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Abstract

The disinformation news in media channels such as social media websites or online
newspapers has become a big challenge for many organizations, governments, and scientific
researchers. In connection to fake news, the political bias (left-wing or right-wing) of
the news articles are recently receiving more attention. In this thesis, we leverage the
Adversarially Regularized AutoEncoder (ARAE) model, which enhances the adversarial
autoencoder (AAE) by learning a parameterized prior as a Generative Adversarial
Networks (GAN) to generate bias-flipped headlines. We perform the experiments with
multiple datasets then discuss how these approaches contribute to the bias flipping and
detecting problems.
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Chapter 1

Introduction

To date, media bias and fake news can be found on any media outlets, especially social
media like Facebook, Twitter, and online newspapers. Thus, there’s an increasing number
of public organizations and scientific researchers trying to tackle this problem [1].

In this thesis, our approach puts more focus on the writing style of the news articles,
in particular, political-biased headlines and claims. The work from [2] have shown that
the articles’ writing styles could be used to detect the hyperpartisan news from the
more balanced ones. The style of left-oriented and right-oriented articles appear to be
more related than they have with mainstream’s style or to the opposite side’s style.
Considering an example from [3]:

Why Trump is right in recognizing Jerusalem as Israel’s capital

Trump is making a huge mistake on Jerusalem

The two headlines above are from Fox News and New York Times respectively and are
about the same event of Donald Trump recognizing Jerusalem as the Israel’s capital. The
different stances in those headlines can lead the readers to very different impressions.

In order to learn the style of news headlines or claims, we perform unaligned textual
style transfer using the adversarially regularized autoencoder (ARAE) [4]. This model is
based on the Wasserstein autoencoder (WAE) framework [5] and generative adversarial
networks (GAN) [6] which has contributed a major advancement in text generation tasks.
We also use GloVe [7] pre-trained vectors as word embedding to replace for the ARAE
model’s word embedding which only relied on the word indices in the vocabulary.

The experiments have been performed on two datasets:
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Symbols Chapter 1 Introduction

• The Webis Bias Flipper 2018 [8] comprises 2781 events from allsides.com as of June
1st, 2012 till February 10, 2018. We use this dataset to generate the right-oriented
and left-oriented bias articles titles.

• The Hyperpartisan News dataset [9] contains 750,000 articles labeled by the overall
bias of the publisher and 645 articles labeled through crowdsourcing on an article
basis.

The contribution of this thesis is applying an advanced model of generative adversarial
networks to transfer the news title into opposite bias and examine if the model can
improve the quality of generated headlines as well as neutralize the hyperpartisan news
articles.

In the remainder of the thesis, some related work and background are covered in the
next two chapters. Chapter 4 will present the datasets and chapter 5 goes to details of
the solution approach. Then the experimental results will be reported and discussed
in chapter 6. Finally, chapter 7 will conclude the paper as well as suggest some future
research directions.



Chapter 2

Related Work

This chapter briefly highlights the related work done in the domain of text generation,
bias flipping on news articles and text style transfer.

2.1 Text generation using GAN

Text generation is a common task in many NLP applications. The paper Texygen:
A Benchmarking Platform for Text Generation Models [10] has shown benchmarking
results of multiple GAN methods for text generation in which LeakGAN [11] obtains the
highest score. LeakGAN allows the discriminator leak information from the generated
text to help the generative network achieve better performance. Those GAN models
often need pre-training which is computationally expensive. A recent approach has
proposed a new solution called TextKD-GAN [12] using GAN to generate text with
knowledge distillation [13]. This model is also based on autoencoder (AE) to create
text representation. TextKD-GAN has a comparable performance without the need for
pre-training.

2.2 Text style transfer

In the line of text generation, text style transfer is a task that generates the new sentences
with style is different from the source sentences while keeping the same semantic. This
task is hard due to the lack of a parallel training dataset [14]. One approach of those
text style transfer methods is dividing the style and content from the sentences. The
variational autoencoder (VAE) has been used in [15] to change the style of a given
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sentence to the target style aspect. [16] presents the aligned AE and cross aligned AE
to modify the sentiment in Yelp reviews.

2.3 Bias flipping

The bias flipping task is early proposed in the paper Learning to Flip the Bias of News
Headlines [3]. They build a corpus to analyze the bias in political news and use the
cross-aligned AE model from [15] to generate the headlines with flipped bias. Our
experiments are also performed on this provided dataset. Although they indicate that
the bias may only appear on different levels from a single sentence to paragraph and
the whole article, they only apply the bias flipper for sentence-level or news headline in
particular. In this thesis, we also focus only on the sentence level to do the bias flipping.



Chapter 3

Background

This chapter introduces the theory and background knowledge in brief that is needed to
explain the thesis’s approach, as well as the evaluation metrics.

3.1 Artificial Neural Networks (ANN)

An Artificial Neural Networks (ANN), also known as multi-layer perceptron (MLP), is
a collection of artificial neurons [17] which models the neurons in a human brain. A
artificial neuron can be presented as the following mathematical function:

y = f(Wx+ b) (3.1)

where x is the input, W is the weight matrix, b is the bias and y is the output. The
activation function f is typically a non-linear function. The range of f is finite and often
is (0, 1) or (-1, 1). A training process of an ANN is the process to adjust W and b values
in order to output y that’s reasonable to a set of input x. A common approach to train
an ANN and update the weights and biases is Backpropagation algorithm [18]. ANN can
be formed by one input layer, one output layer and multiple hidden layers of artificial
neurons. Figure 3.1 illustrates a simple artificial neural networks.

The ANNs with a huge number of hidden layers can form a more powerful model, also
referred to Deep neural networks (DNN). More advanced networks can also contain
multiple input layers and/or output layers.

5
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Figure 3.1: A simple ANN

3.1.1 Activation function

Generally, the activation functions are non-linear. Sigmoid [19] functions are the famous
choices for activation function. Some examples:

Logistic function: f(x) = 1
1+e−x

Hyperbolic tangent function: f(x) = tanh(x) = ex−e−x

ex+e−x

Recently, ReLU [20] family functions (ReLU, PReLU, Leaky ReLU, RReLU [21]) have
become most commonly used as the activation function in neural networks since it has
an efficient computational cost and it’s better when combined with gradient propagation
with less vanishing gradient problems.

3.1.2 Dropout

When an ANN performs very well on training data but gets bad results with test data,
that’s a sign of overfitting. Dropout [22] is a simple but effective way to prevent neural
networks from overfitting. It generalizes the networks by activating neurons based on a
probability.

3.1.3 Adaptive Moment Estimation (Adam)

Adaptive Moment Estimation (Adam) [23] is an optimization algorithm that can be used
to update the weights parameter during the training process and obtain good results
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fast. Adam is an extension to stochastic gradient descent (SGD) [24]. It leverages the
momentum by using the moving average of the gradient while SGD with momentum
only uses the gradient itself. Adam is computationally efficient and well appropriate for
models with a huge number of parameters or large datasets.

3.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) networks are a type of artificial neural network
specifically used to find patterns in a sequence of data. The network has recurrent
connections between layers that allow it to handle a data sequence. Figure 3.2 illustrates
a simple RNN where xt, t = 1, 2, ..., T is the input sequence, yt are the output and ht are
the hidden states at each time step t.

The value of hidden state ht is computed as a linear combination, denoted by ⊕, of the
previous hidden state ht−1 and the input token xt:

ht = g(W (xt ⊕ ht−1)) (3.2)

where g is an activation function, such as sigmoid or tanh, and W is the weight matrix.

RNN is useful dealing with text generation problems. In order to generate a sequence
y1, y2, ..., yt, RNN computes the conditional probability for each token, given the previous
selected tokens and select the token with highest probability:

p(yt|yt−1, ..., y1) = g(ht) (3.3)

One disadvantage is that as the sequence grows larger, RNN gets difficulties to predict
the next element in the sequence. Therefore, the generated text lacks real meaning.

Figure 3.2: Illustration of a RNN



Symbols Chapter 3 Background

3.3 Long Short Term Memory (LSTM)

Long Short Term Memory model (LSTM) [25], introduced by Hochreiter and Schmidhuber,
is a special type of RNN. Unlike original RNN, it can capture the potential long-distance
dependencies. LSTMs have four neural network layers and they are, basically, uni-
directional and receive information from past states only.

For more details, RNN’s units are replaced with more sophisticated units in LSTM
networks. LSTM unit has three independent gates: input gate it, output gate ot and
forget gate ft:

it = σ(Wi[xt;ht−1] + bi) (3.4)

ot = σ(Wo[xt;ht−1] + bo) (3.5)

ft = σ(Wf [xt;ht−1] + bf ) (3.6)

LSTM unit also has a memory cell ct that can be considered as the internal memory of
the unit. It’s state value depends on the previous memory cell state ct−1 and a candidate
new value of the memory cell c̃t:

c̃t = tanh(Wc[xt;ht−1] + bc) (3.7)

ct = ftct−1 + itc̃t (3.8)

The hidden state at the time step t is computed as follows:

ht = ottanh(ct) (3.9)

Figure 3.3: Illustration of a LSTM unit

Figure 3.3 shows the architecture of a LSTM unit.
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3.4 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a type of ANN that includes convolutional layers
in the hidden layers [26]. The filters in the convolutional layers can reduce the dimension
of data between layers and produce the output. CNN has become a popular choice
when building a discriminative model. Yoon Kim [27] proposed the usage of CNN in the
context of sentence classification, which was previously developed for computer vision.
Even though CNNs may lose some vital context information, they still are a powerful
tool for feature representation. In this thesis, we also leverage a simple bias classifier
that is built on top of CNN as a part of the evaluation for the generated text. This will
be described in chapter 6.

3.5 Autoencoder

Autoencoder is an ANN type used to learn a representation of data in unsupervised
learning [28]. An autoencoder consists of an encoder that computes the input into a
reduced encoding, and a decoder that reconstruct the encoding into representation as
close as possible to the input. Figure 3.4 illustrate a simple autoencoder architecture. A
variant of Autoencoder, Variational autoencoder, is recently become popular to solve the
generative problems [29].

Figure 3.4: Simple Autoencoder architecture

3.6 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) was introduced by Goodfellow et al in 2014 [6].
A GAN model consists of one generator network G that is trained to generate realistic
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samples and one discriminator network D to detect if a given sample is from the training
data or generated by G. The model can be simply described by Figure 3.5. GAN can be
considered as a minimax game:

LGAN = LG = −LD (3.10)

Figure 3.5: GAN general architecture illustration, inspired by [30]

where LG and LD are the cost function of the generator and discriminator respectively.
The loss function can be defined as follow using cross entropy [31]:

LGAN = Ex∼pr logD(x) + Ez∼pg log[1−D(G(z))] (3.11)

where pr is the distribution of real data and pg is the distribution of generated data (the
notations are taken from [30]). The discriminator parameters θD are then updated using
the gradient

∇θDLD(θD, θG) = −∇θD

1
N

N∑
n=1

[logD(xn) + log(1−D(x̃n))] (3.12)

where θG denotes for generator parameters, samples x are from pr and x̃ = G(z) are
from the generated data distribution pg(z; θG). The generator G will be updated after
by stochastic gradient descent:

∇θGLG(θG) = ∇θG

1
N

N∑
n=1

log(1−D(x̃n)) (3.13)

Theoretically, both generator and discriminator are continuously improved until pg
converges to pr. One disadvantage of GAN is that there’s no accurate representation for
the distribution of generated data pg. Another disadvantage is that if D training and G
training processes are not balanced (G is trained too much without updating D), then
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many generated values of z will be collapsed to the same value of x and G could not be
able to model the real data distribution [6].

GANs have shown high effectiveness for image generation and recently have been applied
in text generation with promising results [32] [11].

3.7 Embeddings

Before we perform NLP tasks such as text classification or generation, words and
documents should be represented as numeric vectors.

3.7.1 Word2vec

Word2Vec gives a numeric representation for each word in the text corpus. It’s able to
capture the different relations between words, such as synonyms, antonyms, or analogies
(for example: vector("King") - vector("Man") + vector("Woman") = vector("Queen")) [33].
There’re two popular Word2vec models: Continuous Bag-of-Words (CBOW) and the
Skip-Gram. The CBOW model predicts the current word based on the surrounding
words (context), and the Skip-gram model predicts context given the current word [33].

Figure 3.6: Word2vec models, inspired by [34]

3.7.2 Global Vector

Global Vector (GloVe) is an extension of Word2Vec which was developed at Stanford [7].
A disadvantage of Word2Vec is that it will not have enough corpus to learn the represen-
tations with a small amount of data. GloVe gives better performance on word embedding
as compared to Word2Vec, with different dataset sizes. The GloVe pre-trained vectors
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are available under multiple versions with the dimension varies from 25 to 300 and the
number of tokens is from 6 billion to 840 billion.

3.8 Text Generation Evaluation Metrics

3.8.1 Bi-Lingual Evaluation Understudy (BLEU)

Bi-Lingual Evaluation Understudy (BLEU) is an algorithm to assess the quality of
translated or generated text by machine from one natural language to another [35].

BLEU compares a candidate against multiple references using a precision modification.
For each n-gram in the candidate, BLEU takes its maximum total count, mmax, in any of
the references. Those mmax are then summed over all distinct n-grams in the candidate
and then divided by the total number of n-grams in the candidate to get the modified
precision. BLEU’s output is always between 0 and 1. The higher the score, the better
the translation/generation method.

3.8.2 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [36] is a metric generally
used to evaluate the generated text summaries. The ROUGE scores range from 0 to 1,
with 1 for the perfect match between the hypothesis and the reference. In this thesis, we
use ROUGE-1, ROUGE-2, and ROUGE-L scores the same as the baseline [3]. ROUGE-1
and ROUGE-2 compare the overlap of unigram and bigram respectively between the
generated headlines and the references, whereas ROUGE-L measures on the longest
common subsequence from the sequence pairs.



Chapter 4

Data

This chapter describes the datasets used in the experiments of this thesis and the
data-preprocessing steps that have been employed for each dataset.

4.1 The Webis Bias Flipper 2018 Dataset

The Webis Bias Flipper 2018 (Webis-Bias-Flipper-2018) [8] dataset contains 2,781 events
happened from June 1st, 2012 to February 10, 2018 from the website allsides.com. Each
event has a title and a summary. It is also listed with the publishers, biases, headlines,
and contents from all corresponding news articles. There’re 6,458 articles in total come
from three different types of bias category: From the Right, From the Left, and From the
Center.

Number of articles Percentage
From the Right 2,542 39.4%
From the Left 2,388 37.1%

From the Center 1,517 23.5%

Table 4.1: Number of articles from each bias

Table 4.1 presents the number of articles from each bias. In the thesis, we only consider
From the Left and From the Right articles in the bias flipping experiments since we want
to perform the bias changing into the extreme. Thus, the dataset that is used in the
following experiments only has 4,840 news articles.

As the dataset is published under CSV format, we use Pandas [37] as an easy way to
load data and perform pre-processing. We also employ word_tokenize and sent_tokenize
modules from Natural Language Toolkit (NLTK) [38] to do the tokenization. The
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news articles’ contents are tokenized into sentences, then those sentences and the news
headlines will be processed by applying word_tokenize. All punctuation characters are
also removed from the processed text. Some outputs are shown in the table 4.2

Original text Output
Trump Hands Out ‘Fake News
Awards,’ Sans the Red Carpet

Trump Hands Out Fake News Awards
Sans the Red Carpet

Donald Trump Corrects John Kelly:
‘The Wall Is the Wall It Has Never
Changed or Evolved’

Donald Trump Corrects John Kelly
The Wall Is the Wall It Has Never
Changed or Evolved

Table 4.2: Pre-processed text examples

As we only perform the bias flipping on the sentence level, we create a sentence-based
dataset for training the model and generating text. The detailed information of this
dataset is presented in Table 4.3. Both the training set and test set require two separated
files for different biases:

• train1.txt: training set that contains titles and body’s sentences from the left-wing
news articles.

• train2.txt: training set that contains titles and body’s sentences from the right-wing
news articles.

• valid1.txt: test set that contains titles from the left-wing news articles.

• valid2.txt: test set that contains titles from the right-wing news articles.

Number of sentences Average length of the sentences
train1.txt 92,626 24
train2.txt 77,046 22
valid1.txt 2,388 9
valid2.txt 2,542 10

Table 4.3: Details of the Webis-Bias-Flipper-2018 dataset that is used in our approach

4.2 Hyperpartisan News Dataset

This Hyperpartisan News Dataset [9] consists of two different parts. One part is "by-
publisher" data containing the articles that are labeled by the overall bias of the source
publisher. Those labels are given BuzzFeed journalists or MediaBiasFactCheck.com.

The "bypublisher" dataset has 750,000 news articles which can be considered as a relatively
large dataset. 50% of this part is hyperpartisan articles of which half are on the left bias
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and another half are on the right. This part of the Hyperpartisan News Dataset is split
into the training set and validation set with the ratio 80% - 20% respectively.

Table 4.4 shows some statistics regarding the bias in each set of data. There’re five bias
categories: left, right, least, left-center and right-center. Similar to the Bias Flipper 2018
dataset, we only consider the left and right biased news articles when preparing the data
for our experiments.

right left least left-center right-center
Training set 150,000 150,000 187,114 70,053 42,833
Validation set 37,500 37,500 38,296 23,473 13,231

Table 4.4: The statistic in the bias of the articles in "bypublisher" dataset

Because of the relatively huge number of articles in the "bypublisher" data, we only try
to focus on the news headlines to perform the bias flipping which means we prepare
a dataset of 300,000 titles for the training set and 75,000 titles for the test set in our
experiments.

Both "bypublisher" and "byarticle" parts of Hyperpartisan News Dataset are released
as XML files. Thus, we need to parse the XML files first to retrieve the article titles
and body contents, then we filter them using the bias attribute to get left-wing and
right-wing articles. After that, we apply the same pre-processing steps as described in
the Webis-Bias-Flipper-2018 dataset section 4.1 above. Tables 4.5 shows the information
on the number of pre-processed sentences in "bypublisher" and "byarticle" hyperpartisan
news dataset that are used in our experiments.

bypublisher byarticle
train1.txt 149,840 3,874
train2.txt 148,995 5,209
valid1.txt 28,925 238
valid2.txt 35,380 407

Table 4.5: Number of sentences in "bypublisher" and "byarticle" hyperpartisan news
dataset





Chapter 5

Solution Approach

This chapter describes the model that is used to perform the experiments in this thesis.
We employ ARAE as the base model to do the bias flipping task.

5.1 Existing Approaches/Baselines

An early approach to this problem was proposed in paper Learning to Flip the Bias of
News Headlines [3]. They flip the bias of headlines using an autoencoder-based network.
This bias flipper is trained by the left-wing and right-wing articles. Figure 5.1 illustrates
the overview of their work.

Figure 5.1: Bias flipping overview from [3]

17



Symbols Chapter 5 Solution Approach

In order to train the flipping model, they build a training set from the content of articles,
break them into sentences in particular. On the other hand, the validation and the test
set only contain news titles.

They train two different encoders, one for flipping the bias from left to right, and the
other one is for the right to left. Let’s so, st denote the original and target sentence; bo,
bt denote the original and target bias label; and zo, zt are the corresponding content.
The two encoders are E(sk, bk), k ∈ {o, t}.

They also train two generators G to generate sentence from given bias and article content:

ŝk ∼ G(zk, bk) = p(sk|bk, zk) (5.1)

The loss function is constructed from the reconstruction error Lrec(θE , θG) and the loss
of adversarial discriminator D, Ladv, as follows:

Lrec(θE , θG) = Esk∼Sk
[−log p(sk|sk, E(sk̄, bk̄))] (5.2)

Ladv = −log Dk(sk)− E[log(−Dk(ŝk̄))] (5.3)

L = Lreco→t + Lreco→t − (Ladvo→t + Ladvo→t) (5.4)

where k̄ is o when k is t and the other way round; θE and θG are the parameters of E
and G; Dk is the discriminator.

To reduce the loss, they minimize both the reconstruction error and the loss of the
adversarial discriminator. They apply the setup of cross-aligned autoencoder [16] to
train the model with a number of sentences from both left and right. They get 41.5% of
the generated sentences that still keep the semantics while the sentiment is modified.

They also build a dataset including 2196 headline pairs, each pair consists of one left-
biased sentence and one right-biased sentence. To evaluate the generated text from the
test set, they hired three journalists to annotate them based on four questions [3]:

Q1. Do you understand headline 1 (the original headline)? Answers: yes | partially yes |
no | not sure

Q2. Do you understand headline 2 (the generated headline)? Answers: yes | partially
yes | no | not sure

Q3. Do both headlines report on the same event? Answers: same | mostly same | changed
| not sure

Q4. Do the headlines have opposite bias? Answers: flipped | partially flipped | same |
not sure
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Out of 200 generated sentences, they got 36.5% as understandable. 63.5% of generated
headlines still keep the semantics of the original headline, and 65% of those sentences
have the bias flipped. Among the generated sentences with changed content, the changes
of bias also appear on 28%. They also perform the automatic evaluation using ROUGE
score [36] to calculate the similarity between the original and the generated headlines.
The results in F-scores with ROUGE-1, ROUGE-2, ROUGE-L are 15%, 3% and 12%
respectively. We will use those results as the baseline to evaluate the outcome of the
approach in this thesis.

5.2 Analysis

The work of bias flipping is closely related to text style transfer. In the approach described
in section 5.1 above, cross-aligned AE has been leveraged and extended to perform the
task of unaligned text style transfer. Regarding this problem, in the paper Adversarially
Regularized Autoencoders [4] they have compared the performance of the ARAE model
and the cross-aligned AE model from [16] on Yelp reviews corpus. They follow the setting
of cross-aligned AE and split the dataset into positive and negative reviews. For the
quantitative evaluation, they use both automatic methods such as (1) Transfer: how the
model change the sentiment of the sentences; (2) BLEU score: the quality of generated
text by a machine from one natural language to another; and human assessment by
choosing 1000 sentences randomly (50% are positive and 50% are negative) then asking
the crowdworkers to assess the sentiment and naturalness of the generated sentences.

Model Transfer BLEU
Cross-Aligned AE 77.1% 17.75

ARAE 81.8% 20.18

Table 5.1: Automatic Evaluation between ARAE and Cross-Aligned AE [4]

Model Transfer Naturalness Similarity
Cross-Aligned AE 57% 2.7 3.8

ARAE 74% 3.8 3.7

Table 5.2: Human Evaluation between ARAE and Cross-Aligned AE [4]

Table 5.1 and table 5.2 report the results of this evaluation. ARAE model clearly shows
the potential to be applied for bias flipping problems as the way Cross-aligned AE has
been used to improve the performance, although the adversarial regularization model
seems to generate text that less similar to the source sentences.
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5.3 Proposed Solution

The work from [3] and [2] have shown that the articles’ writing style could be used to
detect the hyperpartisan news or to transfer the bias from left to right or from right to
left.

The approach we propose is based on the ARAE model. This model enhances the
adversarial autoencoder (AAE) [39] by learning a parameterized prior as a Generative
Adversarial Networks (GAN) [6] and apply to discrete sequences. In the original work,
the ARAE model is trained to generate natural text and transfer unaligned textual style.
Our idea is to leverage the ARAE model for bias flipping.

ARAE can also be formalized as a latent variable model under the Wasserstein autoencoder
(WAE) framework [40]. The model contain a discrete autoencoder regularized with a prior
distribution which consists of an encoder encφ : X → Z and two conditional decoders
pψ(x|z, y), where y is the label and z is the last hidden state of an encoder. The decoders
use a softmax layer as the output layer:

pψ(x|z, y) =
n∏
j=1

softmax(Whj + b)xj (5.5)

where W and b are the decoder parameters and hj is the hidden state.

5.3.1 Adversarially Regularized Autoencoder

ARAE is a combination of an autoencoder and GAN-regularized latent representation.
The discrete autoencoder is regularized and can be illustrated as follows:

minφ,ψ Lrec(φ, ψ) + λ(1)W (PQ,Pz) (5.6)

with Lrec(φ, ψ) is cross-entropy reconstruction loss:

Lrec(φ, ψ) = −log pψ(x|encφ(x)) (5.7)

where W is the Wasserstein distance [40] between the distribution of encφ(x), PQ, and a
prior distribution Pz; φ, ψ are the parameters of encoder and decoder respectively and λ
is the weight factor.

The model is trained iteratively through five steps [4]:

1. Train the encoder and decoder to minimize the reconstruction (φ, ψ)
error.



Symbols 21

Sample from a true distribution {x(i)}mi=1 ∼ P∗ and compute the last hidden state
z(i) = encφ(x(i)). Backprop loss:

Lrec = − 1
m

m∑
i=1

log pψ(x(i)|z(i)) (5.8)

2. Train the critic function to approximate the Wasserstein distance W .

Sample from a true distribution {x(i)}mi=1 ∼ P∗ and the noise from a Gaussian
distribution {s(i)}mi=1 ∼ N (0, I). Compute z(i) = encφ(x(i)) and the generator
function on the noise: z̃(i) = gθ(s(i)), where θ is the generator’s parameters.
Backprop loss:

Lcri = − 1
m

m∑
i=1

fw(z(i)) + 1
m

m∑
i=1

fw(z̃(i)) (5.9)

where fw is the critic/discriminator function to distinguish the real data and the
generated data from the generator gθ. The critic parameters w is clipped to [−ε, ε]d.

3. Train a bias attribute classifier (u)

The model learns to remove the bias attribute y from the prior, which means
all significant information is encoded except information about the bias. With
extension from Equation 5.6, the latent space bias attribute classifier is as follows:

minφ,ψ,θ Lrec(φ, ψ) + λ(1)W (PQ,Pz)− λ(2)Lclass(φ, u) (5.10)

where Lclass(φ, u) is the loss function of the attribute classifier pu(y|z):

Lclass(φ, u) = − 1
m

m∑
i=1

log pu(y(i)|z(i)) (5.11)

where z(i) = encφ(x(i)) with {x(i)}mi=1 ∼ P∗ and y(i) is the corresponding bias label.

4. Train the encoder/generator adversarially (φ, θ) to minimize W.

Sample from a true distribution {x(i)}mi=1 ∼ P∗ and the noise from a Gaussian
distribution {s(i)}mi=1 ∼ N (0, I). Compute z(i) = encφ(x(i)) and z̃(i) = gθ(s(i)).
Backprop loss:

1
m

m∑
i=1

fw(z(i))− 1
m

m∑
i=1

fw(z̃(i)) (5.12)

5. Train the encoder adversarially (φ) to minimize the loss of the classifier.

Compute z(i) = encφ(x(i)) where {x(i)}mi=1 ∼ P∗ and y(i) is the corresponding bias
label. Backprop loss:

Lclass(φ, u) = − 1
m

m∑
i=1

log pu(1− y(i)|z(i)) (5.13)
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Figure 5.2: ARAE architecture [4]

Figure 5.2 describes the full architecture of the ARAE model.

5.3.2 ARAE for bias flipping

A one-layer LSTM is used for both encoder and decoder. ARAE model is trained with
two separate decoders, one for left-biased articles pψ(x|z, y = 0) and one for right-biased
articles pψ(x|z, y = 1). The encoder is trained adversarially by encoding the titles and
sentences from the article body from one class and decoding with the decoder corresponds
to the other class.

5.3.3 Vocabulary

We use GloVe [7] pre-trained vectors as word embedding for the neural networks rather
than the word indices in the vocabulary as ARAE’s implementation [4]. We use the
Wikipedia 2014 + Gigaword 5 version which was trained on a corpus of 6 billion tokens
and includes 400 thousand tokens. Each word in the vocabulary is represented by a
vector of dimension 300. Both the encoder and decoder also have a hidden layer of 300
units.

The vocabulary size V is a hyper-parameter and can be configured during the training
process. In our experiments, we only use the vocabulary size of 30000 tokens. Vocabulary
building is as follows:

• Tokenize all the sentences in the corpus

• Count the number of occurrences of each token and sort by token frequency in
descending order to make the vocabulary deterministic

• Prune by most frequently seen tokens from the sorted list
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• Look up the GloVe vector representation for each token

Following the setting from ARAE, we also add some special tokens into the vocabulary:

• <BOS>: begin-of-sequence token. The generator can add this token to the beginning
of a sentence.

• <EOS>: end-of-sequence token. The generator will generate this token to indicate
a sentence ends.

• <UNK>: unknown-token. Tokens that are not in the vocabulary will be replaced
by this UNK token.

• <PAD>: padding-token. When the length of a generated sentence is smaller than
the predefined length, the generator will add PAD tokens to the end of the sequence
until reaching the predefined length.

The following is an example of generated text with special tokens:

donald trump <unk> dominance leaves gop establishment banking on brokered convention
<eos> <pad> <pad> <pad> <pad> <pad>

5.3.4 Implementation

Since the ARAE model was implemented on Pytorch framework [41], we also base on this
implementation and extend the work using Pytorch. We also use Python for all of the
other work in this thesis such as data pre-processing and experiment result evaluation.

To evaluate the quality of the generated text, a Python library for the ROUGE metric
has been used to compute ROUGE scores. The model in this thesis is trained on servers
with high-performance GPUs. Details of hardware and software that are used for model
training are shown in Table 5.3.

The code repository of this thesis is available at

https://github.com/khoaln/master-thesis-fake-news-detection.

https://github.com/khoaln/master-thesis-fake-news-detection
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Information
OS Ubuntu 18.04.4 LTS
CPU Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz
GPU Tesla V100-PCIE-32GB
Cuda 8
Python 3.6.8
PyTorch 0.3.1
NLTK 3.5

Table 5.3: Detailed information on resources that are used to train the model and
perform the experiments
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Experimental Evaluation

The experiments are to examine how ARAE, a generative adversarial network combined
with discrete autoencoder, performs on bias flipping problems. The experiments are
conducted mainly on Webis Bias Flipper 2018 dataset, but there’re also some attempts
with data from Hyperpartisan News Dataset as well.

6.1 Experimental Setup

6.1.1 Model setup and parameters

The ARAE model consists of 4 modules: an autoencoder that contains one encoder and
two different decoders for different biases, a GAN generator model, a GAN discriminator
model, and a critic/classifier model. The architecture of those models and the parameters
giving the best experimental result on Webis Bias Flipper 2018 dataset are described
below.

1. Autoencoder:

• Word embeddings: both the encoder and the two decoders have an embedding
layer of dimension 300. The number of tokens is 30,004 in which 30,000
from the vocabulary and the other four are special tokens as mentioned in
Chapter 5.

• Encoder : is an one-layer LSTM with 128 hidden units. Input size is 300.

• Decoder : is an one-layer LSTM with 128 hidden units. Input size is 428.

• SGD optimization with learning rate 1

• Standard deviation of noise: 0.1

25
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• Dropout: 0

2. Generator:

• The generator is an ANN with two 128-units hidden layers, input size is 32
and output size is 128. Denoted as 32-128-128-128

• Activation function: ReLU

• Optimized by Adam, learning rate 5e-05

3. Discriminator:

• The discriminator is an ANN 128-128-128-1

• Activation function: Leaky ReLU, negative slope 0.2

• Optimized by Adam, learning rate 1e-04

4. Critic:

• The critic is an ANN 128-128-128-1

• Activation function: ReLU

• Optimized by Adam, learning rate 1e-05

• The critic is trained 5 iterations in every loop

The model is trained with a batch size of 128 and 500 epochs. The hyper-parameters
tuning is performed on the parameters below based on the reconstruction error as a
metric:

• Number of epochs: 100, 200, 300, 400, 500

• Autoencoder learning rate: 0.1, 0.5, 1, 5, 10

• GAN generator learning rate: 5e-04, 5e-05

• Critic learning rate: 1e-05, 5e-05

The experiments on Hyperpartisan News Dataset are performed following the model
setup and tuned parameters for the Webis Bias Flipper 2018 dataset. Because of the
long training time, we can only experiment with 200 epochs for "byarticle" data and 100
epochs for "bypublisher" data.
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6.1.2 Evaluation metrics

In the automatic evaluation, besides the ROUGE scores, we also leverage a simple
CNN-based classifier [3] to evaluate if the generated headlines have the same attributes
as the original headlines within the same bias. The model is trained by all news body’s
sentences from left-biased and right-biased articles of the Webis Bias Flipper 2018 dataset,
with a batch size of 96, the number of epochs is 100 and optimized by Adam, learning
rate 1e-04.

In an additional manual evaluation, the same sentences in the test set of the baselines [3]
can be used to generate the bias-flipped headlines. Then, we could hire some journal
experts to evaluate the generated text based on three questions (Q2, Q3, Q4) mentioned
in Chapter 5. Unfortunately, we couldn’t set up this in time for the thesis but it may be
useful for future evaluation.

6.2 Experimental Results and Discussions

6.2.1 Webis Bias Flipper 2018

Parameters Reconstruction error
lr_ae=1,lr_classify=5e-05,lr_gan_g=5e-04 4.03
lr_ae=0.5,lr_classify=5e-05,lr_gan_g=5e-04 4.48
lr_ae=0.1,lr_classify=1e-05,lr_gan_g=5e-05 5.45
lr_ae=1,lr_classify=1e-05,lr_gan_g=5e-05 4.08
lr_ae=10,lr_classify=1e-05,lr_gan_g=5e-05 3.33

lr_ae=5,lr_classify=1e-05,lr_gan_g=5e-05 3.17

Table 6.1: Reconstruction error with different learning rates

Table 6.1 shows the reconstruction error when experimenting with different autoencoder
learning rate, classifier learning rate, and the GAN generator learning rate. These
experiments are performed to examine which set of learning rates that can achieve the
lowest construction error after 100 epochs. From the results, we can see that (lr_ae=5,
lr_classify=1e-05, lr_gan_g=5e-05) gives the best result. The learning rates on the
critic and the generator are similar to the setting used in the experiments of text style
transfer from ARAE paper [4]. Each experiment of those consumes 17 hours for training
the model in 100 epochs.

From that result, the experiments are continuously conducted with multiple numbers
of epochs from 100 to 500 in order to examine the changes of loss and evaluate the
quality of generated headlines at different epochs. The result of loss values is reported in
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Table 6.2. We can see that the loss is reduced with more epochs. Due to the limit of

Epochs 100 200 300 400 450 500
Rec. error 3.17 2.52 2.14 1.81 1.68 1.57

Table 6.2: Reconstruction error at different epochs

time and resources on the scope of this thesis, we don’t increase the number of epochs to
check if the reconstruction error will be more decreased. We leave this for future work.

We also examine the quality of the generated sentences from each experiment. In order
to do this, one original headline from left-wing and one from the right-wing has been
chosen to evaluate the corresponding generated headlines.

Original Headline the ’muslim ban’ president is about to give a
speech on islam in saudi arabia

epoch 100th the speech is a free speech to make america on
about muslims in the world

epoch 200th the president is not a muslim speech to address
islam in saudi arabia

epoch 300th the president is about to make a muslim ban on
muslim countries in an era

epoch 400th the president is calling on muslim countries to
build a muslim ban in an effort to address the
muslim world

epoch 500th the president is about muslim countries in a
speech to the muslim world

Table 6.3: Generated left-to-right headlines at different epochs

Original Headline house republicans under pressure by trump to
deliver compromise bill for obamacare repeal

epoch 100th gop senators who voted for trump to repeal oba-
macare

epoch 200th house gop senate bill would require by republi-
cans to repeal obamacare by changing obamacare

epoch 300th house gop senate bill would allow them to keep
insurance for coverage and tax cuts to keep in-
surance through

epoch 400th house republicans would try to repeal obamacare
even if they fail to keep him for votes

epoch 500th house republicans would try to repeal obamacare
as much as bill passes than ever vote

Table 6.4: Generated right-to-left headlines at different epochs

Table 6.3 and 6.4 show examples of generated text between the opposite biases. The
blue color indicates parts of the generated sentences that try to keep the semantics
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(same event) as of the original headlines including the entities and phrases. The red
color mentions parts of the generated headlines that try to flip the original bias. Those
examples also show that the higher number of training epochs, the more meaningful
generated sentences are. It also tries to keep the generated headlines closer to the original
semantics but with flipped bias.

In order to perform the automatic and human evaluation and compare it with the result
of the baselines [3], we try to flip the bias of the same 100 headlines of the baselines test.
It includes 50 sentences from the left and the same number of sentences from the right.

We calculate again the ROUGE F1 scores on the generated headlines from both models.
The results are reported in Table 6.5. The ROUGE score is insufficient to evaluate bias

ROUGE-1 ROUGE-2 ROUGE-L
Baseline 0.24 0.06 0.20
ARAE 0.28 0.07 0.24

Table 6.5: Compare ROUGE in F1 scores with the baselines [3]

flipping quality [3], but it can be used to assess the ability to keep on the same events of
the generated text.

Accuracy
Original headlines 59%

Baseline 51.5%
ARAE 56.5%

Table 6.6: Accuracy of sentence-level bias classification on different data from the
simple classifier [3]

Table 6.6 reports the bias-classification accuracy using a simple CNN model. The model
is still far to become a highly effective bias classifier, but it can be used as a reference to
examine that the bias attribute in the generated text by the ARAE model is closer to
the bias of original headlines than the baselines.

6.2.2 Hyperpartisan News

We use the same settings and parameters that give the best result on Webis Bias Flipper
2018 dataset but with fewer epochs. The experiments on a small dataset, "byarticle",
show that a generative adversarial network clearly need more data to train and generate
meaningful sentences. With 50 epochs, the model only generates "the the the the ..."
for every original headline input. When the number of epochs is increased to 100, the
generated text quality isn’t improved much. It contains many repeated phrases such as:
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"the fbi has been been in the united states of the united states states the united states
states the united states states the united states states the united states states the united
states"

"the fbi s campaign is the president trump s campaign and the president ’s campaign and
the president ’s campaign"

The results are slightly better with 200 epochs. It’s able to generate different sentences
for different input and fewer repeated words. The meaning of the generated text and
bias flipping is still not good:

"trump also called a statement on friday night that he had been a muslim white house
and the white house"

"trump s comments about his wife s story"

"police say they were found on the news conference"

However, when the number of epochs is increased to 300 or more, the model only generates
one output for every original headline:

"the associated press contributed to this report"

It’s apparently difficult to train this model with a limited amount of data like the
"byarticle" dataset. The training time on this dataset is also very short, only 2 hours 20
minutes for 500 epochs.

Training on the bigger dataset, "bypublisher", takes a lot more time. It requires 22 hours
for 100 epochs. We can only perform two experiments with 100 epochs of training and
different learning rate.

Original and generated headlines Bias
agricultural group seeks to employ veterans left
environmental seeks to teach immigrants right
where have all the rock stars gone left
where we all the stars clash holds off spring right
get ready for spectre the next bond movie left
get ready for the next bond film right
coal industry suggests more mountaintop mining
bush appointee just walks out

right

coal industry rules created to amend mine spill
in

left

democrats seek to fix bug in obamacare right
democrats seek to fix obamacare in nuke left

Table 6.7: Generated headlines on "publisher" dataset after 100 epochs
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The examples from Table 6.7 show that the model can give a promising output with
just 100 epochs when being trained with enough amount of data. The bias of the input
headlines in "bypublisher" dataset is labeled by the overall bias of the publisher can also
be a part of the contribution to the result as a publisher often has their own writing
style and it’s different from each other. However, the model will need to be trained with
more epochs or other fine-tuned parameters in future work as the generated text still
doesn’t satisfy the semantic requirements and bias flipping.
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Conclusion and Future Directions

7.1 Conclusion

In this thesis, we have examined the abilities to flip the bias of news articles headline
using an adversarial model on several datasets. Our experiments indicate that, although
we achieve a slightly better result than the baselines in some metrics, the generative
adversarial network needs more effort to solve the task of bias flipping but still having
the content kept. Especially with the headline level as bias can appear at the article or
paragraph levels only.

Even though the results still need more improvements, ARAE shows potential in applying
adversarially trained models for bias flipping tasks with room for further research. The
next section will suggest some directions to study more in the future to improve the
model as well as extend the bias flipping problem.

7.2 Future Directions

7.2.1 Perform more experiments on hyperparameters tuning

As mentioned in Chapter 6, we can only execute the experiments with some set of
parameters based on the settings from ARAE paper due to the time constraints. During
the tuning process, we also use reconstruction error as the only target to optimize.
Involving other loss values could help to find a better configuration and may also reduce
the training time. We could try a higher number of epochs as well.

33
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7.2.2 Train with other datasets

The bias attribute of the news articles, especially the political articles, may have some
properties in common regardless of the source of publishing, author, or writing styles.
Training the model on multiple bias datasets can help to study more on this attribute.
That could be useful for research on an effective biased text generator or classifier.

7.2.3 Leverage the critic of the ARAE model to use as a Political Bias
Classifier

While working on bias flipping using ARAE, we see that the module critic has the
potential to become a bias classifier since it is used to distinguish real data and generated
text. We have tried the critic in some classification experiments but that’s not successful.
More research is needed in this aspect.

7.2.4 Automatic evaluation metrics

During this thesis and also from the conclusion from the baseline [3], the current metrics
for bias flipping problems seem to not complete and insufficient. Therefore, developing a
sophisticated evaluation metric is needed in this situation and its study is as important
as a bias-oriented generation or classification study.
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