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Abstract

Representing large, valuable information in a comprehensible manner has been a key

challenge of 21st century. Human cognition relies mainly on their visual system. However,

visual analysis includes both, visual complexities, as well as computational challenges. Visual

complexities include the limitations of the display devices; whereas computational challenges

involve the complex algorithm to extract and process the information from large data sets.

This thesis aims to devise strategies in advancing the techniques used for visual analysis in the

sports industry. Different algorithms are used to extract the location of the player from a video

stream of football game. The obtained information is processed in a way, to be presented on a

smaller screen like cell phones. The integration between the two devices is managed by a

cloud, which works in real time. Furthermore, conclusions are made based on the average

precision and frame throughput. Moreover, most processes are automated to minimize the

human input and be adopted by multiple application domains.

iii



List of Acronyms

AI Artificial Intelligence

API Application Programming Interface

AUC Area Under the Curve

BS Background Subtraction

BIC Bayesian information criterion

CNN Convolutional Neural Network

csv comma-separated values

DOM Document Object Model

DNN Deep Neural Network

FCL Fully Connected Layer

FCNN Fully Connected Neural Net

FN False Negative

FP False Positive

FPS Frames per second

GMM Gaussian Mixture Model

GPS Global Positioning System

HSV Hue Saturation Value

IOU Intersection over Union

JSON JavaScript Object Notation

KDE Kernel Density Estimation

MOT Multiple Object Tracking

MLP Multilayer perceptrons

NMS Non Maximum Suppression

PDF Probability Density Function

R-CNN Region-based Convolutional Neural Network

iv



LIST OF ACRONYMS v

ReLU Rectified linear unit

ResNet Residual Neural Network

RGB Red, Green, Blue

RNN Recurrent Neural Network

ROI Region of Interest

RPN Region Proposal Network

SE Structuring Elements

SORT Simple Real time Tracking

SSD Single Shot Detection

TAM Temporal Averaging Method

TN True Negative

TP True Positive

VGG Visual Geometry Group

VOC Visual Object Classes

XML eXtensible Markup Language

YOLO You Only Look Once



Contents

Acknowledgment ii

Abstract iii

List of Acronyms iv

Contents vi

List of Figures ix

Chapter 1 Introduction 1

1.1 Problem Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scope and Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Data set 4

2.1 Video Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Manual Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3 Literature Review 8

3.1 Sports Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.1 Gaussian Mixture Model (GMM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.2 Kernel Density Estimation Kernel Density Estimation (KDE) . . . . . . . . . . . 10

3.2.3 Morphological Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.4 Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
vi



CONTENTS vii

3.4 Convolutional Neural Network Convolutional Neural Network (CNN) . . . . . . . . 15

3.4.1 Visual Geometry Group (VGG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Residual Neural Network (ResNet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 4 Experimentation 18

4.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Absolute Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2 Gaussian Mixture Model (GMM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.3 Finding Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.2 Single Shot Detection (SSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 You Only Look Once (YOLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Custom Trained Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Deep Simple Real time Tracking (SORT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 5 Player Identification 31

5.1 Field Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Team Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 6 Visualization 36

6.1 Pixel Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Cloud Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 7 Results 43

7.1 Precision × Recall curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Precision x Recall curve of models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Frames Per Second (Frames per second (FPS)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.3 Visual Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



viii CONTENTS

Chapter 8 Conclusion 54

8.1 Future outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1.1 Model Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1.2 E2E models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1.3 Smart Watches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 57

Appendix A Appendix A 61

A1 Background Subtraction Implementation code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A1.1 Extracting Background from Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A1.2 Binary Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A1.3 Finding n-components for GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A1.4 Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A1.5 Finding Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A2 Deep Learning Implementations code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A2.1 Faster Region-based Convolutional Neural Network (R-CNN)

implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A2.2 YOLO Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A3 Deep SORT implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A3.1 Field Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A3.2 Point Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A3.3 HSV Color picker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A3.4 Color Pixel Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A3.5 Calculating coordinates for small screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A3.6 Cloud Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



List of Figures

2.1 3 different Camera Angles from match against Strømsgodset 4

2.2 Stitched Panoramic View of 3 cameras shown in 2.1, using OpenCV stitcher 5

2.3 Panoramic view from match against Tottenham 5

2.4 Screen Shot of LabelImg, to annotate the objects in the image 6

3.1 Absolute difference between the image (a) and image (b) shown in (c) 9

3.2 Perceptron, Single unit of a neural network 13

3.3 Neural Network with 1 hidden layer 13

3.4 Activation functions on a plot 14

3.5 Optimization of a neural network 15

3.6 Intuition behind CNN 16

3.7 Layers of Visual Geometry Group (VGG) 17

3.8 Intuition behind Residual Neural Network (ResNet) 17

4.1 Background Model 19

4.2 Foreground segmentation 20

4.3 Foreground segmentation after noise cancellation 20

4.4 Number of Gaussians 21

4.5 Gaussian Mixture Segmentation 22

4.6 After Morphological Transformation 22

4.7 Left: Faster R-CNN, Right: Region Proposal Network (RPN) 24

4.8 SSD architecture 26

4.9 YOLO architecture 27

4.10Faster R-CNN ResNet50 pretrained on coco data set 2018 28

4.11SSD inception V2 trained on coco data set 2018 28

4.12YOLOv3 with YOLO pre trained weights from yolo 29

4.13Custom trained model on faster-rcnn-resnet101-coco with 30

ix



x LIST OF FIGURES

5.1 Polygon of 9 selected points on the football field 32

5.2 Hue Saturation Value (HSV) upper and lower range of white team with toolbars 34

5.3 Players cropped with bounding box coordinates 34

5.4 Players with number of white pixels present 35

6.1 Image used on small screens with aspect ratio (19:9) 37

6.2 Choosing similar points on small screen image 38

6.3 Values of pixel coordinates stored in firebase 41

6.4 Highlighted boxes in firebase being updated in real time 41

6.5 Screen shot of players being shown on mobile phone ( Google Pixel 2 (emulator) 42

7.1 Precision Recall Curve 45

7.2 Left: Interpolated data points on Precision x Recall curve. Right: Rectangles

produced from Interpolated data to calculate Area Under the Curve (AUC) [1] 46

7.3 Precision x Recall Curve with Average precision of models used 48

7.4 Result using GMM model 49

7.5 Result using Image subtraction model 50

7.6 Result using Faster R-CNN model with pre-trained COCO weights 51

7.7 Result using YOLO model with pre-trained COCO weights 52

7.8 Result using Faster R-CNN model with custom trained weights 53



CHAPTER 1

Introduction

Sports analysis has always been of major interest by elite clubs, it has proven to be correlated

with the development of an athlete’s performance as well as team capabilities. Analysis in the

past, was mainly done by viewing the footage, captured during the competition or training

environment. Performing analysis using this method was very labour intensive and could only

be performed after the match has been concluded.

Post advancement in technology, the focus was shifted to using the sensor technology, where

each player would be needing to wear a sensor, which in turn would provide useful information,

such as position of the player, speed and acceleration . An example of this sensory technology

is used at Alfheim Stadium - the home arena forTromsø IL (Norway), which employed radio-

based system, called ZXY Sports Tracking [2]. This sensor based technology collects the data

in real-time with high accuracy and platforms like "Bagadus" [3] provided an interface for

data collected, which allow coaches and sports scientists to make more informed decisions.

Soccer being game of two teams competing, the data of the opposing team is considered to be

of high importance. Since the data collected using sensor technology is made confidential by

every team, only the video footage can be used to analyze the performance of other team and

its players. Elite clubs with high budget employ number of analyst, to extract information

regarding players of the opposition, from the video footage and provide valuable feedback.

This can not be the case for small clubs with low budget.

Recent advancement in computer vision, allow scientists to extract useful information from

an image or a video stream. These techniques, if applied to a video stream of a football game,

can extract information like position of the player and other matrices can be derived from

1



2 1 INTRODUCTION

this positional data. This thesis presents a system which would extract positional data of the

players from a video footage and display it on to a small screen.

1.1 Problem Identification

The current systems used in sports analysis require expensive equipment and team of analysts,

which makes it difficult to be employed by small clubs. In this thesis I would be exploring the

latest techniques used for Object detection and Multiple Object Tracking (MOT), to extract

positional data of the players from both teams, using a video footage and provide an animated

representation of the collected data on to a mobile phone in real-time. This would allow small

clubs with low budget, to employ this system and use the data collected in enhancing their

players and teams performance.

1.2 Scope and Limitations

This thesis will specify design and implementation of a prototype to perform a real-time data

analysis of a football game. The system shall be able to capture and analyze the positional

data of a player and provide a user interface to be viewed on a mobile phone.

• Various object identification techniques will be explored for the purpose of identify-

ing the players on the football pitch. These techniques will be evaluated on the basis

of their accuracy and processing time, to build a robust system.

• The system identifying and processing the positional data of the players, will store

the detections in a real-time data base using cloud solution.

• For the purpose of visualization a mobile phone application will be developed, which

would be integrated with the cloud data base to perform the analysis in real-time

• Necessary tasks needed to be performed by the system will be automated, so the

users with low level of technical background would be able to use the system without

any hindrance.
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1.3 Outline

The thesis has been divided into 8 chapters, with chapter 2 providing only the details on the

data used and created for the development of the system. Chapter 3 outlines a brief introduc-

tion of detection algorithms currently researched and introduced by scientific community.

Chapter 4 explores different algorithms used for the purpose of player identification on

the football pitch. Whereas, The quantification techniques used for the evaluation of these

algorithms are provided later in chapter 7. Chapter 5 and Chapter 6 explains the pre-processing

and technique used for visualization, respectively.



CHAPTER 2

Data set

2.1 Video Data

The data set used for this project was captured at Alfheim Stadium - the home arena for

Tromsø IL (Norway) [4]. This comprised of video footage depicting football games played

between Tromsø IL and three other teams Strømsgodset, Anzhi and Tottenham Hotspurs.

The videos of played games are generated into 3-second individual video clips encoded with

H. 264 compression; which are shot by array of camera covering each part of the football

field. To have a complete angle in view, footage from different cameras are stitched together

to produce a panoramic view, by the data set provider. Since videos are in short 3-second

intervals, all the clips were concatenated by the use of ffmeg [5].

FIGURE 2.1. 3 different Camera Angles from match against Strømsgodset

The stitching implementation was found best in the match against Tottenham Hotspurs, as

other panoramic views were shot behind the public stands. This resulted in, the footage

having a lot of noise, of spectators walking in front of camera. To create the panoramic view

of figure [2.1], a stitching algorithm, developed by an open source library OpenCV, which

relies on key point feature matching, was used. The stitched video revealed the angle similar
4



2.1 VIDEO DATA 5

to figure [2.3], which is a distortion in angle and creating a fish eye view, shown in figure

[2.2]. For this reason, stitching was taken off of the pipline and match played on 2013-11-28

between Tromsø IL - Tottenham Hotspurs was taken under consideration

FIGURE 2.2. Stitched Panoramic View of 3 cameras shown in 2.1, using
OpenCV stitcher

FIGURE 2.3. Panoramic view from match against Tottenham

The dataset also included the ground truth of players position. These positions were collected

by ZXY SPORTS TRACKING SYSTEM which relies on radio-based signaling. Data

collected from this technology was found to be more accurate than GPS [6]. Furthermore,

data contained values like ’timestamp’, ’direction’, ’speed’ etc. as shown in table 2.1.



6 2 DATA SET

timestamp tag-id xpos ypos heading direction energy speed
2013-11-03 18:30:00.000612 1 31278 31278 49.366 2.2578 3672.22 3672.22
2013-11-03 18:30:00.013407 3 74.5904 71.048 -0.961152 0 2.37406 0
2013-11-03 18:30:00.004524 11 45.386 49.8209 0.980335 1.26641 5614.29 3672.22

TABLE 2.1. First 3 entries of the comma-separated values (csv) file containing
data related to video

2.2 Manual Annotations

For the purpose of training deep learning models discussed in section 4.2, a custom data

set was created. This data set included the manual annotations of the players present on

the football field. ∼ 150 images were extracted from the video stream, every 15 seconds

and were manually annotated. The annotations included the presence of the player, defined

by a bounding box around it. This task was performed using labelImg [7], an open source

software, which helps to draw bounding box around an object and stores the coordinates of

the bounding boxes (see figure [2.4] for reference), in eXtensible Markup Language (XML)

format. The yielded XML files for each image contained the name and dimensions of the

image along with the objects and their bounding box coordinates.

FIGURE 2.4. Screen Shot of LabelImg, to annotate the objects in the image
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For the purpose of training deep learning models, these XML files along with the image it

represents, were split into 2 folders, train and test. These XML files were concatenated and

stored into a csv format, where each csv file contained the information of all the files present

in each folder. The columns included in these csv files comprised of, filename, width, height,

class, xmin, ymin, xmax, ymax (as shown in table (2.2)). Here filename and class is the

name of the image file on which annotations were made and the class of the object annotated,

respectively. Width and height are the width and height of the image in pixels, and rest of

the entries define the bounding box around the object, in pixels.

filename width height class xmin ymin xmax ymax
100.jpg 4450 2000 player 3276 684 3307 765
100.jpg 4450 2000 player 2456 788 2499 899
100.jpg 4450 2000 player 2435 623 2480 702
100.jpg 4450 2000 player 2420 578 2448 647

TABLE 2.2. First 4 entries of the csv file generated form the XML files
produced by labelImg



CHAPTER 3

Literature Review

3.1 Sports Analysis

Sports Analysis is the technique of extracting information during a competition or training

environment, which can assist in improving the performance of an individual or the team.

Almost all the major clubs or teams, competing in a competition have their own analysts.

These analysts are expert at recognizing patterns by viewing the video footage or the live

game being played. The elite clubs, hire team of analysts to collect data for each individual

player, which then can be analyzed to optimize the result. The data collected includes the

position of the player, distance travelled by the player, goals scored, passes completed etc..

This is how statistics of the teams are created and presented in a way which can easily be

understood by the coaches and players themselves.

Early days the data was collected by manually viewing the video recording of the event, which

was a very tedious task. Later after the evolution of sensory technology, the players had to

wear sensors, which would give their positional data and other statistics such as, distance

covered, acceleration and speed were computed from this positional data. Collecting data

using sensory technology, is limited to acquiring information of ones own team and their

players. Data for the other team is collected using the mouse on each individual frame of

a video footage. Due to tremendous amount of effort involved in collecting the data, small

clubs have not been able to perform the sports analysis on their players, to the fullest.
8
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3.2 Background Subtraction

Background Subtraction (BS) models were one of the earliest models in the field of computer

vision. The main idea behind BS was to differentiate between the background and the

foreground pixels in a frame of a video stream. This was used widely in computer vision

tasks, such as, video surveillance, tracking and even human pose estimation. The main idea

behind all the models introduced, was to achieve high accuracy at differentiating, background

from the foreground. It was first achieved by taking an absolute difference between a static

background and the moving pixels on top in a video stream. Using this simple technique,

masks of the moving pixels could be obtained and hence location of the moving objects could

be extracted.

(a) (b) (c)

FIGURE 3.1. Absolute difference between the image (a) and image (b) shown
in (c)

This technique worked the best, with a stream of video coming from a static background. If

the source of the video capturing device was found to be moving, the background subtraction

method, using absolute difference would not work. This technique also widely depends on

the light conditions, since the algorithm is subtracting each pixel of two images, the variance

luminosity, would also effect the result and would not be able to yield good results.

3.2.1 GMM

This model is the modification of One Gaussian (1-G), which models background pixel with a

probability density function (PDF) learned using series of frames. Thresholding pixel values

from PDF can provide with background and foreground. Pixels with low probability are
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considered to be moving objects and corresponds to foreground segmentation. Gaussian

distribution N (µs,t, Σs,t) of every background pixel can be used to account for noise. Here

µs,t and Σs,t corresponds to average background color and covariance matrix at pixel s and

time t respectively.

In GMM multimodal PDFs were used, which proposes the use of K Gaussians, to model

every pixel. PDF of each pixel in this method can be found by using equation (3.1).

P (Is,t) =
K∑
i=1

ωi.s.t ×N (µi,s,t,Σi, s, t) (3.1)

In (3.1) N (µi,s,t,Σi, s, t) is the ith Gaussian model and ωi,s,t is its weight. The weights

are updated in series of frames using the formula (3.2) where α is the learning rate pre-

defined. This way we can keep track of history in the frames and define the moving pixels

and background pixels on the basis of their values, with lower ones corresponding to the

background. Using the equation (3.3) we can calculate the distance matrix, hence acquiring

the mask of moving pixels for color image or (4.2) for gray scaled.

ωi,s,t = (1− α)ωi,s,t−1 + α (3.2)

d = (IRs,t −BR
s,t)

2 + (IBs,t −BB
s,t)

2 + (IGs,t −BG
s,t)

2 (3.3)

Here R,B,G denotes Red, Blue and Green color channels respectively.

3.2.2 Kernel Density Estimation KDE

This model uses a unstructured approach to model the multimodal Probability Density

Function (PDF). The preposition was to use Parzen-window to estimate the background

pixels [8]
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P (Is,t) =
1

N

t−N∑
i=t−N

K(Is,t − Is,j) (3.4)

A global threshold θfg for all the images is used, to define the foreground and background,

i.e, if the P (Is,t is smaller than θfg the pixel belongs to the foreground and other wise it is a

background pixel. In (3.4) Is,j is pre-estimated [9].

3.2.3 Morphological Transformation

Morphological Transformations also known as mathematical morphology, are the range of

Non-linear image processing techniques. Morphological transformations are mostly applied

on a binary image, to reduce the noise as much as possible without losing essential features.

These transformation techniques use a small shape matrix known as Structuring Elements (SE),

analogous to the kernel in convolution, to check the neighbouring pixels in an image. The

SE defines the nature of morphology being applied to the image. Two basic, commonly used

transformations are Erosion and Dilation [10].

3.2.3.1 Erosion

In this transformation, SE slides on the 2D binary image, since the binary images are repres-

ented as 1 or 0, if all the pixels under the SE are not 1, all the pixels are replaced by 0. Using

this technique the border of an object present in a binary image are reduced as well as any

pixel which is not part of the object is also counted as noise and gets replace by 0.

3.2.3.2 Dilation

Acting on the same technique of sliding window, dilation enlarges the width of maximum

regions. If any value under the SE is 1, all the 0 pixels are also replaced by 1. This makes the

boundaries of the object in a binary image to inflate, hence making small object in an image

bigger.
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3.2.4 Contours

Contours are the representation of joining curves in a binary image. For topological structural

analysis on binary image, contours are used to retrieve the shape of the object. The idea behind

finding contours is that all the connected pixels in a binary image belong to the same object.

This is done using "Green Theorem" [11], which takes the line integral of a closed curve and

double integral over the bounding plane. Using contours the inner and outer boundary on an

object, with similar intensity, can be located.

3.3 Neural Networks

Vaguely inspired by human brain, Neural Networks are set of algorithms which perform

tasks without being programmed specific rules for execution. Since every data, be it images,

sound, text or timestamps can be represented in a numerical form, these algorithms can

be used to recognize patterns in numerical vectors. Neural networks can be considered as

algorithms which can learn to classify and cluster the labeled or unlabeled data, based on

their similarities.

A neural network can also be understood as Multilayer perceptrons (MLP), where, a per-

ceptron is a unit of a neural network, which performs certain computations and out puts a

numerical result. A perceptron introduced in 1957 by Frank Rosenblatt, receives an input

as a numerical vector(X1, X2, ....., Xn) and multiply each entry in the vector with their cor-

responding weight (w1, w2, ......, wn) and add them together. The sum of all these values are

passed through an activation function (f ) , which yields an output within a range, depending

on the activation function used. Based on this output, features or business intelligence can be

gained from the perceptron, figure 3.2.

Multiple perceptrons can be stacked together in layers to from a neural network (figure

3.3) . These networks can solve much complex classification problem, as more weights are

introduced to achieve better results. Following the same principle, much larger models can be

created, whose size depends on the complexity of the problem.
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FIGURE 3.2. Perceptron, Single unit of a neural network

FIGURE 3.3. Neural Network with 1 hidden layer

3.3.1 Activation Functions

Several activation functions are introduced hitherto, by researchers. These activation functions

are used to bound the result produced by last node of each perceptron, with in a range of

values. Based on the values produced by these activation function, a classification problem

can be solved. One of the most basic activation function is binary step function (figure 3.4 (a)),

which yields either 0 or 1 representing "ON" or "OFF" of the unit, using (3.5). More advanced

functions include Rectified linear unit (ReLU) (figure 3.4(b)) or Leaky ReLU (figure 3.4(c)),

which yields the value between (0,∞) and (−∞,∞) respectively, using equations (3.6) ,

(3.7). These advanced activation functions allow the network to predict multiple classes.
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f(x) =

0 for x < 0

1 for x ≥ 0
(3.5)

f(x) =

0 for x ≤ 0

x for x > 0
(3.6)

f(x) =

0.01x for x < 0

x for x ≥ 0
(3.7)

(a) (b) (c)

FIGURE 3.4. Activation functions on a plot

3.3.2 Optimization

It is hard to predict the correct value of weights to achieve the desired classification at very

beginning. For this purpose, optimization algorithms are used to update the values of weights

and reduce the error in the output, during the training of a network. When network is shown

the labeled outputs which are required, error is calculated against these true labels and using

the derivative techniques, the error produced by the network is minimized, by updating the

weights (figure 3.5). There are several algorithms introduced by researchers, which uses

different techniques, to find the global optima of the network. The global optima is considered

as the point where the error produced by the network is minimum and network can perform

the classification with more accuracy. Upon achieving the certain threshold of accuracy, the

network is considered suitable to perform classification on general data.

Some of the best algorithms used for optimization of a neural network includes adaptive

moment estimation (Adam) [12] and Gradient descent with momentum [13].
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FIGURE 3.5. Optimization of a neural network

3.4 Convolutional Neural Network CNN

An image in computers is nothing but numerical vectors stacked together, where each numer-

ical value represents the pixel value of corresponding channel. We see colors by observing

the variance in wavelength produced by the object, light is bouncing off of. This allows us to

see colors in a certain range of wavelength and large variety of it produced by the mixture of

these waves in photon particle. Computer on the other hand looks at color using the mixture

of 3 primary colors, Red, Green, Blue (RGB), which can produce a wide range of colors.

For instance if a colored image has a size of 1024× 764 the to number of numerical values

used to create this image would sum up to ((1024× 764× 3) 2347008. Using these numbers

of inputs in a complex neural network, would increase the number of parameters being used

to train the network drastically, as the network grows. To overcome this problem an approach

was devised, first introduced in 1980 by Dr. Kunihiko Fukushima, by reducing the size of

the image in such a manner that it should not loose the features, important to achieve higher

accuracy.

The size of the image is reduced by introducing two layers, i.e. Conv layer and pooling layer.

A Conv layer or convolutional layer uses a kernel of pre-defined size which slides on top of

the image, on step at a time, covering all parts of the images. The main idea is to reduce
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the size of the image by collecting as much information as possible, by covering part of the

image which is equal to the size of the Kernel and then move to the next part in the image.

The computations happening inside the kernel sliding technique is, all the values in the image

gets multiplied by the values in the corresponding kernel cell and then summed up. This way

a image of size (5× 5× 1), using a kernel of size (3× 3) will reduce down to (3× 3).

Pooling layer on the other hand uses a kernel as well, but in this layer we take the average,

maximum or minimum value among the numerical values of the image covered by the kernel.

Type of the pooling layer, depends on the functionality required by the network. However, it is

used to further decrease the size of the image, so computation for the purpose of classification

can be applied. Some of the popular CNN architectures are VGG and ResNet.

FIGURE 3.6. Intuition behind CNN

3.4.1 Visual Geometry Group (VGG)

This architecture includes 16 convolutional layers, with approximately 138 million parameters

[14]. This architecture was a runner up at ILSVRC in 2014, a image recognition competition,

hosted by ImageNet. This network is famous for its uniform architecture, which uses (3× 3)

convolution kernels through out with multiple filters.
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FIGURE 3.7. Layers of VGG

3.4.2 Residual Neural Network (ResNet)

Working on the basis of Recurrent Neural Network (RNN), this network architecture keeps

track of the history by skipping to the next layer with the result from the previous layer. This

skipping connection method allows ResNet to compute heavy batch normalization and act as

a gated units showing similarity with RNN (figure 3.8)

FIGURE 3.8. Intuition behind ResNet



CHAPTER 4

Experimentation

Several methods are proposed in this thesis for the purpose of detecting a football player on

the field and comparing the acquired result. They experience different trade-offs, described

later in the document. Data collected from the algorithms discussed in this section are fed to

procedures mentioned in chapter 5. This apply further preprocessing on the data and refine it

before being displayed.

4.1 Background Subtraction

Traditional approach of BS, to detect players on the pitch was applied in this implementation.

Background subtraction has proven to be successful, if the video stream is being fetched from

the static camera. BS can be implemented using different approaches. Keeping accuracy and

throughput speed under consideration two different methods for background subtraction were

considered in this thesis. A brief overview of these algorithms is provided in this section.

4.1.1 Absolute Difference

Considered as “quick and dirty” way to localize the moving objects and taking under consid-

eration that lightning of provided footage was constant. Temporal Averaging Method (TAM)

[15] was applied on the video footage. The first step of TAM is to extract the background

model, which comprises of motionless pixels in a scene. Bt (i.e. background) and can be

estimated using (4.1)
18
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Bt+1(x,y) =
t×Bt(x,y) + It(x,y)

(t+ 1)
(4.1)

Where It is the current frame, t is the frame count and (x, y) is the pixel coordinate. Using

(4.1) we can loop through all the frames in a video stream and calculate a background model

shown in figure 4.1. see appendix A, section A1.1, for script.

FIGURE 4.1. Background Model

Each frame from the stream is subtracted pixel by pixel from Bt to extract foreground. Since

extracted images contain 3 channels, both It and Bt are converted to gray scale first.

Dt = |It −Bt| (4.2)

Using the equation (4.2) mask of a foreground segmentation was obtained and was applied

a binary threshold θb, to only include values (30, 255), such that any pixel below θb will be

zero and maximum other wise. The mask obtained doing so, still contained a lot of noise in it.

The reason behind was players casting shadows on the field. Since the shadows are moving

along side the player they were not considered in motion less pixels and accounted for pixels

of foreground. The digital advertisement boards located on the side and back of the pitch

change every couple of seconds, thus, were too not considered in motionless pixels (figure

4.2). Morphological transformations were applied to suppress noise, this included multiple
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layers of erosion with the SE of 13× 13 and a dilation of SE 10× 10, having single iteration.

Later, SE size of morph transformation were reduced by the factor of 2 keeping the same

iteration. These transformations were able to mitigate the shadows of the player but were not

able to remove side banners from the mask as can be viewed in figure 4.3. see appendix A,

section A1.2 for code snipet.

FIGURE 4.2. Foreground segmentation

FIGURE 4.3. Foreground segmentation after noise cancellation

The presence of noise in the background resulted in False Positive (FP) and when occluded

with the players, present on the pitch, made it difficult to separate players from the noise. I
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tried to come up with different methods to overcome this problem, which are discussed in

section 4.1.3.

4.1.2 Gaussian Mixture Model (GMM)

FIGURE 4.4. Number of Gaussians

This technique, models each pixel as a distribution

over number of Gaussians (nc), instead of modeling

each pixel as one value. To find the optimal number of

nc Bayesian information criterion (BIC) [16] method

was used, which selects the model from finite set of

models, components producing low BIC was used as

nc. See appendix A, section A1.3 for code snippet.

This background subtraction method, also keeps track

of the history of frames, i.e. it uses pre-defined nh frames to detect the foreground. If the

movement is not observed from the previous nh frames, the object is discarded and considered

as background. A value of 5 was for nh in my case, was found to yield best results, which

was found using trial and execution method.

After finding the suitable hyper-parameters, the model was applied on each frame from the

video stream. This produced a binary image on which topological structural analysis could be

performed. An example of binary image produced by the model, is shown in figure ??.

Viewing the segmentation, it can be observed that the shadows were not completely removed

and would accumulate towards FP. To mitigate this problem Morphological transformation

was applied. Using layers of erosion and dilation noise and shadows were removed (figure

4.6). This did not eliminate the problem as a whole but provided decent results, and remaining

noise was later handled in section 4.1.3. see appendix A section A1.4, for code snippet.
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FIGURE 4.5. Gaussian Mixture Segmentation

FIGURE 4.6. After Morphological Transformation

4.1.3 Finding Contours

For topological structural analysis on retrieved binary image from section 4.1, [17] was used.

Using this algorithm we can find the borders of connected components of 1-pixels. This

way the 4 border points of the connected pixels (i.e., xMax, yMax, xMin, yMin) yielding

the bonding box around an object are obtained. These contour points are used to create

a rectangular space indicating the presence of an object inside. The yielded contours also

included the points having FP, which in our case are the shadows or advertisement screens.
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To manage this problem different series of checks were performed, these mainly included:

• Image was divided in grid to check the area and height as it varied with the depth.

• Area of the contour. (It was observed that area of advertising screens was significantly

large and shadows to be really small w.r.t to the player contour)

• Height was always greater than the width of player’s contour.

Performing these checks on each calculated contours, players were separated from other

objects identified in the binary image. Since these were made to identify contours which

represents humans, other humans present in the image were also identified. These included

the players on the bench, line-men (referee), security personals, ball boys etc. To fit the

criteria of detecting only players on the field currently playing, pixel location approach was

devised, explained in chapter 5. See appendix A, section A1.5 for code of this section.

4.2 Deep Learning

Inspired by the recent developments in the area of computer vision, the following method

uses the layers of CNN to detect the players on the field. Unlike Fully Connected Neural

Net (FCNN), CNN’s are used to preserve spatial dimensionality of the image and reduce their

size. CNN’s being comparatively less computationally expensive works better with image

classification and object detection. Different CNN architectures are used in this section to

achieve higher accuracy and frame throughput .

4.2.1 Faster R-CNN

Faster R-CNN runs CNN on top of the ∼2000 proposed regions produced by Selective

Search. Being descendent of R-CNN, Faster R-CNN produces Region of Interest (ROI) using

RPN. RPN produces anchor boxes with "objectness" score and 4 coordinates representing

the bounding box of the region, using sliding window method at the last layer of an initial

CNN. At last FCNN takes the input of proposed regions by RPN to predict object class
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(classification) and Bounding box (Regression). The output of FCNN yields a confidence

map with class, confidence score (of class detected) and the coordinates of the bounding box.

FIGURE 4.7. Left: Faster R-CNN, Right: RPN

To implement Faster R-CNN, a pre-trained model on COCO data set was downloaded and

loaded using Tensorflow API [18]. This model contained a pre-trained inference graph which

can detect numerous classes, but for the purpose of this project only class which can detected

humans was used. For this purpose a a new .pbtxt format file was created, having only 1 entry,

as player class.

The frames from video stream were collected synchronously and converted into a numpy

array and then to a tensor, which is a multidimensional array. This tensor helps in performing

faster computation and will be containing pixel values of the frame with 3 channels i.e. RGB.

Feeding this tensor into the model loaded, yields a dictionary containing all the information

regarding the frame. This information includes, number of detections, names of the classes

detected, bounding box coordinates of the object detected and confidence of the object

detected in the frame. Since the model is prone to have false detection, i.e. predicting a
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detection when no object is present, only the detection with confidence score above the

threshold θc ≈ 0.3 are considered.

The bounding box coordinates detected from this model are in normalized form, so these

coordinates are multiplied with the height and width of the image to calculate actual coordin-

ates with regards to the image. Furthermore, some bounding box overlap each other, this

usually happens due to the multiple detection of the same object or due to the occlusion of

the players on the pitch. These overlapping coordinates are suppressed using Non Maximum

Suppression (NMS), which works on the principles of clustering proposals by spatial close-

ness measured by Intersection over Union (IOU) (Jaccard similarity) [19]. Since there could

be many frames where players are very close to each other, a large threshold θt ≈ 0.6− 0.7

was used to discard a bounding box. Filtered bounding box coordinates for each frame are

stored in an array to further reduce the false detections, using methods discussed in chapter 5.

See appendix A, section ??, for complete implementation of Faster R-CNN.

4.2.2 SSD

SSD [20] (by C. Szegedy et al.) released by the end of November 2016 worked on single

forward pass for object detection and localization. SSD’s was built on venerable VGG-16

architecture. Modification in SSD was to discard the Fully Connected Layer (FCL) at the end

of the network and use a set of auxiliary convolutional layers. This enabled the extraction

of features at multiple scales and also decrease the size of input in each subsequent layer.

Instead of RPN, SSD uses bounding box regression technique inspired by Szegedy’s work on

multibox [21].

The implementation of the SSD is identical to the implementation of Faster R-CNN provided

in the section 4.2.1. For SSD, a model trained on COCO data set was downloaded from

Model Zoo. Using similar manner described in section 4.2.1, the model was loaded and each

frame was passed through the model. Predictions were collected, filtered and stored in an

array for further processing.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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FIGURE 4.8. SSD architecture

4.2.3 YOLO

Comprising of 24 convolutional layers followed by 2 FCLs (figure 4.9), YOLO is able to

achieve higher throughput with a less trade-off of accuracy [22] compared to SSD and R-CNN.

YOLO uses (1 × 1) layer instead of inception layer to reduce the input size. It also treats

object detection as a regression problem by dividing the image into (S×S) grid and assigning

bounding boxes and class probabilities to the grid cells. These class probabilities reflect how

confident the model is that the box contains the predicted class. This results in total of 5

predictions by each (S × S) gird cell i.e., x, y, w, h, c. The x, y represents the center of the

bounding box relative to the grid and w, h are for width and height relative to the image. Here,

c is the predicted class confidence. Since it sees the image as a whole pixel by pixel it is less

prone to make error in detecting background patches as objects, in training and testing.

YOLO (version 3) was implemented in this project, using Deep Neural Network (DNN)

module created by OpenCV [23]. Using DNN a faster through put can be achieved than

tensorflow . Firstly, the configuration file and pre-trained weights were downloaded from the

official website of YOLO and loaded to the network. Later, each frame from the video stream

is preprocessed, where every frame is resized to 416 × 416, to aid the faster computation

and maintain the aspect ratio. Mean subtraction, scaling and swaping of color channels was

https://pjreddie.com/darknet/yolo/
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FIGURE 4.9. YOLO architecture

applied to each resized frame, because YOLO uses BGR instead of RGB order. Each of the

processed frames are passed through the network for predictions, which yields a bounding

box with normalized coordinates and confidence of the detection. Only the predictions

with a confidence score, higher than 0.4 were considered valid and rest of the predictions

were discarded. The predicted coordinates are normalized and hence were multiplied with

frame’s height and width to garner actual coordinates. The predicted bounding boxes also

included duplicate detections of same object, these duplicate detections were suppressed

using NMS method with a threshold value of 0.5. The filtered predictions of each frame were

concatenated in an array for further processing. See Appendix A section A2.2 for complete

detection implementation.

4.2.4 Observations

All the models explained in this section (i.e 4.2) are using pretrained weights. These weights

are trained to classify general classes like (person, car, dog etc.). Although these weights are

trained on large datasets like ImageNet [[24]] or coco data set [25]. It was observed that they

are not able to perform up to the mark, as the result can be viewed in the figure 4.10 to 4.12.
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FIGURE 4.10. Faster R-CNN ResNet50 pretrained on coco data set 2018

FIGURE 4.11. SSD inception V2 trained on coco data set 2018

4.3 Custom Trained Model

It was hypothesised that since the camera angle is distorted the pre-trained models are unable

to work at their best. To tackle the problem a custom data set was created and discussed

in section 2.2, was used to re-train the weights of the model. This data set contained 2

folders, train and test, containing images and their annotations, with a ratio of 80% and 20%

respectively.
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FIGURE 4.12. YOLOv3 with YOLO pre trained weights from yolo

The csv files were converted to Tensorflow’s binary storage format, TFRecord, since it is a

prerequisite to train the model using Tensorflow API. A latest pre-trained model of choice

from Model Zoo was downloaded to acquire model architecture. For this project faster-rcnn-

resnet101-coco was downloaded and the configuration file was edited to detect single class,

using the images provided in train and test folder. Since training the model requires a lot of

computations the model was trained using Tesla P100-PCIE-12GB GPU, for ∼ 2 hours or

when the model reached the loss between 2 - 1, to avoid over fitting. It took almost 1800

epochs, for model to reach required loss, and snap shot at this checkpoint was saved. The

script used for the purpose of training the model is provided by Tensorflow, at this URL.

A frozen inference graph was created from this checkpoint and was stored in a new folder

along with data to reach the checkpoint and the edited configuration file of the model used,

using the script provided by Tensorflow, at URL.

After testing the model using the code snippet, mention in appendix A, section A2.1, it was

observed that the model is able to locate the players on the field with much more accuracy. A

pictorial result of custom trained model, is shown in fig 4.13

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/model_main.py
https://github.com/tensorflow/models/blob/master/research/object_detection/export_inference_graph.py
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FIGURE 4.13. Custom trained model on faster-rcnn-resnet101-coco with

4.4 Deep Simple Real time Tracking (SORT)

Models to perform detection are computationally very expensive and take large processing

time. To increase the throughput rate of the model, object tracking was introduced. After

detecting the players in a frame, the coordinates of the predicted bounding boxes were stored

in an array and predictions for the next frame were generated using the centroid tracking.

This predicts the state of moving player in next frame, using its centroid and velocity. Once

the number of detected objects are 23, i.e. 22 players and one referee, the detection are fed to

centroid tracking, which keeps track of the moving player.

Centroid tracking can some time loose the track of a moving player or stop working when two

bounding box are occluded. To cater this problem, detection model was asked to make new

predictions every 30 frames and new tracking coordinates were generated. Once the model

was able to make the required amount of predictions it was observed that the throughput rate

of the model was slightly increased, as shown in table 7.1. See appendix A section A3 for

code snippet.



CHAPTER 5

Player Identification

The task for the Object detection (i.e. players) was performed in chapter 4. The methods

explained in the chapter 4 were able to perform the detection but were unable to differentiate

between the players on the football field and the referees, spectators, security guards etc.. To

make the computer understand the difference, an algorithm is devised which is explained in

the section 5.1. The computer vision also could not identify which team the player belongs to.

Based on the color of the jersey being worn, method explained in section 5.2, was used to

perform the task of team identification.

5.1 Field Polygon

The player detecting algorithms preformed in chapter 4 are not able to distinguish between

players inside the field or on the bench located in the background. The object detection

algorithms, also detected the security personals and the ball boys present in the frame since

they share the same anatomy or produce the contour with similar characteristics of a human.

It was observed the difference between players on the pitch and off the field, is the position it

self. This means that the detection observed inside the field can me marked as playing players

and other observations can be discarded.

Since the field is forming a convex shape due to the distortion in the camera angle, hard

coding the coordinates of the field would not perform best results. Therefore, an algorithm

was devised which would require the user to identify the boundary points of the field. The

user can pick x number of boundary points on the edge of the field and create a polygon with

x points. This polygon will be considered as the football field and only the detection inside
31
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this polygon will be considered valid. For the purpose of understanding, a polygon with 9

points is displayed in the figure 5.1.

FIGURE 5.1. Polygon of 9 selected points on the football field

The detected players from the chapter 4 are provided in the form of bounding boxes, i.e. 4

coordinates with top-left and bottom-right coordinates around the player. Since the players at

the back can have their heads outside the field and still be playing due to camera angle, the

feet of the players were put in the context. The coordinates of the feet were calculated by

using the equation (5.1), where fcord are the x and y coordinates of the feet.

fcord =
xmin + xmax

2
, ymax (5.1)

The fcord obtained were checked if they fall inside the coordinates of the polygon drawn on

the borders of the field. If the fcord were observed to be inside the polygon, the detection

related to it was considered to be a playing player. Doing so, the computer was able to identify

all the players playing and false detections outside the field were discarded. The complete

script of this section is provided in Appendix [A] section A3.1 and A3.2.
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5.2 Team Detection

After filtering the detected players on the field we need to identify the team they belong to.

The football match used for this project was played against teams wearing white and black

kits. Just like human vision, this algorithm also relies on the color of jersey to identify the

team. Since we humans distinguish the colors in terms of their wave length, the computer

reads the images with RGB values of each pixel and differentiates them on the bases of these

values.

To identify the team of the player we first need to calculate the range of pixel values, white and

black colored jerseys fall under. For this purpose a script was used, mentioned in Appendix A

section A3.3. This scripts reads an image with RGB values and converts it to HSV, as HSV

is better to separate color information from luminance. This script provides with 6 toolbars to

find the range of HSV values i.e. upper and lower range of each color. This can be viewed in

the figure 5.2, where upper and lower range of white color is detected manually. The same

way the color ranges for black team and referee jersey’s were obtained.

The obtained ranges of HSV values were used to identify the player team. To perform this

task, each bounding box detection was cropped out (as shown in figure 5.3) of the frame,

to perform the masking method. As the images are being cropped from the frame of video

stream they are in RGB format, these images were converted into HSV format. All the pixel

values which fall inside upper and lower range of corresponding colors were stored in a

temporary variable called mask and rest of the values not in range were discarded. A pixel by

pixel and operation was performed on these images with the mask calculated. The resulting

multi-dimensional array contained the active pixels produced after masking. This array was

converted to gray scale to reduce the dimensionality and calculate the number of active pixels.

The active pixels created a binary image and represented the strength of color present in the

image.

The masking method was performed for each color to be detected, which in our case is white,

black and yellow for Tromsø IL, Tottenham Hotspurs and referee respectively. Based on the

strength of the color present in the cropped image, the team of the player was identified. The
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FIGURE 5.2. HSV upper and lower range of white team with toolbars

figure 5.4 shows the players with number of white pixels present in the bounding box. For the

code of this method refer to appendix A section A3.4.

FIGURE 5.3. Players cropped with bounding box coordinates
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FIGURE 5.4. Players with number of white pixels present

5.3 Data Structure

From section 5.2 we were able to calculate the team of the player. The script used to perform

player identification task, returned the initial of the team the player belongs to i.e. "w" for

white (Tromsø IL), "b" for black (Tottenham Hotspurs) and "r" for referee. These initials

were appended on to the filtered objects (players) identified in section 5.1. The resulting array

contained the bounding box coordinates and the initials of the team corresponding to those

bounding boxes, as seen below

x_min , y_min , x_max , y_max , team

[ [ 2 2 9 9 , 565 , 2345 , 6 4 5 ] , ’w’ ] ,

[ [ 2 0 2 3 , 637 , 2077 , 7 2 5 ] , ’w’ ] ,

[ [ 1 6 8 5 , 902 , 1766 , 1 0 0 8 ] , ’b ’ ] ,

[ [ 1 7 1 1 , 614 , 1751 , 6 8 0 ] , ’w’ ] ,

[ [ 7 9 9 , 841 , 843 , 9 0 8 ] , ’b ’ ] ,

[ [ 2 5 7 5 , 651 , 2631 , 7 3 4 ] , ’ r ’ ]

. . . . . . . . .



CHAPTER 6

Visualization

From chapter 5 we were able to create an array with the pixel coordinates, of the players

bounding boxes and the initials of the team they belong to. The resulting array from section

5.3 contained the coordinates based on the frame size from video stream. These coordinates

needed to be converted with a scale, to be projected on the smaller screen, the method for this

is explained in section 6.1.

Since the whole system is running in real time and we receive an array of detections every

next frame, a cloud integration was made between the computer executing scripts and the

mobile phone, where detections are being displayed. The method devised to make the display

on mobile phone in real-time is explained in section 6.2.

6.1 Pixel Scaling

The yielded coordinates from the section 5.3 are in relation to the frame size of video (i.e.

2000× 4450). Since the aim of this project is to visualize the positional data of players on a

smaller screen, a scale was needed to translate the coordinates from video stream to a smaller

image, shown in figure 6.1. This projection can be preformed by using the equation (6.1),

where (x, y) are the coordinates of the small screen and (x′, y′) are the coordinates detected

on a frame of video stream.

36
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H =
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

FIGURE 6.1. Image used on small screens with aspect ratio (19:9)

The transformation matrix H used in equation (6.1), is calculated by using the points to

create polygon around the football field (shown in figure 5.1) and choosing similar points on

smaller animated football field. A pictorial representation of the process is shown in figure

6.2. Having no similar features between the two, the task is performed manually using the

script described in Appendix A section A3.1 with the source file changed to small image. The

points of the polygon and the one collected from the small image should be in the same order.

The two vectors, one representing the polygon and the other representing the points on the

small image are used to calculate the H matrix. This can be done by creating a 2× 9 matrix,

for each corresponding point between the frame and the small image as shown in equation

(6.2). Stacking the values for number of points in context, which in our case results in the
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FIGURE 6.2. Choosing similar points on small screen image

matrix P = (18× 9) we can compute the required homography matrix, from equation (6.3),

from [26].

pi =

−xi − yi − 1 0 0 0 xix
′
i yix

′
i x′i

0 0 0 − xi − yi − 1 xiy
′
i yiy

′
i y′i

 (6.2)
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In equation (6.1) a single coordinate is used, and currently the data structure from section 5.3

provides with 2 coordinates (i.e. top-left and bottom-right). Since in the section 5.1, we are

using the feet position of the player for valid detection, the same coordinates are computed

using equation (5.1) and used as the coordinates describing the position of the player. This

was done to keep the representation of the player on small screen with high relevance.

The feet coordinates are multiplied with the H matrix to compute the position on the smaller

screen. The resulting points are stored in a vector, which are then sent to the cloud so the

mobile phone which is visualizing the data can fetch it. The computation of the pixel values

for the smaller screen is shown in Appendix A section A3.5.

6.2 Cloud Integration

From previous section 6.1, we were able to create a vector containing the coordinates in terms

of pixels, describing the player position. The yielded vector is changing with every frame,

making the detections real time. To display these positions a database was created which

would store the positions of the player and update it self as the new positions come in. The

database should also send out a trigger response whenever it is updated so the mobile phone

which is being used to display the positions would know if the values have been updated.

To preform the necessary, a cloud solution provided by Google called Firebase [27] was used.

An integration was performed between the computer running the script and the cloud storage.

This integration would update the database with every new frame and the detections predicted

on those frames. A real time database integration was incorporated at the end of the pipeline,

which takes the vector yielded from section 6.1 and pushes it on to the cloud. Since the

vector is in numpy array format and firebase only accepts JavaScript Object Notation (JSON)

format, the vector was first converted before being pushed. This was done by iterating over the

array of detected positions and storing them in a python dictionary. The resulting dictionary

contained team initials as the key and the relevant detections as the values, as shown below
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’w’: [[547, 137], [583, 177], [579, 188], [562, 212], [575, 226], [553, 231], [486, 289]],

’b’: [[549, 173], [591, 207], [510, 249], [533, 244], [466, 239], [559, 287]]

The yielded dictionary was passed to the database, whose schema is pre-defined. Each

iteration on the video frame results in a new dictionary which in turn updates the values in

the cloud database. The figure ?? shows the values in the firebase database and the figure

?? shows the values being updated in real time, with highlighted boxes. As the values of

the firebase real-time database updates, it generates a trigger to let all the connected devices

know about the change. The generated trigger is used to make the mobile devices, where

data is being viewed, to update its display and show the updated positions of the player. The

integration of the mobile with the database is explained in section 6.3. The snippet code of

this section is provided in Appendix A section A3.6

6.3 Mobile Application

To display the detections done in previous sections, a mobile application was developed. The

development was carried out using React-native 16.9.0 developed by Facebook [28]. The

purpose of this application was to visualize the detection that has been updated in the firebase

database. Since the database is being updated in the real time, the application would be

relying on the trigger from the firebase to update the detections on the screen.

Based on the internet connection, application is connected to the database in the cloud. The

application keeps the listening port open for the firebase database, which allows it to act in real

time with the updates detected in the database. This application takes the coordinates being

stored in the database and use this data to represent players. The players in the application are

represented as circles with two different colors (white and black) for each team as shown in

figure 6.5.

The development of this native application was carried out on mobile phone Google pixel

2 and has been tested only on this device. The pixel2 has a 130mm screen size with the
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FIGURE 6.3. Values
of pixel coordinates
stored in firebase

FIGURE 6.4. High-
lighted boxes in fire-
base being updated in
real time

resolution of 1080 (1920× 1080), any devices having the screen aspects mentioned will yield

the similar result.

Every time the data gets updated in the database, a snapshot of the data is taken. This snapshot

is validated for having the same keys, to double check the data continuity. The data is stored

in the states of the app (i.e white and black) with their corresponding keys. This makes the

Virtual Document Object Model (DOM) update it self and the application knows that the

new values have been collected. Using this technique, new circles are created on the image

(background of football field), which makes the circles disappear and reappear on the next

position. For the complete code of the app please refer to git repo [29]
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FIGURE 6.5. Screen shot of players being shown on mobile phone ( Google
Pixel 2 (emulator)



CHAPTER 7

Results

The implemented models are quantified on the bases of their speed through put and the

precision of detecting the players accurately. All the models discussed in this project are

tested on Intel(R) Core(TM) i7-8550U @ 1.80GHz. This CPU was used for both Background

subtraction (section 4.1) as well as Deep Learning models (section 4.2). However, the training

for deep learning models on custom data set were performed on Tesla P100-PCIE-12GB

GPU.

7.1 Precision × Recall curve

A metric was required to evaluate the performance of the models, used in this project. For

this purpose, a metric system used by PASCAL Visual Object Classes (VOC) [30] was used.

This metric system relies on calculating Average Precision using Precision x Recall curve.

The Precision and the Recall of a model can be calculated using the equations (7.1) and (7.2).

Precision =
TP

TP + FP
(7.1)

Recall =
TP

TP + FN
(7.2)

Since the object detection yields the detections as bounding box, which are considered as our

predicted results, the measurement of the True Positive (TP), FP and False Negative (FN) is
43
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not straight forward. This was done using IOU, which takes into account the bounding boxes

predicted by the model and calculates the score of detection using the equation (??). This

method calculates the area which is overlapped by the predicted bounding box Bp with the

ground truth bounding box Bgt for a particular object detected. The ground truth coordinates

of the object are collected manually by annotating the image.

IOU =
area(Bp ∩Bgt

area(Bp ∪Bgt)
(7.3)

Same ground truth files used to train and test the model, containing the coordinates of the

bounding box and file name of the image, were used. Since there was no way to maintain

the order between the ground truth and the predicted bounding boxes, Euclidean distance

[31] between the centroid of predicted and ground truth bounding boxes was computed. The

minimum distance between the two boxes was considered as the detection of the same object

in the frame. Calculating IOU of the corresponding detection we can set a precedent for the

following:

• True Positive: Correct detection, where IOU ≥ θ

• False Positive: Invalid Detection, where IOU ≤ θ

• True Negative: Can not be computed, as there can be many bounding boxes where

there is not any object.

• False Negative: No bounding box overlapping the ground truth

Using the equations above we can calculate the Precision and Recall of images whose ground

truth is available. Furthermore, calculating the Precision and Recall of all the images we

can plot the graph, where precision is represented on y-axis and recall on x-axis as shown in

figure [7.1].

From the Precision x Recall curve we can calculate the Average Precision by estimating

the AUC. This can be computed following two methods 11 point interpolation or All data

points interpolation. As PASCAL VOC challenge uses all data points method, the same
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FIGURE 7.1. Precision Recall Curve

method was used in this project. The idea is to interpolate all the n points in the curve, using

the equation (7.4), such that r takes the maximum precision whose recall value is greater than

or equal to r + 1 [32]. Here the ρ(r̂) is the precision measured at recall r̂.

∑
n=0

(rn+1 − rn)ρinterp(rn+1) (7.4)

ρinterp(rn+1) = max
r̂.r̂≤rn+1

Plotting the values calculated from the equation (7.4) on the plot shown in figure 7.1 , we can

have four rectangles as shown in figure 7.2. Summing the area of rectangles (A1, A2, A3,

A4) we can calculate the AUC, which will be the Average Precision.
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FIGURE 7.2. Left: Interpolated data points on Precision x Recall curve.
Right: Rectangles produced from Interpolated data to calculate AUC [1]

7.1.1 Precision x Recall curve of models

To calculate the Precision x Recall curve of the models used in this project the code developed

(by Rafael Padilla) [1] was used. Each model was run on 100 images, whose ground truth

values were known, these ground truth values were stored in .txt format, where each row

corresponds to the class and its bounding box coordinates. The predicted bounding box

coordinates and the confidence yielded from each image applying the model, was also stored

in a .txt format, with the file name same as image name. 100 txt files were created, each

corresponding to the image, predictions were made on. Example of these txt files are shown

below:

Ground Truth .txt

player 3274 849 3330 940

player 3515 749 3550 833

player 2654 822 2715 942

Predictions .txt

player 0.65330 3171 1016 3214 1086

player 0.57810 2988 800 3034 905

player 0.54516 3894 1366 3965 1487

Using PASCAL VOC evaluation metric on these txt files, Precision x Recall Curves were

generated to see the performance of the models. These are depicted in the plots presented in

figure 7.3 along with their model information. Since the GMM and Deep Simple Real time
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Tracking (SORT) can not work on static images, the plot for both methods are not included in

the figures below

Viewing the results shown in figure [7.3], it can be seen that the custom trained model reached

a much higher accuracy than the rest of the models.

7.2 Frames Per Second (FPS)

As this project aims to translate the predicted detections on smaller screens in real time, the

FPS of the model needs to yield higher through put for better performance. Since all the

models were tested on CPU for bench marking a very low through put was observed when

using deep learning models. Background subtraction method on the other hand, produced a

higher throughput rate comparatively. This is shown in the table 7.1. Figures shown in the

table are collected by loading a 2 minute 30 second clip of ∼ 442 MB size.

Frame Per Second Throughput
Model FPS
Image-Subtraction ∼ 5.622
GMM BS ∼ 1.130
YOLO pre-trained YOLO weights ∼ 0.892
Faster R-CNN pre-trained COCO weights ∼ 0.262
SSD pre-trained COCO weights ∼ 1.362
Faster R-CNN custom trained ∼ 0.104
Deep SORT ∼ 0.2824

TABLE 7.1. The models were run between 30 seconds to 60 seconds, to
calculate FPS

7.3 Visual Outputs

For the purpose of visualization, outputs were generated using different models. Since GMM

background Subtraction depends on history of frames to calculate foreground, video stream

was used to generate the output for it. For the rest of the models, single image was used to

generate results. The outputs contain the frame on which model is being applied on, at the

top and a small screen representation at the bottom, with players shown as colored circle (i.e.
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(a) YOLO on pre-trained YOLO weigths (b) Faster R-CNN on pre-trained COCO weights

(c) SSD on pre-trained COCO weights (d) Background subtraction, Absolute difference

(e) Custom trained model on Faster R-CNN

FIGURE 7.3. Precision x Recall Curve with Average precision of models used
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FIGURE 7.4. Result using GMM model

white for team with white jersey and black for team with black jersey).

The result shows that the goal keeper of the black team was not detected. Also at the

background where players are highly occluded the model was unable to detect the players

with high accuracy. The model also often makes mistakes while recognizing the team of

the player. This happens due to the fact that the players are occluded and the bounding box

contains more white pixels than the black or vice versa. Other than these limitations the

model performed good accuracy in detecting the players on the pitch and showing them on

the smaller screen.
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FIGURE 7.5. Result using Image subtraction model

As it can be viewed that there were several False detections generated by the model. This

was mainly because, a lot of noise was being produced by the model after generating the

foreground. Dedicated checks were performed to eliminate false detections, however, all the

false detections could not be removed completely.
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FIGURE 7.6. Result using Faster R-CNN model with pre-trained COCO weights

The Faster R-CNN model trained on the COCO data set, was unable to yield high accuracy

at detecting the players. It can be viewed that most of the players on the pitch are not being

detected. Since the COCO data set are the images of various objects with out any distortion

in the camera angle, the trained weights did not perform very good.
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FIGURE 7.7. Result using YOLO model with pre-trained COCO weights

YOLO model trained on the COCO data set, was able to yield better accuracy than Faster

R-CNN. YOLO’s performance in general is better than rest of the models, due to its architec-

ture. It can be seen that both goal keeper are marked as belonging to the same team. This

is due to the fact that script created to detect the strength of the color considers the cropped

images inside the bounding box, these cropped images contains the background as well which

contains white lines on the football ground, hence adding to the strength of color, while not

being part of player jersey.
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FIGURE 7.8. Result using Faster R-CNN model with custom trained weights

The custom trained model using Faster R-CNN was able to yield higher performance than

rest of the deep learning models. It can be seen, the model performed a good job in detecting

the white players, but could not detect player from the black team properly. It was anticipated

that since the model has an Accuracy of 81%, it was not able to detect all the players in all

the frames.
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Conclusion

The aim of this project was to retrieve the position of players on the football field, from a

video stream and illustrate it on a smaller screen. Several models were created and tested

against each other to localize the position of the players. Each model was evaluated based on

the accuracy yielded and the throughput rate. These positions were then mapped out on to the

smaller screen as an aerial view. Position of each player was represented on a 2D image using

a circle, from each frame of a video. To make the system real time, a cloud integration along

with a native application was developed to show the positions on to a mobile phone.

Extracting the positions of the players using background subtraction methods or the deep

learning models, were not able to produce high accuracy at detecting the players. The GMM

background subtraction method worked best when the players were not occluded, as it was

able to detect the players present at the back (away from the camera). A custom trained deep

learning model was able to perform much better when players were occluded, compared

to Background subtraction model. Deep learning models were also computationally very

expensive, which made their run time very slow as compared to Background subtraction

methods. The process time per frame of each model is shown in table 7.1, which are calculated

on a CPU and can be increased with the introduction of a GPU in the system.

It was hard to quantify the representation of the players on the smaller screen, due to the

presence of distortion in the camera angle of video stream. It can not be stated with certainty,

whether the players being shown on the smaller 2D image (425 × 640) were represented

accurately regarding their position in the video frame. The players were represented based on

the position of their feet, using a circle, having a radius of 3 pixels.

54
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8.1 Future outlook

There is room for further improvements in this project as well as the positional data extracted

can be used to create predictive machine learning models. These models will play a vital role

in improving the capabilities of players and also creating new strategies for teams.

8.1.1 Model Improvement

The data set created to train the deep learning model for this project, will be available and can

be used to train new models. At the time of writing this project, new models like YOLOv4,

YOLOv5 [33] have been introduced. These models are claimed to be better and faster than

rest of the CNN models. If these models are implemented on the video stream, it is anticipated

that better accuracy can be achieved.

Object tracking algorithms like Kalaman filter, centroid tracking can be used to track the

movement of an individual player. These tracking techniques do not work best when objects

under consideration have similar colors, which in this case was true, considering the jerseys

of the players. However, newer techniques can be developed for object tracking, which do

not rely on the color of the object but its position and momentum. Introducing the tracking

algorithm, ID can be assigned to each detection. This would help in calculating the stats of

the players on individual level, without the use of sensor technology.

8.1.2 E2E models

End to End deep learning models like MuZero [34] can be used on the positional data collected.

These models can be used to devise new strategies for the game of football. As these models

can simulate different scenarios during training and can come up with better strategies than

a human, doing so the whole paradigm of sports analysis can be shifted and an Artificial

Intelligence (AI) coach can be developed. This AI coach if trained up to some extent, can

provide with real-time analysis and strategies.
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8.1.3 Smart Watches

Being low in size, in terms of storage, the data can be viewed on to much smaller screens like

smart watches. Since some smart watches has a rectangular dial, e.g. Apple watch, positional

data can be displayed on it using small dots This would allow more mobility, hence providing

a better and faster way to analyze the data.
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Appendix A

A1 Background Subtraction Implementation code

A1.1 Extracting Background from Video

def e x t r a c t _ b a c k g r o u n d ( v i d e o F i l e ) :

" " " R e c e i v e s a v i d e o f i l e n a m e ( w i t h e x t e n s i o n ) and

s a v e s t h e background image i n s p e c i f i e d f o l d e r " " "

v i d e o = cv2 . VideoCap tu re ( v i d e o F i l e )

c = 0

whi le v i d e o . i sOpened ( ) :

_ , img = v i d e o . r e a d ( )

a v e r a g e _ = img

f c = f l o a t ( c )

a v e r a g e _ = ( f c * avg_img + img ) / ( f c +1)

c += 1

cv2 . i m w r i t e ( ’ p a t h _ o f _ f i l e ’ , a v e r a g e _ )

A1.2 Binary Masking
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bg = cv2 . imread ( ’ img / background . j p g ’ )

bg_img = cv2 . c v t C o l o r ( bg , cv2 .COLOR_BGR2GRAY)

def t r a c k _ p l a y e r ( v i d e o _ f i l e ) :

cap = cv2 . VideoCap tu re ( v i d e o F i l e )

whi le cap . IsOpened ( ) :

r e t , f rame = cap . r e a d ( )

i f not r e t :

break

gray_img = cv2 . c v t C o l o r ( frame , cv2 .COLOR_BGR2GRAY)

b g _ d e l t a = cv2 . a b s d i f f ( bg_img , gray_img )

t h r e s h o l d = cv2 . t h r e s h o l d ( b g _ d e l t a , 30 , 255 ,

cv2 . THRESH_BINARY ) [ 1 ]

t h r e s h o l d = cv2 . e r o d e ( t h r e s h o l d , ( 1 3 , 1 3 ) , i t e r a t i o n s = 1)

t h r e s h o l d = cv2 . d i l a t e ( t h r e s h o l d , ( 1 0 , 1 0 ) , i t e r a t i o n s =1)

t h r e s h o l d = cv2 . e r o d e ( t h r e s h o l d , ( 1 1 , 1 1 ) , i t e r a t i o n s = 1)

t h r e s h o l d = cv2 . d i l a t e ( t h r e s h o l d , ( 8 , 8 ) , i t e r a t i o n s = 1)

c o n t o u r s , _ = cv2 . f i n d C o n t o u r s ( t h r e s h o l d . copy ( ) ,

cv2 . RETR_EXTERNAL, cv2 . CHAIN_APPROX_SIMPLE)

A1.3 Finding n-components for GMM

import cv2

from s k l e a r n . m i x t u r e import G a u s s i a n M i x t u r e a s GMM
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f rame = cv2 . imread ( ’ img / 0 . png ’ )

img = frame . r e s h a p e ( ( −1 , 3 ) )

n_components = np . a r a n g e ( 1 , 10)

gmm_model = [GMM( n , c o v a r i a n c e _ t y p e = ’ t i e d ’ )

. f i t ( img ) f o r n in n_components ]

p l t . p l o t ( n_components , [m. b i c ( img ) f o r m in gmm_model ] ,

l a b e l =" BIC " )

p l t . x l a b e l ( ’ n_components ’ )

A1.4 Gaussian Mixture Model

import cv2

back_sub = cv2 . bgsegm . c rea t eBackgroundSub t r ac to rMOG ( h i s t o r y = 5 , n m i x t u r e s = 8)

v i d _ c a p = cv2 . VideoCap tu re ( v i d e o _ f i l e _ p a t h )

whi le v i d _ c a p . i sOpened ( ) :

r e t , img = v i d _ c a p . r e a d ( )

i f not r e t :

break

fgMask = back_sub . apply ( img )

fgMask = cv2 . e r o d e ( fgMask , ( 1 3 , 1 3 ) , i t e r a t i o n s = 1)

fgMask = cv2 . d i l a t e ( fgMask , ( 2 , 2 ) , i t e r a t i o n s = 1)

fgMask = cv2 . e r o d e ( fgMask , ( 1 3 , 1 3 ) , i t e r a t i o n s = 1)

fgMask = cv2 . d i l a t e ( fgMask , ( 2 , 2 ) , i t e r a t i o n s = 2)
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c o n t o u r s , _ = cv2 . f i n d C o n t o u r s ( fgMask . copy ( ) ,

cv2 . RETR_EXTERNAL, cv2 . CHAIN_APPROX_SIMPLE)

A1.5 Finding Contours

# F i n d i n g Con tours on each frame i n s i d e w h i l e loop

c o n t o u r s , _ = cv2 . f i n d C o n t o u r s ( fgMask . copy ( ) , cv2 . RETR_EXTERNAL,

cv2 . CHAIN_APPROX_SIMPLE)

p l a y e r _ p o s = [ ]

# I t e r a t i n g over c o n t o u r s :

f o r cn in c o n t o u r s :

( x , y , w, h ) = cv2 . bound ingRec t ( cn )

f e e t _ c o o r d = [ f l o a t ( x + i n t (w / 2 . 0 ) ) , f l o a t ( y + h ) ]

f e e t s = P o i n t ( f e e t _ c o o r d [ 0 ] , f e e t _ c o o r d [ 1 ] )

r e c t _ a r e a = cv2 . c o n t o u r A r e a ( cn )

# Check ing i f d e t e c t i o n i s i n s i d e t h e po lygon d e f i n e d

i f not f i e l d _ p o l y g o n _ p o i n t s . c o n t a i n s ( f e e t s ) :

c o n t in u e

# P e r f o r m i n g S e v e r a l c h e c k s f o r p l a y e r d e t e c t i o n

i f not h > w * 1 . 5 :

c o n t in u e

i f r e c t _ a r e a < 100 :

c o n t in u e

i f w > h :

c o n t in u e
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i f y > 1000 and 600 < x < 2900 and r e c t _ a r e a < 1000 :

c o n t in u e

i f 800 < y < 1000 and 600 < x < 2900 and r e c t _ a r e a < 500 :

c o n t in u e

i f 600 < y < 800 and 600 < x < 2900 and r e c t _ a r e a < 300 :

c o n t i nu e

i f y > 1000 and x > 2900 and r e c t _ a r e a < 200 :

c o n t i nu e

p l a y e r . append ( [ x , y , x+w, y+h ] )

A2 Deep Learning Implementations code

A2.1 Faster R-CNN implementation

from o b j e c t _ d e t e c t i o n . u t i l s import ops as u t i l s _ o p s

from o b j e c t _ d e t e c t i o n . u t i l s import l a b e l _ m a p _ u t i l

from c o l l e c t i o n s import d e f a u l t d i c t

import t e n s o r f l o w as t f

import numpy as np

import cv2

def load_mode l ( model_name ) :

m o d e l _ d i r = p a t h l i b . Pa th ( model_name ) / " saved_model "

model = t f . saved_model . l o a d ( s t r ( m o d e l _ d i r ) , None )
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model = model . s i g n a t u r e s [ ’ s e r v i n g _ d e f a u l t ’ ]

re turn model

PATH_TO_LABELS = ’ FasterRCNN / labe l_map . p b t x t ’

c a t e g o r y _ i n d e x = l a b e l _ m a p _ u t i l

. c r e a t e _ c a t e g o r y _ i n d e x _ f r o m _ l a b e l m a p (

PATH_TO_LABELS ,

u s e _ d i s p l a y _ n a m e =True )

# Downloaded model

model_name = ’ f a s t e r _ r c n n _ r e s n e t 5 0 _ c o c o _ 2 0 1 8 _ 0 1 _ 2 8 / ’

# Loading model

d e t e c t i o n _ m o d e l = load_mode l ( model_name )

def r u n _ i n f e r e n c e _ f o r _ s i n g l e _ i m a g e ( model , image ) :

image = np . a s a r r a y ( image )

# The i n p u t needs t o be a t e n s o r ,

# c o n v e r t i t u s i n g ‘ t f . c o n v e r t _ t o _ t e n s o r ‘ .

i n p u t _ t e n s o r = t f . c o n v e r t _ t o _ t e n s o r ( image )

# The model e x p e c t s a b a t c h o f images ,

# so add an a x i s w i t h ‘ t f . newaxis ‘ .

i n p u t _ t e n s o r = i n p u t _ t e n s o r [ t f . newaxis , . . . ]

# Run i n f e r e n c e

o u t p u t _ d i c t = model ( i n p u t _ t e n s o r )

# A l l o u t p u t s are b a t c h e s t e n s o r s .

# Conver t t o numpy arrays ,

# and t a k e i n d e x [ 0 ] t o remove t h e b a t c h d i m e n s i o n .
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# We ’ re o n l y i n t e r e s t e d i n t h e f i r s t n u m _ d e t e c t i o n s .

n u m _ d e t e c t i o n s = i n t ( o u t p u t _ d i c t . pop ( ’ n u m _ d e t e c t i o n s ’ ) )

o u t p u t _ d i c t = { key : v a l u e [ 0 , : n u m _ d e t e c t i o n s ] . numpy ( )

f o r key , v a l u e in o u t p u t _ d i c t . i t e m s ( ) }

o u t p u t _ d i c t [ ’ n u m _ d e t e c t i o n s ’ ] = n u m _ d e t e c t i o n s

# d e t e c t i o n _ c l a s s e s s h o u l d be i n t s .

o u t p u t _ d i c t [ ’ d e t e c t i o n _ c l a s s e s ’ ] =

o u t p u t _ d i c t [ ’ d e t e c t i o n _ c l a s s e s ’ ]

. a s t y p e ( np . i n t 6 4 )

# Handle models w i t h masks :

i f ’ d e t e c t i o n _ m a s k s ’ in o u t p u t _ d i c t :

# Reframe t h e t h e bbox mask t o t h e image s i z e .

dt_mask = u t i l s _ o p s .

re f rame_box_masks_ to_ image_masks (

o u t p u t _ d i c t [ ’ d e t e c t i o n _ m a s k s ’ ] ,

o u t p u t _ d i c t [ ’ d e t e c t i o n _ b o x e s ’ ] ,

image . shape [ 0 ] , image . shape [ 1 ] )

dt_mask = t f . c a s t ( dt_mask > 0 . 5 , t f . u i n t 8 )

o u t p u t _ d i c t [ ’ dt_mask ’ ] = dt_mask . numpy ( )

# p r i n t ( o u t p u t _ d i c t )

re turn o u t p u t _ d i c t

cap = cv2 . VideoCap tu re ( v i d _ f i l e _ p a t h )

_ , image = cap . r e a d ( )

h = image . shape [ 0 ]

w = image . shape [ 1 ]
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c o n f T h r e s h o l d = 0 . 3

nmsThresho ld = 0 . 6

p l a y e r _ p o s = [ ]

whi le True :

boxes = [ ]

c o n f i d e n c e = [ ]

r e t , f rame = cap . r e a d ( )

i f not r e t :

break

image = np . a r r a y ( f rame )

o u t _ d u c t = r u n _ i n f e r e n c e _ f o r _ s i n g l e _ i m a g e ( d e t e c t i o n _ m o d e l , image )

f o r i in range ( 0 , l e n ( o u t _ d u c t [ ’ d e t e c t i o n _ b o x e s ’ ] ) ) :

ymin = i n t ( o u t _ d u c t [ ’ d e t e c t i o n _ b o x e s ’ ] [ i ] [ 0 ] * h )

xmin = i n t ( o u t _ d u c t [ ’ d e t e c t i o n _ b o x e s ’ ] [ i ] [ 1 ] * w)

ymax = i n t ( o u t _ d u c t [ ’ d e t e c t i o n _ b o x e s ’ ] [ i ] [ 2 ] * h )

xmax = i n t ( o u t _ d u c t [ ’ d e t e c t i o n _ b o x e s ’ ] [ i ] [ 3 ] * w)

c o n f i d e n c e . append ( o u t _ d u c t [ ’ d e t e c t i o n _ s c o r e s ’ ] [ i ] )

boxes . append ( [ xmin , ymin , xmax , ymax ] )

i n d i c e s = cv2 . dnn . NMSBoxes ( boxes ,

c o n f i d e n c e s ,

c o n f T h r e s h o l d ,

nmsThresho ld )

f o r i in i n d i c e s :

i = i [ 0 ]

box = boxes [ i ]

l e f t = box [ 0 ]
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t o p = box [ 1 ]

wid th = box [ 2 ]

h e i g h t = box [ 3 ]

p l a y e r _ p o s . append ( [ c o n f i d e n c e [ i ] ,

l e f t ,

top ,

l e f t + width ,

t o p + h e i g h t ] )

A2.2 YOLO Implementation

import cv2 as cv

import numpy as np

import i m u t i l s

t o t a l _ f r a m e s = 0

c o n f T h r e s h o l d = 0 . 3

nmsThresho ld = 0 . 3

inpWidth = 416

i n p H e i g h t = 416

o u t p u t F i l e = ’ d e t e c t e d _ f i l e . mp4 ’

c l a s s e s F i l e = ’ coco . names ’

c l a s s e s = None

def p o s t p r o c e s s ( frame , o u t s ) :

f r a m e H e i g h t = f rame . shape [ 0 ]

f rameWidth = frame . shape [ 1 ]



70 A APPENDIX A

c l a s s I d s = [ ]

c o n f i d e n c e s = [ ]

boxes = [ ]

# Scan t h r o u g h a l l t h e bounding boxes o u t p u t

# from t h e ne twork and keep o n l y t h e

# ones w i t h h igh c o n f i d e n c e s c o r e s .

# A s s i g n t h e box ’ s c l a s s l a b e l as

# t h e c l a s s w i t h t h e h i g h e s t s c o r e .

f o r o u t in o u t s :

f o r d e t e c t i o n in o u t :

s c o r e s = d e t e c t i o n [ 5 : ]

c l a s s I d = np . argmax ( s c o r e s )

c o n f i d e n c e = s c o r e s [ c l a s s I d ]

i f c o n f i d e n c e > c o n f T h r e s h o l d :

c e n t e r _ x = i n t ( d e t e c t i o n [ 0 ] * frameWidth )

c e n t e r _ y = i n t ( d e t e c t i o n [ 1 ] * f r a m e H e i g h t )

wid th = i n t ( d e t e c t i o n [ 2 ] * frameWidth )

h e i g h t = i n t ( d e t e c t i o n [ 3 ] * f r a m e H e i g h t )

l e f t = i n t ( c e n t e r _ x − wid th / 2 )

t o p = i n t ( c e n t e r _ y − h e i g h t / 2 )

c l a s s I d s . append ( c l a s s I d )

c o n f i d e n c e s . append ( f l o a t ( c o n f i d e n c e ) )

boxes . append ( [ l e f t , top , width , h e i g h t ] )

# Per form non maximum s u p p r e s s i o n t o

# e l i m i n a t e r e d u n d a n t o v e r l a p p i n g boxes w i t h

# lower c o n f i d e n c e s .
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i n d i c e s = cv . dnn . NMSBoxes ( boxes ,

c o n f i d e n c e s ,

c o n f T h r e s h o l d ,

nmsThresho ld )

f o r i in i n d i c e s :

i = i [ 0 ]

box = boxes [ i ]

l e f t = box [ 0 ]

t o p = box [ 1 ]

wid th = box [ 2 ]

h e i g h t = box [ 3 ]

p r e d i c t e d . append ( c l a s s I d s [ i ] ,

c o n f i d e n c e s [ i ] ,

l e f t , top , l e f t + width , t o p + h e i g h t )

A3 Deep SORT implementation

# r u n _ i n f e r e n c e _ f o r _ s i n g l e _ i m a g e i s used from s e c t i o n A2 . 1

import d l i b

t r a c k e r s = [ ]

c o u n t = 0

whi le cap . i sOpened ( ) :

r e t , f rame = cap . r e a d ( )

image = np . a r r a y ( f rame )

rgb = cv2 . c v t C o l o r ( frame , cv2 .COLOR_BGR2RGB)
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o u t _ d u c t = r u n _ i n f e r e n c e _ f o r _ s i n g l e _ i m a g e ( d e t e c t i o n _ m o d e l , image )

i f l e n ( t r a c k e r s ) < 23 & c o u n t % 30 == 0 :

f o r i in o u t _ d u c t [ ’ d e t e c t i o n _ b o x e s ’ ] :

ymin = i n t ( i [ 0 ] * h )

xmin = i n t ( i [ 1 ] * w)

ymax = i n t ( i [ 2 ] * h )

xmax = i n t ( i [ 3 ] * w)

f e e t _ c o o r d = [ f l o a t ( ( xmin+xmax ) / 2 ) , f l o a t ( ymax ) ]

f e e t s = P o i n t ( f e e t _ c o o r d [ 0 ] , f e e t _ c o o r d [ 1 ] )

i f not f i e l d _ p o l y g o n _ p o i n t s . c o n t a i n s ( f e e t s ) :

c o n t in u e

t = d l i b . c o r r e l a t i o n _ t r a c k e r ( )

r e c t = d l i b . r e c t a n g l e ( xmin , ymin , xmax , ymax )

t . s t a r t _ t r a c k ( rgb , r e c t )

t r a c k e r s . append ( t )

f p s . u p d a t e ( )

e l s e :

f o r t in t r a c k e r s :

# u pd a t e t h e t r a c k e r and grab t h e p o s i t i o n o f t h e t r a c k e d

# o b j e c t

t . u p d a t e ( rgb )

pos = t . g e t _ p o s i t i o n ( )
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# unpack t h e p o s i t i o n o b j e c t

s t a r t X = i n t ( pos . l e f t ( ) )

s t a r t Y = i n t ( pos . t o p ( ) )

endX = i n t ( pos . r i g h t ( ) )

endY = i n t ( pos . bot tom ( ) )

A3.1 Field Polygon

# S e l e c t t h e po lygon p o i n t s on t h e f i e l d .

# Takes a v i d e o pa th as i n p u t and r e s i z e s i t t o show on t h e s c r e e n

# Saves t h e p o i n t s i n . t x t f o r m a t t o be used l a t e r

def s e l e c t _ p o i n t s ( v i d _ f i l e p a t h ) :

p o i n t s _ f i l e = ’ . . / t x t / f i e l d _ p o l y g o n . t x t ’

p o s L i s t = [ ]

cap = cv2 . VideoCap tu re ( v i d _ f i l e p a t h )

r e t , f rame = cap . r e a d ( )

f a c t o r = 2

def m o u s e _ p o i n t s ( even t , x , y , f l a g s , param ) :

g l o b a l p o s L i s t

i f e v e n t == cv2 .EVENT_LBUTTONDOWN:

p r i n t ( ’ c o r d i n a t e x : {} , y : { } ’ . format ( x , y ) )

p o s L i s t . append ( [ x , y ] )

whi le True :

f rame = cv2 . r e s i z e ( frame , ( f rame . shape [ 0 ] / / f a c t o r ,

f rame . shape [ 1 ] / / f a c t o r ) )

cv2 . imshow ( ’ image ’ , f rame )
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cv2 . s e t M o u s e C a l l b a c k ( ’ image ’ , m o u s e _ p o i n t s )

i f cv2 . wai tKey ( 0 ) & 0xFF == 2 7 :

break

p r i n t ( ’ f i n a l p o i n t s c o l l e c t e d {} ’ . format ( p o s L i s t ) )

np . s a v e t x t ( p o s L i s t , p o i n t s _ f i l e )

A3.2 Point Checker

from s h a p e l y . geomet ry i m p o r t P o i n t

from s h a p e l y . geomet ry . po lygon i m p o r t Polygon

p o i n t s = np . l o a d t x t ( p o i n t s _ f i l e )

p o i n t s = p o i n t s . a s t y p e ( i n t )

f i e l d _ p o l y g o n _ p o i n t s = Polygon ( p o i n t s )

f o r cn i n c o n t o u r s :

f e e t _ c o o r d = [ f l o a t ( x + i n t (w / 2 . 0 ) ) , f l o a t ( y + h ) ]

f e e t s = P o i n t ( f e e t _ c o o r d [ 0 ] , f e e t _ c o o r d [ 1 ] )

i f n o t f i e l d _ p o l y g o n _ p o i n t s . c o n t a i n s ( f e e t s ) :

c o n t i n u e

A3.3 HSV Color picker

i m p o r t cv2

i m p o r t numpy as np

cap = cv2 . VideoCap tu re ( v i d _ f i l e p a t h )
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d e f n o t h i n g ( x ) :

p a s s

# C r e a t i n g a window f o r l a t e r use

cv2 . namedWindow ( ’ r e s u l t ’ )

# S t a r t i n g wi th 100 ’ s t o p r e v e n t e r r o r w h i l e masking

h , s , v = 100 ,100 ,100

# C r e a t i n g t r a c k b a r

cv2 . c r e a t e T r a c k b a r ( ’ h ’ , ’ r e s u l t ’ , 0 , 1 7 9 , n o t h i n g )

cv2 . c r e a t e T r a c k b a r ( ’ s ’ , ’ r e s u l t ’ , 0 , 2 5 5 , n o t h i n g )

cv2 . c r e a t e T r a c k b a r ( ’ v ’ , ’ r e s u l t ’ , 0 , 2 5 5 , n o t h i n g )

w h i l e ( 1 ) :

_ , f rame = cap . r e a d ( )

# c o n v e r t i n g t o HSV

hsv = cv2 . c v t C o l o r ( frame , cv2 . COLOR_BGR2HSV)

# g e t i n f o from t r a c k b a r and appy t o r e s u l t

h = cv2 . g e t T r a c k b a r P o s ( ’ h ’ , ’ r e s u l t ’ )

s = cv2 . g e t T r a c k b a r P o s ( ’ s ’ , ’ r e s u l t ’ )

v = cv2 . g e t T r a c k b a r P o s ( ’ v ’ , ’ r e s u l t ’ )

# Normal masking a l g o r i t h m

l o w e r _ b l u e = np . a r r a y ( [ h , s , v ] )
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u p p e r _ b l u e = np . a r r a y ( [ 1 8 0 , 2 5 5 , 2 5 5 ] )

mask = cv2 . inRange ( hsv , l o wer_b lue , u p p e r _ b l u e )

r e s u l t = cv2 . b i t w i s e _ a n d ( frame , frame , mask = mask )

cv2 . imshow ( ’ r e s u l t ’ , r e s u l t )

k = cv2 . wai tKey ( 5 ) & 0xFF

i f k == 2 7 :

b r e a k

cap . r e l e a s e ( )

cv2 . des t royAl lWindows ( )

A3.4 Color Pixel Calculator

c l a s s D e t e c t i o n W i t h C o l o r :

d e f _ _ i n i t _ _ ( s e l f ) :

s e l f . l o w e r _ w h i t e = np . a r r a y ( [ 6 0 , 0 , 2 0 4 ] )

s e l f . u p p e r _ w h i t e = np . a r r a y ( [ 1 7 9 , 3 8 , 2 5 5 ] )

s e l f . l o w e r _ b l a c k = np . a r r a y ( [ 0 , 0 , 0 ] )

s e l f . u p p e r _ b l a c k = np . a r r a y ( [ 3 6 0 , 1 0 0 , 5 0 ] )

s e l f . l o w e r _ y e l l o w = np . a r r a y ( [ 1 8 , 182 , 1 3 0 ] )

s e l f . u p p e r _ y e l l o w = np . a r r a y ( [ 6 7 , 255 , 2 5 5 ] )

d e f d e t e c t P i x e l C o u n t ( s e l f , p l aye r_ img , x , y ) :
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p l a y e r _ h s v = cv2 . c v t C o l o r ( p l aye r_ img , cv2 . COLOR_BGR2HSV)

mask3 = cv2 . inRange ( p l a y e r _ h s v ,

s e l f . l ower_ye l low , s e l f . u p p e r _ y e l l o w )

r e s 3 = cv2 . b i t w i s e _ a n d ( p laye r_ img , p l aye r_ img , mask=mask3 )

r e s 3 = cv2 . c v t C o l o r ( r e s1 , cv2 . COLOR_HSV2BGR)

r e s 3 = cv2 . c v t C o l o r ( r e s1 , cv2 .COLOR_BGR2GRAY)

ye l lowCoun t = cv2 . countNonZero ( r e s 1 )

i f ye l lowCoun t > 5 0 :

r e t u r n ’ r ’

mask1 = cv2 . inRange ( p l a y e r _ h s v , s e l f . l ower_whi t e ,

s e l f . uppe r_whi t e , mask=mask1 )

r e s 1 = cv2 . b i t w i s e _ a n d ( p laye r_ img , p l aye r_ img , mask=mask1 )

r e s 1 = cv2 . c v t C o l o r ( r e s1 , cv2 . COLOR_HSV2BGR)

r e s 1 = cv2 . c v t C o l o r ( r e s1 , cv2 .COLOR_BGR2GRAY)

whi t eCoun t = cv2 . countNonZero ( r e s 1 )

mask2 = cv2 . inRange ( p l a y e r _ h s v ,

s e l f . l o w e r _ b l a c k , s e l f . u p p e r _ b l a c k )

r e s 2 = cv2 . b i t w i s e _ a n d ( p laye r_ img , p l aye r_ img , mask=mask2 )

r e s 2 = cv2 . c v t C o l o r ( r e s2 , cv2 . COLOR_HSV2BGR)

r e s 2 = cv2 . c v t C o l o r ( r e s2 , cv2 .COLOR_BGR2GRAY)

b l a c k C o u n t = cv2 . countNonZero ( r e s 2 )

i f wh i t eCoun t > b l a c k C o u n t :



78 A APPENDIX A

r e t u r n whi teCount , "w"

e l s e :

r e t u r n b lackCount , ’b ’

A3.5 Calculating coordinates for small screens

# i n p u t _ p t s a r e t h e f e e t c o o r d i n a t e s o f a l l t h e p l a y e r s i n a v e c t o r

d e f homography ( s e l f , i n p u t _ p t s ) :

p t s = np . m a t r i x ( np . z e r o s ( shape =( l e n ( i n p u t _ p t s ) , 3 ) ) )

c = 0

f o r i i n i n p u t _ p t s :

x , y = i [ 0 ] [ 0 ] , i [ 0 ] [ 1 ]

p t s [ c , : ] = np . a r r a y ( [ x , y , 1 ] , d t y p e = " f l o a t 3 2 " )

c+=1

p l a y e r _ t o p _ p o i n t s = l i s t ( )

newPo in t s = np . empty ( [ l e n ( i n p u t _ p t s ) , 3 ] , d t y p e = " f l o a t 3 2 " )

c = 0

f o r i i n p t s :

newPo in t s = s e l f . h g _ m a t r i x * ( i . T )

x = i n t ( newPo in t s [ 0 ] / f l o a t ( newPo in t s [ 2 ] ) )

y = i n t ( newPo in t s [ 1 ] / f l o a t ( newPo in t s [ 2 ] ) )

p l a y e r _ t o p _ p o i n t s . append ( [ [ x , y ] , i n p u t _ p t s [ c ] [ 1 ] [ 0 ] ] )

c +=1

A3.6 Cloud Integration

# I n t i a l i z a t i o n o f v a r i a b l e s

d e f _ _ i n i t _ _ ( s e l f ) :
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s e l f . f i r e b a s e = f i r e b a s e . F i r e b a s e A p p l i c a t i o n (

’ h t t p s : / / f o o t y−r e d a r . f i r e b a s e i o . com ’ , None )

# d a t a i s t h e a r r a y o f s c a l e d d e t e c t i o n s

d e f p u t D a t a ( s e l f , d a t a ) :

n e w _ d i c t = {}

f o r i i n d a t a :

i f s t r ( i [ 1 ] ) n o t i n n e w _ d i c t . keys ( ) :

n e w _ d i c t [ i [ 1 ] ] = [ ]

n e w _ d i c t [ i [ 1 ] ] . append ( i [ 0 ] )

e l s e :

n e w _ d i c t [ i [ 1 ] ] . append ( i [ 0 ] )

p r i n t ( ’ d i c t i o n a r y : ’ , n e w _ d i c t )

i f " b " i n n e w _ d i c t and "w" i n n e w _ d i c t :

r e s u l t = s e l f . f i r e b a s e . p u t ( ’ / p o i n t s / ’ ,

’/−M7−fgFoB4YiVX4LVQQ8 / ’ , n e w _ d i c t )
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