
Title page for Master’s Thesis
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program/specialization:
Computer Science

Spring semester, 2020

Open

Author: Pariwesh Subedi

(author signature)

Instructor: Hein Meling
Supervisor(s): Hein Meling

Title of Master’s Thesis:

Deploying Credentials using the Libra Blockchain:
Design, Implementation and Evaluation

ECTS : 30

Keywords: Blockchain, Credential, Libra,
Permissioned

Number of pages: 83

+ supplement material/other
- Appendix A
- Appendix B

Stavanger, June 28, 2020

Deploying Credentials using the Libra
Blockchain: Design, Implementation and

Evaluation

Author:
Pariwesh Subedi

Supervisor:
Hein Meling

Department of Electrical Engineering and Computer Science
Faculty of Science and Technology

June 28, 2020

Abstract

Credential verification possess a unique challenge involving multi-disciplinary do-
mains throughout the process starting from certification to verification of credentials.
Even though technology has transformed many traditional implementations, cre-
dential verification is one of such implementation that still widely adopts traditional
paper-based approaches. This tend to become time-consuming, administration-
controlled and vulnerable to security threats that is evidently present in the system.
Standards like W3C’s verifiable credential and Mozilla Open Badges has been
drafted to approach digitization of credential. These standards can be incorporated
using blockchain solutions to address the need of transparency and tamper-evident
records in this multi-party credential verification domain. This thesis looks into
challenges of implementing a certification system using blockchain technology and
proposes a solution for on-chain verification for off-chain digital credentials. The
designed solution not only proves the achievement of credentials but also proves a
recipient’s association with a certifying authority while addressing security chal-
lenges present in paper-based approaches. Furthermore, features such as credential
revocation and timed credential makes it adaptable into multiple certification
scenarios.

Acknowledgements
I would like to thank my supervisors Hein Meling and Rodrigo Saramago for their
valuable guidance and constant feedback throughout the course of this thesis.

ii

Contents

Abstract i

Acknowledgements ii

Abbreviations v

1 Introduction 1
1.1 The BBChain Project . 2
1.2 Scope . 3
1.3 Contributions . 4
1.4 Outline . 5

2 Background 6
2.1 Blockchain . 6
2.2 Consensus . 7

2.2.1 Consensus in permissionless blockchain 8
2.2.2 Consensus in permissioned blockchain 9

2.3 Libra Blockchain . 9
2.3.1 Ledger State . 10
2.3.2 Libra Protocol . 11
2.3.3 Move Programming Language 14

2.4 Related Works . 18

3 System Design and Extensions 21
3.1 System Overview . 21

3.1.1 The off-chain layer . 23
3.1.2 The blockchain layer . 25

3.2 Extensions . 29
3.2.1 Permissioned issuers consortium 29

4 Implementation with Libra Blockchain 31
4.1 Libra System Components . 31

iii

CONTENTS iv

4.1.1 Modules . 32
4.1.2 Resources . 35

4.2 System Features and Algorithms . 41
4.2.1 Issuer . 42
4.2.2 Owner . 45
4.2.3 Holder . 46
4.2.4 Verifier . 47

4.3 Limitations . 48
4.4 Extensions . 49

4.4.1 Permissioned issuer consortium 49
4.4.2 Unique credential digest . 50

4.5 Use-case Analysis . 50
4.5.1 Driving Licence Certification 51

5 Experimental Evaluation 54
5.1 Experimental Setup . 54

5.1.1 Libra Network . 56
5.1.2 Test Client . 57

5.2 Experimental Results . 59
5.2.1 Gas usage . 59
5.2.2 Performance Evaluation . 61

5.3 Discussion . 62

6 Conclusion and Future Directions 64
6.1 Conclusion . 64
6.2 Future Directions . 66

List of Figures 66

List of Tables 68

A Experimental Data 70

B Attachments 71

Bibliography 72

Abbreviations

BLOB Binary Large OBject

BFT Byzantine Fault Tolerance

DID Distributed IDentifier

DoS Denial of Service

IPFS InterPlanetary File System

LAN Local Area Network

MVIR Move Intermediate Code

OBI Open Badge Interface

PBFT Practical Byzantine Fault Tolerance

PoS Proof of Stake

PoW Proof of Work

QC Quorum Certificate

RCN Research Council of Norway

VM Virtual Machine

W3C World Wide Web Consortium

XFT Cross-Fault Tolerance

v

Chapter 1

Introduction

Certification is the process of attesting achievement or status using official doc-
umentation. Certification awards a holder with a credential, also referred to as
a certificate, that can be presented as a proof of successful completion of the
certification process [1]. Similarly, verification is the process of verifying that the
presented credential is valid or not. This process of certification and verification
is widely adopted in different sectors in the form of educational degrees, driving
licence or any government-issued certificate [2].

In many scenarios, holders are presented with paper-based credentials that are easy
for handling from the holder’s perspective but should also be taken proper care
when storing it for a long period of time. For verification, this type of credentials
are generally equipped with security features that make it possible for a verifier to
check their presence to distinguish a valid credential from an invalid one. While
these securities features helps to verify a valid credential, there are fraudulent
businesses counterfeiting these documents [3] for monetary gain.

Difficulty follows when presenting paper-based credentials for verification as it
requires additional validations to prove its authenticity. In general practices, for
a strong document verification, holder starts by verifying copies of the original
credential with a valid authority who sign and seal these documents. This sealed
copy is then delivered to a verifier who should be aware of the standards and
practices necessary to verify the authenticity of the presented document. Any
damages to the seal during this process renders the copies invalid. This results in
a lengthy process and involves multiple parties to present and verify a certificate
on top of an already cumbersome certification process [1].

1

2

Certifying authorities have also opted for digital certifications to ease this process.
For this, a certificate is signed by the issuer and is considered valid as long as the
signature in the digital certificate is verifiable. This form of certification makes it
easier to issue and validate a certificate over the traditional approach. But, this
approach also requires the issuer to add and maintain resources while a digitally
signed certificate requires continuous resigning to keep it valid for a prolonged
period of time. Moreover, this approach centralizes the process creating a single
point of failure in the system.

While there is no easy way for a third-party verifier to verify the authenticity
of certifications [4, 5], it also poses difficulties to the certifying authorities and
holders in this process of issuing and presenting a certificate. Moreover, traditional
paper-based credentials summarizes different information of issuer and the holder
which in many cases reveals more information than what is actually required [3].
This defines a need for a solution that respects users’ privacy and eases the process
of for all involved parties.

We explore a blockchain-based alternative for the certification-verification problem.
A blockchain-based distributed ledger provides transparency, and tamper-evident
records in the system which elevates trust in the system’s certification procedure
and reliability between all involved parties in this process [6].

This thesis aims to answer the following research questions:

• Can Libra blockchain provide decentralized, transparent certification and
verification of digital credentials?

• Can selective disclosure be adopted to present the least information during
certificate verification?

• Can document counterfeiting be discouraged and detected through blockchain
application?

1.1 The BBChain Project

BBchain project is a research project funded by the Research Council of Nor-
way(RCN). The goal of this project is to design a distributed systems solution that
prevents loss and fraud of diplomas and potentially any other kind of credentials,

3

while increasing the transparency and trust on the institution’s procedures [7]. The
BBChain project aims are defined as the following:

• Efficiency: Limit data circulation in the blockchain system to improve effi-
ciency.

• Security: Provide security guarantee with selective data disclosure.

• Trustworthiness: Build user credibility by linking a user’s biometric data
with blockchain.

Initial efforts to achieve these goals is being researched through smart contracts [8]
in Ethereum based solution [7]. Smart Contracts in Ethereum and Modules in
Libra blockchain are similar in several aspects but a major difference between
them lies in how data is defined and stored in these platforms. This brings an
opportunity to explore a different system design and evaluate the pros and cons of
the different implementation.

1.2 Scope

While the thesis focuses on solutions to the document verification problems, it
assumes that the actual credentials are stored off-chain and the blockchain works
only as an issuing and verifying platform. Also, other correlated problems such
as, associating blockchain address to a person or distributing and storing Libra
addresses of the trusted issuers are relevant but not within the scope of this thesis.

In regards to the BBchain project, the work done in this thesis revolves around
the efficiency and security aspect. While adding trust through biometrics is
important for the BBChain project, the scope for this thesis work doesn’t explore
this dimension. We focus on exploring alternatives of the Ethereum solution, by
designing a blockchain application on Libra blockchain, devising testing platform
and evaluating its features and performance metrics.

This thesis scrutinizes certification in an educational setting and proposes a
blockchain-based solution that can also be employed in other scenarios too. We
use Libra blockchain and Move programming language to develop this solution.

4

1.3 Contributions

Following are some of the contributions made during the period of the thesis work.

• Define credential verification interface for BBchain project so that issuing
and verifying clients can connect to the blockchain without being concerned
about the underlying architecture/platform of the blockchain technology.

• Define credential account as a possible solution to store issued credential
with Holder.

• Define Libra resources to prove the holder’s enrolment with issuer. More-
over, earmarking approach of credential registration allows receivers of the
credential to prove their association with the issuing authority.

• Propose an extension for permissioned issuer registration.

Besides these primary contributions to the BBchain project, we have made contri-
butions to the Libra open source projects and developed some tools to simplify
development, test and host on a custom Libra network through the following:

• Addition of test shell scripts to open source Libra blockchain developer tools
repository [9] that helps easier development and testing of modules and
scripts developed in Move programming language.

• A bug in the core Libra project was identified and reported to the development
team [10].

• Different components, such as the validator, faucet service were published as
docker containers with the capability to publish custom modules and scripts
that might help developers to test publishing modules outside the Libra
network.

• Kubernetes[11] configuration scripts to setup Libra network was developed
and published [12].

5

1.4 Outline

Next chapters in the thesis are outlined as follows:

Chapter 2 introduces background about blockchain and presents a comparative
analysis of related works.

Chapter 3 highlights system design and presents extensions to it for permissioned
inclusion of authoritative nodes as issuers.

Chapter 4 presents the system architecture and implementation details specific
to Libra blockchain.

Chapter 5 presents experimental setup, evaluation procedures and their results.

Chapter 6 concludes and presents a suggestion for future work.

Chapter 2

Background

This chapter presents the background related to this thesis work. We start by
presenting the core concept relating to blockchain, specifically, Libra blockchain
that will help to understand the following chapters. Further, we discuss related
works done in the field of document verification using blockchain discussing different
features offered by these solutions.

2.1 Blockchain

A blockchain is an ever-growing digitized and decentralized data registry. Blockchain
provides an efficient way of storing data in a transparent and tamper-evident ledger,
making sure that everyone has access to the entire history of data at any point in
time. A blockchain definition needs an introduction to hash function, hash-chain
and Merkle tree data structures first.

Hash Function A cryptographic hash function H, H(x)→ y is a deterministic
function that maps input (x) of arbitrary size to a output of defined length [13].

Hash-chain A hash chain is a data structure where data is stored in the form of
blocks. These blocks are stored as a linked list, where pointers to previous blocks
are the cryptographic hash of those blocks [14]. For every block b in the hash-chain
there exists b.prev that references the preceding block, a field b.h−1 that refers to

6

7

hash of the previous block and b.data that refers the data in the block. Then, hash
of block b can be computed as H(b.h−1||b.data).

Merkle Tree Merkle tree provides a method to hash multiple data values such
that they can be combined into a single representation[13]. It is a binary tree
where every node in the tree represents a hash value h such that, for a leaf node, h
represents the hash of data stored in the node, h = H(D) and, for inner nodes, h
is the hash of concatenated hash of its children, h = H(leftchild||rightchild).

Formally, blockchain can be defined as a hash-chain where the data entered in each
block is the root of a merkle tree [13]. We can broadly divide blockchain technology
into two different types, permissioned and permissionless [15].

A permissionless blockchain is a type of blockchain system that is open and decen-
tralized. Since memberships are not managed, any node in this blockchain network
can participate or disassociate at any point in time [6]. The popular Bitcoin [13] and
Ethereum [8] are example of such blockchain system. A permissioned blockchain,
on the other hand, are controlled by a single entity or federation. Memberships in
the network are managed by the central authority and this governs the participation
of nodes in the network. Hyperledger [16] and Libra [17] are examples of such
permissioned blockchain.

2.2 Consensus

Consensus, grammatically, refers to a general agreement. In distributed systems,
the term consensus applies when two or multiple processes in a distributed network
need to reach an agreement on a value that is needed for computation of a common
task [18]. Blockchain systems usually run a consensus algorithm to agree on the
data to be stored in the system. A consensus algorithm should follow the following
properties:

• Safety: a consensus algorithm is safe if all involved nodes produces the same
valid outputs [19].

• Fault Tolerance: a consensus algorithm is fault-tolerant if it can recover even
if nodes involved in consensus fails [19].

8

• Liveness: a consensus algorithm is live if all non-faulty nodes involved in
consensus eventually produce a value [19].

In the following section, we briefly introduce consensus algorithms in different
blockchain architecture.

2.2.1 Consensus in permissionless blockchain

Choices of consensus algorithm in permissionless blockchain defines usability and
adaptability of the system. Fork in blockchain, consensus failure, poor performance
and dominance of nodes are some risks that a consensus protocol must address [19].
Following we present two widely adopted approaches for permissionless consensus:
Proof of Work(PoW) and Proof of Stake(PoS).

Proof of Work PoW restrict the ability of a node to update the blockchain ledger
by requiring nodes to compete on solve a cryptographic puzzle. As an incentive of
solving the problem, the node that solves it receives a reward in the form of a native
cryptocurrency. Some prominent blockchain system like Bitcoin and Ethereum
employs PoW as their consensus algorithm.

An example of PoW consensus algorithm can be defined as, for an integer d, the
PoW function with difficulty d takes data item and returns a hash value(hP oW)
and a nonce value of random bits. In this case, a PoW solution is valid if 1) the
hash of data item combined with the nonce value equals the hP oW , and 2) the first
d bits of hP oW are 0. This form of consensus is identified to be costly in terms of
energy usage [20] thus a shift towards PoS is seen [21].

Proof of Stake The Proof of Stake approach solves the problem of high energy
cost in PoW. This consensus approach selects random stake-holders in the system
to append block into the blockchain. One of such implementations is the Follow-
The-Satoshi algorithm, where a random native currency, is selected at random and
the owner of that currency can append to the blockchain and thus receive a block
reward for it. Generally, if users misbehave when adding a block in the system,
their stake of coins deposited are slashed and users are punished [22].

9

2.2.2 Consensus in permissioned blockchain

A permissioned blockchain platform allows only known participants to participate in
the consensus to append blocks in the blockchain. Nodes in the network are usually
semi-trusted and are comparatively fewer than in permissionless architecture and
hence allows a higher number of transactions in a unit time than compared with the
permissionless architecture. A permissioned block can run different alternatives of
consensus mechanisms. Algorithms such as Paxos, RAFT and different Byzantine
Fault Tolerant(BFT) algorithms are known to solve the consensus problem in such
architecture [14, 15].

One of the popular permissioned blockchain is the Hyperledger Fabric [16]. Trans-
actions in this blockchain system are almost immediate as it trusts the nodes in
the system and holds identifiers for each node. It supports different consensus al-
gorithms such as Practical Byzantine Fault Tolerance(PBFT), SIEVE, Cross-Fault
Tolerance(XFT), etc to run consensus in the network. It is best suited for a limited
number of nodes in the system and cannot be scaled up efficiently if required [19].

Byzantine Fault Tolerant Protocol - Hotstuff Byzantine Fault Tolerant refers
to the ability of a system to manoeuvre through unpredictable failures of its
components. Hotstuff is one of such leader-based BFT protocol [23]. It is a
partially synchronous BFT protocols allowing a leading node to run consensus at
the speed of actual network delay, and, with a communication complexity that is
linear to the number of nodes running the protocol. The Libra blockchain that
we discuss in this thesis work uses a variant of the Hotstuff [23] protocol to run
consensus amongst the nodes in its network.

2.3 Libra Blockchain

Libra blockchain is a permissioned blockchain system that uses the Libra protocol
to govern the workflow of different components in the system while Move pro-
gramming language defines the core application workflow of the blockchain. All
the permissioned node, known as validators, jointly maintain a single-versioned
distributed database that stores resources created by the blockchain applications.

10

Libra blockchain aims to develop as a permissionless system over time, but, the
initial governance that is needed in the system is provided through the member of
Libra association acting as validators in the system. This makes it a permissioned
system in this initial stage. It has interfaces available to add a new validator
or remove and anyone in the network can propose themselves for the position
of a validator but they are only given a validator privilege if the majority of
validators agree to add them into the validators consortium. The transition into
a permissionless architecture is planned to use PoS based consensus protocol
giving validators with voting rights that are equivalent to their possession of Libra
coins [24].

In its core, consensus in Libra in the initial stage is carried out using a Byzantine
Fault Tolerant(BFT) protocol, referred to as the Libra Byzantine Fault Toler-
ance(LibraBFT). The consensus agrees on a state of the distributed database.
Similarly, applications in the blockchain is defined using Move which allows users
to define custom programming logic as modules and data created in the database
through the modules as resources. Resources are also referred to as programmable
resources as it adheres to rules defined by developers in the modules that create
them. The distributed database holds modules and programmable resources within
Libra accounts and are authenticated by public-key cryptography [17, 25].

Accounts in Libra has a private key, used to sign a transaction and a public
verification key. Transactions submitted by libra accounts are recorded in an
ever-growing Merkle tree where every leaf node in this tree represents a transaction.
All transactions are secured through digital signature, which can be one of Ed25519
or MultiEd25519 signatures in the Libra ecosystem. Each digital signature scheme
is associated with a unique identifier [17]. The hash value of public key combined
with this signature scheme identifier generates the base for Libra address.

2.3.1 Ledger State

The state of a blockchain at a particular database version is the ledger state. The
ledger stores data embedded as key-value pairs where a Libra account address is
the key and it is linked to values that represent the modules and resources present
in the account. Validators should always be aware of the latest version of the ledger
in order to execute a submitted transaction. Transactions submitted by clients are
executed against this ledger state updating the database to a newer version.

11

An example of ledger state can be seen in figure 2.1. Here, BBChain represents
a Libra address that published the Issuer module. Other addresses, University,
Faculty, Course and Holder don’t have any modules published but store resources
created from the Issuer module. The dotted arrow line represents logical link
between module and the resources created from the module.

Figure 2.1: Example of ledger state defining how modules and resources are
embedded as values of the Libra addresses key.

2.3.2 Libra Protocol

Libra protocol defines interaction and communication between validators and clients
of the blockchain system. Validators behaviour is governed by procedures that
are defined in the module that creates them. Modules published by a particular
address are unique and are stored in the database under the account which publishes
them. Similarly, resources are also unique based on the module that creates them.
Resources are also stored within a Libra account address that holds them but

12

are separately stored than the modules. This differs from the popular Ethereum
architecture, where the procedures and the data created are stored together [8].

Validators

Validators are the nodes in the Libra blockchain that are defined as the part of the
validator set. Nodes in this validator set are responsible to carry out consensus
using the LibraBFT protocol and agree upon the transition of blockchain state
from δ to δ1 based on the new transaction T 1. Any transactions that are agreed
upon by the validators are stored into the ledger and are immutable. Hence, a
validator node does not always need to hold a copy of the entire ledger but only
the most recent ledger state to move the blockchain from a current state to a new
state [17].

Figure 2.2: Workflow in Libra protocol

Validators are managed through a Move module and are equipped with an ability
to vote to add a new validator into the validators set or to remove existing validator
from the validator set. Even though this will not be possible in the initial stages
when blockchain is released, it is planned to be rolled out in phases [24].

Libra Byzantine Fault Tolerance Protocol LibraBFT protocol is an adaptation
of the Hotstuff protocol [23] with a goal to support 100 validators in the initial stage
and 500-1000 in a longer period [24]. Some changes done over Hotstuff protocol
are:

13

• Validators sign on the block rather than a sequence of transactions. This
makes the protocol resistant to non-deterministic bugs and allows the client
to authenticate Quorum Certificate (QC) while reading from the database.

• Removes the need of synchronized clocks among validators by adding a
pacemaker that notifies validators of timeouts and a quorum of timeouts is
expected before moving to the next round.

• Leader election is handled by a non-deterministic function that selects the
next leader at random. This decreases the time which mitigates risks from a
DoS attack on the leader.

• Employs aggregation of signature on a Quorum Certificate. This preserves
the identity of validators signing it.

Validators receive transactions and share it with other validators in the system
using the shared mempool protocol. In every round of the LibraBFT protocol, a
validator node is assigned the role of a leader. This leader node is responsible to
propose transactions as block. Any validator that receives this proposal checks its
voting rules and determines if it should vote for the certification of the block or
not. If it accepts to vote on the block then it executes the transaction separate
from the blockchain system resulting in an authenticator that is sent to the leader
along with the signed block. The leader collects these votes and broadcasts a QC
once more than 2f + 1 validator votes are collected, where f represents the number
of failed nodes. The validators vote on the authenticator as part of the consensus
protocol. When a transaction is committed at a version i, the consensus emits a
signature on the entire state of the database at that particular version. Then, a
block is considered as a committed block once two other blocks are committed over
it [17].

Clients

Clients in the Libra blockchain are the nodes that submit transactions in the system.
The transactions can be submitted to any validator and it will be processed by the
leader node from the validator set. Read queries submitted to the validators receives
response along with a signed authenticator for the latest version of the database
known to the validator. Clients can also hold the copy of the entire database and

14

send responses to other clients if they query for the data too. The data returned
from a validator or clients can always be verified with the authenticator from the
response [25].

2.3.3 Move Programming Language

Move is a programming language developed for interaction in the Libra blockchain.
It defines the three most basic components of the blockchain [17], which are

• Modules

• Transaction scripts

• Configurations and extension

Modules allow users to define custom code blocks and data types. Transaction
script invoke these code blocks through a compiled move byte code. Similarly,
configuration and extensions in the Libra blockchain defines the working of different
core Libra modules that defines Libra accounts, validator governance and blockchain
configuration and is only accessible to a predefined association’s address [26].

Modules and transaction scripts can be better understood with an example of a
transaction in the Libra network. Libra coin is an example of a Libra resource that
is defined using LibraAccount module. So, if a Libra account wants to transfer
Libra coins from their account to another account then this is triggered through a
transaction script. This particular transaction script engulfs Move bytecode that
invokes the transfer procedure in the LibraAccount module. This triggers the code
block defined in the LibraAccount module resulting in the transfer of Libra Coin
from one account to another. The simultaneously emits two transaction events,
one when the balance is deducted from the sending account and another when the
balance is added into the receiving account.

Modules

Move modules are responsible to define resources and procedures for changing or
deleting the resource. A module declares resources and procedures to create, update
or delete these resources [26]. A constraint that applies to modules published in

15

a Libra account is that a module should be uniquely named within an account.
Considering figure 2.1 as an example, BBChain address cannot publish another
module named Issuer but the Course can publish a module named as Issuer. Hence,
it is important for the clients to know the address of the module publisher before
they can interact with any of their published modules.

Resource A resource in Libra protocol is data owned by an account which has been
authenticated using public-key cryptography. The type of each resource is declared
by the module that defines it and it can be referred with the combination of the
module type, address, and name of the resource [17]. Referring to figure 2.1, the
type of resource with the University address is BBchain.Issuer.IssuerResource.
To retrieve the same resource a client would request University/resources/B-
Bchain.Issuer.IssuerResource. This architecture allows each account to store a
maximum of one resource of a given type. Since a resource can be an arbitrarily
complex data type, it can hold simple data types such as integer and string and
other complex data types such as other resources and structs too allowing a single
resource type to store a magnitude of data.

Any associated rules that modify, publish, or delete the resource are declared in
the module. The safety and verification rules of Move prevents any other module
to modify a resource that is not defined by it. Also, modification of resources can
be restricted through procedure definition in a module.

Transaction Script

A transaction script is also written in Move programming language. A compiled
transaction script generates move bytecode which is sent along with arguments as
a part of a transaction. A successful transaction then produces a writeset as its
output and it is written to the ledger by the leader node only after a consensus
agreement over it. An output of a transaction also results in an execution status
code that defines if the transaction ran successfully or not, gas usage, which defines
units of gas used in processing the transaction and an event list that holds all the
events emitted during the transaction. A transaction sender signs the submitted
transaction which undergoes validation and verification in a validator’s Move
Virtual Machine before it is published among other validators [27].

16

Figure 2.3: Processing transaction in Libra

Transaction Fees The Libra protocol charges transaction fee (defined by gas
usage in a transaction) to manage the use of resources in the system. The fees are
deducted after a transaction completes but a check on if an account can execute a
transaction based on the owned Libra coins is done prior to executing a transaction.
If the account runs out of coins during the execution, the transaction reverts but
the gas used is not reverted [17, 27].

17

Events Events are outputs that are produced when running a transaction. They
provide an effective measure to verify the successful execution of a transaction.
In a system where transaction failure is a possibility, the event gives an overview
of what happens with the transaction when processing it. All the emitted events
are associated with a unique key that identifies the structure through where the
event was emitted and the payload [27]. Once a transaction completes successfully,
all the emitted events are stored in the ledger history which can prove successful
execution of the transaction at any point in time after the execution.

Move Virtual Machine

A transaction submitted to a validator first interacts with the Move Virtual
Machine (Move VM). The Move VM validates the correctness of the submitted
bytecode before it is processed by the receiving validator or broadcasted to other
validators [28].

A module or script written in Move Intermediate Representation (MVIR) or Move
programming language is compiled to Move bytecode first, This converts structured
control flow to unstructured and complex expressions into smaller bytecode that
manipulates an operand stack. This bytecode is then submitted to one of the
validator node that validates this transaction and broadcasts it to other nodes so
that the transaction is executed in the next epoch of the consensus algorithm [17].

Every validator node is equipped with Move VM. The Move VM implements
transaction in a safe and isolated environment away from the network first before
broadcasting them. The virtual machine implements a bytecode verifier and an
interpreter for the move bytecode. As presented in figure 2.3, the submitted
transaction is first checked for a valid signature and a minimum amount for
transaction execution is checked in the sender’s account. After this validation, the
submitted bytecode is verified and executed locally. Any error during the validation
and verification process generates an error and discards the transaction while error
in execution is recorded in the ledger and fees for executed statements are charged
[17, 27, 28]. If no errors are encountered, the transaction is executed and a fee is
charged for the execution of transaction.

The Move VM validates data structure in the submitted bytecode to be one of
boolean, unsigned 64-bit integers, 256-bit addresses, unsigned 8-bit integers, structs

18

resources, or references. During the development of modules and scripts, the
Virtual Machine also provides an interface for developers to run end-to-end tests
on the source code [27].

2.4 Related Works

Majority of digitally signed documents are stored for several years. Validity of these
signed documents is defined by the validity of the signer’s public key. Another way
of authorizing validity to a document is by time stamping the document when it is
signed. This timestamp defines the period of validity for the document. There are
many online services that offer to sign digital documents as a service, but they too
re-sign documents periodically to retain its validity [29] for a longer period of time.

As blockchain is employed to verify a document’s authenticity it is equally important
to discuss how a credential is stored. There are generally two approaches to storing
data in a blockchain. First is to store data embedded in the chain, and the second
is to store the data outside the blockchain. The second approach, referred to as
off-chain storage [29, 30] only stores a hash that represents the content stored
outside the chain. Thomas Hepp [30] presents off-chain storage as a viable means
of storing data because it can be referred to with a smaller data size and it removes
the overhead computation for variable block sizes. This benefits a blockchain
application by decreasing the size of each transaction which in turn decreases the
cost per transaction and fits comparatively many transactions in the same block.

Using the first approach, the content of the blockchain is deemed valid based
on the hash of the most recent block published on a public, third-party publi-
cation service [31]. After a few years, systems like Bitcoin allowed a different
trustable approach of assuring signature timestamp on a signed document based
on block mining time. Clark and Essex suggested using timestamps as a part of
Proof of Work(PoW) in "CommitCoin" [32] which can later work as a proof for
when a commitment was made. Similarly, Stavrou and Voas discuss combining
trust and accuracy from a timestamping service with a blockchain system [33].
OpenTimestamps is one of such scalable project that allow timestamping through
bitcoin.

In 2012, Peter Todd presented OpenTimestamp [34] that defines rules to create
publicly verifiable timestamps that can be proved to have been created before the

19

Solution Functionalities
Verification Revocation Selective Disclosure Counterfeit protection Adaptability

Blockcerts [36] � � - � 4
Hypercerts [37] � � - � 4
Cerberus [3] � � � � 4
UNIC [41] � - � 4
UZHBC [42] � - � 4

� = corefeature - = no support N = supports multiple certification platforms
� = partial support 4 = only supports education certification

Table 2.1: Comparison of functionalities and supported certifications of different
certification-verification solutions

time when it is verified. An extension to this protocol was presented by Brandoli
with a solution for scalability problems that allows aggregation of documents in a
single transaction using Merkle tree architecture [35].

Digital Certificates Project developed Blockcerts [1, 36] for blockchain-based cer-
tification verification and issuance system using Bitcoin blockchain. Blockcerts
provided verification and revocation functionality but a limitation with this so-
lution was that the revocation of certifications were centralized which posed a
risk to the system. Hypercerts was proposed by Joao Santos as an extension for
Blockcerst to handle the revocation mechanism using Ethereum blockchain [37]
and InterPlanetary File System(IPFS) [38] to store revocation proofs. Cerebrus
was then proposed in 2019 as a solution with on-chain revocation, off-chain storage
and selective disclosure [3] for verification.

An education records verification solution was proposed by Hau and Li [39] in
Ethereum using an external database to maintain off-chain educational records and
aggregating a SHA256 hashed value of education record in a Merkle tree structure.
In 2017, SAP developed TrueRec digital wallet leveraging the storage of academic
certifications in Ethereum [40].

Several efforts have also been made to issue or verify education certificates by edu-
cational institutions using blockchain, the first being University of Nicosia(UNIC)
that issued its first digital certificate for one its courses in 2015 [41]. University of
Zurich(UZHBC) has also developed a blockchain solution [42] to verify diplomas
issued by the university. Similarly, efforts to incorporate blockchain for educational
credential verification in national level can be seen in India [43] and Malaysia [44].

W3C has drafted a standard for "Verifiable Credentials" as a digital and tamper-
evident form of physical credentials. Verifiable credentials have the flexibility to
be linked with real-world entities through Distributed Identifiers(DIDs) and can

20

support different types of credentials [45]. A verifiable credential can be presented
for verification using a verifiable presentation that presents the holder’s ownership
of the credential through a digital signature scheme.

Similarly, In 2011, Mozilla and MacAurthur foundations started working on the
Open Badge Interface(OBI) to represent minute forms of credentials in the form of
badges [46]. By the end of 2013, different implementations, such as Moodle [47],
Blackboard [48], and Canvabadges [49] were created based on the OBI. Badges
in this standard can be used to present comprehensive information about an
achievement and work done to achieve it. Holder’s who hold these badges can
store it in a "Backpack" which allows them to import, maintain and scope these
badges [50] from different platforms.

Chapter 3

System Design and Extensions

In this chapter, we discuss design decisions and methodology that were analysed
and adopted in this thesis. We start by defining the system overview where we
present how a certification authority and their organizational architecture can
be mapped into the proposed blockchain application. Next, we discuss different
system entities and functionalities that they are offered in the solution.

While our goal is to develop an application that can be adapted into different
certification scenarios, we discuss this chapter with references to certification in
an educational institution. This approach helps to better explain the design and
present clear ideas by referencing it with real-world processes and entities.

3.1 System Overview

The proposed system allows credential issuers, stakeholder of the issuing authority
and recipient to jointly verify, validate and deploy credentials in the system. Our
approach of on-chain verification assures that the values recorded as credentials
are all registered by the issuer, signed by the issuing stakeholders and validated
by the holder while increasing transparency in the organization’s procedures for
credential issuance.

Diverging from the traditional approach of summarizing all information in a single
certificate, we break down certification into smaller, uniquely verifiable units
referred to as Credential in the designed solution. These smaller units can then be
combined into a single data structure that can be used to jointly prove achievement

21

22

of all the smaller units of credentials within it. This approach allows verification of
a single credential or aggregated credentials as a single unit slashing the need of
presenting all information about credentials stored in the aggregation.

We define 4 different entities in the proposed system 1) issuers, who collectively
represent entity that registers earmarked data structures for their eventual holders
2) owners, who are the authoritative entity within an issuing organization and
are responsible to verify the registered credentials and sign them 3) holders, who
hold credentials awarded by the proposed system, and, 4) verifiers, who can be
any address in the network that wants to verify a credential issued through the
blockchain application.

Figure 3.1: An example of educational organizational structure and its transla-
tion into different system entities

We present an example of translating different entities of a hypothetical educational
institution into system entities in figure 3.1. Considering a hierarchical organi-
zational structure, the topmost entity, the university, represent the root-issuer.
Similarly, other issuers following the root-issuers are called sub-issuers. Here, de-
partment, faculty and courses are sub-issuers in the system, where the department
is sub-issuer of the university, faculty is sub-issuer of the department and course is
a sub-issuer of the faculty. This translation allows each entities at different levels
to be identified as issuers in the system who have an ability to register earmarked
data structures for holders in the system.

23

Similarly, each issuer entity can register its owners, who represent stakeholders
responsible to verify the earmarked data structures. For a course, we see that
instructor, evaluator and faculty are the owners while there are three registered
holders representing students of the course. Here, students receive credentials
after successful completion of each course work. Upon completion of all course
works these credentials can then be aggregated into a credential proof representing
student’s achievement in the course. Similarly, aggregation of multiple credential
proofs can be performed to generate a credential proof that represents a university
degree. The credentials and credential proofs are stored in a holder’s credential
account data structure.

As shown in figure 3.2, entities in the system interact with blockchain as well as
other resources outside the blockchain. Hence, we have divided the system into
two layers of operation: off-chain layer, where crucial operations such as registering
credential into off-chain storage is performed and the blockchain layer, where the
data from the off-chain layer is incorporated into the blockchain application. Both of
these layers depend on each other to complete a document issuance, authentication
and verification workflow in the system.

Figure 3.2: High-level overview of interaction between system entities, off-chain
components and the blockchain

3.1.1 The off-chain layer

We refer to operations performed outside the blockchain application as the off-chain
layer. This includes workflows such as saving digital certification to an off-chain

24

storage and presenting verifiable data as a certification holder to the verifier. In
figure 3.2, any arrow lines that do not interact with the blockchain are operations
performed off-chain. These operations can be done with a client-side application
that interacts with the blockchain. We discuss these operations below:

Distributed off-chain credential storage

This thesis is scoped around building trust for an off-chain credential and not on
defining the data structure of that credential. Hence, we briefly present how a
credential might be stored off-chain and how it can be referenced in the blockchain
application.

A credential that is issued to a holder is stored off-chain and can be in the form of
verifiable credential [45], open badges [46] representation or a similar representation
that presents information of the holder, issuer and subject for which a credential is
awarded for among other details. These form of credentials are usually JSON-like
data structure that can vary in terms of sizes. Storing these resources on-chain
creates unpredictability in the data structure in the system while simultaneously
increasing volume of data transferred in a transaction, increasing its cost and
decreasing throughput of the system. This creates a need for a tamper-evident
off-chain storage layer that stores these certifications which can be referred from
the blockchain application.

We propose the use of distributed storage protocols such as the InterPlanetary File
System (IPFS) [38] to add trust and tamper-evident mutability to any certification
published off-chain. Protocol like IPFS provides similar guarantees as blockchain
for tamper-evident record keeping. It divides a published certification file and all
the blocks within it among peers in the network resulting in a cryptographic hash
value that represents the data stored in the distributed storage. We refer to this
hash value as the credential digest in the modelled blockchain.

Credential Digest Credential digest, or simply digest, is a hexadecimal value
representation of a certification data that is stored off-chain. While we presented
in the above section how a trusted cryptographic representation to an off-chain
credential can be generated and registered in the form of on-chain credential digest,
it is equally important to build trust around this value on-chain to prove its

25

authenticity and validity. Hence, embedding this as a part of the blockchain data
structure allows different stakeholders to verify and vote for its authenticity and the
issuer can control its validity by issuing or revoking it through on-chain procedure
invocation.

Off-chain sharing of certification

The process of presenting a certification received through the blockchain application
to any real-world entity for verification is an off-chain process. The blockchain
guarantees that the recipient can selectively fetch verifiable data from the applica-
tion. This information can then be shared off the chain and be used by anyone
with an address in the network to verify its authenticity and association with the
holder.

3.1.2 The blockchain layer

The blockchain layer of the proposed solution is made up of the blockchain appli-
cation and the interfaces that can be used by different system entities to interact
with the blockchain application. We briefly introduced different system entities in
section 3.1, and, in the following text we further look into specific functionalities
available to them.

System entities and functionalities

Issuer

Issuers in the system are authoritative entities. They are responsible to handle
holders enrolment and to earmark credential digest as part of credential for holders
into the system.

Issuer entity are defined such that the credentials issued through them automatically
has features from the issuer if not specified manually. For example, owner definition
in an issuer’s resource dictates an access control mechanism for Libra accounts
to sign a registered credential, quorum defines the number of owner verification
needed to consider a credential as owner-verified. This information is translated
into credentials as they are registered into the system. Thus, credential itself holds

26

information about the issuer, owners and signatures from the owners which will
later aid in the credential verification workflow.

Different issuer-specific functionalities that the system provides are:

Earmark and aggregate credentials An issuer entity can either be a root issuer
that represents the highest level authority in an organizational structure or a sub
issuer that can be an issuer at any level below the root issuer. A root issuer
is responsible to instantiate and earmark a credential account for holders upon
enrolment and to generate the final credential proof that represents achievement
of the holder. In an education setting, the aggregation performed by root issuer
can be understood as the final aggregation of credential proofs that represents all
courses to generate a university degree in the form of a new aggregation. Similarly,
both root issuer and sub-issuers can register earmarked credentials into the system.
A sub issuer holds information about its parent issuer and the root issuer allowing
users to define a hierarchical structure with multiple levels of sub-issuers. We can
represent issuers in an organization in a Tree data structure where a root issuer is
at depth = 0. Any subsequent sub-issuer holds the information about its parent
issuer and the root issuer.

Figure 3.3: An example of issuer earmarking three credential hash representing
certification of three courses into the system as three different credential

Revoking an issued credential An issuer can revoke an issued credential and
save it as revoked resource. A list of revocations holds all the revoked resources and
is registered with the issuer who issued the credential or aggregated them. This
guarantees a cheap and safe revocation discovery during the process of credential

27

verification. Upon revocation, credential and credential proof resource is removed
from the holder’s credential account and moved into issuer’s revoked resource.

Timed credential Validity of an issued credential can be timed by defining a
validity start and end time in the credential data structure. Any credential without
this time definition is considered to be valid indefinitely. Creating a timed credential
automatically sets this time on the credential proof data structure that aggregates
this credential. These data structures lives within the credential account even
after the credential validity expires as it represents a credential once achieved by a
holder.

Owner

Similar to instructors and evaluators of a course in an education system, we define
owners to represent such authoritative stakeholders for an issuing entity. They are
responsible to verify an earmarked resource and work as a validator in the process
of translating an earmarked credential into an issued credential.

Figure 3.4: Quorum
requirement for verifi-
cation of Earmarked

Credential(EC)

Figure 3.5: Translation of Earmarked Cre-
dentials into Credentials

Verifying an earmarked resource Once an issuer earmarks a credential with
off-chain digest value for a holder, it is then the owner’s responsibility to verify and
validate the digest’s association with the holder. This verification is an off-chain
process and requires the check of the associated holder, issuer, time of validity of
the off-chain credential with the on-chain earmarked credential. Upon verification
and validation, owners sign the hash of combination from issuer address, holder

28

address, credential digest and validity start and end time generating a signature
that represents the owner’s vote towards the proof of validity and association of a
credential with the defined holder. An earmarked credential waits until a quorum
of signatures are collected in the credential before it is moved into an earmarked
credential proof as shown in figure 3.4 and figure 3.5.

Holder

Holder represent entities in the system to whom a signed credential is awarded.
Upon successful completion of Issuers requirements to achieve a credential proof,
holders can claim an aggregated credential proof from the Issuer.

As a holder, any address in the network cannot directly be linked with a sub-issuer
without initially registering with the root issuer. Registering with the root issuer
presents the holders with their credential account where all credential issued by the
issuing authority towards the holder is registered. The credential account allows a
signed credential to be safely stored with a holder and it is sufficient for the issuer
to hold information on which digest-holder relation to avoid digest collision and
for low-cost document verification.

Based on different data structures created and moved between entities in the
system, a holder can present the following proofs based on the presence of different
data structure with different entities.

Proof of certification Holders have an ability to extract digest values awarded
by a defined issuer from their credential account. This allows holders to selectively
present digest that is most relevant to the situation they are in. For an example, if
a holder is to present certification for completion of a particular course, then, they
can present the aggregated credential proof as the certification. Similarly, if they
just have to present that they had submitted a particular coursework then they can
submit the credential digest. The blockchain application can then be queried with
this digest value and student’s address to validate its validity and authenticity.

Proof of association with issuing authority There are two types of association
that a holder can prove with an issuing authority:

• Association with root issuer: As a holder is registered with a root issuer,
the root issuer creates a credential account for the holder. The existence

29

of this credential account created by a particular issuer signifies the fact
of recognition from an issuer towards the holder as presented in Issuer’s
functionality of creating credential account. In the case of an educational
institution, the existence of this data structure proves the holder’s enrolment
into the organization.

• Association with sub issuer: Once an issuer, registers a holder, it creates an
empty earmarked credential proof data structure. This data structure works
as a container of credentials in the later stages of the application but in the
initial stage, the presence of this earmarked data structure for a holder proves
issuer’s association with the holder. In the case of educational institution,
this data structure proves the enrolment of the holder in a course.

Verifier

A verifier can be any address in the Libra network that wants to verify a credential
using the developed interfaces. A verification query needs a digest value and the
holder’s address. This query is responded with an event in the blockchain system
which defines the validity of the presented digest and its association with the
presented holder’s address.

3.2 Extensions

In this section we propose some extensions to the blockchain application discussed
previously in this chapter. The extension is aimed to discourage any adversary
efforts in falsifying an issuing authority.

3.2.1 Permissioned issuers consortium

While the process of certification is an authoritative process, the proposed permis-
sionless blockchain application in section 3.1 allows any address in the network to
instantiate an issuer resource. Nevertheless, sub issuer in the system can only be
instantiated after permissioned inclusion of their addresses in the parent issuer’s
white list of sub issuers.

30

We propose an extension for creation of a group of permissioned issuers, referred
to as issuer consortium. Starting with a certain number of permissioned member
nodes, we propose a consensus voting among the members to add or remove issuers
in the group. This structural constraint allows only authorized issuer’s to become
part of the consortium allowing them to register as a root issuer.

For N different issuer nodes in the issuer consortium(IC), all nodes have voting
power equally divided among them. We define a public procedure that allows any
public node(No) to propose entry into the issuer consortium. After registration of
the proposal, it is defined with a voting period(t) that allows the members of the
consortium to vote for inclusion of the node No until the end this period.

If N
2 + 1 votes are collected for the inclusion of the new node, then the node No is

included into the consortium updating the total members in IC from N to N + 1.

The integrity of issuers in the system is then dependent upon the righteous use of
voting amongst the issuers in the issuer consortium while allowing nodes to acquire
a root issuer privilege through consensus voting.

Chapter 4

Implementation with Libra
Blockchain

In this chapter, we present a practical implementation of the design presented in
chapter 3 using the Libra blockchain. Further, we discuss permissioned group for
issuers in the system as extension to the proposed application. Finally, we trace a
real-world use case of the application in terms of certification scenario other than
in educational settings.

4.1 Libra System Components

The proposed blockchain application can be divided into modules, resources and
transaction scripts. These components are what builds a blockchain application in
the Libra blockchain.

As presented in section 2.3, modules define logical operation at the core of Libra as
well as custom user-defined codes. A module defines procedures that can be invoked
using transaction scripts. Such procedures can be either publicly-accessible or
private within a module. While procedures can operate with given input arguments,
they rely on Libra resources to store data into ledger state and read from them
whenever required.

An abstract data model that shows the relation between the developed modules
and resources is presented as ledger state representation in figure 4.4 and figure 4.6.

31

32

This representation associates modules and resources for issuers and holders in
the system. Other entities, such as owners and verifiers interact with the system
through procedures defined in the modules but do not libra resources associated
with their account during this process.

4.1.1 Modules

We introduced Libra modules in section 2.3.3 and we use such modules to create a
logical data flow in the system.

For any Libra account to use a Move module, the module has to be published
first using a Libra account and the same account should compile and generate
the transaction script bytecode that interacts with the published modules. In
the following sections, we consider the module publisher to be a Libra account,
represented as Module Owner. Other entities in the system such as the issuer,
owners, holder and verifier send transaction using the compiled script bytecode
with arguments to interact with the published modules.

There are three distinct modules in the system and are defined as follows:

Proofs Module

Proofs module defines Credential, CredentialProof, and CredentialAccount resources
and the procedures that can create or modify them. These are core resources in
the system and are common between issuers and holders. Other modules depend
on this module as a core resource provider. Resources defined in this module are
thus assessed through EarmarkedProofs and Issuer modules as we define in the
following sections. This design decision abstracts core resources away from the
modules where users can directly interact with. Moreover, access checks for the
defined procedure are defined based on the resources possessed by the transaction
sender as each entity in the system will own different resources. Similarly, any
address in the Libra blockchain network can perform the role of a verifier and hence
this module also provides the verification procedure that can be invoked to verify
a credential digest. Upon verification of the provided digest, the modules emit an
event that can be queried to get the verification result.

33

EarmarkedProofs Module

EarmarkedProofs module abstracts resources and procedures defined in the Proofs
module and is used to define operations that involves (1) issuer, who earmark
a credential and credential proof resources for a holder (2) owners, who sign
the earmarked credentials and (3) holders, who can claim the signed earmarked
credential.

Figure 4.1: Logical representation of entity interactions with the Earmarked-
Proofs Module

As a credential is assigned by an issuer towards a holder, it is registered as an entry
in the LoggedProofs resource of the Issuer. We propose a consensus voting-based
approach on earmarked credentials that requires a defined quorum of signature
from involved stakeholders before it is can be claimed by the designated holder.

Stakeholders, defined by Owners of the Issuer resource have access to verify an
earmarked credential. As a credential receives quorum of signatures, it is then moved
into an earmarked CredentialProof for the defined holder under the LoggedProofs
resource of the issuer. Issuer of this LoggedProofs resource can then aggregate
credentials present in the credential proof resource representing completion of
credential issuance for the issuer.

This workflow assigns a quorum-signed earmarked resource as logged proof and
not directly to the holder. Similarly, as a holder claims this signed earmarked
resource, the signatures on credentials and the aggregation of the credentials

34

in the credential proof are verified. This builds up a multi-party trust towards
credentials and credential proof resource between the issuer, who initially registers
the credential, owners who verify and sign the credential and holder who claims the
signed credential through credential proof. Moreover, as the resource data cannot
be mutated outside the procedures defined in the module, Libra guarantees that
credentials once signed will remain signed and under the possession of a holder’s
credential account until it is revoked by the issuer.

The Earmarked module also defines the DigestHolderProofs which registers informa-
tion about digest-holder association and the RevocationProofs resource that defines
vectors for credential and credential proof that has been revoked. These resources
help in the verification of the smallest units of credential during the verification
workflow in the system and aids in selective disclosure of achieved credentials.

Issuer Module

Figure 4.2: Issuer interaction with the Issuer module

The Issuer module defines issuer specific resource and relies on functionalities
defined in Proofs and EarmarkedProofs modules.

Issuers are initiated through this module. An issuer, in terms of the developed
blockchain application, are trusted Libra address that owns the resources defined
in Issuer, EarmarkedProofs modules. We define the resources created through
these modules collectively as the issuer resources. Similarly, a root-issuer can be
distinguished from a sub-issuer based on the parent_address variable present in
IssuerResource resource.

35

This module is also responsible to define other issuer-specific functionalities, such
as, a holder’s registration with the issuer, registration and creation of issuer and
sub-issuer.

Figure 4.3: Verifier interaction with the Issuer module

4.1.2 Resources

Resources in Libra ecosystem are data structures that can only be created, edited
or deleted by the module that defines it. This guarantees that the core data
structures cannot be used by other modules in the blockchain. This further allows
the definition of resources to differentiate one system entity from another.

A resource created from a module can only be moved into a self-owned account
and thus prevents adversary efforts to create resources and move it into a victim’s
account. Earmarking approach of resources for holders in the proposed application
is thus implemented at the core of the blockchain operations. Such earmarked
resources has to be claimed by the receiving account to authenticate that they
actually are willing to receive the earmarked resource.

Similarly, deleting a resource is possible with the module that creates it. But, the
developed application restrain from resource deletion. We move resources into
different data structures to represent a change in its state. For an example: a
credential proof once claimed by a holder can be revoked. This revocation doesn’t
delete the claimed credential proof but moves it under issuer’s revoked resources
thereby changing the state of the same data structure from a valid credential

36

to revoked credential. Similarly, a newly registered credential is introduced as
an untrusted value, which after receiving a quorum of signatures is moved into
credential proof, thereby, changing its definition from an untrusted to trusted by
quorum of owners.

Figure 4.4: Issuer Modules and Resources

In the proposed application, it is either the issuer or the holder that acquires
resources created through the application differentiating roles of these entities.
Hence, we have categorized different resources as issuer and holder resources.

Issuer Resources

Issuers in the system has two major roles. First, is their interaction with holder
entity, which might involve registering of credential or their registration with
the issuer, and, the second is to register an organizational structure that best
involves stakeholders at different levels of the organization. This information in
the blockchain is driven by four different resources, created through Proofs and
EarmarkedProofs modules, collectively defined as issuer resources.

IssuerResource, LoggedProofs, DigestHolderProofs and RevocationProofs defines
the four issuer resources and figure 4.5 present their data structure. Similarly,

37

the relation between these resources and their corresponding modules is as shown
in figure 4.4. Dividing issuer centric information into different resources allows
abstraction of data present in one resource from the other and allows unambiguous
procedure definition to access them.

Figure 4.5: Overview of issuer resources and their data structure

IssuerResource An IssuerResource is a Libra resource that is moved into an
issuer’s account upon their registration. As shown in figure 4.5, this resource
consists of information about an issuer’s organizational structure, which includes,
sub issuer, parent issuer, holders and the nonce value. The nonce value is a
global counter for the number of actions performed by the issuer in the blockchain
application.

LoggedProofs A LoggedProofs resource is at the core of earmarked credential
registration and owner verification of these resources. An earmarked resource is
logged into this issuer’s resource and its definition of owners allows the owners to
sign the logged credentials. Presence of a Credential in the logged proof represents
that the credential was generated by the issuer but still has to be signed by the
owner. Once the required number of owners defined by the quorum value sign the
Credential, it is moved into earmarked credential_proofs vector of LoggedProofs
resource. This value recorded in the credential_proofs is the resource that a
holder can claim after the issuer aggregates credentials present in them.

38

DigestHolderProofs Once a holder claims a CredentialProof, a record on the
aggregated hash value from credentials of the CredentialProof is saved with the
Issuer under this resource. At the issuer’s end, this resource helps to relate a
credential digest to the holder.

RevocationProofs A credential proof that is revoked is moved away from holder’s
account and placed as a part of Issuer’s RevocationProof. While the credential
proof resources are held as a part of the revocation proof, an issuer also maintains
a list of revoked digests that defines the revocation of aggregated credential digests
which was once issued as a certified credential proof.

Holder Resources

In different certification use cases, when a credential is awarded to a holder it is
the holder’s copy of the certified fact. Similarly, we propose certifications, defined
by Credential and CredentialProof as shown in figure 4.6, as a holder’s certified
resource that is stored under their account in the Libra network. This represents a
system that is similar to real-world certification where a holder possesses a valid
copy of the credential.

Holders interactions can broadly be categorized into two operations, first is the
process of adding trust from holder’s perspective towards any resource earmarked for
them and second is the interaction with their credential account. These operations
are based on the resources that a holder’s Libra account possess. All the holder’s
resources are created from the Proofs Module by an issuer and later claimed by
the holder.

Figure 4.8 shows the organization of credentials, credential proofs and credential
account as a holder’s resource.

Credential

Credentials are the smallest unit of certification and prove the fact of achievement
of Issuer defined requirements for achieving a credential. For a course that is an
issuer, then, a course work or a lab examination can be an example of credential.
It is represented as a Libra resource that holds the external certified fact as byte
array referred to as digest or credential digest.

39

Figure 4.6: Holder Modules and Resources

Credential Proof

A credential proof, defined by CredentialProof resource is a Libra resource and a
wrapper around credentials assigned to a holder under a particular issuer. Initially,
as a holder is registered with a sub-issuer, an empty CredentialProof resource
is earmarked and saved into LoggedProofs resource which represents the holder’s
enrolment with the issuer. As the holder completes issuer’s requirements to achieve
a certificate, the digests of underlying credentials are aggregated by the issuer
resulting in an aggregated hash value. This hash value is stored in credential proof
and verifies that the holder meets all the requirements to have been presented with
this certification. Now, a CredentialProof is ready to be claimed by the designated
holder.

Credential Account

A credential account resource is issued towards a holder’s Libra account by an
Issuer module when registering the holder with the issuer. This resource asserts
trust in the holder address and represents a proof of enrolment for the holder to
verify the association between them and the issuer. Upon achievement of credential

40

Figure 4.7: Overview of holder resources and their data structure

proofs, this proof of certification is moved into a holder’s credential account and
stored with the holder’s account.

A credential account works as a wrapper for all the credential proofs issued towards
and claimed by a holder. It imitates real-world certification where holders possess
a valid copy of a certification which can be directly presented to a verifier or be
verified through the issuer.

Owner and Verifier

The proposed solution doesn’t associate resources for a verifier or an owner. Owners
of for an issuer is defined by the issuer during its registration, hence, it is expected
that the list of owners are verified and it doesn’t require any extra on-chain
verification. Similarly, credential verifiers can be any entity in the network that
verifies a digest through the proposed solution. Hence, no resources are allocated
to these entities.

Even though an owner doesn’t possess any on-chain resource, it is responsible to
hold a private and a public key. The private key stored with the owner and is used

41

Figure 4.8: Logical organization of credentials and credential proofs in a cre-
dential account

to sign credential digest saving the signature in the credential and the public key
should be registered with the respective issuer prior to their instantiation of the
issuer resources. Thus, owners are defined by the combination of Libra address
and its public key in the issuer’s resource and it can be referenced whenever there
is a need to verify a signed data value in a credential.

4.2 System Features and Algorithms

Different operations that an entity can run on the blockchain are the features of the
blockchain application. In this section, we present technical specifications of related
features and algorithms specific to the developed Libra blockchain application.

We divide different features into entity-based groups and present algorithms to define
a high-level interaction and operations in different workflows. In these algorithms,
we use procedure calls defined with ′get′ prefix, such as getIssuerResource and
getIssuerLoggedProofs, to denote invocation of related Libra resources. Similarly,
get_txn_sender is a Move procedure call that returns the address of the transaction
sender.

42

4.2.1 Issuer

Issuer Registration

Public scoping of procedures in Libra modules allows any node in the network to
register as a root issuer. Registering as an issuer moves issuer-specific resources
into the Libra account of the transaction sender allowing the sender account to
work as an issuer. An extension to this is the permissioned issuer registration that
we discussed in section 3.2.1.

Sub-issuer Registration A root issuer in the system can further allocate sub-
issuer privilege to other nodes in the network by including them as a sub_issuer.
Sub issuers can then register under the defined root issuer. This is a permissioned
method of sub issuer registration under an issuer because we do not want any
nodes in the network to be able to instantiate itself as a sub-issuer of an issuer
without their approval. Sub-issuers of an issuer is tracked under IssuerResource as
a part of sub_issuers vector.

Algorithm 4.1 Registering a sub-issuer
1: function registerSubIssuer(address)
2: ir = getIssuerResource(get_txn_sender()) . get issuer resources
3: if address not in ir.sub_issuers then
4: ir.sub_issuers[]← address . register sub-issuer address
5: end if
6: end function

Algorithm 4.2 Initiating as sub-issuer
1: function initSubIssuer(address)
2: ir = getIssuerResource(address)
3: sender = get_txn_sender() . get transaction sender address
4: if sender in ir.sub_issuers then . check if sub-issuer is registered
5: if !(exists(sender, IssuerResources) then
6: move(IssuerResources, sender) . create resources for sub-issuer
7: end if
8: end if
9: end function

43

Holder Registration

Registering a holder with an issuer refers to the process of adding trust in the
system from issuer towards the holder. In the libra implementation, as a root issuer
registers a holder, it creates an empty entry of CredentialAccount for the holder.
Once claimed by the holder, the issuing organization’s credential account entry
is moved to a holder’s credential account if it exists, or, it creates a credential
account with the new entry for the holder if the credential account doesn’t exist.

Similarly, when a sub issuer registers a holder, they create a empty CredentialProof
resource and save it as part of its LoggedProofs resource. Holders for an issuer are
simply a vector of addresses. This is an append-only vector and entries are added
only when a holder is registered with the issuer.

Algorithm 4.3 Registering Holder with Sub-issuer
1: function registerHolder(address)
2: issuer_address = get_txn_sender()
3: ir = getIssuerResource(issuer_address)
4: lp = getIssuerLoggedProofs(issuer_address)
5: if address not in ir.holders then
6: ir.holders[]← address . record holder address with issuer
7: cp = newCredentialProof(address) . Create earmarked credential

proof
8: lp.credential_proofs[]← cp . register a logged resource
9: end if
10: end function

Credential Registration

Once a holder achieves a credential, it should be recorded to an off-chain storage
resulting in a value that references to the off-chain certificate as defined in sec-
tion 3.1.1. This value is registered as digest and as a part of the Credential resource
where other values such as the issuer, owners and the owners signatures are also
defined as shown in figure 4.5.

Upon a successful registration of this credential, it is saved as a part of LoggedProofs
resource and is an earmarked resource. The owners can now verify and sign the
credential digests from this resource.

44

Timed credential A credential is a timed credential, if it’s validity_start or
validity_end time are defined. These values are 64-bit unsigned integer values
that represent a Unix timestamp. If validity_start is not defined on a credential,
then it defaults to the time when the credential is earmarked into LoggedProofs
resource. Similarly, validity_end is set to null if not defined resulting in no limits
for validity period for the credential. validity_end on a CredentialProof resource is
based on the smallest validity_end period of the constituting credential. Similarly,
validity_start is based on the largest validity_start value of the constituting
credential. If these values are defined, they are checked when a credential digest is
verified in the verification workflow.

Figure 4.9: A timeline representation of credential registration, signing and
claim

Credential Aggregation

Upon completion of requirements for achieving a final credential, an issuer must
aggregate all the credentials within the credential proof. This produces a single
hash value that represents a combination of the digest and other constituting
variables from the credentials in the credential proof. This aggregation represents a
Merkle tree structure and the resulting aggregation represents the root of the tree.

Let us consider, C1, C2, .. CN to be quorum verified credentials registered into
a holder’s LoggedProofs under CredentialProof(CP) resource for an issuer I.
If these credentials define the completion of all requirements of the issuer to
issue a final certificate, then, these credentials are aggregated by the issuer I.

45

This aggregation hashes the credential digest defined as the leaf nodes first and
consequently combines and hashes the resulting inner nodes of the tree to produce
a final root node. The value is then registered as CP.aggregation. Once, this
aggregation is computed, the earmarked holder for CP can claim this resource into
their credential account.

Credential Revocation

Revoking an issued credential from the holder’s credential account involves two
steps. First, we move the credential and associated credential proof to the Issuer’s
RevocationProofs resource, and secondly, we record all the associated digests
from these data structures as revoked_digests in the RevocationProofs resource.
This is queried whenever a new credential digest is registered or someone verifies a
digest.

4.2.2 Owner

Sign Credential

Signing of credential is one of the vital steps in the document verification process.
This is where owners can verify that the registered digest is valid or not. We
assume that a manual verification of digest is done off-chain and if valid then only
signed by each owner. Once, a quorum of owner signs a credential, the credential
is then moved to the respective CredentialProof of the designated holder.

Let us consider an issuer with ON number of owners and n is the defined quorum
requirement for earmarked credential. Furthermore, if, C represents a credential
earmarked by and issuer, OiP K represents a private key of the ith owner, C.quorum
represents the value inherited from the issuer as quorum requirement, then, the
value hash value H is signed using OiP K and saved into C.signatures field with the
operation C.signatures← sign(H,OiP K) where H represents hash of combination
of C.digest, C.holder, C.issuer. After this operation, a credential is checked for
a quorum of signatures and the is moved into earmarked credential proof if the
check is valid.

46

Algorithm 4.4 Sign Earmarked Credential
1: function signCredential(issuer, digest, holder,OiP K)
2: return if digest is not registered with the issuer
3: ER = IRM.getEarmarkedResource(issuer)
4: for credential in ER.Credentials do
5: if credential.digest == digest and credential.holder == holder then
6: h = Hash(credential.digest||credential.holder||credential.issuer)
7: credential.signatures← sign(h,OiP K)
8: end if
9: end for
10:
11: if len(credential.signatures) >= credential.quorum then
12: cp← EPM.getHolderCredentialProof(credential.holder, issuer)
13: cp.credentials← move(credential)
14: end if
15: end function

4.2.3 Holder

As a holder enrols with an issuing authority, they can claim a CredentialAccount
resource that will later be used to insert credential proofs from completion of
requirements posed by the issuer towards receiving credentials from them.

Claim Credential Proof

If an issuer has a CredentialProof earmarked and all the credential within it
is aggregated, then the designated holder can claim the credential proof. The
credential proof data structure is created as soon as an issuer registers a holder and
resides in the LoggedProofs resource. Upon a successful claim, the CredentialProof
that belongs to the holder is moved to the holder’s CredentialAccount

Algorithm 4.5 Holder Claim for earmarked Credential Proof
1: function claimCredentialProof(issuer)
2: ep = getIssuerEarmarkedResource(issuer)
3: credential_account = getCredentialAccount(get_txn_sender())
4: cp = ep.getHolderCredentialProof(caller_address)
5: if exists(cp) and (cp.aggregation == aggregate(cp.credentials)) then
6: credential_account.credential_proofs[]← cp
7: end if
8: end function

47

4.2.4 Verifier

Verify Digest

As shown in algorithm 4.6, once a verifier submits a digest and a corresponding
holder address for verification. Then the holder’s credential account is checked for
existence of the provided digest in the form of credential or credential proof. If
it exists then the resource found is checked for time and signatures validity. In
case if the digest belongs to a credential proof, then the underlying credentials
are aggregated and the aggregation is validated as well. Checking for digest in
credential account works here because any resource that is revoked would already
have been moved out of a credential account.

Algorithm 4.6 Verification of digest
1: function verifyDigest(digest, holder)
2: credentialAccount = getCredentialAccount(holder)
3: isCP = false;
4: if digest ∈ credentialAccount.credentialproof_digests then
5: resource = getCredentialProofByDigest(credentialAccount, digest)
6: isCP = true;
7: else if (digest ∈ credentialAccount.credential_digests) then
8: resource = getCredentialByDigest(credentialAccount, digest)
9: end if
10: if resource then . Process only if the resource is known
11: if EPM.isV alidResource(resource, resource.issuer, isCP) then
12: emit V erificationEvent(true);
13: end if
14: end if
15: emit V erificationEvent(false);
16: end function
17:
18: function EPM.isV alidResource(resource, issuer, isCP)
19: assert(credential.digest issuer.RevocationProofs.revoked_digests) . check if revoked
20: assert(credential.digest.validity_start < now()) . check start time validity
21: if resource.digest.validity_end then
22: assert(now() < digest.validity_end) . check end time validity
23: end if
24: if isCP then . check if Credential Proof or Credential
25: if validateSignatures(resource.owners_signed) then . validate signatures
26: return true;
27: end if
28: else
29: validSignatures, aggregation = aggregate(resource.credentials) . validate

signatures and aggregate credential digests
30: if (resource.aggregation == aggregation & validSignatures) then
31: return true;
32: end if
33: end if
34: return false;
35: end function

48

4.3 Limitations

Libra is still in its development phase and a public network is only available for
basic Libra functionality. While publishing user-defined modules is possible at its
core, it is currently disabled in the publicly available network. We discovered some
limitations that comes with the use of Libra and Move programming language.
These limitations are listed as follows:

Limitation with data structure There are limitation to how multiple values
can be stored in a Libra resource’s data structure. Move programming language
does not support data types such as Hashmap that can be used to read values in
O(1) time complexity. It employs Vector types to store multiple values. Hence,
operations such as signing or verifying a digest needs to loop through the vector to
find the provided value. This increases the time complexity of such implementations
to O(N) limiting performance in blockchain application.

Limitation with updating a published Libra module During the time of devel-
opment of the thesis project, once a module is published on Libra network, there
are no easy options to update it. The only way this can be achieved is through
a hard fork in the blockchain. A workaround on updating module is through
depending on modules but the operations are limited to defined procedures in the
original module. So, in case a larger update is required in the module then a new
module has to be published under a different module name. This limits the ability
to update a published module and procedure definition within it.

Limitation with decentralized resources Libra’s architecture defines distributed
resources at its core as resources are stored with accounts and not the modules
that define them. There are cases where a global repository of data are needed
for global verification. For example, operations such as assigning and revoking
credentials are issuer-specific operations and the registered values are only known
to the issuer and the holder who receives them. Moreover, as the corresponding
digest values are generated from the off-chain layer the system cannot guarantee
its global uniqueness unless there is a global data structure that tracks all the
registered digests. This adds storage overhead and results in a sightly expensive
query.

49

4.4 Extensions

In the following section, we present some extensions that can be applied to the
proposed Libra solution in the above text. These extensions are specific to Libra
and are presented according to the logical structuring of modules and resources in
the system.

4.4.1 Permissioned issuer consortium

The presented Libra module defines public procedure for registration as a root
issuer. This allows any account in the network to invoke this method to create
an issuer’s resource. Even though this won’t allow the issuer account to create
resources for holder accounts or issue credentials without the holders claiming
them, an adversary might still invest efforts in imitating an issuing authority to
gain the trust of holders. If holders fail to recognize an authority’s address from
the adversary it is possible for an adversary to present false credentials and the
holder’s to claim it.

While this can be prevented if a holder is aware of the issuer to which they register
into and similarly for the verifiers, where they know addresses of authoritative
entities. Another approach could also be to define a trusted group of root issuers.
Then, only the members of this group will be allowed to register as a root issuer
in the application as presented in section 3.2.1. We refer to this trusted group
of issuers as the issuer consortium. This extension can be adopted if issuers are
known and trusted among each other.

For this implementation, we propose a module, IssuersConsortium, that creates
a membership resource IssuerMembership in an issuer’s account if they are part
of the issuer consortium. The resource holds issuer’s public key related to the
Consortium membership while a private key has to be kept safe with the issuer. The
module defines a public procedure joinIssuerConsortium that any address in the
Libra network can invoke and request to become a member of the consortium. A
submitted request has a validity period of t in which other members can vote for the
inclusion of the new node in the system. If in case consensus of votes are collected,
the proposed address and it’s public key is registered into IssuerMembership

resource and assigned to the new member. The new member can now use their
private key to sign and vote for inclusion of members address in the consortium.

50

Following this extension requires issuers to be trusted, functional and unbiased
towards any other members in the consortium.

4.4.2 Unique credential digest

Credential digests are values that are created off-chain and registered in the chain
through an issuer. A benefit that comes with Libra architecture is that the data
created by modules lives within Libra accounts. While this data organization
leverages some use cases such as holder’s proof of association and certification as
defined in section 3.1.2, it becomes expensive to perform an operation that has
global ordering.

The proposed application doesn’t guarantee uniqueness of digest registered into the
system because of the association of resource data with Libra account and absence
of knowledge regarding digests registered throughout the system. To provide this
guarantee, we must be able to track all the digests registered into the system.

A digest d0, registered through a root issuer I0, for a holder H0, can also be
registered through another issuer, I1 for a different holderH1 in the absence of global
knowledge about issued credential digests. We propose a data-structure(D) that
holds all credential digests(N) registered in the system as D = {d0, d1, d2, ...dN}.
This data structure lives within the module owner’s account and is referred from
the digest registration procedure to validate the uniqueness of the registered digest.

4.5 Use-case Analysis

The solutions design discussed in previous sections exemplifies certification scenario
in an educational institution. In this section, we explore a different use-case
scenario where the proposed framework is adopted to a hypothetical driving licence
certification scenario.

51

4.5.1 Driving Licence Certification

A driving licence is a type of credential that usually has validity for a given time
period. Such time-framed credentials can be represented as units of a timed
credential into the system.

Starting with the registration of the licensing authority, we can represent such
authority as the root issuer, while different licensing categories as sub issuers in the
system. By licensing categories, we refer to licensing for 2-wheelers, heavy vehicles,
etc. This structure allows registering results from different tests(written, driving
test, etc) as credentials and aggregate them as credential proof representing the
completion of exams in a licensing category.

Moreover, creating sub-issuer allows separating owner roles defined by the author-
itative requirements of the issuer. For an example, an authoritative in charge
of a written test might not hold the same position for driving exams. Hence,
dividing these exams into different sub-issuers leverages the difference in authority
in real-world organizational structure.

When a licensing authority registers a candidate as a holder, they create an entry
in earmarked credential account. This credential account entry has to be claimed
by the candidate to reflect their enrolment with this particular licensing authority.
This process, in turn, verifies that both the parties, i.e the candidate and the
licensing authority trust each other. Furthermore, sub-issuers can only register
credentials that writes to the credential account created by the root issuer.

Candidate’s registration with sub issuer registers a credential proof for the holder.
The credential proof at this point is saved as an earmarked resource and not directly
into the credential account because we distinguish credential account to posses
certification that is verified by all stakeholders and claimed by the candidate adding
a level of trust to an issued credential from the student’s perspective.

As the candidate completes an examination off the chain, we assume that the
achievement is recorded off-chain and a hash to the particular credential is recorded
into the system along with the period of validity as earmarked credential. A
credential earmarked by an issuer is similar to credential proof and will not be
immediately associated with the student’s credential account. When a credential is
earmarked, it adds trusts from the issuer side but a credential needs to be trusted
by a consensus, a defined number of owners, by verifying the digest in the credential.

52

Figure 4.10: A use-case diagram for driving licensing and verification

After a successful off-chain verification of the digest, course owners can sign the
earmarked credential. Once a quorum of signatures is collected for the credential,
it is moved into its respective credential proof container.

A credential proof holding different credentials proves that the credentials defined
within it has been issued and verified by the course owners. After completion

53

of all the exams, issuers aggregate the credentials within the credential proof.
This information can finally be claimed by the holder moving it from the issuer’s
resource into the credential account. This process of claiming a credential proof
is a validation from the student side to confirm that the assigned credentials are
valid from their perspective. The information about the claimed resource and its
holder is recorded into the issuer’s resource. This is later useful when verifying
validity and association of a credential digest with the candidate.

If a credential once issued is to be revoked by the issuer, then digest of the credential
and credential proof is recorded as issuer’s resource and the credential proof that
is present in the student’s credential account is moved into the issuer’s revoked
credential proofs resource.

From this use case analysis, we believe that the proposed system can also be
adopted into different certification scenarios due to flexibility added through issuer
organization to adapt to different organizational structure.

Chapter 5

Experimental Evaluation

We have proposed and built a blockchain application that supports authenticating
and verifying credentials. In this chapter, we evaluate the cost of different user
functionalities and evaluate Libra’s performance metrics in handling transactions
with the developed modules.

5.1 Experimental Setup

Experiments in this thesis project was carried out on a Local Area Network(LAN)
at the University of Stavanger. A LAN is characterised by low latency network
as the connected computers in the network are limited in a small area. We refer
to each individual computers as a node and jointly refer them as a cluster. We
employ Kubernetes[11] to manage, deploy and scale nodes in this test cluster.

Building a distributed systems infrastructure from scratch is a time consuming task.
Kubernetes provides an interface to define such infrastructure as code which allows
easy and maintainable deployments, scalability, fault-tolerance and provisioning
of nodes in a cluster. This code defines the infrastructure and can be stored in
a configuration file and it can be defined using YAML definition or in the JSON
format. This formally defined configuration file provides a declarative input to
Kubernetes API that parses the stored information and configures nodes as defined
in the declarations. Kubernetes further relies on Docker and docker images to
run nodes in a cluster. A docker image can be understood as a set of read-only
instructions that allows creating operational nodes in the network.

54

55

Infrastructure configuration file defines the source of the docker images and allows
provisioning the deployed nodes. We use YAML definitions in configuration file and
a define shell scripts that dynamically invokes Kubernetes API to start a defined
number of nodes in the network. These configurations and deployment scripts are
made available as a part of the thesis source code repository[12].

Table 5.1: Specifications for different nodes in the experiment cluster.

Nodes Number of nodes Node type
Validator 4 Core Libra nodes

Prometheus 1 Monitoring node
Grafana 1 Visualizing node
Client 1 Test node

As shown in table 5.1 and figure 5.1, we deploy four validators, two monitoring
and a test client in the cluster.

Running a distributed system, presents unique challenges in node monitoring as
data from all the nodes needs to be monitored to insure their proper working. For
the same, we use Prometheus to collect different metrics from validator nodes and
Grafana for aggregated monitoring using of these metrics. Prometheus maintains
a time-series database and either scrapes the validator nodes for default metrics
or we push custom counter variables to measure performance of each node over a
given period of time.

Similarly, the test client is used to publish the developed modules and to trigger
transaction script executions that invokes different procedures in the published
modules. While we tracked number of transactions, gas usage and latency through
the test client, the monitoring services also provided an user-friendly interface to
validate our findings which were compared throughout the processes of gathering
test results.

All nodes in the cluster run on different physical machines and collectively form
experimental Libra network. As recommended by Libra[17], validator nodes in the
cluster are high provisioned with 12 CPUs and 32GiB memory each.

Application Configurations

Libra supports using SHA-2 256-bits and SHA-3 256-bits encryption standards. For
the experimentation, we use SHA3-256 bit encryption to perform hash operations.

56

Figure 5.1: Overview of test setup deployed using Kubernetes that consists of
four validators, Prometheus, Grafana and a test client node.

Similarly, all the credentials introduced into the experimental network are of
256-bits in length.

5.1.1 Libra Network

The Libra Network in the experimental configuration is made up of validators and
monitoring nodes. We created docker images[51] for validator nodes with an ability
to publish custom user modules. Similarly, docker images for monitoring tools
are open-source and were easily integrated into the developed solution. We define
operation of different nodes in the libra network as follows:

Validators In the network, each validator is a single physical machine and are
collectively responsible to carry out consensus using LBFT protocol through their
access controlled ports. The test client submits transactions to one of these
validators. Validator nodes run the open-source Libra code with customized
functionalities that allows publishing modules and running arbitrary transaction
script which are both currently disabled in the publicly available test Libra network.

57

The definition of Kubernetes configuration file further allows updating core validator
configuration, such as, transactions per block and seed value for access control
using environment variable definition. This allows easier update and test of the
validators in the test network.

Monitoring and visualizing tools Monitoring tools provides the fastest way to
verify a working network and helps to verify different test scenarios. Prometheus
node is responsible to collect data from validators and the Grafana service helps
to plot real-time metrics.

Prometheus and push gateway As we submit requests to the validators, it
is equally important to collect metrics from different nodes in the distributed
architecture to assert its correct functioning. Thus, to handle the same, we use
Prometheus. Each validator in the network is configured to emit different count
based logs through an endpoint that Prometheus can scrape to record them.
Similarly, custom counter logs are recorded into Prometheus using the Prometheus
push gateway where each validator sends requests to the gateway service that logs
the submitted values.

Grafana The Grafana tool provides a user-friendly interface to aggregate and
visualize different metrics recorded from the Prometheus monitoring tool. It further
provides an interface that allows running complex rate based operations on the
collected metrics.

5.1.2 Test Client

A test client was built using the Rust programming language. This test service
submits multi-threaded asynchronous transaction requests on the developed appli-
cation to all validator nodes. We use this client to submit transactions and gather
metrics on gas usage, system throughput and latency of the developed solution.
We present an operational overview of the test client in figure 5.2. The test client
runs the following operation in order:

58

Figure 5.2: Overview of test client workflow

Generate publisher and test accounts As we deployed a test LAN we used the
association address, defined by 0000000000000000000000000a550c18 to publish
the developed modules. While Libra doesn’t yet have a method to dynamically
reference a Libra address in modules and scripts, this allows the static definition
of publisher address for all the modules and scripts that depend on one another.
Simultaneously, the test client also create test accounts based on the numbers of
root issuers, sub issuers, owners per issuer and verifiers per test simulation.

Mint and transfer coins to test accounts In a Libra blockchain network, it is
a requirement for accounts to have Libra coins to execute any transactions. Hence,
we create a mint key similar to Libra testnet and define the number of coins that
each test account should posses. We mint all the coins for test accounts into the
publisher account, then, use the Libra transfer script to move coins into all the
dynamically created test accounts.

59

Build requests per organization Before any transactions are submitted to the
blockchain, we build an ordered list of transactions that defines the creation of test
organization structure, register, sign, revoke and verify credentials.

Start workers to send requests The goal of the test client is to test the perfor-
mance of the developed module in the Libra blockchain network. Hence, the ordered
list of transactions per organization from the previous step is asynchronously sub-
mitted to all validators in the network. The test client then creates several worker
threads per validator instance and sends the request built in the previous step to
Libra validators.

5.2 Experimental Results

Libra runs its transactions as a metered transaction. Each transaction thus entails
a fees based on the processing and storage that it occupies. With the Libra
network and test client setup, we tested gas usage of each operations in the system.
Similarly, we also evaluated how Libra would perform under high number of parallel
transactions that invokes custom user defined modules.

5.2.1 Gas usage

After deploying Libra modules in the test setup, we used compiled Libra transaction
scripts to introduce transactions in the system. The gas usage on these functions
were profiled and are presented in the following section.

60

Table 5.3: Holder procedures gas usage

Procedure Gas Usage
Claim credential account 46484 gas
Claim credential proof 73620 gas for credential proof with 2 credentials,

209112 gas for credential proof with 5 credentials

Table 5.4: Owner procedures gas usage

Procedure Gas Usage
Sign credential 61073 gas

Table 5.5: Verifier procedures gas usage

Procedure Gas Usage
Verify credential 18812 gas

Verify credential proof 58237 gas for credential proof with 2 credentials
101715 gas for credential proof with 5 credentials

Table 5.2: Issuer procedures gas usage

Procedure Gas Usage
Issuer registration 118838 gas when invoked with 2 owners

135465 gas when invoked with 4 owners
Sub-issuer registration 147008 gas when invoked with 2 owners

182587 gas when invoked with 4 owners
Holder registration 58382 gas when invoked as a root-issuer

(creates earmarked credential account),
52573 gas when invoked as a sub-issuer
(creates earmarked credential proof)

Credential Registration 28527 gas
Credential Aggregation 45474 gas when aggregating with 2 credentials

87906 gas when aggregating with 5 credentials
Credential Revocation 32185 gas

61

5.2.2 Performance Evaluation

For this evaluation, we have four validator nodes in the network and a test client
that is responsible to spawn worker thread. Each thread is then responsible to
build transaction requests responsible to create issuers, sub-issuers, owners, courses,
students and credentials specific to an organization. These requests are accumulated
in an ordered list before they are sent to the blockchain network for processing.

To track a transaction status, we track the sequence number and poll the blockchain
network to check for the updated sequence number in a defined period. Any account
that doesn’t reach the expected sequence number is considered to have expired
transactions, and we ignore those transactions in the result computation. The
transactions we submit is based on the compiled scripts and each represent an
individual task in the application’s workflow.

1000 5000 10000 20000 40000
0

500

1,000

1,500

852

1,086
916

750 690

Number of Submitted Transactions

Av
er
ag
e
tr
an

sa
ct
io
ns

pe
r
se
co
nd

Figure 5.3: Number of Submitted
Transactions Vs Average Transac-

tion(per sec)

1000 5000 10000 20000 40000
0

500

1,000

1,500

2,000

2,500

316 342

663

1,289

2,158

Number of Submitted Transactions

Av
er
ag
e
e2
e
la
te
nc
y(
m
s)

Figure 5.4: Number of Submit-
ted Transactions Vs Average e2e la-

tency(ms)

In our experiment, we have W workers and each worker is assigned a defined
number of accounts that they can use to create transactions in the system. These
workers build and send transactions asynchronously, and we track the number of
transactions as txnswi, time taken for all requests to be submitted and response to
be gathered as timewi. Then, we calculate the average transaction per second per
worker as tpsw and an average transactions per second as tps.

tpsw = txnswi

timewi

(5.1a)

62

tps =
∑W

i=1 tpswi

W
(5.1b)

Similarly, end-to-end(e2e) latency of transactions is based on total time taken to
process them. As all the requests are sent asynchronously, we track submitted
transactions based on their sequence number. For an Libra account A with sequence
number n, if X transactions are submitted then the new expected sequence number
will be n + X. Hence, the total time taken for transactions submitted by the
account is the difference between the time at the start of transaction submission
and the time at which the expected sequence number is reached. Mathematically,

e2e latency = Transaction end time− Transaction start time (5.2)

We compute an average of this e2e latency over all transaction to get the average
e2e latency. All the evaluation results presented in the following sections are
averaged results based on the five different experiments.

5.3 Discussion

Based on the results presented in experimental results, findings show that creating
issuer entity costs the most in-terms of gas usage. Though this cost varies based on
number of owners defined as the part of an issuer, the cost is most probably high
because of different resource created for the issuers during this process. Similarly,
the gas usage in verification and aggregation of credential proof depends on number
of credentials to be processed within them.

Fees of a transaction is the product of gas used and gas price. As we performed
these tests, the Libra association is working on defining gas pricing rules in the
network thus a transaction fee cannot be defined during this period. But, the
gas cost can be used as a measure to estimate the associated fees with different
workflows as a transaction fee is given by the formula,

Transaction fee = gas used× gas price (5.3)

Discussing the performance metrics from experimental Libra network, we see
that Libra can process about 800-900 transactions per second at approximately

63

300-500ms latency with four validators. But, the latency seems to deteriorate
with increasing number of transactions in the system. Libra plans to start with
approximately 100 validators in its initial stages [24] but we believe that the
throughput of the system might further decrease than our findings because with
the growth in number of validators in the consensus protocol, the throughput and
latency is impacted [25].

The developed solution provides security features similar to that of Cerberus [3].
In its core, adaptability with different digital certification standards and flexibility
in defining organizational structure makes the developed solution much more
adaptable in different certification scenarios than the works presented in section 2.4.
It allows different stakeholders within an issuing authority to participate and
collectively certify a holder. This helps in mitigating threats related with corrupt
staffs in a certifying institution.

As we approach certification from a holder’s perspective, the developed credential
account mimics a real-world scenario where holders always hold their own credentials.
Credentials are individually equipped with validity period and owner signatures
that validates authenticity of data present in the credential. This allows a holder to
selectively present credentials to verifiers with limited information. It aids in user’s
privacy as minimal information is provided for verification. If in case a credential is
revoked, then, it can be easily detected as all revocations are maintained on-chain
and referenced during verification. Credential accounts and earmarked credential
proofs can also be used to present a proof of holder’s association with an issuing
authority.

Chapter 6

Conclusion and Future Directions

This chapter presents conclusion for this thesis and proposes direction for future
work.

6.1 Conclusion

The main objective of the thesis was to design and develop a blockchain application
that addresses the need of transparency in organizational procedures while different
forms of digital credentials are issued and verified through the platform. This has
been completed and an operational blockchain solution has been developed.

The developed application works on top of Libra blockchain and effectively im-
plements credential issuance by involving all involved stakeholders in the process.
Issuers earmark credential for its eventual holder, owners at the issuing authority
verify and validate the earmarked credential and holders claim the earmarked
resource after a verification from their side. This earmarking approach to resource
registration and claiming such resources are not just application-defined but en-
forced through the Libra blockchain system. It guarantees that any critical action
performed in moving resources from one account to another is agreed by all involved
parties and governed by the Libra architecture.

While we issue a credential thorough on-chain reference, the actual credential is
stored off-chain. This unique fingerprint generated from the off-chain storage is
registered as part of an on-chain credential resource. As actions on the registered
credentials are performed and recorded in the blockchain, it adds transparency in

64

65

the organizational procedures. If any changes are made to credentials published
off-chain, the tamper-evident property of the such storage updates its fingerprint
thereby disassociating the updated credential from the one referenced in the
blockchain. This guarantees a tamper-evident link between a credential stored
off-chain and the credential referenced in the blockchain. Moreover, this approach
of separating off-chain storage from on-chain verification is the key to the system’s
adaptability towards different standards for digital credential. This also best uses
a blockchain platform by limiting data transferred in the system and thereby
improving the throughput and limiting costs in the developed application.

A credential issued to a holder is stored in their credential account. Move language
safety constraint prevents any modification to the stored information and allows
easy read-only access to the holders and guarantees immutability of credentials
stored with the holder. Moreover, holders can safely store these credentials in
offline applications and present minimal information to verifiers through selective
disclosure. The credential account also verifies a holder’s association with an issuing
authority which can be used as proof of association in an organizational setup
where this information is valuable to the holder.

Furthermore, the proposed extension for permissioned issuer registration adds
initial trust to any issuer registered in the system. If any fraudulent actions by a
permissioned issuer is encountered, then the issuer in the discussion can have their
access revoked through consensus voting, leading to the revocation of its issued
credentials. This extension can be applied only if the majority of issuers perform
righteous actions in the permissioned group.

Other key advantages of the proposed solution includes credential revocation and
timed credential which can be adopted in multiple certification scenarios and
primarily addresses the needs of time-critical certification systems such as driving
licences or government-issued certificates such as passports.

From a security point of view, detecting counterfeit credential is convenient as
all credentials issued through blockchain applications are stored on-chain and are
checked during verification. So, any attempt in presenting counterfeit credential
will fail. Similarly, as the solution involves multiple entities for credential issuance,
if at least a single entity of an issuing authority perform correct actions, frauds
can be easily detected.

66

6.2 Future Directions

This section presents ideas on improvements to the proposed solution in this thesis.
We define them as follows:

Zero Knowledge proof Selective disclosure helps in presenting minimal informa-
tion to verify credentials in the system. An interesting implementation would be to
use zero-knowledge proofs in the blockchain system for verification of credentials.
With zero-knowledge proofs, we believe that holders wouldn’t have to present any
information about credential to entities verifying the credential.

Planning Monetary Overhead While the earmarking approach for credential
issuance build trust from all involved parties in the system, it also simultaneously
increases cost in the system as each operation is executed as an independent
transaction. If we can plan a method for cost distribution among all the entities
then that might give an added benefit for system adaptation.

Hierarchical Issuer Structure Issuer structuring in the system is hierarchical.
This restricts several actions to be initiated by the root issuer, for an example, a
credential account entry can only be created by the root issuer requiring all issuers
to register with the root issuer of an organization first. We can distribute such
capabilities among all issuers in an organization which will help in minimizing the
number of transactions by decoupling transaction from root issuer to all issuers.

Revocation and Updating Credentials Revocation in the proposed solution
removes all associated resource into revoked resources. It might be convenient to
revoke a single credential resource in scrutiny instead of all associated resource as
revoked resource. In this case, we can remove the revoked credential and other
associated resources can be moved back into issuer’s earmarked resources. This
will also allow issuers to update credentials in the same workflow by revoking the
credential to be updated and introducing new credential as an update. As all
credentials registered into the system has to go through the same workflow, the
new registered credential has to be approved by all stakeholders

List of Figures

2.1 Example of ledger state defining how modules and resources are
embedded as values of the Libra addresses key. 11

2.2 Workflow in Libra protocol . 12
2.3 Processing transaction in Libra . 16

3.1 An example of educational organizational structure and its transla-
tion into different system entities 22

3.2 High-level overview of interaction between system entities, off-chain
components and the blockchain . 23

3.3 An example of issuer earmarking three credential hash representing
certification of three courses into the system as three different credential 26

3.4 Quorum requirement for verification of Earmarked Credential(EC) . 27
3.5 Translation of Earmarked Credentials into Credentials 27

4.1 Logical representation of entity interactions with the Earmarked-
Proofs Module . 33

4.2 Issuer interaction with the Issuer module 34
4.3 Verifier interaction with the Issuer module 35
4.4 Issuer Modules and Resources . 36
4.5 Overview of issuer resources and their data structure 37
4.6 Holder Modules and Resources . 39
4.7 Overview of holder resources and their data structure 40
4.8 Logical organization of credentials and credential proofs in a creden-

tial account . 41
4.9 A timeline representation of credential registration, signing and claim 44
4.10 A use-case diagram for driving licensing and verification 52

5.1 Overview of test setup deployed using Kubernetes that consists of
four validators, Prometheus, Grafana and a test client node. 56

5.2 Overview of test client workflow . 58
5.3 Number of Submitted Transactions Vs Average Transaction(per sec) 61
5.4 Number of Submitted Transactions Vs Average e2e latency(ms) . . 61

67

List of Tables

2.1 Comparison of functionalities and supported certifications of different
certification-verification solutions 19

5.1 Specifications for different nodes in the experiment cluster. 55
5.3 Holder procedures gas usage . 60
5.4 Owner procedures gas usage . 60
5.5 Verifier procedures gas usage . 60
5.2 Issuer procedures gas usage . 60

A.1 Number of Transaction Vs Number of transaction(per second) . . . 70
A.2 Number of Transaction Vs Average Transaction latency(ms) 70

68

List of Algorithms

4.1 Registering a sub-issuer . 42
4.2 Initiating as sub-issuer . 42
4.3 Registering Holder with Sub-issuer 43
4.4 Sign Earmarked Credential . 46
4.5 Holder Claim for earmarked Credential Proof 46
4.6 Verification of digest . 47

69

Appendix A

Experimental Data

This appendix contains the complete experimental data for average throughput
and e2e latency of transactions in Chapter 5. The results have been rounded to
nearest whole number.

Table A.1: Number of Transaction Vs Number of transaction(per second)

Number of Number of transaction(per second)
transactions. Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

1000 929 922 948 912 870
5000 1024 960 1253 1039 1156
10000 893 787 890 934 759
20000 717 709 678 754 892
40000 688 672 703 710 680

Table A.2: Number of Transaction Vs Average Transaction latency(ms)

Number of Average Transaction Latency(ms)
transactions. Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

1000 296 305 292 287 301
5000 312 356 359 300 384
10000 663 654 672 659 667
20000 1053 1583 1374 1287 1149
40000 2504 2387 1958 1893 2152

70

Appendix B

Attachments

This appendix contains instruction to run tests on a LAN network with the
developed test module with rust programming language.

• Components of libra network are containerized and published as docker
images in docker hub. These containerized components allows users to
publish custom module and transaction script in the network.

– Libra Validator image : https://hub.docker.com/r/pariwesh/thesis

– The combination of stable docker images by their version number are
as follows:

∗ Validator image: pariwesh/thesis:libra_validator_dynamic-2.0.1

∗ Safety rules image: pariwesh/thesis:libra_safety_rules-2.0.0

∗ Initialization container image : pariwesh/thesis:libra_init-2.0.0

• Kubernetes configuration file to start the custom libra network is available
as shell scripts.

– Repository : https://github.com/pariweshsubedi/thesis-project/tree
/bbchain-network-2.0.0/kube/libra

• Implementation of testing framework created using Rust is available as part
of github repository.

– Repository : https://github.com/pariweshsubedi/libra-bbchain-port/tree
/master/testsuite/bbchain-test/src

71

Bibliography

[1] Digital certificates project. http://certificates.media.mit.edu/. Ac-
cessed: 2020-03-02.

[2] Gilles Grolleau, Tarik Lakhal, and Naoufel Mzoughi. An introduction to the
economics of fake degrees. Journal of Economic Issues, 42(3):673–693, 2008.

[3] Aamna Tariq, Hina Binte Haq, and Syed Taha Ali. Cerberus: A
blockchain-based accreditation and degree verification system. arXiv preprint
arXiv:1912.06812, 2019.

[4] Meng Han, Lei Li, Ying Xie, Jinbao Wang, Zhuojun Duan, Ji Li, and Mingyuan
Yan. Cognitive approach for location privacy protection. IEEE Access, 6:
13466–13477, 2018.

[5] Liyuan Liu, Meng Han, Yan Wang, and Yiyun Zhou. Understanding data
breach: A visualization aspect. In International Conference on Wireless
Algorithms, Systems, and Applications, pages 883–892. Springer, 2018.

[6] Karl Wüst and Arthur Gervais. Do you need a blockchain? In 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT), pages 45–54. IEEE,
2018.

[7] Bbchain | trustworthy distributed document verification system. http://

bbchain.no. Accessed: 2020-01-10.

[8] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[9] Libra developer tools. https://github.com/pariweshsubedi/

libra-developer-tools, . Accessed: 2020-05-20.

72

http://certificates.media.mit.edu/
http://bbchain.no
http://bbchain.no
https://github.com/pariweshsubedi/libra-developer-tools
https://github.com/pariweshsubedi/libra-developer-tools

Bibliography 73

[10] Libra developer community: Push_back on a vector
with other vectors. https://community.libra.org/t/

push-back-on-a-vector-with-other-vectors/2706, . Accessed: 2020-05-
20.

[11] Kubernetes. https://kubernetes.io/. Accessed: 2020-03-02.

[12] Libra for bbchain github repo. https://github.com/pariweshsubedi/

thesis-project/tree/bbchain-network-2.0.0/kube, . Accessed: 2020-
03-02.

[13] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[14] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick
McCorry, Sarah Meiklejohn, and George Danezis. Consensus in the age of
blockchains. arXiv preprint arXiv:1711.03936, 2017.

[15] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh Kalyanaraman,
et al. Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6-10):71,
2016.

[16] Christian Cachin et al. Architecture of the hyperledger blockchain fabric. In
Workshop on distributed cryptocurrencies and consensus ledgers, volume 310,
page 4, 2016.

[17] Zachary Amsden, Ramnik Arora, Shehar Bano, Mathieu Baudet,
Sam Blackshear, Abhay Bothra, George Cabrera, Christian Catal-
ini, Konstantinos Chalkias, and Evan Cheng. The libra blockchain.
2019. URL https://developers.libra.org/docs/assets/papers/

the-libra-blockchain/2019-09-26.pdf.

[18] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM (JACM),
32(2):374–382, 1985.

[19] Arati Baliga. Understanding blockchain consensus models. Persistent, 2017
(4):1–14, 2017.

[20] Matteo Benetton, Giovanni Compiani, and Adair Morse. Cryptomining: Local
evidence from china and the us. Technical report, Working paper, 2019.

https://community.libra.org/t/push-back-on-a-vector-with-other-vectors/2706
https://community.libra.org/t/push-back-on-a-vector-with-other-vectors/2706
https://kubernetes.io/
https://github.com/pariweshsubedi/thesis-project/tree/bbchain-network-2.0.0/kube
https://github.com/pariweshsubedi/thesis-project/tree/bbchain-network-2.0.0/kube
https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2019-09-26.pdf
https://developers.libra.org/docs/assets/papers/the-libra-blockchain/2019-09-26.pdf

Bibliography 74

[21] Proof of stake. https://eth.wiki/en/concepts/proof-of-stake-faqs.

[22] Fahad Saleh. Blockchain without waste: Proof-of-stake. Available at SSRN
3183935, 2020.

[23] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai
Abraham. Hotstuff: Bft consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
pages 347–356, 2019.

[24] Libra: The path forward. https://developers.libra.org/blog/2019/06/

18/the-path-forward. Accessed: 2020-01-25.

[25] Jiashuo Zhang, Jianbo Gao, Zhenhao Wu, Wentian Yan, Qize Wo, Qingshan
Li, and Zhong Chen. Performance analysis of the libra blockchain: An
experimental study. In 2019 2nd International Conference on Hot Information-
Centric Networking (HotICN), pages 77–83. IEEE, 2019.

[26] Getting started with move. https://developers.libra.org/docs/

move-overview, .

[27] Life of a transaction - libra. https://developers.libra.org/docs/

life-of-a-transaction, .

[28] Virtual machine. https://developers.libra.org/docs/crates/vm, .

[29] Tomasz Hyla and Jerzy Pejaś. Long-term verification of signatures based on a
blockchain. Computers & Electrical Engineering, 81:106523, 2020.

[30] Thomas Hepp, Matthew Sharinghousen, Philip Ehret, Alexander Schoenhals,
and Bela Gipp. On-chain vs. off-chain storage for supply-and blockchain
integration. it-Information Technology, 60(5-6):283–291, 2018.

[31] Henri Massias, X Serret Avila, and J-J Quisquater. Design of a secure
timestamping service with minimal trust requirement. In the 20th Symposium
on Information Theory in the Benelux. Citeseer, 1999.

[32] Jeremy Clark and Aleksander Essex. Commitcoin: Carbon dating commit-
ments with bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 390–398. Springer, 2012.

[33] Angelos Stavrou and Jeffrey Voas. Verified time. Computer, 50(3):78–82, 2017.

https://eth.wiki/en/concepts/proof-of-stake-faqs
https://developers.libra.org/blog/2019/06/18/the-path-forward
https://developers.libra.org/blog/2019/06/18/the-path-forward
https://developers.libra.org/docs/move-overview
https://developers.libra.org/docs/move-overview
https://developers.libra.org/docs/life-of-a-transaction
https://developers.libra.org/docs/life-of-a-transaction
https://developers.libra.org/docs/crates/vm

Bibliography 75

[34] P Todd. Opentimestamps: Scalable, trust-minimized, distributed timestamp-
ing with bitcoin. Peter Todd [Internet], 15, 2016.

[35] Andrea Brandoli. Blockchain notarization: extensions to the opentimestamps
protocol. 2019.

[36] Blockcerts : The open standard for blockchain credentials. https://www.

blockcerts.org/. Accessed: 2020-01-25.

[37] Joao Santos. Hypercerts: A non-siloed blockchain-based certification service.
2017.

[38] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014.

[39] Meng Han, Zhigang Li, Jing He, Dalei Wu, Ying Xie, and Asif Baba. A novel
blockchain-based education records verification solution. In Proceedings of
the 19th Annual SIG Conference on Information Technology Education, pages
178–183, 2018.

[40] Meet truerec by sap. https://news.sap.com/2017/07/

meet-truerec-by-sap-trusted-digital-credentials-powered-by-blockchain/.
Accessed: 2020-03-02.

[41] Academic certificates on the blockchain. https://

digitalcurrency.unic.ac.cy/free-introductory-mooc/

self-verifiable-certificates-on-the-bitcoin-blockchain/

academic-certificates-on-the-blockchain/. Accessed: 2020-01-27.

[42] Jerinas Gresch, Bruno Rodrigues, Eder Scheid, Salil S Kanhere, and Burkhard
Stiller. The proposal of a blockchain-based architecture for transparent certifi-
cate handling. In International Conference on Business Information Systems,
pages 185–196. Springer, 2018.

[43] India readies its biggest deep tech bet yet: a upi-
like blockchain platform. https://factordaily.com/

india-readies-upi-like-blockchain-platform/. Accessed: 2020-02-20.

[44] University consortium set up to authenticate degrees using blockchain
technology. https://www.nst.com.my/news/nation/2018/11/429615/

university-consortium-set-authenticate-degrees-using-blockchain.
Accessed: 2020-02-20.

https://www.blockcerts.org/
https://www.blockcerts.org/
https://news.sap.com/2017/07/meet-truerec-by-sap-trusted-digital-credentials-powered-by-blockchain/
https://news.sap.com/2017/07/meet-truerec-by-sap-trusted-digital-credentials-powered-by-blockchain/
https://digitalcurrency.unic.ac.cy/free- introductory-mooc/self-verifiable-certificates-on-the-bitcoin- blockchain/academic-certificates-on-the-blockchain/
https://digitalcurrency.unic.ac.cy/free- introductory-mooc/self-verifiable-certificates-on-the-bitcoin- blockchain/academic-certificates-on-the-blockchain/
https://digitalcurrency.unic.ac.cy/free- introductory-mooc/self-verifiable-certificates-on-the-bitcoin- blockchain/academic-certificates-on-the-blockchain/
https://digitalcurrency.unic.ac.cy/free- introductory-mooc/self-verifiable-certificates-on-the-bitcoin- blockchain/academic-certificates-on-the-blockchain/
https://factordaily.com/india-readies-upi-like-blockchain-platform/
https://factordaily.com/india-readies-upi-like-blockchain-platform/
https://www.nst.com.my/news/nation/2018/11/429615/university-consortium-set-authenticate-degrees-using-blockchain
https://www.nst.com.my/news/nation/2018/11/429615/university-consortium-set-authenticate-degrees-using-blockchain

Bibliography 76

[45] M. Sporny, D. C. Burnett, D. Longley, and G. Kellogg. Verifiable credentials
data model 1.0. https://w3c.github.io/vc-data-model/. Accessed: 2020-
01-10.

[46] Mozilla open badges. https://wiki.mozilla.org/Badges, . Accessed: 2020-
01-12.

[47] Moodle: Openbadges user documentation. https://docs.moodle.org/dev/

OpenBadges_User_Documentation, . Accessed: 2020-01-13.

[48] Blackboard - open badges in higher education. https://sites.google.com/

site/openbadgesinhighereducation/blackboard, . Accessed: 2020-01-13.

[49] Canvabadges. https://www.edu-apps.org/edu_apps/index.html?tool=

canvabadges, . Accessed: 2020-01-13.

[50] Mozilla backpack is now badgr backpack. https://backpack.openbadges.

org.badgr.io/, . Accessed: 2020-01-13.

[51] Libra for bbchain docker hub. https://hub.docker.com/repository/

docker/pariwesh/thesis. Accessed: 2020-03-02.

https://w3c.github.io/vc-data-model/
https://wiki.mozilla.org/Badges
https://docs.moodle.org/dev/OpenBadges_User_Documentation
https://docs.moodle.org/dev/OpenBadges_User_Documentation
https://sites.google.com/site/openbadgesinhighereducation/blackboard
https://sites.google.com/site/openbadgesinhighereducation/blackboard
https://www.edu-apps.org/edu_apps/index.html?tool=canvabadges
https://www.edu-apps.org/edu_apps/index.html?tool=canvabadges
https://backpack.openbadges.org.badgr.io/
https://backpack.openbadges.org.badgr.io/
https://hub.docker.com/repository/docker/pariwesh/thesis
https://hub.docker.com/repository/docker/pariwesh/thesis

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 The BBChain Project
	1.2 Scope
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Blockchain
	2.2 Consensus
	2.2.1 Consensus in permissionless blockchain
	2.2.2 Consensus in permissioned blockchain

	2.3 Libra Blockchain
	2.3.1 Ledger State
	2.3.2 Libra Protocol
	2.3.3 Move Programming Language

	2.4 Related Works

	3 System Design and Extensions
	3.1 System Overview
	3.1.1 The off-chain layer
	3.1.2 The blockchain layer

	3.2 Extensions
	3.2.1 Permissioned issuers consortium

	4 Implementation with Libra Blockchain
	4.1 Libra System Components
	4.1.1 Modules
	4.1.2 Resources

	4.2 System Features and Algorithms
	4.2.1 Issuer
	4.2.2 Owner
	4.2.3 Holder
	4.2.4 Verifier

	4.3 Limitations
	4.4 Extensions
	4.4.1 Permissioned issuer consortium
	4.4.2 Unique credential digest

	4.5 Use-case Analysis
	4.5.1 Driving Licence Certification

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.1.1 Libra Network
	5.1.2 Test Client

	5.2 Experimental Results
	5.2.1 Gas usage
	5.2.2 Performance Evaluation

	5.3 Discussion

	6 Conclusion and Future Directions
	6.1 Conclusion
	6.2 Future Directions

	List of Figures
	List of Tables
	A Experimental Data
	B Attachments
	Bibliography

