u

University of

Stava

nger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:

Master of Science in Data Science

Spring/ Autamn semester, 2020

Open / Confidential

Author: Andrijana Podhraski, Trond Tjersland

Programme coordinator:

Supervisor(s): Ketil Oppedal, Alvaro Fernandez Quilez

Title of master’s thesis:

Prediction of Psychosis in Parkinson’s Patients using Machine Learning

Credits: 30 ECTS

Keywords:
Parkinson's Disease, Psychosis,
Machine Learning, Deep Learning,

Feature Selection, Longitudinal Study

Number of pages: 196
+ supplemental material/other:

Python code on GitHub

Stavanger, 15.6.2020

Title page for master’s thesis
Faculty of Science and Technology

https://github.com/Tjersland/Prediction-of-Psychosis-in-Parkinsons-Patients-using-Machine-learning---Master-2020
https://github.com/Tjersland/Prediction-of-Psychosis-in-Parkinsons-Patients-using-Machine-learning---Master-2020

University
of Stavanger

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Prediction of Psychosis in Parkinson’s

Patients using Machine Learning

Master’s Thesis in Computer Science

by
Andrijana Podhragki, Trond Tjersland

Supervisors

Ketil Oppedal

Alvaro Fernandez Quilez

June 13, 2020

Abstract

Parkinson’s disease is one of the most common neurological disorders with an estimated
6.3 million PD patients worldwide, which makes it a great threat to public health.
Psychosis is a common symptom of Parkinson’s disease and over half of patients with PD
develop symptoms of psychosis over the course of their disease. PD patients who develop
such symptoms have greater rates of cognitive decline and progression to dementia. It is
important to detect patients that will eventually develop psychosis as early as possible,
so that appropriate treatment can be started and negative effects can be reduced for

both patient and caretakers.

Early detection of psychosis in PD patients is a difficult task from a clinical viewpoint.
This project therefore aimed to develop various ML models, on a subset of data collected
by the Parkinson’s Progression Markers Initiative (PPMI), to predict psychosis in PD
patients. We selected features from the PPMI database that are more easily collected and
therefore more available. Examples include clinical tests, questionnaires and demographic
data, but not for example brain imaging scans or biological samples such as cerebrospinal
fluid. This makes our models applicable on a wide range of PD patients. We developed a
preprocessing pipeline for the selected features and three different prediction approaches:
using baseline data, derived longitudinal statistics and deep learning. The latter two

approaches benefit from the temporal nature of the data from the PPMI study.

The derived statistics approach gave us the best results. It was followed by the baseline
approach, while the deep learning approach came last. Support vector machines and
logistic regression were our best performing models. Among tree based models, random
forest showed the best performance. The deep learning approach made use of a long

short-term memory (LSTM) network, but did not produce the best results.

Acknowledgements

We would like to thank our supervisors, Ketil Oppedal and Alvaro Ferndndez Quilez, for

guidance and invaluable feedback throughout our work on this thesis.

We would also like to thank MD Maria Camila Gonzalez Velez, who has been very helpful
in explaining some clinical details related to Parkinson’s Disease and the motivation of

the project.

Finally, Andrijana would like to thank her family, especially her son, for understanding
and patience during her Master’s degree. Trond would like thank his family and significant

other for providing advice and encouragement during the writing of this thesis.

Contents

Abstract iii
Acknowledgements v
Abbreviations xi
List of Symbols xiii
1 Introduction 1
1.1 Motivation e 1
1.2 Project Purpose and Requirements 2
1.3 Problem Definition 3
1.4 Contributions 3
1.5 Thesis Structure Lo 4

2 Parkinson’s Disease, PPMI and Related Work 7
2.1 Parkinson’s Disease 7
2.1.1 Overview e e 7

2.2 PPMI e 9
2.3 Related Work 10

3 Introduction to Methodology and Theoretical Framework 13
3.1 Fundamentals L 13
3.1.1 Supervised vs Unsupervised Machine Learning 13

3.1.2 Objective Function and Regularization 14

3.1.3 Prediction vs Inference L. 15

3.2 Data Source e e e e 16
3.3 Preprocessing e 16
3.3.1 Missing Values 16

3.3.2 Standardization and Categorical Encdoing 18

3.3.3 Dimensionality Reduction 19

3.3.4 Longitudinal approach o oL 21

3.4 Machine Learning algorithms 22
3.4.1 Logistic Regression 22

vii

Contents viii
3.4.2 Support Vector Machine 0oL 23
3.4.3 Tree Based Algorithms 27
344 Boosted Trees. e 30
3.4.5 Deep Learning - Artificial Neural Networks 32
3.4.6 Recurrent Neural Networks 35
3.4.7 Long Short-Term Memory Networks 36

3.5 Model Validation and Tuning 37
3.5.1 Performance Measures 37
3.5.2 Hyperparameter Tuning 39
3.5.3 Cross Validation 40
3.5.4 Train Test Split 41

4 Methods and Materials 43

4.1 Data Set e 43
4.1.1 Cohort Selection Lo 43
4.1.2 Feature Subset oo 45
4.1.3 Merging the Data Tables 50
4.1.4 Post Merging Operations 51

4.2 Preprocessingo e 52
4.2.1 Missing valueso 53
4.2.2 Dichotomizing the Response 55
4.2.3 Splitting the Data oo 56
4.2.4 Features Reduction - Total Scores 56
4.2.5 Standardizing and One-Hot Encoding 57
4.2.6 Features Reduction - Principal Component Analysis (PCA) 57
4.2.7 Response Distribution During the Study 58
4.2.8 Prediction Approach L 60

4.3 Models e e e e 64
4.3.1 Classical Machine Learning Models 64
4.3.2 Deep Learning: LSTM 69

4.4 Model Tuning and Validation Strategy 71
4.4.1 Performance Measures 71
4.4.2 Model Tuning and Validation 71

5 Results and Discussion 73

5.1 Results. o e 73
5.1.1 Baseline Approach 73
5.1.2 Derived Statistics Approach 86
5.1.3 Deep Learning Approach 97

5.2 Analysis and Discussion 99
5.2.1 Baseline Approach, 99
5.2.2 Derived Statistics Approach L. 102
5.2.3 Deep Learning Approach 105
5.2.4 Comparing the Approaches 105
5.2.5 Improving Results L. 107

6 Future Work and Conclusion 109

Contents

ix

6.1 Challenges L
6.2 Future Work
6.3 Conclusion e

List of Figures
List of Tables

A Main Eligibility Criteria

A.1 DeNovo Cohort
A.2 Genetic Cohort
B PPMI Variable Definitions and Score Calculations
C Variable Explanations
D Schedule of Activities
E Confusion Matrices and ROC Curves
E.1 Baseline Approach
E.1.1 Logistic Regression
E.1.2 SVM-linear,
E.1.3 SVM-polynomial,
E.1.4 SVM-radial
E.1.5 Decision Tree
E.1.6 Random Forest
E.1.7 Boosted Trees.
E.2 Derived Statistics Approach
E.2.1 Logistic Regression
E.2.2 SVM-linear,
E.2.3 SVM-polynomial
E24 SVM-radial
E.25 Decision Tree,
E.2.6 Random Forest
E.2.7 Boosted Trees.
E.3 Deep Learning Approach
E3.1 LSTM

F Prediction Performance vs. Year

F.1 Baseline Approach
F.1.1 Logistic Regression
F.1.2 SVM-linear
F.1.3 SVM-polynomial
F.14 SVM-radial
F.1.5 Decision Tree,
F.1.6 Random Forest

F.1.7 Boosted Trees.,

109
110
112

113

117

121
122
123

125

133

139

143
143
143
144
144
145
145
146
146
147
147
147
148
148
149
149
150
150
150

Contents

F.2 Derived Statistics Approach
F.2.1 Logistic Regression 0.
F.2.2 SVM-linear e
F.2.3 SVM-polynomial,
F.24 SVM-radial
F.25 Decision Tree o
F.2.6 Random Forest,
F.2.7 Boosted Trees. e
F.3 Deep Learning Approach
F3.1 LSTM . . . o e
G Improving Results: HEOM
G.1 Results. o e
G.1.1 Baseline Approach
G.1.2 Derived Statistics Approach
G.2 Comparison e e e
H Improving Results: PCA
H.1 Results. e
H.1.1 Baseline Approach
H.1.2 Derived Statistics Approach

H.2 Comparison

Bibliography

157
158
158
159
159
160
160
161
161
161

163
163
163
165
167

169
169
169
171
173

175

Abbreviations

ADASYN
ANN
AUC
BJLO

DT

EDS

ESS

FN

FP

GDS
HEOM
HVLT
ICOTE
LNS

LR

LSTM
MCC

MD
MDS-UPDRS
ML

MLP
MoCA
MRI
MTDF
MWMOTE

Adaptive Synthetic Sampling

Artificial Neural Network

Area under the ROC Curve

Benton Judgement of Line Orientation
Decision Trees

Excessive Day Time Sleepiness
Epsworth Sleepiness Scale

False negative

False positive

Geriatric Depression Scale
Heterogeneous Euclidean-Overlap Metric
Hopkins Verbal Learning Test

Immune Centroids Oversampling Technique
Letter-Number Sequencing

Logistic Regression

Long Short-Term Memory

Matthews Correlation Coefficient
Medical doctor

Movement Disorder Society - Unified Parkinson’s Disease Rating Scale
Machine Learning

Multilayer Perceptron

Montreal Cognitive Assessment
Magnetic resonance imaging

Mega-trend Diffusion Function

Majority Weighted Minority Oversampling Technique

X1

Abbreviations

xii

(0]0)5]
PCA
PD
PPMI
ROC
RBD
REM
RNN

SCOPA-AUT

SDMT
SFT
SMOTE
SVM
SWEDD
TD/PIGD
TN

TP
TRKNN
UPSIT
WHO

Out-of-Bag estimation error

Principal Component Analysis

Parkinson’s disease

Parkinson’s Progression Marker Initiative

Receiver Operating Characteristic

Rapid Eye Movement Sleep Behavior Disorder

Rapid Eye Movement

Recurrent Neural Network

Scales for Outcomes in Parkinson’s Disease - Autonomic Dysfunction
Symbol Digit Modalities Test

Semantic Fluency Test

Synthetic Minority Oversampling Technique

Support Vector Machine

Subjects with Scans without Evidence of a Dopaminergic Deficit
Tremor Dominant and Postural Instability and Gait Disorder
True negative

True positive

Couples Top-N Reverse k-Nearest Neighbor

University of Pennsylvania Smell Identification Test

World Health Organization

List of Symbols

symbol

Obj(©)
L(©)

0(0)
HEOM(x,y)

My

XeR™P

L(B)
(z,9)
K(z,y)

name

Data set, X = {x1,z9,...,x,}, XcR™?P

Observation ¢ with p features z; = (241, Zig, ..., Tip)eRP
Number of observations (measurements)

Number of features

Set of parameters of the ML model, © = {w;|j =1, ...,d}
Objective function

Training loss

Regularization

Heterogeneous Euclidean-Overlap distance between observations x and y
Mean of the jth feature

Sample standard deviation of the jth feature

Matrix that represents data set X = {1, x9,...,z,}, XeR™P,
formed of observations placed in rows.

Vector of ones, 1eR"

Empirical mean vector, peRP

Covariance matrix, CeRP*P

Eigenvector

FEigenvalue corresponding to the eigenvector v;

Diagonal matrix of eigenvalues, DeRP*P

Probability of x

Likelihood function

Inner product between x and y

Kernel function

xiii

List of Symbols

R; Sub-region of the feature space

G Gini index for a sub-region

D Entropy for a sub-region

Ui Prediction for ith observation

S Function that represents a tree

F Space of all tree functions

Z Output value from neural network
Yi Target value (neural network)

J(w) Total training error (neural network)
w Vector of weights in neural network
n Learning rate

Uuv,w Matrices of weights

by, bo Bias terms

(), fol?) Activation functions

hy Hidden unit from step ¢
o(+) Element-wise sigmoid function
® Element-wise product

T T-score

Chapter 1

Introduction

This chapter serves as an introduction to the project. We present the motivation for
the work done, state our purpose, main goals and requirements. We further state the
contributions we have made by the completion of the project. Finally, we give an outline

for the structure of this thesis.

The code that was developed for this thesis is available on GitHub at: https://github.
com/Tjersland/Master_2020_Prediction_of_Psychosis_in_Parkinsons_Patients_

using_Machine_learning

1.1 Motivation

Parkinson’s disease (PD) is a neurodegenerative disorder which is generally characterized
by a slow, but irreversible decline in motor functions. Typical symptoms include tremors,
slow rigid movements and postural instability. While the disease is most often recognized
by its motor symptoms, many PD patients experience symptoms unrelated to movement
such as depression and cognitive impairment, up to and including dementia. These
symptoms are collectively known as non-motor symptoms and they can often be more
impactful on a PD patient than the motor symptoms. One of the most common non-
motor symptoms of PD is psychosis. As a matter of fact, more than half of patients with

PD develop symptoms of psychosis over the course of their disease [1].

Psychosis in PD patients is usually characterized by hallucinations and delusions. Hal-
lucinations involve seeing, hearing, smelling, tasting or feeling something which does
not exist in reality. Delusions are a set of wrongly-held beliefs not based in reality,
but considered the truth by the delusional individual. According to a research article,

Zahodne et al (2010) [2], Parkinson’s psychosis is a "leading reason for nursing home

1

https://github.com/Tjersland/Master_2020_Prediction_of_Psychosis_in_Parkinsons_Patients_using_Machine_learning
https://github.com/Tjersland/Master_2020_Prediction_of_Psychosis_in_Parkinsons_Patients_using_Machine_learning
https://github.com/Tjersland/Master_2020_Prediction_of_Psychosis_in_Parkinsons_Patients_using_Machine_learning

Chapter 1. Introduction 2

placement of patients with Parkinson’s disease (PD). It may also be the single greatest
stressor for caregivers of PD patients, it is generally persistent, and its presence markedly
increases the risk of mortality.". Another research article, Barrett et al (2018) says [3]
"Psychosis in Parkinson disease (PD) is a clinical marker of advanced disease and is
associated with dementia, increased institutionalization and increased mortality". 1t is
therefore important to recognize and treat the symptoms of psychosis as early as possible

in a PD patient.

The early detection of psychosis in PD patients with the help of machine learning (ML)
algorithms is a novel idea. Early detection of psychosis in PD patients based on clinical
diagnosis can be difficult and often inaccurate [4]. If ML models could be developed to
predict, with a high enough certainty, whether or not a PD patient will develop psychosis
symptoms before they make themselves apparent, appropriate treatment and prevention
could begin a lot earlier in the development of the psychosis and therefore reduce the

negative effects of such symptoms for both patient and caretakers.

1.2 Project Purpose and Requirements

In this project we will select relevant features and develop models using data from
the Parkinson’s Progression Markers Initiative (PPMI) database. We will develop a
preprocessing pipeline for the selected data and apply this processed data to train various
ML algorithms. Our purpose is to develop ML models that can predict, with a high
enough certainty, whether or not a PD patient will develop psychosis symptoms based

on currently available data where the patient has not yet shown signs of psychosis.

The main project goals can be summed up as follows:

1. To select and obtain features from the PPMI database that can aid in prediction
of psychosis using ML models.

2. To develop appropriate preprocessing pipelines for the selected features.
3. To tune selected ML models in order to find the best performing models.

4. To use our tuned models for inference if possible.
The requirements for this project is as follows:

1. To perform manual feature selection on the PPMI database based on two research
articles, Barret et al (2018) [3] and Ffytche et al (2017) [5]

Chapter 1. Introduction 3

2. To develop prediction models trained in two scenarios: on baseline data with no

benefit of temporal data and on longitudinal data.

3. To at least include these classical ML models: (1) support vector machines because
they often give good results for binary classification problems, (2) random forest
and boosted trees that, as ensemble methods, are less susceptible to overfitting

than decision trees, but still provide some inference.

4. To at least train one deep learning model on the longitudinal data and compare

the results to classical ML models trained on derived longitudinal statistics.

1.3 Problem Definition

We want to predict development of psychosis in PD patients, based on data collected
in early stages of the disease. Baseline assessment is done when a subject joins the
study and serves as criteria for assigning the subject to one of the study’s cohorts. The
subjects in the cohorts we use in this project are diagnosed with PD at most two years
before the baseline assessment. They are followed for at least five years and a new full
assessment is undertaken at yearly intervals. If there are no missing observations, we
should have at least six observations for each of our subjects, one at baseline and a
further five for each yearly assessment. We want to use a subset of the data gathered
at each assessment for our predictions. This subset consists of data that is relatively
easy to gather and therefore often available, e.g questionnaires or clinical assessments.
Our goal is to develop a model that can be applied to a wide range of PD patients. The
first and most crude prediction models will be based only on baseline data. We will
then try to refine these models by incorporating features from the yearly assessments.
We will do so by defining some statistics on these yearly assessment so that we can
incorporate some of the information they contain into our baseline models. Finally, we
want to fully incorporate all the information contained in the yearly assessments. To do
so we must move away from the classical machine learning models used in our baseline
and refined approaches and instead employ deep learning. We would make use of an
LSTM network for this task. Models will be measured in classification performance using

multiple metrics.

1.4 Contributions

The contributions we make in this thesis can be summarised as:

Chapter 1. Introduction 4

1. We develop a preprocessing pipeline that selects and processes features from the
PPMI database so that they can be used for ML models.

2. We implement three different prediction approaches for psychosis in PD patients:
(1) using baseline data to train classical ML models, (2) using temporal data to
derive longitudinal statistics to train classical ML models and (3) using temporal

data to train a deep learning model.

3. We make use of a variety of different ML models, including deep learning and

report comprehensively on their results.

4. We analyze the results from our models and do inference when applicable.

The authors of this thesis wish to state that both authors contributed equally to the

thesis and no individual ownership is claimed for any part or section of it.

1.5 Thesis Structure

The thesis is divided into six chapters.

Chapter one, Introduction seeks to establish the motivation and main purpose of the
project. It also states our main goals and requirements and gives an outline of the

structure of the thesis.

Chapter two, Parkinson’s Disease, PPMI and Related Work gives a more indepth
introduction to Parkinson’s disease and introduces the Parkinson’s Progression Markers
Initiative (PPMI). Finally, it gives an overview of the related works of Barret et al (2018)
[3] and Ffytche et al (2017) [5], which this thesis is partly based on.

In chapter three, Introduction to Methodology and Theoretical Framework we
try to succinctly present necessary theoretical background for the work performed in
this project. The chapter begins with an introductory part about ML basics and data
set design, after which important preprocessing steps are introduced. Further, a set of
classical ML and deep learning algorithms used for this project are presented. We finish

the chapter with theory related to model validation and tuning related procedures.

Chapter four, Methods and Materials explains the execution of the project, from data

set construction to preprocessing steps, and later, model set up, tuning and validation.

In chapter five, Results and Discusion, we present the results from our three different
prediction approaches. Optimal hyperparameters and various performance measures are

shown. We finish the chapter by analyzing and discussing these results.

Chapter 1. Introduction 5

Finally, the sixth chapter, Future Work and Conclusion gives an overview of the
challenges we faced during the project and discusses some possible future developments

for the project. It finishes with a conclusion of our work.

Chapter 2

Parkinson’s Disease, PPMI and

Related Work

This chapter is meant to give an overview of Parkinson’s disease, introduce the Parkinson’s
Progression Markers Initiative (PPMI) and to give a summary of the related works of
Barret et al (2018) [3] and Ffytche et al (2017) [5].

2.1 Parkinson’s Disease

2.1.1 Overview

World Health Organization (WHO) [1] recognizes neurological disorders as one of the
greatest threats to public health and one of the most common neurological disorders is

Parkinson’s disease.

It is estimated that worldwide there are 6.3 million PD patients, with 1.2 million in
Europe alone. In Norway there are around 8000 patients diagnosed with PD [6]. PD
affects around 1% of the population older than 65. Parkinson’s disease is a huge burden
on not only the patient, but also the primary caretakers because of loss of income and
the emotional issues that often affect PD patients. This is especially true if the patient
develops dementia as part of the disease. Finally, treatment in less developed countries

is often sub-optimal due to lack of trained medical workers and cost of medication.

Parkinson’s disease is spread around the world with an incidence rate! per year of
4.5-19 per 100 000 population. There is wide variation in incidence rate, which reflects

differences in diagnostic methodology and age distribution among world’s population. A

'Number of new diagnosed patients per yer per 100 000 people

7

Chapter 2. Parkinson’s Disease, PPMI and Related Work 8

more realistic incidence rate provided after age adjustment is 9.7-13.8. Prevalence? is
much higher than incidence due to the prolonged nature of the disease. Large differences
in prevalence rates are observed across the world (18-328 per 100 000 persons). Age-
adjusted rate is in a narrower range of 72-258.8 per 100 000 persons. It is assumed that
differences in prevalence rates are related to environmental risks and genetic background,
while the higher rates of incidences are caused by increased awareness and improved and

earlier recognition of the disease.

There are no clear risk factors for Parkinson’s disease other than age and gender. Most
people with PD develop the disease at around 60 and with age the incidence rate increases.
Some 5 to 10 percent of cases are from people under 50, which is often referred to as
"early-onset" PD. incidence rate among men is higher than among women (in relation
of almost 2:1). There is a genetic component to PD, especially for early-onset cases,
but most researchers now believe that PD is caused by a combination of genetic and
environmental factors [7]. Treatment for PD is mainly based around taking drugs that
increase the level of - or mimic the effect of dopamine in the brain. The most important
of these drugs is levodopa, which crosses the blood-brain barrier to increase the level
of dopamine in the brain. Unfortunately, levadopa is known to cause a number of

side-effects, including hallucinations, which are a sub-symptom of psychosis.

The main symptoms of Parkinson’s disease are tremors, bradykinesia®, stiff limbs and
impaired balance and coordination [7]. These symptoms are typically referred to as
motor symptoms. In addition, PD patients may have symptoms such as depression and
other emotional issues, sleep behavior disorders, loss of smell and increasing cognitive

impairment. These symptoms are usually referred to as non-motor symptoms.

Symptoms of Parkinson’s disease usually begin slowly and are almost imperceptible at
the start. They then gradually become worse as the disease progresses until they finally
become debilitating for the patient. Symptoms of PD and the rate of which the disease
progresses can however vary greatly from patient to patient. There are no definitive
biological or imaging markers for Parkinson’s disease and diagnosis is currently made
based on a clinical test taking into account the patient’s medical history and results from
neurological tests. An improvement of symptoms after starting medication is also an
important diagnostic marker for PD. It is estimated that in about 25% of patients the

disease is diagnosed incorrectly [8].

Parkinson’s disease is caused by the death or impairment of nerve cells in a part of the
brain that broadly controls movement. These neurons usually produce the important

hormone and neurotransmitter dopamine and the motor symptoms experienced by

2Number of registered patients in population at given time
3Slow movement and an inability to move the body swiftly on command

Chapter 2. Parkinson’s Disease, PPMI and Related Work 9

PD patients are caused by a decrease in availability of dopamine as a result of this.
PD patients also lose nerve endings that produce the neurotransmitter norepinephrine.
Norepinephrine is a main component in many of the autonomic functions of the body
such as heart rate or blood pressure. This is thought to be reason behind some of the
non-motor symptoms of PD such as fatigue and problems with blood pressure. Clumps
of protein called Lewy bodies are often found in the brains of PD patients. It is believed

that these Lewy bodies are the main cause of nerve cell death in Parkinson’s disease.

Psychosis is a common symptom of Parkinson’s disease and over half of PD patients
eventually develop psychosis as part of their disease progression [1]. Psychosis in PD
patients most often presents itself as hallucinations and/or delusions. Hallucinations
involve seeing, hearing or sensing things that are not really present. Delusions are wrongly
held beliefs that do not correspond with reality. Hallucinations and delusions can often
be combined, i.e the patient experiences something which is not real and is later unable
to recognize this fact. The cause of psychosis in PD patients is not known, but some
believe it to be a side effect of the dopaminergic drugs * commonly taken as first-line

treatment for Parkinson’s disease.

2.2 PPMI

The Parkinson’s Progression Marker Initiative (PPMI) is an observational clinical study
that seeks to find biomarkers® for Parkinson’s disease. The study describes itself as "A
landmark observational clinical study to comprehensively evaluate cohorts of significant
interest using advanced tmaging, biologic sampling and clinical and behavioral assess-
ments to identify biomarkers of Parkinson’s disease progression” [9]. Currently available
biomarkers for PD are either non-optimal or lack verification. The study is sponsored by

the Michael J. Fox Foundation for Parkinson’s Research.

In essence, PPMI is a longitudinal study of patients with Parkinson’s disease, along with
additional statistical cohorts® such as healthy control groups and patients genetically

predisposed to Parkinson’s disease. PMMI defines six such cohorts in its study [11]:

1. De Novo PD Subjects - "Subjects with a diagnosis of PD for two years or less who

are not taking PD medications."

2. Control Subjects - "Control Subjects without PD who are 30 years or older and
who do not have a first degree blood relative with PD."

4Drugs that are related to dopamine
5 A measureable biological indicator of biological state in a patient
Sa group of individuals having a statistical factor in common (such as age or class membership) [10]

Chapter 2. Parkinson’s Disease, PPMI and Related Work 10

3. Subjects with Scans without Evidence of a Dopaminergic Deficit (SWEDD) -
"Subjects consented as PD subjects who have DaTscans that do not show evidence

of a dopaminergic deficit."

4. Prodromal Subjects - "Subjects without Parkinson’s disease who have a diagnosis
of hyposmia or REM sleep behavior disorder (RBD)."

5. Genetic Cohort Subjects - "Subjects with and without Parkinson’s disease who have
a genetic mutation in LRRK2, GBA, or SNCA."

6. Genetic Registry Subjects - "Subjects with and without Parkinson’s disease who
have a genetic mutation in LRRK2, GBA, or SNCA or a first-degree relative with
a LRRK2, GBA, or SNCA mutation who are evaluated at less frequent intervals to
augment and broaden the follow-up of PD subjects and family members with PD

associated mutations."”

Of these cohorts, the De Novo PD and Genetic Cohort are of interest to this thesis

because these cohorts consist of subjects with confirmed Parkinson’s disease.

Subjects in all cohorts are tested, assessed and have biological samples, such as blood
or cerebrospinal fluid, taken from them at regular intervals. The type of data collected
and how often it is collected is the same within a cohort, but can differ between cohorts.
The subjects in the De Novo and Genetic cohort are followed for a minimum of 5 years
(unless an early withdrawal) and a maximum of 13 years. Data collected from subjects
can for example be the result of cognitive/motor-function tests, questionnaires, MRI
imaging or biological data like blood samples. Subjects in different cohorts have different
eligibility criteria for entry into the study. This must be taken into consideration when

using data from different cohorts together.

2.3 Related Work

This project is partly based on the work of Barret et al (2018) [3] and Ffytche et al
(2017) [5]. Both authors analyse PPMI data. Barret tries to identify baseline risk factors
for PD psychosis (which includes hallucinations) using multivariate logistic regression
and found that greater autonomic symptoms and higher sleep behavior scores (RBD,
EDS) are associated with higher incidences of psychosis. Ffytche tries to determine
baseline predictors for future psychosis in PD patients using various statistical methods
and found that prior to the development of hallucinations, PD patients shows olfactory
impairment, increased depression and increased sleep behaviour scores, among other

predictors. Both authors found additional risk factors based on structural images of

Chapter 2. Parkinson’s Disease, PPMI and Related Work 11

brain and level of biomarkers in cerebrospinal fluid, but we omit aforementioned factors
due to our intention to develop prediction models on a subset of data that do not include
brain scans or biomarkers due to them being relatively time consuming and expensive
to collect. By looking at the feature selection done in these works we benefit from the
expert knowledge that the authors of these papers possess. We base much of our feature
selection in this project on cognitive and motor features that are chosen by Barret and/or
Ffytche, while excluding structural images and results from cerebrospinal fluid samples.
This project is a partial continuation on both authors findings and an attempt to extend

existing knowledge about risk factors to prediction of psychosis in PD patients.

Chapter 3

Introduction to Methodology and

Theoretical Framework

In this chapter we present necessary theoretical background for the work done in this
thesis. We first introduce basic ML theory and data set design, after which we move
on to preprocessing techniques such as missing value imputation and feature reduction.
We then present various classical ML models such as logistic regression, support vector
machines (SVM), decision trees, random forest and boosted trees. Additionally, we
present concepts from deep learning, particularly focusing on recurrent neural networks
(RNN) and a subtype of RNNs called long short term memory networks (LSTM). Finally,

the chapter ends with theory related to model validation and tuning procedures.

3.1 Fundamentals

3.1.1 Supervised vs Unsupervised Machine Learning

Machine learning (ML) is a field at the intersection of statistics, artificial intelligence and
computer science and is about extracting knowledge from data. Most machine learning
tasks can be divided into two categories: supervised and unsupervised. Supervised
machine learning is a setting in which an algorithm makes a decision generalizing on
previously known or seen examples. The algorithm is provided with a set of inputs
and corresponding outputs. In return, the algorithm predicts an output given an input
previously unknown. It is said that the algorithm learns from the data in a supervised
manner. In unsupervised machine learning, the algorithms are given a set of inputs,
but no corresponding outputs to learn from. This makes prediction impossible. In an

unsupervised setting we are limited to learning about the relationship between inputs

13

Chapter 3. Introduction to Methodology and Theoretical Framework 14

through techniques such as clustering. Supervised machine learning can be further divided
into regression and classification. Our output variable, often called the response, can be
either quantitative or qualitative in nature. A quantitative variable takes on numerical
values and typical examples are age, weight, blood pressure, etc. A qualitative variable
takes on a value which corresponds to one of K classes, e.g "happy" from the 3 classes
"sad", "normal", "happy". If the response is quantitative we are dealing with a regression
task and if it is qualitative we are dealing with a classification task. This distinction is
important because some machine learning algorithms only work on regression tasks and

not classification tasks, and vice versa.

In this project we are dealing with a supervised machine learning problem as we have
an output on which to predict on, i.e psychosis in PD patients. Our output is further
qualitative in nature as psychosis in a patient is a state of being and not a numerical
measurement. Psychosis in a patient can be classified as either present or not present,
i.e into one of two classes. We can therefore say that this project is about developing
models for a binary classification task. PD Psychosis can also be graded according to the
severity of its symptoms, from mild hallucinations to more serious delusions. This project
could therefore potentially also be a multiclass classification task. The reasons why we
choose to keep it as a binary classification task is explored later in 4.2.2 - Dichotomizing

our Response and 6.2 - Future Work.

3.1.2 Objective Function and Regularization

The objective function is the fundamental concept in machine learning. ML is a type of
optimization problem and the objective function is the function that should be optimized
(minimized or maximized) by taking data and the right combination of model parameters

(hyperparameters) as arguments. In general the objective function can be written as 3.1

0bj(©) = L(©) + Q(O), (3.1)

where © = {w;|j =1,...,d} is a set of parameters that will be learned from the data set

* .
X ={x1,22,....,zp}, XeR™P where z; = (21, Ti2, ..., Tip)eRP, i = 1,2, ..., n.

L(©) measures the training loss, i.e. how well model fit the data, while regularization
Q(0) is an additional penalty term that controls model complexity. By minimizing L(©)
we try to make our model predict the training data well, but risk overfitting the training
data. By minimizing Q(©) we keep the model simple, but we risk making the model too
simple to predict anything. If we have in mind the bias-variance decomposition of the

objective function, then in terms of the bias-variance trade-off, L(©) decreases bias and

Chapter 3. Introduction to Methodology and Theoretical Framework 15

(0) decreases variance [12]. By minimizing the sum of both quantities we hopefully find
the right bias-variance trade-off. According to [13], regularization is "any modification we
make to a learning algorithm that is intended to reduce its generalization error but not
its training error'. Thus, regularization is used to train models that generalize better on
unseen data, by preventing the algorithm from overfitting. There are many regularization

strategies, here we present only two later used in tuning some of our models.

L1 regularization is based on the sum of the absolute values of the parameters and then

) has a form:

d
Q(0) = A fuy| (3.2)
j=1

L2 regqularization is based on the sum of the squared values of the parameters and then

) has a form:

QO)=A> w; (3.3)

Through the parameter A\ we control the impact of the regularization term. Higher values

lead to smaller parameters, but too high values for A can lead to underfitting.

3.1.3 Prediction vs Inference

There is a certain trade-off between a model’s ability to predict accurately and model’s
interpretability, i.e inference or knowledge about the underlying data mechanisms that can
be extracted based on the model. According to [14], model accuracy and interpretability
can be thought of as a trade-off. A decision tree is an example of a relatively simple
model that is quite easy to interpret, but not usually as accurate as some more complex,

but less interpretable models such as random forest, SVM or neural networks.

The primary goal of this project is prediction, i.e. to use data to predict an outcome -
psychosis in PD patients. Inference or interpretability is a secondary objective of this
work. Some inference results are presented later in this report for decision trees, random
forest and boosted trees. Those results can be used to check whether a model makes

sense from a clinical perspective.

Chapter 3. Introduction to Methodology and Theoretical Framework 16

3.2 Data Source

The first step of any machine learning project is to design a data set that will be used
for developing the chosen ML models. This data set might consist of data specifically
collected for the project or data can be taken from pre-existing databases collected
by others. In our case we are constructing a data set based on data collected by the
Parkinson’s Progression Markers Initiative (PPMI) study. We will only be able to use
data collected on certain cohorts with confirmed PD, limiting the amount of observations

we have available.

High dimensional data is a term that refers to data sets where the number of input
variables, also called features, is large. With more features it becomes harder to analyze,
visualize and organize a data set. A large amount of features might also make machine
learning algorithms more prone to overfitting. This is often referred to as the curse
of dimensionality. In addition, if the number of features p exceeds the number of
observations n, a number of machine learning algorithms become hard or impossible to
train. In order to minimize the curse of dimensionality and avoid the p > n problem, we
will use a subset of all features available in the PPMI database to construct our data set.
The subset of features we will use will be heavily dependant on the work done by Barret
[3] and Ffytche [5].

3.3 Preprocessing

When we have designed a data set on which to train our models on, the next step is
to process this data set so that it can be fed into machine learning algorithms. This is
called preprocessing the data. Some preprocessing steps such as handling missing values
are essential, as most machine learning algorithms do not work if any data points are
missing. Other steps such as data standardization or feature reduction are done in order
to optimize the data so that the machine learning algorithms provide better and more

robust results.

3.3.1 Missing Values

Missing value handling is an essential preprocessing step as most machine learning

algorithms are not designed to automatically deal with missing values.

The simplest form of handling missing values is to remove observations or features with

missing values until the data set has no missing values left. If missing values are randomly

Chapter 3. Introduction to Methodology and Theoretical Framework 17

distributed across data set or across some subset of the data set then such observations
can be removed. Features that contain a lot of missing values, (in practice that can be
25%, 30% or 50%, depending on the problem and the feature), could be dropped entirely.
This leaves us with complete data, but has the downside of removing observations and/or
features that could have made our machine learning models better and can lead to bias
in the estimation of the model parameters. When removing observations one should
take into consideration the size of the data set and the proportion of the missing values
in the data set. According to some sources, if 5% of the data contains missing values,
then removing could be a save option [15], while others state that the proportion of the

missing values should not automatically lead to removal [16].

Missing value imputation is another way of handling missing values. Single imputation
methods replace a missing value by a value defined by a certain rule. There are many of
such methods, such as mean/mode/median imputation, interpolation and extrapolation
(works in longitudinal data), imputation based on similarity, etc. The common problem
in single imputation is to replace an unknown missing value by a single value and then
treat it as if it were a true value, according to [17]. As a result, the single imputation

ignores uncertainty and almost always underestimates the variance.

Multiple imputation overcomes this problem, by replacing the missing value with several
simulated values [17]. That leads to several completed data sets that are further put
through a processing pipeline. The results obtained from each completed data set are

combined into a single multiple-imputation.

Because of heterogeneous types of variables in the data set we replace missing values
in two ways: using mean/mode or using similarity based on Heterogeneous Euclidean-
Overlap Metric (HEOM) as is described in [18] and finally choose the imputation method

that produces the best results in terms of considered performance measures.

Mean/mode imputation is a simple method that replaces missing values of a categorical
variable with its mode, while replaces missing values of ordinal and numerical variables

with their mean. We use this method for its simplicity and speed.

In addition we wish to use possible similarities between PD patients in missing values
imputation. We implement HEOM which can handle heterogeneous types of variables
and is combination of overlap measure for categorical variables and normalized euclidean

measure for non-categorical variables. HEOM is defined as 3.4

HEOM (z,y) =

Chapter 3. Introduction to Methodology and Theoretical Framework 18

where n is the number of features, including outcome variable, and d(z;,y;) is the
difference between ith feature values of x and y. If A; is the ith feature then d(z;,y;) is
defined with 3.5

1, if x; or y; are missing values

d(z;,y;) = { overlap(x;, y;), if A; categorical: 0, if x; = y;; 1 otherwise (3.5)
lz; — yil

, if A; numerical with ranges, = max, — mina,
rangea,

For each observation with missing values, the most similar observation in term of HEOM
is found and the missing values are replaced with the corresponding values from this

observation.

3.3.2 Standardization and Categorical Encdoing
Standardization

Standardizing a data set is an optional preprocessing step, but some models, that
depend on distance measures among the features, should be trained on standardized data.
Standardizing means to rescale data to have a mean of zero and a standard deviation
of one. Precisely, for given data set X = {1, z2,...,z,}, XeR™P containing n training

observations z; = (z;1, T2, ..., Tip), each with p features we standardize data with 3.6

Tii — s
Zij = . M], (3.6)

9j

where mean f; and sample standard deviation o; of jth feature are defined with 3.7

chw
O'] \/Zz 17:"2 :)

Standardization is important when features are measured on different scales or features

(3.7)

differ a lot in magnitude. A feature with a larger range will typically outweigh a
feature with a smaller range if the features are not standardized. Some of machine

learning algorithms are more robust against differences in feature scales then others.

Chapter 3. Introduction to Methodology and Theoretical Framework 19

Among algorithms used in this project, tree based algorithms are less sensitive to non-
standardized data, while standardization is an important preprocessing step preceding
SVM or neural networks. SVM maximizes the distance between separation boundary and
support vectors, according to [12]. All features should be of the same scale so that one
feature does not dominate over the others when calculating distance. Similarly, neural
network will during training adjust weights for larger scaled features much more than
for others, i.e. neural network will prefer larger features over the smaller, according to
Richard O. Duda and Stork [19], which will slow convergence to global minima. Although
standardization is not a prerequisite for tree based algorithms or logistic regression, we
applied it as a preprocessing step in all cases for this project as it reduces the complexity

of the processing pipeline.

Categorical Encoding

Many machine learning algorithms cannot handle categorical variables so they should be
converted into numerical values. Categorical variables that are ordinal, i.e. there is an
intrinsic order between categories (values of the variable), are converted into numerical
by assigning an integer value to each category, considering and preserving their intrinsic
order by a similar ordering of integers. Categorical variables which are nominal, i.e. there
is not an intrinsic order between categories, are converted into numerical by making
use of binary variables. For each category one binary variable is added, such that the
single original categorical variable is replaced with set of binary variables. Replacing
a categorical variable with a set of equivalent binary variables is often called one-hot
encoding. Due to the fact that some of variables are nominal or ordinal in this project,
we use categorical encoding as a preprocessing steps for all ML models. We also use
it before tree based algorithms. Although this is not strictly necessary, it reduces the

complexity of our processing pipeline.

3.3.3 Dimensionality Reduction

Feature Construction and Dichotomization

Feature construction is the process of building a new set of features from an original
feature set. The goal of feature construction is to reduce the amount of data, while
at the same time improving the quality of the data and consequently the performance
of the machine learning algorithms, according to [20]. Various approaches to feature
construction can be taken. One of them is the knowledge based approach that applies

existing knowledge about data and domain knowledge. We use domain knowledge

Chapter 3. Introduction to Methodology and Theoretical Framework 20

documented in PPMI project to calculate new features (total scores) from numerous
single original features. When the new features are calculated, we remove the original

features. In this way we reduce the number of features in our data set.

Dichotomization of a continuous (or quantitative) variable is the procedure of finding a
threshold that will divide all observed values of the variable into two groups and replacing
continuous values in each group with one of the two distinct values. Dichotomization of
continuous variables is frequently used in medical applications. We use domain knowledge

from the same PPMI source, available in Appendix B, to dichotomize several variables.

Principal Component Analysis

Principal component analysis (PCA) is an unsupervised approach to dimensionality
reduction that is often used in exploratory data analysis and to make predictive models.
PCA is a feature extraction approach which aims to transform data from p-dimensional
space into a lower d-dimensional space. Transformed data are orthogonal projections
of the original higher dimensional data, such that the variance of the projected data is
maximized. Data transformation from higher dimensional space into lower dimensional

space is done through several steps [21], [22].

A data set X = {z1, 2, ..., 2, }, containing n training observations x; = (21, Zi2, ..., Tip),
each with p features can be represented by matrix XeR™P? formed of observations placed
in rows. Firstly, the data is centered around the mean by subtracting the empirical mean

vector from each row of the data matrix X

B=X-1u", (3.8)

where 1eR" is a vector of ones and ueRP is an empirical mean vector with elements

1 &)
i=1

Then the covariance matrix CeRP*P from the centered data matrix BeR™P . eigenvectors

V1, V2, ..., Vp and the corresponding eigenvalues A1, A9, ..., A, are found

BTV
n—1 (3.10)
v-icv=D

C=

Chapter 3. Introduction to Methodology and Theoretical Framework 21

where vi,va,...,v, are columns of the matrix VeRP*? and Aq, Ao, ..., A, are diagonal
elements of the diagonal matrix DeRP*P. Eigenvectors are sorted in descending order by
their corresponding eigenvalues. First d eigenvectors are called principal components.
Principal components are linear combinations of original correlated features from a higher
dimensional space. How many principal components will be used to the transform data
from a higher p-dimensional space into a lower d-dimensional space depends on how much
of variability (statistical information) one will keep in the transformed data. Finally, the

original data matrix XeR™P is transformed into a matrix ZeR%" by

Z=V.iBT (3.11)

where VeRP*? is a matrix formed of first d eigenvectors as columns. Transformed

observations are in columns of ZeR%™,

A downside of PCA is a certain information loss depending on how much of variability
one will keep. In addition, there is a loss in interpretability of the transformed data
compared to the original features. PCA is based on an assumption that the directions in
which the original data vary the most are directions also associated with the response.
There is no guarantee that the assumption is always true, but it is a good approximation

and PCA often gives good results, according to [22].

Ordinal data

PCA is applicable on numeric data that represent continuous features. If some of features
are represented with ordinal data it is questionable whether PCA can be used and how.

Based on [23], [24], [25], [26] we choose to treat ordinal data as continuous for PCA.

3.3.4 Longitudinal approach

PPMI is a longitudinal cohort study, i.e. a study in which data is gathered for the
same subjects repeatedly over several years and subjects are grouped in separate cohorts
(groups of interest) by properties defined in the study design. Cohort studies are common
in medicine, psychology and sociology, where they allow researchers to observe changes
over time. Repeated measurements of the same subject collected over time are correlated,
which is a specific trait of longitudinal studies. Several statistical techniques have been
developed for longitudinal data analysis. One of them is derived variable analysis. Derived
variable analysis refers to a method that takes a collection of measurements and collapses

them into a single meaningful summary feature [27]. According to the same source, the

Chapter 3. Introduction to Methodology and Theoretical Framework 22

most common summaries are the average response and the time slope. We decided to
use the average, slope, minimum and maximum of repeated measurements as derived

statistics in our project.

We faced a problem caused by attrition, i.e. the variability of the number of measurements
across subjects. Attrition in longitudinal studies is quite common and thus derived
variable method is often more challenging to apply than one would expect. In this project
we developed a way to deal with subjects that were participating in the study shorter or

longer than others. This method is detailed in 4.2.8 - Derived Approach.

3.4 Machine Learning algorithms

Models presented below are based on theory from [22], [28] and other explicitly stated
sources. Logistic regresion is chosen as a simple model that often provides good results.
Decision tree is used because it is easy to interpret for inference. SVM, random forest
and boosted trees are requirements of the project. LSTM is our chosen deep learning

model which the inclusion of is one of the requirements of the project.

3.4.1 Logistic Regression

Logistic regression, despite its name, is a classification algorithm, usually applied on a
binary class setting, but can be extended to a multiclass setting. Logistic regression
models the probability that an observation x = (z1,x2,...,2,) belongs to one of two

classes. Probability p(z) is modeled by means of logit function 3.12

ePotBirit...+Bpxp
p(SL‘) = 1+ ebotBrri+..+Bpap’

(3.12)

where coefficients Sy, f1, ..., Bp are estimated using mazimum likelihood estimation from
the training observations x1, z9, ..., z, and their responding class labels y1,y2, ..., yn €
{0,1}. Likelihood is the probability of getting the observed data given the model. When
training observations are assumed independent, the likelihood for logistic regression is

given with 3.13

L(B) = H Li(B) = sz'yi(l —pi) Y, (3.13)

where p; = p(x;), as in 3.12

Chapter 3. Introduction to Methodology and Theoretical Framework 23

When coeflicients ;,7 = 0,1, ...p are estimated by maximizing the likelihood 3.13 any

new, unseen observation x = (x1, 2, ..., zp) is classified by calculating 3.12.

3.4.2 Support Vector Machine

Support vector machine (SVM) is a well known approach for classification that performs
well on a variety of classification problems. SVM is used to classify between two classes,
although it is possible to accommodate SVM for multiclass classification. SVM is a
generalization of maximal margin classifiers which is simple and intuitive, but only

applicable on problems where the classes are separable by a linear boundary.

Maximal Margin Classifier

Maximal margin classifier is the hyperplane that perfectly separates training observations
in two classes and has the farthest minimal distance from the training observations (i.e.
maximal margin) among all other separating hyperplanes, according to [22]. If the data
set contains training observations with p features than we talk about p-dimensional

feature space and a (p — 1)-dimensional separating hyperplane, define by 3.14

Bo + Bix1 + ... + Bpa:p =0, (3.14)

where © = (1,22, ..., xp) is a training observation from p-dimensional space. Training

observations from one class will be on one side of the hyperplane and will satisfy 3.15

Bo + frz1 + ... + Bpxp > 0, (3.15)

while on the other side there will be training observations from the second class that

satisfy 3.16

Bo+ Bix1+ ...+ Bp-rp < 0. (3.16)

The margin is the minimal perpendicular distance between training observations and
the separating hyperplane. If the training observations are separable into two classes
then there are infinite many such separating hyperplanes (constructed by shifting or
rotating the already existing one) as can be seen in Figure 3.1. The one with the maximal
margin is the maximal margin classifier, as seen in Figure 3.1 on the right. The three

observations that lie on the dashed line are support vectors. They are the closest training

Chapter 3. Introduction to Methodology and Theoretical Framework 24

X2
1
|
X2
1
|
X

X X, ') Y,

Figure 3.1: Left: Separating hyperplane between to classes. Middle: Several separating
hyperplanes between to classes. Right: Maximal margin classifier.

Source: An Introduction to Statistical Learning by James G., Witten D., Hastie T.,
Tibshirani R.

observations to the separating hyperplane and only they affect the hyperplane. If they
move, the hyperplane must accommodate (move). Maximal margin classifier is limited
to separable cases. If classes cannot be separated perfectly then the maximal margin
classifier cannot be found. Even when the classes are separable, it is not always favorable
to find a maximal margin classifier because it can be very sensitive to a change in a

single training observation, which suggests overfitting.

Support Vector Classifier

Due to these limitations, the maximal margin classifier is extended to a support vector
classifier that is applicable to problems where classes are almost separable by using a
soft margin which is not so sensitive to changes in the presence of a small number of
training observations. A support vector classifier allows for some training observations to
be misclassified, i.e. a few observations can be on the wrong side of the margin (dashed
line on Figure 3.1) or even on the wrong side of the hyperplane. Margin is called soft
because it can be violated by a few training observations. The support vector classifier is

the solution to the optimization problem in 3.17

P
max M, subject toz:ﬁj2 =1,

Poylt P =1
Yi(Bo + Bit + oo + Bip) > M(1— &) (3.17)

n
€>0,> <C,
i=1

Chapter 3. Introduction to Methodology and Theoretical Framework 25

where x; = (41, Zj2, ..., Tip) is the i-th observation, C' is a tuning parameter and M is the
width of the margin. The tuning parameter C' determines the number and the severity
of violations - how many training observations can be on the wrong side of the margin
or hyperplane. C' controls bias-variance trade-off. A small C means the narrow margin
is rarely violated, i.e. a classifier that highly fits to the data, which may have low bias
and high variance. On the other hand, a larger C' means a wider margin that can be
violated more often, i.e. the classifier may have higher bias and lower variance. Only
training observations that lie on the margin or violate it affect the hyperplane. These
observations are called support vectors. Larger C' leads to larger margin and to more

support vectors that affect the classifier as is shown in Figure 3.2.

Figure 3.2: Left: Larger C - more support vectors. Right: Smaller C - fewer support
vectors.

Source: An Introduction to Statistical Learning by James G., Witten D., Hastie T.,
Tibshirani R.

The support vector classifier is a natural choice if the boundary between two classes
is linear. But, that is often not the case, thus the support vector classifier is further

developed into support vector machines.

Support Vector Machine

The support vector machine (SVM) is an extension of the support vector classifier that
is based on the idea of "lifting" observations from original feature space to an enlarged,
higher dimensional feature space. That "lift" is done by applying appropriate non-linear
mapping (transformation) between original, lower and enlarged, higher dimensional
feature space. In such an enlarged feature space, observations are separable into two
classes by a linear boundary. In the original feature space the boundary between classes

is non-linear.

Support vector classifier can be represented as 3.18

Chapter 3. Introduction to Methodology and Theoretical Framework 26

fx) = Bo+) ailz, i), (3.18)

€S

where «; are parameters, one for each support vector and (x,z;) is the inner product

between x = (x1, 2, ..., xp) and observation z; given by 3.19

p
(a:,xi> = ij:cij. (3.19)
Jj=1

SVM is the support vector classifier extended by a non-linear kernel function or kernel

K(x,z;) instead of using an inner product. SVM then has a form 3.20
f@) = Bo+) K(z,). (3.20)
i€S

The support vectors are the training observations that define the optimal separating
hyperplane, i.e. the one with the maximum distance from the nearest training observations.
An important benefit of the SVM is that the complexity of the resulting classifier depends
on the number of support vectors, but not on the dimensionality of the enlarged feature

space.

Many non-linear kernels are popular, e.g. a polynomial kernel of degree d 4.4

K(l’,l’l) = (1 + ZZL'jZEZ'j)d, (3.21)
J

or one of the most used, a radial kernel 3.22

K(z,2:) = exp(—y Y _ (x5 — 45)°), (3.22)

where v is a positive constant.

To train a SVM on a set of training observation means to find coefficients «; and By and
hyperparameters depending on the chosen kernel. For a polynomial kernel that would be
a degree d, for a radial kernel it would be . Lower d will lead to a boundary closer to

linear, just like a smaller v will lead to a smoother boundary.

Chapter 3. Introduction to Methodology and Theoretical Framework 27

3.4.3 Tree Based Algorithms

Another approach to classification that is used in this thesis are tree based algorithms.
Such algorithms can be applied to both regression and classification problems, but we
will focus on how they are applied in a classification setting. Tree based algorithms are
all based around the idea of a segmenting a feature space into multiple simpler regions.
A prediction is then made on the basis of this segmented feature space. Commonly, the
mean (regression) or mode (classification) of the training observations within a region is
used to predict the response of a new observation that falls within this region. The set of
splitting rules used to segment the feature space can be summarized in a tree structure.

This is why we refer to this family of algorithms as tree based algorithms.

The simplest form of tree based algorithms are decision trees. Decision trees are easy and
intuitive to interpret, but they lack the prediction power of more sophisticated models.
Combining the predictive power of many such decision trees lead to the more competitive

tree based algorithms such as random forest and boosted trees according to [22].

Ry

Hits
=0,

a0 an
! “fears

Figure 3.3: Left: Splitting rules summarized in a tree structure. Right: A feature space
segmented into three sub-regions.

Source: An Introduction to Statistical Learning by James G., Witten D., Hastie T.,
Tibshirani R.

Decision Trees

Decision trees are the basic building blocks of tree based algorithms. A single such tree
segments a feature space into sub-regions which can then be used to predict on. The
segmentation of the feature space is done by a series of splits. A split is done based on a
single rule that acts upon a single feature and splits the feature space somewhere along
that feature’s axis. After the first initial split, subsequent splits are performed within
sub-regions of the already split feature space. Each split produces two new sub-regions
R;,, R;,. Because splits are never performed across two different sub-regions, none of the

sub-regions Ry, Ro, ..., R, overlap with each other.

Chapter 3. Introduction to Methodology and Theoretical Framework 28

For each split performed in a classification tree the purity of the resulting sub-regions is
maximised. Purity is a measure of the class distribution in a sub-region. A high purity
means that a sub-region contains many observations of class x and few observations of
any other class. A low purity means that a sub-regions has a very mixed distribution of
classes. Most commonly, purity is maximised by minimizing either the Gini index or the

entropy of the two sub-regions resulting from a split.

The Gini index for a sub-region is defined by:

K
G=> pr(l—pr) (3.23)
k=1

The entropy for a sub-region is defined by:

K

D=— Zpk log pr (3.24)
k=1

In both equations, K is the number of classes.

Both of these quantities take on low values if all p; are either close to one or zero which
can only happen if the sub-region has a high purity. An alternative to maximising the
purity of sub-regions is to minimize the classification error rate. The classification error
rate is simply defined as the percentage of observations in a region that do not belong to
the majority class. In practice this measurement has been shown to not produce good

results for trees and therefore maximising purity is preferred [22].

The decision tree algorithm is a greedy algorithm that maximises the purity of the
sub-regions at each individual split, never looking ahead to see how this affects purity in
subsequent splits. The result can be a non-optimal tree; a better overall solution can
be overlooked. Although not always optimal, the decision tree is always reproducible.
Given the same data, a set of rules follow from the algorithm in the same logical and

non-random fashion.

The bias-variance trade-off is controlled in a decision tree by the amount of splits
performed, i.e. by the complexity of a decision tree. There are two common approaches
to controlling the complexity of a decision tree. The first approach is to stop growing
the tree before all sub-regions have perfect purity. This can be done by either setting the
maximum depth of the tree or by only performing splits that result in a gain in purity
that exceeds some threshold. The second approach is called tree-pruning and is usually
preferred over the first approach. A fully complex tree is first grown and then splits are

removed from this fully grown tree in a nested fashion.

Chapter 3. Introduction to Methodology and Theoretical Framework 29

Tree-pruning is usually implemented as cost complexity pruning. In cost complexity
pruning a tuning parameter « is used to prune the tree. A large o punishes complex
trees and therefore as « is increased, more branches are pruned off the tree. The best

value of a can be chosen through cross validation.

The advantages of using decision trees over other classification algorithms lie mainly in
their ability to provide easy-to-understand model inference. The rules of a decision tree
can be summarized in a tree-structure that can be displayed graphically. Unfortunately,
their power of inference is not matched by their predictive power. A single decision tree

will most likely perform worse than other classification algorithms such as LR or SVM.

Bagging and Random Forest

The fundamental issue of DT is that they individually suffer from a high variance
compared to other classification algorithms. It is well known that the variance of a model
can be reduced by constructing an ensemble of such models and averaging their predictions
together to form a final prediction. In the case of classification, one would not average
predictions, but rather take a majority vote. Unfortunately one do not usually possess
multiple training sets with which multiple decision trees can be trained. It is however
possible to approximate using different training sets by bootstrapping from a single
training set to produce multiple bootstrapped training sets. Each bootstrapped training
set is produced by repeatedly sampling with replacement from the original training set.
N models are then trained from N bootstrapped training sets and their predictions are
taken in a majority vote to produce a final classification. Constructing an ensemble of
decision trees in this manner is called bagging. Decision trees grown in bagging are usually
grown fully and not pruned afterwards. This is because their individual complexity is
balanced by their use in an ensemble which reduces their collective variance. Bagging
has been demonstrated to give marked improvements in predictive power over a single

decision tree [22].

Random forest is an extension of bagging that usually delivers better performance due
to a single tweak. As in bagging, decision trees are built from bootstrapped training sets
and are then used in an ensemble. The difference is that in a random forest, individual
splits in the decision trees are only allowed to consider a random subset of size m out of
the p predictors in the training set. Because each split only has subset of predictors to
consider, decision trees in random forest tend to grow more random and varied than in
bagging. The effect is that decision trees in random forest tend to be less correlated with
each other than the decision trees in bagging. Averaging the predictive power of many

uncorrelated models produce a stronger decrease in variance than doing the same with

Chapter 3. Introduction to Methodology and Theoretical Framework 30

more correlated models. This is why random forest usually delivers better performance
than bagging for most data sets. The size m of the subset of predictors that each split
is allowed to consider, is a hyperparameter than can be tuned by, for example, cross

validation.

Any algorithm that builds an ensemble of models from bootstrapped training sets benefit
from an important side effect of using bootstrapped samples. It can be shown that on
average, each bootstrapped training set samples around 2/3 of all observations in the
original data set. Consequently, this means that each observation in the original training
set is not used in approximately 1/3 of all models. If one averages the prediction of all
the models that do not make use of an observation to predict upon that observation,
one gets a reliable approximation of test error, while not having to fit the model more
than once. This is called Out-of-Bag estimation error (OOB). It can be shown that if
the number of trees grown in the ensemble is sufficiently large, OOB is equivalent to the

leave-one-out cross validation error [22].

Using an ensemble of decision trees increases the predictive power of models compared
to using a single decision tree. Unfortunately, the use of such an ensemble reduces
the amount of inference a model provides. While a single decision tree can be shown
graphically, there is no easy way to graphically represent an ensemble of such trees.
However, an overall summary of predictor importance can be obtained from ensemble
methods. In the case of classification, the importance of a predictor can be measured by
summing up the gain in purity in a tree for all splits considering this predictor and then

averaging this value over all trees in the ensemble.

3.4.4 Boosted Trees

Boosted trees is another ensemble method that combines multiple decision trees in a
serial manner. The method uses pre-pruning and combines shallow trees, thus producing

a model that is very efficient when it comes to memory usage and prediction speed.

While decision trees, bagging and random forest can be explained quite well using non-
mathematical terms because they are somewhat heuristical in nature, boosted trees are
more rooted in mathematics. It is therefore required that we take a step back and review
some basic fundamentals before we proceed. The following explanation is heavily based
on these slides by Tiangi Chen [29].

A core concept of supervised learning is the objective function that should be optimized

(usually minimized). As we already stated in 3.1.2, an objective function has a form:

Chapter 3. Introduction to Methodology and Theoretical Framework 31

0bj () = L(©) + Q(O), (3.25)

where © = {w;|j = 1,...,d} is a set of parameters that will be learned from the data
set X = {x1,29,...,zn}, XeR™P where x; = (241, Ti2, ..., Tip)eRP, i = 1,2,...,n. L(O)

measures the training loss, while Q(©) is a regularization term.

Assuming we use an ensemble of trees, we can think of an individual tree as a function
mapping a set of input to a certain output. Then the prediction for i-th observation

using K trees can be formulated as 3.26:

K
9i =Y ful@), fueF (3.26)

k=1
where f} is a tree/function and F' is a space containing all such trees/functions.

The objective function for such a tree ensemble can be defined as 3.27

n K
Obj(©) => Iy, i) + > QAfe), (3.27)

i=1 k=1

where "% ; I(y;, J;) measures the training loss for all n observations used to train the

model and YK | Q(f;,) measures the complexity of the trees in the ensemble.

We can not use gradient boosting to solve the optimization problem as we need to find
fr which are trees and not numerical vectors. Instead we use something called additive

training, also called boosting.

We start with a model that returns a constant prediction for all n observations:

i =0,i=1,2,.,n (3.28)

and continue building upon that model in iterations called boosting rounds such that:

oM =y + fi(z)

0P = yM ¥ folwi) = fi(@) + fola)
(3.29)

t
0 =y 4 fuw) =Y fala)
k=1

Chapter 3. Introduction to Methodology and Theoretical Framework 32

In each boosting round, the f; that is added to the ensemble is the one that minimizes

the objective function which is now:

n

Obj(©) = Uy, 9" " + felwi)) + Qfp) (3.30)

=1

The magnitude of the training loss part 7 I(yi, %'~ + fi(x;)) is determined by
predictions where the model in the previous boosting round has performed poorly. This
essentially means that for each boosting round, a tree is added to the model that is built
to perform well on predictions that previous boosting rounds have not performed well on.
This is the main strength of boosted trees compared to random forest. Boosted trees
is an iterative learning process where the model will hopefully converge to an optimal

solution.

3.4.5 Deep Learning - Artificial Neural Networks

Artificial neural networks (ANNs) is a family of algorithms inspired by biological neural
networks that constitute a human or animal brain. ANN is built of nodes that are
considered to be neurons in the brain, while connections between the nodes correspond to
neuron-to-neuron communication through synapses. Nodes are connected in a hierarchical
structure, layer over layer where each connection is weighted. ANNs are powerful in
finding non-linear predictive models and their structure can be tailored to make them
applicable in different areas. Here we start by presenting a simple multilayer architecture
and continue with architectures constructed to find patterns in sequences of data, e.g

longitudinal data.

Multilayer Perceptron

A multilayer perceptron (MLP) is a network with a simple architecture shown in Figure
3.4. Nodes are interconnected in a feed-forward way, i.e. connections are directed from
input layer towards output layer and do not form cycles. Bias nodes are always set to
1 and are added to the network to increase its flexibility. Network is fully connected if

each node is connected to every node in the subsequent layer.

MLP is a supervised learning algorithm that when trained on the data set X =
{z1,22, ..., 2n}, XeR™P where x; = (zi1,Zi2, ..., Tip)eRP, i = 1,2,...,n learns a non-
linear approximator f for either classification or regression, such that f(z;) = y;, where

y; is an outcome corresponding to an observation x;.

Chapter 3. Introduction to Methodology and Theoretical Framework 33

" K o g
e _"l"* : ‘i? A
-:"..a-:ﬁi‘r iﬁ

SO
S Ry
SN

. impiut Teatu e NEuran) cutput (class) . blasnade
‘ nputlayer hidden layer oUpUEIayer es— weight

Figure 3.4: Multilayer perceptron
Source: R for Deep Learning (I): Build Fully Connected Neural Network from Scratch -
parallelr.com

Input nodes form an input layer and represent input features. There are as many input
nodes as there are input features. All connections are weighted and input values from
the input layer are transformed in the first hidden layer such that their weighted sum is
computed. Further, the weighted sum servers as argument for a non-linear activation
function that is activated at each node in the first hidden layer. An activation function
is a non-linear function that introduces non-linearity into the network. It is attached to
each hidden or output node in the network and determines, based on the input value,
whether the node will be activated. The result is that output from each node in the first
hidden layer serves as input in subsequent hidden layers where the process continues.
Finally, the output nodes receive values from the last hidden layer and transform them

into output values z;.

Training a MPL means to find weights for all connections between nodes. While activation
function is the same for all nodes (or at least nodes in one layer) and chosen among many
possible non-linear differential functions in the network design phase, weights must be

learned from training data. Training starts with a random initialization of weights and

Chapter 3. Introduction to Methodology and Theoretical Framework 34

feed-forward computation. Output values z; differ from target values y;. Total training

error is then 3.31, according to [19]

J(w) == (i —z)° (3.31)
=1

which should be minimized by updating w, a vector of all weights in the network. Back-
propagation algorithm is based on gradient descent: the weights are changed in the

direction that will reduce the error J(w)

0J

(3.32)
where 7 is learning rate, a small number that controls how quickly the model learns, i.e.
the amount of change in response to the estimated error each time the model weights are

updated.

That gives an iterative procedure to update weights:

w(m + 1) = w(m) + A(w(m)). (3.33)

Thus, training of the MLP is an iterative process that starts by presenting an observation
for which the feed-forward computation is done, then backward computation follows to
find the change that minimizes J(w), which is then used to update the weights. The
iterative process continues with other observations from the training set until the change
in training error is under a certain threshold. There are three common training protocols

in terms of the way in which observations are presented to the network:

e stochastic training where training observations are presented randomly and the
weights are updated accordingly. It is possible that some observations are presented

more than once,

e batch training, where each update is based on the average gradient over the
presentation of all observations in the data set. If only a subset of the data set is

used for each batch, it is called a mini batch,

» online training where each observation is presented only once.

There are only two hidden layers shown in Figure 3.4 for simplicity, but the number of
layers, and the number of nodes in each layer, can vary with the nature of the problem

at hand. Each hidden layer trains on the previous layer’s output, hence it aggregates

Chapter 3. Introduction to Methodology and Theoretical Framework 35

and recombine features from the previous layer. More layers means that the network can
recognize more complex features, but that can also cause overfitting. Neural networks
are also sensitive to feature scaling, i.e. weights from larger features are adjusted more
than others. In real life application that means that training data should be standardized
before training. Hyper-parameters like number of layers, number of nodes, activation
function choice (often sigmoid, hyperbolic tangent, rectified, etc. functions), learning
rate, batch size, etc. should be chosen carefully. Hyperparameters are often tuned by

hand or using grid or random search.

3.4.6 Recurrent Neural Networks

Recurrent neural network (RNN) differs from a feed-forward network, such as MLP, in
a way that it allows connections between neurons in the same or previous layers, i.e.
nodes can be connected in directed cycles. Each hidden node is connected to both itself
and other hidden nodes. RNN has a temporal dimension and is designed to recognize
patterns in sequence data. Computations derived from earlier input are fed back into
the network, which gives RNNs a kind of memory. It means that output depends not
only on the present inputs but also on the previous step’s neuron state. RNN takes the
current observation and the values from the hidden nodes from the previous step, applies
matrix operation on them and the result serves as argument to an activation function.

In each step the same matrix is applied.

-

Y ::> + huT < | “t+} |~
O, Gy D &

Figure 3.5: Folded and unfolded representation of RNN

~ L
f

c

Source: Deep Learning: Recurrent Neural Networks by Pedro Torres Perez - deeplearn-
ingbrasilia

From the unfolded representation it is easier to understand what is happening at each
step. The output from the activation function in the hidden layer is both sent onwards

to the output layer and forwarded on to the next iteration of the RNN. Equations 3.34

Chapter 3. Introduction to Methodology and Theoretical Framework 36

based on [30] describes the RNN mechanism:

hi = fo(Uxe + Vhe—1 + bp)
0y = fo(Wht + bo)a

(3.34)

where U, V and W are matrices of weights, same at each time step. Bias terms b, and
b, are not explicitly visible in Figure 3.5, but they are assumed to be in it. Activation
functions are fj and f,, while z; and o; are input and output at the ¢-th step. The
hidden units from the previous step h;_1 influence the computation of h; which gives a

sort of memory to the network.

Using the same matrix at each time step, over many steps, can lead to two problems
known as exploding and vanishing gradients. The problems can be experienced with
ANNSs, due to the depth of the network. Gradients with matrix multiplication can
become vary large which means large weights updates during training. This can make
networks unstable and leave them unable to learn from the training data. Exploding
gradients can be mitigated by regularization to encouraging the weights to be small or
by gradient clipping, i.e. when the gradient exceeds some threshold it is scaled down.
For the opposite problem of vanishing gradients, one solution is long short-term memory

networks presented in the next section, 3.4.7.

3.4.7 Long Short-Term Memory Networks

Because of the vanishing gradient problem RNNs tend to suffer from short-term memory
and do not learn from dependencies that span across long periods of time. Long short-
term memory (LSTM) networks are constructed to solve that problem. Their building
blocks are LSTM units, which have the same function as hidden nodes in RNN, commonly
built of a cell and three multiplicative gates. The cell is the memory part of the unit
and keeps track of the dependencies in inputs over time, while three gates, input, output
and forget gate control the proportions of information to forget and to pass on to the
next time step [31]. Several unit architecture are in use, only a basic one is shown in

Figure 3.6 taken from [31].

Formally, according to the same source [31], an LSTM unit update mechanism at time ¢

is described by 3.35

Chapter 3. Introduction to Methodology and Theoretical Framework 37

output 4 recurrent

LSTM cell

"The input gate controls the extent
to which a new value flows into the
cell, the forget gate controls the ex-
tent to which a value remains in the
cell and the output gate controls the
extent to which the value in the cell
is used to compute the output acti-
vation of the LSTM unit. The acti-
input vation function of the LSTM gates is
often the logistic sigmoid function.",
from [32].

recurne r;:t

input recurrent
Figure 3.6: LSTM unit schematic

Source: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF by X. Ma
and E. Hovy [31]

iy = o(Wihi—1 + Uiz + by)

fi = o(Wihi_1 + Upzy + by)

¢t = fi © ¢i—1 + i © tanh(Wehy—q + Uexy + be) (3.35)
or = o(Wohi—1 + Upzy + by)

ht = o; ® tanh(c),

where o is the element-wise sigmoid function and © is the element-wise product. x; is the
input vector at time ¢, and h; is the hidden state vector storing all the useful information
at (and before) time t. U;, Uy, U,, U, denote the weight matrices of different gates for
input x¢, and Wi, Wy, W, W, are the weight matrices for hidden state hy. b;, by, b, b,

denote the bias vectors.

3.5 Model Validation and Tuning

3.5.1 Performance Measures

Performance of a binary classifier can be measured in many ways. Here, we only present

the measures (metrics) that will be used later in the project. They are derived from the

Chapter 3. Introduction to Methodology and Theoretical Framework 38

confusion matrixz for a two class problem. The confusion matrix for a two class problem is
a two rows by two columns table that reports the number of true positives, false positives,

false negatives and true negatives predictions, as shown in Table 3.1.

H Actual positive Actual negative H

Predicted positive True positives TP False positives FP
Predicted negative False negatives FN True negatives TN

Table 3.1: Confusion matrix

True positives (TP) and true negatives (TN) are the correct predictions, while false
negatives (FN) and false positives (FP) are the incorrect predictions. Some popular
measures that are used in this project are: accuracy, precision, sensitivity, specificity

and I'1 score. Their definitions are listed below:

accuracy = IP+TN (3.36)
TP+TN+ FP+FN

precision = TPY:i—PFP (3.37)

sensitivity = TP;—;PFN (3.38)

specificity =]7]\;2]_\;]3 (3.39)

= o97p +2IZ]€ +FN (3.40)

For a reader more familiar with other terms in use: precision can be called positive

predictive value, while sensitivity is also known as recall.

Sensitivity and specificity are often used as measures in a clinical setting (e.g. performance
of a medical test). Sensitivity measures how often a test recognizes patients with the
condition that is tested for. Specificity measures the ability of a test to recognize patients
without the condition that is tested for. Generally, there is trade-off between sensitivity
and specificity [33], i.e. an increase in sensitivity is often accompanied by decrease in

specificity and vice versa.

Another popular performance metric that we use is area under the ROC curve. ROC

(receiver operating characteristic) curve compares sensitivity versus specificity across

Chapter 3. Introduction to Methodology and Theoretical Framework 39

various threshold settings. The ROC curve is created by plotting the sensitivity against
(1 - specificity) at various probability thresholds. Area under the ROC curve is another
measure of a classifier’s performance. The larger the area, the better the performance,
as is shown in Figure 3.7

1.0

N
A Hypothetical ROC curves on Figure 3.7 representing
081 the diagnostic accuracy of the gold standard (lines A;
B AUC=1), a typical ROC curve (curve B; AUC=0.85),
084 and a diagonal line corresponding to random chance
(line C; AUC=0.5). As diagnostic test accuracy im-
04 (o] proves, the ROC curve moves toward A, and the AUC
approaches 1.

Sensitivity

0.2

Source: Circulation, Vol 115, No 5, Feb. 6 2007,
Receiver-Operating Characteristic Analysis for
00 T T ! T Evaluating Diagnostic Tests and Predictive Mod-

o0 o2 o o8 o8 0 els by Kelly H. Zou, A. James O’Malley and
Laura Mauri

1-Specificity

Figure 3.7: ROC curves

The last performance measure we use in this project is Matthews correlation coefficient
(MCC) because it has some advantages over F1 score and accuracy on imbalanced data
sets, according to [34]. MCC can be directly calculated from the confusion matrix using
3.41

MCC = TP+«TN —FPxFN . (3.41)
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

3.56.2 Hyperparameter Tuning

Hyperparameter tuning is a process that consists of finding a set of optimal hyperpa-
rameters for a particular learning algorithm. A hyperparameter is a parameter that
defines the model architecture and has to be chosen before the learning process begins.
Some examples of hyperparameters are: depth of a decision tree, number of trees in
random forest, number of neurons and layers in a neural network, misclassification
penalty in SVM, etc. Model parameters values are learned through the learning (training)
process when the loss function is optimized, but hyperparameters cannot be optimized
from the data. Hyperparameters have a strong influence on the algorithm’s prediction
accuracy (performance) and often differ for different data sets. Several methods have
been developed for hyperparameter tuning, some of them are automated. Here, we only

present methods that will be used later in the project.

Chapter 3. Introduction to Methodology and Theoretical Framework 40

Grid Search

Grid search, usually in combination with manual search [35], is a traditional hyperparam-
eter tuning method. Its idea is simple: chose a grid of values for hyperparameters, based
on experience or guessing and evaluate model performance in each of the grid points to
find the best hyperparameter combination. The result depends on the initial choice of
the minimum and maximum grid points which are usually set by manual search. This
method is computationally expensive in terms of total number of calculations, because it

checks all grid points, but it can usually be parallelized.

Random Search

Random search [36] is a variation of the grid search idea. Random search does not search
over the entire grid, but over a random sample of points on the grid. Thus it is much
cheaper than grid search, but mostly performs as well as grid search. According to [37]
"if at least 5% of the points on the grid yield a close-to-optimal solution, then random
search with 60 trials will find that region with high probability", where high probability
means 0.95. Random search is easy to parallelize, takes fewer validation trials, thus it is

more efficient, if the condition from the citation is satisfied.

3.5.3 Cross Validation

Cross-validation is a method for model performance evaluation, i.e. for assessing how
the model will perform on an unseen data set (e.g. test set). The most commonly used
version is k-fold cross-validation, where k is a chosen number, often 5 or 10. The training
data set is split in k£ partitions and the model is trained k times. Each time the model
is trained on k — 1 partitions that are used as a training set, while the remaining k-th
partition is used as a test set. Each time the k — 1 partitions are chosen differently from
the initial k£ partitions, thus each time a different partition is used as a test set. For
each of the k training runs, performance measures are computed. Finally, the average
performance is calculated for the k£ training runs. K-fold cross-validation, for k=5 is

shown in Figure 3.8

Cross-validation allows the model to train and validate on the same subset of data.
When the training data set is small, this is especially useful, because there is no need for
splitting the training data further in order to have a validation set. In addition, k-fold
cross-validation gives k performance evaluations, which can be similar or not and this can

lead to some conclusions about the data set or the model. These performance evaluation

Chapter 3. Introduction to Methodology and Theoretical Framework 41

Y v s s 8 % 7% gl)
¢ w2 7777777777 . 7} I]~ g Training data
g split 3 A7 WAl r 777 1E A - A Test data
g Split 4 7 AV A R A
Spiit 5 |7 A7 X I NZLIT777772

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Data points

Figure 3.8: 5-fold cross-validation

Source: Introduction to Machine Learning with Python by Andreas C. Miiller and Sarah
Guido

results can show if the model is sensitive to changes in the data set and roughly what

would be the performance of the model in the worst and best case.

Nested Cross Validation

Nested cross-validation is a procedure for estimating the generalization error of the model
and its corresponding tuning procedure. When cross-validation is used for both tuning
hyperparameters and model evaluation, the same test folds from k-fold cross-validation
is used in both procedures. That causes, according to [38], information "leak" into the
model and overfitting, i.e. model evaluation will be overly-optimistic. The size of the
problem depends on the size of the data set and model stability. To avoid this problem,
nested cross-validation uses a series of data set splits and two nested cross-validation
loops. The inner loop is for hyperparameter tuning (model selection), while the outer
loop is for unbiased model evaluation. A sketch of the algorithm is presented in Figure

3.9

The inner loop contains cross-validation and random or grid search implementation. The
outer loop provides training set to the inner loop, while test sub-set from the outer loop
is held back. Although authors claim in [38] that, if the model has limited number of
hyperparameters, nested cross-validation is probably not needed, we decided to use it in

this project to get a better estimate of the generalization error of our models.

3.5.4 Train Test Split

Machine learning model training begins with a given data set. A model should be trained,
its performance evaluated, and finally tested. For that purpose, a data set is usually split
into training, validation and test sets. The role of each of them is as follows: the training
set is used to train the model, the validation set is used to tune the hyperparameters of
the model and the test set is used to assess the performance of the model. When the

original data set is small (as it is in this project) cross-validations methods are often used

Chapter 3. Introduction to Methodology and Theoretical Framework 42

Use tuned
parameters

Outer resampling

[

Estimate performance

Use tuned
parameters

|

Inner resampling

Use tuned
parameters

Training set Test set Training set Test set
. outer resampling S outer resampling — inner resampling = inner resampling

Tune parameters

Figure 3.9: Nested cross-validation

Source: https://i.stack.imgur.com/vh1sZ.png or Nested cross validation explained by
Weina Jin

and the validation set is omitted. There is not a specific rule to select the proportions of
the original data set that should be used for the training and test sets. It depends on
the size of the data set and the algorithm that will be trained. A common choice is a
70/30 or 80/20 split. We use a 70/30 split in order to have a large enough training set,

but at the same time get stable results from our test set.

Chapter 4

Methods and Materials

This chapter goes through the set up and execution of the project. We start off with
our data set, explaining our cohort and feature selection. We then go on to describe
our preprocessing pipeline and the different prediction approaches used. We finish the
chapter by explaining how we use our models, as well as our tuning and model validation

procedures.

4.1 Data Set

In this section we go through the steps taken to collect our data set from the PPMI

database.

4.1.1 Cohort Selection

Our data set is constructed from data downloaded in December 2019 from the PPMI
database, as briefly mentioned in 3.2. PPMI has data available for various cohorts. An
overview of PPMI and the various cohorts in the study can be found in 2.2. Of these
cohorts, we can only use data from the cohorts De Novo PD Subjects and Genetic Cohort
Subject. Subjects in these cohorts are the only subjects in the study with confirmed
Parkinson’s disease. By selecting subjects from these two cohorts only, we reduce the
amount of subjects available to us from 2200 to 683. Of these 683 subjects, 423 are
from the De Novo Cohort and 260 are from the Genetic Cohort. The eligibility criteria
of these cohorts are different. The genetic cohort is for example, less strict in terms of
disease length and progression, than the De Novo cohort. The criteria can be viewed in
Appendix A. In this appendix, the criteria highlighted in green is the same between the

two cohorts and therefore poses no problem. The rest of the criteria are different. After

43

Chapter 4. Methods and Materials 44

consulting and discussing with an MD, the differences between criteria highlighted in red
were deemed problematic, while the differences between non-highlighted criteria were

deemed non-problematic.

Subjects from the genetic cohort were therefore filtered so only subjects that fulfill the

following criteria are used:

¢ Subject is older than 30

Subject has had a PD diagnosis for no more than two years
e Subject is at Hoehn and Yahr stage 2 or less

e Subject is currently not using PD medication

Selection process is illustrated in Figure 4.1.

Subjects from PPMI database
(n=2200)

¥
Subjects with confirmed PD

(n=683)
De Novo cohort subjects Genetic cohort subjects
(n=423) (n=260)
Y
Subjects measured at BL Subjects older than 30
with HALL=0 at BL (n=247)
(n=407)
Y
Subjects with PD diagnosis for no more than two years
(n=93)
Y
Subjects at Hoehn and Yahr stage 2 or less
(n=92)
3
Subjects currently not using PD medication
(n=9)
¥ 3
Selected de Novo subjects Selected Genetic subjects
(n = 407) (n=9)

Figure 4.1: Subject selection process

Chapter 4. Methods and Materials 45

After filtering by these criteria we are left with only 9 subjects from the genetic cohort,
which reduces the subjects available to us from 683 to 432, with 423 subjects in the De

Novo cohort and 9 subjects in the genetic cohort.

Finally we have to filter out subjects from both cohorts that do not fulfill the following

criteria:

e Subject has baseline data

e Subject does not experience symptoms of psychosis at baseline

This reduces the number of subjects in the De Novo cohort from 423 to 407, leaving us

with 416 eligible subjects from both cohorts.

4.1.2 Feature Subset

The PPMI database consists of multiple data tables, each containing multiple features.
We limit the number of features in our data set by only collecting a specific set of features
from a limited number of data tables for each subject. We perform this feature selection
based mostly on features used in Barret [3] and Ffytche [5]. In addition, we include some
demographic features as it is considered common practice. Two additional features are
included based on the recommendation of an MD working on Parkinson’s disease. Lastly,
we collect our response and two additional features (NP1COG, PD__MED_USE) based

on the nature of the prediction, additional comments from Barret and [39].

The collected data set does not contain any features that depend on MRI scans or
biological samples (blood, cerebrospinal fluid, etc.). Such data is available in the PPMI
database, but it is often expensive and time-consuming data to collect, and therefore less
available. An important reasoning behind our choice of feature subset is to base ourselves
on data that is more easily collected like clinical tests, questionnaires and demographic
data. Such data is often collected for PD patients. This should make our models usable
for a wider selection of PD patients than would have been the case if we included the

less available features, like the MRI scans mentioned previously.

Whenever possible we collect component features, i.e the partial scores/answers to a
test instead of a total final score. For example, a hypothetical test A has six scored
tasks and a total score is calculated by summing up the partial scores. In this scenario
we would collect the six partial scores and not the total score. The total score can be
calculated from the partial scores later. We prefer component features because it gives

us a greater freedom in how we proceed with preprocessing, giving us more options for

Chapter 4. Methods and Materials 46

feature reduction, in contrast with Barret [3] and Ffytche [5] who base themselves on

total scores. The formulas for calculating the total scores can be found in Appendix B.

As a note, Barret [3] and Ffytche [5] makes use of T-scores or scaled scores for many of
their features. These are scaled versions of raw total scores, often scaled by population
mean and population standard deviation. When the population mean and standard
deviation are not known, then the sample mean and sample standard deviation are used.
T-scores available in PPMI data are scores standardized to have a mean of 50 and a

standard deviation of 10, as shown in 4.1.

T = 10(2 =) 4 50, (4.1)

g

where X is a feature with mean p and standard deviation o. While such scores are useful
in order to compare a subject’s score to that of an average member of a population, it
should have no bearing on machine learning algorithms. Each observation for a feature
would be scaled by the same magnitude and the relative relationship between observations
would stay the same. We can therefore use raw total scores as equivalent features. We
scale our features as part of our preprocessing pipeline later, but this is to bring all our

features into the same scale which can be helpful for many algorithms.

Based on Barret and Ffytche we include features from the following data tables containing
corresponding psychometric test measurements. Every test measurements below are used

in at least one of the articles:

o Montreal Cognitive Assessment (MoCA) - an assessment test for cognitive function
in a patient. It is often used as a cognitive screening tool for a number of illnesses

such as Parkinson’s disease or Alzheimer’s disease [40].

« Hopkins Verbal Learning Test - Revised (HVLT) - a test of verbal, short-term
memory /new learning in a patient, primarily in populations with brain-disorders. It
is useful in populations that require follow-up through neuropsychological assessment

and to examine whether treatment has been effective [41].

o Benton Judgement of Line Orientation Test (BJLO) - a measure of spatial perception
and orientation of a patient [42]. The test consists of 30 tasks, but only 15 of these
are used for one test iteration. The test alternates between using the first 15 tasks
and the last 15 tasks for testing purposes. The total raw score of a subject for one

iteration is comparable between the alternative iterations.

o Letter Number Sequencing (LNS) - a measure of verbal working memory.

Chapter 4. Methods and Materials 47

o Semantic Verbal Fluency (SVF) - the test entails that the patient must generate
words from a given category within a preset time of 60 seconds. According to [43]
it is a quick, easy-to-apply test, highly sensitive and specific in the diagnosis of

dementia, which justifies its use in detection of cognitive decline.

o REM Sleep Disorder Questionnaire (RBD) - contains a set of questions that should
be answered either 'yes’ or 'no’ in order to asses the most prominent clinical features
of REM sleep disorder [44].

o Geriatric Depression Scale Short (GDS) - a test used to identify depression in the
elderly [45].

o University of Pennsylvania Smell Identification Test (UPSIT) - used to test the
function of an individual’s olfactory system, it indicates how the patient does in

accordance to his/hers age group and gender [46].

o Epworth Sleepiness Scale (ESS) - assesses daytime sleepiness in adults while

performing usual activities [47].

o Scales for Outcomes in Parkinson’s Disease - Autonomic Dysfunction (SCOPA-
AUT) - used to evaluate autonomic! symptoms in patients with Parkinson’s disease.
The scale is a self-completed questionnaire that consists of 25 items in the following
categories: "Gastrointestinal (7), Urinary (6), Cardiovascular (3), Thermoregulatory

(4), Pupillomotor (1), and Sexual (2 items for men and 2 items for women)" [49].

» Symbol Digit Modalities (SDM) - screens for cognitive impairment by using a simple
substitution task. The subject has 90 seconds to match numbers with geometric
figures [42].

Features extracted from aforementioned tests are presented in Table 4.1, while further
details about variable definitions and score calculations are contained in Appendix B.

We collect features from the following three data tables based on Barret [3] and Ffytche
[5], the recommendations of an MD working on Parkinson’s disease, the nature of the

prediction task and [39].

« MDS-UPDRS Part 1
o MDS-UPDRS Part 2

o MDS-UPDRS Part 3

I"The part of the nervous system responsible for control of the bodily functions not consciously
directed, such as breathing, the heartbeat, and digestive processes." [48]

Chapter 4. Methods and Materials 48

Test H Extracted features

MoCA MCAALTTM, MCACUBE, MCACLCKC, MCACLCKN,
MCACLCKH, MCALION, MCARHINO, MCACAMEL,
MCAFDS, MCABDS, MCAVIGIL, MCASER7, MCASNTNC,
MCAVF, MCAABSTR, MCAREC1, MCAREC2, MCARECS,
MCAREC4, MCAREC5, MCADATE, MCAMONTH, MCAYR,
MCADAY, MCAPLACE, MCACITY

HVLT HVLTRT1, HVLTRT2, HVLTRT3, HVLTRDLY, HVLTREC,
HVLTFPRL, HVLTFPUN

BJLO JLO_TOTRAW

LNS LNSIA, LNS1B, LNS1C, LNS2A, LNS2B, LNS2C, LNS3A,

LNS3B, LNS3C, LNS4A, LNS4B, LNS4C, LNS5A, LNS5B,

LNS5C, LNS6A, LNS6B, LNS6C, LNS7A, LNS7B, LNS7C

SVF VLTANIM, VLTVEG, VLTFRUIT

RBD | DRMVIVID, DRMAGRAC, DRMNOCTB, SLPLMBMYV, SLPINJUR,

DRMVERBL, DRMFIGHT, DRMUMYV, DRMOBJFL, MVAWAKEN,

DRMREMEM, SLPDSTRB, STROKE, HETRA, PARKISM, RLS,

NARCLPSY, DEPRS, EPILEPSY, BRNINFM, CNSOTH

GDS "GDSSATIS", "GDSDROPD", "GDSEMPTY"', "GDSBORED",

'GDSGSPIR', "GDSAFRAD", "GDSHAPPY", "GDSHLPLS',

'GDSHOME'", "GDSMEMRY", "GDSALIVE', "GDSWRTLS',

'"GDSENRGY", "GDSHOPLS", "GDSBETER"

UPSIT UPSITBK1, UPSITBK2, UPSITBK3, UPSITBK4

ESS "ESS1", "ESS2", "ESS3", "ESS4", "ESS5", "ESS6", "ESS7", "ESS8"
SCOPA | "SCAU1", "SCAU2", "SCAU3", "SCAU4", "SCAU5", "SCAU6", "SCAUT",
-AUT "SCAUS", "SCAU9", "SCAU10", "SCAU11", "SCAU12", "SCAU13",

"SCAU14", "SCAU15", "SCAU16", "SCAU17", "SCAU18", "SCAU19",
"SCAU20", "SCAU21","SCAU22", "SCAU23", "SCAU24", "SCAU25"
SDM SDMTOTAL

Table 4.1: Features extracted from psychometric tests

MDS-UPDRS is Movement Disorder Society sponsored revision of Unified Parkinson
Disease Rating Scale [50] used to estimate the development of PD in patients. It covers
all the movement hindrances of PD and consists of 5 parts. Features extracted from
the MDS-UPDRS parts are presented in Table 4.2, while further details about variable

definitions and score calculations are contained in Appendix B.

NP1HALL measures whether or not a subject has experienced psychotic symptoms the
week preceding the test. This is also the response used in Barret [3] and Ffytche [5]. It
is important to mention that the criterion of "has experienced psychotic symptoms the
week preceding the test' is a weakness inherent in our response. Technically, in extreme
cases, this criterion means that a patient might experience symptoms of psychosis all
weeks of the year, with the exception of the week prior to his/hers yearly test, and still be
classified as non-psychotic. Unfortunately, NPIHALL is the best indicator of psychosis
for a PD patient available in the PPMI database.

Chapter 4. Methods and Materials 49

Test H Extracted features
MDS-UPDRS 1 NP1HALL, NP1COG
MDS-UPDRS 2 NP2TRMR, NP2WALK, NP2FREZ
MDS-UPDRS 3 NP3BRADY, NP3FACXP, NP3FRZGT,

NP3FTAPL, NP3FTAPR, NP3GAIT, NPSHMOVL,
NP3HMOVR, NPSKTRML, NP3KTRMR, NP3LGAGL,
NP3LGAGR, NP3POSTR, NP3PRSPL, NP3PRSPR,
NP3PSTBL, NP3PTRML, NP3SPTRMR, NP3RIGLL,
NP3RIGLU, PN3RIGRL, NP3RIGN, NP3RIGRU,
NP3RISNG, NP3RTALJ, NP3RTALL, NP3RTALU,
NP3RTARL, NP3RTARU, NP3RTCON, NP3SPCH,
NP3TTAPL, NP3TTAPR, PD_MED_USE, NHY

Table 4.2: Features extracted from MDS-UPDRS

NP1COG measures whether or not a a subject has experienced cognitive impairment
the week preceding the test. According to Thanvi et al [39], "Old age, cognitive
impairment, history of depression, and sleep disorders are important risk factors for
the development of psychosis in PD. Thus we collect NP1COG due to a relation between

cognitive impairment and psychosis.

TD/PIGD? classification is one of the features recommended by an MD working on
Parkinson’s disease. TD/PIGD calculation is based on features from MDS-UPDRS 1
and 2 and described in Appendix B.

Lastly, PD__MED_USE feature tells us which PD medications a subject is currently
taking. According to Barret [3], the relationship between PD medication and psychotic
symptoms is complex, thus we believe it could be relevant to include information about

the PD medication a subject takes as a feature.

MDS-UPDRS 3 is taken twice by each subject, before and after PD drugs are administered
to the subject. The purpose of this is to measure the improvement in post drug-
administration motor-symptoms. We only collect data from the pre drug-administration
test. Barret [3] also chose to not use data from MDS-UPDRS 3 post-drug administration,
as the relationship between medication and psychosis is "not unidirectional, i.e., the

occurrence of psychotic symptoms may influence medication choice."

Demographic data is collected from four different data tables:

e Family History PD

¢ Socio-economics

2Postural Instability and Gait Disorder

Chapter 4. Methods and Materials 50

e Screening Demographics

e PD Features

Features extracted from the demographic data tables are presented in Table 4.3, while
further details about variable definitions and calculation of age and diagnosis length are

contained in Appendix B.

Test H Extracted features

Family History PD BIOMOMPD, BIODADPD, FULSIBPD, HAFSIBPD,
MAGPARPD, PAGPARPD, MATAUPD, PATAUPD,

KIDSPD
Socio-economics EDUCYRS
Screening Demographics BIRTHDT, GENDER
PD Features PDDXDT

Table 4.3: Demographic features

We collect family history of PD because it might capture some of the genetic component
of Parkinson’s disease. The number of education years from socio-economics might have
an effect on various cognitive measures. We calculate age which is an important predictor
for disease development and has an effect on various test scores. We also calculate the
number of years a subject has had a diagnosis of PD, which is an important indicator of
psychosis and general decline in health. Gender is included because the incidence rate of

PD is not equally distributed amongst the genders.

Finally, we use variables PATNO, ENROLLDT and EVENT _ID as auxiliary variables in
the process of selecting subjects and merging tables. These are not considered as features

and not used in training the prediction models later.

Meaning of used variables is given in Appendix C.

4.1.3 Merging the Data Tables

Our data set now consists of individual data tables containing features we have selected.
We merge them using variables PATNO and EVENT __ID variables.

Some of the data tables are non-longitudinal, i.e data for a subject does not vary with
time. Examples of such data tables are the demographic ones. Also included here is
the University of Pennsylvania Smell Identification Test as it is only performed once per
subject; at baseline. This can be seen in the activity schedule in Appendix D, in the row

"Olfactory Testing (UPSIT)". We first merge the non-longitudinal data tables together

Chapter 4. Methods and Materials 51

using the key PATNO, which is a unique ID for each patient. After this first merge we

are left with a combined data table with one entry per subject, i.e no longitudinal data.

The rest of the data tables are longitudinal. In order to merge these data tables together
with our non-longitudinal one, we have to introduce a secondary key: EVENT ID. To
understand how EVENT 1D relates to time and in general how our longitudinal data is
organised, it is essential to have a quick look at the activity schedule in Appendix D.
What is referred to as "Visit Number" in the activity schedule is the same as EVENT __ID.
By merging on this key and PATNO, we group entries for each subject longitudinally.
Non-longitudinal data is simply copied for each longitudinal entry. We can observe from
the activity schedule that the data for all the tests we use is only collected at yearly
intervals. This translates to Visit Number BL, V04, V06, V08, V10, V12, V13, V14 and
V15. This means that we can only make use of these yearly data entries, and not the
entries in between like V02, V07, etc. For each subject we therefore have a maximum of
9 longitudinal entries. The number might be lower than this for a subject due to missing

entries or because the subject has dropped out of the study.

We must also mention that there is a peculiarity regarding MoCA in the schedule. MoCA
is not done at BL, but rather performed at a screening no more than 45 days prior to BL.
This is due to the fact that the results on MoCA are used to include/exclude subjects
from the cohorts and is therefore needed at screening. According to Vogel et al [2015]
[51], MoCA has a high correlation to various neuropsychological tests even when MoCA
is performed up to 180 days prior to these tests. We justify our inclusion of MoCA in

the baseline data based on this.

After merging the longitudinal data tables with our non-longitudinal one, we are left
with one combined data table, with up to 9 longitudinal entries for each subject. Non-

longitudinal data is copied for each longitudinal entry.

4.1.4 Post Merging Operations

Before we move on to missing value imputation we perform some additional post merging
operations. This includes calculating age and duration of PD diagnosis for each subject
for each longitudinal entry (as described in Apendix B). We remove enrollment date
(ENROLLDT), birth date (BIRTHDT) and date of first PD diagnosis (PDDXDT) after
deriving these features. Post merging is also technically where we filter out subjects
from the genetic cohort that do not meet the eligibility criteria. Finally, we remove
subjects from our data set that present with psychosis at baseline, as we are interested
in predicting future psychosis and these subjects are already classified as suffering from

psychosis (see Figure 4.1).

Chapter 4. Methods and Materials 52

After the post merging operations we have a data set with 2250 longitudinal entries,
416 unique subjects and 185 features, including our response. If we divide our 2250
longitudinal entries by our 416 unique subjects we have on average ca. 5.4 longitudinal
entries per subject. This is significantly lower than the maximum of 9 entries per subject.
This indicates that we are dealing with missing entries and/or subject dropout from the

study. Figure 4.6 illustrates attrition in our data set.

4.2 Preprocessing

This section details most of our preprocessing steps after data collection. Some of these
steps are always performed and some are optional depending on how we want to use our

data. Figure 4.2 illustrates the process.

Missing values imputation

Response dichotomization

h

Data set split

i
| Feature reduction — Total scores
|

! (optional)

Feature reduction — PCA
(optional)

Classical ML models applied on Classical ML models applied on Deep learning models applied
BL data longitudinal data (derived on longitudinal data
statistics)

Figure 4.2: Preprocessing steps

Chapter 4. Methods and Materials 53

4.2.1 Missing values

In the context of missing value imputation, it is easier to visualize missing values in
terms of rows and columns instead of data entries and features. In this subsection we

will therefore refer to a data entry as a row and a feature as a column.

All rows have missing values before imputation, from a minimum of 2 missing values to
a maximum of 48 missing values in a row. Figure 4.3 shows the distribution of columns
with missing values among rows, while Figure 4.4 shows the distribution of columns with

missing values among patients.

The majority of rows have few miss-
ing values and only a few rows have
more than 15 missing values.

Number of rows

-0 10 20 30 40 50
Number of columns with missing values

Figure 4.3: Distributions of columns with miss-
ing values per row

We use different strategies for replacing missing values depending on the feature under
consideration. Columns that describe the family history of a subject is filled with zeroes.
The reasoning behind this is that if such a column is left blank, the subject most likely
lacks information for the column or the column is not applicable for the subject. In
the first case, we can impute 0 with a high degree of certainty because the incidence
rate of PD is low. In the second case we can impute 0 because the column deals with a
hypothetical situation that does not exist in reality. e.g a subject without kids is asked

whether or not their kids have a PD diagnosis.

We use a similar reasoning to fill the missing values in a column (CNSOTH) that describes
whether or not a subject has additional diagnoses other than PD. The vast majority of
non-missing values for this column is 0 and so it is unlikely that a subject with a missing

value in reality has an additional diagnosis.

Chapter 4. Methods and Materials 54

140

120

¥ 100

@

L

2 80

wn

Y

Q The majority of subjects have a
o ® maximum number of missing values
= between 6 and 14.

Z

0 10 20 30 40 50
Max number of columns with missing values per subject

04

Figure 4.4: Distributions of columns with miss-
ing values per subject

Two pairs of SCOPA columns depend on a patient’s gender. One pair is applicable only
for men (columns SCAU22, SCAU23) and thus missing values for women are filled with
zeros. The other pair is applicable only for women (columns SCAU24, SCAU25) and

thus missing values for men are filled with zeros.

Lastly, we impute 0’s into missing columns of the Letter Number Sequencing (LNS) test
where the last three preceding columns have also been 0’s. The LNS test consists of
rounds consisting of three questions. By studying the LNS data table, we were able to
discern that clinicians stopped the test after a subject had completely failed a round, i.e
0’s in all columns of that round. The following rounds are left blank by the clinicians
and we therefore impute 0’s into these columns as the subject has essentially "failed"

these rounds as well.

After imputing missing values for these columns we are left with 70 rows which still
contain missing values. This is a reduction from 2250 rows with missing values to 70
rows with missing values. The rest of the missing values are imputed through either
mode/mean imputation or by using Heterogeneous Euclidean-Overlap Metric (HEOM)
as a similarity measure for imputation. These methods for missing value imputation are
presented in 3.3.1. Mode/mean imputation is our standard imputation procedure, while

HEOM is explored as a potential improvement (Appendix G).

Chapter 4. Methods and Materials

95

4.2.2 Dichotomizing the Response

Our response NP1THALL is at this stage a categorical variable with values ranging from

0 to 4. The different values of NP1HALL correspond to the following classifications [50]:

0: "Normal: No hallucinations or psychotic behavior"

1: "Slight: Illusions or non-formed hallucinations, but patient recognizes them

without loss of insight."

2: "Mild: Formed hallucinations independent of environmental stimuli. No loss of

insight."

3: "Moderate: Formed hallucinations with loss of insight."

4: "Severe: Patient has delusions or paranoia."

Our stated project goal is to predict whether or not a patient will develop psychotic

symptoms as part of the disease progression. Our goal is not to predict the severity of

these psychotic symptoms. Including the severity of psychotic symptoms in our prediction

would be difficult because some of the categories of NP1HALL are very rare in the data
set. The distribution of NP1THALL is shown in Figure 4.5.

Percentage of subjects
N w - v o ~
o o [=] o o o

,_.
o

Normal Slight Mild Moderate Severe
Severity of psychotic symptoms

Figure 4.5: Distribution of psychotic symptoms

Around 75% of subjects in our
data set never experience any
psychosis, i.e all their data
points have an NP1HALL of
0. Another 20% of subjects ex-
perience category 1: slight hal-
lucinations as their worst psy-
chotic symptoms. Finally, 3%,
1% and 0.2% of subjects expe-
rience respectively 2: slight, 3:
mild and 4: moderate as their
worst psychotic symptoms. No
subject in our data set experi-
ences 5: severe psychotic symp-
toms.

Predicting the severity of psychotic symptoms would therefore present us with a multiclass

classification problem on a very imbalanced data set. We therefore dichotomize NP1THALL

into a new variable, which we call HALL, defined by 4.2

1, if NPIHALL >0

HALL =

0, if NPIHALL =0

Chapter 4. Methods and Materials 56

This leaves us with a class balance in our data set of 3:1 which is generally not considered
imbalanced. According to [52], an imbalanced ratio is considered to range from 1:4 and

upwards.

4.2.3 Splitting the Data

As described in 3.5.4, a common strategy for training and evaluating ML models is to
split the data set into three parts: (1) training, (2) validation and (3) test set. Our data
set is quite small and so we choose to omit a validation set. Our implementation of the
train-test split of the data set is done in a stratified manner. This means that the class
ratio of 3:1 from 4.2.2 is preserved in the new train and test subsets. For example, in the
case of a 70/30 train-test split, our training subset contains 70% of all subjects, or 291 of
416 subjects in the data set. The class distribution of the response, HALL, is 220:71,
which is almost equal to 3:1; the class distribution of the original data set. Our test
subset contains 30% of all subjects; the remaining 125 subjects. The class distribution of
the response HALL is 92:33, which is very close to the original 3:1 distribution. As is
evident from the training set, it is difficult to make the distribution exactly the same

sometimes, but it is similar enough to be considered preserved.

4.2.4 Features Reduction - Total Scores

We have 185 features in our data set after missing value imputation. Most of these
features are component scores, e.g single answers on multiple question tests. With a
large number of features (185) and small number of patients (416) we face the curse of
dimensionality, i.e. the feature space is large enough to became sparse. It is important
to reduce the number of features in our data set to avoid overfitting. Further, this makes
the data set easier to visualize and reduces the amount of parameters that needs to be
estimated by our models. One way of reducing the number of features in our data set is
to combine the component scores for one test into a corresponding total score for that
test. This is how the performance of a subject is most often measured by a test. In
addition, Barret and Ffytche use total scores as their features. The reason why we do
not collect these total scores at the beginning is that by collecting component scores
instead, we give ourselves the ability to perform other forms of feature reduction such as
PCA, which is detailed later in 4.2.6.

The total scores are calculated from their component scores as described in Appendix B.
The total scores in Appendix B are calculated for: Letter Number Sequencing (LNS),
HVLT Immediate/Total Recall, HVLT Discrimination Recognition, HVLT Retention,
MoCA Total Score, Semantic Fluency (SFT), REM Sleep Behaviour Disorder (RBD),

Chapter 4. Methods and Materials 57

GDS Raw Score, UPSIT Raw Score, Epsworth Sleepiness Scale, SCOPA-AUT Total
Score, MDS-UPDRS Part III, TD/PIGD classification, Family History of PD. Some of
these these total scores are further dichotomized as shown in Appendix B. This concerns
the features REM Sleep Behaviour Disorder (RBD) (RBD Positive/Negative), GDS
Raw Score (Depressed/Not Depressed), Epsworth Sleepiness Scale (Sleepy/Not Sleepy),
TD/PIGD classification (TD,PIGD,Indeterminate), Family History of PD (Yes/No).

Note that this is an optional preprocessing step and can be replaced by other methods
of feature reduction. After applying the aforementioned method we ended up with a
reduction from 185 to 26 features, including the response. The resulting features are a

mix of categorical, ordinal and numeric variables.

4.2.5 Standardizing and One-Hot Encoding

We standardize our data set and one-hot encode our categorical features after performing
feature reduction by using total scores, but before we apply PCA. If we do not perform
feature reduction by using total scores, we standardize and one-hot encode after splitting

the data into training and test sets.

We standardize our data set according to formula 3.6 in 3.3.2. This standardization is

only applied to numerical features. Ordinal and categorical features are not standardized.

In addition, we one-hot encode our categorical features as described in 3.3.2. Ordinal
variables come categorically encoded from the initial PPMI database and are therefore
left alone. Ordinal variables are not standarized as according to Jajuga et al. [53],

standardization of ordinal variables is not necessary.

4.2.6 Features Reduction - Principal Component Analysis (PCA)

The theory behind PCA is described in 3.3.3. PCA allows us to apply a different form
of feature reduction on our data set. PCA can either be applied before or after feature
reduction by total scores. The number of features we have after performing PCA is
dependant on how much variability is kept in the transformed features. Note that if
PCA is performed, the data must be standardized and one-hot encoded beforehand as
described in 4.2.5. As with the feature reduction by using total scores, this is an optional

preprocessing step.

We use total scores as our standard feature reduction method. Feature reduction using
PCA is explored in Appendix H.

Chapter 4. Methods and Materials 58

4.2.7 Response Distribution During the Study

To better understand the three different prediction approaches detailed in 4.2.8 it is
important to study the distribution of our response HALL with respect to time, where
time is measured in years. Looking at these distributions also gives us an idea of the
level of attrition® in the study. Attrition is a well-known phenomena in longitudinal
studies. In this project we are not interested in the reasons for attrition, but we are still

interested in the absolute numbers of subjects that drop out during the study.

Figure 4.6 shows attrition com-
bined with the progressive en-
rollment into the study. First
subjects were enrolled into one

150 of the study’s cohorts in Au-

Number of subjects

100 gust 2010, while the last ones

. were enrolled in December 2018.

_ Plot shows only subjects in our
Baseline 1 2 3 4 5 6 7 8

Year of participation data set

Figure 4.6: Number of subjects with regards to the
length of their participation in the study

In figure 4.6, a subject that is a study participant for e.g. four years (i.e. subject’s last
measurement is from year 4) is counted in all of the first 5 columns (Baseline, 1, ..., 4),

even if some of the intermediate yearly measurements are missing.

3subject leaving during a study due different reasons, e.g. death, consent withdrawal, pregnancy,
protocol violation, institutionalization, primary care physician decision, etc.

Chapter 4. Methods and Materials

99

Number of subjects
5 8 &
& 8 8

=
o
o

w
=}

0
Baseline 1 4 3 4 S

Year of participation

Figure 4.7: Number of subjects tested after n-years

of participation

6

Figure 4.7 shows how many sub-
jects had been tested at partic-
ular yearly visit. It is possible
that some subjects are counted
in column 3, but not in column
1 or 2. In other words: there
are missing longitudinal data
points for some subjects. Each
column shows number of exist-
ing yearly measurement in the

data set.

It is interesting to show how many participants have incomplete set of temporal data, i.e.

they missed one or more of the yearly tests.

Percentage of subjects

100

W
o

@
o

B
=]

20

Baseline i 2 3 4 5

Year of participation

Figure 4.8: Percentage of subjects tested after n-years

of participation

6

Figure 4.8 shows that not all
participants had been tested.
Evasion is most visible at years
1, 2, 3 and 4. This plot is result
of yearly numbers from Figure
4.7 divided by corresponding

numbers from Figure 4.6.

Patients who reported psychosis in a particular year did not necessarily keep reporting

psychosis in later years.

Chapter 4. Methods and Materials 60

70

@
o

Figure 4.9 shows a relatively

%
=}

low number of patients with de-

veloped psychosis. That might

o
=}

be because of the criterion for

w
=]

reporting psychosis. Namely, a

Number of subjects
N
[=]

patient only reports psychosis

=
o

present if the patient experi-

0 .
Baseline 1 2 3 4 5 6 7 8 enced symptoms of psychosis
Year of participation

the week preceding the report.

Figure 4.9: Number of subjects that reported psy-
chosis after n-years of participation

50

= Figure 4.10 shows an ascend-

. ing trend in reported psychosis

with years of participation, i.e.

20 with the development of PD.

Percentage of subjects

This plot is the result of yearly

10
numbers from Figure 4.9 di-

ol vided by corresponding num-
Baseline 1 2 3 4 5 6 7 8

Year of participation bers from Figure 4.6

Figure 4.10: Percentage of subjects that reported
psychosis after n-years of participation

4.2.8 Prediction Approach

Our stated project goal is to develop models that are capable of predicting psychosis in
PD patients. It is important that these models are applicable in real-life scenarios. We
envision two practical scenarios for our models to be applied in. In the first scenario we
must try to predict psychosis for a subject which only has one data point available, i.e
baseline data. In the second scenario, multiple observations are available for a patient
and we must try to accommodate these additional observations into our classical ML
models. By classical ML models we refer to logistic regression, support vector machine

and tree based algorithms used in this project.

Chapter 4. Methods and Materials 61

First Scenario - Baseline Data

This subsection details our approach to the first scenario using classical ML models.
We assume that in real life, a subject will not suffer from psychosis at the baseline
observation, as predicting future psychosis for a subject that already has symptoms of
psychosis is of minimal interest. This is also why we remove all patients from our data

set who suffer from psychosis at baseline, in one of our preprocessing steps.

For this scenario we must train our classical ML models on baseline data to predict a
single response which indicates whether or not the subject will experience future psychosis.
It is possible to put a constraint on this response, e.g the subject will experience psychosis
within 2 years, 3 years, etc. Looking at the Figures 4.9 and 4.10 we can see that putting
a constraint on the response for this data set would leave us with few subjects with a
positive response, especially if the constraint is only 1 or 2 years. We therefore choose
to not put such a constraint on the response and as long as the subject experiences

psychosis during the lifetime of the study, the subject is predicted positive.

To process our data set for this prediction approach we first transform our response
HALL into another response HALL_EVER by 4.3

1, if HALL =1 for any longitudinal observation of a subject
HALL EVER=

0, otherwise
(4.3)

After transforming our response in this manner, we remove all non-baseline observations
from the data set. We are then left with a baseline observation for each subject with
a corresponding HALL_EVER response. Note that this processing step removes any
subjects in our data set that has only baseline data available. This is because it is
not possible to produce a valid response unless the subject has at least one "future'
observation. In a real-life scenario, where the model is applied, not trained or validated,
one observation is enough because the model would not need a "future" observation of

psychotic symptoms.

Second Scenario - Derived Statistics

This subsection details our approach to the second scenario using classical ML, models.
In this scenario we have multiple observations available for each subject, but only one
response. This is problematic because classical ML models depend on a 1:1 ratio between

observations and responses. This means that in order to apply these models on the

Chapter 4. Methods and Materials 62

second scenario, we will need to condense the information of multiple observations into
one observation. A way of doing this is to derive statistics from the multiple observations

that can be summarized into one single observation.

To develop models that can benefit from information carried by multiple longitudinal
observations we make the assumption that in real life, applying models to a patient which
has already had psychosis makes little sense. In other words, using observations where
the subject has a positive HALL response to train the model does not reflect reality.
Therefore, we derive statistics based on the first i — 1 temporal observations of a subject,
where i is either the first temporal observation with HALL = 1 or the last observation of
a subject (in the case where a subject never experiences psychosis). This idea leads to a
model that is never trained on any observation where HALL is positive, as is illustrated

in Figure 4.11.

Patient 1 Patient 2 Patient 3

EVENT_ID HALL EVENT_ID HALL EVENT_ID HALL
18 BL 0 41 BL 0 28 EL 0
19 V4 0 40 V4 0 27 V4 0
21 VG 0 43 V0e 1 30 V0e 0
23 V3 0 < V02 1 29 V02 0
20 V10 0 42 V10 1 31 V12 0
22 vi2 0 45 V12 1
24 V13 0 46 V13 0
25 V4 0 47 V14 1
26 V15 0 45 W15 0

Figure 4.11: Different i’s, number of observations taken into consideration

Patients 1, 2 and 3 illustrate how this prediction approach works in practice. As a

reminder, EVENT_ID is our longitudinal variable and is sorted.

o Patient 1 has no psychosis during the study and so we derive statistic based on all
but the last observation he/she has in the study (i = 9). The last (red) observation
contains the response HALL = 0.

o Patient 2 has psychosis relatively early and we derive statistic based on the first 2

observations (i = 3). The 3rd (red) observation contains the response HALL = 1.

Chapter 4. Methods and Materials 63

o Patient 3 has no psychosis and has missing observations (V10). We derive statistic
based on his/hers available observations, with the exception of the last available

observation (i = 5). The last (red) observation contains the response HALL = 0.

Our response is the value of HALL at observation i, where i > 3, so that we have at
least two observations to derive statistics from and one observation to draw a response
from. In a real-life scenario, we would need a minimum of two observations to predict
the presence of psychosis because the model is applied and would no longer need to be
trained or validated. Note that this approach removes, from the data set, all subjects

that have less than 2 observations available before observation 3.

Our observations are a mix of categorical, ordinal and numerical features. For numerical
and ordinal features we derive the following statistics from the first ¢ — 1 temporal

observations of a subject:

e Average
e Intercept and slope of regression line
e Minimum

e Maximum

According to [27], these are commonly used in longitudinal analysis. These statistics are
derived from ordinal features with the underlying assumption that the distance between
successive values of an ordinal features is constant. None of these statistics can be
derived from categorical features. The only statistics we derive from categorical features

is therefore the mode.

Deep Learning: LSTM

Classical ML models are not conceived for establishing true longitudinal relationship
between observations. In our case, the best we can do is to summarize these relationships
into derived statistics and apply classical ML models as in 4.2.8. Certain deep learning
models on the other hand are conceived specifically to extract temporal relationships.
Recurrent Neural Networks (RNNs) and Long-Short Term Memory (LSTM) are examples
of such deep learning models and are presented in 3.4.5. Using such models means that
we no longer have to adhere to the 1:1 ratio between observations and responses, as
in our classical ML models. These models are capable of predicting one response for

multiple longitudinal observations.

Chapter 4. Methods and Materials 64

To process our data set for these DL models we find ¢ as in 4.2.8. The first ¢ — 1
observations are processed by the model and the value of HALL in 7 is used as the
response. Unlike when we use derived statistics, data from a subject can be used as long
as it has more than 1 observation. This makes such deep learning models capable of
operating on not only longitudinal data, but also on just baseline data. Subjects that
only have a baseline observation available are removed from the data set because they

lack a "future" observation of psychotic symptoms.

4.3 Models

Every model presented in this section will make use of some variant of 'balanced’ class
weights to counteract our 3:1 class distribution. This means that the minority class,
i.e. subjects with psychosis, are given more weight in the model compared to subjects
of the majority class. Different models use different methods to give more weights to
some samples, but the final result is the same. The model is penalized more heavily
for misclassifying a minority sample than a majority one. In the case of our 3:1 class
distribution, a model would be penalized 3 times as much for misclassifying a subject
with psychosis than a subject without psychosis. In sklearn, 'balanced’ class weights
means that the model uses the values of the response to automatically adjusts weights

inversely proportional to class frequencies in the input data [54].

4.3.1 Classical Machine Learning Models

Logistic Regression

LR is explained in 3.4.1 and implemented using the scikit-learn python package [55] with
the class LogisticRegression [56]. For LR we are interested in exploring the effects of

regularization on the model as explained in 3.1.2.

We will use the ’liblinear’ scikit-learn solver [56] as it supports both L1 and L2 norm
for regularization penalty. For our logistic regression models we want to tune these

hyper-parameters:

o Regularization penalty: possible values are [L1-Norm, L2-Norm]

o Regularization strength: range [0, oo].

We use ’balanced’ class weights in order to give our models better performance on the

minority class.

Chapter 4. Methods and Materials 65

Support Vector Machine (SVM)

Support Vector Machine (SVM) is implemented using the scikit-learn python package
[55] with the class Svm [57]. We will try three different kernels that are described in
3.4.2. These are linear, polynomial and radial kernels. In addition, we are interested in
the effects of regularization. Scikit-learn does not support anything other than L2-norm
regularization penalty for SVM. We use ’balanced’ class weights in order to give our

models better performance on the minority class.

The linear kernel is defined in the scikit-learn implementation as described in 3.4.2. The

parameter to tune is therefore the strength of regularization.

We want to tune the following hyper-parameters for a linear kernel:
o Regularization strength: possible values are [0, o]

The polynomial kernel in the scikit-learn implementation is slightly different from the
one detailed in 3.4.2. Instead of the definition used of some authors (e.g. Tibshirani [22],
Bishop [12])

K(l‘,l‘z) = (1 + ijxij)da (44)
J

the polynomial kernel in scikit-learn, [58], is defined more generally as

p
K (@) = (7> 2j1)", (4.5)

where r is a constant that allows to trade off the influence of the higher order and lower

order terms.

For the polynomial kernel we therefore want to tune following hyper-parameters:

o Regularization strength: range [0, oo]
o Gamma scaling, v: range (0, oo
o Polynomial degree, d: range [1, o]

o Independent term, r: range [0, oo

Chapter 4. Methods and Materials 66

The radial kernel is defined in the scikit-learn implementation as described in 3.4.2. The

parameter to tune is therefore the gamma scaling and the strength of regularization.

For the radial kernel we therefore want to tune the following hyper-parameters:

o Regularization strength: range [0, oo]

o Gamma scaling, v: range (0, oo

Decision Tree

Our decision tree model is implemented through the scikit-learn python package [55]
with the class DecisionTreeClassifier [59]. We will build our decision trees by using cost
complexity pruning as explained in 3.4.3. We will choose to minimize GINI in our splits
as it is the standard criterion for decision trees in scikit-learn. Using GINI over entropy

or vice versa usually does not affect results too a large degree.

We want to tune the following hyper-parameters for decision trees:

o Complexity parameter, a: range [0, oo]

For decision trees we can also perform some inference by visualizing the tree structure of

the tuned model.

We use ’balanced’ class weights in order to give our models better performance on the

minority class.

Random Forest

Our random forest model is implemented through the scikit-learn python package [55]
with the class RandomForestClassifier [60]. We will build our random forest models
using the theory in 3.4.3. The hyper-parameters we want to tune are the number of trees
in a forest and the fraction of features considered at each split. We use ’balanced’ class

weights in order to give our models better performance on the minority class.

The theory in 3.4.3 mentions that trees in random forest are usually not pruned and
often fully grown. After preliminary testing it was evident that our random forest models
required some kind of tree regularization, due to overfitting when just tuning the two

initial hyper-parameters. It was therefore decided to introduce another hyper-parameter

Chapter 4. Methods and Materials 67

that controls the max depth of individual trees to prevent overfitting. We use this hyper-
parameter instead of cost complexity pruning to reduce the complexity of individual

trees.

We therefore want to tune the following hyper-parameters for random forest:

o Number of trees in the forest, n: range [1, oo]

o Fraction of features considered at each split, m: range [0, 1], if m = 0 then minimum

of 1 feature considered at each split.

o Maximum depth of trees in the forest, d: range [1, o]

For random forest we can also estimate generalization error with Out-Of-Bag error (OOB-
error) as explained in 3.4.3. We’ll present OOB in addition to nested cross validation
for random forest. We can perform some interference from random forest by plotting a

feature importance summary as explained in 3.4.3.

Boosted Trees

We implement a boosted trees model through the XGBoost package for python [61].
A brief overview of boosted trees can be found in 3.4.4. The boosted trees model in
XGBoost has a lot of hyper-parameters available, which makes tuning complex. We will
therefore base our tuning on the XGBoost document "Notes on Parameter Tuning" [62].
The effect and range of the different hyper-parameters in XGBoost is described in another
XGBoost document, XGBoost Parameters [63]. We will start tuning relatively simply by
just tuning the number of boosting rounds and leaving the rest of the hyper-parameters
on default values. We will also scale the weights of the positive class so that the class

weights are balanced.

Preliminary testing shows that the resulting models are overfitting the training data.
According to "Notes on Parameter Tuning" [62], overfitting in XGBoost can be controlled

by introducing these hyper-parameters:
Hyper-parameters that directly reduces the complexity of a model:
e max_ depth: Stops each boosted tree from growing beyond a maximum depth.
Default value: 6

e min_child weight: Stops each boosted tree from performing splits if this results
in child nodes where the sum of sample weights is less than this threshold. Default

value: 1

Chapter 4. Methods and Materials 68

e gamma: Stops each boosted tree from performing a split if the loss reduction is
below this threshold. Default value: 0

Hyper-parameters that introduce randomness. This makes the model more robust to

noise [62]:
e subsample: Each boosted tree is built on a subsample of all the observations in the

training set. Default value: 1.

e colsample_bytree: Each boosted tree is only allowed to use a subsample of all

features to split on. Default value: 1

o eta: Shrinks the new feature weights on each boosting round. Similar to learning

rate in other boosting algorithms. Default value: 0.3

We will try to tune all these hyper-parameters in addition to the number of boosting
rounds. These are just some of the hyper-parameters available in XGBoost and we could,
for example, also tune the regularization parameter for both L1-norm and L2-norm. We
will focus on the listed hyper-parameters because they are highlighted in the "Notes
on Parameter Tuning" [62]. Preliminary testing shows that they are able to control

overfitting.

We want to tune the following hyper-parameters for boosted trees:

o number of boosting rounds, n: range [1,00]
o max_ depth, d: range [1,00]

e min child weight, w: range [0,00]

o gamma, 7y: range [0,00]

 subsample, sl: range (0,1]

o colsample_ bytree, s2: range(0,1]

* cta, n: range[0,1]

We can perform some interference from boosted trees by plotting a feature importance

summary as explained in 3.4.3.

Chapter 4. Methods and Materials 69

4.3.2 Deep Learning: LSTM

We implement one deep learning model for this project. The model we chose is long-short
term memory (LSTM), a variant of RNN. RNN and LSTM networks are explained in
3.4.5. LSTM networks are well suited for longitudinal data/time series and are usually
preferred over RNN networks. The LSTM network is implemented using the Keras API
for Python [64].

Validation Set

Before we implement the model itself we have to do some additional preprocessing specific
for deep learning. The classical ML models in this project rely on cross validation in
order to tune hyper-parameters. Cross validation is not commonly used for deep learning
and does not have native support in Keras. We will therefore opt to use a validation set
for our LSTM model.

We start with a training and test set. In order to create an additional validation set, we
must split the training set. We want both the test set and validation set to be of equal

size. The correct split ratio for the validation set is therefore calculated as

ntest/ntrain

where nyeq i the number of samples in the test set and 74pqin is the number of samples

in the training set.

For example, if we consider a data set with a 100 samples and we first perform a 80/20
split, ngest/Nirain = 80/20 = 0.25, splitting the training set with this ratio results in
0.75 % 80 = 60 and 0.25 * 80 = 20 samples for the training and validation set. The

resulting training, test and validation sets are respectively 60/20/20.

Creating Batches

When a neural network is trained, it usually does not update its weights for each
prediction it makes. Instead a collection of training observations are processed in what
is called a batch and weights are updated on the basis of all the predictions in such a
batch. A neural network is usually trained on multiple such batches. Batches are used
because they save computational effort and memory. They can also help give more stable

estimates of the gradient, according to [65].

Chapter 4. Methods and Materials 70

A limitation of batches in RNN or variants of RNN, (such as LSTM), is that they require
all time series in a batch to have the same amount of observations. Due to the way we
process the data for deep learning (see 4.2.8), each subject, (which corresponds to a
time series), has a variable amount of observations. This makes it hard to create large
batches with a balanced number of subjects. We therefore chose to use mini-batches of
one subject per batch, which is called stochastic gradient descent, according to [65]. This
means that our LSTM network is fed one subject at a time and will update its weights

after each subject.

Number of Epochs

A neural network is usually allowed to train on a single data set multiple times in order
to find the right weights. The number of times a neural network is allowed to train on a
single data set is usually referred to as epochs. The number of epochs can be a predefined

number.

Another way of determining the number of epochs is to use early stopping. If a chosen
performance measure stops improving on a validation set after a certain number of
epochs, we can assume that the model will not improve by additional epochs. We can

therefore stop training the model at this point. This is called early stopping.

The last model before training is halted due to early stopping might not be the best
performing model of all models trained by epochs. This is due to how sometimes a
gradient function can overshoot a local minimum, according to [66]. It is therefore
common to combine early stopping with continually saving the best performing model
after each epoch. When early stopping comes into effect, the best performing model from

all the epochs trained is returned. This is called a model checkpoint in Keras.

We implement early stopping and a model checkpoint for our LSTM network. We do
early stopping and select the best model checkpoint by looking at sensitivity as our

performance measure.

Tuning the LSTM Network

It is difficult to comprehensively tune all hyper-parameters in a neural network. Tuning
is often done heuristically or based on previous working examples. There is no foolproof
recipe for tuning because tuning is largely dependant on the problem and data [67].
We have not found relevant work which we can build upon when it comes to LSTM
networks. Therefore we will adapt a strategy of building a simple LSTM network and
then gradually trying to add complexity.

Chapter 4. Methods and Materials 71

We start with a simple LSTM network with one input layer, one LSTM layer and one
binary output layer. The input layer is automatically handled by Keras. The output
layer uses "sigmoid" as the final activation function and the LSTM layer uses the default

activation function of "tanh".

We will first tune the number of neurons in the LSTM layer. After determining the
number of neurons to use, we will try different optimizers and learning rates. This should
result in a relatively simple tuned LSTM network. We can then try adding additional
layers to the network. One option is adding a dropout layer. This is relevant if we see
that our model struggles with overfitting. Another option is to add more LSTM layers to
the network as according to Goldberg, Yoav [68]: "While it is not theoretically clear what
is the additional power gained by the deeper architecture, it was observed empirically that

deep RNNs work better than shallower ones on some tasks'.

It is important to mention that, as in all the other models in this project, we will use

"balanced’ class weights to train our LSTM network.

4.4 Model Tuning and Validation Strategy

4.4.1 Performance Measures

We will measure the performance of our models using the performance metrics presented
in 3.5.1. All metrics are implemented using the scikit-learn python package [55], module
sklearn.metric [69]. We pay the most attention to sensitivity as a performance measure

due to the recommendation by an MD working on Parkinson’s disease.

4.4.2 Model Tuning and Validation
Machine Learning Models

We tune our ML models using a combination of random search and grid search which are
explained in 3.5.2. In general, we use random search in combination with cross validation
to perform a first exploratory search through the hyper-parameters of a model. We then
use the results of this search to narrow down the range of the hyper-parameters for a
grid search. This grid search is accompanied by nested cross validation in order to better
estimate the generalization error of a model. Finally, we estimate the performance of the

tuned model on a test set.

Chapter 4. Methods and Materials 72

Cross validation and nested cross validation are explained in 3.5.3. We generally use
10 folds for both nested and regular cross validation. Random search, grid search and
cross validation are implemented through the scikit-learn python package [55], module
sklearn.model__selection [70]. Our models are tuned to provide the best performance on
sensitivity as this is considered our most important metric due to recommendation by an

MD working on Parkinson’s disease.

Deep Learning Models

As mentioned in 4.3.2 we make use of a validation set for the LSTM network. Hyper-
parameters are selected by the aggregated result of multiple grid searches on this validation
set. We choose the hyper-parameter that gives the best average result on multiple grid
searches due to the randomness inherent in a neural network. The initial weights set in
a neural network is just one example of a random element that has a large effect on a
final model. We use the average result of 5 grid searches for tuning. On the same note,
we will present our results from deep learning as the average performance of 10 neural

networks on the test set; all models built with the same hyper-parameters.

Chapter 5

Results and Discussion

In this chapter we present our results from the three different prediction approaches used
in this thesis. We show our tuning process for each model and then show that model’s
performance on various metrics. When applicable, we also show inference for a model.
ROC curves and confusion matrices for all models are available in Appendix E. Finally,

we analyze and discuss our results.

5.1 Results

5.1.1 Baseline Approach

This section presents the results from classical ML models trained on the "baseline
approach' as detailed in 4.2.8. The following preprocessing steps are applied on the data
set for this approach:

o Mode/mean missing value imputation
e Feature reduction through total scores
o Train/test set ratio of 70/30

e Prediction based on baseline data

The processed data set contains 399 unique subjects with 279 subjects in the train set
and 120 subjects in the test set. This is a reduction from the 416 unique subjects in
the data set due to the removal of subjects that do not have at least one additional

observation other than the baseline observation for this approach. Class proportion is

73

Chapter 5. Results and Discussion 74

approximately 3:1 in both the training and test sets in favor of the negative class, i.e.
the class of PD patients that did not experience psychotic symptoms over the course of
the study. We use 10 folds for both cross validation and nested cross validation. Models

are tuned to give the best sensitivity possible.

Confusion matrices and ROC curves for the models presented in this section can be

found in Appendix E - Baseline Approach.

Logistic Regression

As stated in 4.3.1, the hyper-parameters we want to tune for this model are:

o Regularization penalty, L: possible values are [L1-norm, L2-norm]

o Regularization strength, C: range [0, oo]

Our scikit-learn solver is ’liblinear’ and we use ’balanced’ class weights. Note that a

lower value of C gives a stronger regularization.

The tuning phases used to find the final tuned model are summarized in Table 5.1.

Tuning Phase || Random Search | Random Search | Grid search | Grid search
1 2 1 2
Parameters C,.L C,L C,L C,L
Range/Grid C [0,10] [0,10] 0.35,0.01 | 0.0001,0.001,
0.01,01
Range/Grid L L1 L2 L1,L2 L2
Chosen C 0.35 0.01 0.01 0.01
Chosen L L1 L2 L2 L2

Table 5.1: Baseline Approach: Logistic Regression Tuning.

We first perform a random search with 1000 iterations to find an estimate of the
optimal regularization strength for L1-norm regularization penalty. Results indicate a

regularization strength of around 0.35 for L1-norm.

Secondly, we perform a random search with 1000 iterations to find an estimate of the
optimal regularization strength for L2-norm regularization penalty. Results indicate a

regularization strength of around 0.01 for L2-norm.

Using the results from the first two searches we perform a grid search with possible values
for regularization penalty being L1 or L2 and regularization strength being 0.35 or 0.01.
Results indicate that L2-penalty performs better than L1. A last grid search determines

the optimal strength of regularization.

Chapter 5. Results and Discussion 75

The chosen hyper-parameters are L2-norm for regularization penalty and 0.01 for regu-
larization strength. The results from nested cross validation, training and test set are

summarized in Table 5.2.

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.620 0.350 0.512 0.657 0.411 0.585 0.157
CV - mean
Nested 0.136 0.176 0.235 0.120 0.190 | 0.160 0.297
CV - std
Training 0.695 0.431 0.620 0.721 0.509 | 0.670 0.308
results
Test 0.658 0.407 0.710 0.640 0.518 | 0.675 0.308
results

Table 5.2: Baseline Approach: Logistic Regression Results

Support Vector Machine (SVM)

As stated in 4.3.1 we want to try different kernels for our SVM models.

For a linear kernel we want to tune the following hyper-parameter:

o Regularization strength, C: range [0, oo]

We use 'balanced’ class weights. Note that a lower value of C gives a stronger regulariza-

tion.

The tuning phases used to find the final tuned model for a linear kernel are summarized
in Table 5.3.

’ Tuning Phase H Random Search 1 ‘ Grid search 1

Parameters C C
Range/Grid C [0,10] [1,12],SS = 0.1
Chosen C 6.46 3.3

Table 5.3: Baseline Approach: SVM Linear Kernel Tuning.
SS = Step Size

We start by performing a random search with 1000 iterations to find an estimate for the
optimal regularization strength. Results indicate a regularization strength of around 6.46

for SVM with a linear kernel.

Using this result we perform a final grid search. The chosen regularization strength is
3.3.

Chapter 5. Results and Discussion 76

The results from nested cross validation, training and test set are summarized in Table
5.4.

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.627 0.354 0.562 0.649 0.430 | 0.606 0.190
CV - mean
Nested 0.068 0.069 0.164 0.098 0.091 0.077 0.135
CV - std
Training 0.724 0.470 0.662 0.745 0.550 | 0.704 0.370
results
Test 0.683 0.422 0.613 0.708 0.500 | 0.660 0.290
results

Table 5.4: Baseline Approach: SVM Linear Kernel Results

For a polynomial kernel we want to tune following hyper-parameters:

o Regularization strength, C: range [0, oo]
o Gamma scaling 7: range (0, o]
o Polynomial degree, d: range [1, o]

o Independent term, r: range [0, oo

The tuning phases used to find the final tuned model for a polynomial kernel are

summarized in Table 5.5.

Tuning Phase || Random Search | Grid search | Grid search | Grid search
1 1 2 final
Parameters Cyvy,dr Cy,dr Cyy,dr C, v, d,r
Range/Grid C [0,10] [0.14,0.18], | [0.1,0.14], | [0.01,0.08],
SS = 0.01 SS = 0.01 SS = 0.01
Range/Grid ~ (0,10] [0.2,0.4], [0.4,0.6], [0.50,0.75],
SS = 0.05 SS = 0.05 SS = 0.05
Range/Grid d [1,5] [1.4,1.8], [1.0,1.4], [1.0,1.4],
SS = 0.1 SS =10.1 SS =10.1
Range/grid r [0,10] [4.0,4.8], (3.2,4.0], [0.0,0.8],
SS =10.2 SS =102 SS = 0.2
Chosen C 0.16 0.14 0.1 0.02
Chosen ~ 0.3 0.4 0.55 0.70
Chosen d 1.6 1.4 1.0 1.0
Chosen r 44 4.0 3.2 0.0

Table 5.5: Baseline Approach: SVM Polynomial Kernel Tuning.
SS = Step Size

Chapter 5. Results and Discussion 77

We start by performing a random search with 1000 iterations to find estimates of
the optimal values for regularization strength, gamma scalling, polynomial degree and
independent term. Results indicate a regularization strength of around 0.16, gamma

scaling of around 0.3, degree of around 1.6 and independent term of around 4.4.

Using these results we perform a grid search. The chosen hyper-parameters from this

grid search are as follows:

o Regularization strength: 0.14
o Gamma scaling: 0.4
e Polynomial degree: 1.4

e Independent term: 4.0

The chosen hyper-parameters are all at the minimum or maximum allowed by the grid
search. This suggests that we should change the range of our search. We therefore
perform a second grid search with a different grid. The chosen hyper-parameters from

this second grid search are as follows:

e Regularization strength: 0.1
o Gamma scaling: 0.55
e Polynomial degree: 1.0

e Independent term: 3.2

The chosen hyper-parameters from this second grid search are also at minimum or
maximum values allowed by the grid, with the exception of gamma scaling. Polynomial
degree is at the minimum allowed for the parameter. We need to find better ranges for
the regularization strength and independent term. We therefore perform a series of grid
searches until we find the right ranges. The chosen hyper-parameters from the final grid

search are:

o Regularization strength: 0.02
o Gamma scaling: 0.70
e Polynomial degree: 1.0

e Independent term: 0.0

Chapter 5. Results and Discussion 78

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.652 0.371 0.480 0.711 0.410 | 0.596 | 0.181
CV - mean
Nested 0.077 0.118 0.174 0.084 0.117 | 0.096 | 0.179
CV - std
Training 0.728 0.470 0.549 0.788 0.506 | 0.669 | 0.322
results
Test 0.683 0.419 0.581 0.719 0.486 | 0.650 | 0.274
results

Table 5.6: Baseline Approach: SVM Polynomial Kernel Results

The results from nested cross validation, training and test set for this set of hyper-

parameters are summarized in Table 5.6.

For a radial kernel we want to tune the following hyper-parameters:

o Regularization strength, C: range [0, o]

o Gamma scaling, v: range (0, o]

The tuning phases used to find the final tuned model for a radial kernel are summarized
in Table 5.7.

’ Tuning Phase H Random Search 1 ‘ Random Search 2 ‘ Grid search 1
Parameters Cyy Cyy Cyy
Range/Grid C [0,10] [5,15] [6,12], SS =1
Range/Grid v [0,10] [0,1] [0.001,0.01], SS = 0.001
Chosen C 0.01 9 7
Chosen 7y 9.1 0.002 0.004

Table 5.7: Baseline Approach: SVM Radial Kernel Tuning.
SS = Step Size

We start by performing a random search with 1000 iterations to find estimates of
the optimal values for regularization strength and gamma scaling. Results indicate a

regularization strength of 0.01 and gamma scaling of 9.1.

Results from cross validation show that all samples are being classified as positive with
the chosen hyper-parameters. This indicates a biased model which does not capture
any of the complexity of the data. As explained in this document from the scikit-learn
developers [71], a model based on a radial kernel might be very biased if gamma scaling

is too high or if regularization is too strong.

Chapter 5. Results and Discussion

79

We perform a second random search. This time we increase the range for regularization

strength and lower the range for gamma scaling. Results no longer appear highly biased.

The results from this random search indicate a regularization strength of around 9 and

gamma scaling of around 0.002.

Based on these results we perform a final grid search to find the optimal hyper-parameters.

The chosen hyper-parameters are a regularization strength of 7.0 and a gamma scaling

of 0.004.

The results from nested cross validation, training and test set for this set of hyper-

parameters are summarized in Table 5.8.

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.638 0.360 0.480 0.692 0.400 | 0.586 0.165
CV - mean
Nested 0.073 0.102 0.162 0.106 0.089 | 0.075 0.144
CV - std
Training 0.735 0.483 0.592 0.784 0.532 | 0.688 0.353
results
Test 0.658 0.375 0.484 0.719 0.423 | 0.601 0.188
results

Decision Tree

Table 5.8: Baseline Approach: SVM Radial Kernel Results

As stated in 4.3.1, the hyper-parameter we want to tune for this model is:

e Complexity parameter, a: range [0, oo]

We use ’balanced’ class weights.

The tuning phases used to find the final tuned model for a decision tree are summarized

in Table 5.9.

’ Tuning Phase H Random Search 1 ‘ Random Search 2 ‘

Grid search 1

Parameters
Range/Grid o
Chosen o

«
[0,0.1]
0.06

«
[0,0.01]
0.008

0,001.02], SS = 0.001

(0%

0.016

Table 5.9: Baseline Approach: Decision Tree Tuning.

SS = Step Size

Chapter 5. Results and Discussion 80

We start by performing a random search with 1000 iterations to find an estimate of the
optimal value of a. The chosen value for « from this search is around 0.06. Results
show that all samples are classified as positive with the chosen hyper-parameter. This
indicates a biased model as it did for the radial SVM kernel in 5.1.1. To decrease bias we

must increase the complexity of our model. We can do this by lowering the range of «.

We therefore perform a second random search. This time we use a lower range for a.
The chosen value for a from this search is around 0.008. Results no longer indicate a
very high bias. Using this results we perform a final grid search to find an optimal value.

The optimal value for « is found to be 0.016

The results from nested cross validation, training and test set for this hyper-parameter

are summarized in Table 5.10.

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.451 0.223 0.439 0.457 0.289 | 0.448 | -0.098
CV - mean
Nested 0.132 0.078 0.166 0.178 0.098 | 0.111 0.202
CV - std
Training 0.699 0.451 0.845 0.649 0.588 | 0.747 0.431
results
Test 0.600 0.356 0.677 0.573 0.467 | 0.625 0.219
results

Table 5.10: Baseline Approach: Decision Tree Results

We can produce a visualization of this decision tree. We limit this visualization to a tree
structure of maximum 3 nodes in depth to limit the size of the corresponding image. The

visualization can be viewed in Figure 5.1.

Chapter 5. Results and Discussion 81

SCOPTOT <= 1.123
gini= 0.5
samples = 100.0%
value = [0.5, 0.5]
class = Negative

Tm:/ False

C_SLEEPY_YES <=0.5
gini = 0.497
samples = 94.3%
value = [0.536, 0.464]
class = Negative

VANRN

NP1COG <= 0.5 SDMTOTAL <= -0.014
gini = 0.487 gini = 0.438
samples = 81.4% samples = 12.9%
value = [0.58, 0.42] value = [0.323, 0.677]
class = Negative class = Positive
PD_DURATION <= -1.482 gini = 0,482 gini = 0416
. ar%lmlle; 2"6‘360% samples = 19.4% samples = 5.7%
e f [0.649 03 51] value = [0.406, 0.594] value = [0.705, 0.295]
e class = Positive class = Negative
class = Negative

[\

Figure 5.1: Visualization of the decision tree structure for the baseline approach, max
tree depth of 3

Random Forest

As stated in 4.3.1, the hyper-parameters we want to tune for this model are:

o Number of trees in the forest, n: range [1, oo]

o Fraction of features considered at each split, m: range [0, 1], if m = 0, then a

minimum of 1 feature is considered at each split

o Maximum depth of trees in the forest, d: range [1, 00|

We use ’balanced’ class weights.

The tuning phases used to find the final tuned model for random forest are summarized
in Table 5.11.

Chapter 5. Results and Discussion 82

’ Tuning Phase H Random Search 1 ‘ Grid search 1
Parameters n,m,d n,m,d
Range/Grid n [10,100] [18,30], SS = 2
Range/Grid m [0.5,0.9] [0.55,0.75], SS = 0.05
Range/Grid d [1,20] [1,4], SS =1
Chosen n 24 22
Chosen m 0.65 0.70
Chosen d 1 1

Table 5.11: Baseline Approach: Random Forest Tuning.
SS = Step Size

We start by performing a random search with 1000 iterations to find estimates for the
optimal values of n, m and d. The chosen values are n = 24 , m = 0.65 and d = 1. Using
these results we perform a grid search. The chosen hyper-parameters are n = 22, m =

0.70 and d = 1.

The results from nested cross validation, OOB, training and test set for this set of

hyper-parameters are summarized in Table 5.12.

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.612 0.298 0.355 0.701 0.314 | 0.528 0.057
CV - mean
Nested 0.102 0.190 0.196 0.111 0.171 0.117 0.239
CV - std
0OOB 0.599 0.275 0.352 0.683 0.309 | 0.517 0.032
Training 0.692 0.416 0.521 0.750 0.462 | 0.636 0.253
results
Test 0.725 0.471 0.516 0.798 0.492 | 0.657 0.305
results

Table 5.12: Baseline Approach: Random Forest Results

We can plot the importance of the features used in the random forest model. The higher
value a feature has, the more important it is for the model. The set of feature importance

values sum to 1. The plot can be viewed in Figure 5.2.

Chapter 5. Results and Discussion 83

(.35 1
030 1
L25 1
020 1
015 1
010 1
(.05 4

0.00 -
SCOPTOT LMSTOT HVLTRDLY C RED_NO AGE HVLT _RETENTION MSU3TOT

Figure 5.2: Feature importance values plotted as a bar plot. Only the most important
features are shown.

Boosted Trees

As stated in 4.3.1, the hyper-parameters we want to tune for this model are:

o number of boosting rounds, n: range [1, oo]

o max_depth, d: range [1, o]

o min_ child_weight, w: range [0, oo]

o gamma, y: range [0, oo

 subsample, s1: range (0, 1]

o colsample_ bytree, s2: range (0, 1]

* eta, n: range [0, 1]
The tuning phases used to find the final tuned model for boosted trees are summarized
in Table 5.13.

We start by performing a random search with 1000 iterations to find estimates for the

optimal values of the hyper-parameters. Results indicate these values:

e number of boosting rounds, n: 10
e max_depth, d: 2
e min_ child_ weight, w: 2.5

e gamma, v: 2.4

Chapter 5. Results and Discussion

84

Tuning Phase | Random search | Grid search | Grid search | Random search
1 1 2 final
Parameters n,dw,sl,s2n | n,dw,sl,s2,n | n,dw,sl,s2;n | n,dw,sl,s2n
Range/Grid n [5,20] [9,11], [7,10], [5,15]
SS=1 SS =1
Range/Grid d [1,10] [1,3], [1,2], [0,3]
SS=1 SS =1
Range/Grid w [1,10] 2,3], [1,2], [0,2]
SS =1 SS =1
Range/Grid ~y [0,5] 2,3], [1,2], [0.1,2.0]
SS =1 SS =1
Range/Grid s1 [0.5,1] [0.4,0.6], [0.4,0.6], [0.4,1.0]
SS = 0.1 SS = 0.1
Range/Grid s2 [0.5,1] 0.9,1], 0.9,1], [0.5,1.0]
SS = 0.1 SS = 0.1
Range/Grid n [0.3,1] [0.8,1], [0.7,1], [0.3,2.0]
SS = 0.1 SS = 0.1
Chosen n 10 9 8 12
Chosen d 2 1 1 2
Chosen w 2.5 2 1 1.23
Chosen ~ 2.4 2 1 1.44
Chosen sl 0.5 0.5 0.6 0.42
Chosen s2 1 1 1 0.80
Chosen 7 0.9 0.8 0.9 1.76

Table 5.13: Baseline Approach: Boosted Trees Tuning.
SS = Step Size

e subsample, s1: 0.5
e colsample_ bytree, s2: 1

e eta, n: 0.9

Using these results we perform a series of grid searches. After a number of grid searches
it became apparent that we would not get a stable set of hyper-parameters using grid
search. This is most likely due to the low amount of values we can try for each parameter
for each grid search. For example, grid search 1 and 2 uses only two or three different
values for each parameter in order to keep the number of permutations computationally
feasible. Even if we only increase the number of values for each parameter from three
to four, we increase the number of permutations from 37 = 2187 to 47 = 16384. We
therefore decided to estimate the optimal hyper-parameters using a random search with
10000 iterations and use the results to build our model. The chosen hyper-parameters

from this final random search are as follows:

e number of boosting rounds, n: 12

Chapter 5. Results and Discussion

85

max_ depth, d: 2

e min_ child_ weight, w: 1.23

e gamma, 7y: 1.44

e subsample, s1: 0.42

e colsample_bytree, s2: 0.80

e eta, n: 1.76

The results from nested cross validation, training and test set for this set of hyper-

parameters are summarized in Table 5.14.

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.533 0.255 0.527 0.538 0.319 | 0.532 0.058
CV - mean
Nested 0.156 0.114 0.328 0.297 0.159 | 0.083 0.151
CV - std
Training 0.620 0.358 0.620 0.620 0.454 | 0.620 0.210
results
Test 0.667 0.395 0.548 0.708 0.459 | 0.628 0.234
results

Table 5.14: Baseline Approach: Boosted Trees Results

We can plot the feature importance of the features used in the boosted trees model. The

feature importance is measured in the total information gain for each split using this

feature in the model. The higher value a feature has, the more important it is for the

model. The plot can be viewed in Figure 5.3.

Chapter 5. Results and Discussion 86

Feature importance

SIDTTOT e e ————

AGE

MPLCOG

Features

MCATOT —

SOMTOTAL
MSUITOT

HVLT _TOTAL

50 100 150 200 250 300
F score

= -

Figure 5.3: Plot of feature importance for boosted trees, only the most important
features are shown

5.1.2 Derived Statistics Approach

This section presents the results from classical ML models trained on the "derived
statistics approach" as detailed in 4.2.8. The following preproccesing steps are applied

on the data set for this approach:

o Mode/mean missing value imputation
o Feature reduction through total scores
o Train/test set ratio of 70/30

e Prediction based on derived statistics

The processed data set contains 356 unique subjects with 248 subjects in the training set
and 106 subjects in the test set. This a reduction from the 399 unique subjects in the
baseline approach 5.1.1 because we require at least three observations for a subject in
this approach, (compared to at least two in the baseline approach). Class proportion is
approximately 3:1 in both training and test sets in favor of the negative class, i.e. the
class of PD patients that did not experience psychotic symptoms over the course of the
study. We use 10 folds for both cross validation and nested cross validation. Models are

tuned to give the best sensitivity possible.

Confusion matrices and ROC curves for the models presented in this section can be

found in Appendix E - Derived Statistics Approach.

Chapter 5. Results and Discussion

Logistic Regression

As stated in 4.3.1, the hyper-parameters we want to tune for this model are:

o Regularization penalty, L: possible values are [L1, L2]

o Regularization strength, C: range [0, oo]

Our scikit-learn solver is ’liblinear’ and we use ’balanced’ class weights. Note that a

lower value of C gives a stronger regularization.

The tuning phases used to find the final tuned model are summarized in Table 5.15.

Tuning Phase || Random Search | Random Search | Grid search | Grid search
1 2 1 2
Parameters C,.L C,.L C,.L C,.L
Range/Grid C [0,10] [0,10] 0.16,0.01 [0.1,0.5],
SS = 0.01
Range/Grid L L1 L2 L1,1.2 L1
Chosen C 0.16 0.01 0.16 0.22
Chosen L L1 L2 L1 L1

Table 5.15: Derived Statistics Approach: Logistic Regression Tuning.
SS = Step Size

We first perform a random search with 1000 iterations to find an estimate of the
optimal regularization strength for L1-norm regularization penalty. Results indicate a

regularization strength of around 0.16 for L1-norm.

Secondly, we perform a random search with 1000 iterations to find an estimate of the
optimal regularization strength for L2-norm regularization penalty. Results indicate a

regularization strength of around 0.01 for L2-norm.

Using the results from the first two searches we perform a grid search with possible values
for regularization penalty being L1 or L2 and regularization strength being 0.16 or 0.01.
Results indicate that L1-penalty performs better than L2. A last grid search determines

the optimal strength of regularization.

The chosen hyper-parameters from grid search is L1 for regularization penalty and 0.22
for regularization strength. The results from nested cross validation, training and test

set are summarized in Table 5.16.

Chapter 5. Results and Discussion 88

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.698 0.375 0.587 0.732 0.454 | 0.659 | 0.276
CV - mean
Nested 0.070 0.155 0.263 0.083 0.188 | 0.122 | 0.229
CV - std
Training 0.754 0.483 0.724 0.763 0.579 | 0.744 | 0.432
results
Test 0.708 0.425 0.680 0.716 0.523 | 0.698 | 0.347
results

Table 5.16: Derived Statistics Approach: Logistic Regression Results
Support Vector Machines (SVM)

As stated in 4.3.1 we want to try different kernels for our SVM models.

For a linear kernel we want to tune the following hyper-parameter:

o Regularization strength, C: range [0, oo]

We use ’'balanced’ class weights. Note that a lower value of C gives a stronger regulariza-

tion.

The tuning phases used to find the final tuned model for a linear kernel are summarized
in Table 5.17.

’ Tuning Phase H Random Search 1 ‘ Grid search 1

Parameters C C
Range/Grid C [0,10] [1.0,4.0], SS = 0.1
Chosen C 2.3 2.5

Table 5.17: Derived Statistics Approach: SVM Linear Kernel Tuning.
SS = Step Size

We start by performing a random search with 1000 iterations on a linear kernel to find
an estimate of the optimal regularization strength. Results indicate a regularization

strength of around 2.3.

Using this result we perform a grid search. The chosen hyper-parameter is a regularization

strength of 2,5 for a linear kernel.

The results from nested cross validation, training and test set are summarized in Table
5.18.

For a polynomial kernel we want to tune following hyper-parameters:

Chapter 5. Results and Discussion 89

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.646 0.327 0.417 0.716 0.349 | 0.566 | 0.127
CV - mean
Nested 0.104 0.138 0.192 0.129 0.147 | 0.109 | 0.200
CV - std
Training 0.899 0.714 0.948 0.884 0.815 | 0.916 | 0.762
results
Test 0.830 0.621 0.720 0.864 0.667 | 0.792 | 0.556
results

Table 5.18: Derived Statistics Approach: SVM Linear Kernel Results

o Regularization strength, C: range [0, oo]
o Gamma scaling 7: range (0, o]
o Polynomial degree, d: range [1, oo]

o Independent term, r: range [0, oo

The tuning phases used to find the final tuned model for a polynomial kernel are

summarized in Table 5.19.

’ Tuning Phase H Random Search 1 ‘ Grid search 1

Parameters C,y,d,r Cvy,d,r
Range/Grid C [0,10] [0.05,0.5], SS = 0.05
Range/Grid (0,10] [1.0,1.4], SS = 0.1
Range/Grid d [1,5] [1,5],SS =1
Range/grid r [0,10] [0.0,2.0], SS = 0.5

Chosen C 0.3 0.1

Chosen ~ 1.2 1.3

Chosen d 3 1

Chosen r 1.3

Table 5.19: Derived Statistics Approach: SVM Polynomial Kernel Tuning.
SS = Step Size

We start by performing a random search with 1000 iterations on a polynomial kernel to
find estimates for the optimal values of regularization strength, gamma scaling, polynomial
degree and independent term. Results indicate a regularization strength of around 0.3,
gamma scaling of around 1.2, polynomial degree of around 3 and and independent term

of around 1.3

Using these result we perform a grid search. The chosen hyper-parameters from this grid

search are as follows:

Chapter 5. Results and Discussion 90

e Regularization strength: 0.1
o Gamma scaling: 1.3
e Polynomial degree: 1

e Independent term: 0

The results from nested cross validation, training and test set for this set of hyper-

parameters are summarized in Table 5.20.

Result accuracy | precision | sensitivity | specificity f1 roc_auc | MCC
Type
Nested 0.634 0.290 0.437 0.695 0.344 0.566 0.112
CV - mean
Nested 0.050 0.084 0.205 0.057 0.125 0.095 0.163
CV - std
Training 0.806 0.561 0.793 0.811 0.657 | 0.802 0.543
results
Test 0.745 0.475 0.760 0.741 0.585 0.750 0.439
results

Table 5.20: Derived Statistics Approach: SVM Polynomial Kernel Results

For a radial kernel we want to tune the following hyper-parameters:

o Regularization strength, C: range [0, oo]

o Gamma scaling, y: range (0, o]

The tuning phases used to find the final tuned model for a radial kernel are summarized
in Table 5.21.

’ Tuning Phase H Random Search 1 ‘ Grid search 1
Parameters Cy C,y
Range/Grid C [1,10] [2,10], SS = 0.1
Range/Grid ~ [0,1] 0.0001,0.001,0.01,0.1
Chosen C 6.9 2.9
Chosen ~ 0.0001 0.001

Table 5.21: Derived Statistics Approach: SVM Radial Kernel Tuning.
SS = Step Size

We start by performing a random search with 1000 iterations on a radial kernel to find

estimates for the optimal values of regularization strength and gamma scaling. We choose

Chapter 5. Results and Discussion 91

value ranges to avoid a highly biased radial SVM model as happened in 5.1.1. The chosen

hyper-parameters are a regularization strength of 6.9 and gamma scaling of 0.0001.

Based on these results we perform a grid search. The chosen hyper-parameters are a

regularization strength of 2.9 and gamma scaling of 0.001.

The results from nested cross validation, trai