry
nano/microsensors
environmental hygiene
biorhythm
sports talent
biosensor
social media
radiological therapeutic technology
oxide electronics
extractives/bioactive component
premature baby medicine
surface/interface/grain boundary control
flight dynamics
psychiatric rehabilitation
psychological pain
educational testing and evaluation
"sensibility, affectivity and emotion"
web service
consumer behavior
imaging
mathematical system theory
parallel distributed computing
measurement systems
environmental science
mobile network
genome of model animals
neural information processing
earthquake phenomena
primates
curriculum composition/development
bonding/adhesion/welding
biological treatment and remediation
animal hygiene
miscellaneous art studies
quantum information processing
mathematical sociology
"ring theory (including lie algebra theory, representaion theory of lie algebras)"
biological properties
bio-inorganic chemistry
drug efficacy and calculation
steel structure
landscape architecture/design
hydrometeorology
agricultural robotics
cellular signal transduction
drug delivery
circuit and system
religion/rituals
quantum devices/spintronic devices
cell polarity
somatology/adaptation
molecular imaging
plant pathological physiology
quality of medical care
insect development and reproduction
omics analysis
recycling and life cycle assessment(lca)
fisheries
"art practice, and musical and other performance"
environmental economics
discrimination/social exclusion
international agriculture
pediatric infectious disease
alcohol research
reactive plasmas
x-ray/ct
allergology
mechanisms of skin diseases
multi-modal interface
"thought, inference, problem solving"
psychology of physical education
landscape design
machine tools
agricultural production environment
receptor and intracellular signal transduction
functional composites
hepatology
computer architecture
diagnostic immunopathology
plant metabolic regulation
colloids/quantum dots
cooperative farming in community
rehabilitation of environment ecosystem
measuring/analyzing instruments
biogeochemical cycle
evolutionary genetics
networks/local area networks (lan)
sound/vibration environment
molecular cardiology
psycho-physiology
neuroinformatics
analytical chemistry
energy conversion process
kanbungaku (chinese literature in japan)
modeling/simulation
nano defect control
bio-fluid mechanics
development or aging factors of itching
environmental epidemiology
diagnostic neuroimaging
watershed management
immune diseases
morphological evolution
animal genome
complex geometry
"intercultural communication, translation and interpretation"
archaeological prospection
hybrid/smart/biomaterials
insect mimetics
rural development and sustainability
proteolysis
ultralow temperature/condensed quantum system
design education
intelligent transport systems
organella-genesis and dynamics
joint disorders
educational environment
production systems engineering
international agriculture and rural development
"comparative, developmental and genome physiology"
social interaction/interpersonal relations
behavioral genetics
simplified analysis and monitoring
routing/switching
removable denture prosthodontics
pediatric dentistry
bio devices
engineering for health and welfare
bioproduction process
insect vectors
system simulation
insect pest population
nano/micro-optical devices
sports medicine
medical imaging informatics
biomaterials science
theoretical organic chemistry
ferroelectric thin film
pediatric social medicine
self-process
reproduction/development
modeling and simulation
education law
accelerator engineering
natural and artificial crystals
plasma application
food manufacturing/processing
computer network and ict
nano/micro machining
nuclear/radiochemistry
social policy and social work with people with disabilites
body/ sport
political methodology
nano-bio systems
diet evaluation
"low-dimensional topology (knot theory, 3-dimensional manifolds, 4-dimensional manifolds)"
data model
automata theory / formal language theory
invasion and metastasis
biological clock
gender difference in pain
genome breeding/dna marker-assisted selection
clinical angiology
cultural environment
medical radiation biology
evolutionary ecology
quantum optics
integrable system
ocular pathology
tourism theory
resource exploration
synectics
"safety concerning products, facilities, systems"
education/human development
"management in agriculture, forestry and fishery"
drug metabolic enzyme and tranporter
sensors
auditing
polymer synthesis
laboratory oncology
"morphology, semantics"
information retrieval
medical examination
vibration control
species interaction
itch-producing substances
oceania
bone and soft tissue tumors
individuality diagnosis of cancer
statistical quality control
food service
geomorphology
tectonics
plasma processing
surveying/remote sensing
nursing policy/administration
semantics
environmental system
nuclear physics (experiment)
"interconnect,packaging and system integration"
smooth muscle and skeletal muscle
nano/micro material mechanics
maritime systems
clinical pharmacy education
insolvency law
programming language processor
genome-wide association study
social anthropology
theory of computation
anatomical study of neuroimaging
refrigeration/air conditioning
geo-engineering
financial accounting
brain tumors
material/structural mechanics
herbal medicine and pharmacology of natural products
magma/igneous rocks
electronic/optical functionality
alternative dispute resolution
mucosal immunity
recyclable bonding/composites
experimental animal
unauthorized access countermeasure
soil environment
immunosuppression
economic doctrine
sensation/perception/kansei
observation methods
wound healing science
management of technology
ubiquitous computing
cosmic ray physics (theory)
reaction dynamics
disaster prevention planning
ion beam
diagnostics/laboratory examination
development or aging factors of pain
mathematical theory of programs
specification and verification
infection diagnosis
estimation of trace chemicals pollution
magnetic resonance
data processing and analysis
electrochemical analysis
community work/ commumity services/community development
neurohistochemistry and neurocytochemistry
fermentative production
landscape ecology
musicology and music history
psychopharmacology
"microcirculation, peripheral circulation, circulation dynamics and regulation"
resources-environment balance
metabolism/enzyme
building construction method
gene expression control/epigenomics
restoration/regeneration
glycosylation engineering
chemicals management
volcanoes/active faults/geologic hazards
stimulation-secretion coupling
civil procedure
international community/ethnicity
computer vision
cancer and heredity
speech language and hearing therapy
visiting nursing
counseling
molecular ecology
clinical research
sociology of religion
ultrasound therapy
genetics
in vivo functional expression
animal welfare/ethics
political theory
"medical, dental and pharmaceutical education"
physical medicine
ultraprecision machining
discrete structure
nuclear physics (theory)
crystals
experiment/observation
prevention and intervention study
evolutionary biology in general
environmental value-assessment
molecular targeting drugs
medicinal chemistry
history of religions
experimental evolutionary biology
insect technology and biomaterial production
science literacy
generating or exacerbating mechanism of pain
medicinal foods
asymmetric synthesis
clinical microbiology
ultrasonography
health economics
risk-based engineering
strongly-correlated system
archaeology in general
physics of biomolecules
timber
microwave/millimeter wave/terahertz wave
physics of living phenomena
reproduction/hybrid/ploidy genetics
artificial life system
technology for activities of daily living
dance education
technology for substituting biological function
energy materials
angiogenesis
industrial technology education
commercial law
management in social work / advocacy/evaluation
agricultural labour science
early foreign language education
environmental radiation
criminal justice policy
administrative law
experimental economics
museum business management
japanese affairs
"company law, business corporate law"
dna replication
maintenance technology
soil pollution control
radiation engineering/beam science
synchrotron radiation
invasive insects and pathogens
pathogenic animals
electrochemical process
food policy
x-ray
urban park/disaster prevention park
reclamation and conservation of agricultural land
ground and structure
preventive care/assistive technology
pathogenicity and virulence
"heredity, fertilization, development and differentiation"
neurocytology
environmental facilities
basic process
combinatorial optimization
ornamental and landscape plants
biobank
classification
fusion theory/simulation
human genome diversity
comparative history/history of cultural and diplomatic exchange
realistic communication
environmental impact assessment
plant-microbe interactions
human activities in polar regions
governmental accounting
wearable device
spinal cord and pain
damage prediction/analysis/mitigation measures
yield/biomass
land utilization
rural history
"reduction of wastewater, exhaust gas and solid wastes"
judicial system
paleoenvironment
material and energy flow analysis
ecological engineering
membrane transport and transporters
model selection
theory of quantum computation
self-help group
multimedia information processing
emulsion･membrane･colloid
building/urban economy
materials development
international food economy and trade
clinical cardiology
animal product
premodern literature (edo period)
social policy/social welfare
cellular proliferation and cell death
single-molecule science
planting engineering
business history
gastroduodenal surgery
phlebosurgery
teacher/student culture
development
social system
inflammation and cancer
japanese political history
international finance
"neural regeneration, remodeling and plasticity"
normalization
structural engineering
metals
strength/fracture toughness
immunology/biological defense
conservation of biological strains
inflammation
art information
clinical pathology
biotope
"higher education(mathematics, physics, chemistry, biology, information science, astronomy, earth and planetary science, interdisciplinary science)"
animal models
acquired immunity
teacher education
computational complexity theory
superconductor
numerical simulation
γ-ray
microbial classification
discrete mathematics
turbulent flow
molecular pathogenesis of nutrition
service prosivion infrastructure
genome information processing
"law and education, legal profession, legal teaching"
other functional materials
drug and herbicide-resistance
solar physics
bio-logging
composite material/new materials
histocytochemistry
philosophy of religion
industrial application
science and sociocultural aspect
functional anatomy
"chromosomal organization,function and segregation"
magnetic resonance imaging
cell adhesion and movement
comparative art history
"chinese history (ancient, medieval, and early modern periods)"
host defense
nature conservation/nature restoration
forensic social work/ social work in juvenile delinquency and criminal justice
preservation/wood culture
learning/behavior analysis
sensor network
comparative literature
mass transfer
protocol
tangible sensing
laboratory animal welfare
lymphangiogenesis
rna silencing
mineral processing
insect evolution and systematics
reproductive physiology
landscape formation/landscape conservation
underground space
critical care/emergency nursing
glycobiology
accelerators
"stem cell biology, regeneration, and repair"
marine resources/energy
astrophysics (experiment)
plant molecular physiology
geoinformatics
lca
pediatric health
"parallel processing, 3d simulation"
occupational and environmental health nursing
dental hygiene (including public hygiene/nutrition)
developmental disabilities and emotional disturbance
community health
environmental fluid mechanics
oncology
bioprocessing
adult and community education
development/aid
expression analysis
physical environment
soil mechanics
german linguistics
terrestrial and planetary magnetospheres
pain management
"neuropathic pain, neuralgia"
farming information
immunodeficiency
biosafety
medical sociology /disability studies
sugar chemistry
lifestyle diseases
industrial archaeology
dynamic design
microbiology and infectious diseases
crime/delinquency
zero emission
distribution of food and agriculture and fishery products
mathematical biology
organometallic chemistry
environmental restoration material
carcinogenesis
infection therapy
feed/feedstuff
antibodies and complements
bibliography and philology
formation/control of nanostructures
thermal radiation
web mining
pollutant evaluation
urban green plant
insurance law
economic institutions and systems
academic achievement problem
thick film
cell / tissue engineering
searching bioactive molecules
theoretical biology/bioinformatics
multicultural education
space utilization/exploration
oral maxillofacial reconstructive surgery
fundamental condensed matter theory
system physiology and physiome
queue
chemistry for material recycle
rehabilitation medicine
social cognition/emotion
landscape/environmental planning
intracellular signal transduction
origin of organelles
aquatic biomass utilization
neural network
medicinal molecular design
intracellular logistics analysis
identification
precision/non-conventional process
japanese history in general
medical administration
statistical pattern recognition
elemental fractionation
gene therapy
algorithm theory
information sensing
cross-regional comparative studies
securities law
bio-functional chemistry
identification and analytical evaluation of pollutants
genome evolution
microstructure
aquatic environment
plasma diagnostics
resources/resource management
ceramics
geotechnical disaster prevention
clinical neuropsychology
diagnosis and treatment
zero-emission
radio astronomy
catalysis reaction
guidance/navigation/control
early childhood education/child-care
environmental management
social environment
measurement
open space management
cultural property policy
luminary brain science
bioinstrumentation
curriculum theory
dna polymorphism
city planning and community policy
biliary surgery
medicochemical engineering
growth environment/climatic variation
characteristics of cancer cells
international trade law
chinese literature
infrastructure materials
pollution indicator
basic plasma physics and electric discharges
agricultural facilities and stock management
foreign law
bioengineering
comparative analysis among nations
antibody therapy
aquatic biotoxin
atmospheric and hydrospheric geochemistry
ion exchange
mechanics
robotic surgery
hematology
dietary behavior
water and electrolyte metabolism
comparative decision making theory
developmental genetics
biopolymer
biological interaction
hospital management
hydrological disasters
russian and east european literature
bio material mechanics
landscape and ecosystem
brain machine interface
volunteerism / npos in social welfare
emission quality standards
nutrigenomics
supramolecular complexes
public finance and administration of museums
algebraic geometry
prediction of earthquakes and volcanic eruptions
electrochemical materials
system information (knowledge) processing
school management
support system and special needs education coordinator
theoretical chemistry
organoelement chemistry
plasma facing component/plasma heating device
cellular biochemistry (cellular medical chemistry)
oral biochemistry
fluid physics
spin properties(semiconductor)
biologics
teratology
genetic and ecological toxicities
authentication
paleoecology
aortic surgery
other literatures in english
population statistics
biodiversity conservation
cell function and morphology
"statistical mathematics (including game theory, design of experiments, convex programming problems, decision theory, estimation theory, testing theory,estimation of stochastic processes)"
conservation science
humanities/social sciences
crust/mantle/core
prehistoric studies
molecular biology of nutrition
knowledge/science/technology
history of western political thought
reproductive medicine
surface/interface control
artificial organs science
intellectual property information
hyperthermia physiology
forensic odontology
sports physiology
solid planets/satellite/asteroid
information filtering
metabolism
monitoring
economic philosophy
mediastinal surgery
"electrical energy engineering (generation/conversion/storage, and energy conservation)"
bioanalysis
strength/wooden construction
oral pathology
microchannel analysis
environmental monitoring
pollutants removal and remediation technologies
expression of genome function
human interface
welfare state/ welfare society
model organism development
atom/molecule
high-dependable architecture
fluid/heat transfer/mass transfer operation
systems pharmacology
green chemistry
functional-molecule design
abnormal lipid metabolism
life cycle assessment (lca)
"electrical and electronic materials(semiconductor, dielectric,magnetic, ferro-dielectric,organic,insulator, superconductor,etc.)"
virtualization technology
kansei robotics
geomagnetic variation
infection epidemiology
materials and goods for living
family and advocacy
bioethics
landscape
affective science
prenatal diagnosis
culture/religion/social consciousness
aquatic food processing/preservation
thin film/plating/wiring process
coding/decoding
medical informatics
remote sensing
housing for the elderly
diagnostic cytopathology
optical controlling
host specificity
mechanistic organic chemistry
natural disaster prediction/analysis/measures
muon
nano crystalline materials/composites
population
glycoscience / lipid science
environmental accounting
machine elements
multimedia information generation
tourists
social security law
process operation/facilities management
crystallite
systems of japanese language education/language policy
environmental monitoring of the polar regions
catalyst performance analysis
prediction system for human pharmacokinetics and metabolism
preventive periodontology
rural geography
industry/organization/personnel
management systems engineering
japanese archaeology
knowledge discovery and data mining
abnormal bone and calcium metabolism
biological membrane and receptor
medical imaging technology
international development for rural community and fishing village
cellular signaling and dynamics
clinical molecular genetics
low-carbon society
business administration
housing structure and material
process design
functional foods
training foreign language teachers
accelerator technology
granular and powdered materials operation
clinical trials and ethics
risk management
fetal surgery
spinal cord/spinal diseases
bioresource for research
medieval history (kamakura and muromachi periods)
traffic law
electronic state
dietary information
energy system
combustion technology
origin of life
broncho-esophagology
biochips
nucleic acid
river engineering
academic achievement theory
synthetic organic chemistry
radiation measurement technology
horticultural genomics and bioinformatics
stress science
tunnel engineering
biometrics
comparative anatomy
construction and management of information resources
biotechnology
bookkeeping
structure control
reaction mechanism
steel
molecules and structure
diplomatic history/international history
"management, diagnosis and evaluation on business"
landscape/environment
postharvest and processing technologies
rhinology
neuro-endovascular surgery
vibration/strength
sensor/monitoring
palliative medicine
maintenance/management
polymerization catalyst
neuropharmacology
soil chemistry
diffusion/phase transformation/phase diagrams
domestic and industrial wastes
clinical pharmaceutical sciences
fruit trees
intellectual disabilities
global/urban environment
photobiology
regular classroom and resource room
mixed reality
rural society
porous materials
organic/inorganic hybrid materials
aerospace system
non-drug therapy
medical imaging system
modern and contemporary west european history
model simulation
molecular anthropology/genetics
social and economical system
cell immunity
head and neck surgery
occupational safety and health
north and south american history
curettage behavior
interactive art
endocrine surgery
child and adolescence psychiatry
international integration
agricultural extension
south asian history
molecular structure science
paleo-ocean
neurological scinece
clinical molecular neurogenetics
international cooperation
weed management
nanomaterials
politics/power/state
ecosystem conservation
experimental morphology of the nervous system
kansei expression
phonon properties
microbial physiology
low power technology
microbial genomics
psychosomatic internal medicine
surface/particulate analysis
driving force for management
netwrok community
analgesic
software security
propulsion/vessel dynamics
cell/tissue culture
tumors
nursing philosophy
pediatric orthopaedics
scripts and orthography
system analysis
social thought
social sciences
bioenvironmental information
secondary metabolite
kansei philosophy
kansei material products
thrombosis/hematostasis
exploration of solid planets
human genome resequencing
non-equilibrium/nonlinear physics
social welfare history
pulp and paper
maternal/women's health nursing
structural geology/tectonics
medical history
western classics
animal-assisted therapy
"reduction, reuse, recycle (3r)"
japanese philosophy
environmental information chemistry
hybrid structure
pathophysiology and therapy of neuropsychiatric diseases
immune activation
national park
natural product chemistry
contaminated soil remediation
ancient literature (nara and heian periods)
youth problems
pediatric chest surgery
medical image
roman law
pediatric nephrology/urology
plasma measurement
environmental bioprocess
environments
"search, logic, inference algorithms"
cryopreservation
gene diagnosis
genetically engineered crop production/assessment
clusters/nanoparticles
information systems
use and evaluation
climate change/carbon balance
lead discovery
body/expression/media
nuclear medicine (including pet)
real world information processing
energy resources
kansei measurement evaluation
science and technology/medicine/life science
historical linguistics
probabilistic information processing
hereditary/teratology
endocrine therapy
breeding of tolerant crops
disordered system
carbon materials
molecular device materials
dental engineering
genome architecture
educational counseling
stereotactic radiosurgery
surgical metabolism and nutrition
tourism policy
photo-processing
neurodegenerative diseases
postharvest diseases
cardiovascular system and hematology
molecular oncology
disturbances of energy and carbohydrate metabolism
vacuum
molecular neuropathology
distribution of elements and molecules
design theory
cytoskeleton
nanosynthesis
complex analysis
plant growth regulators
organizational management
"assessment of technology and knowledge in agriculture, forestry and fishery"
gerodontics
pharmacoepidemiology
finance
remote diagnosis and treatment system
hetero-phase separation
3d content and animation
exercise prescription and exercise therapy
information economics
super-molecular complex
bioactive natural compounds
psychological clinical study and experiment study
nutritional guidance
material culture
fuel cell/electric cell materials
gravity
laser
cellulose/hemicellulose
fruit growth and ripening
biomedical control and therapy
clinical studies
proteins and enzymes
health/growth
railway engineering
asymmetric polymerization
environmentally friendly agriculture
electoral studies
kansei management
limb reconstruction surgery
consumer education
east asia
kansei environmental science
"electron, positron"
biodegradable substance
resource evaluation
spin devices
mesoscopic chemistry
electronic/magnetic properties
new functional materials
comparative study of religion
environmental hydraulics
evaluation of cross-border pollution
molecular genetic epidemiology
nano dots/layers
social issues
skin genetics
volcanic eruption
recombination
rubbers
pharmaceutical therapeutics
history of technology
neuroethology
cell biomechanics
dietary education
micro-and nano-optics
analytical reagent
history of scientific thought
critical path
food engineering
metabolomics
material analysis
western art history
metabolism/endocrine control
mathematical finance
performing arts
network architecture
astrophysics (theory)
surface/interface
"environmental design (architecture, urban, landscape)"
dietary habits
tax law
neutron
non-equilibrium/complex systems
mirna
pattern recognition
single-molecule measurements and manipulation
reactive plasma
extension and transfer on technology
radiation protection and safety management
congenital cardiovascular surgery
peripheral/divertor plasma
teacher training
creation of nanostructures
food biochemistry
infrastructure history
food crops
microbial function
ethnography
environmental and cellular responses
regional development
environmental psychology/physiology
process control
genetic testing
environmental toxicology
behavior/cognition
brain information reading (decoding)
landscape architecture
social work education/ field education
oral and maxillofacial prosthetics
statistical genetics
reaction apparatus
history of education
kinetic theory of leadership
proton beam
molecular and cellular respirology
syntax
crustal movement/sea floor crustal movement
psychology
greenhouse horticulture/plant factory
opportunistic infection
analysis & evaluation for design
environmental conscious design
reproductive endocrinology
biocomplex chemistry
bioreactor
ideology and ethics in agriculture
organisms and pathogenicity
skull base surgery
biopharmaceutical
crop quality/palatability
intracellular signaling
planetary atmospheres
public administration
nano shaping/forming process
environment designing
evolution of genes
environmental education/forest education
occupational health
disease-associated gene
melting/solidification
grazing
philosophy of science/theory of science
microsurgery
nursing management
learning difficulties and school maladjustment
bioproduction system
environmental safety and security
functional polymers
stem cell
lifelong learning
seaweed beds/tidal flats
economic resources
crystal structure
"school,class,teacher"
pathology
comparative folklore
resource plants
probability theory
housing management
"child care, child rearing"
glial cells
acoustic information processing
physical and cultural pest control
optical/infrared astronomy
non-traditional security/ human security
smart grid
clinical neuroscience
science communication
layered/intercalation compounds
parallel processing
experimental archaeology
animal models of disease
west asia/central asia
traditional chinese-japanese medicines
plant biochemistry
classification system
kansei database
image database
organic photochemistry
history of cultural and diplomatic exchange
operational system/road/machinery
metalloprotein
principle/history/methodology
molecular computing
environmental law
paleobiogeography
sports history
optical devices and circuits
pediatric hematology
industrial organization
fish disease/aquatic pathology
bioelectrochemistry
andrology
standards
toxic substance to human
time series analysis
consensus forming
separation analysis
guidance
gender equality
heterostructure
solution
national accounts
element resources
plasma/laser/surface treatment and process
international management
pollination
study of material culture
ecology
organic/molecular electronics
behavioral ecology
photocatalysts
developmental medicine
pathogenicity
instructional materials information system
pedagogy of health education
principles of social welfare/philosophy of social welfare
environmental standard and auditing
regional planning
native species conservation
medical devices and pharmacy
safety information
radiology
computational statistics and computer aided statistics
intelligent robot
demented disorders
multi-phase flow
organ preservation and treatment system
consciousness/cognition/attention
core plasma
kansei design
literary theory and criticism
thinking/reasoning/language
energy generation/conversion
barrier-free system
impact on life
laryngology
political brain science
nanoscale control physics
vibration analysis/tests
distributed collaborative learnig support system
community/village/city
physical environment theory
consumer law
bio thermal engineering
developmental and regenerative neuroscience
management of uncultivated field
stomatognathic function and mechanics
adoptive immunotherapy
globalization
fabrication/characterization method
environmental model
service-oriented architecture
woody biomass
water environment
biological simulation
public interest functions of ecosystem
wood based material
dna computing
software engineering
acute toxicology
home care nursing
plasma application to beam physics
study of ancient civilizations
environment control in biology
wave technology and applications
fatigue
information culture
structural chemistry
membrane separation
urban environmental design
microscopic techniques and imaging
management of birds and beasts
cell signal transduction
class/social status group /social mobility
organic geochemistry
speech processing
resource recycling systems
intelligent information processing
ecology/biodiversity
plant growth regulators and plant activators
molecular evolution
international civil procedure
family resource management
museum material resources
rna
risk evaluation
cutaneous immunology and inflammation
food microbiology
particle beam therapy
educational evaluation
cross-cultural comparison
aging
medical application
insect pathology
atmospheric circulation/noise and vibration
gene and chromosome
polymer properties
"lower gastroenterology (small intestine, colon)"
economic history
computational mechanics
forensic anthropology
career
confucianism
reconstructive surgery
gel
education at home
isotope pharmacentical chemistry
fetal medicine
marketing research
legal history
fullerenes/nanotubes/graphene
terrestrial and planetary upper atmospheres
nematode and parasitic higher plants
epidemiology of pain
metabolic electrolyte abnormality
endodontology
stress management
development/child care
brain function probe
maintenance engineering
leader in rural community and npo
dietary transition
"spiders, mites, nematodes"
brain molecule profiling
social welfare and health science
epithelial function
disease and insect pest management
human-machine systems
sociology of law
continuum mechanics
biofunctional materials
power electronics
"education system, policy, and administration"
soil environmental conservation
interface
therapeutic radiology
material resources
nano materials /fabrication process
fisheries education
environmental information
plant morphology
sleep
other basic analysis (including function spaces/foundations of applied analysis)
nano and micro structural analysis /evaluation/testing
physical chemistry
japanese ethics
operative dentistry
sports biochemistry
water resources engineering
reproduction
advertising
molecules and cells
database system
adult life stage elderly gymnastics
pedogenesis/soil classification
consultation and counseling
corpus linguistics
pediatric gastroenterology
recycling/recycling process/reuse/transduction
optical response･photosynthesis･chemical reaction
immune tolerance and autoimmunity
art
insect-plant interactions
occurrence forecast
urban farmland
phylogenetics
environmental diseases
modern and contemporary history (after the meiji restoration)
women's studies/men's studies/queer studies
usability
developmental disorder
bioregulatory chemistry
africa
constitution/health
interventional radiology
juvenile law
cell/tissue/seed preservation
green productions
science teacher training
nutritional epidemiology
nano carbon applications
network protocol
econometrics
natural environment
light environment
medical devices
animal management/welfare
comparative study of civilizations
water/sediment quality
tamper resistance technology
sociability
soft matter physics(general)
resorts
biological oceanography
particle physics (theory)
therapist's theory
system design/safety engineering
managerial accounting
habitability
evaluation methods of pain
medical law
particle detectors
microbial ecology
heart valve surgery
history of the japanese language
neurohistology
cellular engineering
genetic engineering
history of art theory
personal identification
medicinal brain science
cohesive society and school inclusion
transcription and transcriptional regulation
project-based learning support system
biological information
algebraic combinatorics
"kansei cognitive science, kansei phychology"
principles of ethics/specific theories of ethics
secondary metabolite production
structures､dynamics and functions of proteins and nucleic acids
marketing of livestock products
functional glasses
function/morphology
plasma control /laser
law and economics
operator algebras
lignin
chemical modification of biomolecules
transposon
interaction between urban and rural inhabitant
molecular epidemiology
minority
biometrics and horticultural robotics
undersea and subsea engineering
nonlinear optics
self/identity
transcriptome
production techniques
mass-screening
cscw
instructional theory
rural governance
"constitutional theory, history of constitution"
interface of cancer research and society
pediatric cardiology
instrumental analysis
spectrometric analysis
dielectric materials
environmental response and control
diagnostics for quantum beams
preventive dentistry
kansei physiology
flow analysis (fia)
forensics
media art
architectural theory
molecular pathogenesis
oral anatomy (including histology/embryology)
immune regulation
nano-biomaterials
cell cycle
laboratory examination system
directed evolution
evolution and development
advanced algorithms
land use/landscape
microbiology
health education
monitoring and modeling of pollutants behavior in environment
gender
equilibrium research
enzyme
oral health administration and management
materials for genetic and nucleic acid engineering
thin film/quantum structure
gastrointestinal
nano/micro tribology
clothing
genetic biochemistry
molecular dynamics
maternal and child health
commons
planetary plasma/planetary atmosphere exploration
plasma acceleration
terrestrial and planetary ionospheres
lymphology
electronic circuits and systems
sports philosophy
"control of noise, vibration and ground subsidence"
"interior, housing and living environment design"
hemodynamic disorders
thin film/microparticle forming operation
rural landscape and ecosystem
novel reaction field
food with health claims
general medicine
neuro-oncology
searching agricultural chemicals
helminth
infection immunity
chemical/bio sensor
coding theory
organic semiconductor materials
engineering education
housing information and housing education
system theory
public international law
hierarchical structures/superstructures
food hygiene and sanitation
other languages
evolution of function
integrated agriculture and fisheries
complex plasmas
hematopoietic stem cell transplantation
global warming
social work in mental health /social work in health care/ care work
infectious diseases
sexuality
cosmology/gravitation (experiment)
japanese economy
nuclear structure and function
soil and water environments
dwelling culture
"plant pigments, aromatic compounds, and functional ingredients"
international economics
diseases- and insect pest-resistant crops
pharmaceutical / genome statistical analysis
participatory town planning
"information law, media law"
coastal engineering
scanning probe microscopy
pesticide science
radiological technology and science
acoustic energy
genetic algorithm
sustainable development
neuroeconomics and neuromarketing
equilibrium/transport properties
tribology
soil organisms
chinese linguistics
statistical inference
motion control
local history
protein engineering
political geography/social geography
psychosomatic medicine dentistry
respiratory and mediastinal organs
riemannian geometry (including geometric analysis)
angioplasty/osteoplasty/vascular embolization
nano/micromechanics
humanities
sampling/pretreatment
high energy density physics
metabolic syndrome
law and gender
environmental laws
mathematical logic
adult health
real time brain blood flow measurement
kansei sociology
laboratory animal models
ion exchangers
pigment cell biology
social and environmental service
risk assessment
environment/pollution
high-dependable system
insect physiology and biochemistry
stem cells
medical ultrasound system
attitude/belief
landscape ecology/landscape design/landscape management
gynecology
structural organic chemistry
southeast asian history
civil execution law
timber structure
biomaterials/medical materials/welfare materials
fluid power systems
russia/slavic area
thermal engine
trace element
imaging analysis
cosmochemistry
central nervous system and peripheral nerve
disease models
ocular immunology
plant physiological diseases
hydraulics
measurement technology
nucleic acid therapy
higher order life sciences
chemical processing/adhesion
inorganic solid-state chemistry
crystal characterization
environmental microbiology
concrete structure
veterinary reproduction/obstetrics
catalyst design/reaction
casting
compact quantum beam generator
theory and history of foreign language education
economic geography/transportation geography
medical imaging physics and engineering
sensitivity
atomic/electronic structural characterization
biological information analysis
mesoscopic system/localization
lattice defects
social group/social organization
animal morphology
distillation
germ layer formation and gastrulation
ocular developmental and regenerative biology
computational photography
food management
motion planning
educational technology/teaching materials/educational media in general
signal molecule
"plant physiology, growth and development"
project management for rural development
combustion
management information
business model
planet formation and evolution
process information processing
distance education
antibiotics and microbial medicines
aquatic animals
otology
digital archives
chemical ecology
higher brain function science
personality
acoustic information/acoustical control
rural life
microbial metabolism
geography in general
nanotubes/graphene
design history
photonic crystals
innate immunity
clothing materials
social technology for security (evacuation､mass guidance､information distribution､hazard map)
biopolymers
micro flow
antennas
bioproduction machinery
agriculture related industries
nonverbal communication
plant wound responses
comparative history of thought
"symbiosis, parasitism"
medieval literature (kamakura and muromachi periods)
"topology (algebraic topology, general topology)"
coronary surgery
water resources
taoism
metabolism and physiology
precision mechanics and systems
new functional thin film materials
japanese and eastern art history
engineering
laser spectroscopy
mathematical and physical sciences
digestive endoscopy
kansei interface
mineral resources
english literature
abnormal metabolism
vegetable crops
cell and tissue engineering materials
speech / sound database
rural environment
history of islands and oceans
surgery for spleen and portal vein
distribution and logistics
medical information system
comparative endocrinology
sociology of science
administrative organization law
bioactive substance
"literary theory, criticism, and comparative literature"
biomechanism
clinical trial
biomolecules
programming methodology
electronic properties
space and astrophysical plasmas
radiological diagnostic technology
structure
acoustics
international tax law
dna devices
coaching
managerial finance
molecular mechanism of activity expression
carbon-related thin film
polymer structure
radiofrequency ablation (rfa)/stent treatment/reserver treatment
environmental systems engineering
physical therapy and rehabilitation science
cosmetic and fragrance science
cultural geography
regional/urban planning
clinical pharmacology
nmr
international accounting
organelles/cell wall
single-molecule bioinformation science
philosophy and theory of art
food function
cytokines
environmental road-reducing substance
assessment
shipbuilding/equipment
optimization theory
liaison psychiatry
food system
protozoa
geographic information
"medical imaging, bioimaging"
microbial genome
cryptography/security
new institutionalism
environmental change
micro crystal
energy conservation chemistry
mechanical/thermal treatments
learning management system
food economy
functional analysis (including operator theory/representation theory)
media literacy
drug dependence and drug sensitivity
educational methods
polymer alloy
nuclear medicine physics
clinical psychotherapy
medical physics
gender and education
performance support
west asian/islamic history
nano/micro physics
natural resource development
violence/prostitution
natural history
urogenital and endocrine organs
"other algebra (including algebraic analysis, computational algebra, applications of algebra)"
cooking and processing
molecular and cellular neuroscience
biosensing
cytokinesis
entomopathogenic microbes and viruses
cosmic ray physics (experiment)
medical information
appropriate treatment and disposal
molecular target therapy
food analysis
social policy and social work with the elderly
proteomics analysis
environmental geographical information
safety chemistry
cultural representation studies
impact assessment methods
cognitive archaeology
phylogeny/evolution/diversity
functional potential
nationwide spatial planning
interdisciplinary science and engineering
distributed collaborative learning system
metadata
software protection
educational physiology
smoking/drug abuse prevention education
management system
health psychology/health development
sociological theory / sociological methodology
gene regulatory network
rheumatic diseases
education for food and agriculture
physical measurements and control
chromosome rearrangement and maintenance
magnetic material
load theory
water budget
hetero/homo structures
universal design
regional environment/natural hazards
automatic synthesis
game programming
chemical probes
vegetation/soil
"differential topology (foliations, singularities, topological transformation groups)"
denaturation and folding
breast surgery
music information processing
polymer resources
volcanic phenomena
radiological anatomy
developmental pediatrics
sociology of welfare
management theory
history of the english language
service management
"epidemiology of itching, or pruritus"
autonomous system
wind resistant design
x-ray crystallography
clinical anatomy
dwelling environment and equipment
ore deposition
iconology and religious art history
single-molecule biochemistry and physiology
physiological laboratory testing
neonatal medicine
preservation/renovation
north america
maritime transportation system
earthquake resistant structure
computational fluid dynamics
damage mechanics
protein networks
prions
polymerization process
intelligent roomanimation
women's welfare/ feminist social work
kinetic (motor) information
diagnosis of plant diseases
growth/aging
environmental justice
multi-agent system
commerce
communication/information/media
social web
public policy
civil law
religious history
biophysical chemistry
amorphous/metallic glasses/quasicrystals
ancient history (nara and heian periods)
life environment and health items
control technology
information system for food and agriculture
port engineering
sanitation information
institutions/structure/social change
medical anthropology
population/species diversity
tarminal care
hepatic surgery
cell differentiation
development/differentiation control
hyperknesis
experimental surgery
entry of enterprise into agriculture
quality control
environmental stresses
applied mathematics
ecosystem
advanced reactors
research using human tissue
pragmatics
signal processing
stress responses
allergy and immune-related disorder
colorectal surgery
process for scarce resource substitution/ubiquitous materials
endoscopic surgery
international infection science
education survey method
motion adaptation life science
genome medicine
forensic pathology
fisheries engineering
polymeric materials
weed control
heat environment
life informatics
durability/environmental degradation/monitoring/evaluation
cluster
element recovery
global health
brain and nervous system
theory of international relations
intercellular matrix
economic policy
"cellular motility, morphogenesis and intercellular interaction"
carbon nanomaterials
law information
sensing devices
pop culture
bioenergy
earthquake disaster prevention
social and environmental contribution green
adverse drug reaction and drug interaction
molecular sensors
artificial sensory organs
erosion control/slope conservation and torrent disaster prevention/revegetation
gene introduction/mutagenesis
genetic epidemiology
planning/design/production system
comparative education
high temperature superconductivity
biomimetics
water resource/hydrologic cycle
anatomy
microbial application
physiologically active substances application
water resources and water use system
aquatic plants
isotope/radiation chemistry
forensic examination
functional /non-invasive biometry (measurement)
media arts
history of geography/methodology
fluid machinery
gynecologic oncology
keyword
pollutants separation and removal technologies
oral bacteriology
separation and purification
sports biomechanics
urban economics
chemistry of the crust and mantle
disaster medicine
overlay network
quantum effects
genetic factors of pain
processing system design
training science
social philosophy/social thought
self-assembly
"elementary and secondary education(arithmetic･mathematics, natural science, information science)"
"literary theory, criticism, bibliography and philology"
nuclear measurements/radiation physics
psychological interviewing process
development and differentiation
animal biochemistry
structural analysis and prediction
prediction of structure and function
computational physics
glass･liquid･solution
community health nursing
regional agriculture
drought
symplectic geometry (including contact geometry)
chemical library
risk communication
"legal person, trusts"
ambiguity and kansei
precise positioning/measurements
perioperative management
social problems/social movements
conservation biology
neuron glial cross-interaction
sports for the disabled
single-molecule imaging/nanometrology
conservation of genetic resources
surgery
disorder of purine metabolism
clinical immunology
aquatic ecosystem
food self-sufficiency and food security
fossil
"industrial design (product design, universal design)"
electron devices
geography education
"development, differentiation, and aging"
developmental biotechnology
nondestructive measurement
oral implantology
isotope/radiometric dating
neuropsychology
industrial crops
peripheral vascular surgery
natural language processing
comparative genome
skin diagnostics
human interaction
ecology/natural environment
history of japanese and east asian political thought
learning environment
searching medicines
administrative procedure
safety risk management
brain morphology measurement
research survey and experimental design
control instrument
numerical simulation methods
regulation of gene expression
somatometry
neural mechanism of pruritus
functional science of medicinal molecules
information literacy
environmental/geo-environmental chemistry
grid and cloud computing
convection
plant growth failure and physiological disorders
german literature
"numerical analysis/ mathematical models (including prediction theory, optimization, data analysis)"
machine learning
ecological materials/energy saving process
biomass utilization
foundation engineering
design support
social research
decontamination material
history of cartography
inertial confinement fusion
polymer complex
psycholinguistics
burning plasma
anesthesia/analgetics
midwifery
regional planning/regional policy
health policy
well-being for individual and family
embedded system
structural design
taxonomy
natural medicines
fire and explosion prevention and protection
power system engineering
community medicine
organic chemistry
social behavior
social work
accretionary prism/orogenic belt
experimental neurosurgery
"somatic, visceral or special sensation"
computer simulation
apoptosis
enzyme chemistry
social research and analysis plan
cryptography
multi-scale modeling
history of english linguistics
animal physiology and biochemistry
modern and contemporary south european history
"manufacturing , skills of making products for daily life"
pediatric immunology/allergy/connective tissue diseases
post-translational modification
cultural anthropology
allelopathy
physiological ecology
human population genetics
transplant surgery
information storage/record
muscle/nerve disorders
comparative philosophy
mechanical/thermal/optical properties
vibration
cytology
transfusion medicine
molecular biology
tumor suppressor gene
cultivation/cropping system
traffic engineering
nekton
biological trace element
integrated pest management
chemical oceanography
hyperalgesia
philosophy of education
marine engine/fuel
reaction rate
genome structural diversity
genetically-modified animals
number theory
toxins and effectors
bioinformation and instrumentation
chemical reaction
management engineering
dental education
stimuli-responsive materials
dosimetry and assessment
aquatic food chemistry
disaster risk assessment
vehicle and transport system control
"visual impairments, deaf and hard of hearing, and speech and language disorders"
immune surveillance and tumor immunology
molecular pathophysiology
science orthoptic
tumor markers
database biology
intelligent system architecture
educational information
radiopharmaceuticals/contrast medium
molecular solid/organic conductor
environmental impact analysis
audiology
closed process and integrated pollution control
adult nursing (chronic)
ophthalmic medical engineering
chemotherapy
logistics
proteome information processing
magnetism
chromatography
molecular recognition and interaction
geophysical fluid dynamics
marine geology
clinical hematology
philosophy of home economics
"evolution, development, learning"
"museum education, museum pedagogy"
history of political thought
"law and policy, legislative studies"
biomechanics
earth and extraterrestrial materials
cognitive engineering
muscular physiology
kansei pedagogy
natural environmental assessment
chemical and physical communications
solar wind/interplanetary space
biochemistry
plasma application to mm and thz waves
quaternary study
medical behavioral science
toxicology and drug safety
environmental measurements
transportation economics
epigenome
international communication
grammar
economic theory
"sericulture, silk"
drug economics
multivariate analysis
seismic hazard
applied geology/urban geology
analytical methods
regional geology
endangered and minority languages
resource separation/safeguard/securing
psychotherapy
dermatologic oncology
foods and nutrition
soil fertility management
ecosystem services
teaching-learning support systems
educational assessment/evaluation
thermophysical property
protein
biomedical ultrasound
mitigation
human-computer interaction
family/kinship/population
allelochemicals
environmental history
cell-cell interaction/extracellular matrix
climatology
epidemiologic study
radiation
cultural theories of physical movement
lsi design technology
nano/micro mechatronics
molecule imaging
pediatric pathology
pediatric oncology
glass
history of museology
pollutant
protection
sensory and motor development studies
quantum information
genome/chromosome analysis
animal experiment technology
information for living
semiconductor
nano-optical devices
recycle
functional components
softmechanics
trauma surgery
resource economics
aseismic/seismic isolation design
fossil fuel effective utilization technology
clothing psychology
financial engineering
natural products chemistry
post-transcriptional regulation
quality of service
repair
child welfare
sensory evaluation
mutagenesis
comparative politics
nano/micro thermal engineering
resource analysis
molecular preventive medicine
biliary-pancreatology
chaos
properties of surfaces/interfaces/thin films
biomolecule measurements
geo-environmental engineering
society and culture in rural community
solar-terrestrial system/space weather
south asia
insect behavior
technology of accelerator
poverty/ public assistance
gross anatomy
environmentally benign synthesis
life and death education
blood coagulation and rheology
air-sea interaction
fire engineering
knowledge-based control
cell injury
foundation
society
musculoskeletal traumatology
public health nursing
macroeconomics
child health nursing
digital forensics
ultra high separation
propulsion/engine
electrophoresis
"histopathic pain, histotoxic pain"
content distribution and management
environmental philosophy and ethics
environmental education
sociolinguistics
fisheries economics/management/marketing
ocular microbiology/infectious diseases
fertilizer
regulator of cell function
microorganisms and algae morphology
law and psychology
plastid function/photosynthesis
industry/labor
culture
east asian history
social work with families
theoretical astronomy
communication systems (wireless､ wired､ satellite､ optical and mobile)
ecology/ethology
disaster prevention
applied analysis
combinatorial chemistry
epidemic prevention
sensor fusion
malware countermeasures
electron spin
energy metabolism
dialect
cultural history
mechatronics
biology
religious studies in general
wildlife
international relations of east asia
microbial enzyme
optical properties
manure management
structure-activity relationship
non-newtonian flow
architecture history
international health
brain cognitive science
response to environmental factors
library science
micro fabrication process technology
group theory (including representation theory of groups)
writing systems
global studies
regional geography
molecular fluid dynamics
plant hunting and plant genetic resources
design standard
wood formation/physical properties
aid/regional cooperation
rehabilitation nursing
international political economy
blood
proteome
magnetic/electronic/information materials
plant production technology
education policy
benthos
functional neuroimaging
ocular biochemistry and molecular biology
economy and planning of rural community and fishing village
environmental health
school nursing
organelle engineering
education of vocational/professional subject (industry､ bussiness､ agriculture､ fishery､ nursing､ welfare)
ocular pharmacology
neuroimmunology
asian archaeology
mashroom/wood rotting fungi
design and production of recycle materials
"network design, operation, management and analysis technology"
ground behavior
robotics for welfare and nursing care
structural composites
dental anesthesiology
gifted and talented
home economics education
system control theory
liquid crystals
nonlinear analysis (including variational analysis/nonlinear phenomena)
organocatalyst
polymer/textile processing
arts/performing arts
taxonomy/morphology
drug development
space plasma/plasma wave
cytogenetics
pediatric digestive surgery
meteorology
mineral physics
hypertension
"engineering diagnosis, regeneration, maintenance management"
media/electronic network
adrenal surgery
cellular senescence
tourism
obstetrics
energy saving/efficient use of energy
corporate finance
aesthetics
material design/process/mechanical properties/evaluation
origin of eukaryotic organisms
pediatric urology
galenical pharmacy
"itching, pruritus"
human life and clothing
nano brain science
fuel cycle
japanese literature in general
genetic resource
archaeological informatics
polar engineering
clinical epidemiology
global issues
environmental analysis
environmental stress responses / tolerance
value added to agricultural product
gene expression and replication
financial econometrics
environment
lipid
neural development and its abnormality
growth and developmental medicine
resistance
policy science
development planning
nosocomial infection management
psychological disorder
arthropod vector
ergonomics
high-functional catalysts
genome maintenance and repair
horticultural well-being and horticultural therapy
african history
learning content development support
land-area water cycle/material circulation
dynamical systems/integrable systems
drug delivery system
circuit design/computer aided circuit design (cad)
fishing community/fisheries policy
pathophysiology
plant nutrition and metabolism
intercellular communication
culture engineering
genome analysis
biocompatible materials/biosuitable materials
processing suitability/quality improvement
vaccine therapy
aurora/magnetic storm
nanostructure properties
medical genome science
optics
doping
genetic map/qtl analysis
hardware / software co-design
american literature
knowledge acquisition
radiation protection technology
financial service
memory
economic thought
statistical research
cooking and functional constituent
ocular cell biology
construction business plan/construction design
"biological modeling, physiome"
"other differential geometry (including geometric structures, discrete geometry)"
human rights/right
nutritional biochemistry
nuclear material/nuclear fuel
nucleic acid chemistry
control of microbe
plant pathogens
web computing
cell therapy
history of social thought
geriatrics
global environmental system
natural bioactive substances
"values, reward and punishment"
transgenic and molecular biological technology
electromagnetism
security evaluation / audit
real analysis
dielectrics
veterinary public health
environmental adaptability
gerontological nursing
cosmology/gravitation (theory)
spinal disorders
properties of polymer materials
ocean exploration/equipment
dwelling life
polymer processing
quantum dots
nociceptor
conservation ecology
physiological anthropology
aids and sex education
cartography/regional geography/geography education
collective behavior/social phenomena
administrative remedies
educational information system
molecular neurobiology
transplantation pathology
aerospace environment
operations research
system methodology
electrochemistry
compressible/incompressible flow
medical imaging (including diagnostic radiology)
nanotribology
metamorphic rocks
chinese history (modern and contemporary periods)
plant and animal residues/human remains
minimally invasive treatment system
agricultural meteorology/micrometeorology
molecular recognition
posttranslational modification
sports sociology
concrete
histology
genomes and genetics
oral and maxillofacial surgery
production systems
heterocyclic chemistry
disease prevention and control
origin of multicellularity
humoral immunity
economy/labor
social thought/social movements/history
chromosome engineering
biorefinery
buddhist studies/history of buddhism
immunological memory
education economics
social engineering
regenerative therapy
reliability of machinery and human
research in historical materials
nanoparticles
facilities/production system
folklore
human and animal bacterial flora
catalyst preparation chemistry
business ventures
physical organic chemistry
shape modeling
hydrology
morphology
genome analysis technology
clinical respirology
"biological membrane, channel, transporter and active transport"
molecular manipulation
metagenome
cultural resources
"gastrointestinal motility, absorption and digestion"
sports nutrition
recycle design
machining
algebraic analysis
forage and grassland crops
folding
pediatric oral health science
wind engineering
synthesis of polymer materials
insect molecular biology
disease occurrence
intelligent learning support system
economic affairs
disaster prevention planning/environmental planning
bio-structural chemistry
structured document
epigenetics
history of disasters
extraction
fuel/blanket
hematology/immunology
natural product synthesis
aerodynamics
occupational therapy science
analysis and characterization of nanomaterials
biosystems engineering
family
electron microscopy
image information and image recognition
ocean/material cycle
metal complex chemistry
primary care
selective synthesis
complex systems
interaction of gene and environment
legal philosophy/legal theory
family finance and consumer issues
biomolecular medicine
morphogenesis and embryogenesis
social network analysis
livestock biomass
crisis management
disease epigenomics
volcanic hazard
cognitive linguistics
chromatin dynamics
effective utilization of electric energy
insect ecology
plant-microbe interaction/symbiosis
modeling
local government finance
child-raising environment
open space planning
qtl analysis
genomic engineering
genetic diagnostics
care and welfare
tourism resources
catalytic mechanism of enzyme
disease control and treatment of disorder
mass spectrometry
e-learning/computer-assisted language learning
historical archaeology
sensitivity industry
optical elements/instrumentation/materials
political economics
mechanical/electronic/electromagnetic/optical/thermeal properties
urban history
cell measurement techniques
sports immunology
functional equations
dna damage and repair
hemodialysis
polymer composites
molecular genetics
semiconductor devices
knowledge-based system
reaction field
orthodontics
statistical physics
biomimetic synthesis
sports environment
forming process
multimedia information acquisition
intermolecular interaction
genetics/breeding
design for living
groupware
taxonomic character
emotion / feeling / behavior
fertilization
physical agents
micro/nano bioprocess
ecological risks
heat conduction
oncology nursing
biologic and environmental minerals
microbial culture collections
international social work / ngos in social welfare
stylistics
historical geography
stratigraphic succession
electrocatalysis
clothing design and manufacturing
supply chain management
earthquake engineering
searching diagnosis chemicals
particle radiation therapeutics
curriculum/pedagogy development
digital human model
coordination polymers
metabolic engineering
local informatization
public system and management
immunoregulation and transplantation immunology
seismic motion
programming language
sensor materials/optical functional materials
development/differentiation
periodontal tissue engineering
"growth, development, and aging"
safety/biological influence/social environment
statistical system
pathogenesis and diagnosis
visual media processing
plant growth substance
biodiversity
foreign policy
forest product education
genetic diversity
cancer microenvironment
multifunctional materials
central eurasian history
psychological intervention
spintronics
numerical analysis
cryptosystem
town planning
pediatric endocrinology
plasma
remote learning
semantic web
astrometry
"economy of food, agriculture and environment"
low carbon society
soil physics
molecular and cellular physiology
food materials
"ventilation mechanics, blood gas function and respiratory control"
nano/microchemical systems
speciation
information sociology
gas/liquid/solid/supercritical fluid operation
material and energy cycle management
ethnomedicines
screening system for pharmacokinetics and metabolism
outdoor education
brain recordings
cross-cultural understanding and intercultural communication
hormone and bioactive substances
impact on environment and ecosystem
community support
special processing
labor economics
drug metabolism
clinical chemistry
radiation emergency medicine
financial law
plasma treatment
civil engineering informatics
(nervous) system physiology
oncogene
signal transduction
health promotion
response
brain function behavioral analysis
modulation/demodulation
nanoprobes
bioimaging
museum informatics
environmentally friendly crop production
phytoremediation
principles of philosophy/specific theories of philosophy
cytokine
technical aid
safety design
regional economics
information organization
environmental criteria and standards
structural mechanics
energy engineering
global environment and global warming
high performance computing application
biocatalysts
immunology
geomagnetism
higher brain function measurement
cytoskeleton/cell motility
experimental morphology
heat transfer equipment
construction management
"pain producing substance (pps), algesic substance"
"investment and finance for agriculture, forestry and fishery"
"renal function, body fluids, and acid-base balance"
mastication and swallowing
lung surgery
microscopic technology
postharvest engineering
regulatory science
other applied mathematics
rock engineering
dental materials science
media environment
regenerative medicine
clinical neurophysiology
discourse analysis
single-molecule chemistry
philosophy of the body
menopause medicine
drug discovery and pharmacogenomics
international development cooperation
body/sports
recommendation system
quantum electronics
complex/organometallic catalysis
pediatric neurosurgery
drug resistance
protein degradation
western philosophy
school health
neuroendocrinology
volcanic ejecta/debris flow
housing environment for the elderly and people with disabilities
design/fabrication process/forming
global change of water cycle
engineering for regenerative medicine
earth and planetary evolution
human measurement
medical robotics
cad･cam･cae
dynamics of mechanisms
safety validation
physiological chemistry
metabolic diseases
batteries
nursing art
alternative medicine
population genetics
display
metal
rheumatology
indian philosophy/thought
developmental engineering
agricultural chemicals and biological control agents
cardiovascular system
quantum devices
inflammation and immunity
behavior and environment recognition
kansei brain science
"surface water, ground water and soil"
chinese philosophy/thought
human resource development/development education
bio-related chemistry
cellular immortalization
complex polymer
surgery in cardiomyopathy
social environment of nuclear energy
clinical statistics
cell biology
safety engineering/safety science
genetic diagnosis and gene therapy
synthetic biology
international regime
design and planning of environmental conscious areas
food storage
environmental equipment planning
development and utilization of deep underground
ancient european history
epidemiology study
"international human rights, nationality law"
pain withdrawal reflex
neural fine structure
aethetics
sports pedagogy
cutting/grinding process
silviculture
sensing devices / systems
intellectual property law
meteorological disasters
computer graphics
kidney transplantation
"cognition, memory, education"
fitness
tourist industry
utilization of media
cell differentiation and tissue formation
genome instability
liquid crystal
social systems engineering
rehabilitation psychology
life of the elderly
failure diagnostics
insect/animal
biomembranes/receptors/channels
metabolism physiology
regenerative dermatology
literature information
history of eastern and japanese thought
interpersonal relations/ behavior
bone archaeology
weed science
disorder by agricultural chemicals
environmental pathology
aesthetic education
pleural surgery
information ethics
cell structure and function
reactor physics/nuclear data
insect taxonomy
brain function model animals
electric/electromagnetic compatibility
insect genetics and genomics
web system
energy transport/storage
reconfigurable system
transporter
molecular angiology
therapy/nursing
nanosurfaces/nanointerfaces
periodontics
safety and human factor
"instruction, support, and evaluation"
design/instrumentation
physical disorders and health impairments
direct linkage with production and consumption in local area
clinical laboratory system
generating or exacerbating mechanism of pruritus
medical record management
pediatric metabolism/nutrition
political history
public finance
administration and finance of education
planning theory
bibliometrics and scientometrics
earthquake resistant design
neurobiology
mathematical engineering (mathematical analysis/planning/designing/optimization)
"bone, joint, muscle, skin and sense organs"
corporate social responsibility
nursing engineering
modeling for production
science education curriculum
diversity of the english language
information services
materials for regenerative medicine and engineering
control theory
preventive medicine
structural analysis
endocrinology
grassland/pasture
plankton
design and synthesis of bioactive molecule
immunology and serology
cutaneous physiology and biology
web intelligence
nanostructural chemistry
behavioral physiology
digital museum / virtual museum
biocatalyst engineering
chemical biology
protected horticulture and plant factory
"science, technology and society"
antipruritics
language in daily life
fractal
physical oceanography
hyperthermia
family health nursing
labor law
chromatin
gerontology
construction
comparative genomics
functional neurosurgery
motivation
structural biology
stirring/blending operation
parasitology
visualization
project management
western ethics
low-carbon chemistry
media
"tourism/green-tourism, recreation"
optical sensing
ultrastructural morphology
genome brain science
stress
food and environment
regulation of enzyme
private international law
monetary economics
teaching method/learning
epigenomic control
monitoring in geo-engineering
plant genome

scripts/init_topic_list.py

from mysql import connector
from arxivdigest.core.config import config_sql
import re

def insert_topics(conn, topics):
 """inserts the topics into the database topics table."""
 sql = 'insert into topics values(null,%s,0)'
 cur = conn.cursor()
 cur.executemany(sql,topics)
 cur.close()
 conn.commit()

def load_topics(topic_path):
 """Loads a list of topics from the csv file at the provided path.
 Filters out topics that are to long."""
 topics = []
 with open(topic_path, 'r') as topic_file:
 for line in topic_file:
 if len(line) > 50 and not re.match('^[0-9a-zA-Z\-\"]+$',line):
 continue
 topics.append((line.strip().replace('"',''),))
 return topics

if __name__ == '__main__':
 conn = connector.connect(**config_sql)
 topic_path = "scripts/data/topics.csv"
 topics = load_topics(topic_path)
 insert_topics(conn, topics)

scripts/interleave_articles.py

-*- coding: utf-8 -*-
import logging
import sys

from arxivdigest.core.interleave import multileave_articles

if __name__ == '__main__':
 logging.basicConfig(
 level=logging.INFO,
 format="%(asctime)s [%(levelname)s] %(message)s",
 handlers=[
 logging.StreamHandler(sys.stdout)
]
)
 multileave_articles.run()

scripts/README.md

Scripts

To be scheduled to run regularly on weekdays:

 * `interleave_articles.py`: Interleaves article recommendations.
 * `scrape_arxiv.py`: Downloads new articles from arXiv.
 * `send_digest_mail.py`: Sends out digest email.

To be used for benchmarking:

 * `evaluation.py`: Generates evaluation measures.

To be used once during setup:

 * `init_topic_list.py`: Populates the database with an initial list of topics.

scripts/scrape_arxiv.py

-*- coding: utf-8 -*-
import datetime
import logging
import sys

from arxivdigest.core.config import config_arxiv_scraper
from arxivdigest.core.scraper.scrape_metadata import get_records_by_date
from arxivdigest.core.scraper.store_metadata import insert_into_db

if __name__ == '__main__':
 logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s [%(levelname)s] %(message)s',
 handlers=[
 logging.StreamHandler(sys.stdout)
]
)
 start_date = config_arxiv_scraper.get('start_date', None)
 if not start_date:
 last_n_days = config_arxiv_scraper.get('last_n_days', 1)
 start_date = datetime.date.today() - datetime.timedelta(last_n_days)
 end_date = config_arxiv_scraper.get('end_date', None)

 insert_into_db(get_records_by_date(start_date, end_date))

scripts/send_digest_mail.py

-*- coding: utf-8 -*-
import logging
import sys

from arxivdigest.core.mail import digest_mail

if __name__ == '__main__':
 logging.basicConfig(
 level=logging.INFO,
 format="%(asctime)s [%(levelname)s] %(message)s",
 handlers=[
 logging.StreamHandler(sys.stdout)
]
)
 digest_mail.send_digest_mail()

Setup.md

Setup guide

This document contains instructions on how to install and deploy the arXivDigest service. Information on the sample recommender system can be found in a [separate document](sample/).

Initial setup

 0. Prerequisites:
 * [Python 3.6+](https://www.python.org/downloads/)
 * [MySQL server](https://www.mysql.com/)
 1. Clone this repository to a location of your choice (will be referred to as `REPO_PATH` below).
 2. Execute all SQL scripts under db/ in sequential order, starting with [db/database_v1.sql](db/database.sql) then v2, v3, etc.
 3. Run `pip install .` while inside `REPO_PATH` to install the `arxivdigest` Python package and its dependencies.
 * If installing with the purpose of development, use the command `pip install -e .` instead, to allow editing of the installed package.
 * If running the service under an Apache Web Server, you may need to grant access to the respective user (e.g., www-data on Ubuntu) to the installed package.
 4. Make sure to put [config.json](/config.json) in any of the below directories and update the settings specific to your system:
 * `~/arxivdigest/config.json`
 * `/etc/arxivdigest/config.json`
 * `%cwd%/config.json`
 5. Run the `init_topic_list.py` script in the `/scripts/` folder to populate the database with an initial topic list of general topics that the user can select from.
 * Under `REPO_PATH`, execute the command: `python scripts/init_topic_list.py`

Installing updates

 1. Pull changes from this repository.
 2. Execute any new SQL scripts in db/.
 3. Run `pip install .` while inside `REPO_PATH` to update the package and its dependencies.
 * If needed, check permissions for the installed package.
 4. Update your local `config.json` file with any new configuration options introduced in [config.json](/config.json).

Frontend and API

Development mode

The frontend and API should be started by running `app.py` in their respective folder while developing.

Make sure that port 80 is free for the frontend and 5000 is free for the API (or change the frontend and API dev_ports in [config.json](/config.json)).

Production mode

Instructions on how to deploy a Flask application can be found [here](http://flask.pocoo.org/docs/0.12/deploying/).

Below is an example WSGI file for the frontend (for the API, just replace "frontend" with "api" everywhere):

```py
#!/opt/anaconda3/bin/python
import sys
import logging
logging.basicConfig(stream=sys.stderr)
sys.path.insert(0, "/opt/anaconda3/lib/python3.6/site-packages/")

from arxivdigest.frontend.app import app as application
```

Remember to configure the settings in config.json, especially the secret_keys. For more details, see [Frontend configuration](arxivdigest/frontend/README.md#configurations) and [API configuration](arxivdigest/api/README.md#configurations).

For best performance, static files should be served by the web server directly. To achieve this, `data_path` must be set in the config file. Then, the web server needs to be configured to reroute calls to `/static` to the folder named `static` that gets generated inside this location after the first launch. If not rerouted, these files will be served through Flask.

Batch processes

There is a number of recurrent processes that should be automated to run at specific times. This can be achieved by running these scripts with a cronjob.

The scripts should be run in the following order:

 * [Article scraper](scripts/scrape_arxiv.py): Should be run when arXiv releases new articles. The arXiv release schedule can be found [here](https://arxiv.org/help/submit#availability). Note that articles are not released every day, so this script will not always insert any articles.
 * [Interleaver](scripts/interleave_articles.py): Should be run after the Article scraper. Make sure that there is enough time for the recommender systems to generate recommendations between running the two scripts.
 * [Send digest mail](scripts/send_digest_mail.py): Should be run after the Interleaver, the amount of time in between can be varied based on when one wants to send out the digest mails.

setup.py

-*- coding: utf-8 -*-
from setuptools import find_packages
from setuptools import setup

with open('requirements.txt') as f:
 requirements = f.read().splitlines()

setup(
 name='arxivdigest',
 version='1.0',
 packages=find_packages(),
 package_data={'arxivdigest.core.mail': ['templates/*.tmpl'],
 'arxivdigest.frontend': ['templates/*.html',
 'templates/macros/*',
 'uncompiled_assets/css/*',
 'uncompiled_assets/javascript/*',
 'static/*',
 'static/icons/*',
],
 },
 url='https://github.com/iai-group/arXivDigest',
 author='Øyvind Jekteberg and Kristian Gingstad',
 install_requires=requirements
)

tests/test_interleaving.py

-*- coding: utf-8 -*-
import unittest
from collections import Counter

from arxivdigest.core.interleave.team_draft_multileave import TeamDraftMultiLeaver

class TestTeamDraftMultileaver(unittest.TestCase):
 def test_position_distribution_probabilistically(self):
 """Tests that the distribution of positions given to systems is
 approximately equal between systems. This function may fail very
 rarely because of the probabilistic nature, this is why the failure
 threshold is set a bit high at 0.025. Increasing the number of
 simulations could mitigate this at the cost of execution time."""
 ranking_length = 9
 rankings = {1: [1, 2, 3], 2: [11, 12, 13], 3: [21, 22, 23]}
 multileaver = TeamDraftMultiLeaver(ranking_length, 3)

 times_each_position = {i: Counter() for i in range(ranking_length)}
 n = 10000
 for i in range(0, n):
 ranking, credit = multileaver.team_draft_multileave(rankings)
 for pos, system in enumerate(credit):
 times_each_position[pos].update([system])

 for position, times_position in times_each_position.items():
 for system, count in times_position.items():
 self.assertAlmostEqual(count/n, 1 / len(rankings), delta=0.025)

 def test_ranking_common_prefix(self):
 """Test that the common prefix is kept, and ranking interleaved
 normally after the common prefix."""
 common_prefix = [1, 2, 3, 4]
 rankings = {
 1: common_prefix + [5, 6, 7, 8, 9, 10],
 2: common_prefix + [15, 16, 17, 18, 19, 20],
 3: common_prefix + [25, 26, 27, 28, 29, 30]
 }
 multileaver = TeamDraftMultiLeaver(10, 3, common_prefix=True)
 ranking, credit = multileaver.team_draft_multileave(rankings)
 # Assert that the common prefix is correct
 self.assertEqual(ranking[:4], common_prefix)

 # Assert that the correct values are multileaved after common prefix,
 # in the first round. Order cannot be validated because the order is
 # random
 self.assertIn(rankings[1][4], ranking[4:7])
 self.assertIn(rankings[2][4], ranking[4:7])
 self.assertIn(rankings[3][4], ranking[4:7])
 # Check that the correct values are multileaved in the second round
 self.assertIn(rankings[1][5], ranking[7:10])
 self.assertIn(rankings[2][5], ranking[7:10])
 self.assertIn(rankings[3][5], ranking[7:10])

 def test_credit_with_common_prefix(self):
 """Test that no credit are awarded for the common prefix, and that
 credits are awarded normally after the common prefix."""
 common_prefix = [1, 2, 3, 4]
 rankings = {
 1: common_prefix + [5, 6, 7, 8, 9, 10],
 2: common_prefix + [15, 16, 17, 18, 19, 20],
 3: common_prefix + [25, 26, 27, 28, 29, 30]
 }
 multileaver = TeamDraftMultiLeaver(10, 3, common_prefix=True)
 ranking, credit = multileaver.team_draft_multileave(rankings)

 # Assert that no credit is given for common prefix
 self.assertEqual(credit[:4], [None, None, None, None])
 # Assert credit is given to correct system after common prefix
 for element, credit in zip(ranking, credit):
 if credit is not None:
 self.assertIn(element, rankings[credit])

 def test_no_duplicates_output_ranking(self):
 """Test that an element is not present more than once in the
 resulting ranking."""
 rankings = {
 1: list(range(0, 1000)),
 2: list(range(0, 1000)),
 3: list(range(0, 1000))
 }
 multileaver = TeamDraftMultiLeaver(3000, 3)
 ranking, credit = multileaver.team_draft_multileave(rankings)

 self.assertEqual(len(ranking), len(set(ranking)))

 def test_order_of_output_ranking(self):
 """Tests that elements occur in the order in the result set as the
 systems ranked them."""
 rankings = {
 1: list(range(0, 1000)),
 2: list(range(1000, 2000)),
 3: list(range(2000, 3000))
 }
 multileaver = TeamDraftMultiLeaver(3000, 3)
 ranking, credit = multileaver.team_draft_multileave(rankings)

 for element, system in zip(ranking, credit):
 self.assertEqual(element, rankings[system].pop(0))

 def test_systems_get_only_one_element_per_round(self):
 """Tests that a system never gets to recommend more than one element
 per recommendation round."""
 rankings = {
 1: list(range(0, 1000)),
 2: list(range(1000, 2000)),
 3: list(range(2000, 3000))
 }
 multileaver = TeamDraftMultiLeaver(3000, 3)
 ranking, credit = multileaver.team_draft_multileave(rankings)

 for i in range(0, len(credit), 3):
 self.assertEqual(set(rankings.keys()), set(credit[i:i+3]))

 def test_credit_to_correct_system(self):
 """Test that the correct system is given credit for a element."""
 rankings = {
 1: list(range(0, 1000)),
 2: list(range(1000, 2000)),
 3: list(range(2000, 3000))
 }
 multileaver = TeamDraftMultiLeaver(3000, 3)
 ranking, credit = multileaver.team_draft_multileave(rankings)

 for element, credit in zip(ranking, credit):
 self.assertIn(element, rankings[credit])

 def test_max_output_ranking_length(self):
 """Test that the result length does not exceed the maximum length."""
 rankings = {1: [1, 2, 3, 4], 2: [11, 12, 13, 14], 3: [21, 22, 23, 24]}

 ranking_length = 10
 multileaver = TeamDraftMultiLeaver(ranking_length, 3)
 ranking, credit = multileaver.team_draft_multileave(rankings)

 self.assertEqual(len(ranking), ranking_length)

 def test_maximal_number_of_interleaved_systems(self):
 """Test that the number of systems each interleaving does not exceed
 the configured maximum amount of systems per interleaving."""
 rankings = {1: [1, 2, 3], 2: [1, 2, 3], 3: [1, 2, 3], 4: [1, 2, 3]}
 max_systems = 3
 multileaver = TeamDraftMultiLeaver(100, max_systems)
 ranking, credit = multileaver.team_draft_multileave(rankings)

 self.assertEqual(len(set(credit)), max_systems)

 def test_approximately_equal_representation(self):
 """Tests that each system gets selected for interleaving
 approximately the same amount of times for interleaving over a large
 amount of interleavings."""
 rankings = {1: [1], 2: [2], 3: [3], 4: [4], 5: [5]}
 multileaver = TeamDraftMultiLeaver(3, 3)
 representations = Counter()
 for i in range(0, 1000):
 ranking, credit = multileaver.team_draft_multileave(rankings)
 representations.update(set(credit))

 for representation in representations.values():
 self.assertAlmostEqual(representations[1], representation, delta=1)

if __name__ == '__main__':
 unittest.main()

article_recommender_systems/core/__init__.py

article_recommender_systems/core/article_index.py

-*- coding: utf-8 -*-
import logging

import elasticsearch
from elasticsearch import Elasticsearch
from elasticsearch.client import IndicesClient
from elasticsearch.helpers import bulk

class ElasticsearchArticleIndex:

 def __init__(self, es_hosts, index, arxivdigest_connector):
 logging.getLogger(elasticsearch.__name__).setLevel(logging.WARNING)
 self.es = Elasticsearch(hosts=es_hosts)
 self.index = index
 self.arxivdigest_connector = arxivdigest_connector

 if not self.es.indices.exists(index=index):
 logging.info('Creating index\'{}\''.format(self.index))
 self.init_index()

 def bulk_insert_articles(self, article_data):
 """Bulk insert article data into the elastic search index."""
 bulk_docs = []
 for article_id, fields in article_data.items():
 fields['catch_all'] = fields['title'] + ' ' + fields['abstract']
 doc = {
 '_index': self.index,
 '_type': '_doc',
 '_id': article_id,
 '_source': fields
 }
 bulk_docs.append(doc)
 bulk(self.es, bulk_docs, request_timeout=10)

 def index_new_arxivdigest_articles(self):
 """Indexes article data for new additions to the arXivDigest database"""
 article_ids = self.arxivdigest_connector.get_article_ids()
 article_data = self.arxivdigest_connector.get_article_data(article_ids)
 for article_id, article in article_data.items():
 catch_all = article['title'] + article['abstract']
 article_data[article_id]['catch_all'] = catch_all
 self.bulk_insert_articles(article_data)

 def get_articles_by_topics(self, topic,
 minimum_should_match='1',
 window_size=7,
 size=10000):
 """Retrieves articles from the Elasticsearch index mentioning 'topic'.

 :param topic: Topic string or tuple with (topic, weight).
 :param minimum_should_match: Minimum amount of tokens in the topic
 that should match.
 :param window_size: The number of days back in time articels are
 included for.
 :param size: Max number of results to return.
 :return: List of articles matching query.
 """
 if isinstance(topic, tuple):
 query_string = ('({})^{}'.format(*topic))
 else:
 query_string = topic
 query = {
 'query': {
 'bool': {
 'must': {
 'query_string': {
 'query': query_string,
 'default_field': 'catch_all',
 'minimum_should_match': minimum_should_match
 }
 },
 'filter': {
 'range': {
 'date': {
 'gte': 'now-{}d'.format(window_size)
 }
 }
 }
 }
 }
 }
 res = self.es.search(index=self.index,
 body=query,
 params={"size": size})
 return res['hits']['hits']

 def get_articles_by_author(self, first_name,
 last_name,
 weight=1,
 window_size=7,
 size=10000):
 """Retrieves articles from the Elasticsearch index by the given author.

 :param first_name: Author first name.
 :param last_name: Author last name.
 :param weight: Weight of query.
 :param window_size: The number of days back in time articels are
 included for.
 :param size: Max number of results to return.
 :return: List of articles matching query.
 """
 query = {
 'query': {
 'bool': {
 'must': {
 'nested': {
 'path': "authors",
 'query': {
 'bool': {
 'must': [
 {
 'term': {
 'authors.firstname': first_name
 }
 },
 {
 'term': {
 'authors.lastname': last_name
 }
 }
]
 }
 }
 }
 },
 'filter': {
 'range': {
 'date': {
 'gte': 'now-{}d'.format(window_size)
 }
 }
 },
 'boost': weight
 }
 }
 }
 res = self.es.search(index=self.index,
 body=query,
 params={"size": size})
 return res['hits']['hits']

 def init_index(self):
 """Initializes and elasticsearch index for ArXivDigest articles."""
 self.es.indices.create(index=self.index,
 body={
 'settings': {
 'index': {
 'number_of_shards': 1,
 'number_of_replicas': 0
 },
 },
 'mappings': {
 'properties': {
 'title': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 'abstract': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 'authors': {
 'type': 'nested',
 'properties': {
 'firstname': {
 'type': 'keyword'},
 'lastname': {
 'type': 'keyword'},
 'affiliations': {
 'type': 'keyword'}
 },
 },
 'categories': {
 'type': 'keyword',
 },
 'comments': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 'doi': {
 'type': 'keyword',
 },
 'journal': {
 'type': 'keyword',
 },
 'license': {
 'type': 'keyword',
 },
 'date': {
 'type': 'date',
 'format': 'date'
 },
 'catch_all': {
 'type': 'text',
 'term_vector': 'with_positions',
 'analyzer': 'english'
 },
 }
 }
 })

 def analyze_text(self, text, field='catch_all'):
 """Analyzes the text and returns a dict with the analyzed and
 unanalyzed version of each token."""
 indices_client = IndicesClient(self.es)
 analyzed_text = indices_client.analyze(index=self.index,
 body={'field': field,
 'text': text})
 return {x['token']: text[x['start_offset']:x['end_offset']]
 for x in analyzed_text['tokens']}

 def get_term_vectors(self, article_id):
 return self.es.termvectors(self.index,
 id=article_id,
 body={'term_statistics': True}
)['term_vectors']

 def get_statistics(self, terms, fields):
 """Uses an artificial document to get term statistics
 for all the terms in terms for all fields in fields.
 :param terms String of space separated terms.
 :param fields List of fields.
 """
 term_vec = self.es.termvectors(index=self.index,
 body={'doc': {field: terms for
 field in fields}},
 params={'term_statistics': 'true'}
)['term_vectors']
 term_stats = {}
 field_stats = {}
 for field in fields:
 term_stats[field] = {}
 field_stats[field] = term_vec[field]['field_statistics']
 for term, stats in term_vec[field]["terms"].items():
 term_stats[field][term] = {"doc_freq": stats.get("doc_freq", 0),
 'ttf': stats.get("ttf", 0)}

 return term_stats, field_stats

 def calculate_stopwords(self, max_doc_freq=0.1, field='catch_all'):
 """Generates a stopwordlist
 :param max_doc_freq Terms appearing in documents with a frequency
 higher than this will be included in the stopwords list.
 :param field Field to calculate stopwords based on
 :return: List of analyzed stopwords.
 """
 docs = self.es.search(body={"query": {"match_all": {}}},
 index=self.index,
 params={'size': 10000})['hits']['hits']

 doc_ids = [doc['_id'] for doc in docs]
 docs = self.es.mtermvectors(body={'ids': doc_ids,
 'parameters': {
 'fields': ['catch_all'],
 'term_statistics': True},
 },
 index=self.index,
 request_timeout=30)
 stopwords = set()
 terms = set()
 for doc in docs['docs']:
 term_vec = doc['term_vectors'][field]
 doc_count = term_vec['field_statistics']['doc_count']
 for term, term_stats in term_vec['terms'].items():
 doc_freq = term_stats['doc_freq'] / doc_count
 if doc_freq > max_doc_freq:
 stopwords.add(term)
 terms.add(term)
 return stopwords

article_recommender_systems/core/base_system.py

-*- coding: utf-8 -*-
import logging
from abc import ABC
from abc import abstractmethod

class BaseArticleRecommenderSystem(ABC):
 """Base class for article recommender systems for easier implementation."""

 def __init__(self, arxivdigest_connector,
 n_topics_per_explanation=3,
 *args,
 **kwargs):
 """Creates a BaseSystem object.

 :param arxivdigest_connector: An ArxivdigestConnector instance.
 :param n_topics_per_explanation: umber of topics included per explanation.
 """
 self.arxivdigest_connector = arxivdigest_connector
 self.n_articles_per_user = arxivdigest_connector.recommendations_per_user
 self.n_topics_per_explanation = n_topics_per_explanation

 @abstractmethod
 def _create_recommendations(self, user_info):
 """
 :param user_info: Dictionary of users with user information as value.
 :return: Article recommendations in the format:
 user_id:{article_id: {'score': x, 'explanation': x}}
 """
 pass

 @abstractmethod
 def run(self):
 """Runs the system."""
 self._recommend()

 def _recommend(self):
 """Makes and sends recommendations to all users."""
 total_users = self.arxivdigest_connector.get_number_of_users()
 logging.info(
 'Starting recommending articles for {} users'.format(total_users))
 user_ids_per_req = self.arxivdigest_connector.user_ids_per_request
 for i in range(0, total_users, user_ids_per_req):
 user_ids = self.arxivdigest_connector.get_user_ids(i)
 user_info = self.arxivdigest_connector.get_user_info(user_ids)
 interleaved = self.arxivdigest_connector.get_interleaved_articles(
 user_ids)

 recommendations = self._create_recommendations(user_info)
 final_recommendations = {}
 for user_id, recommendation_list in recommendations.items():
 articles = [article for article in recommendation_list
 if article['article_id']
 not in interleaved[user_id]]
 articles = articles[0: self.n_articles_per_user]
 if articles:
 final_recommendations[user_id] = articles
 msg = 'User {}: recommended {} articles.'
 logging.info(msg.format(user_id, len(articles)))

 if final_recommendations:
 self._send_recommendations(final_recommendations)

 def _send_recommendations(self, recommendations):
 """Sends recommendations."""
 self.arxivdigest_connector.send_article_recommendations(recommendations)

 def _get_sorted_articles_with_explanations(self,
 articles,
 explanation='This article seems to be about {}.'):
 """Creates explanations for each article, and sort them by score.

 :param articles: Dictionary of article_ids to list of topics with
 scores matching the articles.
 :return: List of articles with explanation and score sorted by score.
 """
 result = []
 for article_id, score_topic_list in articles.items():
 sorted_topics = [topic for _, topic in
 sorted(score_topic_list, reverse=True)]
 topics = sorted_topics[:self.n_topics_per_explanation]
 explanation = create_explanation(topics, explanation)
 result.append({'article_id': article_id,
 'score': sum(
 [score for score, _ in score_topic_list]),
 'explanation': explanation
 })
 result = sorted(result, key=lambda k: k['score'], reverse=True)
 return result

def create_explanation(topics, explanation):
 """"Creates explanation from topics."""
 topics = ['**{}**'.format(topic) for topic in topics]
 last = topics.pop()
 topic_str = ', '.join(topics)
 topic_str += ' and ' + last if topic_str else last
 explanation = explanation.format(topic_str)
 return explanation

article_recommender_systems/core/setup_utils.py

-*- coding: utf-8 -*-
import pathlib
from logging import handlers

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import json
import logging
import os
import sys

file_locations = [
 os.path.expanduser('~') + '/arxivdigest/',
 '/etc/arxivdigest/',
 os.curdir + '/',
]

def get_config_from_file(file_name):
 """Checks the given list of file paths for a config file,
 returns None if not found."""
 settings = {
 'api_key': '4c02e337-c94b-48b6-b30e-0c06839c81e6',
 'api_url': 'http://127.0.0.1:5000/',
 'index_name': 'main_index',
 'elasticsearch_host': [{'host': '127.0.0.1', 'port': 9200}],
 'log_level': 'INFO',
 'log_folder': None
 }
 for file_location in file_locations:
 file_path = file_location + file_name
 if os.path.isfile(file_path):
 print('Found config file at: {}'.format(
 os.path.abspath(file_path)))
 with open(file_path) as file:
 settings.update(json.load(file))
 break
 return settings

def setup_logging(log_folder, log_level='INFO'):
 log_levels = {
 'FATAL': 50,
 'ERROR': 40,
 'WARNING': 30,
 'INFO': 20,
 'DEBUG': 10,
 }
 log_handlers = [
 logging.StreamHandler(sys.stdout)
]

 if log_folder:
 if log_folder.startswith('~'):
 log_folder = os.path.expanduser(log_folder)
 pathlib.Path(log_folder).mkdir(parents=True, exist_ok=True)
 log_file = os.path.join(log_folder, 'system.log')
 log_handlers.append(handlers.TimedRotatingFileHandler(log_file,
 when='midnight',
 utc=True),)

 logging.basicConfig(
 level=log_levels.get(log_level.upper(), 20),
 format='%(asctime)s [%(levelname)s] %(message)s',
 handlers=log_handlers,
)

article_recommender_systems/query_expansion_based_system/__init__.py

-*- coding: utf-8 -*-
import logging
from collections import Counter
from collections import defaultdict

from core.article_index import ElasticsearchArticleIndex
from core.base_system import BaseArticleRecommenderSystem

class QueryExpansionBasedSystem(BaseArticleRecommenderSystem):

 def __init__(self, arxivdigest_connector,
 elasticsearch_host,
 index_name,
 minimum_should_match='75%',
 n_expanded_terms=25,
 smoothing=0.,
 stop_words=None,
 stopwords_threshold=0.1,
 sample_weight=0.5,
 *args,
 **kwargs):
 """

 :param arxivdigest_connector: An ArxivdigestConnector instance.
 :param es_hosts: List of elasticsearch hosts.
 :param index: Name of elasticsearch index.
 :param minimum_should_match: Minimum of tokens in each topic which
 must match.
 :param n_expanded_terms: Max number of terms in expanded query model.
 :param smoothing: How much the weights in the model are smoothed.
 :param stop_words: Set of stopwords used for query expansion.
 :param stopwords_threshold: Frequency of documents a term must appear in
 to be considered a stopword, 0-1 where 0 means every word is a
 stopword, and 1 means no terms are considered stopwords. Only used if
 no stopwords are provided.
 :param sample_weight: Weight given to the expanded terms from the
 sample, 0-1, Where 0 is none and 1 is only terms from samples.
 :param args: Additional parameters sent to parent class.
 :param kwargs: Additional parameters sent to parent class.
 """
 super(QueryExpansionBasedSystem, self).__init__(
 arxivdigest_connector, *args, **kwargs)
 self.article_index = ElasticsearchArticleIndex(elasticsearch_host,
 index_name,
 arxivdigest_connector)
 self.stopword_threshold = stopwords_threshold
 self.minimum_should_match = minimum_should_match
 self.n_expanded_terms = n_expanded_terms
 self.smoothing = smoothing
 self.sample_weight = sample_weight
 self.stopwords = stop_words

 def run(self):
 """Runs the system."""
 self.article_index.index_new_arxivdigest_articles()
 if not self.stopwords:
 self.stopwords = self.article_index.calculate_stopwords(self.stopword_threshold)
 super(QueryExpansionBasedSystem, self).run()

 def _create_recommendations(self, user_info):
 """Creates recommendations based on the users topics and saved
 articles.

 :param user_info: Info about the user.
 :return: Recommendations.
 """
 saved_articles = self.get_saved_articles(list(user_info.keys()))

 recommendations = {}
 for user_id, info in user_info.items():
 saved = saved_articles[user_id]
 if not saved:
 msg = 'User {}: skipped (no saved articles).'.format(user_id)
 logging.info(msg)
 continue
 if not info['topics']:
 msg = 'User {}: skipped (no topics provided).'.format(user_id)
 logging.info(msg)
 continue

 articles = self._create_recommendations_user(saved, info)
 recommendations[user_id] = articles
 return recommendations

 def _create_recommendations_user(self, saved, info):
 """Creates recommendations for a single user."""
 all_topics = []
 for topic, weight in self.get_query_model(info['topics']).items():
 all_topics.append((topic, weight * (1 - self.sample_weight)))

 expanded_query = self.get_expanded_query_model(saved)
 for topic, weight in expanded_query.items():
 all_topics.append((topic, weight * self.sample_weight))

 topic_hits = defaultdict(list)
 for topic in all_topics:
 articles = self.article_index.get_articles_by_topics(topic,
 self.minimum_should_match)
 for article in articles:
 topic_hits[article['_id']].append((article['_score'],
 topic[0]))

 return self._get_sorted_articles_with_explanations(topic_hits)

 def get_saved_articles(self, user_ids):
 """Gets which articles each user in 'user_ids' has saved."""
 feedback = self.arxivdigest_connector.get_article_feedback(user_ids)

 saved_articles = {user_id: [] for user_id in user_ids}
 for user_id, article_dates in feedback.items():
 for date, articles in article_dates.items():
 for article in articles:
 article_id, article_feedback = article.popitem()
 if article_feedback['saved']:
 saved_articles[user_id].append(article_id)
 return dict(saved_articles)

 def get_query_model(self, topics):
 """Gives each topic a weight."""
 term_freq = Counter()
 for topic in topics:
 term_freq[topic] += 1

 p_t_q = {}
 for term, count in term_freq.items():
 p_t_q[term] = count / sum(term_freq.values())
 return p_t_q

 def get_expanded_query_model(self, article_ids):
 """Creates a query model based on articles.

 :param article_ids: Ids of articles that query is based of.
 :return: Weighted query model.
 """
 article_data = self.arxivdigest_connector.get_article_data(article_ids)
 term_freqs, corpus_freqs = self.count_terms_articles(article_data)
 k = self.n_expanded_terms
 smoothing = self.smoothing
 p_t_s = {}
 for term, count in corpus_freqs.items():
 p_t_s[term] = 0
 for article_id, term_counts in term_freqs.items():
 p_d_s = 1 / len(article_ids)
 p_t_d = term_counts[term] / sum(term_counts.values())
 p_t_c = corpus_freqs[term] / sum(corpus_freqs.values())
 smoothed_p_t_d = (1 - smoothing) * p_t_d + smoothing * p_t_c
 p_t_s[term] += smoothed_p_t_d * p_d_s

 top_p_t_s = sorted(p_t_s, key=p_t_s.get, reverse=True)[:k]
 sum_top_p_t_s = sum([p_t_s[t] for t in top_p_t_s])

 p_t_q_hat = {}
 for term in top_p_t_s:
 p_t_q_hat[term] = p_t_s[term] / sum_top_p_t_s
 return p_t_q_hat

 def count_terms_articles(self, article_data):
 """Counts the number of times a term appear in each article and the
 corpus. Terms are are analyzed with the same settings used by the
 elastic search index to get a more representative count. The analyzed
 terms are translated back to the most common unanalyzed version of the
 term such that the terms can be used for human readable explanations."""

 def analyze(text):
 return self.article_index.analyze_text(text, 'catch_all')

 def most_common_term_name(analyzed_term):
 """Finds the most common unanalyzed version of a term."""
 term_names = analyzed_names[analyzed_term]
 return term_names.most_common(1)[0][0]

 # Analyze then count terms
 analyzed_names = defaultdict(Counter)
 analyzed_term_freqs = {}
 analyzed_corpus_freqs = Counter()
 for article_id, article in article_data.items():
 tokens = analyze(article['title'] + ' ' + article['abstract'])
 for analyzed_term, term in tokens.copy().items():
 if analyzed_term in self.stopwords:
 tokens.pop(analyzed_term)
 continue
 analyzed_names[analyzed_term][term.lower()] += 1
 analyzed_term_freqs[article_id] = Counter(list(tokens))
 analyzed_corpus_freqs.update(list(tokens))

 # Translate terms back to human readable versions
 term_freqs = defaultdict(Counter)
 for article_id, counts in analyzed_term_freqs.items():
 for analyzed_term, count in counts.items():
 term = most_common_term_name(analyzed_term)
 term_freqs[article_id][term] = count

 corpus_freqs = Counter()
 for analyzed_term, count in analyzed_corpus_freqs.items():
 corpus_freqs[most_common_term_name(analyzed_term)] = count

 return term_freqs, corpus_freqs

article_recommender_systems/README.md

Article recommender systems

These system connects up to the arXivDigest api by using the arXivDigest connector available at [arXivDigest github page](https://github.com/iai-group/arXivDigest/tree/master) by installing the arXivDigest package.

Usage

This is a general setup guide for all systems,

 1. Prerequisites:
 * [Python 3.6+](https://www.python.org/downloads/)
 * [Elasticsearch 7.5.1+](https://www.elastic.co/downloads/elasticsearch)
 1. Download and install all the requirements, `pip install -r requiremnts.txt`
 1. Create a config file for the system, check under the [config](#config) section for information about this.
 1. check under the system you are trying to run for further steps.

Config
 It is possible to override the default settings of the system by creating a config file in one of the following locations:
 * `~/arxivdigest/`
 * `/etc/arxivdigest/`
 * `%cwd%/`

The file name and system specific settings can be found under the systems individual sections.

The file should be in JSON format and include the following keys:
 * `api_url` : Address of the arXivdigest API
 * `api_key` : An active API key for the arXivDigest API
 * `elasticsearch_host` : Address and port of the Elasticsearch server
 * `index_name` : Name of the index that will be used
 * `log_level` : Level of messages to log accepts: 'FATAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG'

Example:

```json
  {
    "api_url": "https://api.arxivdigest.org/",
    "api_key" : "4c02e337-c94b-48b6-b30e-0c06839c81e6",
    "n_topics_per_explanation" : 10,
    "elasticsearch_host": {"host": "127.0.0.1", "port": 9200},
    "index_name": "main_index"
  }
```

Query expansion based system

Expands the each users topics by also expanding them with terms extracted from the users saved articles.

This system will look for a config named `query_expansion_system_config.json`.
System specific setting keys:

 * minimum_should_match: Minimum number of tokens in each topic that must march when matching articles to topics. Can be absolute numbers eg. '2' or percentage eg. '75%'.
 * n_expanded_terms: number of terms to add during query expansion, must be an integer.
 * smoothing: Number between 0 and 1, determines how smoothed the expanded query models scores are.
 * stop_words: Set of stopwords used for query expansion.
 * stopwords_threshold: Frequency of documents a term must appear in to be considered a stopword, 0-1 where 0 means every word is a stopword, and 1 means no terms are considered stopwords. Only used if no stopwords are provided.
 * sample_weight: Weight given to the expanded terms from the sample, 0-1, Where 0 is none and 1 is only terms from samples.

Run the system with `python run_query_expansion_system.py`.

Word2vec based system

Retrieves articles containing the users topics, then reranks them using a word2vec model. This is achieved by creating wordvector of the average of the wordvectors of each word in the title of each article, and one wordvector averaging the wordvectors of each word for each topic. Then scoring each topic to each article by measuring the cosine distance between the word vectors. The final score of each article is the sum of the scores for each topic matching the article.

A word2vec model based on the entire arXiv digest corpus can be created by running `python word2vec_based_system/create_model.py`

This system will look for a config named `word2vec_system_config.json`.
System specific setting keys:

 * minimum_should_match: Minimum number of tokens in each topic that must march when matching articles to topics. Can be absolute numbers eg. '2' or percentage eg. '75%'.
 * threshold: Similarity threshold such that not every topic matches every title. Must be between 0 and 1.
 * model_name: Name of the model to use, can be a path to a local model or the name of a gensim model.

Run the system with `python run_word2vec_system.py`.

Saved article author based system

This system recommends articles that are written by authors that users have earlier saved articles written by them.

This system will look for a config named `saved_article_authors_system_config.json`.

Run the system with `python run_saved_article_author_system.py`.

Requirements
 * elasticsearch
 * requests
 * gensim

article_recommender_systems/requirements.txt

elasticsearch
requests
gensim

article_recommender_systems/run_query_expansion_system.py

-*- coding: utf-8 -*-

import logging

from arxivdigest.connector import ArxivdigestConnector

from core import setup_utils
from core.setup_utils import get_config_from_file
from query_expansion_based_system import QueryExpansionBasedSystem

if __name__ == '__main__':
 config = get_config_from_file('query_expansion_system_config.json')
 setup_utils.setup_logging(config.pop('log_folder'), config.pop('log_level'))
 try:
 arxivdigest_connector = ArxivdigestConnector(config.pop('api_key'),
 config.pop('api_url'))
 system = QueryExpansionBasedSystem(arxivdigest_connector, **config)
 system.run()
 except Exception as e:
 logging.exception(e)
 raise e

article_recommender_systems/run_saved_article_author_system.py

-*- coding: utf-8 -*-

import logging

from arxivdigest.connector import ArxivdigestConnector

from core import setup_utils
from core.setup_utils import get_config_from_file
from saved_article_authors_based_system import SavedArticleAuthorsBasedSystem

if __name__ == '__main__':
 config = get_config_from_file('saved_article_authors_system_config.json')
 setup_utils.setup_logging(config.pop('log_folder'), config.pop('log_level'))
 try:
 arxivdigest_connector = ArxivdigestConnector(config.pop('api_key'),
 config.pop('api_url'))
 system = SavedArticleAuthorsBasedSystem(arxivdigest_connector, **config)
 system.run()
 except Exception as e:
 logging.exception(e)
 raise e

article_recommender_systems/run_word2vec_system.py

-*- coding: utf-8 -*-
import logging

from arxivdigest.connector import ArxivdigestConnector

from core import setup_utils
from core.setup_utils import get_config_from_file
from word2vec_based_system import Word2VecBasedSystem

if __name__ == '__main__':
 config = get_config_from_file('word2vec_system_config.json')
 setup_utils.setup_logging(config.pop('log_folder'), config.pop('log_level'))
 try:
 arxivdigest_connector = ArxivdigestConnector(config.pop('api_key'),
 config.pop('api_url'))
 system = Word2VecBasedSystem(arxivdigest_connector, **config)
 system.run()
 except Exception as e:
 logging.exception(e)
 raise e

article_recommender_systems/saved_article_authors_based_system/__init__.py

-*- coding: utf-8 -*-
import logging
from collections import Counter
from collections import defaultdict

from core.article_index import ElasticsearchArticleIndex
from core.base_system import BaseArticleRecommenderSystem

class SavedArticleAuthorsBasedSystem(BaseArticleRecommenderSystem):

 def __init__(self, arxivdigest_connector,
 elasticsearch_host,
 index_name,
 *args,
 **kwargs):
 """

 :param arxivdigest_connector: An ArxivdigestConnector instance.
 :param es_hosts: List of elasticsearch hosts.
 :param index: Name of elasticsearch index.
 :param minimum_should_match: Minimum of tokens in each topic which
 must match.
 :param n_expanded_terms: Max number of terms in expanded query model.
 :param smoothing: How much the weights in the model are smoothed.
 :param stop_words: Set of stopwords used for query expansion.
 :param stopwords_threshold: Frequency of documents a term must appear in
 to be considered a stopword, 0-1 where 0 means every word is a
 stopword, and 1 means no terms are considered stopwords. Only used if
 no stopwords are provided.
 :param sample_weight: Weight given to the expanded terms from the
 sample, 0-1, Where 0 is none and 1 is only terms from samples.
 :param args: Additional parameters sent to parent class.
 :param kwargs: Additional parameters sent to parent class.
 """
 super(SavedArticleAuthorsBasedSystem, self).__init__(
 arxivdigest_connector, *args, **kwargs)
 self.article_index = ElasticsearchArticleIndex(elasticsearch_host,
 index_name,
 arxivdigest_connector)

 def run(self):
 """Runs the system."""
 self.article_index.index_new_arxivdigest_articles()
 super(SavedArticleAuthorsBasedSystem, self).run()

 def _create_recommendations(self, user_info):
 """Creates recommendations based on the authors of the users saved
 articles.

 :param user_info: Info about the user.
 :return: Recommendations.
 """
 saved = self.get_saved_articles(list(user_info.keys()))

 recommendations = {}
 for user_id, info in user_info.items():
 if not saved[user_id]:
 msg = 'User {}: skipped (no saved articles).'.format(user_id)
 logging.info(msg)
 continue
 saved_article_authors = self.get_article_authors(saved[user_id])

 articles = self._create_recommendations_user(saved_article_authors)
 recommendations[user_id] = articles
 return recommendations

 def _create_recommendations_user(self, saved_article_authors):
 """Creates recommendations for a single user."""
 author_counts = Counter()
 for authors in saved_article_authors.values():
 for author_info in authors:
 author = (author_info['firstname'], author_info['lastname'])
 author_counts[author] += 1

 author_hits = defaultdict(list)
 for author, weight in author_counts.items():
 articles = self.article_index.get_articles_by_author(author[0],
 author[1],
 weight)
 for article in articles:
 author_hits[article['_id']].append((article['_score'],
 ' '.join(author)))
 explanation = 'You have previously saved articles authored by {}.'
 return self._get_sorted_articles_with_explanations(author_hits,
 explanation)

 def get_saved_articles(self, user_ids):
 """Gets which articles each user in 'user_ids' has saved."""
 feedback = self.arxivdigest_connector.get_article_feedback(user_ids)

 saved_articles = {user_id: [] for user_id in user_ids}
 for user_id, article_dates in feedback.items():
 for date, articles in article_dates.items():
 for article in articles:
 article_id, article_feedback = article.popitem()
 if article_feedback['saved']:
 saved_articles[user_id].append(article_id)
 return dict(saved_articles)

 def get_article_authors(self, article_ids):
 articles = self.arxivdigest_connector.get_article_data(article_ids)
 article_authors = {}
 for article_id, article in articles.items():
 article_authors[article_id] = article['authors']
 return article_authors

article_recommender_systems/word2vec_based_system/create_model.py

-*- coding: utf-8 -*-

__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import datetime
import json
import logging
import os
import sys

import gensim
from arxivdigest.core.scraper.scrape_metadata import get_records_by_date
from gensim.models import Word2Vec

CACHE_FOLDER = 'article_cache/'
CORPUS_FILE = 'corpus_file'

def download_corpus():
 """This function downloads all arXiv articles and stores them in a cache."""
 if not os.path.exists(CACHE_FOLDER):
 os.makedirs(CACHE_FOLDER)
 start_date = datetime.datetime.strptime('2007-05-01', '%Y-%m-%d').date()
 while start_date < datetime.date.today():
 end_date = start_date + datetime.timedelta(30)
 print('Downloading articles from {} to {}.'.format(start_date, end_date))
 file_name = '{}-{}'.format(start_date, end_date)
 if os.path.isfile(CACHE_FOLDER + file_name):
 start_date = end_date
 continue
 elif os.path.isfile(CACHE_FOLDER + file_name + '.incomplete'):
 os.remove(CACHE_FOLDER + file_name + '.incomplete')
 records = get_records_by_date(start_date, end_date)
 if end_date > datetime.date.today():
 file_name = file_name + '.incomplete'
 with open(CACHE_FOLDER + file_name, 'w') as file:
 json.dump(records, file)
 start_date = end_date

def create_corpus_file():
 """This function combines the cached titles and abstracts to a single
 file."""
 with open(CORPUS_FILE, 'w', encoding='utf-8') as corpus_file:
 for filename in os.listdir(CACHE_FOLDER):
 with open(os.path.join(CACHE_FOLDER, filename)) as file:
 content = json.load(file)
 for article in content.values():
 line = article['title'] + '.' + article['description']
 line = line.replace('\r', ' ').replace('\n', ' ') + '\n'
 corpus_file.write(line)

class SentenceIterator:
 """Preprocesses and yields line by line for input file."""
 def __init__(self, filepath):
 self.filepath = filepath

 def __iter__(self):
 with open(self.filepath) as file:
 for line in file:
 yield gensim.utils.simple_preprocess(line)

logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s [%(levelname)s] %(message)s',
 handlers=[
 logging.StreamHandler(sys.stdout)
]
)

download_corpus()
create_corpus_file()

model = Word2Vec(SentenceIterator(CORPUS_FILE))
model.save('arxiv_word2vec.model')

article_recommender_systems/word2vec_based_system/__init__.py

-*- coding: utf-8 -*-
import logging
from collections import defaultdict

import gensim
from gensim import downloader

from core.article_index import ElasticsearchArticleIndex
from core.base_system import BaseArticleRecommenderSystem

class NoWord2VecTopicVectorError(ValueError):
 """Error for when the system was unable to create a word2vec topic vector.
 Most often cause by none of the topics having a word2vec representation."""

class Word2VecBasedSystem(BaseArticleRecommenderSystem):

 def __init__(self, arxivdigest_connector,
 elasticsearch_host,
 index_name,
 minimum_should_match='75%',
 threshold=0.3,
 model_name='word2vec-google-news-300',
 *args,
 **kwargs):
 """

 :param arxivdigest_connector: An ArxivdigestConnector instance.
 :param es_hosts: List of elasticsearch hosts.
 :param index: Name of elasticsearch index.
 :param minimum_should_match: Minimum of tokens in each topic which
 must match, used when gathering firstpass documents.
 :param threshold: Amount of semantic matching a topic must achieve to
 contribute to the final score, from 0 to 1.
 :param model_name: Name of gensim word2vec model to load.
 :param args: Additional parameters sent to parent class.
 :param kwargs: Additional parameters sent to parent class.
 """
 super(Word2VecBasedSystem, self).__init__(
 arxivdigest_connector, *args, **kwargs)
 self.article_index = ElasticsearchArticleIndex(elasticsearch_host,
 index_name,
 arxivdigest_connector)
 self.threshold = threshold
 self.minimum_should_match = minimum_should_match
 self.model_name = model_name
 self.model = None

 def run(self):
 """Runs the system."""
 self.article_index.index_new_arxivdigest_articles()
 try:
 self.model = gensim.models.Word2Vec.load(self.model_name).wv
 except FileNotFoundError:
 logging.info('Local model not found with name {}. Looking for '
 'downloadable model.'.format(self.model_name))
 self.model = downloader.load(self.model_name)

 super(Word2VecBasedSystem, self).run()

 def _create_recommendations(self, user_info):
 """Creates recommendations based on the users topics .

 :param user_info: Info about the user.
 :return: Recommendations.
 """

 recommendations = {}
 for user_id, info in user_info.items():
 if not info['topics']:
 msg = 'User {}: skipped (no topics provided).'.format(user_id)
 logging.info(msg)
 continue
 try:
 articles = self._create_recommendations_user(info)
 except NoWord2VecTopicVectorError:
 msg = 'User {}: skipped (not able to create word2vec ' \
 'representation of topics: {}).'
 logging.info(msg.format(user_id, ', '.join(info['topics'])))
 continue

 recommendations[user_id] = articles
 return recommendations

 def _create_recommendations_user(self, info):
 """Creates recommendations for a single user."""
 firstpass_titles = {}
 for topic in info['topics']:
 articles = self.article_index.get_articles_by_topics(topic,
 self.minimum_should_match)
 for article in articles:
 firstpass_titles[article['_id']] = article['_source']['title']

 scores = self._calculate_scores(firstpass_titles, info['topics'])
 if not scores:
 return []
 return self._get_sorted_articles_with_explanations(scores)

 def _calculate_sentence_vectors(self, sentences):
 """Calculates the average of all the word vectors for each sentence."""
 vectors = []
 for text in sentences:
 tokens = gensim.utils.simple_preprocess(text)
 tokens = [t for t in tokens if t in self.model.vocab]
 vectors.append(sum([self.model[token] for token in tokens]))
 return vectors

 def _calculate_scores(self, firstpass_titles, topics):
 titles = list(firstpass_titles.values())

 article_ids = list(firstpass_titles.keys())
 topic_vecs = self._calculate_sentence_vectors(topics)

 if all([x is 0 for x in topic_vecs]):
 raise NoWord2VecTopicVectorError('No topic had a word2vec '
 'representation.')

 title_vecs = self._calculate_sentence_vectors(titles)
 title_vecs = [vec for vec in title_vecs if vec is not 0]
 if not title_vecs:
 return {}

 article_scores = defaultdict(list)
 for topic, vector in zip(topics, topic_vecs):
 if vector is 0:
 continue
 scores = self.model.cosine_similarities(vector, title_vecs)
 for article_id, score in zip(article_ids, scores):
 if score > self.threshold:
 article_scores[article_id].append((score, topic))
 return article_scores

topic_recommender_systems/core/base_topic_system.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from .dblp import get_dblp_titles
from .semantic_scholar import get_semantic_scholar_titles
from abc import ABC
from abc import abstractmethod
from collections import defaultdict
import re

class BaseTopicRecommenderSystem(ABC):
 """Base class for topic recommender systems."""

 def __init__(self, arxivdigest_connector):
 """Creates base topic system object.

 :param arxivdigest_connector: instance of arxivdigestconnector.
 Other params fetched from the arxivdigest_connector instance include
 - nr of recommendations per user
 - nr of users per batch
 - max lenght of topics
 - total number of users registered on arxivdigest"""
 self.arxivdigest_connector = arxivdigest_connector

 self.recommendations_per_user = self.arxivdigest_connector.recommendations_per_user
 self.batch_size = self.arxivdigest_connector.users_per_recommendation
 self.max_topic_length = self.arxivdigest_connector.max_topic_len
 self.nr_of_users = self.arxivdigest_connector.get_number_of_users()
 self.batch = 0

 def _get_users_titles(self, user_info):
 """Gets the information about the users in the batch.
 Input param is a list of users with information in a dict structure.
 Returns dict with userid: list of titles."""
 result = defaultdict(list)
 for user in user_info:
 if user_info[user]['dblp_profile'] != '':
 user_titles = get_dblp_titles(user_info[user]['dblp_profile'], user)
 result[user].extend(user_titles)

 if user_info[user]['semantic_scholar_profile'] != '':
 user_titles = get_semantic_scholar_titles(user_info[user]['semantic_scholar_profile'], user)
 result[user].extend(user_titles)

 user_likes = self._get_user_likes(user_info)

 for user in user_likes:
 result[user].extend(user_likes[user])

 return result

 def _get_user_likes(self, users):
 """Finds the articles a user has liked and returns the
 titles in a dict of user: list of titles."""
 user_likes = defaultdict(list)
 user_ids = [user for user in users]
 paper_feedback = self.arxivdigest_connector.get_article_feedback(user_ids)
 for user in paper_feedback:
 papers = []
 for date in paper_feedback[user]:
 for id in paper_feedback[user][date]:
 papers.extend(list(id.keys()))

 papers = self.arxivdigest_connector.get_article_data(papers)
 user_likes[user] = [papers[paper]['title'] for paper in papers]
 return user_likes

 def _validString(self, string):
 """Checks if a string is valid and between two defined lengths."""
 if not isinstance(string, str) or len(string) < 1 or len(string) > self.max_topic_length:
 return False
 return True

 def _clean_user_topics(self, user_topics_with_score):
 """Cleans the user topics lists from illegal topics, to
 long topics and duplicate topics from arXivDigest."""
 user_ids = list(user_topics_with_score.keys())
 old_user_topics = self.arxivdigest_connector.get_topic_feedback(user_ids)

 clean_user_topics = user_topics_with_score
 for user in user_topics_with_score:
 #Check for duplicate topics from topics already interacted with by the user
 old_topics = set(old_user_topics[user].keys())
 intersecting_topics = set(user_topics_with_score[user].keys()) & old_topics

 #Check for illegal topics
 for topic in user_topics_with_score[user]:
 if not self._validString(topic):
 intersecting_topics.add(topic)
 continue
 if not re.match('^[0-9a-zA-Z\-]+$',topic):
 intersecting_topics.add(topic)
 continue

 #Remove the duplicate and illegal topics
 if intersecting_topics:
 for duplicate_topic in intersecting_topics:
 del clean_user_topics[user][duplicate_topic]

 return clean_user_topics

 def _send_recommended_topics(self, user_topics_with_score):
 """Recommends n topics for each user with the structure
 user_id: [
 {topic: x, score: x}
 ...
]...
 """
 recommendations = {}
 for user in user_topics_with_score:
 recommendations[user] = []

 for topic in user_topics_with_score[user]:
 recommendations[user].append({'topic': topic,
 'score': user_topics_with_score[user][topic]})

 if len(recommendations[user]) >= self.recommendations_per_user:
 break

 self.arxivdigest_connector.send_topic_recommendations(recommendations)

 @abstractmethod
 def _recommend_topics(self, user_info):
 """Creates the topic recommendations for each user.
 :param user_info: dict with userid keys and information about each user from
 the arXivDigest API for each userid as values.

 Should return data in this format:
 {user_id :
 { topic: score,
 topic: score,
 ...
 }
 user_id:
 {...}
 ...
 }
 """
 pass

 def run(self):
 """Runs the system"""

 print('\nRunning system...')

 while self.batch < self.nr_of_users:
 print('Batch users: ', self.batch + self.batch_size, '/' , self.nr_of_users)

 userids_in_batch = self.arxivdigest_connector.get_user_ids(self.batch)
 user_info = self.arxivdigest_connector.get_user_info(userids_in_batch)

 user_topics_with_score = self._recommend_topics(user_info)

 user_topics_with_score = self._clean_user_topics(user_topics_with_score)
 self._send_recommended_topics(user_topics_with_score)

 self.batch += self.batch_size

topic_recommender_systems/core/data/SmartStoplist.txt

a
a's
able
about
above
according
accordingly
across
actually
after
afterwards
again
against
ain't
all
allow
allows
almost
alone
along
already
also
although
always
am
among
amongst
an
and
another
any
anybody
anyhow
anyone
anything
anyway
anyways
anywhere
apart
appear
appreciate
appropriate
are
aren't
around
as
aside
ask
asking
associated
at
available
away
awfully
b
be
became
because
become
becomes
becoming
been
before
beforehand
behind
being
believe
below
beside
besides
best
better
between
beyond
both
brief
but
by
c
c'mon
c's
came
can
can't
cannot
cant
cause
causes
certain
certainly
changes
clearly
co
com
come
comes
concerning
consequently
consider
considering
contain
containing
contains
corresponding
could
couldn't
course
currently
d
definitely
described
despite
did
didn't
different
do
does
doesn't
doing
don't
done
down
downwards
during
e
each
edu
eg
eight
either
else
elsewhere
enough
entirely
especially
et
etc
even
ever
every
everybody
everyone
everything
everywhere
ex
exactly
example
except
f
far
few
fifth
first
five
followed
following
follows
for
former
formerly
forth
four
from
further
furthermore
g
get
gets
getting
given
gives
go
goes
going
gone
got
gotten
greetings
h
had
hadn't
happens
hardly
has
hasn't
have
haven't
having
he
he's
hello
help
hence
her
here
here's
hereafter
hereby
herein
hereupon
hers
herself
hi
him
himself
his
hither
hopefully
how
howbeit
however
i
i'd
i'll
i'm
i've
ie
if
ignored
immediate
in
inasmuch
inc
indeed
indicate
indicated
indicates
inner
insofar
instead
into
inward
is
isn't
it
it'd
it'll
it's
its
itself
j
just
k
keep
keeps
kept
know
knows
known
l
last
lately
later
latter
latterly
least
less
lest
let
let's
like
liked
likely
little
look
looking
looks
ltd
m
mainly
many
may
maybe
me
mean
meanwhile
merely
might
more
moreover
most
mostly
much
must
my
myself
n
name
namely
nd
near
nearly
necessary
need
needs
neither
never
nevertheless
new
next
nine
no
nobody
non
none
noone
nor
normally
not
nothing
novel
now
nowhere
o
obviously
of
off
often
oh
ok
okay
old
on
once
one
ones
only
onto
or
other
others
otherwise
ought
our
ours
ourselves
out
outside
over
overall
own
p
particular
particularly
per
perhaps
placed
please
plus
possible
presumably
probably
provides
q
que
quite
qv
r
rather
rd
re
really
reasonably
regarding
regardless
regards
relatively
respectively
right
s
said
same
saw
say
saying
says
second
secondly
see
seeing
seem
seemed
seeming
seems
seen
self
selves
sensible
sent
serious
seriously
seven
several
shall
she
should
shouldn't
since
six
so
some
somebody
somehow
someone
something
sometime
sometimes
somewhat
somewhere
soon
sorry
specified
specify
specifying
still
sub
such
sup
sure
t
t's
take
taken
tell
tends
th
than
thank
thanks
thanx
that
that's
thats
the
their
theirs
them
themselves
then
thence
there
there's
thereafter
thereby
therefore
therein
theres
thereupon
these
they
they'd
they'll
they're
they've
think
third
this
thorough
thoroughly
those
though
three
through
throughout
thru
thus
to
together
too
took
toward
towards
tried
tries
truly
try
trying
twice
two
u
un
under
unfortunately
unless
unlikely
until
unto
up
upon
us
use
used
useful
uses
using
usually
uucp
v
value
various
very
via
viz
vs
w
want
wants
was
wasn't
way
we
we'd
we'll
we're
we've
welcome
well
went
were
weren't
what
what's
whatever
when
whence
whenever
where
where's
whereafter
whereas
whereby
wherein
whereupon
wherever
whether
which
while
whither
who
who's
whoever
whole
whom
whose
why
will
willing
wish
with
within
without
won't
wonder
would
would
wouldn't
x
y
yes
yet
you
you'd
you'll
you're
you've
your
yours
yourself
yourselves
z
zero

topic_recommender_systems/core/dblp.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

import requests
from bs4 import BeautifulSoup

def get_pid(auth_url):
 """Returns an author dblp PID from an author dblp profile page link.
 If no response or no result from scraping the web page it returns
 an error."""
 try:
 resp = requests.get(auth_url)
 except:
 resp = requests.get('https://' + auth_url)

 parsed_html = BeautifulSoup(resp.content, 'html.parser')
 pid_element = parsed_html.select_one(
 '#main > header > nav > ul > li.share.drop-down > div.body > ul.bullets > li > small')

 return pid_element.text

def get_titles_from_pid(pid):
 """Returns a list of titles from an author using the authors PID web
 address. Returns error if the author has no titles or request fails."""
 document = requests.get(pid + '.xml')

 soup = BeautifulSoup(document.content, 'lxml')
 titles = soup.find_all('title')

 return [title.text for title in titles]

def get_dblp_titles(author_url, user):
 """Fetches the author pid and then the author paper titles.
 Returns list of titles."""
 try:
 author_pid = get_pid(author_url)
 return get_titles_from_pid(author_pid)
 except:
 print('Could not parse dblp url for user:', user)
 return []

topic_recommender_systems/core/semantic_scholar.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

import requests
import json

def get_titles_from_id(id):
 """Uses the semantic scholar api to fetch the titles
 of the papers the author has on their profile."""
 document = requests.get('https://api.semanticscholar.org/v1/author/'+
 id)

 author_info = json.loads(document.content)
 titles = []
 for paper in author_info['papers']:
 titles.append(paper['title'])

 return titles

def get_semantic_scholar_titles(author_url, user):
 """Extracts the author id from the url and then the author
 paper titles. Returns list of titles."""
 try:
 author_id = author_url.split('/')[-1]
 return get_titles_from_id(author_id)
 except:
 print('Could not parse Semantic Scholar url for user:', user)
 return []

topic_recommender_systems/core/settings.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The arXivDigest project'

import pathlib
import json
import logging
import os
import sys

file_locations = [
 os.path.expanduser('~') + '/arxivdigest/',
 '/etc/arxivdigest/',
 os.curdir + '/',
]

def get_config_from_file(file_name):
 """Checks the given list of file paths for a config file,
 returns None if not found."""
 settings = {
 'api_key': 'c6fef111-cc92-4a9c-94a2-943eb71c1599',
 'api_url': 'https://arxivdigest.org/',
 'stopwords_file': 'core/data/SmartStoplist.txt'
 }
 for file_location in file_locations:
 file_path = file_location + file_name
 if os.path.isfile(file_path):
 print('Found config file at: {}'.format(
 os.path.abspath(file_path)))
 with open(file_path) as file:
 settings.update(json.load(file))
 break
 return settings

topic_recommender_systems/rake_topic_system/rake.py

-*- coding: utf-8 -*-
__author__ = "Øyvind Jekteberg and Kristian Gingstad"
__copyright__ = "Copyright 2020, The ArXivDigest Project"

import nltk
import string
from nltk.tokenize import word_tokenize
from collections import Counter, defaultdict
import re
from nltk.util import ngrams
from enum import Enum
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet
import operator

class Metric(Enum):
 """Different metrics that can be used for ranking candidate keywords."""
 DEGREE_TO_FREQUENCY_RATIO = 0
 WORD_DEGREE = 1
 WORD_FREQUENCY = 2

class Rake(object):
 """To change the scoring fuctions, use the Metric class provied.
 Example of a Rake initialization can be
 r = Rake(max_lenght=4, scoring_metric=Metric.WORD_FREQUENCY)

 WORD_FREQUENCY favors words that appear more frequent
 WORD_DEGREE favors words that occur often and in longer keywords
 DEGREE_TO_FREQUENCY_RATIO favours words that mostly occur in longer keywords"""

 def __init__(self,
 max_length,
 stopwords_file_location,
 scoring_metric=Metric.DEGREE_TO_FREQUENCY_RATIO,
 punctuation=string.punctuation.replace('-', ''),
 min_occurrences=2):
 """Initializes a rake object with english stop words and string punctuations."""
 self.punctuations = punctuation
 self.max_length = max_length
 self.scoring_metric = scoring_metric
 self.min_occurrences = min_occurrences
 self.stopwords_file_location = stopwords_file_location
 self.frequency = None
 self.degree = None
 self.rank_list = None
 self.ranked_phrases = None
 self.stopwords = None

 def run_rake(self, sentences):
 """Extracts keywords from list of sentences."""
 phrases = defaultdict(int)
 adjoined_phrases = defaultdict(int)
 sentences = self.__clean_sentences(sentences)
 sentences, lemmatized_translations = self.__lemmatize_sentences(sentences)
 self.stopwords = self.__generate_stopwords(sentences)

 for sentence in sentences:
 for phrase in self.__get_candidate_keywords(sentence):
 phrases[phrase] += 1

 for phrase in self.__adjoined_candidates_from_sentence(sentence):
 adjoined_phrases[phrase] += 1

 for phrase, count in adjoined_phrases.items():
 phrases[phrase] += count if count >= self.min_occurrences else 0

 phrases = {k: c for k, c in phrases.items()}

 self.frequency = self.__create_freq_dist(phrases)
 self.degree = self.__create_degree_dist(phrases)
 self.__find_ranked_keywords(phrases, lemmatized_translations)

 def __clean_sentences(self, sentence_list):
 """Cleans sentences of non printeable characters"""
 printable = set(string.printable)

 sentences = []
 for text in sentence_list:
 text = [t for t in text if t in printable]
 text = "".join(text)
 sentences.append(word_tokenize(text.lower()))
 return sentences

 def __lemmatize_sentences(self, sentences):
 """Lemmatizes sentences using wordnetlemmatizer and saves the original and
 lemmatized words in a dictionay with a count. This is used later to translate
 back to the original form when creating phrases."""

 def get_wordnet_pos(nltk_pos):
 """Map POS tag to first character lemmatize() accepts"""
 tag_dict = {"J": wordnet.ADJ,
 "N": wordnet.NOUN,
 "V": wordnet.VERB,
 "R": wordnet.ADV}

 return tag_dict.get(nltk_pos[0].upper(), wordnet.NOUN)

 lemmatizer = WordNetLemmatizer()
 lemmatized_sentences = []
 lemmatized_translations = {}

 for sentence in sentences:
 lemmatized_sentence = []
 for word, pos in nltk.pos_tag(sentence):
 lemmatized_word = lemmatizer.lemmatize(word, get_wordnet_pos(pos))

 if not lemmatized_word in lemmatized_translations:
 lemmatized_translations[lemmatized_word] = defaultdict(int)
 lemmatized_translations[lemmatized_word][word] += 1

 lemmatized_sentence.append(lemmatized_word)
 lemmatized_sentences.append(lemmatized_sentence)
 return lemmatized_sentences, lemmatized_translations

 def __generate_stopwords(self, sentences):
 """Generates a stopword list from the supplied stopwords list file and
 the not wanted words from the sentence list."""
 stopwords = []
 with open(self.stopwords_file_location) as file:
 for stopword in file:
 stopwords.append(stopword.strip())

 wanted_pos = ['NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS', 'VBG', 'FW']
 for sentence in sentences:
 for word, pos in nltk.pos_tag(sentence):
 if pos not in wanted_pos:
 stopwords.append(word)

 punctuations = list(str(string.punctuation))

 return set(stopwords + punctuations)

 def __get_candidate_keywords(self, word_list):
 """Returns candidate keywords for a tokenized sentence."""
 candidates = []
 current_candidate = []

 for word in word_list:
 if word not in self.stopwords:
 current_candidate.append(word)
 elif current_candidate:
 candidates.append(current_candidate)
 current_candidate = []
 if current_candidate:
 candidates.append(current_candidate)

 return [' '.join(k) for k in candidates if len(k) <= self.max_length]

 def __adjoined_candidates_from_sentence(self, word_list):
 """Finds all candidates for adjoined keywords in a sentence."""
 candidates = []
 for ngram in extract_ngrams(word_list, 2, self.max_length):
 in_stopwords = [1 if w in self.stopwords else 0 for w in ngram]
 if not any(in_stopwords[1:-1]):
 continue # If ngram no internal stopwords
 if in_stopwords[0] or in_stopwords[-1]:
 continue # If ngram starts or stops with a stopword
 if any([1 for w in ngram if w in self.punctuations]):
 continue # If ngram contains punctuation
 candidates.append(' '.join(ngram))
 return candidates

 def __create_freq_dist(self, phrase_list):
 """Computes the word frequency by counting the occurence
 of single word in all phrases."""
 frequency = Counter()
 for phrase in phrase_list:
 tokenized_phrase = word_tokenize(phrase)
 for word in tokenized_phrase:
 frequency[word] += phrase_list[phrase]
 return frequency

 def __create_degree_dist(self, phrase_list):
 """Computes the word degree of each single word in each
 phrase."""
 co_occurence_graph = defaultdict(lambda: defaultdict(lambda: 0))
 for phrase in phrase_list:
 tokenized_phrase = word_tokenize(phrase)
 for word in tokenized_phrase:
 for co_word in tokenized_phrase:
 co_occurence_graph[word][co_word] += phrase_list[phrase]
 degree = defaultdict(lambda: 0)
 for word in co_occurence_graph:
 degree[word] = sum(co_occurence_graph[word].values())
 return degree

 def __find_ranked_keywords(self, phrase_list, lemmatized_translations):
 """Ranks the keywords found using the specified scoring metric"""
 self.rank_list = {}
 for phrase in phrase_list:
 rank = 0.0
 phrase = word_tokenize(phrase)
 for word in phrase:
 if self.scoring_metric == Metric.DEGREE_TO_FREQUENCY_RATIO:
 rank += 1.0 * self.degree[word] / self.frequency[word]
 elif self.scoring_metric == Metric.WORD_FREQUENCY:
 rank += 1.0 * self.frequency[word]
 elif self.scoring_metric == Metric.WORD_DEGREE:
 rank += 1.0 * self.degree[word]
 else:
 raise ValueError(
 'Invalid Metric: {}'.format(self.scoring_metric))

 original_phrase = ''
 for word in phrase:
 try:
 original_phrase += max(dict(lemmatized_translations[word]).items(),
 key=operator.itemgetter(1))[0] + ' '
 except KeyError: #the word is a connecting word between two adjoining keywords
 original_phrase += word + ' '

 self.rank_list[original_phrase.strip()] = rank
 self.rank_list = {k: v for k, v in sorted(self.rank_list.items(), key=lambda item: item[1], reverse=True)}
 self.ranked_phrases = [phrase for phrase in self.rank_list]

 def get_keywords(self):
 """"Returns the candidate keywords created"""
 return self.ranked_phrases

 def get_keywords_with_score(self):
 """Returns the candidate keywords created together with their score"""
 return self.rank_list

def extract_ngrams(word_list, n_min, n_max):
 """Returns ngrams from the text with lengths between n_min and n_max."""
 n_grams = []
 for n in range(n_min, n_max + 1):
 n_grams.extend(ngrams(word_list, n))
 return n_grams

topic_recommender_systems/rake_topic_system/__init__.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from core.base_topic_system import BaseTopicRecommenderSystem
from .rake import Rake, Metric
import nltk
import string

class RakeTopicSystem(BaseTopicRecommenderSystem):

 def __init__(self, arxivdigest_connector,
 stopwords_file = 'core/data/SmartStoplist.txt',
 max_length=6,
 scoring_metric=Metric.WORD_FREQUENCY,
 stopwords=nltk.corpus.stopwords.words('english'),
 punctuation=string.punctuation.replace('-', ''),
 min_occurrences=2):
 """Initializes a topic recommender system based on RAKE.

 :param arxivdigest_connector: instance of arxivdigestconnector.
 :param max_len: max length of multi word topics.
 :param scoring_metric: the metric used to score the generated topics.
 :param stopword_file: the stopword list used when pre-processing the text.
 :param punctuation: list of punctuations used to break up the text.
 :param min_occurences: nr of times an adjoining keyword must appear
 before it is counted.
 """

 super(RakeTopicSystem, self).__init__(arxivdigest_connector)

 self.max_length = max_length
 self.scoring_metric = scoring_metric
 self.stopwords_file = stopwords_file
 self.punctuation = punctuation
 self.min_occurrences = min_occurrences

 def _recommend_topics(self, user_info):
 """Uses the Rake class to recommend topics for each user based on
 the titles relevant for that user."""
 r = Rake(self.max_length,
 self.stopwords_file,
 self.scoring_metric,
 self.punctuation,
 self.min_occurrences)

 user_topics_with_score = {}
 user_titles = self._get_users_titles(user_info)

 for user in user_titles:
 r.run_rake(user_titles[user])
 user_topics_with_score[user] = r.get_keywords_with_score()

 return user_topics_with_score

topic_recommender_systems/README.md

Topic recommendation system for RAKE and TextRank

This system connects up to the arXivDigest api by using the arXivDigest connector available at [arXivDigest github page](https://github.com/iai-group/arXivDigest/tree/master) by installing the arXivDigest package.

Topic recommendation methods

RAKE

Uses the [RAKE](https://www.researchgate.net/publication/227988510_Automatic_Keyword_Extraction_from_Individual_Documents) algorithm to recommend topics to the users based on their publications from DBLP, Semantic Scholar or titles of papers they have saved on arXivDigest.

TextRank

Uses the [TextRank](https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf) algorithm to recommend topics to the users based on their publications from DBLP, Semantic Scholar or titles of papers they have saved on arXivDigest.

TF-IDF

Uses the TF-IDF weight measurement to recommend previously extracted topics to new users based on their publications from DBLP, Semantic Scholar or titles of papers they have saved on arXivDigest.

Run recommendation systems

To run the systems just run the `run_rake_system.py`, the `run_textrank_system.py` or the `run_tf_idf_system.py` files from the `topic_recommender_systems` folder. Remember to create config files for the systems. Config files are named `rake_config.json`, `textrank_config.json` and `tf_idf_config.json` and example of their structure are below:

```
{
    "api_key": "your api key here",
    "api_url": "https://arxivdigest.org/",
    "stopwords_file": "core/data/SmartStoplist.txt"
}
```
The config files should be placed in one of the following locations:
* ~/arxivdigest/
* /etc/arxivdigest/
* %cwd%/

Also make sure that the systems exist on arXivDigest and are active by going to the [living lab page](https://arxivdigest.org/livinglab).

Requirements

 * nltk
 * requests
 * bs4

topic_recommender_systems/run_rake_system.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from arxivdigest.connector import ArxivdigestConnector
from rake_topic_system import RakeTopicSystem
from core.settings import get_config_from_file

if __name__ == '__main__':
 config = get_config_from_file('rake_config.json')

 arxivdigest_connector = ArxivdigestConnector(config['api_key'],
 config['api_url'])

 system = RakeTopicSystem(arxivdigest_connector,
 config['stopwords_file'])

 system.run()

topic_recommender_systems/run_textrank_system.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from arxivdigest.connector import ArxivdigestConnector
from textrank_topic_system import TextRankTopicSystem
from core.settings import get_config_from_file

if __name__ == '__main__':
 config = get_config_from_file('textrank_config.json')

 arxivdigest_connector = ArxivdigestConnector(config['api_key'],
 config['api_url'])

 system = TextRankTopicSystem(arxivdigest_connector,
 config['stopwords_file'])

 system.run()

topic_recommender_systems/run_tf_idf_system.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from arxivdigest.connector import ArxivdigestConnector
from tf_idf_system import TFIDFTopicSystem
from core.settings import get_config_from_file

if __name__ == '__main__':
 config = get_config_from_file('tf_idf_config.json')

 arxivdigest_connector = ArxivdigestConnector(config['api_key'],
 config['api_url'])

 system = TFIDFTopicSystem(arxivdigest_connector,
 config['stopwords_file'])

 system.run()

topic_recommender_systems/textrank_topic_system/textrank.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

import string
from collections import defaultdict
import nltk
import numpy as np
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet
import operator

class TextRank(object):

 def __init__(self, windowsize, stopword_file_location,
 max_iterations = 100,
 d = 0.85, threshold = 0.0001):
 self.stopwords_file_location = stopword_file_location
 self.stopwords = None
 self.windowsize = windowsize
 self.sorted_scores = None
 self.max_iterations = max_iterations
 self.d = d
 self.threshold = threshold

 def __clean_sentences(self, sentence_list):
 """Cleans sentences of non printeable characters"""
 printable = set(string.printable)

 sentences = []
 for text in sentence_list:
 text = [t for t in text if t in printable]
 text = "".join(text)
 sentences.append(word_tokenize(text.lower()))
 return sentences

 def __lemmatize_sentences(self, sentences):
 """Lemmatizes sentences using wordnetlemmatizer and saves the original and
 lemmatized words in a dictionay with a count. This is used later to translate
 back to the original form when creating phrases."""

 def get_wordnet_pos(nltk_pos):
 """Map POS tag to first character lemmatize() accepts"""
 tag_dict = {"J": wordnet.ADJ,
 "N": wordnet.NOUN,
 "V": wordnet.VERB,
 "R": wordnet.ADV}

 return tag_dict.get(nltk_pos[0].upper(), wordnet.NOUN)

 lemmatizer = WordNetLemmatizer()
 lemmatized_sentences = []
 lemmatized_translations = {}

 for sentence in sentences:
 lemmatized_sentence = []
 for word, pos in nltk.pos_tag(sentence):
 lemmatized_word = lemmatizer.lemmatize(word, get_wordnet_pos(pos))

 if not lemmatized_word in lemmatized_translations:
 lemmatized_translations[lemmatized_word] = defaultdict(int)
 lemmatized_translations[lemmatized_word][word] += 1

 lemmatized_sentence.append(lemmatized_word)
 lemmatized_sentences.append(lemmatized_sentence)
 return lemmatized_sentences, lemmatized_translations

 def __generate_stopwords(self, sentences):
 """Generates a stopword list from the supplied stopwords list file and
 the not wanted words from the sentence list."""
 stopwords = []
 with open(self.stopwords_file_location) as file:
 for stopword in file:
 stopwords.append(stopword.strip())

 wanted_pos = ['NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS', 'VBG', 'FW']
 for sentence in sentences:
 for word, pos in nltk.pos_tag(sentence):
 if pos not in wanted_pos:
 stopwords.append(word)

 punctuations = list(str(string.punctuation))

 return set(stopwords + punctuations)

 def __get_vocabulary(self, sentences):
 """Creates a vocabulary set of the words in the sentences to act as the
 tokens in the graph."""
 vocabulary = set()
 processed_sentences = []
 for sentence in sentences:
 words = [w for w in sentence if w not in self.stopwords]
 vocabulary.update(words)
 processed_sentences.append(words)
 return processed_sentences, {v: i for i, v in enumerate(vocabulary)}

 def __get_token_pairs(self, sentences):
 """Build token_pairs from the sentences based on the words that
 appear within the window size of each other."""
 token_pairs = defaultdict(int)
 degree_pairs = defaultdict(int)
 for sentence in sentences:
 for i, word in enumerate(sentence):
 for j in range(i+1, i + self.windowsize):
 if j >= len(sentence) or i == j:
 break
 token_pairs[(word, sentence[j])] += 1
 token_pairs[(sentence[j], word)] += 1
 degree_pairs[word] += 1
 degree_pairs[sentence[j]] += 1

 return {p: w/degree_pairs[p[0]] for p, w in token_pairs.items()}

 def __score_vertices(self, vocabulary, edge_list):
 """Scores the word token pairs by iterating through them and cast votes
 for the word tokens based on their current score and the number of neighbors
 they have."""
 score = np.ones((len(vocabulary)), dtype=np.float32)

 for iter in range(0, self.max_iterations):
 prev_score = np.copy(score)
 summation = np.zeros((len(vocabulary)), dtype=np.float32)
 for (word, coword), weight in edge_list.items():
 summation[vocabulary[coword]] += weight * score[vocabulary[word]]

 for i in range(len(score)):
 score[i] = (1 - self.d) + self.d * (summation[i])

 if np.sum(np.fabs(prev_score - score)) <= self.threshold:
 return score

 def __get_unique_phrases(self, sentences):
 """Generates unique candidate keywords from the sentences."""
 phrases = set()

 for sentence in sentences:
 phrase = []
 for word in sentence:
 if phrase and word in self.stopwords:
 phrases.add(tuple(phrase))
 phrase = []
 elif word not in self.stopwords:
 phrase.append(word)

 return phrases

 def __score_keyphrases(self, score, unique_phrases, vocabulary, lemmatized_translations):
 """Scores the keyphrases based on the words they contain and their
 final score in the vocabulary. Also translates the lemmatized words back to their
 original form based on the highest count from the translation dictionary."""
 phrase_scores = {}

 for phrase in unique_phrases:
 phrase_score = sum([score[vocabulary.get(word)] for word in phrase])

 original_phrase = ''
 for word in phrase:
 original_phrase += max(dict(lemmatized_translations[word]).items(),
 key=operator.itemgetter(1))[0] + ' '

 phrase_scores[original_phrase.strip()] = phrase_score
 return phrase_scores

 def run_textrank(self, text_list):
 """Runs the textrank algorithm"""
 sentences = self.__clean_sentences(text_list)
 sentences, lemmatized_translations = self.__lemmatize_sentences(sentences)
 self.stopwords = self.__generate_stopwords(sentences)

 processed_sentences, vocabulary = self.__get_vocabulary(sentences)

 pairs = self.__get_token_pairs(processed_sentences)
 score = self.__score_vertices(vocabulary, pairs)
 unique_phrases = self.__get_unique_phrases(sentences)

 scores = self.__score_keyphrases(score, unique_phrases, vocabulary, lemmatized_translations)

 self.sorted_scores = {}
 for keyword, keyword_score in sorted(scores.items(), key=lambda a: a[1], reverse=True):
 self.sorted_scores[keyword] = keyword_score

 def get_sorted_scores(self):
 """Returns the dictionary of keyphrases sorted by their score."""
 if self.sorted_scores != None:
 return self.sorted_scores

topic_recommender_systems/textrank_topic_system/__init__.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from core.base_topic_system import BaseTopicRecommenderSystem
from .textrank import TextRank

class TextRankTopicSystem(BaseTopicRecommenderSystem):

 def __init__(self, arxivdigest_connector,
 stopwords_file = 'core/data/SmartStoplist.txt',
 windowsize=6,
 max_iterations = 100,
 d = 0.85,
 threshold = 0.0001):
 """Initializes a topic recommender system based on TextRank."""

 super(TextRankTopicSystem, self).__init__(arxivdigest_connector)

 self.windowsize = windowsize
 self.stopwords_file = stopwords_file
 self.max_iterations = max_iterations
 self.d = d
 self.threshold = threshold

 def _recommend_topics(self, user_info):
 """Uses the TextRank class to recommend topics for each user based on
 the titles relevant for that user."""
 t = TextRank(self.windowsize,
 self.stopwords_file,
 self.max_iterations,
 self.d,
 self.threshold)

 user_topics_with_score = {}
 user_titles = self._get_users_titles(user_info)

 for user in user_titles:
 t.run_textrank(user_titles[user])
 user_topics_with_score[user] = t.get_sorted_scores()

 return user_topics_with_score

topic_recommender_systems/tf_idf_system/tf_idf.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from nltk.tokenize import word_tokenize
import string
from nltk.stem import WordNetLemmatizer
import nltk
from nltk.corpus import wordnet
from collections import defaultdict
import math

class TFIDF(object):

 def __init__(self, stopword_file_location):
 self.stopwords_file_location = stopword_file_location
 self.stopwords = None
 self.scored_topics = None

 def __clean_sentences(self, sentence_list):
 """Cleans sentences of non printeable characters"""
 printable = set(string.printable)

 sentences = []
 for text in sentence_list:
 text = [t for t in text if t in printable]
 text = ''.join(text)
 sentences.append(word_tokenize(text.lower()))
 return sentences

 def __lemmatize_sentences(self, sentences):
 """Lemmatizes sentences using wordnetlemmatizer and saves the original and
 lemmatized words in a dictionay with a count. This is used later to translate
 back to the original form when creating phrases."""

 lemmatizer = WordNetLemmatizer()
 lemmatized_sentences = []

 for sentence in sentences:
 lemmatized_sentence = []
 for word, pos in nltk.pos_tag(sentence):
 lemmatized_word = lemmatizer.lemmatize(word, get_wordnet_pos(pos))
 lemmatized_sentence.append(lemmatized_word)
 lemmatized_sentences.append(lemmatized_sentence)
 return lemmatized_sentences

 def __lemmatize_topics(self, topics):
 """Lemmatizes the topics to match the lemmatized sentences. Returns a
 dictionary of lemmatized_topic: original_topic for translation back
 after scoring."""
 translations = {}
 lemmatized_topics = set()
 lemmatizer = WordNetLemmatizer()

 for topic in topics:
 lemmatized_topic = []
 tokenized_topic = word_tokenize(topic)

 for word, pos in nltk.pos_tag(tokenized_topic):
 lem_topic = lemmatizer.lemmatize(word, get_wordnet_pos(pos))
 lemmatized_topics.add(lem_topic)

 lemmatized_topic.append(lem_topic)
 translations[' '.join(lemmatized_topic)] = topic

 return lemmatized_topics, translations

 def __generate_stopwords(self, sentences):
 """Generates a stopword list from the supplied stopwords list file and
 the not wanted words from the sentence list."""
 stopwords = []
 with open(self.stopwords_file_location) as file:
 for stopword in file:
 stopwords.append(stopword.strip())

 wanted_pos = ['NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS', 'VBG', 'FW']
 for sentence in sentences:
 for word, pos in nltk.pos_tag(sentence):
 if pos not in wanted_pos:
 stopwords.append(word)

 punctuations = list(str(string.punctuation))

 return set(stopwords + punctuations)

 def __tf(self, text, topic):
 """Calculates the tf of a topic in a sentence."""
 return text.count(topic) / len(text)

 def __idf(self, topic, sentences):
 """Calculates idf for a topic in the collection of sentences."""
 count = 0
 for sentence in sentences:
 if topic in sentence:
 count += 1

 return math.log(len(sentences) / (1 + count))

 def __generate_topic_stats(self, sentences, topics):
 """Generates tf-idf for all topics in each sentence.
 Returns a dictionary with topic: list of tf-idf scores."""
 topic_stats = {}

 for topic in topics:
 topic_stats[topic] = []
 idf = self.__idf(topic, sentences)
 for sentence in sentences:
 tf = self.__tf(sentence, topic)
 topic_stats[topic].append(tf * idf)

 return topic_stats

 def __score_topics(self, topic_stats):
 """Uses the average tf-idf statistic from the users sentences
 to score the topics."""
 topic_scores = defaultdict(int)

 for topic in topic_stats:
 topic_scores[topic] = sum(topic_stats[topic])

 return {k: v for k, v in sorted(topic_scores.items(), key=lambda item: item[1], reverse=True)}

 def __score_full_topics(self, topic_scores, topic_translations):
 """Scores the full multi word topics and returns the un-lemmatized full topics
 sorted by scores."""
 full_scored_topics = defaultdict(int)

 for topic in topic_translations:
 word_count = 0
 for word in word_tokenize(topic):
 try:
 full_scored_topics[topic_translations[topic]] += topic_scores[word]
 word_count += 1
 except KeyError:
 continue #skips special symbols that word_tokenize assumes is its own word
 full_scored_topics[topic_translations[topic]] = full_scored_topics[topic_translations[topic]]/word_count

 return {k: v for k, v in sorted(full_scored_topics.items(), key=lambda item: item[1], reverse=True)}

 def get_topic_scores(self):
 """Returns the list of topics sorted by score"""
 return self.scored_topics

 def run_tfidf(self, sentences, topics):
 """Runs the tf-idf topic scoring algorithm."""
 sentences = self.__clean_sentences(sentences)
 sentences = self.__lemmatize_sentences(sentences)
 lem_topics, topics_translations = self.__lemmatize_topics(topics)
 self.stopwords = self.__generate_stopwords(sentences)

 topic_stats = self.__generate_topic_stats(sentences, lem_topics)

 scored_topics = self.__score_topics(topic_stats)

 self.scored_topics = self.__score_full_topics(scored_topics, topics_translations)

def get_wordnet_pos(nltk_pos):
 """Map POS tag to first character lemmatize() accepts"""
 tag_dict = {"J": wordnet.ADJ,
 "N": wordnet.NOUN,
 "V": wordnet.VERB,
 "R": wordnet.ADV}

 return tag_dict.get(nltk_pos[0].upper(), wordnet.NOUN)

topic_recommender_systems/tf_idf_system/__init__.py

-*- coding: utf-8 -*-
__author__ = 'Øyvind Jekteberg and Kristian Gingstad'
__copyright__ = 'Copyright 2020, The ArXivDigest Project'

from core.base_topic_system import BaseTopicRecommenderSystem
from .tf_idf import TFIDF

class TFIDFTopicSystem(BaseTopicRecommenderSystem):

 def __init__(self,arxivdigest_connector,
 stopwords_file = 'core/data/SmartStoplist.txt'):
 """Initializes a topic recommender system based on TextRank."""

 super(TFIDFTopicSystem, self).__init__(arxivdigest_connector)

 self.stopwords_file = stopwords_file

 def _recommend_topics(self, user_info):
 """Uses the tf-idf metric to recommend topics for each user based on
 the titles relevant for that user and a list of existing topics."""
 t = TFIDF(self.stopwords_file)

 user_topics_with_score = {}
 topics = self.arxivdigest_connector.get_topics()
 user_titles = self._get_users_titles(user_info)

 for user in user_titles:
 t.run_tfidf(user_titles[user], topics)
 user_topics_with_score[user] = t.get_topic_scores()

 return user_topics_with_score

https://github.com/iai-group/arXivDigest

Bibliography

[1] Cornell University. arxiv, 2020. URL https://arxiv.org/.

[2] The College of Information Sciences and Technology. Citeseerx. URL https:

//citeseerx.ist.psu.edu/.

[3] AI2. Semantic scholar. URL Semanticscholar.orgl.

[4] Chinese National High tech R&D Program. Arnetminer. URL http://www.

arnetminer.org/.

[5] Andrej Karpathy. Arxiv sanity preserver. URL http://www.arxiv-sanity.com/.

[6] Frank Hopfgartner, Krisztian Balog, Andreas Lommatzsch, Liadh Kelly, Benjamin
Kille, Anne Schuth, and Martha Larson. Continuous evaluation of large-scale
information access systems: A case for living labs. In Nicola Ferro and Carol
Peters, editors, Information Retrieval Evaluation in a Changing World - Lessons
Learned from 20 Years of CLEF, volume 41 of The Information Retrieval Series,
pages 511–543. Springer, 2019. doi: 10.1007/978-3-030-22948-1_21. URL https:

//doi.org/10.1007/978-3-030-22948-1_21.

[7] Yongfeng Zhang and Xu Chen. Explainable recommendation: A survey and new
perspectives. ArXiv, abs/1804.11192, 2020. URL https://arxiv.org/ftp/arxiv/

papers/1804/1804.11192.pdf.

[8] Mohammed Taie. Explanations in recommender systems overview and research
approaches. International Arab Journal of Information Technology, 09 2013.
URL https://www.researchgate.net/publication/261062328_Explanations_

in_Recommender_Systems_Overview_and_Research_Approaches.

[9] Øyvind Jekteberg and Kristian Gingstad. Arxivdigest: An online evaluation platform
for personalized scientific literature recommendation. 2018.

109

https://arxiv.org/
https://citeseerx.ist.psu.edu/
https://citeseerx.ist.psu.edu/
Semanticscholar.orgl
http://www.arnetminer.org/
http://www.arnetminer.org/
http://www.arxiv-sanity.com/
https://doi.org/10.1007/978-3-030-22948-1_21
https://doi.org/10.1007/978-3-030-22948-1_21
https://arxiv.org/ftp/arxiv/papers/1804/1804.11192.pdf
https://arxiv.org/ftp/arxiv/papers/1804/1804.11192.pdf
https://www.researchgate.net/publication/261062328_Explanations_in_Recommender_Systems_Overview_and_Research_Approaches
https://www.researchgate.net/publication/261062328_Explanations_in_Recommender_Systems_Overview_and_Research_Approaches

Bibliography BIBLIOGRAPHY

[10] C.X. Zhai and S. Massung. Text Data Management and Analysis: A Practical
Introduction to Information Retrieval and Text Mining. ACM Books. Associa-
tion for Computing Machinery and Morgan & Claypool Publishers, 2016. ISBN
9781970001174. URL https://books.google.no/books?id=WoKkDAAAQBAJ.

[11] Hinrich Schütze Christopher D. Manning, Prabhakar Raghavan. Introduction to
Information Retrieval. 2008. URL http://nlp.stanford.edu/IR-book/. ISBN:
0521865719.

[12] Gowri Shanmugam and Anandha Mala G S. Text preprocessing for the improvement
of information retrieval in digital textual analysis. 01 2014. URL https:

//www.researchgate.net/publication/306538095_Text_Preprocessing_for_

the_improvement_of_Information_Retrieval_in_Digital_Textual_Analysis.

[13] Shahzad Qaiser and Ramsha Ali. Text mining: Use of tf-idf to examine the relevance
of words to documents. International Journal of Computer Applications, 181, 07
2018. doi: 10.5120/ijca2018917395.

[14] Marcel Caracilo. Machine learning with python: Meeting tf-idf for
text mining. 2011. URL http://aimotion.blogspot.com/2011/12/

machine-learning-with-python-meeting-tf.html.

[15] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap
Kamps. From neural re-ranking to neural ranking: Learning a sparse representation
for inverted indexing. In Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM ’18, page 497–506, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 9781450360142. doi:
10.1145/3269206.3271800. URL https://doi.org/10.1145/3269206.3271800.

[16] Yuanhua Lv and ChengXiang Zha. Adaptive term frequency normalization for bm25.
URL http://sifaka.cs.uiuc.edu/~ylv2/pub/cikm11-adptTF.pdf.

[17] Elastic.co. The bm25 algorithm. 2020. URL https://www.elastic.co/blog/

practical-bm25-part-2-the-bm25-algorithm-and-its-variables.

[18] Daniel Valcarce. Information retrieval models for recommneder systems. 2019. URL
https://www.dc.fi.udc.es/~dvalcarce/thesis.pdf.

[19] Chandra Bhagavatula Iz Beltagy Miles Crawford Doug Downey † Jason Dunkelberger
Ahmed Elgohary Sergey Feldman Vu Ha Rodney Kinney Sebastian Kohlmeier Kyle
Lo Tyler Murray Hsu-Han Ooi Matthew Peters Joanna Power Sam Skjonsberg
Lucy Lu Wang Chris Wilhelm Zheng Yuan † Madeleine van Zuylen Waleed Ammar,
Dirk Groeneveld and Oren Etzioni. Construction of the literature graph in semantic
scholar. 2018. URL https://arxiv.org/pdf/1805.02262.pdf.

https://books.google.no/books?id=WoKkDAAAQBAJ
http://nlp.stanford.edu/IR-book/
https://www.researchgate.net/publication/306538095_Text_Preprocessing_for_the_improvement_of_Information_Retrieval_in_Digital_Textual_Analysis
https://www.researchgate.net/publication/306538095_Text_Preprocessing_for_the_improvement_of_Information_Retrieval_in_Digital_Textual_Analysis
https://www.researchgate.net/publication/306538095_Text_Preprocessing_for_the_improvement_of_Information_Retrieval_in_Digital_Textual_Analysis
http://aimotion.blogspot.com/2011/12/machine-learning-with-python-meeting-tf.html
http://aimotion.blogspot.com/2011/12/machine-learning-with-python-meeting-tf.html
https://doi.org/10.1145/3269206.3271800
http://sifaka.cs.uiuc.edu/~ylv2/pub/cikm11-adptTF.pdf
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
https://www.dc.fi.udc.es/~dvalcarce/thesis.pdf
https://arxiv.org/pdf/1805.02262.pdf

Bibliography 111

[20] Nick Cramer Stuart Rose, Dave Engel and Wendy Cowley. Auto-
matic keyword extraction from individual documents. 2010. URL
https://www.researchgate.net/publication/227988510_Automatic_

Keyword_Extraction_from_Individual_Documents.

[21] Y. MATSUO and M. Ishizuka. Keyword extraction from a single document using
word co-occurrence statistical information. 2003. URL http://www.miv.t.u-tokyo.

ac.jp/papers/matsuoIJAIT04.pdf.

[22] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into texts. 2004. URL
https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf.

[23] Anett Hoppe Sören Auer Arthur Brack, Jennifer D’Souza and Ralph Ewerth. Domain-
independent extraction of scientific concepts from research articles. 2019. URL https:

//link.springer.com/content/pdf/10.1007/978-3-030-45439-5_17.pdf?

[24] Anne Schuth. Search engines that learn from their users. 2016.
URL http://anneschuth.nl/wp-content/uploads/thesis_anne-schuth_

search-engines-that-learn-from-their-users.pdf.

[25] Bela Gipp Marcel Genzmehr Joeran Beel, Stefan Langer and Andreas Nürnberger.
A comparative analysis of offline and online evaluations and discussion of research
paper recommender system evaluation. 2013. URL http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.1031.973&rep=rep1&type=pdf.

[26] Katja Hofmann, Lihong Li, and Filip Radlinski. Online evaluation for in-
formation retrieval. Foundations and Trends® in Information Retrieval,
10(1):1–117, 2016. ISSN 1554-0669. doi: 10.1561/1500000051. URL
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/

06/ftir-online-evaluation-final-journal.pdf.

[27] Rolf Jagerman, Krisztian Balog, and Maarten De Rijke. Opensearch: Lessons
learned from an online evaluation campaign. J. Data and Information Quality,
10(3):13:1–13:15, September 2018. ISSN 1936-1955. doi: 10.1145/3239575. URL
http://doi.acm.org/10.1145/3239575.

[28] Frank Hopfgartner, Allan Hanbury, Henning Müller, Ivan Eggel, Krisztian Balog,
Torben Brodt, Gordon V. Cormack, Jimmy Lin, Jayashree Kalpathy-Cramer, Noriko
Kando, Makoto P. Kato, Anastasia Krithara, Tim Gollub, Martin Potthast, Evelyne
Viegas, and Simon Mercer. Evaluation-as-a-service for the computational sciences:
Overview and outlook. J. Data and Information Quality, 10(4):15:1–15:32, October
2018. ISSN 1936-1955. doi: 10.1145/3239570. URL http://doi.acm.org/10.1145/

3239570.

https://www.researchgate.net/publication/227988510_Automatic_Keyword_Extraction_from_Individual_Documents
https://www.researchgate.net/publication/227988510_Automatic_Keyword_Extraction_from_Individual_Documents
http://www.miv.t.u-tokyo.ac.jp/papers/matsuoIJAIT04.pdf
http://www.miv.t.u-tokyo.ac.jp/papers/matsuoIJAIT04.pdf
https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf
https://link.springer.com/content/pdf/10.1007/978-3-030-45439-5_17.pdf?
https://link.springer.com/content/pdf/10.1007/978-3-030-45439-5_17.pdf?
http://anneschuth.nl/wp-content/uploads/thesis_anne-schuth_search-engines-that-learn-from-their-users.pdf
http://anneschuth.nl/wp-content/uploads/thesis_anne-schuth_search-engines-that-learn-from-their-users.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1031.973&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1031.973&rep=rep1&type=pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/ftir-online-evaluation-final-journal.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/ftir-online-evaluation-final-journal.pdf
http://doi.acm.org/10.1145/3239575
http://doi.acm.org/10.1145/3239570
http://doi.acm.org/10.1145/3239570

Bibliography BIBLIOGRAPHY

[29] Table of keywords. URL https://www-kaken.jsps.go.jp/kaken1/

keywordListEn.do#0010.

[30] Kenneth Reitz. Requests: Http for humans, 2020. URL https://requests.

readthedocs.io/en/master/.

[31] Leonard Richardson. Beautiful soup documentation, 2020. URL https://www.

crummy.com/software/BeautifulSoup/bs4/doc/.

[32] Cornell University. arxiv ategories, 2020. URL https://arxiv.org/category_

taxonomy.

[33] Elasticsearch. Elasticsearch introduction. URL https://www.elastic.co/guide/

en/elasticsearch/reference/current/elasticsearch-intro.html.

[34] Krisztian Balog, Wouter Weerkamp, and Maarten Rijke. A few examples go a long
way constructing query models from elaborate query formulations. pages 371–378,
01 2008. doi: 10.1145/1390334.1390399.

[35] Yonggang Qiu and Hans-Peter Frei. Concept based query expansion. In Pro-
ceedings of the 16th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’93, page 160–169, New York,
NY, USA, 1993. Association for Computing Machinery. ISBN 0897916050. doi:
10.1145/160688.160713. URL https://doi.org/10.1145/160688.160713.

[36] Marwa Naili, Anja Habacha Chaibi, and Henda Hajjami. Comparative study of word
embedding methods in topic segmentation. Procedia Computer Science, 112:340 –
349, 2017. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2017.08.009. URL
http://www.sciencedirect.com/science/article/pii/S1877050917313480.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality. ArXiv,
abs/1310.4546, 2013. URL https://arxiv.org/pdf/1310.4546.pdf.

[38] Jiawei Han, Micheline Kamber, and Jian Pei. 2 - getting to know your data.
In Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data Mining (Third
Edition), The Morgan Kaufmann Series in Data Management Systems, pages 39 –
82. Morgan Kaufmann, Boston, third edition edition, 2012. ISBN 978-0-12-381479-
1. doi: https://doi.org/10.1016/B978-0-12-381479-1.00002-2. URL https://www.

sciencedirect.com/topics/computer-science/cosine-similarity.

[39] Georgios-Ioannis Brokos, Prodromos Malakasiotis, and Ion Androutsopoulos. Using
centroids of word embeddings and word mover’s distance for biomedical document

https://www-kaken.jsps.go.jp/kaken1/keywordListEn.do#0010
https://www-kaken.jsps.go.jp/kaken1/keywordListEn.do#0010
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://arxiv.org/category_taxonomy
https://arxiv.org/category_taxonomy
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://doi.org/10.1145/160688.160713
http://www.sciencedirect.com/science/article/pii/S1877050917313480
https://arxiv.org/pdf/1310.4546.pdf
https://www.sciencedirect.com/topics/computer-science/cosine-similarity
https://www.sciencedirect.com/topics/computer-science/cosine-similarity

Bibliography 113

retrieval in question answering. In BioNLP@ACL, 2016. URL http://www2.aueb.

gr/users/ion/docs/BioNLP_2016.pdf.

[40] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http:

//is.muni.cz/publication/884893/en.

[41] Chuan Shi, Zhiqiang Zhang, Ping Luo, Philip S. Yu, Yading Yue, and Bin Wu.
Semantic path based personalized recommendation on weighted heterogeneous
information networks. In Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management, CIKM ’15, page 453–462, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450337946. doi:
10.1145/2806416.2806528. URL https://doi.org/10.1145/2806416.2806528.

[42] Nested datatype, 2020. URL https://www.elastic.co/guide/en/

elasticsearch/reference/current/nested.html.

[43] Jishnu Ray Chowdhury, 2020. URL https://github.com/JRC1995/

TextRank-Keyword-Extraction.

[44] Natural language toolkit. URL https://www.nltk.org/.

[45] CodeLingo. Keyword extraction using rake. 2017. URL https://codelingo.

wordpress.com/2017/05/26/keyword-extraction-using-rake/.

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford In-
foLab, November 1999. URL http://ilpubs.stanford.edu:8090/422/. Previous
number = SIDL-WP-1999-0120.

[47] Xu Liang. Understand textrank for keyword extraction by
python. 2019. URL https://towardsdatascience.com/

textrank-for-keyword-extraction-by-python-c0bae21bcec0.

[48] Juan Ramos. Using tf-idf to determine word relevance in doc-
ument queries. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.121.1424&rep=rep1&type=pdf&fbclid=

IwAR3mPHNjqPs1oW0Deh85gBANBosBvOb5tYpUWIibTKo0XYdWvQRq3WCJhPo.

http://www2.aueb.gr/users/ion/docs/BioNLP_2016.pdf
http://www2.aueb.gr/users/ion/docs/BioNLP_2016.pdf
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.1145/2806416.2806528
https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/nested.html
https://github.com/JRC1995/TextRank-Keyword-Extraction
https://github.com/JRC1995/TextRank-Keyword-Extraction
https://www.nltk.org/
https://codelingo.wordpress.com/2017/05/26/keyword-extraction-using-rake/
https://codelingo.wordpress.com/2017/05/26/keyword-extraction-using-rake/
http://ilpubs.stanford.edu:8090/422/
https://towardsdatascience.com/textrank-for-keyword-extraction-by-python-c0bae21bcec0
https://towardsdatascience.com/textrank-for-keyword-extraction-by-python-c0bae21bcec0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424&rep=rep1&type=pdf&fbclid=IwAR3mPHNjqPs1oW0Deh85gBANBosBvOb5tYpUWIibTKo0XYdWvQRq3WCJhPo
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424&rep=rep1&type=pdf&fbclid=IwAR3mPHNjqPs1oW0Deh85gBANBosBvOb5tYpUWIibTKo0XYdWvQRq3WCJhPo
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1424&rep=rep1&type=pdf&fbclid=IwAR3mPHNjqPs1oW0Deh85gBANBosBvOb5tYpUWIibTKo0XYdWvQRq3WCJhPo

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Project History
	1.2 Objectives
	1.2.1 Infrastructure Development
	1.2.2 Article Recommendation
	1.2.3 Topic Recommendation

	1.3 Main Contributions
	1.4 Outline

	2 Related Work
	2.1 Information Retrieval
	2.1.1 Text Preprocessing
	2.1.2 Indexing
	2.1.3 Term Importance Weighting
	2.1.4 Retrieval Models

	2.2 Academic Literature Search
	2.2.1 Ad Hoc Scientific Document Retrieval
	2.2.2 Scientific Literature Recommendation
	2.2.3 Explainable Recommendations

	2.3 Extracting Metadata
	2.3.1 Topic Extraction

	2.4 Evaluation
	2.4.1 Offline vs. Online Evaluation
	2.4.2 A/B Testing
	2.4.3 Interleaving
	2.4.4 Multileaving
	2.4.5 Evaluating Performance
	2.4.6 Living Labs

	3 Infrastructure Development
	3.1 Overview
	3.2 Explanations
	3.3 Topics
	3.3.1 Topic API Endpoints
	3.3.2 Submitting a Topic Recommendation
	3.3.3 Topics in the Database
	3.3.4 Frontend Topic Implementation
	3.3.5 Topic Interleaving
	3.3.6 Initial List of Topics
	3.3.7 Types of Topic Feedback

	3.4 User Feedback
	3.5 ArXivDigest Package
	3.6 Living Labs and Systems
	3.6.1 Evaluation
	3.6.2 Evaluation Web Interface
	3.6.3 Feedback Web Interface

	3.7 Miscellaneous Other New Features
	3.7.1 Interleaving Update
	3.7.2 API Settings
	3.7.3 ArXivDigest Connector
	3.7.4 Email Verification
	3.7.5 Unsubscribe from Digest Email
	3.7.6 ArXiv Scraper Update

	3.8 Final Architecture
	3.8.1 Submitting an Article Recommendation
	3.8.2 API Endpoints Overview

	4 Article Recommendation
	4.1 Overview
	4.2 Baseline System
	4.3 Shared Article Recommender System Code
	4.4 Query Expansion Based System
	4.4.1 Background
	4.4.2 Implementation

	4.5 Semantic Reranking Based System
	4.5.1 Background
	4.5.2 Implementation

	4.6 Author Based System
	4.6.1 Background
	4.6.2 Implementation

	5 Topic Recommendation
	5.1 Overview
	5.2 Common Functions
	5.2.1 Fetching User Information
	5.2.2 Text Preprocessing
	5.2.3 Base Topic Recommender Class

	5.3 Topic Recommendation Algorithms
	5.3.1 RAKE
	5.3.2 TextRank
	5.3.3 TF-IDF Weighting

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.1.1 Evaluation Methodology
	6.1.2 Users
	6.1.3 Articles
	6.1.4 Experimental Recommender Systems
	6.1.5 User Feedback

	6.2 Results
	6.2.1 Article Recommendations
	6.2.2 Topic Recommendations

	7 Conclusion
	7.1 Infrastructure Development
	7.2 Article Recommendation
	7.3 Topic Extraction
	7.4 Inaccuracies and Improvements
	7.5 Future Directions

	A Additional Plots and Figures
	B Attachments
	Bibliography

