

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:

 Robottechnology and signalprocessing

Spring semester, 2020

Open

Author: Håvard Lapin

Programme coordinator:
Professor Kjersti Engan

Supervisor(s):
 Øyvind Meinich-Bache
 Professor Kjersti Engan

Title of master’s thesis:
Adapt and Generalize Deep Learning Methods for Activity Recognition on Newborn
Resuscitation Videos

Credits: 30

Keywords: Deep Learning, Convolutional
Neural Network, Object Detection, Activity
Recognition, Image Processing, Newborn
Resuscitation

 Number of pages: 97

 Stavanger, 14 of June 2020

Adapt and Generalize Deep Learning Methods for Activity

Recognition on Newborn Resuscitation Videos

H̊avard Lapin

Spring 2020

Abstract

Low- and middle-income countries have nearly 99 % of deaths of children under 28 days.

Complications during childbirths, such as birth asphyxia, account for most of these deaths.

To prevent this, strengthening the quality of resuscitation training and providing better

quality health service are a major focus.

Major Projects like Safer Births has had a focus to establish new knowledge and develop

new technology to reduce the number of deaths. They have collected videos of newborn

resuscitation at Haydom Lutheran hospital in Tanzania. This data is useful for evaluating

the official resuscitation guidelines by investigating the treatment process and compliance

with guidelines. With this data a timeline over the activities like suction, ventilation and

stimulation can be extracted. However, issues like low brightness, non-standard camera

placement and low frame rate videos persist in these data.

The aims of this thesis is to improve upon previous work involving the Safer Births data

and put all the previous work into a single pipeline. Earlier work has used object detection

networks to locate and classify objects in the videos to post-process the videos to a format

that the activity recognition network could predict on.

The Convolutional Neural Network (CNN) from earlier work like RetinaNet and Inception

I3D was tested and had promising results, but still had some issues with detecting objects

like the suction penguin and a large amount of False Positives. To improve object detection

different kinds of pre-processing methods were applied. The methods to correct the lighting

resulted in poorer results, but training a new model with gradient based input together

with the original model resulted in a loss of False Positives among most classes. Combining

previous binary activity recognition models resulted in a promising gain in suction, but a

loss in the ventilation prediction. Adding a more efficient optical flow method for usage

with activity recognition encountered issues with training data generation and resulted in

worse performance than previous work. Creating new methods in python from previous

work was completed with a new pipeline that could predict and generate a timeline, but

has worse performance and needs more work.

i

Preface

I would like to thank the University of Stavanger, The Department of Electrical Engineer-

ing and Computer Science, Theodor Ivesdal and my supervisors Kjersti Engan and Øyvind

Meinich-Bache for allowing me to continue with my thesis during the ongoing global pan-

demic which resulted in the closure of the University of Stavanger.

I would especially like to thank my supervisors, Kjersti Engan and Øyvind Meinich-

Bache for offering valuable advice and encouragement during this global closure.

I would also like to thank Theodor Ivesdal for helping with remote access to the unix

server at the University of Stavanger and quick response with technical difficulties.

ii

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Earlier major projects . 3

1.3 Previous Work . 3

1.4 Aims/Objectives . 4

1.5 Thesis outline . 4

2 Medical Background 6

2.1 Birth Asphyxia . 6

2.2 Treatment . 6

2.3 Helping Babies Breathe . 7

3 Technical background 9

3.1 Artificial Neural Networks . 9

3.1.1 Activation functions . 10

3.1.2 Fully Connected Feedforward Network 13

3.1.3 Supervised Learning . 13

3.1.4 Loss functions . 14

3.1.5 Backpropagation . 15

3.2 Convolutional Neural Network . 16

3.3 Transfer Learning . 19

3.4 Object and Activity Detection networks . 21

3.4.1 RetinanetV2 . 21

3.4.2 Inception I3D . 22

3.5 Optical flow . 23

3.5.1 FlowNet2 . 23

3.6 Network backbones . 25

3.6.1 RetinaNet backbone - ResNet-50 . 25

3.6.2 I3D backbone - Inception-v1 . 27

3.6.3 FlowNet2 backbone - FlowNet . 30

3.7 Performance metrics . 32

iii

3.7.1 True and false positives . 32

3.7.2 Precision-Recall . 32

3.7.3 Accuracy . 34

3.7.4 Intersect over Union . 35

3.8 Data augmentation . 36

3.9 Pre-Processing . 36

3.9.1 Histogram Equalisation . 36

3.9.2 Homomorphic Filtering . 36

3.9.3 Edge Detection . 38

3.9.4 Video frame interpolation . 38

4 Data material 39

4.1 Safer Births . 39

4.2 Project data . 40

4.2.1 Data . 42

4.2.2 Datasets . 45

4.3 Nepal . 46

4.4 Classes of Interest . 47

5 Methods 50

5.1 Earlier work . 50

5.2 Method overview . 51

5.3 Pre-processing . 51

5.3.1 Lighting correction . 53

5.3.2 Edge detection . 54

5.3.3 Interpolation . 55

5.4 Optical flow . 57

5.5 Object Detection . 57

5.5.1 Ensembling networks . 58

5.6 Post-processing . 59

5.6.1 Object Cropping . 59

5.6.2 Newborn Cropping . 60

5.7 Activity Recognition . 61

iv

5.8 Proposed new pipeline . 63

5.9 Implementation . 63

5.9.1 Pre-processing . 64

5.9.2 FlowNet2 . 65

5.9.3 RetinaNet . 65

5.9.4 Inception I3D . 65

5.9.5 Post-processing . 65

5.9.6 New pipeline . 67

5.10 Generating training data . 68

6 Experiments 69

6.1 Training models . 69

6.2 Pre-processing image data . 71

6.2.1 Experiment 1: Lighting correction 71

6.2.2 Experiment 2: Supplementing pre-processed images 71

6.2.3 Experiment 3: Comparison of pre-processed input 72

6.2.4 Experiment 4: Comparison between original model and ensemble . . 72

6.3 Experiment 5: Adapting binary activity recognition models to multi-class . 72

6.4 Experiment 6: FlowNet2 model . 73

6.5 Experiment 7: Implementing previous work into a single pipeline 74

7 Results 75

7.1 Pre-processing image data . 75

7.1.1 Experiment 1: Lighting correction 75

7.1.2 Experiment 2: Supplementing pre-processed images 76

7.1.3 Experiment 3: Comparison of pre-processed input 77

7.1.4 Experiment 4: Comparison between original model and ensemble . . 80

7.2 Experiment 5: Adapting binary activity recognition models to multi-class . 81

7.3 Experiment 6: FlowNet2 model . 81

7.4 Experiment 7: Implementing previous work into a single pipeline 82

8 Discussion 87

8.1 Pre-processing . 87

v

8.1.1 Experiment 1: Lighting correction 87

8.1.2 Experiment 2-4: Colour pre-processing 87

8.2 Experiment 5: Adapting binary activity recognition models to multi-class . 88

8.3 Experiment 6: FlowNet2 model . 88

8.4 Experiment 7: Implementing previous work into a single pipeline 89

9 Conclusion 91

10 Bibliography 92

vi

Acronyms

AAP American Academy of Pediatrics. 6

ANN Artificial Neural Network. 9, 10

AP Average Precision. 32–34, 72, 75, 76

BMR Bag Mask Resuscitator. 42, 46, 48

CNN Convolutional Neural Network. i, 16, 17, 19, 23, 25, 57, 61, 69

FN False Negatives. 33, 89

FP False Positives. i, 32, 34, 72, 76, 77, 80, 87, 89

FPN Feature Pyramid Network. 21, 22

FPS Frames Per Second. 40, 46, 59

GGmGa Greyscale, Gradient magnitude, Gradient Angle. 46, 58, 64, 71, 72, 76, 77, 80,

87, 88

GGmI Greyscale, Gradient magnitude, Intensity. 46, 64, 71, 72, 76

HBB Helping Babies Breathe. 7

IoU Intersect over Union. 35, 58

mAP mean Average Precision. 34, 72, 76, 80

MSE Mean Square Error. 14, 15

NB Newborn area. 43, 61

OBJ Object area. 43, 48, 49, 61

OHEM Online Hard Example Mining. 21

1

PR Precision-Recall. 33

ReLu Rectified Linear Unit. 12, 22, 23

RGB Red Green Blue. 23, 63, 72, 77

RoI Region of Interest. 63

TN True Negatives. 33, 34

TNR True Negative Rate. 34

TP True Positives. 32, 33, 35, 72, 76, 77

TPR True Postive Rate. 33, 34

WHO World Health Organization. 6

2

1 Introduction

1.1 Motivation

Every year hundreds of thousands of newborn dies during the first 28 days of life[40].

Almost 99 % of these deaths occurs in low- and middle-income countries[26]. 25 % of

those children dies due to birth asphyxia[42]. Strengthening the quality of the training

and ensuring that quality health services are available are recommended[33]. While there

is common guidelines for treating birth asphyxia available the interactions provided are

not fully explored yet[31]. By studying the therapeutic activities like ventilation, suction

and stimulating being performed and the duration of these the guidelines given could be

evaluated or find out if they are followed. Videos of these therapeutic activities could be

gathered and timelines over the activities could be extracted from these videos. Gathering

of data is therefore crucial, yet offers two problems. One is the amount of manual labour

required to label and verify that the data with timelines are correct, while the other is the

privacy aspect. To try to handle both these problems machine learning and neural networks

are being developed to generate data and statistics without the need for manual labour to

the same degree.

1.2 Earlier major projects

A project that since 2013 has focused on establishing new knowledge and develop innovative

product to help save newborns is Safer Births[4]. This project has collected a lot of data

from Haydom Lutheran Hospital including video recordings of resuscitation, which is the

data used in this master project and vitals.

1.3 Previous Work

Previous work on automatic analysis of videos of resuscitation in the Safer Births project

has been done with using object detection to find relevant objects in the videos and activity

recognition to find segments of therapeutic activities being performed in the videos, through

the Safer Births project. Among these are the work performed by Øyvind Meinich-Bache[29]

and Simon Lennart Austnes[3] that culminated with the article ”Activity Recognition from

Newborn Resuscitation Videos”[28]. Meinich-Bache et al. used RetinaNet an object detec-

tion network to predict the location of an object while using Inception I3D to determine if

3

an activity was being performed. With the activity recognition network both RGB input

and optical flow input was used, but the optical flow method was very time consuming. The

work done was promising, but still had some issues with detection and recognition. All of

this earlier work was separate and did not have a continous pipeline.

1.4 Aims/Objectives

The objective of this thesis is to improve and adapt upon earlier work both in object

detection and activity recognition, improve the existing optical flow calculation to better

take use of the processing capacity available, and lastly put together all previous work into

a single pipeline. With object detection there still exists some difficulties with recognising

certain object as well as reducing false predictions. In activity recognition there is currently

multiple binary models in use. Reducing these models to increase efficiency is one thing

to look at. Previously a slow CPU based optical flow implementation were used. Cutting

down the processing time for this would be wanted when new data from other hospital is

added.

1.5 Thesis outline

Chapter 2: Medical background

This short chapter describes the medical background theory needed to better understand

what is happening during resuscitation.

Chapter 3: Technical background

This chapter describes all technical theory behind the methods implemented.

Chapter 4: Data material

A chapter introducing where different data is coming from, what they contain and names

for datasets used in this thesis.

Chapter 5: Methods

This chapter explains how the methods and shows how they are implemented to be used in

experiments.

4

Chapter 6: Experiments

An introduction to each experiment conducted, what settings were used and which dataset

were used.

Chapter 7: Results

The results from the experiments introduced in the previous chapter.

Chapter 8: Discussion

This chapter discusses the results from the previous chapter and why the result might have

turned out the way they did.

Chapter 9: Conclusion

The conclusion of the thesis is presented here and further work.

5

2 Medical Background

2.1 Birth Asphyxia

Birth asphyxia is a condition where the newborn lack oxygen during birth and/or struggles

to establish or sustain spontaneous respiration after birth which leads to lack of oxygen in

various organs. This condition can lead to neuronal cell death and brain damage which can

lead to death. Birth asphyxia is can be caused by a problem with blood to gas exchange

which results in lack of oxygen in the blood and accumulates carbon dioxide. There is many

causes of this condition, both maternal and fetal and some risk factors are: maternal age,

multiple births, lack of regular check-ups during pregnancy, wrong orientation of the fetus

and low birth weight[2]. According to World Health Organization (WHO) birth asphyxia

causes 25 % of all neonatal1 deaths[42]. In 2016 the number of neonatal deaths was 2.6

million were approximately 650 000 of these was caused by birth asphyxia[40].

2.2 Treatment

When birth asphyxia occurs the newborn will be in need of resuscitation. There is multiple

steps of treatment when resuscitating a newborn. Often not all of them needed to be

followed through. The American Academy of Pediatrics (AAP) treatment guide suggest

these actions[24]:

Prevent Hyperthermia

First step is to dry the baby an wrap the newborn to prevent hyperthermia. Depending

on the resources available wrap a warm blanket, using exothermic chemical mattresses or

heating pads.

Suction

After the initial drying it is important to clear the airway by initially wiping the nose and

mouth, but if this is still restricting the airways a suction device is needed to forcefully clear

the airways. This need to be gentle not to harm the baby.

1neonatal period is the first 28 days of life[40]

6

Stimulation

During the drying and further resuscitating stimulating the baby by rubbing the back and/or

flicking the feet is used to encourage the initial respiratory effort of the baby.

Ventilation

If the above treatment is not successful and the newborn is not breathing after one minute

positive-pressure ventilation is needed with the help of a ventilator bag of some sort, self-

inflating, flow-inflating or other similar device. The effectiveness of this can be seen by the

colour, heart rate and muscle tone of the newborn.

Chest compression

As a last action chest compressions are used together with ventilation if the heart rate of

the newborn is below 60 beats per minute 60 seconds after starting ventilation.

2.3 Helping Babies Breathe

Helping Babies Breathe (HBB) is a an evidence-based educational program focusing on the

baby should breath well or be ventilated within the first minute of the birth, this time

period is called ”the golden minute”. The HBB program was implemented in 8 hospitals in

Tanzania and resulted in a reduction of early neonatal deaths with 47 % and fresh stillbirths

by 24 % during the period from September 2009 to March 2012[32].

In cases where the baby is not breathing sufficiently at birth the action plan is shown

in figure 1[14].

7

Figure 1: Flowchart over HBB guidelines for the treatment as described in AAP treatment

plan[24]

8

3 Technical background

3.1 Artificial Neural Networks

Artificial Neural Network (ANN) is a biology inspired network trying to simulate the neural

structure of the brain. It is a network which similarly to the brain attempts to learn from

experience. ANN consists of units called neurons. Looking at the biological neuron in figure

2 it receives synaptic input via the dendrites from the axon where the sum of total inputs

determines if the neuron will pursue an action. The dendrites is similar to a tree branching

out and is connected to other neuron via their axon terminals through small protrusions

called spines. These connections are called synapses. After the dendrites have completed

processing the input the axon generates an action and transmits it to the terminal and to

new neurons through the synapses[41].

Figure 2: This image shows a biological neuron. The dendrites are treelike structures

receiving synaptic inputs and sending them to be processed to the axon connected by the

cell body (soma). After the signal has been processed it is sent to the axon terminal and

connected to other neurons.

9

Figure 3: This image shows an artificial neuron called a perceptron. It has multiple inputs

with weights per input. This is fed to an activation function φ(·) which calculates the output

yi

ANN has multiple inputs like the dendrites which is connected to a weight or synapse.

There is also the option for a bias value which allows for shifting activation functions up or

down. In its simplest form the artificial neuron generates the sum of the input and weights

and sends this to the activation function to generate a single output, this is depicted in

figure 3. The simplest equation for this kind of artificial neuron can be written as:

yi = φ(x0w0 + x1w1 + ...+ xnwn) = φ(
N∑
i=0

xiwi) (1)

This above function would then determine the output based on the function φ(·)[10].

3.1.1 Activation functions

Activation functions is the function that similarly to the dendrites and axons in biological

neuron decides if an artificial neuron should be activated or not based on calculations with

10

the weighted sum and bias. Activation functions are non-linear since linearity would allow

for following layers to be reduced to a single layer. There is a heap of different activation

functions depending on the input, some different functions are shown in figure 4. Some used

in Image Processing are:

Figure 4: Comparison of three of the different activation Functions

Sigmoid

Sigmoid function ranges from 0 to 1 and is shaped into a characteristic ’S’-curve as seen in

figure 4. The use of this function is when the wanted output is a probability. Drawbacks

to this function is that the gradient can go to zero due to large negative inputs causing the

gradient to vanish and the network to get stuck during training[23].

Φ(x) =
1

1 + e−x
(2)

11

TanH

The TanH is similar to the Sigmoid function, but ranges between [-1,1]. This function is

shown in 4. Unlike the Sigmoid function large negative inputs is able to be mapped to a

negative making it less prone to get stuck during training, but still maps values to a small

interval[23].

Φ(x) = tanhx =
sinhx

coshx
(3)

Rectified Linear Unit (ReLu)

ReLu is a function which ranges from zero to infinity and is linear from zero to infinity, but

due to the negative inputs being mapped to zero it is non-linear. Like the Sigmoid function

ReLu has some issues with training and can kill neurons if the weights are updates in such

a way they will never be reactivated. To fix this problem Leaky ReLu was introduced which

has a smaller slope on the left-hand side of the y-axis and ranges from negative infinity to

infinity[43]. Both figures can be seen in 4

Φ(x) =


x if x > 0,

ax otherwise,

(4)

Softmax

Softmax is a regression form that normalises all output with a probability distribution

which sums to one. This is often used as an output layer due to its distribution. All the

output values ranges between [0,1] and can be used both by multi classification and binary

classification. This function has a known use-case together with Cross entropy2[13].

Φ(x) =
exi∑N
j=1 e

xi
(5)

2Cross entropy loss is described in section 3.1.4

12

3.1.2 Fully Connected Feedforward Network

A fully connected feedforward network as its name suggests is a network that the information

moves forward, does not cycle or loop and every neuron in one layer is connected to another

neuron in another layer[30]. In its simplest form (single-layer perceptron shown in figure

3) the outputs are connected directly to the inputs and uses output data from previous

layer as input data in the next neuron. Multi-layer perceptron however is interconnected

like figure 5 and usually contain at least one hidden layer. Based on the bias and weights

different inputs triggers different nodes in the network.

Figure 5: An example of a fully connected feedforward multi-layer perceptron network with

a input layer, output layer and one hidden layer. Each of the nodes in the different layers

contain perceptrons similar to figure 3.

3.1.3 Supervised Learning

A popular learning method is supervised learning. This is when the input data to the net-

work is fed with knowledge of both the input data and its labels. The goal is to approximate

the mapping between input data and labels to further predict on similar data. In an easier

term: we know the answer and want the network to predict as close to correct answer as

deemed satisfying[18].

13

3.1.4 Loss functions

Loss functions compares the prediction outputs and true labels that can be used to minimise

with the help of backpropagation. The objective is to calculate the overall error of the model

during a batch for the optimisation process to acquire a measurement for improvement.

Some of the most common loss function are listed in the following.

L2

L2 has been a commonly used loss functions in image processing[44]. L2 is essentially Mean

Square Error (MSE) or quadratic loss. It is the average of the squared difference of the

predicted outputs and true labels. The true label is yi, the prediction is ŷi and N is the

number of predictions.

L2(ŷ, y) =
1

N

N∑
n=1

(yn − ŷn)2 (6)

Smooth L1

Smooth L1 loss function is a loss function that is less sensitive to outliers3 than the popular

L2 loss is.

SmoothL1(x) =


0.5x2 if |x| < 1

|x| − 0.5 otherwise,

Where x = (yi − ŷi) (7)

If the absolute value of x is lower than 1 it shares similarities with L2 loss function where it

is a the squared difference between the calculated output and the actual output multiplied

with a weight, but differs if the above statement is not true. However smooth L1 might

need more tuning to the learning rates than other loss functions.[17].

Cross-entropy loss

Cross entropy or logistic loss is a method to calculate loss based on the sum of true labels

yi multiplied with the logarithm the prediction output ŷi[27].

CE(ŷ, y) = −
N∑
n=1

yilog(ŷi) (8)

3Outliers here mean data that strays significantly from the data.

14

Focal loss

A problem with certain one-stage object detection networks4 are the scenarios where the

imbalance between foreground and background classes causes issues. Focal loss was designed

to address these issues. The focal loss is defined as:

FL(pt) = −(1− pt)γlog(pt) (9)

This loss function was designed by Facebook AI Research in 2017 and is derived from Cross

Entropy on binary classification[27]. This can be shown in equations 10 and 11.

CE(ŷ, y) =


−log(ŷ) if y = 1

−log(1− ŷ) otherwise

(10)

pt =


ŷ if y = 1

(1− ŷ) otherwise

(11)

3.1.5 Backpropagation

Backpropagation is adjusting the networks weight and biases to minimise the error between

the prediction outputs ŷ and the true labels y. It is implemented in neural networks to make

supervised learning work. The output error is calculated with a loss function J(·). One of

the simplest loss functions is Mean Square Error (MSE) (or L2 loss) shown in equation 12.

MSE =
1

N

N∑
n=1

(yn − ŷn)2 (12)

To adjust the weights and biases with this function the partial derivative (gradient)

is calculated with respect to the end layer and propagated backwards, which explains the

name. Optimisation algorithms like Adam or gradient descent uses backpropagation and

the resulting gradient to update the weights of the network if the activation functions are

differentiable[25]. An important hyperparameter used in backpropagation is η also known

as the learning rate. This parameter is multiplied with the gradient of the loss function to

scale the effect of the function. A larger learning rate speeds up the training process, but

might cause issues with convergence, while a small learning rate slows down the training

4One-stage object detection network is networks which first distinguishes the object from the background

then localise the position of the object[7].

15

process, but ensure converges to a potentially local minimum value[18]. The formula for

backpropagation is shown in equation 13 where w is the weights that are updated.

Wk+1 = wk − η · ∇J(wk) (13)

Performing backpropagation depends on the settings. A update can be performed for

each training sample, per batch or when the entire data set has been fed through the network

(epoch). RetinaNet for example uses upwards of 95-100 epochs to complete training, while

simpler networks can require significantly less. To monitor the performance gain/loss of

each epoch several kinds of loss are calculated based on classification on both validation

and training sets. This can be calculated per batch to determine if the network is overfitted

or require more training.

3.2 Convolutional Neural Network

Figure 6: Typical CNN structure with a fully connected layer. the pooling layer is called

subsampling here.

Figure created by Aphex34 under Creative Commons Attribution-Share Alike 4.0 license

International6

Convolutional Neural Network (CNN) has been in use and development since the latter

half of the 20th century. This network was a method to imitating how a biological neural

network perceives visual data, but it is not the only usage. In 1980 Kunihiko Fukushima

developed a system called “neocognitron” which introduced two of the basic CNN layers:

convolutional and downsampling layers[16]. Though the neocognitron shares some proper-

ties with CNN a major difference is the training process where CNN uses backpropagation

6Link to the licence: https://creativecommons.org/licenses/by-sa/4.0/legalcode

16

https://creativecommons.org/licenses/by-sa/4.0/legalcode

for training while the former has had different kinds of supervised and unsupervised learn-

ing algorithms during its development and usage[16]. Common for Convolutional Neural

Network is how they are constructed. These kinds of networks can consist of multiple layers.

In some cases CNN consist of convolutional layers, downsampling layers, pooling layers and

fully connected layers. Common for these kinds of CNN is the usage of backpropagation

for training.

Convolutional layer

As the name indicates the convolutional layer uses a form of convolution or more precise

using a filter kernel to perform sliding dot product to approximate convolution. The input

to this layer is a tensor with the required dimensions of Height x Width x Number of

channels. Next, a kernel/filter with different size depending on the desired output from the

convolutional layer is applied onto the image using sliding dot product. The chosen kernel

is multiplied with a segment of the image the same size as the kernel using dot product to

create the convoluted output. This is repeated with shifting after each ”convolution” with

a set stride. An example on this would be a 5x5x3 image and a 3x3x3 kernel. Simplifying

to focusing on one channel (5x5x1 and 3x3x1) for reference see figure 7. The dot product

Figure 7: Example of sliding dot product with convolutional kernel filter. The highlighted

part multiplied using dot product and the result is then showed in the highlighted part in

the result matrix.

17

between the kernel and a highlighted 3x3 image segment is calculated, giving the result 4.

Continuing with this operation with a stride one gives the result matrix and the output has

been reduced to a 3x3 convoluted feature map. The benefit of using the convolutional layer

is to extract features such as gradient angles, colours and gradients. There can be more

than one convolutional layer where each feature is compacted into a smaller more feature

rich understanding of the image. The convolutional layer also supports padding options as

well to augment the output size of the convoluted feature matrix[18]. The figure 7 does not

have padding and is using stride at one.

Pooling layer

The pooling layer’s output can look similar to the convolutional layers, but it is used to re-

duce the spatial size of the convoluted feature matrix to reduce the required computational

power needed to process the data. An added benefit of pooling is to extract the dominant

feature of the matrix to furthermore improve the training of the network[36]. Two common

pooling methods are: Max Pooling and Average Pooling. Max pooling extracts the domi-

nant feature value from ie. a 3x3x1 matrix in a 5x5x1 convoluted feature matrix see figure

8 for reference. Average pooling on the other hand calculates the average from the 3x3x1

Figure 8: Max pooling on a feature matrix and its corresponding result. The colour corre-

sponds to the segments calculated.

18

matrix (using the same example as last paragraph) in the 5x5x1 convoluted feature matrix,

see figure 9. One benefit that max pooling has over average pooling is that it suppresses

Figure 9: Average pooling on a feature matrix and corresponding result. It takes the input

of a segment sums it and divides by the number of segments.

noise better than average pooling by discarding noisy values while average pooling averages

them[36].

Fully connected layer

A fully connected layer is a method to flatten the output of a CNN and feed it to a regular

feed-forward neural network where training has applied backpropagation for every iteration.

This is useful to keep the previous features obtained with the earlier convolutional layers

and pooling layers. After N number of epochs the model is now able to be classified with

an activation function, see 3.1.1 for different kinds of activation functions.

3.3 Transfer Learning

With low amount of labelled data, or for low amount of data in general training a new model

from scratch would usually perform worse than using pre-trained models. To improve the

performance transfer learning is a an option where larger data centers already have pre-

trained models that can be trained on new data[37]. Supervised training depends on enough

19

data with ground-truth labels. There is often not enough data with ground-truth labels, or

it is to time consuming to label every image in a large data set.

With transfer learning the old network structure is kept with its corresponding weights,

learning rates, etc., but the network is trained on new data to better recognise the newly

introduced classes. The old neural network might be trained to recognise pictures of animals,

cooking utensils or other everyday objects while in this case it needs to recognise medical

equipment (and activities). Running predictions on this new network would result in very

poor performance, but if the whole network is trained further with a new data set containing

labelled training data and verification data the network would be able to recognise the new

classes better than a new network could.

There are multiple options for transfer learning. One is to further train the whole

network, i.e. all X layers of the network. Other methods is to further train just a couple of

the last layers or only the output layer itself[39].

Figure 10: A visualisation on how transfer learning could look like. It is not necessary to

introduce a new classifier with transfer learning, but a possibility.

20

3.4 Object and Activity Detection networks

Object detection networks predicts the certainty that there exist an object of interest in a

region of an image. The output is usually a bounding box with a probability of the object

being in the box. There is two different detectors for these kinds of networks: One-stage

or two-stage detectors. One-stage detectors needs to enumerate several thousand object

location candidates which makes them quite inefficient. Two-stage detector on the other

hand uses sampling heuristics like fixed foreground-to-background or Online Hard Example

Mining (OHEM) to narrow down the candidates for object location[27].

3.4.1 RetinanetV2

RetinaNet is like other recent convolutional neural networks a one-stage detector network.

Unlike other one-stage network RetinaNet matched state-of-the-art two-stage methods such

as Mask R-CNN and COCO AP. As mentioned at the start of section 3.4 two-stage detectors

uses heuristic sampling methods, these exists for one-stage detectors as well, but RetinaNet

uses a new loss function to deal with issues like unbalanced classes in the data set. It is a

dynamically scaled cross entropy loss function where the scaling factor decays towards zero

as the confidence in correct classification rises.

RetinaNet is as mentioned earlier a relative simple one-stage detector with one backbone

network and subnetworks that are task-specific. One of the subnetworks performs convo-

lutional bounding box regression while the other performs convolution object classification

on the backbone network.

The backbone that has been used is the Feature Pyramid Network (FPN) which is a

network that augments a normal convolutional network with a path from top to bottom

that constructs a multi-scale feature pyramid. Each level of this pyramid can be used for

object detection. This improves the multi-scale prediction for the network. The pyramid is

constructed with different levels, P3 to P7 with 256 channel and 2l resolution where l is the

pyramid level.

Each of the pyramid levels contains translation-invariant anchor boxes with areas from

322 to 5122 with different aspect ration: 1:1, 1:2, 1:1.

One of the two subnetworks is a classification subnetwork which predicts the probability

of an object for each anchor and object class. It is a simple subnetwork which takes in

21

Figure 11: Figure showing the image being separated into a feature pyramid where each

layer is processed with both subnets, classification and regression box

a feature map with the 256 channels from a pyramid level, then it applies four 3 x 3

convolutional layers with 256 filters and followed up by a ReLu activation layer and another

3 x 3 convolutional layer with filters denoted by the number of anchors and object classes.

The other subnetwork is the box regression subnetwork. It is a small fully connected

network which is connected to each pyramid’s mid level. The purpose of this subnetwork

is to regress the offset from each of the anchor boxes to a ground-truth object that is close

to its proximity. It shares a lot of similarities with the classification subnetwork except

for its termination which is a variable number of output defined by the amount of spatial

allocation[27].

RetinaNet utilising ResNet-50 architecture with weights trained on ImageNet1k and

using a FPN.

3.4.2 Inception I3D

Inception I3D is a so called ”inflated” convolutional neural network pre-trained on the

ImageNet data set. It ranked as number one in the VU 2017 Charades Challenges[1].

The term inflated bears the meaning that the network originally was a 2D neural network

used for image classification network turned into a 3D network and the square filters and

pooling kernels were made cubic.

While converting the filters and kernels from square to cubic inflates a pre-trained

network bootstrapping the parameters are preferred. Bootstrapping the parameters from

the pre-trained 2D network retains important information that can improve performance.

The method used for I3D to keep the pre-trained weights was to create a video sequence of

the images from ImageNet dataset. These video sequences were just repeated images, but

22

Figure 12: A model for two-stream 3D convolution networks. Multiple images are sent into

the 3D convolution network and predictions are concatenated into one output.

by repeating the images N times the weights and parameters from the 2D networks filters

could be repeated N times along the new time dimension and normalising them by N. By

doing this the convolutional layers should have the same response as in the 2D network[8].

The Inception-v1 convolutional neural network is using two 3D streams for input, RGB

and optical flow, this is shown in figure 12. Essentially it is two models, one RGB model and

one optical flow model. Each convolutional layer is followed up by a batch normalisation

and the activation function used for all parts except the output layer is the Rectified Linear

Unit (ReLu) activation function. For the final output the two models are summed and

averaged.

The training input of this network has a data augmentation process where the smallest

side of the video input were resized to 256 pixels, then crop a randomly chosen 224 x 224

area of the image. For the shorter video clips they were looped, and during this training

videos were randomly flipped left to right.

The input used for inference however uses 224 x 224 pixel crops with a center focus.

Finally the average of the two predictions from both two models was calculated[8].

3.5 Optical flow

3.5.1 FlowNet2

The original FlowNet was a radical shift away from the traditional methods used to estimate

optical flow. This estimation uses a CNN architecture to learn how to estimate optical flow

23

from data on GPU. The method was a unique idea that had not been used in any previous

established work. The method was still sub-par compared to existing methods, but was a

promising first implementation. What it did was to resolve smaller displacements and noisy

artifacts and increased the performance of action recognition and motion segmentation.

This leading to FlowNet 2.0 becoming close to state-of-the-art[21].

FlowNet 2.0 is an evolution of the original FlowNet with modifications. The influence of

chosen data set schedules was evaluated, and multiple data sets were added which increased

the performance. Alongside the new datasets warping operations was also introduced.

This network is also multiple FlowNet networks stacked where the depth, stack and size of

components vary resulting in a controllable network where the trade-off between accuracy

and computational resources can be chosen. All this computation can be done with different

levels of frame rates ranging from 8-140 fps, and can estimate large and small displacements

with high level of details.

Figure 13: Flownet2 architecture. Multiple networks are estimating the large displacement

based on flow and warped images from the previous model and image 1. The smaller

displacement is however estimated with a new model trained for smaller displacements.

These estimations are fused and flow output are generated

FlowNet 2.0 improved the result with up to 30 % compared to Flownet 1.0 by using

the FlowNetC architecture, which includes explicit correlation of feature maps[21]. The

original FlowNet was trained on the FlyingChairs dataset which is 22000 images of chairs

on random backgrounds and transformed images. This time with FlowNet 2 they got

better results with first training on the aforementioned data set FlyingChairs then training

on FlyingThings3D a 3D version of the same set. This new training and a new schedule

period with smaller learning rate improved the results by a significant amount. Another

24

method used to improve the end result was stacking of the networks where the first network

gets two images as input while the subsequent networks gets the images and the previous

flow estimation. Images along with the previous estimation is used to warp the second input

image to assess the previous error, and this is then used as input. The last improvement is

to handle FlowNets limitations towards estimating smaller displacements. This is solved by

creating a new data set similar to UCF1017 with displacements smaller than 1 pixel. The

new data set was based on Chairs, but created to match the characteristics of UCF101.

Overall the FlowNet 2.0 performs comparable to DeepFlow, FlowFields and PCA- Lay-

ers, but at a significant lower runtime per frame, in the 100 range of ms compared to 3000 -

30000 range of ms of CPU based methods like DeepFlow, FlowFields and PCA- Layers[21].

3.6 Network backbones

A lot of CNN has a base for extracting features that is based on other work. This is called

network backbone. The neural network used in thesis’ backbone will be presented in the

following section.

3.6.1 RetinaNet backbone - ResNet-50

ResNet is a backbone created by researchers at Microsoft Research and introduced some-

thing called residual learning. The network backbone is has many variants based on the

number of weight layers. These layers ranges from 18 weight layers up to 152 weight layers.

Increasing the depth of the network usually makes the network harder to train, this is why

Microsoft Research implemented a residual learning framework to ease the training. When

training deeper neural networks and they start to converge a degradation problem was ex-

posed by this team. If the depth was increased the accuracy got saturated and it started

to degrade. Residual networks introduces so-called shortcut connections through a single

or multiple layers connecting the input to the output of the residual block. With this in

place the residual function could be reformulated from approximating H(x) the underlying

mapping to the residual function F(x) = H(x)− x to H(x) = F(x) + x where F(x) is the

residual function and x is the input[19].

The overall architecture of ResNet-50 is shown in table 1.

7UCF101 is a data set with very small displacement between images

25

Layer name Output size

conv1 7x7, 64, stride=2 112x112

3x3 max pool, stride=2

conv2 x


1x1 , 64

3x3, 64

1x1, 256

 x3 56x56

conv3 x


1x1 , 128

3x3, 128

1x1, 512

 x4 28x28

conv4 x


1x1 , 256

3x3, 256

1x1, 1024

 x6 14x14

conv5 x


1x1 , 512

3x3, 512

1x1, 2048

 x3 7x7

Average pool, fc 1000, softmax 1x1

Table 1: A look at the ResNet-50 arcitechture. It is a residual network with the brackets

containing the residual building blocks. As the output size downsamples the filter size

doubles. The end of the network is using softmax with a 1000-way fully connected network

layer.

26

3.6.2 I3D backbone - Inception-v1

I3D leverages the ImageNet architecture designs and parameters, but can be seen as a

evolution moving from the 2D based ImageNet over to the 3D Inception I3D architecture

with its two-stream approach. The specified back bone in Inception I3D is the Inception-v1

classification architecture with batch normalization[22].

As explained in the previous section about ResNet-50 and RetinaNet some complications

occur with training deeper neural network. Inception-v1 handled this with a different

method instead of lowering the learning rate. The input layers were normalised on each mini-

batch. Utilising normalisation on each mini-batch the learning parameter could be raised

again and the careful initialisation parameters were relaxed. The process of normalisation

on each mini is to normalise the mean to zero and the variance to one on each scalar feature

independently[22].

x̂ =
x− E[x]√
(V ar[x])

(14)

Overall this improved the ImageNet classification performance to exceed the human accu-

racy[22].

In table 2 the Inception I3D architecture can be seen. It is similar to the Inception-v1

architecture, but has an extra dimension and a convolution layer as output instead of an

average layer.

27

Layer number

1 7x7x7 conv, stride=2

2 1x3x3 Max pool, stride=1,2,2

3 1x1x1 conv, stride=1

4 3x3x3 conv stride=1

5 1x3x3 Max pool stride =1,2,2

6

7
Inception Module

8 3x3x3 Max pool stride=2

9

·

·

13

Inception Module

14 2x2x2 Max pool stride=2

15

16
Inception Module

17 2x7x7 Avg pool

18 1x1x1 conv

Table 2: A look at the architecture of the inflated Inception V1 network. It is a fully

convolutional network with no fully connected layers. The inception module can be seen in

figure 14.

28

Figure 14: Overview of the inception modules that is used in combination with the convo-

lution and pooling layer. It consist of concatenated smaller convolution networks.

29

3.6.3 FlowNet2 backbone - FlowNet

FlowNet2’s backbone is based on the new FlowNet’s architecture. There were created two

different architectures, FlowNetSimple and FlowNetCorr. These two network architectures

share layers from conv4 layer till output, but differs from start[12].See table 3 for reference.

Layer name FlowNetS FlowNetC Output size

conv1 7x7, 6
[
7x7, 3

]
x 2 512x384

conv2 5x5, 64
[
5x5, 64

]
x 2 256x192

conv3 5x5, 128
[
5x5, 64

]
x 2 128x96

convredir NaN
[
1x1, 256

]
x 2 corr 128x96

conv31 3x3, 256 3x3, 441/328 64x48

conv4 3x3, 256 3x3, 256 64x48

conv41 3x3, 512 3x3, 512 32x24

conv5 3x3, 512 3x3, 512 32x24

conv51 3x3, 512 3x3, 512 16x12

conv6 3x3, 512 3x3, 512 16x12

1024 1024 8x6

Refinement 128x96

Table 3: The two FlowNet archictetures. The last layer is a refinementprocess that uses

convolution layer with a 5x5 size filter kernel and decreasing depth level down to 64 to

increase the resolution.

These two architectures are used in FlowNet2 albeit with a modified training scheduler

and since there were some issues with the smaller displacement a new similar architecture

was used with a new ensembling architecture shown in table4

8The first filter with 441 in depth has is used with the one of the previous two blocks, while the other

with 32 depth is the other block

30

Layer name Output size

conv0 3x3, 6/64, stride=1 512x384

conv1 3x3, 64/64, stride 256x192

conv1 1 3x3, 64/128, stride=1 256x192

conv2 3x3, 64/128, stride=2 128x96

conv2 1 3x3, 128/128, stride=1 128x96

pr2+loss2 3x3, 128/2, stride=1 128x96

upconv1 4x4, 128/32, stride=2 256x192

rconv1 3x3, 162/32, stride=1 256x192

pr1 +loss1 3x3, 32/2, stride=1 256x192

upconv0 4x4, 32/16, stride=2 512x384

4conv0 3x3, 82/16, stride=1 512x384

pr0+loss0 3x3, 16/2, stride=1 512x384

Table 4: The ensembling of the two network through the FlowNet2 Fusion network. Down-

sampling the image down to 128x96 by using the last output as its input on the next layer.

However the middle layer prx+lossx is only used in the rconvx layers for reconstruction.

31

3.7 Performance metrics

Depending on the dataset and distribution there exists different metrics to quantify the per-

formance of a neural network. A single metric might not properly quantify the performance

of the network so in this study multiple different metrics will be used:

3.7.1 True and false positives

When quantifying the performance of a machine learning algorithms and/or neural networks

the prediction can be categorised into two different outputs: True Positives (TP) and False

Positives (FP). TP is when the prediction from the model lines up with the true class of the

object. FP on the other hand is when the model predicts a positive while the true condition

is negative. In object and activity detection TP has to line up with the location of the

ground-truth box (and performed activity for activity detection network) to be correctly

classified as a TP. If there is no overlap, or the overlap is not large enough the prediction

will be classified as a FP.

With object detection and activity recognition networks a threshold is often used. This is

because of a significant amount of False Positives with low probability that can skew the

overall quantified performance of the network. This threshold is therefore used to decrease

the amount of False Positives at the cost of negatively affecting the Recall metric[11].

3.7.2 Precision-Recall

Precision and Recall is two performance metrics that can be used individually or can be

used together to calculate the Average Precision (AP).

Precision

Precision is the True Positives (TP) over the sum of all positive predictions. It measures

the proportion that is classified correctly when the network makes a prediction[11]. This is

used to calculate the networks ability to predict the activity/object, however does not take

into account for lost predictions, ie. predictions not detected by the network:

Precision =
TP

TP + FP
(15)

32

Recall

Recall is the TP over the sum of TP and FN. This is often called True Postive Rate (TPR)

and measures the proportion of TP that were identified[11]:

Recall =
TP

TP + FN
(16)

Neither Precision or Recall takes True Negatives into consideration and isolated can give

skewed results.

Average Precision

To further quantify the performance a combination of the two aforementioned metrics are

used together to calculate the Average Precision. This metric is given in the Pascal VOC

challenge 2012 development kit[15]. Average Precision is calculated with the help of the

Precision-Recall (PR)-curve which is the relationship between the Precision and Recall

metrics. The goal is to be in the upper right corner of the graph, see figure 3.7.2 for an

example on how this curve can look like[11].

Figure 15: Example of the Precision-Recall curve

33

Mean Average Precision

mean Average Precision (mAP) is used when there is a multi-class detection and is simply

the mean of the AP:

mAP =
1

N

N∑
n=1

AP (n) (17)

3.7.3 Accuracy

Regarding activity recognition there is need of another way to quantitatively measure the

performance. Based on previous work[28] accuracy was chosen as one of the metrics for

performance evaluation. However imbalance in the dataset might occur therefore another

metric is used as well. Balanced accuracy which is based on the average between True

Postive Rate and True Negative Rate (TNR). The TNR formula is the sum of the TN over

the sum of TN and FP[6].

TNR =
TN

TN + FP
(18)

Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

Balanced Accuracy

BalancedAccuracy =
TPR+ TNR

2
(20)

34

3.7.4 Intersect over Union

The Intersect over Union (IoU) or commonly called Jaccard index is a statistical metric

to determine the similarity of two sample sets. It is used to determine the Ground-truth

bounding box against the Predicted bounding box in object detection[38]. In the VOC2012

challenge a valid TP is determined as a 50 % overlap between ground-truth bounding box

and predicted bounding box[15]. Mathematically the formula for IoU is the intersect of two

rectangles divided by the union.

IoU =
|A ∩B|
|A ∪B|

(21)

Figure 16: Visualisation of Intersect over Union

35

3.8 Data augmentation

With Artificial neural network it exists multiple methods of augmenting the data in ways for

the network to think the input is different enough from a previous to learn new features or

easier to differentiate objects. These methods could be rather simple consisting of blurring,

rotating and flipping the image, or most often a combination.

3.9 Pre-Processing

Pre-processing is often needed to enhance the input images/video. Some options are to

even the brightness, extracting images features and for video inserting constructed missing

images.

An issue with a lot of data is the uneven spread of illumination where certain features

of the image might be indistinguishable because of the poor illumination range. A couple

of methods to counteract this is histogram equalisation and homomorphic filtering.

3.9.1 Histogram Equalisation

The process of histogram equalisation is to increase the contrast by spreading the grey

values over a larger area. Ideally the new histogram should be flat, but this is often not

possible. This process increases the contrast and spreading the histogram over a larger

scope as shown in figure 17.

The calculations for histogram equalisation can be seen in equation 22 where gnew is

the new grey value, pold(g) is old image’s histogram value, gmin is the minimum grey value,

gold is the old grey value and G is the grey value range often 256[34].

gnew = [G

gold∑
g=gmin

pold(g)− 1] (22)

3.9.2 Homomorphic Filtering

Another method to pre-process illumination is homomorphic filtering. This process en-

hances the higher frequencies while suppressing lower frequencies in an image. A stark

difference between homomorphic filtering and histogram equalisation is that homomorphic

filtering sharpens details and edges while histogram equalisation has a tendency to soften

them. Homomorphic filtering separates the multiplicative reflectance function into additive

36

Figure 17: Example of different the grey values in a histogram before and after histogram

equalisation. Ideally the lower graph would be a flat line.

by using the logarithm of the image as shown in equation 23 where m is the image, i is

illuminance and r is reflectance.

m(m,n) = i(m,n) · r(m,n) (23)

ln m(m,n) = ln i(m,n) + ln r(m,n) (24)

F(m(m,n)) = (M(u, v)) (25)

G ·M(u, v) = N (u, v) (26)

F−1(N (u, v)) = n(m,n) (27)

m̂(m,n) = en(m,n) (28)

37

With this done a filter can be applied in the frequency plane and using the exponential

function the image can be turned back to an augmented image m̂[34].

3.9.3 Edge Detection

Another method to pre-process the image is edge detection where the image is convoluted

with one or more filter kernels (same operation as described in section 3.2). Edge detection

is used to identify where the image brightness changes sharply either by using the first

order, second order derivative or other methods[34].

Sobel Edge detection

The Sobel edge detection method is a gradient based edge detection where two masks are

used:

Gx =


1 2 1

0 0 0

−1 −2 −1

 , Gy =


−1 0 1

−2 0 2

−1 0 1

 (29)

These two masks in equation 29 when applied to a image creates the gradient in x and y

orientation. For usage the magnitude of them or angle are needed:

Gm =
√
G2
x +G2

y, Ga = tan−1Gy
Gx

(30)

3.9.4 Video frame interpolation

In some videos the frame rate is unstable or at a lower than required rate. To create new

or missing frames a form for interpolation is needed. A method that need low amount of

processing power is frame averaging. Frame averaging calculates the distance between frame

1 and frame 2 from the missing frame and creates a weight based on the distance[9]. In

equation 31 F1 and F2 are the frames, Fint is the interpolated frame and d1 and d2 are the

distances from the existing frames to where the new frame is supposed to be. For example

in a 30 Frame per Second video to 60 conversion a new interpolated frame needs to have

distance 1 from F1 and F2 making both weights 0.5.

Fint =
d1

d1 + d2
F1 +

d2
d1 + d2

F2 (31)

38

4 Data material

As mentioned in the introduction data has been collected through the Safer Births project[4].The

data material collected are video recordings recorded over the resuscitation-tables while

resuscitation is being performed. Most of the data used for this work is from Haydom

Tanzania, while new unlabelled data has been provided from Nepal.

4.1 Safer Births

Safer births is development and research project that since 2013 has had a goal to estabilsh

knowledge and develop products to reduce neonatal deaths[4]. Through the years they

have gathered a large amount of videos from newborn resuscitation. The project is a

co-operations between multiple partners such as Laerdal Gloabl Health, Helse Stavanger,

Univeristy of Stavanger and Muhimbili and Haydom hospitals located in Tanzania. In these

videos different therapeutic activities described in section 2.2 are being performed. These

videos depicts Suction, Ventilation and Stimulation activities and these activities are wanted

for creating a timeline to evaluate guidelines and if the guidelines are followed.

39

4.2 Project data

The data used is videos acquired from Haydom in Tanzia in cooperation with the Safer

Birth project. Still images from the videos can be seen in the figures 18 - 20. All of these

shots differs in camera placement and lighting.

Figure 18: Example on ventilation being performed. Notice the ghosting effect on one of

the hands.

In total there are about 500 videos depicting resuscitation of newborn. While there

is enough of data to use for image detection and activity recognition a lot of the data

acquired is varying in quality and there it lacks a standard configuration (camera placement,

resolution, frame rate, etc.) as can be seen in the previously mentioned figure 18 - 20. The

resolution varies from 1024x768, 1280x1024 and 1280x720 which in general causes little

problems except for more static areas with higher resolution. The problem with this data

however is the unstable frame rate. The videos are encoded in 30 or 15 Frames Per Second

(FPS), but a substantial amount of the videos have unstable frame rate varying from 2 to

30 fps, and in some cases as mentioned in the article by Meinich-Bache et al[28] the average

frame rate is under 5 fps in a large amount of the videos. The unstable frame rate generates

motion blur which obfuscates large amount of the frame data which otherwise could have

been used for object detection or activity recognition. The positives with this data set

is that a large amount of it is labelled data. Training, validating and testing therefore is

40

Figure 19: Example of a wrapped newborn after activities has been performed. Very

awkward camera angle, but the medical equipment is easy to spot in this image.

Figure 20: Another resuscitation table. It exists heavy motion blur around the person

similar to the hand in figure 18.

less time consuming since there is no need for manually labelling data. Overall 76 videos

out of the 500 are used in object detection and in activity recognition with the usage of

post-processing method such as cropping and making short video clips.

41

4.2.1 Data

Object set

The activities Stimulation, Ventilation and Suction that is wanted for the timeline all relies

on different objects. Stimulation relies on hand motion, Ventilation relies on a Bag Mask

Resuscitator (BMR) while Suction relies on a Suction Penguin. Therefore the objects used

performing these activities are of interest. Along with these a fourth object the green heart

rate monitor which provides useful vital data.

In the object detection training set 12326 of the images are real objects selected from

the videos used as data. The last 5000 images in the training data set is synthetic images

created by capturing images of the four objects in front of a blue screen. Then using the

cropped images on randomised backgrounds. This is to force the network to recognise

the objects in more difficult environments and providing more data in general. This has

created some issues where there is some leftovers from the blue screen around the objects

and that the semi-transparent objects is tinted blue. These two issues can in some cases

create unnatural looking images which can trick the neural network.

Num of images Resolution

Training set 17326 1024x768, 1024x1280 & 1280x720

Validation set 926 1024x768, 1024x1280 & 1280x720

Test set 996 1024x768, 1024x1280 & 1280x720

Table 5: Information on the Object detection sets

In total there is 4371 objects to detect in the testset consisting of 996 images. The

distribution of the different objects are shown in figure 21.

Activity set

Each video is cut into 3 second clip containing 45 frames per input channel and the objects

are cropped down to 256x256. There is three different channels: RGB, optical flow x

direction and optical flow y direction. Each clip is a fixed resolution 256x256 pixels.

Furthermore all validation and training sets includes their respective class as true labels

as well as other classes for indicating that an activity is not being performed. The detailed

data is shown in table 7 where all classes except for Stimulation have two sub-categories:

42

Figure 21: The number of objects to detect per class in the Ground-Truth information for

the object detection testset.

Class Training Validation Test

Stimulation 16075 7013 8536

Suction 24493 9972 8536

Ventilation 19505 8355 8536

Table 6: Information on amount of training data used to train these activities. The different

activities are described in section 2.2.

Newborn area (NB) or Object area (OBJ).

Not all of these classes are used for training every model, but a mix is used to tell the

networks that another activity is being performed. The ”Not” classes are clips from before

and/or after an activity is being performed. They are chosen to be similar to the action

being performed, but contains no active activiy. For example a nurse holding the ventilator

up to the newborn, but there is no hand-motion indicating an activity being performed.

43

Class Training Validation

Stimulation NB 8518 3788

Suction
NB 6229 2703

OBJ 5941 2452

Ventilation
NB 4990 2140

OBJ 4724 2024

Attaching ECG
NB 1428 NaN

OBJ 531 832

Removing ECG
NB 392 NaN

OBJ 169 243

NotVentilation
NB 1875 1286

OBJ 1878 1277

NotSuction
NB 2984 806

OBJ 2999 802

Table 7: Detailed information on each class that is used as datasets

44

4.2.2 Datasets

Training Val Notes

Object FullAugSynth 17326 926
Training set consists of 5000

synthetic images. All images is in RGB

Object FullAugSynth GGmGa 17326 926

Same as last set, but

all images are pre-processed with

grayscale, gradient magnitude

and gradient angle

Object FullAugSynth GGmI 17326 926
These images are pre-processed with greyscale,

gradient magnitude and illumination

Activity Aug Suction 24493 9972
Clip length of 45 frames

with two classes performing activity or not

Activity Aug Stimulation 15742 7013
Clip length of 45 frames

with two classes performing activity or not

Activity Aug Ventilation 19505 8355
Clip length of 45 frames

with two classes performing activity or not

Activity Aug Multiclass 27631 13404

Clip length of 45 frames

with three classes performing the

activites Suction, Ventilation or neither

Activity Flow Aug Suction 24493 9972
Clip length of 45 frames

with two classes performing activity or not

Activity Flow Aug Ventilation 19505 8355
Clip length of 45 frames

with two classes performing activity or not

Activity Flow Aug Stimulation 15742 7013
Clip length of 45 frames

with two classes performing activity or not

Activity Flow Aug Stimulation FlowNet 15732 6674

Clip length of 45 frames,

new data generated from previous

training labels

Activity Flow Aug Ventilation FlowNet 17798 7626

Clip length of 43 frames.

It is a optical flow dataset

converted using Activity Aug Ventilation

Table 8: Content information among the different named sets. Aug bears the meaning that

the set has augmented images while Synth means there is synthetic data.

45

Class Number of content Notes

Object FullAugSynth TestSet 996 images Contains real images in RGB.

Object FullAugSynth TestSetGGmGa 996 images Same basis as last, but pre-processed with GGmGa.

Object FullAugSynth TestSetGGmI 996 images Same basis as last, but pre-processed with GGmI.

Suction Penguin Testset 8536 video clips
Clip length of 45 frames,

exists two one set in RGB and one in flow

Bag Mask Resuscitator Testset 8536 video clips
Clip length of 45 frames,

exists two one set in RGB and one in flow

Newborn Testset 8536 video clips
Clip length of 45 frames,

exists two one set in RGB and one in flow

Bag Mask Resuscitator Testset Flownet 8536 video clips
Clip length of 45 frames,

exists two one set in RGB and one in flow

Newborn Testset Flownet 8536 video clips
Clip length of 45 frames,

exists two one set in RGB and one in flow

Table 9: Overview of the different test sets.

4.3 Nepal

The data from Nepal is separated into two different sets: High Quality and Low Quality.

The low quality dataset is older videos captured and anonymized with a low resolution

camera. The resolution of these videos are in the range of 480x240 with missing pixels

because of said anonymizing covering a rather large amount of the viewpoint. This data

is also new and lacking labelling, but it has a stable 24 FPS which is helpful for activity

recognition.

The other dataset from Nepal is a higher quality one. The resolution here is 1920x1080

and the frame rate is a stable 30 FPS. However like the previous data this has some issues

like changing camera positions and like the lower quality Nepal data it has black areas for

anonymizing.

46

4.4 Classes of Interest

In general there is different classes that might be of interest. For therapeutic activities

four classes are interesting: Nurse Hands, Ventilator Bag, Heart Rate Sensor and Suction

Penguin. The different classes that are used is the following:

Nurse Hands

As the name applies and figure 22 this class is nurse hands, both gloved and bare. This is

Figure 22: While nurse hands are not used to make a timeline, they are used to approximate

the region of interest.

detected by the object detection network and used to approximate the newborn region in

the activity recognition network.

47

Ventilator Bag

The Ventilator Bag or Bag Mask Resuscitator (BMR) is used for ventilation (see section

Figure 23: Ventilator bag in the holder and laying on the bed

2.2 for information) and is a semi-translucent multi-part device. This is captured by object

detection and used for the OBJ-region later in activity recognition. The usage of this device

in activity recognition is a distinct pumping activity on the newborn’s mouth that is quite

unique compared to other activities that can occur on the resuscitation-table.

Heart Rate Sensor

The green Heart Rate Sensor is used to detect vitals from the newborn and send these

Figure 24: Heart rate sensor with its distinct green colour

signals to monitoring device and save the data. Both the shape and colour is unique and

provides unique features to the object detection network. In activity recognition it is another

48

OBJ-region and provides attaching and removing data.

Suction Penguin

Suction Penguin is used for clearing the airways and is another semi-translucent object. As

Figure 25: Suction penguin which is due to its irregular shape and being transparent is

difficult to detect

the name implies it can look similar to a penguin. This object’s semi-translucent body offers

a lot of different scenarios where the colour is different depending on where it is positioned.

In activity recognition the activity involves squeezing it in one of the correct position (nose

or mouth).

49

5 Methods

5.1 Earlier work

Figure 26: Overview of the old pipeline used in earlier work. All blocks are separate

implementations and needs to manually be linked to the next in line. All post-processing

is done in Matlab.

The basis of this project started as a task in a PHD and is described in multiple ar-

ticles[29][28] and work were committed in a previous master thesis[3]. With a given video

of newborn resuscitation this pipeline should be able to recognise the objects and detect

if there was any resuscitation activity going on. The overview of the previous methods is

shown in figure 26. In the previous work the proposed solution was to run object detection

to find the region of the different objects of interest, then do some post-processing to convert

them into a format that the activity recognition could handle. This was a 3 second over-

lapping video that was fed to one of several activity recognition models. This resulted in a

sequence of probability of the activity happening in that 3 second windows. The following

result was then averaged if there were multiple models predicting the same class, and the

final output could be put together as a timeline. The previous master thesis[3] focused on

improving the object detection part of this network and chose to use RetinaNet since that

performed best out of the tested networks. Based on his and Øyvind Meinich-Baches’s work

both of their results RetinaNet and Inception I3D were worked further on in this thesis.

50

5.2 Method overview

Figure 27: Flowchart on the complete method overview. Videos are used as input for

pre-processing which interpolates and calculates optical flow. Object detection is used on

the interpolated video and both RGB and optical flow networks are cropped in the post-

processing. Finally both crop output are sent to the multiple activity recognition models

and a timeline is generated based on the predicted output.

In this chapter, the methods for automated video analysis developed in this master

thesis work are presented.

5.3 Pre-processing

A common issue that occurs in the video material from Safer Births is the inconsistency of

the camera placement and irregular lighting. This causes the relevant objects and activities

to be less recognisable and might even cause objects to blend in with the environment. The

uneven lighting with sub-optimal camera placement is shown in figure 28. In regards to

object detection there is another issue. Some of the objects have pretty poor detection rate.

Synthetic data was added to attempt to expand the training data, but there were some

issues with this new data as well. The synthetic data was captured in front of a blue screen

resulting in the semi-transparent objects like suction penguin and ventilator bag getting

a blue tint. The problem with this discolouration is that it created a distinct difference

compared to the real world examples. Also the edge of the objects were imperfectly cut and

a slight border around the objects were visible and creating extra features on the object

that often does not occur in the real data-set. This can be seen when comparing synthetic

and real examples in figure 29. In prior work there has been attempts to solve these issues,

51

Figure 28: This figure is showing an example of a very poorly lit environment where objects

might be hard for the network to recognise correctly.

Figure 29: The object on the left is captured in front of a blue screen then cropped. Along

the edge there is a slight blue border and the object is tinted blue. The right image is

showing the same object in a real world example.

52

but the issue still exists in some degree. A couple of pre-processing methods have been

chosen to try to rely more on the shape than the colour of the object.

5.3.1 Lighting correction

Two methods have been chosen to try to improve the lighting in the images: histogram

equalisation (3.9.1) and homomorphic filtering (3.9.2).

Figure 30: Left image is an unaltered image, the one in the middle has been through

histogram equalisation while the right one has been filtered by the homomorphic filter.

Histogram equalisation

Histogram equalisation is pretty simple to apply to an image. The method is applied per

channel. Starting by splitting the channels, flatten them and calculating the histogram per

channel. Using the cumulative sum to calculate the cumulative distribution function and

using this to find the equalised value. The result is shown in the figure 30. The output

53

brightens up the image, but have a tendency to make them softer and blow up highlights if

the image already is bright.

Homomorphic filtering

The homomorphic filtering is done differently. This is also a per channel operation. Like

the formula in section 3.9.2 each channel has been altered with the logarithmic formula,

then Fourier transformed and applied a filter before inverse transformed and converted to

an image again with the exponential function. The result is shown in figure 30. The image

has preserved most of the edges and evened out the brightness, however at a cost of overall

contrast.

Comparing both methods in figure 30 we can see that the histogram image has higher

contrast, but loses its details while being softer to look at. It is also struggling more with

the highlights being blown out. The homomorphic filter has a much brighter output, with

much sharper edges preventing the highlights to affect the nearby objects to a lesser degree.

5.3.2 Edge detection

Figure 31: Overview of the image pre-processing procedure. A list of RGB image is taken

as input and processed as individual channels. The end result is a three channel modified

image.

The edge detection method used is the Sobel edge detection as described in section

3.9.3. Images from training-, validation- and test-set has been transformed by using the

54

Sobel filter kernels from OpenCV[5], the process is shown in figure 31.This is an alternative

pre-processing method not shown in figure 27. Using the filter kernel two images are created,

one gradient in x-direction and one in y-direction. With these two calculations performed

they can further be used to create a gradient magnitude channel and a gradient angle

channel as can be seen in figure 32.

Figure 32: Output generated by using Sobel operator from OpenCV. The left is the gradient

magnitude and on the right the gradient angles are shown.

5.3.3 Interpolation

The videos from Tanzania has an issue where the frame rate is unsteady and frame time

varies frame to frame. As mentioned in the data material section 4 most of the videos

are encoded to 15 frames per second or 30 frames per second, but in reality varies from

2-30 fps9. The original interpolation method by Meinich-Bache et al.[28] were written in

Matlab, while the new interpolation method that is based on previous work is written in

Python, for function reference see figure 33. This new method captures the actual frame

time and has a desired frame time configured as default to 15 fps. Since the videos are

encoded to 30 fps the interpolation method first interpolates up to 30 fps, then discards

every other frame. By using the frame timestamp metadata the difference between the two

last frames are calculated, and if it is not 33.33 ms new frames are created by inserting

merged frames from the two frames. A weight is used to decide which of the two frames are

most important in creating the next frame or frames. For example the distance between

9Videos with sub 5 fps were not used for training

55

Figure 33: The interpolation block. This implementation consists of three functions. The

first checks if there is need of implementation, one that interpolates and one that discards

extra frames. Due note that the 30 to 15 fps converter only works if there is a stable frame

rate

two frames are 133.33 ms, this means that it is missing three frames. In this case the first

image is weighing most in the first interpolated image, then equally weighing and the last

interpolated image is weighing the last image most. This is done with all the images in the

video. Once this is done every other frame is discarded and a new 15 fps video is created.

The downside to this method is that the new interpolated images contains large amount of

motion blur as can be seen in figure 34.

Figure 34: The middle image is the new one created as a new image in-between the two

next to it. Notice that the already poor motion blur is getting worse.

56

5.4 Optical flow

The optical flow method FlowNet2 with the FlowNet backbones described in section 3.6.3

takes two images as input as can be seen in figure 35. Through the usage of multiple CNN

it generates something called Middlebury flow which is encoded as byte with the first 0-3

bytes being the magic number 202021.25. This number is used to check if the flo file is valid.

Byte 4-7 is width, 8-11 is height, and 12 to the end is the data in vector format where flow

can be separated in x or y direction[35]. This network is used for inference only, no further

training on this network, but the output was used to generate training data.

Figure 35: Overview of the input and output of the optical flow method used.

5.5 Object Detection

The object detection model is based on RetinaNet, a CNN with the network backbone

ResNet-50. This object detection network was used in previous work by Simon Lennart

Austnes[3]. The network was further trained with new data-sets. The input is a three

channel image and the output is a bounding box10, a class and the certainty. This is shown

in figure 36. With this system only RetinaNet is tested, but two methods were used. One

relying solely on a single three channel input, and the usage of two models relying on

different three channel inputs in an ensemble.

10A bounding box is two coordinates that marks the coordinates for the lower left and upper right corner

of the box.

57

Figure 36: Overview of the Object detection input and output from figure 27

5.5.1 Ensembling networks

Figure 37: Overview on how the ensemble method works between these two networks. One

of the networks uses full RGB images as input, while the other converts them into a different

3-channel image. The input converter block is shown in figure 31.

The usage of multiple RetinaNet models could benefit the system. Therefore two differ-

ent RetinaNet models were trained and used in conjunction. This method takes the output

from both networks which is a bounding box, a class and a prediction. This ensemble part

uses a threshold system were if the RGB prediction is above a certain threshold it counts

as a valid prediction, then the Greyscale, Gradient magnitude, Gradient Angle (GGmGa)

network check for the same prediction with IoU. The process is shown in figure 37 and could

be an extra option for the pre-processing block if needed. If the IoU is over 50 % it counts

as an already chosen prediction and is discarded. The opposite where the GGmGa model

predicts is also possible. If neither models have a strong enough prediction there is another

58

threshold that checks if the combined output of both network is larger than the average of

both models thresholds. If this is true a function uses the two bounding boxes to create a

larger bounding box based on the both models output.

5.6 Post-processing

The major focus of the post-processing is to crop down the larger video images down to

smaller frames focusing on the region of interest. There is two different kinds of cropping

methods in use here. One focusing on the object region, and one focusing on the newborn

region as can be seen in figure 38.

Figure 38: The post-processing implementation sorts the object detection into classes and

crops depending on the class. In total there is four different crops that is sent to multiple

activity recognition models.

5.6.1 Object Cropping

After the object detection is completed and have returned the bounding boxes and predic-

tions the images goes through a new process were the output is cropped down to 500x500

pixels. This method is based on the previous work done by Meinich-Bache et. al[28]. The

cropping looks at a three second interval or 45 FPS. Comparing the whole three second

and filters out random spikes that lasts less than three frames. Then it looks at the whole

sequence and chooses the largest and smallest values to maximise the region. If the region

59

is smaller than the predefined sizes the frame is padded with the missing pixels. However if

the frame is to close to the border of the frame the crop is shifted in the opposite direction

of the border to prevent creating a black bar on the image. In figure 39 the blue bounding

box is larger than the object because of the added width and height to make the region

500x500.

Figure 39: Original image on the left is with bounding boxes applied while the image to the

right have been cropped based on the boundary boxes. Due note that the original image has

been reduced in size to emphasise on the blue bounding box region that has been created.

The figure 39 shows how the crop looks after it has been post-processed. The post-

processed image focuses more clearly on the object and discards most of the background

where not activity can be performed.

5.6.2 Newborn Cropping

The newborn cropping method does not focus on the same object detection results as the

object cropping. This method creates a heat map of the nurse hands and based on the

heat map decides the region of the newborn. As with the previous method this is also a

continuation of Meinich-Bache et al. work[28]. For every frame with one or more nurse

hands detection the bounding box from the prediction is used to crop out the section with

the object. This is used to create a binary image that is added to an accumulated image.

Adding more and more binary image creates different regions that have more hands which

with prior knowledge often indicates that this region contains the newborn. After a number

60

of frames the heat map now contains enough data to find coordinates used to create a crop.

A new crop is proposed if the region is larger than the previous one and at least 45 frames

have passed. If the function proposes a new region, the frame coordinates around the area

is padded with the missing length to be 700x700, and the same method as above is used if

it needs to be shifted because of an image border. Figure 40 shows the heat map and the

resulting crop.

Figure 40: Heat map is on the left and to the right is the final region based on the heat

map and padding.

5.7 Activity Recognition

The method used for activity recognition were used with the Convolutional Neural Network

Inception I3D that has been used in previous work[28]. Both of the models were further

trained with training-data described in section 4. It can use two inputs. One RGB input

and one optical flow. With the help of post-processing the input video is cut down in size

to either an Object area (OBJ) or a Newborn area (NB). This results in the blocks in

figures 41 and 42 called Object Region and Newborn Region. With the original method the

activity recognition uses four inputs where four of the activity models are used twice, once

for NB region and one for OBJ region hence the two outputs. All of the output is on the

form: [second, activity probability] for this method and for the models that is used twice

the average of the prediction is calculated.

61

Figure 41: Overview of the original Activity model block. Four of the activities is used

twice with one OBJ region and one NB region.

Figure 42: The new method to simplify activity recognition. This method uses a multi-

class model for ventilation and suction (in this experimental function ECG classes is not

considered), while keeping Stimulation as a binary model. Along with the reduction in

models a new thresholding method is applied that instead of averages the OBJ and NB

output uses a highest probability (voting) method along with requirement to be over a

certain threshold.

62

The other method for the activity recognition is shown in figure 42. This method uses

the same network as the previous, but this time only two models are used. One multi-class

detection which takes the same input and is used three times, once for every region inputted

to it. Three output is generated from this activity model. Then the OBJ region prediction

is sent to a voting with threshold combination along with the newborn region prediction

and checks which region returned the highest certainty and if it is above a threshold. This

is only performed with the corresponding activity, so if the Ventilation OBJ region have

any Suction prediction these are not compared with the Suction predictions in the Newborn

region or Suction region. The final outputs to this method is two lists of seconds and activity

probability. One is on the same form as the first method while the other is on the form

[second, Ventilation probability, Suction probability, other probability] where the ”other”

probability is activities that is neither Suction or Ventilation and has no further usage.

5.8 Proposed new pipeline

The input data will need to go through a pre-processing phase where features are extracted

and/or data is normalised with the help of multiple methods such as histogram equalisation,

homomorphic filtering and edge detection. If needed the data will be interpolated up to a

stable frame rate. After the interpolation a thread needs to run optical flow calculations

separate from the object detection, and it preferably needs to be completed prior to activity

recognition. Using RetinaNet for object detection to find the Region of Interest. The

predictions RetinaNet outputted will need to be translated and the coordinates from the

object detection is used to crop videos into separate smaller crops improving the activity

recognition.

Using both RGB and optical flow, the probability of an activity being performed during

a three second interval will be the output of the activity recognition network. Finally a final

phase will calculate if an activity is being performed if one or both of the regions (NB or

OBJ) is above a sat threshold. Afterwards a text file with the activity, time started, time

stopped, duration, threshold values and real values will be created.

5.9 Implementation

Common for all of the implementation is that it is written in Python 3. The different

libraries and models that are not self designed can be found in table 10.

63

Function/library name link

Nvidia’s Flownet2-pytorch https://github.com/NVIDIA/flownet2-pytorch

Keras-Retinanet https://github.com/fizyr/keras-retinanet

I3D-Tensorflow https://github.com/LossNAN/I3D-Tensorflow

OpenCV https://opencv.org/

Table 10: Links to libraries and network used in this thesis

5.9.1 Pre-processing

Image pre-processing

In total there were two implementations in regards to pre-processing the images: colour pre-

proceesing with homomorphic filtering and histogram equalisation and colour pre-processing

where edge detection was performed. The colour pre-processing implementation consisted

of splitting the image into three separate channels (RGB) and performing the processing on

a per channel basis. The code used for histogram equalisation was found on TowardsData-

sciene11and modified to fit in this usage. Homomoprhic Filtering on the other hand uses a

heavily modified code from stackexchange12where the code is applied per channel.

The colour pre-processed images were done with OpenCv and uses the BGR2GRAY to

convert the image to greyscale. The cv2.Sobel function were used to create gradient in x and

y direction and the weighted sum of these were used to calculate the gradiant magnitude.

For the gradient angle the arcus tangens were used with the gradient y as numerator and

gradient x as denominator. The intensity on the other hand was the value channel from the

image converted to the HSV colour space with cv2.RGB2HSV. These four channels were

then merged to two different image types: Greyscale, Gradient magnitude, Gradient Angle

(GGmGa) and Greyscale, Gradient magnitude, Intensity (GGmI).

Interpolation

The interpolation method is as all the other implemented with Python 3. First it checks

for uneven frame times, if the frame times frame-to-frame varies, the video needs to be

12https://towardsdatascience.com/histogram-equalization-a-simple-way-to-improve-the-contrast-of-your-

image-bcd66596d815 and https://dsp.stackexchange.com/questions/42476/homomorphic-filter-python-

overflow

64

 Link to TowardsDatascience https://towardsdatascience.com/histogram-equalization-a-simple-way-to-improve-the-contrast-of-your-image-bcd66596d815
 Link to TowardsDatascience https://towardsdatascience.com/histogram-equalization-a-simple-way-to-improve-the-contrast-of-your-image-bcd66596d815
 link to stackexchange code: https://dsp.stackexchange.com/questions/42476/homomorphic-filter-python-overflow
 link to stackexchange code: https://dsp.stackexchange.com/questions/42476/homomorphic-filter-python-overflow

interpolated13. The implementation takes a video loops through the video with the use of

OpenCV’s VideoReader function. As explained earlier the method of interpolation is inter-

polating up to 30 fps and discards every other frame. This is implemented by reading the

timestamp of every frame by using the frames metadata and uses OpenCV’s AddWeighted

function to create the interpolated images.

5.9.2 FlowNet2

The FlowNet2 implementation is used with a pre-trained Caffe model and running inference

on the data from section 4. The models used are Caffe pre-trained models and are allowed

to use for research by the author[20].

5.9.3 RetinaNet

RetinaNet is using the code from table 10. It is trained, validated and tested on data from

table 4. However in the new pipeline implementation a new input was created to let a list

of images from memory being implemented into the github code. This new input takes an

array of images as input and perform prediction as normal.

5.9.4 Inception I3D

Training and testing Inception I3D is performed as the Readme in the github code in table

4. As with RetinaNet custom input functions were created to allow arrays of images as

input instead of image folders. The modified input function can take both RGB and flow

images and is augmented and resized with the standard input function.

5.9.5 Post-processing

Cropping object

The cropping implementation takes the previous array of interpolated images and the

output from RetinaNet which is a bounding box and a probability. Since the bounding box

usually is quite small both sides are padded to make a 500x500 images. The output from

RetinaNet can have minor false positives where a couple of frames where the object position

13This occurs in basically every video from the given data set.

65

suddenly ”jumps” to another place on the image. To circumvent this the array of images

are separated into 45 frames which have a 2 second overlap (one with the previous section

and one with future section) and the minimum x and y and maximum x and y is found.

However to assure that the maximum or minimum is not a false positive at least three

frames in a sequence needs to move more than the threshold of 50 pixels in any direction.

The new output is a longer array consisting of 45 frames with a static border made from the

minimum and maximum along with padding extra width and height to make a 500x500 crop

of the image. This implementation is for objects only. For newborn another implementation

was needed.

Cropping newborn

To crop the newborn region of interest only the nurse hands bounding boxes were nec-

essary. As with the object cropping implementation this implementation needs the inter-

polated images along with the nurse hands predictions. This cropping implementation is

designed not to crop a region before there is enough predictions and frames to create a

large enough crop of the region. To find this region the bounding boxes are added onto

a black image the size of the original video and after a certain amount of frames the new

blocks are cut out with the help of OpenCV’s findCountors function. The reason behind

the usage of this function is that it generates coordinates of the contours as as rectangle

even if the contour is an irregular polygon. A small function is added to determine if the

right contour is chosen since the function returns an array of contours14. If the length of

the contour array is larger than 0 it calculates the area of the contour and if it is above

25000 pixels the midsection of the area is calculated. This midsection is used along with a

padding function to create a 700x700 size crop where most of the hand activity is contained.

A check is implemented to not allow smaller crops to be used once a crop has been chosen

and the contours are checked once every 45 frames to save on processing power. The array

of cropped images is then loaded to memory and sent along the other crops to the activity

recognition network.

14This happens when the network either makes a false prediction or hands appear in the frame disconnected

from the main area.

66

5.9.6 New pipeline

The new pipeline implementation is a multi-step implementation with all of the previously

mentioned implementation along with modification to most of the neural networks. The

following steps are how the implementation works:

Step 1: Check to determine if interpolation is needed

As mentioned in interpolation implementation the first step is to check if the interpolation

is needed.

Step 2a: Interpolate

Run the interpolation implementation on the input video and if flow is selected to run the

images are saved in a temporary folder.

Step 2b: Run FlowNet2 inference

The newly created temp folder containing all the images from the interpolated implemen-

tation is used to generate optical flow with.

Step 3: Object Detection

The interpolated RGB array of images is sent to RetinaNet to be predicted on. This method

saves all the object detection in a text file.

Step 4: Sorting the object detection files

Now all the detections are sorted into separate dictionaries with frame number as keys and

the bounding boxes along with possibility set to value.

Step 5: Multi-cropping RGB and Flow

A for loop of all the different crop regions needed is then used to run through the cropping

implementation for every object selected both RGB and flow (if selected) and once more

for the newborn region.

Step 6: Activity Recognition

The next to last step is to predict on all the newly cropped image arrays and writing them

into separated text files.

67

Step 7: Combining output

Since all activities except Stimulation and Unwrapped Newborn requires two regions (object

and newborn). these outputs are combined with using a form of voting ensemble where the

highest is chosen as an activity or if the summation of both is satisfying a threshold sat to

0.5. The new outputs are six predictions, one for each of the classes.

Step 7.5: Timeline Generation

The timeline generation implementation takes the activity recognition output as a input.

Per class it determines that if an activity is above a certain threshold that an activity is

being performed that second. With this information an activity is created in the timeline

and the start time is set and when the activity is under the threshold a stop time is set.

The duration is then calculated and the function is looking for the next time the activity is

over the threshold. After one activity is determined the next in line is chosen.

5.10 Generating training data

The data used is described in section 4. Data used in the object detection part was provided

by Øyvind Meinich-Bache and Simon Lennart Austnes[28]. Activity recognition data was

also provided by Øyvind Meinich-Bache with the exception of optical flow that needed to

be created. The process of creating optical flow was to use the interpolated videos that were

provided and run inference with FlowNet2. FlowNet2 returns something called Middlebury

.flo format which is a byte format that contains a magic number (to check if the bytes

are valid), the width, the height and the data. The data contains a vector with x and y

orientation were this data is separated into two images. With these optical flow x direction

and optical flow y direction files a Matlab script could be used to create short snippets of the

actions based on annotations files. After this generation the clips were cut into 45 frame clips

and augmentations were applied afterwards. As previously mentioned this implementation

differs from Øyvind Meinich-Bache’s implementation performed during previous work with

the augmentation being the last step instead of optical flow being the last step. Overall

this process took up to a 6 days to finish.

68

6 Experiments

To test out the different improvements and new implementations different experiments have

been performed. The different experiments are:

Number Name Purpose

Ex 1 Lighting correction
The purpose is to try to improve the

overall lighting of the image

Ex 2 Supplementing pre-processed images

Trying to rely less on colour

and adding gradient pre-processed

input images along RGB

Ex 3 Comparison of pre-processed input

Trying to rely less on colour

and training new models with only gradient

pre-processed input images

Ex 4 Comparison between RGB model and ensemble

Comparing the RGB model against

gradient pre-processed and RGB model

in an ensemble

Ex 5 Adapting binary activity recognition models to multi-class
Combining some of the activities into

a single model.

Ex 6 FlowNet2 model

Using FlowNet2 CNN to create

optical flow input data

and training new models with the new data.

Ex 7 Implementing previous work into a single pipeline

Writing methods from previous used work

in Python and combining into a single

pipeline.

Table 11: Overview of the different experiments performed, and short description.

6.1 Training models

The models trained in this thesis were all trained on a Unix based server running three

Nvidia Tesla V100 GPUs with 32 GB of RAM and one Nvidia Tesla P100 with 16 GB of

RAM. The following parameters were used when training if nothing else were specified in

the experiments section.

69

Object detection models

Parameter name Values

Learning rate 0.00001

Epochs 100

Steps per epoch 4329

Batch size 4

Image minimum side 1024

Image maximum side 1280

Table 12: Parameters used in the training of object detection models

Activity recognition models

Parameter name Values

Learning rate 0.0001

Max steps 15000

Batch size 6

Number of frames per clip 45

Crop size 224

Classics 2/3

Table 13: Parameters used in the training of activity recognition models

70

6.2 Pre-processing image data

6.2.1 Experiment 1: Lighting correction

Experiment 1 is to find out if lighting correction in the pre-processing stage can affect the

performance of the object detection network. Three different RetinaNet object detection

models were trained: one with unaltered images, one with images pre-processed with his-

togram equalisation and one with images pre-processed with homomorphic filtering (both

methods were explained in section 5.3.1). The training, validation and test data were pre-

processed with the corresponding method and trained using the weights from ResNet50

from ImageNet, with the equipment defined in section 6.1. The data sets used is the

Object FullAugSynth where one is not pre-processed, one pre-processed with histogram

equalisation and one with homomorphic filtering, and the parameters used are listed in

table 12.

Colour pre-processing

Experiment 2-4 was an attempt to improve the accuracy of harder to find objects such as

suction penguin and improve the networks ability to recognise the shapes of objects and

not solely rely on colour (for example the bright green heart rate sensor shown in figure 24

back in section 3.8). The same data sets as experiment 1 Object FullAugSynth was used for

the RGB, but here other pre-processes are performed. There is in total four different parts

of this category of experiments looking at different aspects. One checking if supplementing

pre-processed images can help performance, one with discarding colour images and training

with pre-processed images, one looking at new thresholds for the newly created models, and

one looking at the combination of the RGB model and one model with pre-processed image

input.

6.2.2 Experiment 2: Supplementing pre-processed images

Two new object detection models were trained with converting 75 % of the synthetic train-

ing data and 25 % of the real training data into two new image-types with the channels:

greyscale, gradient magnitude and gradient angle called Greyscale, Gradient magnitude,

Gradient Angle (GGmGa), and greyscale, gradient magnitude and illumination, called

Greyscale, Gradient magnitude, Intensity (GGmI). None of the training parameters were

71

changed from the RGB model in experiment 2. All three models were to be compared with

mAP, TP and FP.

6.2.3 Experiment 3: Comparison of pre-processed input

To check if the pre-processing method could provide benefits to the performance of the

object detection model, all of the data sets (training, validation and test set) were converted

into the the new pre-processed image-types, GGmGa and GGmI. The new sets are called

Object FullAugSynth GGmGa and Object FullAugSynth GGmI. This was done to check if

the models performed better on pre-processed image-types than the RGB model did on its

test set. Experiment 3 relies less on AP and uses the overall amount of TP and FP together

with the mAP as performance metrics.

6.2.4 Experiment 4: Comparison between original model and ensemble

By having multiple object detection models the option to use multiple models as a single

network output is possible. To try to improve upon performance an experiment was to

ensemble the RGB model and the GGmGa model to test if the overall output could be

better with two parallel models versus one. The performance metrics used were the TP and

the FP together with overall mAP. With experiment 4 new thresholds had to be created for

the GGmGa model. These were created by running predictions on the validation set. The

distribution of FP and TP were plotted and a new threshold were used from these results.

6.3 Experiment 5: Adapting binary activity recognition models to multi-

class

The previous work and experiments performed by Meinich-Bache et al.[28] in activity recog-

nition focused on multiple binary activity recognition models to predict if there were an

activity. While the results were acceptable the process of getting these results were time

consuming. Two of the activities, ventilation and suction which cannot be performed at

the same time were chosen to be combined to a single model. The new model were trained

as a three class model with a ventilation class, a suction class and an ”other” class. The

other class contains the NotSuction and NotVentilation that was shown in table 7 as well

as other activities. Since there were some overlap between Suction and NotVentilation, and

Ventilation and NotSuction about 4000 activities were removed. The overall training data

72

used in this was reduced from 2803715 down to 24838 while the validation set was reduced

from 12032 down to 11432. However due to low amount of ”other” activity about 3000 new

training examples from Stimulation, Attaching ECG and Removing ECG was added with

this label for a new total of 27631 videos in the training set and 13404 in the validation set,

making the new data set Activity Aug Multiclass. The parameters used for experiment 6

is shown in table 13.

6.4 Experiment 6: FlowNet2 model

Experiment 6 is a comparison between the old Denseflow optical flow trained activity recog-

nition model against the FlowNet2 trained activity recognition model, which uses GPUs to

accelerate the speed and improves the overall quality of the calculations. In total the differ-

ent data sets, training, validation and test set is generated from 76 different videos. In ex-

periment 6 all of the aforementioned videos are converted into optical flow then cropped into

smaller clips and augmented with blurring, cropping, rotation, flipping and adding noise.

The predictions is then compared to the performance of the models from Meinich-Bache et

al.[28]. One distinction that is worth mentioning is that the data from the article[28] where

first generated into smaller augmented clips then calculating optical flow on the augmented

images while now the augmentation happens as a last step, after optical flow has been cal-

culated. The new Stimulation data set is generated with converting the 76 videos to optical

flow, then shorting these down to three seconds overlapping clips of each activity. However

due to a mismatch with the newly generated data where the new data contains more short

clips the training and validation lists created by Meinich-Bache et al. Could not be used.

Therefore this new data set might contain a significant amount of training and validation

data with wrong labelling or the activity is behind objects or nurses. The Ventilation model

on the other hand is the optical flow converted images from the Activity Aug Ventilation

data set. Due to these difficulties only Activity Flow Aug Stimulation FlowNet uses the

newly generated data while Activity Flow Aug Ventilation FlowNet was converted using

Activity Aug Ventilation. The Suction model was not trained due to time constraints how-

ever.

15This was the sum of the Suction and Ventilation training set

73

6.5 Experiment 7: Implementing previous work into a single pipeline

Earlier work (see 5.1 for more in-depth) has focused on prototyping both in Matlab and

Python, and improving results. Therefore a pipeline written entirely in Python was to be

developed. The new interpolation method is used at the beginning of the pipeline, and the

images is loaded into memory afterwards. Object detection is performed with the same

network as previous work, but is now performed on the interpolated input sequence then

based on the object detection result the new post-processing crops and divides the images

into cropped sections that are sent to the activity recognition networks. Overall the system

structure is similar to earlier work, but each of the networks have gotten a new data input

function. All twenty videos from the test set were used, but due to some difficulties with the

server some of the videos could not be read correctly and might cause issues with activity

recognition. The result were then compared to the 8536 video clips in the test sets Suction

Penguin Testset, Bag Mask Resuscitator Testset and Newborn Testset. In experiment 7 the

activity recognition performance between the old pipeline and the new pipeline is compared.

74

7 Results

7.1 Pre-processing image data

7.1.1 Experiment 1: Lighting correction

To evaluate if lighting correction pre-processing has any effect on object detection perfor-

mance two new models were trained as explained in section 6.2.1. The results can be seen

in table 14.

No pre-processing Histogram equalisation Homomorphic filter

HeartRateSensor AP 0.79 0.80 0.78

NurseHand AP 0.73 0.70 0.70

VentilatorBag AP 0.68 0.66 0.68

SuctionPenguin AP 0.45 0.39 0.42

mAP 65.97 % 63.78 % 64.59 %

Table 14: The difference between the three different models, with or without pre-processed

input. Most of the AP is in the same region, but Suction Penguin suffers more with the

new pre-processing methods.

The results from the new models are in the same range as the original model that has

not been pre-processed or slightly lower performance.

75

Colour pre-processing

7.1.2 Experiment 2: Supplementing pre-processed images

Trying to supplement the RGB object detection model with pre-processed images. The two

new models uses 75 % pre-processed synthetic training data and 25 % pre-processed real

training data. The performance of the different models are shown in table 15.

No pre-processing GGmI GGmGa

HeartRateSensor AP 0.79 0.69 0.70

NurseHand AP 0.73 0.73 0.69

VentilatorBag AP 0.68 0.67 0.61

SuctionPenguin AP 0.45 0.44 0.40

mAP 65.97 % 63.07 % 60.22 %

Table 15: AP and mAP result from test set with the three different models. mAP and AP

shows the model with no supplemented pre-processed images performing much better than

the two others.

No pre-processing GGmI GGmGa

Tp Fp Tp Fp Tp Fp

NurseHand 1750 273 1724 238 1621 184

VentilatorBag 680 169 669 180 627 122

HeartRateSensor 473 54 419 79 421 33

SuctionPenguin 266 63 261 56 236 36

Total 3169 559 3073 553 2905 375

Table 16: The number of false and true positives per class and total for all four classes.

While the model with no pre-processing made the most true predictions the overall sum

of false predictions are significantly lower on the model supplemented with GGmGa pre-

processed images.

At a glance the mAP indicates that the original method without using colour and shape

pre-processed images produces the better model. However looking at the TP and FP for

76

each class the shows some minor reduction in FP and some increases showing that there is

potential for improvements with modifying the colour channels.

Overall there is not much difference between the models, but there is some minor improve-

ments in overall FP/TP.

7.1.3 Experiment 3: Comparison of pre-processed input

A comparison between the performance of the new object detection models trained with

pre-processed training, validation and test sets and the original RGB trained model is shown

in table 17.

RGB GGmGa

TP FP TP FP

NurseHand 1750 273 1551 277

VentilatorBag 680 169 646 97

HeartRateSensor 473 54 299 37

SuctionPenguin 266 63 203 66

mAP 65.97% 53.79%

Table 17: True and False Positives from the models on their respective test sets. The RGB

model is performing better in most of the cases, except for a false predictions where in one

class the other model has an advantage with fp/tp ratio.

In general this proposed method is weaker than using full coloured RGB images. The

newly trained model manages to predict less correct classes and retains similar amount of

false positives. Since there is a reduction in false positives in some of the classes a new

threshold might be necessary to further evaluate the performance. To find the distributions

both models have predicted on their validation sets with no thresholds. In the following

figures 43 - 46 the false and true positives per class are shown in a histogram compared

against the RGB model.

In general the classes where the pre-processed model has been applied had a lower

amount of FP the distribution of FP is in general separated from the TP or more dense in

the lower probability ranges.

77

Figure 43: The distribution of true and false positives on the HeartRate class, pre-processed

model on the left and RGB model on the right.

Figure 44: The distribution of true and false positives on the NurseHand class, pre-processed

model on the left and RGB model on the right.

78

Figure 45: The distribution of true and false positives on the SuctionPenguin class, pre-

processed model on the left and RGB model on the right.

Figure 46: The distribution of true and false positives on the VentilatorBag class, pre-

processed model on the left and RGB model on the right.

79

7.1.4 Experiment 4: Comparison between original model and ensemble

To try to increase performance two object detection models were being used in an ensemble.

The models that were being used was the RGB model and the GGmGa model. This

ensemble uses new threshold and these thresholds are based on the results from figures 43

- 46. The thresholds in the RGB model is the same as last attempt and is reused from an

earlier thesis[3].

RGB GGmGa RGB+GGmGa

NurseHand 0.5 0.99 0.745

VentilatorBag 0.5 0.9 0.7

HeartRateSensor 0.4 0.6 0.5

SuctionPenguin 0.55 0.85 0.7

Table 18: Thresholds used for the different model predictions and another one in case the

average of of both thresholds is reached.

RGB RGB + GGmGa

TP FP TP FP

NurseHand 1750 273 1772 348

VentilatorBag 680 169 676 91

HeartRateSensor 473 54 476 50

SuctionPenguin 266 63 286 68

mAP 65.97% 65.38%

Table 19: A comparison of the numbers of total TP and FP per detected per class and the

mAP divided into RGB model and the ensemble model RGB + GGmGa.

Overall there seems to be an improvement potential with ensembling two different mod-

els with different data set, but there is some inconsistency with what each model is able to

correctly assess and overall this ensembling will not be used further. Even so the solution

to increase the detection rate of the objects while keeping FP low can be ensembling and

develop a more dynamic thresholding method, but due to time constraint this will not be

followed up.

80

7.2 Experiment 5: Adapting binary activity recognition models to multi-

class

This new activity recognition model as mentioned in section 6.3 is a combination of Ventila-

tion and Suction activity with a third ”other” class that predicts if neither of the activities

can be performed. The overall performance of this new model is shown in table 20. The

threshold used for this experiment was 0.5 for Ventilation and 0.8 in Suction due to previ-

ously poor performance. The thresholding system is a voting system with a static threshold.

This means that for the class to predict it needs to be most probable and be over a certain

threshold.

Precision Recall Accuracy Balanced Accuracy

Binary Multi-class Binary Multi-class Binary Multi-class Binary Multi-class

Ventilation NB 0.8059 0.8082 0.7174 0.6672 0.9373 0.7863 0.8502 0.6089

Suction NB 0.2972 0.5021 0.4544 0.4903 0.8624 0.9155 0.6262 0.7284

Ventilation OBJ 0.8262 0.8171 0.8332 0.7796 0.9529 0.9456 0.8529 0.8518

Suction OBJ 0.4710 0.6307 0.4820 0.4365 0.9101 0.9305 0.7130 0.7954

Table 20: The performance difference between the Multi-class model and the binary model

using the RGB models. Divided into OBJ and NB section.

Overall the common multi class model performs better in some aspects and worse in

other.

7.3 Experiment 6: FlowNet2 model

The interpolated data from previous work were converted into flow with the new method

and then predicted on the converted test set. To get the comparison environment as equal

the optical flow activity recognition models were trained as binary models in Stimulation

and Ventilation similar to the previous activity recognition models trained with Denseflow

data. The Stimulation FlowNet2 model uses the data set Activity Flow Aug Stimulation

while the Ventilation FlowNet2 model uses Activity Flow Aug Ventilation.

Figure 47 shows the difference between FlowNet trained predictions and Denseflow

trained predictions while figure 47 compares the output of the different functions.

81

Precision Recall Accuracy Balanced Accuracy

Denseflow FlowNet2 Denseflow FlowNet2 Denseflow FlowNet2 Denseflow FlowNet2

Ventilation OBJ 0.6495 0.4876 0.7728 0.7515 0.9113 0.8571 0.7664 0.6834

Ventilation NB 0.6729 0.3515 0.7055 0.6587 0.9123 0.7857 0.7823 0.6180

Stimulation 0.6744 0.6484 0.7973 0.5940 0.8916 0.8657 0.7548 0.7610

Table 21: The overall performance of the activity recognition models using flow. Denseflow

is the old method while FlowNet2 is the new one.

Figure 47: Comparison between Denseflow (left) and FlowNet2 (right) generated on hand

movement. The right hand side shows a much cleaner image with less noise and the hand

is much more visible in this image.

7.4 Experiment 7: Implementing previous work into a single pipeline

The results shown in table 22 is showing the performance of the activity recognition after

the pipeline has processed the test-videos. The old pipeline column is using the models

from Meinich-Bache et al.[28] and is predicted on the equivalent region.

The performance from the new pipeline are substantially worse in almost all metrics.

Looking at figures 48 and 49 indicates that the network struggles to predict.

Some of the cropped images from the pipeline are shown in figures 50-52 for a reference

on how the final output looks like.

82

Precision Recall Accuracy Balanced Accuracy

Old Pipeline New Pipeline Old Pipeline New Pipeline Old Pipeline New Pipeline Old Pipeline New Pipeline

Ventilation NB 0.8059 0.8908 0.7174 0.2638 0.9373 0.8942 0.8059 0.9251

Ventilation OBJ 0.8262 0.7803 0.8332 0.1149 0.9529 0.8737 0.8529 0.8811

Suction NB 0.2972 0.3563 0.4544 0.1285 0.8626 0.9064 0.6262 0.6722

Suction OBJ 0.4710 0.6387 0.4820 0.1050 0.9101 0.9190 0.7130 0.8145

Stimulation 0.7548 0.6627 0.7313 0.5667 0.9066 0.8669 0.7548 0.7711

Table 22: The overall performance of the activity recognition comparing the new pipeline

against the old one.

Figure 48: This shows the Stimulation predictions from the pipeline versus the ground-

truth.

Figure 49: This shows the Ventilation predictions on the OBJ area. This graph is showing

a longer timeframe than in figure 48, and shows some poor predictions on this region.

83

Figure 50: The newborn crop region. The whole newborn is showing, but in this example

is located a bit to far on the left side of the image.

84

Figure 51: The Ventilator Bag crop region. The Ventilator bag is in the middle of the image

and it should not be hard for the network to recognise any activities being performed.

85

Figure 52: The Suction Penguin crop region. Unfortunately the object is in the upper area

of the image, but the whole object, the newborn and the hands are visible, and like the

previous image should not offer difficulties for the network.

86

8 Discussion

8.1 Pre-processing

8.1.1 Experiment 1: Lighting correction

The overall performance of the different models are in the same range as the RGB model.

Overall the performance impact is slightly negative in most cases except for heart rate sensor

in the data set pre-processed by histogram equalisation. Looking closer on the actual images

used for training the reason why they perform worse might be because some of the objects

disappears when the lightning is adjusted. Another potential issue might be the thresholds

used, it might be too low and allowing more FP than necessary. With more time editing

the training data and evaluating threshold could improve the performance.

Looking at an example in figure 53 homomorphic and the histogram equalisation blows

up certain highlights in the image making some objects blend in with the environment.

Figure 53: Comparison between the original image (left) and pre-processed image (right)

by using histogram equalisation. The adjustments to the brightness makes the Ventilator

Bag blend into to the hand making it hard to determine where the hand and Ventilator

Bag starts.

8.1.2 Experiment 2-4: Colour pre-processing

Supplementing the network with pre-processed images did not make a huge difference, most

of the results were around the margin of error, however the GGmGa trained model that

performed worse in number of predictions actually managed to cut a large amount of false

87

predictions. The overall fp/tp ratio went down from 0.1764 to 0.1291. However this did

not give any clear answers so the next part of the experiment was to look at a comparison

between the new model with the least amount of false predictions and the regular, but

this time the new GGmGa trained model were fully trained with pre-processed training,

validation and test data. The overall performance decreased significantly compared to the

regular one, but again it kept a lower amount of false positives, and when looking at the

distribution of the false positives and true positives in the figures in section 7.1.3 the false

positives is quite separated compared to the true positives, except for nurse hands. This

could mean that it is possible to get a lower fp/tp ratio. Combining this with the regular

model in an ensemble as shown in table 19 reduced a significant amount of false positives

while retaining the high number of true positives. The only exception was the nurse hands

that got significantly worse and would be advisable to discard most of the predictions from

the GGmGa model. With a better optimised model the ensemble of the RGB and a pre-

processed could improve the overall performance of the model even further.

8.2 Experiment 5: Adapting binary activity recognition models to multi-

class

The overall performance of this new multi-class model is showing potential, but the gain

in the Suction class is lost in the loss in the Ventilation class. This gain and loss can be

contributed to the thresholds used or the training data. Since there is a positive effect on the

Suction activity there seems to be an indication that reevaluating the training data could

have something to do with the performance. This is especially true since the reasoning to

add extra data to the ”other” class was to improve overall performance. With more time

a better threshold along with a rework of the training data could improve the performance

even further.

8.3 Experiment 6: FlowNet2 model

Due to the issues with training data generation in the Stimulation model the results were

poorer than expected. The precision is close, but the loss in recall is substantial. There is

no clear reason for the new optical flow method to provide a poorer result when it outputs

a cleaner output with higher contrast compared with Denseflow. The Ventilation activity

model were trained using optical flow data created from already cropped and augmented

88

short clips. This calculation resulted in less than 45 images per clips that might have

caused some issues with the network. This model also performed worse than its Denseflow

counterpart with overall worse performance. Unfortunately due to limited time Ventilation

(and Suction) were not possible to train and test with the same data as the Stimulation

model.

With proper training data the better performance might be achievable, but due to time

constraints and the mismatch in training data generation and labelled data the performance

of the FlowNet2 models dropped significantly. This drop in performance could also be

caused by the Inception I3D models being pre-trained on a completely different flow method

that could not take usage of the new flow data with such a low amount of training data.

8.4 Experiment 7: Implementing previous work into a single pipeline

Looking at the results from the new pipeline most results show a significant loss in perfor-

mance. As explained in the experiment part there were some late stage issues were certain

videos would not load correctly into memory. An attempt were made to manage to load

these, but at the cost of sending the full frame instead of a cropped region if the error was

encountered. Looking at some of the crops from the object areas in figure 51 the whole

object is visible and the network should not have any issues recognising the activity. The

newborn region on the other hand might struggle with Ventilation and Suction if the rest

of the 19 videos have the same positioning as figure 50, where the newborn is positioned at

the left border. If that holds true the ventilator bag and suction penguin would be partially

hidden by the crop. When looking at the results using a static threshold at 0.5 it seems to

allow more FN than FP resulting in a very high precision, but incredible low recall. With

more time a per activity threshold could be used for the new pipeline that most likely would

improve the precision to recall ratio, but even with a better ratio the performance would

still be worse than the old models. Looking closer at the predictions in figures 48 and 49 it

shows that the Ventilation network is struggling more than the Stimulation network, where

in some cases the Ventilation network is not predicting at all for 100s of seconds. This could

mean there is something wrong with the cropping implementation as well.

Even though the new pipeline tried to perform the same post-processing as the earlier

models it might have changed the input image just enough for the network not to recognise

the new activities, and generating new training data with the new pipeline could also im-

89

prove the overall performance of the system. However due to time constraints and focusing

on fixing the bugs this was not possible, but there is a possibility in future work to train

new training data, add new thresholds or figure out why there is issues with certain videos

in the test set and them not lining up perfectly with the ground-truth data. Fixing these

issues could improve the system significantly.

90

9 Conclusion

While most of the pre-processing methods and implementation did not see much changes

to the overall performance of the object detection network ensembling two different input

models did improve most of the classes. It is still in need of fine-tuning considering the

worse performance of the hands, but the overall performance is promising. Converting

the activity models Ventilation and Suction to a new multi-class model also showed some

promising results. Suction did get a slight improvement in performance while Ventilation

decreased in performance. Overall this new model depends on training data and with more

time and manual verification with adding better examples of the Ventilation could prevent

this loss in performance. While the loss in performance is not staggering with FlowNet2

there still is substantial loss. However this one is most likely due to the issue with having to

use poor training data or that the FlowNet2 cannot be utilised properly with the pre-trained

Inception I3D models. Normally converting the training set to the new flow implementation

would allow usage of the previous training lists, but this did not work out. However this

data is much faster to calculate and does create cleaner looking optical flow calculations

which can be used at a later stage to train new activity recognition models with optical

flow. With the new pipeline method it is clear that there are some errors present in this

implementation. The low recall indicates that the activity recognition part seldom predicts

an activity. Looking at the cropped images there is not an obvious reason for the large loss

in performance. It is suspected that there might be some issues with the order of the test

set used not matching completely with the ground truth, but due to time constraints these

errors were not found.

91

10 Bibliography

References

[1] The Allen Institute for Artificial Intelligence. Charades Challenge. 2017. url: http:

//vuchallenge.org/charades.html (visited on 03/17/2020).

[2] Hafiz Muhammad Aslam et al. “Risk factors of birth asphyxia”. In: Italian journal of

pediatrics 40.1 (2014), p. 94.

[3] Simon Lennart Austnes. “Optimization of Object Detection in Newborn Resuscitation

Video”. MA thesis. University of Stavanger, 2019.

[4] Safer Births. Safer Births — About. url: http://www.saferbirths.com/about/

(visited on 06/09/2020).

[5] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools (2000).

[6] Kay Henning Brodersen et al. “The balanced accuracy and its posterior distribution”.

In: 2010 20th International Conference on Pattern Recognition. IEEE. 2010, pp. 3121–

3124.

[7] Zhaowei Cai and Nuno Vasconcelos. “Cascade r-cnn: Delving into high quality object

detection”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2018, pp. 6154–6162.

[8] Joao Carreira and Andrew Zisserman. “Quo vadis, action recognition? a new model

and the kinetics dataset”. In: proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2017, pp. 6299–6308.

[9] Roberto Castagno, Petri Haavisto, and Giovanni Ramponi. “A method for motion

adaptive frame rate up-conversion”. In: IEEE Transactions on circuits and Systems

for Video Technology 6.5 (1996), pp. 436–446.

[10] Nagesh Singh Chauhan. Introduction to Artificial Neural Networks(ANN). Medium.

Library Catalog: towardsdatascience.com. Oct. 10, 2019. url: https://towardsdatascience.

com/introduction-to-artificial-neural-networks-ann-1aea15775ef9 (visited

on 04/30/2020).

92

http://vuchallenge.org/charades.html
http://vuchallenge.org/charades.html
http://www.saferbirths.com/about/
https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9
https://towardsdatascience.com/introduction-to-artificial-neural-networks-ann-1aea15775ef9

[11] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall and ROC

curves”. In: Proceedings of the 23rd international conference on Machine learning.

2006, pp. 233–240.

[12] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolutional net-

works”. In: Proceedings of the IEEE international conference on computer vision.

2015, pp. 2758–2766.

[13] Rob A Dunne and Norm A Campbell. “On the pairing of the softmax activation and

cross-entropy penalty functions and the derivation of the softmax activation function”.

In: Proc. 8th Aust. Conf. on the Neural Networks, Melbourne. Vol. 181. Citeseer. 1997,

p. 185.

[14] IL: American Academy of Pediatrics Elk Grove Village. “Guide for Implementation of

Helping Babies Breathe R© (HBB): Strengthening neonatal resuscitation in sustainable

programs of essential newborn care.” In: (2011).

[15] Mark Everingham and John Winn. “The PASCAL visual object classes challenge

2012 (VOC2012) development kit”. In: Pattern Analysis, Statistical Modelling and

Computational Learning, Tech. Rep (2011).

[16] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position”. In: Biological cy-

bernetics 36.4 (1980), pp. 193–202.

[17] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on

computer vision. 2015, pp. 1440–1448.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

[19] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[20] E. Ilg et al. “FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks”.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July

2017. url: http://lmb.informatik.uni-freiburg.de//Publications/2017/

IMKDB17.

93

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17
http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17

[21] Eddy Ilg et al. “FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Net-

works”. In: arXiv:1612.01925 [cs] (Dec. 2016). arXiv: 1612.01925 version: 1. url:

http://arxiv.org/abs/1612.01925 (visited on 02/18/2020).

[22] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network

training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167

(2015).

[23] Bekir Karlik and A Vehbi Olgac. “Performance analysis of various activation functions

in generalized MLP architectures of neural networks”. In: International Journal of

Artificial Intelligence and Expert Systems 1.4 (2011), pp. 111–122.

[24] William J Keenan et al. “Delivery and Immediate Neonatal Care”. In: Pediatric Ed-

ucation in Disasters Manual. American Academy of Pediatrics, Buenos Aires, Ar-

gentina (2009), pp. 217–237.

[25] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[26] Joy E Lawn et al. “4 million neonatal deaths: when? Where? Why?” In: The lancet

365.9462 (2005), pp. 891–900.

[27] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of the

IEEE international conference on computer vision. 2017, pp. 2980–2988.

[28] Ø. Meinich-Bache et al. “Activity Recognition from Newborn Resuscitation Videos”.

In: IEEE Journal of Biomedical and Health Informatics (2020), pp. 1–1.

[29] Ø. Meinich-Bache et al. “Object Detection During Newborn Resuscitation Activities”.

In: IEEE Journal of Biomedical and Health Informatics 24.3 (2020), pp. 796–803.

[30] David J Montana and Lawrence Davis. “Training Feedforward Neural Networks Using

Genetic Algorithms.” In: IJCAI. Vol. 89. 1989, pp. 762–767.

[31] Sarah G Moxon et al. “Count every newborn; a measurement improvement roadmap

for coverage data”. In: BMC pregnancy and childbirth 15.2 (2015), S8.

[32] G. Msemo et al. “Newborn Mortality and Fresh Stillbirth Rates in Tanzania After

Helping Babies Breathe Training”. In: PEDIATRICS 131.2 (Feb. 1, 2013), e353–

e360. issn: 0031-4005, 1098-4275. doi: 10.1542/peds.2012-1795. url: http://

94

http://arxiv.org/abs/1612.01925
https://doi.org/10.1542/peds.2012-1795
http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2012-1795
http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2012-1795
http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2012-1795

pediatrics.aappublications.org/cgi/doi/10.1542/peds.2012-1795 (visited on

05/04/2020).

[33] World Health Organization. Newborns: reducing mortality. 2019. url: https://www.

who.int/news-room/fact-sheets/detail/newborns-reducing-mortality (vis-

ited on 04/27/2020).

[34] Maria MP Petrou and Costas Petrou. Image processing: the fundamentals. John Wiley

& Sons, 2010.

[35] Daniel Scharstein. Middlebury flow. 2007. url: http://vision.middlebury.edu/

flow/code/flow-code/README.txt (visited on 06/12/2020).

[36] Dominik Scherer, Andreas Müller, and Sven Behnke. “Evaluation of pooling opera-

tions in convolutional architectures for object recognition”. In: International confer-

ence on artificial neural networks. Springer. 2010, pp. 92–101.

[37] Hoo-Chang Shin et al. “Deep convolutional neural networks for computer-aided de-

tection: CNN architectures, dataset characteristics and transfer learning”. In: IEEE

transactions on medical imaging 35.5 (2016), pp. 1285–1298.

[38] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.

Pearson Education India, 2016.

[39] Lisa Torrey and Jude Shavlik. “Transfer learning”. In: Handbook of research on ma-

chine learning applications and trends: algorithms, methods, and techniques. IGI Global,

2010, pp. 242–264.

[40] WHO — Neonatal mortality. WHO. Library Catalog: www.who.int Publisher: World

Health Organization. url: http://www.who.int/gho/child_health/mortality/

neonatal_text/en/ (visited on 05/04/2020).

[41] Dr Alan Woodruff. What is a neuron? Library Catalog: qbi.uq.edu.au. Nov. 22, 2016.

url: https://qbi.uq.edu.au/brain/brain-anatomy/what-neuron (visited on

04/30/2020).

[42] World Health Organization. Guidelines on basic newborn resuscitation. OCLC: 851144994.

2012. isbn: 978-92-4-150369-3. url: http : / / www . ncbi . nlm . nih . gov / books /

NBK137872/ (visited on 05/04/2020).

95

http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2012-1795
http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2012-1795
http://pediatrics.aappublications.org/cgi/doi/10.1542/peds.2012-1795
https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality
https://www.who.int/news-room/fact-sheets/detail/newborns-reducing-mortality
http://vision.middlebury.edu/flow/code/flow-code/README.txt
http://vision.middlebury.edu/flow/code/flow-code/README.txt
http://www.who.int/gho/child_health/mortality/neonatal_text/en/
http://www.who.int/gho/child_health/mortality/neonatal_text/en/
https://qbi.uq.edu.au/brain/brain-anatomy/what-neuron
http://www.ncbi.nlm.nih.gov/books/NBK137872/
http://www.ncbi.nlm.nih.gov/books/NBK137872/

[43] Bing Xu et al. “Empirical evaluation of rectified activations in convolutional network”.

In: arXiv preprint arXiv:1505.00853 (2015).

[44] H. Zhao et al. “Loss Functions for Image Restoration With Neural Networks”. In:

IEEE Transactions on Computational Imaging 3.1 (2017), pp. 47–57.

96

	Introduction
	Motivation
	Earlier major projects
	Previous Work
	Aims/Objectives
	Thesis outline

	Medical Background
	Birth Asphyxia
	Treatment
	Helping Babies Breathe

	Technical background
	Artificial Neural Networks
	Activation functions
	Fully Connected Feedforward Network
	Supervised Learning
	Loss functions
	Backpropagation

	Convolutional Neural Network
	Transfer Learning
	Object and Activity Detection networks
	RetinanetV2
	Inception I3D

	Optical flow
	FlowNet2

	Network backbones
	RetinaNet backbone - ResNet-50
	I3D backbone - Inception-v1
	FlowNet2 backbone - FlowNet

	Performance metrics
	True and false positives
	Precision-Recall
	Accuracy
	Intersect over Union

	Data augmentation
	Pre-Processing
	Histogram Equalisation
	Homomorphic Filtering
	Edge Detection
	Video frame interpolation

	Data material
	Safer Births
	Project data
	Data
	Datasets

	Nepal
	Classes of Interest

	Methods
	Earlier work
	Method overview
	Pre-processing
	Lighting correction
	Edge detection
	Interpolation

	Optical flow
	Object Detection
	Ensembling networks

	Post-processing
	Object Cropping
	Newborn Cropping

	Activity Recognition
	Proposed new pipeline
	Implementation
	Pre-processing
	FlowNet2
	RetinaNet
	Inception I3D
	Post-processing
	New pipeline

	Generating training data

	Experiments
	Training models
	Pre-processing image data
	Experiment 1: Lighting correction
	Experiment 2: Supplementing pre-processed images
	Experiment 3: Comparison of pre-processed input
	Experiment 4: Comparison between original model and ensemble

	Experiment 5: Adapting binary activity recognition models to multi-class
	Experiment 6: FlowNet2 model
	Experiment 7: Implementing previous work into a single pipeline

	Results
	Pre-processing image data
	Experiment 1: Lighting correction
	Experiment 2: Supplementing pre-processed images
	Experiment 3: Comparison of pre-processed input
	Experiment 4: Comparison between original model and ensemble

	Experiment 5: Adapting binary activity recognition models to multi-class
	Experiment 6: FlowNet2 model
	Experiment 7: Implementing previous work into a single pipeline

	Discussion
	Pre-processing
	Experiment 1: Lighting correction
	Experiment 2-4: Colour pre-processing

	Experiment 5: Adapting binary activity recognition models to multi-class
	Experiment 6: FlowNet2 model
	Experiment 7: Implementing previous work into a single pipeline

	Conclusion
	Bibliography

