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Abstract

Prostate cancer is the second most occurring cancer and the sixth leading cause of cancer
death among men worldwide. The number of cases is expected to increase dramatically
due to population growth and increased expected lifetime. The magnetic resonance
imaging (MRI) examination is an essential and a comfortable tool towards a precise
diagnosis at an early stage. The examination method is already used at several hospitals,
but its effective use depends on the expertise of clinical personnel.

This thesis will explore how generative adversarial networks can improve prostate seg-
mentation on MRI. Different architecture within the topic of deep learning have proven
to be accurate in biomedical image segmentation. However, it depends on a large volume
of training data that is hard to obtain due to privacy policy. This thesis investigates the
possibilities for generating new anonymized training data to improve biomedical image
segmentation.

The final results improve the segmentation score compared to just using the original data.
An underperforming segmentation network limits the segmentation results compared to
other networks using the same data, but present the potential for expanding the dataset
using generated data and improve the segmentation results.
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Chapter 1

Introduction

1.1 Motivation

Prostate cancer is the second most occurring cancer and the six leading cause of cancer
death among men, with 1.276.106 new cases and 358.989 deaths worldwide in 2018 [1].
This number is estimated to increase to approximately 2,3 million new cases by 2040,
due to population growth and increased expected lifetime [2].

The diagnosis relies on several tests and evaluations, which are both time-consuming
and expensive [3]. The first test is clinical and performed by a general practitioner (GP)
without the expertise and proper tools. The clinical examination can create uncertainty
as the available techniques used at the GP’s office are often misleading and imprecise.

The current examination methods are not complication-free. One of the side effects
experienced by several patients has been obtaining an infection after a guided biopsy
procedure at the hospital. Increased use of a Magnetic Resonance Imaging (MRI)
can make the examination process more comfortable for the patients and improve the
efficiency of future examination with precise localization of the prostate gland [4].

Different architectures within the topic of Deep Learning (DL) have proven to be accurate
on various vision recognition tasks, such as image classification and object detection [5].
A reliable automated segmentation tool could improve the existing MRI examination by
freeing up time for experts while retaining the quality of the diagnosis and allow the GP
to refer more patients.

A large volume of data is necessary to achieve precise results and train a successful
machine learning algorithm [6]. Access to a high amount of biomedical cases is often hard
to obtain in medical imaging due to privacy policy. The existing approach to extend a

1
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dataset called augmentation has improved the result of medical segmentation, but the
new data is often highly correlated to the original. A method that extends the dataset
with uncorrelated and anonymized data could potentially have a significant improvement
to DL-based medical segmentation.

1.2 Problem Definition

This thesis’s primary goal is to improve the robustness of image segmentation performed
on T2-weighted MRIs of the prostate. The main challenges of using biomedical data with
DL are privacy policy, resulting in limited access to a large volume of data. To the best
of my knowledge, this thesis introduces a new method to extend the dataset used to train
a Convolutional Neural Network (CNN) for biomedical image segmentation performed
on MRIs of the prostate.

1.2.1 Objectives

• To generate new anonymized training data using two Generative Adversarial
Networks (GAN) architectures named Deep Convolutional Generative Adversarial
Networks (DCGAN) and Image-to-Image translation (Pix2Pix).

• Use the CNN U-Net to segment the whole gland of the prostate from two-
dimensional (2D) MRIs and compare the result using standard augmentation
and the proposed method using GAN.

1.2.2 Proposed Method Overview

The augmentation does not require DL architectures, while the GAN based method
uses two. The first generates segmentation masks, which are used to generate new
uncorrelated and anonymized MRIs. The third and final DL architecture named U-Net
evaluates the segmentation result using the original, augmented, and generated data.
Figure 1.1 shows an overview of the proposed method.

Figure 1.1: This figure illustrates a simple overview of this thesis methodology. The
dataset is loaded, pre-processed, and extended with two different methods, augmentation
and GAN. A segmentation model named U-Net tests the proposed method and evaluate

the result.
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1.3 Related Work

This thesis uses three different DL architectures to generate images and test the result.
The DL-based image generator utilizes two existing GAN architectures. The model
that generates segmentation masks is named Deep Convolutional Generative Adversarial
Networks (DCGAN), first introduced by Alec Radford et al. in the paper "Unsupervised
representation learning with deep convolutional generative adversarial networks" [7].
Their goal was to combine the existing Convolutional Neural Network (CNN) and
Generative Adversarial Networks (GAN) with unsupervised learning. Yann LeCUN, et
al. first proposed CNN in the paper "Backpropagation Applied to Handwritten Zip Code
Recognition" [8] and Ian Goodfellow, et al. first proposed GAN in the paper "Generative
adversarial nets" [9].

The second architecture utilized to generate images is named Image-to-Image Translation
(Pix2Pix), first proposed by Phillip Isola et al. in the paper "Image-to-image translation
with conditional adversarial networks" [10]. Their network learns the mapping from input
to output images and a loss function to train this mapping. Their paper demonstrates
that this approach can generate photos from label maps, colorize images, and reconstruct
objects from edge maps.

To the best of my knowledge, there is no published work on generating MRIs and
corresponding segmentation masks of the prostate gland using DCGAN and Pix2Pix.
The paper "Medical Image Synthesis for Data Augmentation and Anonymization using
Generative Adversarial Networks" [11], written by Hoo-Chang Shin et al., generates
synthetic MRIs of the brain using Pix2Pix GAN. They uses real segmentation masks
with multiple classes, instead of generating new synthetic.

The U-Net segmentation network is used in this thesis to evaluate the proposed method.
Olaf Ronneberger et al. first proposed U-Net in the paper "U-Net: Convolutional
Networks for Biomedical Image Segmentation" [12]. This method was designed with a
training strategy that took advantage of data augmentation to use the available data
more efficiently.

This thesis uses the Prostate MR Image Segmentation 2012 (PROMISE12) challenge
dataset [13]. Some previous implementation is published, where this thesis has used
Inom Mirzaev’s work on "Fully convolutional neural network with residual connections for
automatic segmentation of prostate structures from MR images" to solve the PROMISE12
challenge as an inspiration for the U-Net implementation and data pre-processing. [14]
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1.4 Outline

This thesis starts with a brief introduction and explanation of the motivation for the
subject. The remaining part of this thesis is structured into seven different chapters.

• The second chapter is named Medical Background and describes the essential
medical theory used in this thesis.

• The third chapter is named Technical Background and contains the most important
background theory related to the technology used in this thesis.

• The fourth chapter, named Materials and Image Pre-Processing, describes the
dataset used in this thesis and the pre-processing methods used to improve the
data.

• The fifth chapter is named Solution Approach and describes the proposed method
to generate new data using GAN.

• Chapter six, named Experimental Evaluation, describes the experimental setup,
including U-Net, and evaluates the generated data both visually and with the use
of U-Net. This chapter does also compares the U-Net performance after training
on original, augmented, and original combined with generated data.

• Chapter seven presents a discussion of the results and limitations of this thesis.

• Chapter eight is the last one and presents the conclusion of this thesis work.



Chapter 2

Medical Background

2.1 Prostate Cancer

Prostate cancer is the second most occurring cancer and the six leading cause of death
caused by cancer among men, with 1.276.106 new cases and 358.989 deaths worldwide in
2018 [1]. This number is estimated to increase to approximately 2,3 million new cases by
2040, due to population growth and increased expected lifetime [2].

A process called cell division regenerates all tissue in the human body. Old cells die,
and new cells are born. The growth pattern can, in some cases, change and cause
overproduction, known as a tumor. These tumors can be both benign and malignant.
When cell division gets out of control and immature cells grow and propagate, cancer is
created. Cancer cells can grow into neighbor tissues and expand to different parts of the
human body. [15]

Figure 2.1: Diagram showing stage T4 prostate cancer.
The figure is reprinted in unaltered form from Wikimedia commons, File: Diagram

showing stage T4 prostate cancer CRUK 454.svg, licensed under CC BY-SA 4.0

5

https://creativecommons.org/licenses/by-sa/4.0/deed.en


Larsen, Steinar Valle Chapter 2 Medical Background

The location of the prostate is underneath the bladder. The first part of the urethra
goes through the prostate. The gland’s main task in the prostate is to provide liquid in
order to keep the semen flow. The prostate will continue to grow as men grow old, and
eventually, most men can experience symptoms of a larger prostate. A growing prostate
is not necessarily cancerous but can give similar symptoms as a tumor. Prostate cancer
symptoms are often frequent urination, trouble starting and stopping while urinating,
and blood in the urine. [15]

2.2 Prostate Cancer Examination Methods

There are already some existing diagnostic methods to determine if a patient has prostate
cancer. The following examination routines are often part of the entire diagnostical
process if the patient experiences symptoms such as frequent urination.

2.2.1 Digital Rectal Exam

This is an examination where the GP inserts a gloved, lubricated finger into the rectum.
The GP will be able to feel the rear part of the prostate and determine its size and shape.
A GP performs Digital Rectal Exam (DRE) before referring the patient to an expert.
Illustration of DRE in figure 2.2. [16]

Figure 2.2: Digital rectal examination.
The figure is reprinted in unaltered form from Wikimedia commons, File: 482px-

Digital_rectal_exam.jpg

2.2.2 Prostate-Specific Antigen Test

This is an examination where the Prostate-Specific Antigen (PSA) level in the patient’s
blood is measured by obtaining a blood sample. The amount of PSA in the blood
increases when a patient has prostate cancer, but this will also increase when the patient
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has a benign growth of the prostate. The test is most useful when the doctor can compare
a sample taken before and after the patient got cancer. [15]

2.2.3 Biopsy

If the GP suspects cancer, biopsies will be the next step. The most common prostate
biopsy method is a transrectal ultrasound scan (TRUS). However, the risk of infection is
proven to be between 5% and 7%, even with preventive measures [17]. This examination
is performed at the hospital by specialists, where a needle gets inserted into the prostate
eight to ten times in order to obtain tissue from several parts [15]. Figure 2.3 visualizes
the process of TRUS. The patient’s prognosis is obtained using the Gleason score grading
system on a sample from the prostate biopsy. A pathologist evaluates the Gleason score,
measuring the staging for prostate cancer. A high Gleason score indicates aggressive
cancer with a worse prognosis. [18]

Figure 2.3: Transrectal ultrasound scan examination.
The figure is reprinted in unaltered form from Cancer Research UK’s webpage [19]

2.2.4 Magnetic Resonance Imaging

MRI examinations locate the tumor and are often taken before a biopsy, as they improve
the precision. Some articles indicate that MRI can assist in determining if the tumor
is aggressive or benign [20]. Good cooperation between MRI-experts and surgeons can
improve the current treatment and have a significant impact on the prognosis of the
disease at an early stage. [15]

MRIs are evaluated by a radiologist using the Prostate Imaging Reporting and Data
System (PI-RADS) scoring system [21]. PI-RADS was designed to promote global
standardization of prostate multiparametric magnetic resonance imaging (mpMRI) ex-
amination. Standardization aims to improve the detection of clinically significant cancer
and locate benign diseases to diminish unnecessary biopsy. [21]





Chapter 3

Technical Background

3.1 Magnetic Resonance Imaging

This chapter starts by explaining some terminology within the topic of Magnetic Reso-
nance (MR) technology and it continues by explaining the process involved in MRI.

3.1.1 Basic Terminology

An MR-examination depicts digital images of internal organs with the use of a strong
magnetic field and radiofrequency. MRIs are obtained using a pulse sequence involving
adjustable timing values, termed Repetition Time (TR) and Echo Time (TE). TR is the
time between similar events on a recurrent series of pulses and echoes. The TE describes
the time separating the center location of the RF pulse and the corresponding echo. [22]

MRI uses the natural properties of hydrogen in water or lipids to capture images. Two of
the most fundamental parameters are characteristic times, termed spin-lattice relaxation
time (T1) and spin-spin relaxation time (T2). This thesis uses T2-weighted images, where
tissues with long T2 specific time are brighter as the signal intensity becomes strong. T1 is
the opposite, where tissues with long T1 specific time result in a weak signal. T2-weighted
images are more time consuming to produce than T1-weighted images, as long TR and
TE are required. The brightest intensity of a T2-weighted image shows fluids, and the
mid-grey values correspond to water- and fat-based tissues. Regions of abnormal fluids
have the most substantial intensity compared to the darker ones for healthy tissues. [22]

9
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3.1.2 Analog-to-Digital Converter

The analog MRI signal is transformed into a digital matrix and visualized as an image.
Each pixel in the image corresponds to a value originating from the matrix. The original
analog MR signal is continuous, where each point in time corresponds to a value. The
signal is transformed from continuous to discrete using an analog-to-digital converter.
A digital image is always discrete, as each pixel corresponds to one sample. A discrete
signal is represented by samples in the time domain and can be less accurate. [22]

Figure 3.1: Illustration of the process behind capturing a MRI

The pixels in the digital image are sorted into rows and columns in an image array. For
MRIs, the columns are often referred to as the frequency-encoding (FE) matrix, and the
rows are referred to as the phase-encoding (PE) matrix, as illustrated in figure 3.1. MRIs
does also have a third dimension, which is the slice thickness. Each MRI contains several
slices that correspond to multiple 2D images in depth. An empty array is created before
the scanner starts to fill in the information. The empty array is called raw data space
and often termed as k-space. The scanner fills one row per sequence until the entire
array corresponds to the MRI, as illustrated in figure 3.1. [22]

3.2 Neural Network

The first Neural Network (NN) design was published by Warren McCulloch and Walter
Pitts in 1943 [23], who developed a NN based on algorithms named threshold logic. The
name originates from the neural architecture of a human brain. A NN is a structure of
processing elements (often referred to as neurons or nodes) connected with unidirectional
signal channels, termed connections. Each neuron calculates and distributes a value via
connections to the next layer of neurons. The neuron’s output corresponds to different
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types of mathematical functions, but all processing done by the neuron must only depend
on the current input values and values stored in the local memory of a neuron [24].

Figure 3.2 illustrates a simple feedforward network example with two inputs values
(x = [x1, x2]), one hidden layer with four neurons, and two outputs values (ŷ). The input
value x contains the initial information that propagates to each neuron in the hidden
layers and, at the end it predicts the output (ŷ).

Figure 3.2: Illustration of a neural network on the left side with two input values (x),
one hidden layer including 4 neurons, and two output values. Neurons, input, and
output values are combined with connections. The right side of the figure illustrates a

neuron and the including mathematical functions.

Figure 3.2 does also illustrates a neuron with the corresponding mathematical functions.
A neuron has N number of input values received over N connections. The example in
figure 3.2 has two inputs, equal to x1 and x2, for each neuron in the hidden layer. The
mathematical layer within a neuron adds a specific weight (w = [w1, ..., wN ]), learned
by the algorithm itself, to the input vector (x = [x1, ..., xN ]). The next mathematical
function adds a parameter, termed bias (b), to adjust the output value. The neuron
process this information and passes the result into an activation function g(z) [25]. The
result after the activation function is equal to the neuron output, where ŷ is equal to the
final hidden layer output, as shown in equation 3.1.

ŷ = g(z) = g

(∑
i

wixi + b

)
(3.1)

Equation 3.1 is the calculation of the last hidden layer, where g is the activation function
and z corresponds to the neuron input and local parameters. The input variable x in
equation 3.1 resembles the previous layer’s output value or the network input values if
the calculation applies to the first hidden layer.
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3.2.1 Backpropagation and Gradients

A NN architecture learns by minimizing the loss value L in equation 3.2 and improves
the prediction by adjusting the local weights w in each neuron. The goal of the learning
process is to find weights that predict an output equal or close to the expected value
for each input. With fixed and finite training data, including both input and expected
output, the calculation of weights is a measure of the variation between the predicted
and expected output.

L(w) = Loss(ŷ, y) (3.2)

For general feedforward NNs, the method popularized by David E. Rumelhart et al.,
named backpropagation, allows the information from the loss to propagate backward
through the network to compute the gradient [26]. Backpropagation is a method to
compute the gradient, while optimizer algorithms learn by using this gradient [27, page
279 - 307]. In learning algorithms, the method to compute the gradient utilizes the chain
rule for derivatives that compute the gradient of the loss function L(w) with respect to
the weights w, as calculated in equation 3.3. [26]

∂L(w)
∂wij

= ∂L(w)
∂xj

· ∂xj
∂wij

(3.3)

In equation 3.3, the parameter xj corresponds to the j-th input, and wji is the weight
for the i-th output towards the j-th input, as backpropagation transfer information
backward. [26]

3.2.2 Optimizer Algorithms

Optimization is common within DL algorithms and relates to minimizing or maximizing
a function f(x) by adjusting x. In this thesis, optimizers improve the learning process by
minimizing the loss function. These optimizers are gradient-based and use the gradient
calculated by algorithms, such as backpropagation, to learn features that minimize the
loss in a process, termed gradient descent (GD). [27, page 279 - 307]

Figure 3.3 shows a function f(x) including one global minimum and two local minimum.
The global minimum obtains the lowest value of f(x), and the local minimum is a point
where f(x) is lower than all neighboring points on both sides. The goal of optimization
is to find the global minimum, but one prominent problem is that the local minimum
often seems global and reduces the model’s performance.
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Figure 3.3: Function f(x) including one global minimum and two local minimum.

The algorithm used in this thesis is the Adam optimizer algorithm, which combines a
basic algorithms named stochastic gradient descent (SGD) with Momentum [28], and an
algorithm with an adaptive learning rate1, named RMSProp [29].

Stochastic Gradient Descent with Momentum

The original SGD is an iterative algorithm that aims to optimize a loss function under a
specific criteria. SGD starts with an initial guess and generates a sequence of values for
the learning rate. The algorithm replaces the original gradient with an approximation,
which means that it is a stochastic estimate of the gradient descent optimization. The
algorithm is a popular optimization algorithm within the topic of machine learning, but it
can sometimes be slow. The SGD with momentum accelerates learning in situations with
high curvature, noisy gradients, or small, consistent gradients. The algorithm accumulates
an exponentially decreasing moving average of previous gradients and proceeds in that
direction [27, page 290 - 296].

w := w − η∆Li(w) + α∆w (3.4)

Equation 3.4 calculates new values for the weights using SGD with momentum. Where
w is the weight, and Li correspond to the loss for the i-th observation. The variable η is
the current learning rate, and α is an exponential decay factor between zero and one.
[30]

1The learning rate determines the step size for an optimization algorithm that seeks to minimize a
loss function.
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RMSProp

The RMSProp algorithm has an adaptive learning rate, which keeps a moving average of
the magnitudes of previous gradients for each weight. The magnitude of the gradient
does change differently for each weight and can vary during the learning process, making
algorithms with adaptive learning rates preferable. The main advantage of using RMSprop
compared to earlier proposed optimizers with adaptive learning rate, is the opportunity
to use mini-batches. A mini-batch is a small batch of the training dataset that optimizers
are using to update different types of parameters, mainly model weights. [29]

MeanSqueare(w, t) = 0.9 ∗MeanSquare(w, t− 1) + 0.1
(
∂Ci(w)
∂w(t)

)2
(3.5)

In equation 3.5 the parameter w corresponds to the weight and t resembles the time.
The factor 0.9 and 0.1 is just weighted factors for the average squared gradient and the
current gradient. [29]

w := w − η√
MeanSquare(w, t)

∆C(w) (3.6)

Adam

The name Adam originates from the phrase "adaptive moments" as the algorithm is a
variant of the combination of RMSProp with adaptive learning rate and the SGD with
momentum. The momentum in adam optimizer is included directly as an estimate of
the first-order moment of the gradient. Adam includes a bias to the estimates of the
first-order moments and the second-order moments, considering their initialization at
the origin. [27, page 302 - 306]

The pseudo-code to explain the Adam optimizer algorithm 3.1 is reprinted in unaltered
form from the original paper "ADAM: A METHOD FOR STOCHASTIC OPTIMIZA-
TION", written by Kingma and Ba in 2014. [31].

3.2.3 Activation Function

The activation function g(z), determines the output of a neuron and can be both linear
and non-linear. The value z corresponds to the local values calculated in each neuron (see
section 3.2). To learn parameters for complex non-linear models, the activation function
for each neuron in the hidden layers must be non-linear. This section introduces some
basic intuitions motivating some commonly used activation functions.
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Algorithm 3.1 Adam, our proposed algorithm for stochastic optimization. g2
t indicates

the elementwise square gt � gt. Good default settings for the tested machine learning
problems are α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. All operations on vectors
are element-wise. With βt1 and βt2 we denote β1 and β2 to the power of t
Input: α: Stepsize
Input: β1, β2 ∈ [0, 1]: Exponential decay rates for the moment estimates
Input: f(x): Stochastic objective function with parameters θ
Input: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∆θft(θt−1) (Get gradients w.r.t stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1 (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute biased corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

end while
return θt (Resulting parameters)

Rectified Linear Unit

Rectified Linear Units (ReLU) are units (often referred to as neurons) with the Rectified
Linear activation functions. The mathematical description of ReLU is shown in table
3.1. The ReLU is similar to a linear function but returns zero for half of its domain. As
a result, the first derivative remains large and consistent. The first derivative of ReLU,
often referred to as the gradient, is zero for values above zero and one for values below
or equal to zero. [27, page 187 - 192]

Plot Activation function

g(z) =
{
z if z ≥ 0
0 if z < 0

Table 3.1: ReLU activation function.
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Leaky Rectified Linear Unit

Leaky Rectified Linear (LeakyReLU) activation was first presented by Maas et al. [32].
Table 3.2 shows the mathematical description of the function, where the difference
between this and the original version is the fixed parameter a. The original paper
recommends a to be 100, but it can also be a number in the range [1,∞]. [33]

Plot Activation function

g(z) =
{
z if z ≥ 0
z
a if z < 0

Table 3.2: LeakyReLU activation function.

Sigmoid

The sigmoid activation function exists in the range [0, 1], as shown in table 3.3. This
thesis uses the Sigmoid on some of the output units to predict a binary variable. Unlike
ReLU and LeakyReLU, the sigmoidal units saturates most of their domain. Large positive
z saturates to a high output value, and large negative z saturates to a low output value,
but the output is sensitive when z is close to zero. The Sigmoid activation is often just
used in the output layer where a loss function can compensate for saturation, as it makes
gradient-based learning hard within the hidden layers. [27, page 178 - 192]

Plot Activation function

g(z) = σ(z) = 1
1+e−z

Table 3.3: Sigmoid activation function.

Hyperbolic Tangent

The Hyperbolic Tangent (TanH) is similar to the Sigmoid function, as shown in table 3.4.
Unlike the sigmoid function, the range is [−1, 1]. The main advantage of TanH against
the Sigmoid function is that TanH is not that sensitive to z values close to zero. Negative
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z saturates to a negative output, and positive z saturates to a positive output. Input
values z close to zero results in an output near zero. [27, page 178 - 192]

Plot Activation function

g(z) = 2σ(2z)− 1 = 2
1+e−2z − 1

Table 3.4: TanH activation function.

3.2.4 Supervised, Semi-supervised and Unsupervised Learning

A machine learning problem needs input information to learn. The term supervised
learning corresponds to the process where the input x has an expected output y, termed
label, and tries to produce a predicted output ŷ equal to y. An unsupervised problem
uses unlabeled data to train. It seeks to automatically discover and learn patterns and
regularities in the input data to produce the predicted output ŷ. A Semi-supervised
problem is a combination of supervised and unsupervised learning, that learns from both
labeled and unlabeled data. [34] [35, page 3 - 5]

3.3 Convolutional Neural Networks

Deep CNNs have outperformed and dominated the task of visual recognition in recent
years [36] [37]. The technology has existed for a long time [8], but small datasets and
limited access to computer power narrowed the potential of the technology.

”Convolutional networks are simply neural networks that use convolution in
place of general matrix multiplication in at least one of their layers.”

— Page 326, Deep learning, 2016 [27]

CNN consists of one or more models that take an input image, pass it through convolu-
tional and other image processing layers, and get an output. This chapter explains some
of the main topics within the technology of CNN.
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3.3.1 Convolution Layer

A standard convolutional layer starts with an input image of size n∗m, where n represents
the number of pixels in width and m in height. The convolutional calculation between the
input and output depends on two main parameters, the number of padding (p) and stride
(s). The padding adds a border around the image with a specific value. A commonly
used padding technique is zero padding, which adds a border of pixels with the value of
zero around the input array. Padding is used when the kernel size and input size does
not add up. The parameter named strides decides the number of n or m to shift the
kernel when moving across the image. A kernel extract features, like edges and corners,
from a region termed receptive field, and produces an output termed feature map. The
spatial dimension of the output images after convolutional layers is often less than the
input, but can also be equal if the stride is equal to 1. [27, page 327 - 329]

Figure 3.4 visualizes the standard process achieved by a convolutional layer, where the
input illustrates an image with m and n equal to 6 pixels.

Figure 3.4: Illustration of the process behind a convolution layer

3.3.2 Transposed Convolution Layer

Transposed convolution is an implementation of trainable upsampling. Figure 3.5
visualizes the process of transposed convolution. Similar to the standard convolution
layer, transposed layer is also defined by strides (s) and padding (p). The input layer does
often have a smaller spatial dimension, then the output. The first step is to add zeros
between each number in the input, which increases the image size to (2 ∗m− 1, 2 ∗n− 1).
The next step is zero padding, that adds p layers of pixels equal to zero, surrounding
the image array. Standard convolution with strides (s) processes the new image with
zeros between and around the original pixels and returns the output array. A common
mistake is to define transposed convolution as the opposite of standard convolution.
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This interpretation is wrong as the transposed convolution does only reverse the spatial
dimensions but not the values of standard convolution. [38]

Figure 3.5: Illustration of the process behind a transposed convolution layer

3.3.3 Max Pooling

The max pooling layer downsamples the image as well as it keeps the largest (and most
important) values. The function downsamples the image to halve the input in both
spatial dimensions, if the pooling size is equal to 2x2. The concept of max pooling with
the same parameters, as used in this thesis, is visualized in figure 3.6. [27, page 335 -
339]

Figure 3.6: Illustrate the max pooling process with pooling size of 2x2.

3.3.4 Flatten and Fully Connected Layers

The layer named flatten is usually at the end of the model. The input of a flatten layer
is equal to a 2D array, such as an image. The flatten layer transforms this array into a
one-dimensional linear vector to connect with the fully connected layer. Fully connected
layers originate from the original NN structure and are often implemented at the end of
a convolutional network to make a decision. Figure 3.7 illustrates a standard process
where an array is transformed with a flatten layer and combined with a fully connected
layer. [39]
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Figure 3.7: Illustration of flatten and fully connected layers

3.3.5 Dense Layer

A Dense layer includes neurons from a NN and is commonly used in classification models.
A NN is a structure of several nodes, where each node includes three layers, weights,
bias, and an activation function, as explained in chapter 3.2. A dense layer is a part of
the Keras library [40] and consists of two or more nodes. This layer is useful as one node
can only draw one decision boundary2. [41]

Figure 3.8: Shows classification problems where two is possible to separate with one
decision boundary and one needs a dense layer as it is impossible to classify using one

decision boundary.

Figure 3.8 illustrates three examples where two are possible to separate with one decision
boundary, and one is not. The illustration visualizes an AND gate, OR gate, and an
XOR gate. Since one node draws one decision boundary, two nodes are required to draw
the decision boundaries for an XOR gate. The number of neurons (N) in a dense layer is
equal to the number of classes in the output. For classification on values reaching from 0
to 9, N is equal to ten. [41]

2A decision boundary is a linear function separating samples from a vector space into two classes.
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3.3.6 Operations performed in CNN

This section describes some typical operations performed in CNN to boost performance.

Batch normalization

All three models in this thesis are CNNs where several layers are stacked on top of each
other. These networks cause the distribution to change throughout the training as each
layer’s input is affected by the previous. Small parameter variations in the previous
layer increase as the network grows, which can cause a considerable variation at the end
feature map distribution. Equation 3.7 describes the calculation of batch normalization,
which performs normalization on the previous layers and takes advantage of working
with batches to make the network more stable. The input of the current layer is equal to
xk, and the batch normalization’s output is x̂k. The batch mean is subtracted from the
past layer output and divided by the batch standard deviation. [42]

x̂(k) = x(k) − E[x(k)√
V ar[x(k)]

(3.7)

Dropout

NNs include non-linear hidden layers that learn complicated relations between the input
and the expected value. The result can be affected by sampling noise generated, if
training data is deficient. This problem is called overfitting, in machine learning terms.
One of the most common techniques to avoid overfitting is termed dropout, first proposed
by Srivastava, Nitish, et al." Dropout: a simple way to prevent neural networks from
overfitting", JMLR 2014. [43]

The term dropout applies to drop neurons, both hidden and visible, in a NN. The dropout
approach is temporarily excluding the neurons and the associated connections from the
network. Which neurons to drop is randomly calculated, where each neuron is retained
with the fixed independent probability of p. [43]

3.4 Augmentation

Image augmentation is a well-established method to expand the training data set arti-
ficially. Data augmentation is not made to expand the dataset to more examples, but
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rather to augment the images to new versions of themselves for each epoch3 or batch4.
The model that learns features from the images will read the augmented versions as new
images, known as artificial expanding. Several different implementations are accessible
online. This thesis makes use of the Keras built-in function for image augmentation [44].
Some of the image augmentation types used in this thesis are listed below. [45]

• Image shift: Moves all the pixels of an image in one direction. This augmentation
method removes a region of the image and leaves a black region on the other side.

• Rotation: Rotates the image clockwise in the range of [0, 360] degrees, starting
from the original angle. The rotation augmenter rotates some pixels out of the
image and leaves a black region.

• Horizontal flip: Reverses all rows of pixels.

• Vertical flip: Reverses all columns of pixels.

• Zoom: Applies random zooming in the range of [min, max] on the image. Zoom
parameter equal to 1 corresponds to the original image. Zoom larger than one
moves the object further away, while a zoom less than one moves the object closer.

3.5 Generative Adversarial Network

The GAN architecture was first introduced in 2014 by Ian Goodfellow et al. in the paper
titled Generative Adversarial Networks [9]. The baseline for GAN is a game-theoretic
scenario with an architecture of two competing models, a generator that generates images
similar to the training data and a discriminator that classifies the input images from
the dataset as true and the generator as false. Generative modeling, in general, is an
unsupervised learning process without a label to correct the prediction. GAN solves the
generative process by framing the task as supervised learning, where the discriminator
acts as the label. The two next subsections explain two GAN architectures that generate
images is this thesis. [35, page 3 - 11] [46]

3.5.1 Deep Convolutional Generative Adversarial Networks

In recent years, DCGAN has become a standard implementation of GAN. The struc-
ture was first applied in the paper "Unsupervised Representation Learning with Deep

3One epoch implies that the dataset is transferred through a neural network once.
4Batch size is the number of training samples simultaneously passed through a neural network.
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Convolutional Generative Adversarial Networks", written by Alec Radford et al. in 2016
[7]. DCGAN was developed to promote the unsupervised learning in combination with
convolutional networks.

DCGAN is similar to the original GAN architecture and consists of two CNNs, one
generator, and one discriminator. The main difference is that convolutional stride replaces
max pooling, transposed convolution is used instead of upsampling, and fully connected
layers are removed. Figure 3.9 illustrates the structure of the generator from the original
paper for DCGAN.

Figure 3.9: Illustration of the original DCGAN generator implementation. The figure
is reprinted in unaltered form from the paper written by Alec Radford et al. named
"Unsupervised Representation Learning with Deep Convolutional Generative Adversarial

Networks" [7]

3.5.2 Image-to-Image Translation

Image-to-image translation, also known as Pix2Pix, was first published in the paper
"Image-to-Image Translation with Conditional Adversarial Networks" written by Phillip
Isola et al. in 2017 [10]. The article investigates conditional adversarial networks as a
general-purpose solution to image-to-image translation problems. Pix2Pix is used in this
thesis to generate new MRIs based on the DCGAN generated segmentation masks.

The Pix2Pix architecture learns the mapping between input and output image, but
also a loss function to train this mapping. As a result, the same generic approach can
be applied to problems that traditionally would require complex loss functions. The
article demonstrates that image-to-image translation is useful to generate images from
label maps, to reconstruct objects from edge maps, and to colorize images based on
segmentation masks. [10]
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The Pix2Pix architecture is also built with two competing models, one generative and one
discriminative model. A high-level illustration of the cooperation between the generator
and discriminator is visualized in figure 3.10

Figure 3.10: Training a conditional GAN to map segmentation masks to MRIs. The
discriminator, D, learns to classify between synthetic and real MRIs. The generator, G,

learns to fool the discriminator. [10]

The Pix2Pix generator uses a U-Net based architecture, which is the same technology
as explained in chapter 3.6. The input image is equal to a feature map, for example, a
segmentation mask. This image is compressed into a low dimensional vector representation.
The generator tries to upsample this image to be similar to the expected value, and fool
the discriminator. The expected value can, for example, be the corresponding MRI slice
to a segmentation input. [35, page 466 - 516]

The Pix2Pix discriminator, often referred to as PatchGAN discriminator, classifies a
(N x N) patch of the image. The advantage of PatchGAN discriminators, compared to
classifying the entire image at once, is fast computing and better classifying of small
details. [35, page 466 - 516]

3.6 U-Net segmentation

A binary segmentation means that the segmentation consists of two classes, background,
and object. The segmented part of the image array is equal to one, and the background
is equal to zero.

U-net has become a common tool to perform image segmentation. The structure was first
applied in 2015 to process biomedical images [12]. An illustration of the original structure
is visualized in figure 3.11. The name U-net originates from the shape of the network.
The left part of the architecture consists of a contracting path. The contracting path
corresponds to a general convolutional network, which captures context. A symmetric
expanding path is added to the right side, which enables precise localization.
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Figure 3.11: Illustration of the original U-Net generator implementation. The figure is
reprinted in unaltered form from the paper written by Olaf Ronneberge named "U-net:

Convolutional networks for biomedical image segmentation"[12]

Each process, in both the contracting and expanding path, forms two convolutional
layers, illustrated as three rectangles. The input is a grayscale image with height and
width equal to 572 pixels and a depth of one channel. The depth of the input image
increases after a convolutional layer. In this structure, it extends from 1 to 64 after the
first process. The size of the last image in the initial process shrinks due to padding
issues related to the size of the kernels. The red arrow is the pooling process and halves
the dimension of the height and width in the images. The convolutional and pooling
process are repeated three times until the dimensions are 28x28x1024 (height, width and
depth, respectively determined).

In the expanding path, the size of the image is upsampled to its original size using
transposed convolutional layers. After the first layer, the image resized to 56x56x512.
This image gets concatenated with the corresponding image on the contracting path.
The two concatenated images have a combined size of 56x56x1024 and connected to
receive a more accurate prediction. Same as in the contracting path, the transposed
convolutional process is repeated three times. The last process has an extra filter with a
kernel size of 1x1. The final kernel reshapes the image to the required size.
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3.7 Metrics and Loss Function

A loss function, often referred to as a cost or error function, seeks to minimize a loss
value to optimize a machine learning model. Metrics are used to judge the model’s
performance by measuring the similarity between the predicted and the expected output.
This thesis uses binary segmentation, which corresponds to a segmentation task with
two classes. An area with class labeled as one is "true" and defines a region of interest.
An area with class label zero is "false" or negative, which corresponds to the background.
All matrices and loss functions are explained based on binary segmentation tasks.

3.7.1 Pixel Accuracy

Pixel accuracy is perhaps one of the most straightforward matrices to estimate the
model’s performance. It compares each pixel in both the expected and predicted output
and returns the percentage of correct pixel classification. The disadvantage of pixel
accuracy appears when classes should be weighted differently. The illustration in figure
3.12 is a binary segmentation, which means that it contains two classes. The first class
is the background visualized as black pixels, and the second class is the segmentation
illustrated with white pixels. The left image corresponds to the expected segmentation,
and the right image is the predicted segmentation. The number of pixels in each image
is 100, and the expected segmentation has four white pixels and 96 black pixels. The
predicted image has 100 black pixels.

Figure 3.12: The left figure is the expected segmentation and the right figure is the
predicted segmentation

The prediction will then be 96% correct, using pixel accuracy. This calculation is correct
but useless to measure the model’s performance, as 96% appears as a valid prediction.
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3.7.2 Dice Coefficient

The dice coefficient is a weighted measure of the model’s performance and commonly used
in image segmentation tasks. Equation 3.8 describes the dice coefficient, where TP, FP,
and FN correspond to true positive, false positive, and false negative pixels, respectively.
TP is a region where the prediction and expected output are true, FP is a region where
the prediction is true, and the expected output is false, FN corresponds to the region
where the expected value is true and the prediction is false, and TN corresponds to the
region where both are false.

Dice coefficient = 2TP
2TP + FP + FN

(3.8)

The Dice coefficient exists in the range [0, 1], where zero corresponds to a wrongly
predicted segmentation, and one indicates that the prediction is a perfect reconstruction
of the expected segmentation. [47]

3.7.3 Relative Absolute Volume Difference

The Relative Absolute Volume (RAV) difference is a metrics that measures the relative
absolute volume difference between the expected segmentation and the predicted segmen-
tation. RAV equal to zero corresponds to a perfect reconstruction of the relative absolute
volume, but the segmentation could still be wrong as long as the volume is equal. [48]

3.7.4 Mean Surface Distance

The Mean Surface Distance (MSD) is a metrics that measures the distance between the
predicted segmentation boundary and the expected boundary. Equation 3.9 describes
the total surface distance d between the expected surface S and the predicted surface Ŝ.
The minimum of euclidean norm gives the distance between a point p on the expected
surface S and the predicted surface Ŝ. The goal when measuring surface distance on
image segmentation is to get this value as low as possible. [49]

d(p, Ŝ) = min
p̂∈Ŝ
||p− p̂|| (3.9)
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3.7.5 Hausdorff Distance

The Hausdorff Distance (HD) is a metrics that describes the longest distance possible to
travel between one point on the expected output boundary towards the closest point on
the predicted output boundary. This thesis uses the 95th percentile of the HD, which is
more used on biomedical segmentations as it skips small outliers. [50]

3.7.6 Dice Loss

The dice loss is a value to optimize a machine learning model, that is equal to 1− Dice
coefficient. This thesis uses a version that returns a single scalar for each image. The
dice loss is defined in equation 3.10, where ”I” corresponds to the expected output and
”Î” is equal to the predicted output. [47]

DL(I, Î) = 1− 2∑ Ih,wÎh,w∑
Ih,w +∑

Îh,w
(3.10)

3.7.7 Binary Crossentropy

The Binary cross-entropy is a loss value that optimizes a machine learning model. This
loss is often used in correlation with models that use a sigmoid activation function at
the output layer. The binary cross-entropy is defined in equation 3.11. The output range
for binary cross-entropy is equal to [0,∞] [47]

CE(p, p̂) = −(p log(p̂) + (1− p) log(1− p̂) (3.11)

3.7.8 Mean Absolute Error

The Mean Absolute Error (MAE or L1) is a loss value that optimizes a machine learning
model. This loss is often used for regression models. It calculates the sum of the absolute
difference between the expected y and predicted output ŷ. The output range for MAE is
equal to [0,∞] [47]

MAE =
∑n
i=1 |yi − y

p
i |

n
(3.12)
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3.8 Software

The technical part of this thesis is implemented with the programming language named
Python. Python is a high-level, general-purpose programming language. A high-level
programming language makes the process of developing simpler with the use of natural
language and leaving hardware configurations to automate systems. A general-purpose
programming language is used to develop a wide range of software applications [51].

Python does also use external libraries with additional premade functions. This chapter
will describe some of the main libraries added to the implementation of this thesis.

3.8.1 Tensorflow

Tensorflow is an interface and implementation to express and execute machine learning
algorithms. The library can be used to implement a wide variety of algorithms for a deep
NN, like training and inference algorithms. [52]

3.8.2 Keras

The DL application programming interface (API) used in this thesis is Keras. Keras
library uses Tensorflow to enable fast experimentation and implementation of DL ideas.
[40]

3.8.3 Insight Toolkit

The Insight Toolkit (ITK) is an open-source library written in the programming language
named C++, but supports multiple language bindings. The library is primarily used
for medical image analysis, but can also be applied to other images. In this thesis, the
library is used to read the medical file extension .mhd for the MRI images. The library
is also used to implement the image preprocessing functions. [53] [54]

3.8.4 Numerical Python

The Numerical Python (NumPy) library is developed for Python programming language
and supports high-level scientific computing and data analysis for numbers and multi-
dimensional arrays. This library has been used within several functions in this thesis to
generate random integers, generate arrays, and execute mathematical functions. NumPy
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is also used by several other libraries like Tensorflow, which utilizes the library to build
the Tensor objects and more. [55]



Chapter 4

Dataset and Image Pre-Processing

4.1 Dataset

The dataset used in thesis work originates from the Prostate MR Image Segmentation
2012 (PROMISE12) challenge, with a submission deadline of June 29th, 2012. The
dataset and submission for evaluation are still available in June 2020. Figure 4.1 shows
a random MRI slice with the corresponding segmentation mask, obtained from the
PROMISE12 dataset. [56][57]

The PROMISE12 challenge aims to improve interactive and (semi-)automatic segmenta-
tion algorithms that segment the prostate in transversal T2-weighted MRIs. The system
should be generalized and be able to segment the prostate from multiple centers and
vendors data. [56]

Figure 4.1: One transversal T2-weighted MRI and the corresponding segmentation
mask from the PROMISE12 dataset

The dataset consists of 50 cases for training and 29 cases to test the implementation.
Each training case has one transversal T2-weighted MRI of one anonymous patient’s
prostate and a corresponding label. Each test case does only have the transversal T2-
weighted MRI, as the label is hidden for the developer. The data originates from multiple
medical centers with multiple vendors’ equipment, where the data has different acquisition
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protocols (e.g., different resolutions), visualized in table 4.1. The label describing each
MRI (cases) contains information of the actual location, size, and shape of the prostate.
[56]

MRIs correspond to a stack of 2D images that represent a three-dimensional (3D)
image when they are connected (see chapter 3.1). As the data has different acquisition
protocols, the height, width, and depth are varying, making the data representative for
medical clinics worldwide. The MRI and the corresponding label are stored in Meta (or
MHD/RAW) format. This format saves an image as a file with the extension .mhd.

Number of cases (50) 22 1 25 2
Width (Pixels) 512 384 320 256
Height (Pixels) 512 384 320 256
Number of slices (1377) 760 28 548 41

Table 4.1: Table showing the number of MRI slices and the correlated image size.

4.2 Image Pre-Processing

This section presents and discusses all the pre-processing techniques used in this thesis.
The implementation to load and pre-process the PROMISE12 data is inspired by Inom
Mirzaev’s work on the PROMISE12 challenge [14]. The list below mentions the pre-
processing steps involved in this thesis.

• Rearrange data

• Reshape data

• Separating slices and organize data

• Store organized data

• Filtering

4.2.1 Rearrange Data

The first step rearranges images to sort them by patients and to create a validation set.
Each case is named Case[num] where num increase from 00 to 50. Since the available test
data provided by PROMISE12 has hidden labels, a validation set is manually selected
from the training set. The training set has 45 cases after transferring five cases, numbered
5, 15, 25, 35, and 45 to the validation set. The validation set validates the precision of
the model after each epoch of training.
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4.2.2 Reshape Data

A CNN must train on images with equal size. The same network can be used to train
images of different sizes, but not at the same time. It is common to design the CNN to
fit the shape for the desired dataset to get the best result. The dataset used in this thesis
has images with height and width, ranging from 256x256 to 514x514. Two commonly
used methods to align the image shape are padding or reshaping. This thesis reshapes all
images to have height and width equal to 256x256 for both the U-Net and the generative
models.

4.2.3 Separating Slices and Organize Data

The chosen architecture to test the proposed method is the 2D segmentation network
named U-Net. Each 2D slice in all the original 50 cases (both training and validation
set) is separated and represents an individual case to fit the U-Net architecture, resulting
in 1.377 (see table 4.1) new cases. The original 50 cases include the whole prostate gland,
but not on the first and last slices, resulting in some slices without the gland. The total
amount of slices including the prostate gland is 697.

4.2.4 Save Organized Data

DL networks depend on fast computation, even with a small dataset. The NumPy library
provides that advantage, and saves the data as a four-dimensional NumPy array in a file
with extension .npy. The first index of the array is the number of cases. The number of
cases in each category is described in table 4.2. The two next indexes correspond to the
image’s width and height, and the last index describes the depth (number of channels)
of the image. The channel is equal to one for all cases in this thesis as the images are
grayscale. The final shape of the NumPy array is (number of slices, height, width,

channels).

Data Number of slices Shape
All slices (Training set) 1250 (256, 256, 1)
All slices (validation set) 127 (256, 256, 1)
Cases including the
prostate gland (training set) 697 (256, 256, 1)

Cases including the
prostate gland (validation set) 81 (256, 256, 1)

Table 4.2: The number of slices with and without the prostate gland in the training set
and validation set.
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4.2.5 Filtering the Data

The original data is dark and hard to extract features from, as visualized in figure 4.2.
The MRIs are pre-processed using three filters named normalization, outlier removal,
and contrast equalizer.

Figure 4.2: Visualizes a random example from the original dataset without any filters
and the corresponding histogram

A grayscale image contains pixel values ranging from 0 to 255, where 0 corresponds to
black and 255 to white. Normalization divides the pixel values by 255, resulting in images
with pixel values ranging from 0 to 1. Normalization does also normal distribute the
pixel histogram, making the mean of the original pixel values the most represented shade.
Figure 4.3 is the same example as shown in figure 4.2 with the normalization filter.

Figure 4.3: Visualizes the same example as shown in figure 4.2, including the normal-
ization filter.

The calculation of linear normalization on an image (I ) is described in equation 4.1,
where Min and Max is the old minimum and maximum pixel values. The value newMin
and newMax correspond to the desired minimum and maximum values.

IN = (I −Min)newMax− newMin

Max−Min
+ newMin (4.1)

The outlier removal filter has two parameters, pixel intensity maximum, and minimum.
The minimum replaces the 1% darkest pixel value with values similar to the neighbors.
The maximum is not defined and include all the brightest pixel values. Figure 4.4
visualizes the same example as shown in figure 4.2 with just the outlier removal filter.
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Figure 4.4: Visualizes the same example as shown in figure 4.2, including the outlier
removal filter.

The contrast equalizer used in this thesis is the Contrast Limited Adaptive Histogram
Equalization (CLAHE). CLAHE is an algorithm to perform local contrast enhancement
that calculates several histograms, which correlates to a distinct part of the image and
redistributes the pixel values. This method enhances local details without overamplifying
the noise, even in dark or bright regions [58] [59]. This thesis defines one parameter
named clip_limit to 0.05. The clip_limit parameter is a contrast factor to prevent
oversaturation and must be in the range [0, 1], where a higher value results in stronger
contrast. Figure 4.5 visualizes the same example as shown in figure 4.2 with just the
CLAHE filter.

Figure 4.5: Visualizes the same example as shown in figure 4.2, including the CLAHE
filter.

Figure 4.6 visualizes the same example as shown in figure 4.2 printed with all filters from
the .npy file.

Figure 4.6: An MRI slice processed with normalization, outlier removal, and CLAHE
filter.
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4.3 Each Models Input and Output

This thesis explores several CNNs with different input and output data. All networks
in this thesis use the resized and separated PROMISE12 data pre-processed with nor-
malization, outlier removal, and CLAHE. The generative networks are only training on
data that includes the prostate gland, while the evaluation network U-Net uses all data.
The input data for U-Net and the generative networks are scaled differently to fit the
model’s output activation. The U-Net data is scaled in the range [0, 1] to fit the Sigmoid
activation function while the data used in the generative networks are scaled in the range
[−1, 1] to fit the TanH activation function.

DCGAN is an unsupervised network using only segmentation masks as input. The
Pix2Pix generator is only using segmentation masks as input, while the discriminator
uses both the segmentation mask and a MRI to predict the likelihood and classify the
prediction. U-Net is a supervised network, including both the MRIs and segmentation
masks. The MRI correspond to the U-Net input and the segmentation mask corresponds
to the expected prediction. The generative networks use hard labels to describe whether
the data fed into the discriminator is generated or real. Hard labels are an array with
the same shape as the input image, where all numbers in the array are either one or zero.
Generative networks, in general, do also flip their labels, depending on the type of model
training. The labels defined for the discriminator training process have class labels equal
to one for real images, and class labels equal to zero for generated images. These labels
are flipped when the generator trains, making the class label equal to one for generated
images and zero for real images. Table 4.3 visualizes an overview of the data used to
update weights for each model.

Model Input Output Evaluation
DCGAN
discriminator

Real and generated
segm. masks Classification Label 1: real segm. mask

Label 0: fake segm. mask

DCGAN
generator

Gaussian distributed
random values

Fake segm.
masks

Discriminator feedback.
Label 1: fake
Label 0: not fake

Pix2Pix
discriminator

Real segm. mask
Real and fake MRIs Classification Label 1: real MRIs

Label 0: fake MRIs

Pix2Pix
generator Real segm. mask Fake MRIs

Discriminator feedback
and L1 loss.
Label 1: fake
Label 0: real

U-Net
segmentation Real and fake MRIs Predicted segm.

mask

Dice loss to compare
predicted and expected
segm. mask

Table 4.3: Input and output values for each model utilized in this thesis.



Chapter 5

Solution Approach

5.1 Introduction

Figure 5.1: Overview of the proposed approach.

5.1.1 Existing Approaches

The paper Medical Image Synthesis for Data Augmentation and Anonymization using
Generative Adversarial Networks written by Hoo-Chang Shin et al., uses Pix2Pix to
generate MRIs of the brain. This paper uses real segmentation masks and is not generating
new ones. The segmentation masks used in this paper have multiple classes and a black
background surrounding the brain.

A master thesis with the title Data augmentation in deep learning using generative
adversarial networks written by Thomas Neff for the Graz University of Technology uses
one generative network named Wasserstein GAN (WGAN) [60]. This thesis generates
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both X-radiation (x-rays)1 images of the lung and the corresponding segmentation
mask using only the WGAN. Thomas Neff was able to generate image-segmentation
pairs instead of just x-rays, but the model and evaluation setup showed improvement
possibilities. [62]

5.2 Proposed Method using GAN to Expand the Dataset

The testing network named U-Net requires both a source image (MRI) and a target
image (segmentation mask) to learn features and to segment the whole gland of the
prostate from new cases. In this thesis, a two-step approach has been developed to
extend the training set, utilizing two GAN architectures that build on top of each other.
The first architecture is DCGAN that generates segmentation masks, and the second is
Pix2Pix that generates synthetic MRIs based on these masks. Both networks contain a
generator and a discriminator, designed as two models that update weights separately.
DCGAN and Pix2Pix do only train on data including the patient’s prostate gland, which
narrows the dataset to 697 samples (See table 4.3 for an explanation of input and output
associated with each model).

5.2.1 DCGAN Methodology

DCGAN is chosen to generate new segmentation masks, as the training process has
proven to be more stable than the original GAN [7] [9].

DCGAN trains for 1500 epochs, where each uses about 100 seconds on the GPU named
Nvidia Tesla P100 with 16GB. The GAN generator uses the discriminator to measure
performance and no evaluation matrices, making it hard to know when the training
process should stop, and when the samples are realistic. The network train for 1500
epochs, but share visual examples and model weights when the discriminator observes
improvement. To run a DCGAN for 1500 epochs is an abnormally large amount, only
reasonable as the model trains on a small dataset (see table 4.2). The batch size does
only contain 32 samples, even when the original paper recommends 128. This batch
size is smaller than the recommendation, as the dataset is rather small, with 697 MRIs
compared to the dataset used in the original paper with 3 million images. All models
train using Adam optimizer with a learning rate equal to 0.0002 and β1 equal to 0.5, as
recommended in the original paper.

1X-rays are high-energy electromagnetic radiation that can be used to take a picture of the body’s
internal structure. [61]
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Parameter Value
Epochs 1500
Batch size 32
Optimizer Adam(Learning rate = 0.0002, β1 = 0.5)

Table 5.1: DCGAN hyperparameters

Model Design

The DCGAN implementation is inspired by Jason Brownlee’s work on DCGAN for
grayscale handwritten digits [35, page 95 - 131] and the original DCGAN architecture
[7]. Jason Brownlee’s work on DCGAN generates images with 28x28 pixels, and the
original paper generates images with 64x64 pixels. This thesis is based on these previous
implementations, but the architecture is modified to generate images with 256x256 pixels
and to stabilize the training process.

The DCGAN discriminator is an image classification model that learns the difference
between real and synthetic segmentation masks. A visual illustration of the model is
shown in appendix A figure A.1. The implementation of the discriminator is equal to
the original but extended with two convolutional layers. The output is a single neuron
with the Sigmoid activation function, and the loss function is a binary cross-entropy, as
recommended.

• Discriminator input: Segmentation masks (real or synthetic) with 256x256 pixels
and one channel.

• Discriminator output: Binary classification, it determines if the input is real or
synthetic.

The DCGAN generator expands the dataset with synthetic segmentation masks. The
model input corresponds to a 100 elements vector of Gaussian distributed random
numbers. A visual illustration of the model is shown in appendix A figure A.2.

• Generator input: A vector containing 100 elements of Gaussian distributed
random numbers.

• Generator output: Segmentation masks with 256x256 pixels and one channel.

The two first layers of the generator, dense and reshape, transform the input vector into a
2D array. The dense layer has 262144 neurons representing several parallel and different
low-resolution versions of the output image. The calculation of neurons is described in
equation 5.1.
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neurons = 4096 ∗ 256
25 ∗

256
25 (5.1)

The activation of these neurons is reshaped to 4096 different 8x8 pixels feature maps.
The original paper follows the same approach but with different dimensions. DCGAN
uses a transposed convolutional layer to learn weights while upsampling the input. This
report’s implementation adds two transposed convolutional layers with a stride equal
to (2, 2) and a kernel size of (4, 4). The kernel size is a factor of the stride to avoid
a checkerboard pattern after upsampling, and the stride quadruples the input size.
The original paper recommends ReLU activation for all generator layers except for the
output, while this thesis uses the softer activation named LeakyReLU, as recommended
in Soumith Chintala’s talk on NIPS 2016 [63, after 11 minutes]. The output convolutional
layer merges all feature maps to one final and uses a TanH activation function to ensure
output values in the range [−1, 1].

The generator’s weights are updated based on the discriminator’s feedback in a new
logical model. This model provides a 100 elements vector of Gaussian distributed
random numbers to the generator’s input and feeds generated segmentation masks to the
discriminator. The discriminator classifies each sample and returns a score used to update
the generator weights. The logical model combining the generator and discriminator is
compiled with the binary cross-entropy loss as recommended.

5.2.2 Pix2Pix Methodology

Pix2Pix is chosen to generate MRIs with a gland, described by the generated segmentation
mask, due to the promising results on generating images from labels [10] [46]. The network
trains on both labels and MRIs obtained from the PROMISE12 dataset, but only cases
including the gland.

The network is trained for 200 epochs as recommended in the original paper, where each
uses up to 300 seconds on the GPU, named Nvidia Tesla P100 with 16GB. The batch
size is equal to 1, as recommended. The generator is a modified version of the U-net
architecture with a contracting path (encoder) and an expanding path (decoder). A
batch size of 1 can be inappropriate for the generator’s encoder-decoder transition, as
the batch normalization zeros the activation on the bottleneck layer [10]. Removing the
batch normalization for the bottleneck layer solves this problem [35]. Like DCGAN, all
models in the Pix2Pix network train using Adam optimizer with an initial learning rate
of 0.0002 and β1 equal to 0.5, as recommended [10].
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Parameter Value
Epochs 200
Batch size 1
Optimizer Adam(Learning rate = 0.0002, β1 = 0.5)

Table 5.2: Pix2Pix hyperparameters

Model Design

The Pix2Pix implementation is inspired by Jason Brownlee’s work "How to Develop a
Pix2Pix End-to-End" [35, page 466 - 516] and uses the same model architecture as the
original Pix2Pix paper [10]. The implementation is modified to stabilize the network and
to fit the PROMISE12 dataset. Jason Brownlee’s work uses the Keras DL framework
as this thesis, while the original implementation uses the Torch. Both of these previous
implementations are designed for colored images, instead of grayscale as this thesis.

The Pix2Pix discriminator is a PatchGAN model that learns different features from
synthetic and real MRIs by evaluating 70x70 pixels patches of the image. The classification
is an average of all patches in each MRI. A visual illustration of the model is shown in
appendix A figure A.3

• Discriminator input: Segmentation masks (real or synthetic) and corresponding
MRI (real or synthetic)

• Discriminator output: Binary classification, it determines if the input is real or
synthetic.

The discriminator input concatenates a segmentation mask and the corresponding real
or synthetic MRI in the channel dimension. The model has six convolutional layers
with filters doubling for each layer. The first four convolutional layers have a stride
equal to (2, 2), instead of max pooling; and the last two have a stride equal to (1, 1).
Strided convolutional layers are used instead of pooling processes to allow learning of
weights while downsampling. All convolutional layers use the LeakyReLU activation
except the last one, which uses the Sigmoid to classify the MRI as real or synthetic. The
discriminator model is compiled with the binary cross-entropy loss and Adam optimizer,
as recommended in the original paper.

The generator used in this thesis does also follows the same design as the original paper.
A visual illustration of the model is shown in appendix A figure A.4. A GAN generator
should generate images that are similar to the training set but uncorrelated. DCGAN
introduces randomness by starting with a 100 elements vector of Gaussian distributed
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random numbers, while the U-Net generator’s input is a segmentation mask. Dropout
layers are applied to replace the missing randomness in the input.

• Generator input: Segmentation mask with 256x256 pixels and one channel.

• Generator output: Generated MRI of the input segmentation mask.

The U-Net generator has an encoder and decoder path (see chapter 3.6). The encoder
has seven convolutional layers with strides equal to (2, 2). All convolutional layers, except
the first layer in the encoder path, are followed by the LeakyReLU activation. The
decoder has seven transposed convolutional layers with stride equal to (2, 2). The decoder
layers are concatenated with the encoder layer at a corresponding depth of the U-shape
and processed with a LeakyReLU activation (see figure 3.11 for the original U-Net
architecture, explaining the concatenation). The output is a transposed convolutional
layer that merges all feature maps to a final one and uses a TanH activation function
to ensure output values in the range [−1, 1]. The generator’s weights are updated
based on the discriminator’s feedback in a new logical model, similar to the DCGAN
implementation. This model transfers a segmentation mask from the dataset to the
generator’s input and feeds generated MRI to the discriminator. The discriminator
classifies a 70x70 patch of the input, averages all patches, and classifies each MRI. The
discriminator returns a score used together with MAE loss to update the generator
weights. The total loss is calculated as equation 5.2, where L1 acts like a regularizer
weighted with λ.

loss = adversarial_loss+MAE ∗ λ (5.2)

Some additional features introduced in Soumith Chintala’s talk on NIPS 2016 [63] have
been implemented to make the network more stable. The first feature separates real
and synthetic training data for the discriminator. According to Soumith Chintala’s talk,
this will improve the result compared to training the discriminator on both real and
synthetic data at the same time. Two label features called label smoothing and noisy
labels were implemented in order to avoid the discriminator to over-perform. Label
smoothing changes the label equal to 1 for real samples to randomly be in the range
of [0.7, 1]. Usually, labels are always correct when training the discriminator, but noisy
labels fool the discriminator by changing some of the labels for fake images to be real.
These features make it easier for the generator to improve results and generate more
realistic examples.



Chapter 6

Experimental Evaluation

This chapter presents the experimental setup, the experimental result, and performance
scores using U-Net. This chapter does also includes visual examples and an evaluation of
the result generated by DCGAN and Pix2Pix.

6.1 Experimental Setup

The U-Net model used to test the proposed approach is reprinted from the original paper
written by Olaf Ronneberge et al. for Biomedical Image Segmentation [12], but extended
with two convolutional layers in both the contracting and expanding path to improve
the result. The code to train the U-net model and the model itself is implemented from
scratch, but the code to print the U-Net performance score is inspired by Inom Mirzaev’s
work on the PROMISE12 prostate MRI segmentation challenge [14]. See chapter 3.6 for
a detailed explanation of the U-Net architecture.

The loss function used to optimize the U-Net model is Dice loss, and the metric Dice
coefficient is used to evaluate the model performance during training. The implementation
of dice loss and dice coefficient is reprinted in unaltered form from Lars Nieradzik’s
implementation [47]. The network trains for 200 epochs with a batch size of 32, and the
model uses Adam optimizer with an initial learning rate of 0.001 and a learning rate
scheduler, that reduces the learning rate with the factor of 0.1 if the validation loss does
not decrease after ten epochs. The minimum achievable learning rate is 1 ∗ 10−09. The
network monitors the validation loss and saves the best weights only.

The proposed method to improve prostate segmentation on MRI changes the U-Net
training data. The model is also tested using the original data as a baseline and augmented
data to compare the proposed method with an existing approach. U-Net trains on each
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Parameter Value
Epochs 200
Batch size 32
Optimizer Adam(Learning rate = 0.001)

Table 6.1: U-Net hyperparameters

group of input data separately and saves the weights with the lowest loss. The loss graph
for each test is included in appendix B.

The weights with the lowest loss for each training data group are loaded to the U-Net
model and tested on the validation set, using the same metrics as the official PROMISE12
grand challenge [56]. The validation set is represented as five volumetric MRIs, where all
MRI slices for each patient are merged in the original order. All performance metrics,
except the dice score, are a measure of the volumetric performance instead of the score
for each slice individually. This data represents a realistic scenario for real-world cases.
The implementation for all evaluation metrics is obtained from online sources and cited
after each function. The metrics are the Dice coefficient (DSC) [47], the relative absolute
volume difference (RAV) [14], the mean surface distance (MSD) [48], and the Hausdorff
distance (HD) [48].

6.2 Experimental Results

This section focuses on the experimental results and the correlated score for original,
augmented, and synthetic data. It includes visual examples of augmented and generated
images and the performance using the U-Net model.

6.2.1 Result of Standard Image Augmentation

This thesis uses the Keras built-in function for image augmentation [44]. The augmen-
tation methods applied to analyze the segmentation result are shift, rotation, flip, and
zoom. The shift augmentation moves all pixels in the range of zero to 10% of the total
image height and width. The rotation parameter rotates the image 10 degrees from
the original angle. A horizontal and vertical flip is applied, and the zooming range is
defined as [1, 1.2]. These augmentations are the same as Inom Mirzaev used on the
PROMISE12 challenge implementation, with the exception that their work includes a
method called elastic transformation. Figure 6.1 visualizes five augmented examples from
the PROMISE12 dataset.
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Figure 6.1: Illustration of augmented images (upper row) and the related original
images (under each augmented image)

Tabel 6.2 describes the performance score for the U-Net architecture trained on original
data, the data with all augmentations applied, and each augmentation separately. The
original data has a dice score of 0.693, which is a week representation of the expected
segmentation mask. A RAV difference of 88.604, HD of 8.160 mm, and MSD of 23.041
do also describe a week representation of the expected segmentation mask. The data
augmented with all techniques have a dice score of 0.668, which is slightly less than the
original data. The RAV and MSD have improved significantly to 27.358 and 13.138,
respectively.

Val.
data

Mean
DSC

std.
DSC

Mean
RAV

Mean
HD

Mean
MSD

Org. data 0.693 0.077 84.804 8.160 23.041
Vert. &
horiz flip 0.694 0.005 99.298 19.156 35.517

Rot. 0.711 0.121 54.970 9.556 5.063
Shift 0.732 0.164 27.349 16.148 1.946
Zoom 0.682 0.043 87.343 8.317 27.383
All 0.668 0.146 27.358 15.329 13.138

Table 6.2: The U-Net segmentation performance score for original data, data with each
augmentation separately, and the data with all augmentations applied

The approach proposed in the paper of Inom Mirzaev, "Fully convolutional neural network
with residual connections for automatic segmentation of prostate structures from MR
images" [14] uses augmentation to create 150k new versions of the data for each epoch.
This approach has been tested in this thesis and is described in table 6.2. This method
improves the dice score, RAV, and especially MSD, but the HD has increased with 15.08
mm. The result published in the paper of Inom Mirzaev, had significantly better results
than these ones, with a dice score of 0.885. [14]
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Val.
data

Mean
DSC

std.
DSC

Mean
RAV

Mean
HD

Mean
MSD

Org. data 0.693 0.077 84.804 8.160 23.041
All augmentation
and data augmented
to 150k sampels.

0.726 0.120 38.746 23.240 0.947

Table 6.3: The performance score for the dataset expanded to 150k samples using just
standard image augmentation

6.2.2 Generative Results using DCGAN and Pix2Pix

GANs are becoming a common approach for developing generative models using DL,
but these networks do not have a loss function to minimize nor an expected output to
evaluate the performance using metrics. This thesis uses two approaches to evaluate the
GAN Generator, a manual evaluation and the use of the segmentation network U-Net.

DCGAN Results

Firstly, the segmentation masks were generated using DCGAN. Out of the 2000 gener-
ated examples, 1348 of them were deemed usable and 652 not. Some of the unusable
segmentation masks had more than one gland and shape that differs from the original
samples in the PROMISE12 dataset. Figure 6.2 visualizes a random sample of the
wrongly predicted segmentation masks, which were manually removed.

Figure 6.2: Most of the predicted samples have a realistic shape, but some are unrealistic
and have more than one prostate gland and a shape that divides from the original

samples in the PROMISE12 dataset.

The synthetic segmentation masks are saved in a separate file than the original and are
utilized to generate synthetic MRIs with Pix2Pix. Figure 6.3 visualizes four correctly
predicted examples.

Figure 6.4 shows the DCGAN generator loss. The best weight was saved at epoch 55,
but the samples printed after 1500 epochs seem more realistic from a human perspective.
See appendix C for samples at epoch 24, 33, and 55.
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Figure 6.3: DCGAN generated segmentation mask after 1500 epochs

Figure 6.4: DCGAN generator loss for 1500 epochs

Pix2Pix Result

The Pix2Pix architecture generates synthetic MRIs based on the generated segmentation
masks from DCGAN. A total of 1348 MRIs are stored as a separate file in the same
order as the corresponding synthetic segmentation masks. Although some examples are
not completely realistic from a human perspective, all are used to train the U-Net model.
Figure 6.5 shows four examples where the bottom row represents the generated MRIs,
and the upper row represents the corresponding generated segmentation mask. Figure
6.5 represents samples printed at epoch 162, which got the lowest loss during training
(see figure 6.6). Generated samples from epoch 10, 50, and 200 are included in appendix
D. The region surrounding the prostate gland has fewer details than the real MRIs, as
the model tries to get the best possible score for all images; which results in averaging
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the pixel intensity of all training data with a similar segmentation mask. This issue is
not necessarily harming the U-Net segmentation if the region of the gland seems real.

Figure 6.5: Pix2Pix generated MRIs and the corresponding input segmentation mask,
generated by DCGAN. The MRIs were generated after 162 epochs and had the lowest

generator loss during training.

Figure 6.6: The Pix2Pix generator loss for 162 epochs

Test Result

The synthetic data are concatenated with the original and tested using the U-Net
architecture. Table 6.4 describes the result for synthetic segmentation masks generated at
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epoch 1500 and synthetic MRIs generated at epoch 162. The test result for segmentation
masks generated at epoch 1500 and MRIs generated at epoch 50 is included in appendix
E. Tabel 6.4 shows that the dice score without any augmentation has improved to 0.731,
compared to only using the original data. The RAV has decreased significantly to 30.885,
but it is still not considered as a good result. HD has increased with 6.879 mm, while the
mean MSD decreases to the promising result of 1.286 mm. The generated and original
data combined does not seem to take advantage of standard image augmentation, as
only the rotation augmentation improve the dice score.

Val.
data

Mean
DSC

std.
DSC

Mean
RAV

Mean
HD

Mean
MSD

Org. and &
gen. data 0.731 0.108 30.885 15.039 1.286

Vert. &
horiz flip 0.710 0.1593 29.322 12.985 1.611

Rot. 0.735 0.137 33.069 12.879 1.793
Shift 0.717 0.104 26.267 13.181 1.929
Zoom 0.690 0.142 26.191 11.161 2.458
All 0.673 0.167 29.417 17.366 2.047

Table 6.4: The performance score for real and generated data combined. The score is
calculated for synthetic segmentation masks printed after 1500 epochs and synthetic

MRIs printed after 162 epochs.

Figure 6.7 shows how the U-Net architecture predicts the gland region from random
samples of the validation set, using weights trained on original data extended with
synthetic data. This figure shows an example where the predicted region of the prostate
gland is nearly a perfect reconstruction of the expected segmentation mask. More
examples are included in appendix G.

Figure 6.7: The U-Net segmentation result on a random MRI from the validation set
after training on real and generated data combined.





Chapter 7

Discussion

This chapter presents a discussion of the proposed approach, the achieved results, a
comparison with related work, the evaluation process, and the limitations.

7.1 Standard Augmentation

Data augmentation for deep NN presents a useful and straightforward method to extend
the dataset artificially. Since augmentation rearranges the pixels enough for the model
not to recognize the original MRI, it is important to preserve key features. Augmentation
will be counterproductive if the training data is too dissimilar from the test data, making
it essential to analyze the training data to find the best augmentations that preserve
the key features of a real MRI. The analysis process is time consuming and it requires
previous knowledge about the data.

As mentioned before, selecting the best augmentation techniques is time-consuming.
Hereby, this thesis builds upon the work of Inom Mirzaev’s work on "Fully convolutional
neural network with residual connections for automatic segmentation of prostate structures
from MR images" [14], as his results are promising.

7.2 Generative Approach

The quality of the generated segmentation masks is considered good, even though only
1348 of the total 2000 were deemed usable. Some examples had two regions of the
prostate gland or a shape that differs from the original dataset. The unusable data could
be realistic for a radiologist, but this thesis has only compared the generated samples
with the PROMISE12 data. The generated MRIs have similarities to real MRIs with a
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region containing the prostate gland and similar pixel intensity. However, the MRIs have
improvement possibilities as they are easy to classify for a human.

The result of training a biomedical segmentation model on the combination of original
and synthetic data is promising, as the performance is higher when combining than when
using original data only. The generated data does not take advantage of using data
augmentation as the performance is lower for all augmentations, except for rotation. The
reason might be that the synthetic data’s main features are the location and shape of
the gland.

7.3 Evaluation Process

This thesis’s primary focus has been to develop a method to extend the dataset with
synthetic data using GAN. The combination of two GAN architectures stacked on top of
each other proved to be sensitive to instability, and required much testing. More time
was spent on the two generative models and less on the segmentation model. The overall
performance score is not great if compared to the PROMISE12 scoreboard [64], where
the leading team has a dice score of 0.913 [65]. However, this thesis’s goal is not to beat
the above mentioned scoreboard, but rather to increase the performance level with the
help of GAN generated data. The segmentation model is the same for the original data,
augmented data, and synthetic data combined with the original data, and should be
suitable for comparing the results.

7.4 Comparisons With Related Work

To the best of my knowledge, there is no published work on generating MRIs and
corresponding segmentation masks of the prostate using DCGAN and Pix2Pix.

The paper "Medical Image Synthesis for Data Augmentation and Anonymization using
Generative Adversarial Networks" written by Hoo-Chang Shin et al., shows a promising
result on generating synthetic MRIs of the brain from real labels as an anonymization
tool using Pix2Pix. Their approach depends on detailed multiclass segmentation masks,
where the final MRI has a black background. The PROMISE12 segmentation masks
have only two classes, describing the location and shape of the prostate gland and the
background.

Although there is no published work on the generative approach, others have developed
an automated segmentation system for the prostate gland using the same dataset. The
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leading team on the PROMISE12 scoreboard [64] proposed a new network to segment
the prostate gland in MRIs. The network is named HD-Net and described in the paper
"HD-Net: Hybrid Discriminative Network for Prostate Segmentation in MR Images"
written by Haozhe Jia et al. in 2019 [65]. Their work on HD-Net consists of a 3D
segmentation decoder that captures volumetric features and a 2D boundary decoder
pointing the focus on the semantically discriminative intra-slice features [65]. The second
team with a slightly lower score than the leading one, Fabian Isensee et al., published
their work in the 2020 paper "Automated Design of Deep Learning Methods for Biomedical
Image Segmentation" [66]. They used a DL network named nnU-Net, which enables 3D
segmentation and adapts automatically to many biomedical datasets without requiring a
specialized design for each dataset. The HD-Net and nnU-Net architecture are far more
advanced than the original U-Net architecture. These networks are deeper and extract
really specific features from different parts of the prostate. The achieved result for the
leading team, and the second team are presented together with this thesis result in table
7.1. As mentioned earlier, the main reason to present these other results together with
the current thesis’ ones is not to perform better than them, but to have an idea of the
results explored in this thesis work compared with others.

Mean
DSC

Mean
RAV

Mean
HD

Mean
MSD

This thesis using
synthetic data
(Validation set)

0.731 30.885 15.039 1.286

HD-Net
(Official test set) 0.913 5.0133 3.933 1.361

nnU-Net
(Official test set) 0.919 3.304 3.950 1.243

Table 7.1: Comparisons of segmentation result from previously published papers and
this thesis’ proposed approach.

7.5 Limitations

This section will discuss some limitations of this project.

7.5.1 Data

The PROMISE12 dataset contains 1377 slices from 50 patients, where 697 slices include
the prostate gland. For a CNN and especially GAN, this dataset is considered small
and will limit the performance. The data is cross-center and from multiple vendors’
equipment, which can be considered a strength while working with the segmentation



Larsen, Steinar Valle Chapter 7 Discussion

part of this thesis and will improve the generalization of the U-Net model. For GAN,
this is expected to limit the performance as wide distribution of dissimilar data is harder
to recreate. A large volume of biomedical data can be challenging to obtain, but a slight
increase in the dataset could improve all models’ performance. The use of center-specific
data could potentially improve GAN performance and result in a better classification
score for the synthetic data combined with the original one.

7.5.2 Augmentation

The generative approach was tested using a U-Net segmentation model and compared
with the original and augmented data. The original data represent the baseline, and the
augmented data is introduced to compare the proposed method with an existing one.
The data augmentation was implemented with inspiration from a previous publication,
without knowledge regarding the scientific conclusions behind the chosen augmentations.
The potential of radiologist-based opinions and thus following their recommendations for
augmentation techniques could have improved the final results for this thesis.

7.5.3 Network Performance

Generative models like GAN are considered challenging to train, compared to classification
and object detection models. Within the time constraints of this project, three different
DL networks with five different models have been implemented. Two of these networks
are generative and contain two models each. GAN is highly sensitive to the choice
of hyperparameters, and much time has been used to explore different solutions for
each network to avoid instability, oscillating parameters, week improvement, and over-
performing discriminators.

Out of the 2000 synthetic segmentation masks generated by DCGAN, 652 were deemed
unusable. The selection of usable and not usable was decided by comparing the generated
samples with the PROMISE12 data. The unusable data could be realistic for a radiologist,
especially the synthetic segmentation masks with one region of the prostate gland and a
shape, different from the PROMISE12 data. The potential of a radiologist-based selection
of usable synthetic segmentation masks could improve the quality of the generated MRIs.



Chapter 8

Conclusion and Future Directions

This thesis explores the potential of extending the dataset with synthetic MRIs and
corresponding segmentation masks using GAN with the ambition to train a reliable
DL-based segmentation system. The proposed method uses two GAN architectures
abbreviated as DCGAN and Pix2Pix that introduce a new method to extend the dataset
with new anonymized, uncorrelated, and realistic biomedical data. This method challenges
the current one using standard image augmentation, which has proven to require precise
analysis of the data and an expert to determine if the augmentation fits the desired
dataset.

A set of experiments was conducted to find the optimal model architecture, data augmen-
tation, and hyperparameters to generate the best possible data and segment the prostate
gland correctly. Limited time and five different models to adjust represent the main
challenge of this thesis. The data was supposed to be officially tested by PROMISE12,
but time was a limitation. Instead, the validation set was used to test the performance,
which may have affected the segmentation network’s final result.

The proposed method using GAN to expand the dataset is sensitive to instability, but it
presents results slightly better than just the original data. The quality of the generated
MRIs can be improved, but they represent an image that has the potential to train a
segmentation network. Close cooperation between a radiologist and the DL developer
could improve both the generative and the segmentation network.

The final segmentation dice score for the generated and original data was on 0.731,
compared to 0.693, using just the original data. This thesis’s result indicates that GAN
can extend the training set with new synthetic data and improve the segmentation
robustness for prostate cancer diagnosis.
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8.1 Future Directions

GAN has become a popular topic within DL and is still improving. Using the PROMISE12
dataset to train two GAN architectures has proven to be challenging as the dataset was
small and contained data from cross-center and multiple vendors’ equipment. Exploring
the possibilities of using center-specific data and increasing the size of the dataset could
potentially improve the quality of the generated data.

The augmentations used in this thesis to compare the proposed method with an existing
one, uses the same parameters as a previous publication without any knowledge about
the scientific conclusions behind the chosen augmentations. A future experiment could
be to use a radiologist based opinion and follow their recommendations for augmentation
techniques.

The amount of slices generated in this thesis work, is approximately the same as the
number of slices in the original dataset. Further experiments where the generated data
is extended with more examples or diminished to fewer could potentially improve the
segmentation results.

Out of the 2000 synthetic segmentation masks generated by DCGAN, 652 were deemed
unusable. A further experiment could be to test the potential of a radiologist-based
selection of a usable synthetic segmentation mask in order to improve the quality of the
generated MRIs.

Further development of the U-Net architecture could potentially improve the performance
score adopting the same data used in this thesis. Further experiments applying different
hyperparameters and model designs could improve the stability and the generative
performance even more.
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Appendix A

DCGAN and Pix2Pix model design

Figure A.1: DCGAN discriminator
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Figure A.2: DCGAN generator
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Figure A.3: Pix2Pix discriminator
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Figure A.4: Pix2Pix generator



Appendix B

U-Net Loss

Figure B.1: Generated and origi-
nal data. No augmentation.

Figure B.2: Original data only.
No augmentation.

Figure B.3: Generated and origi-
nal data. Flip augmentation.

Figure B.4: Original data only.
Flip augmentation.
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Figure B.5: Generated and origi-
nal data. Rotation augmentation.

Figure B.6: Original data only.
Rotation augmentation.

Figure B.7: Generated and origi-
nal data. Shift augmentation.

Figure B.8: Original data only.
shift augmentation.

Figure B.9: Generated and origi-
nal data. Zoom augmentation.

Figure B.10: Original data only.
Zoom augmentation.
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Figure B.11: Generated and orig-
inal data. All augmentation.

Figure B.12: Original data only.
All augmentation.





Appendix C

Generated Segmentation Mask

Figure C.1: Segmentation masks generated after 24 epochs
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Figure C.2: Segmentation masks generated after 33 epochs
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Figure C.3: Segmentation masks generated after 55 epochs





Appendix D

Generated MRIs and Segmentation
Mask

Figure D.1: MRIs generated at 10 epochs and corresponding segmentation mask
generated after 1500 epochs.
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Figure D.2: MRIs generated at 50 epochs and corresponding segmentation mask
generated after 1500 epochs.

Figure D.3: MRIs generated at 200 epochs and corresponding segmentation mask
generated after 1500 epochs.



Appendix E

Performance Score for MRIs at 50
Epochs

Val.
data

Mean
DSC

std.
DSC

Mean
RAV

Mean
HD

Mean
MSD

Org. and &
gen. data 0.683 0.111 28.248 10.622 1.026

Vert. &
horiz flip 0.672 0.065 53.348 19.588 5.679

Rot. 0.690 0.114 30.299 19.054 1.117
Shift 0.688 0.114 30.299 19.054 1.117
Zoom 0.699 0.007 99.264 15.860 36.488
All 0.654 0.048 64.452 9.327 15.779

Table E.1: Describes the evaluation score for real and generated data combined. The
score is calculated for fake segmentation masks printed after 1500 epochs and fake

MRIs printed after 50 epochs.
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Appendix F

Segmentation Result

Figure F.1: The U-Net segmentation result on a random sample from the validation set
after training on real and generated data combined, where fake segmentation masks are

generated after 1500 epochs, and fake MRIs are generated after 162 epochs.

Figure F.2: The U-Net segmentation result on a random sample from the validation set
after training on real and generated data combined, where fake segmentation masks are

generated after 1500 epochs, and fake MRIs are generated after 162 epochs.
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Figure F.3: The U-Net segmentation result on a random sample from the validation set
after training on real and generated data combined, where fake segmentation masks are

generated after 1500 epochs, and fake MRIs are generated after 162 epochs.

Figure F.4: The U-Net segmentation result on a random sample from the validation set
after training on real and generated data combined, where fake segmentation masks are

generated after 1500 epochs, and fake MRIs are generated after 162 epochs.

Figure F.5: The U-Net segmentation result on a random sample from the validation set
after training on real and generated data combined, where fake segmentation masks are

generated after 1500 epochs, and fake MRIs are generated after 162 epochs.



Appendix G

Python Code

This appendix explains the python scripts used in the implementation of this thesis.
Below is a list of the packages required to execute the code.

G.1 Main Additional Packages

Package Version
Keras-Applications 1.0.8
Keras-Preprocessing 1.1.0
matplotlib 3.0.3
numpy 1.16.4
opencv-python 4.2.0.32
pip 20.0.2
scikit-image 0.15.0
scipy 1.4.1
SimpleITK 1.2.4
tensorflow 1.14.0
tensorflow-gpu 1.14.0

G.2 data_pros.py

The file data_pros.py loads the PROMISE12 data and sperate the data used for training,
validation, and test. All data is pre-processed and saved in separate NumPy arrays. This
file is only executed when the PROMISE12 data is loaded for the first time and need to
be pre-processed.
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data_pros.py

import os
import cv2
import numpy as np
import tensorflow as tf
import SimpleITK as sitk
from skimage import feature
from skimage.exposure import equalize_adapthist
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


class DataProcessing:
    def __init__(self):
        # Input shape
        self.image_width = 256
        self.image_height = 256
        self.channels = 1
        self.image_shape = (self.image_width, self.image_height, self.channels)

        # File paths saved as list
        self.training_file_list = list(filter(lambda x: '.mhd' in x, sorted(os.listdir('trainingdata/'))))
        self.test_file_list = list(filter(lambda x: '.mhd' in x, sorted(os.listdir('test_data/'))))

        # List of validation cases
        self.val_list = [5, 15, 25, 35, 45]

        # If True, save test data
        self.test = 0

        # Create a list for training data
        self.training_mri = []
        self.training_masks = []

        # Create a list for validation data
        self.validation_mri = []
        self.validation_masks = []

        # Create a list for test data
        self.test_mri = []

        # Create a list with case information
        self.number_of_slices = []

    def save_files_as_numpy_array(self):
        # If train and validation -> round_num decides if the loop is iterating over validation or training
        round_num = 0

        # Creates a list for each numpy array
        training_mri = []
        training_masks = []
        validation_mri = []
        validation_masks = []

        test_mri = []
        number_of_slices = []

        if self.test == 1:
            # Creates a list with the numbers equal to the amount of samples in test_file_list
            files = self.test_file_list
        else:
            # Creates two list, one with the numbers equal to the amount of samples in training minus validation and
            # one with numbers equal to the amount of samples in the validation set
            files = [list(set(range(50)) - set(self.val_list)), self.val_list]

        for i in files:
            # if test == 1 -> i = file names in the folder test_data/
            if self.test == 1:
                # Load, convert from mhd to array and resize the array/image
                itk_image = sitk.ReadImage('test_data/' + i)
                case_number_i = sitk.GetArrayFromImage(itk_image)
                case_number_i = self.resize(case_number_i, equalize=True)

                # add each case to the list of test cases
                test_mri.append(case_number_i)
                number_of_slices.append(case_number_i.shape[0])

            else:
                filtered = filter(lambda x: any(str(ff).zfill(2) in x for ff in i), self.training_file_list)

                # filtered contain file names for both validation and test sett in a list with two lists
                for filename in filtered:
                    # First round correspond to the file names for the training set
                    # Second round correspond to the file names for the validation set
                    itk_image = sitk.ReadImage('trainingdata/' + filename)

                    # Load and resize
                    if 'segm' in filename.lower():
                        # Segmentation files
                        im = sitk.GetArrayFromImage(itk_image)
                        im = self.resize(im, equalize=False)

                        if round_num == 0:
                            training_masks.append(im)

                        elif round_num == 1:
                            validation_masks.append(im)


                    else:
                        # MRI files
                        im = normalization(itk_image)
                        im = sitk.GetArrayFromImage(im)
                        im = self.resize(im, equalize=True)

                        if round_num == 0:
                            training_mri.append(im)

                        elif round_num == 1:
                            validation_mri.append(im)

            round_num += 1

        # Save the local variables inside this function as the global class variables.
        if self.test == 1:
            self.test_mri = np.reshape(np.concatenate(test_mri, axis=0), (-1, self.image_width, self.image_height, 1))
            self.number_of_slices = np.array(number_of_slices)
        else:
            self.training_mri = np.reshape(np.concatenate(training_mri, axis=0), (-1, self.image_width, self.image_height, 1))
            training_masks = np.reshape(np.concatenate(training_masks, axis=0), (-1, self.image_width, self.image_height, 1))
            self.training_masks = training_masks.astype(int)

            self.validation_mri = np.reshape(np.concatenate(validation_mri, axis=0), (-1, self.image_width, self.image_height, 1))
            validation_masks = np.reshape(np.concatenate(validation_masks, axis=0), (-1, self.image_width, self.image_height, 1))
            self.validation_masks = validation_masks.astype(int)

    def resize(self, one_case, equalize=True):
        resized_image = np.zeros([one_case.shape[0], self.image_width, self.image_height])

        for mm, img in enumerate(one_case):
            if equalize:
                # Contrast Limited Adaptive Histogram Equalization (CLAHE).
                img = equalize_adapthist(img, clip_limit=0.05)
            # interpolation is a resize method
            resized_image[mm] = cv2.resize(img, (self.image_width, self.image_height), interpolation=cv2.INTER_NEAREST)

        return resized_image

    def run(self, test=0):
        if test == 1:
            self.test = 1

        # Fill the above list with the filtered data
        self.save_files_as_numpy_array()

        # save the data
        if test == 1:
            np.save('data/X_test.npy', self.test_mri)
            np.save('data/test_n_imgs.npy', self.number_of_slices)

        else:
            np.save('data/X_train.npy', self.training_mri)
            np.save('data/X_val.npy', self.validation_mri)

            np.save('data/Y_train.npy', self.training_masks)
            np.save('data/Y_val.npy', self.validation_masks)


def normalization(one_case):
    im = np.ndarray.flatten(sitk.GetArrayFromImage(one_case))

    upper_per = np.percentile(im, 99)
    lower_per = np.percentile(im, 1)

    cast_image_filter = sitk.CastImageFilter()
    cast_image_filter.SetOutputPixelType(sitk.sitkFloat32)
    normalization_filter = sitk.IntensityWindowingImageFilter()
    normalization_filter.SetOutputMaximum(1.0)
    normalization_filter.SetOutputMinimum(0.0)
    normalization_filter.SetWindowMaximum(upper_per)
    normalization_filter.SetWindowMinimum(lower_per)

    float_im = cast_image_filter.Execute(one_case)
    normalized_image = normalization_filter.Execute(float_im)

    return normalized_image


def load_data(without_black_masks=0, some_black_masks=0, pix2pix_im=0):
    if pix2pix_im == 1:
        x_train = np.load('data/pix2pix_mri_000038.npy')
        x_val = np.load('data/X_val.npy')
        y_train = np.load('data/Y_train.npy')
        y_val = np.load('data/Y_val.npy')

    else:
        x_train = np.load('data/X_train.npy')
        x_val = np.load('data/X_val.npy')
        y_train = np.load('data/Y_train.npy')
        y_val = np.load('data/Y_val.npy')

    # If it is desired to modify the cases in use
    if (without_black_masks or some_black_masks) == 1:
        # Define a list to sort out cases without cancer
        x_t = []
        y_t = []
        x_v = []
        y_v = []

        # Counts for the amount of cases without cancer
        zero_num = 0
        val_zero_num = 0

        # Sort out cases without cancer from training set
        for i in range(x_train.shape[0]):
            mask_with_cancer = not np.any(y_train[i])

            # Creates a training dataset where 10 percent of cases are cancer-free
            if some_black_masks == 1:
                if mask_with_cancer == 0:
                    x_t.append(x_train[i, :, :, :])
                    y_t.append(y_train[i, :, :, :])
                elif (mask_with_cancer == 1) and (zero_num <= x_train.shape[0] // 10):
                    x_t.append(x_train[i, :, :, :])
                    y_t.append(y_train[i, :, :, :])
                    zero_num += 1

            # Creates a training dataset where all of the cases are cancer-free
            elif (mask_with_cancer == 0) and (some_black_masks == 0):
                x_t.append(scale_images(x_train[i, :, :, :]))
                y_t.append(scale_images(y_train[i, :, :, :]))

        # Sort out cases without cancer from validation set
        for i in range(x_val.shape[0]):
            mask_with_cancer = not np.any(y_val[i])

            if mask_with_cancer == 0:
                x_v.append(x_val[i, :, :, :])
                y_v.append(y_val[i, :, :, :])

        # Convert the list of filtered cases to an np array
        x_train = np.array(x_t)
        y_train = np.array(y_t)
        x_val = np.array(x_v)
        y_val = np.array(y_v)

    return x_train, y_train, x_val, y_val


def show_image(data):
    data = np.squeeze(data, axis=(2,))  # Convert to 2D
    xsize = data.shape[0]
    ysize = data.shape[1]

    margin = 0.05
    dpi = 80
    fig_size = (1 + margin) * xsize / dpi, (1 + margin) * ysize / dpi

    plt.figure(figsize=fig_size, dpi=dpi, tight_layout=True)
    ax = plt.gca()

    t = ax.imshow(data, interpolation=None)  # [:, :, layer]
    t.set_cmap("gray")

    plt.show()


def plot_hist(im):
    im = np.squeeze(im, axis=(2,))  # Convert to 2D
    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15, 7))

    plt.set_cmap('gray')
    plt.autoscale(tight=True)
    ax[0].imshow(im)
    ax[1].hist(im.ravel(), 256)
    # ax[1].set_ylim([0, 120000])
    plt.show()
    # plt.savefig('all_w_hist.png')


def plot_intensity(img_gray):
    xx, yy = np.mgrid[0:img_gray.shape[0], 0:img_gray.shape[1]]
    fig = plt.figure(figsize=(15, 15))
    ax = fig.gca(projection='3d')
    ax.plot_surface(xx, yy, img_gray, rstride=1, cstride=1, cmap=plt.cm.gray, linewidth=2)
    ax.view_init(80, 30)
    plt.show()
    # plt.savefig('intensity_u_filter.png')


def plot_cum_hist(im):
    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15, 7))

    plt.set_cmap('gray')
    plt.autoscale(tight=True)
    ax[0].imshow(im)
    ax[1].hist(im.ravel(), bins=256, cumulative=True)
    # ax[1].xlabel('Intensity Value')
    # ax[1].ylabel('Count')
    plt.show()
    # plt.savefig('all_w_hist.png')


def scale_images(images):
    # convert from unit8 to float32
    images = images.astype('float32')
    # scale from [0,255] to [-1,1]
    images = (images - 0.5) / 0.5

    return images


if __name__ == "__main__":
    processing = DataProcessing()
    processing.run(test=0)
    processing.run(test=1)

    tx, ty, vx, vy = load_data(pix2pix_im=1)
    x_test = np.load('data2/X_test.npy')








dcgan.py

import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from numpy.random import randint, randn
from data_pros import load_data
from metrics_and_loss import *

from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Conv2D
from tensorflow.python.keras.layers import Activation
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import BatchNormalization
from tensorflow.python.keras.layers import LeakyReLU
from tensorflow.python.keras.layers import Flatten
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import Reshape
from tensorflow.python.keras.layers import Conv2DTranspose
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.keras.initializers import RandomNormal

# Uncomment these lines to remove deprecated warning messages
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False

# run on GPUs at UIS
os.environ['CUDA_VISIBLE_DEVICES'] = '5'

# ------------ SET GPU DEBUG LEVEL --------
# Disable debugging information from tensorflow
# INFO=0, WARNING=1, ERROR=2, FATAL=3, NUM_SEVERITIES=4
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)


class DeepConvGAN:
    def __init__(self):
        # input shape
        self.image_width = 256
        self.image_height = 256
        self.channels = 1
        self.image_shape = (self.image_width, self.image_height, self.channels)

        # Define input filters
        self.d_filter = 32
        self.g_filter = 32

        # Number of up sampling filters
        self.up_sample_filters = 5

        # Define optimizer
        self.optimizer = Adam(0.0002, 0.5)

        # define noise shape
        self.noise_shape = (100,)

        # Define kernel size
        self.kernel_size = 3

        # Define batch size
        self.batch_size = 16

        self.n_nodes = 4096 * (self.image_width // (2 ** 5)) * (self.image_height // (2 ** 5))
        self.latent_dim = 100

        # Loss function
        self.loss_function = 'binary_crossentropy'

        # load data
        _, self.train_target, _, self.val_target = load_data(without_black_masks=1)

        self.discriminator = self.build_discriminator()
        self.generator = self.build_generator()
        self.gan = self.build_gan()

        # define loss
        self.d_loss_fake = []
        self.d_loss_real = []
        self.d_loss = []
        self.g_loss = []

    def build_generator(self):
        init = RandomNormal(mean=0.0, stddev=0.02)

        model = Sequential()

        model.add(Dense(self.n_nodes, input_dim=self.latent_dim))

        # Reshape to 8x8x1024 to prepare 5 up sampling layers where w and h will be doubled
        model.add(Reshape(((self.image_width // 2 ** 5),
                           (self.image_height // 2 ** 5),
                           4096)))
        model.add(BatchNormalization(momentum=0.8))

        # Up sampling (8x8x1024 -> 16x16x524) [UpS-layer 1]
        model.add(Conv2DTranspose(1024, (4, 4), strides=(2, 2), padding='same', kernel_initializer=init))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        # model.add(Activation('relu'))

        # Up sampling (16x16x512 -> 32x32x256) [UpS-layer 2]
        model.add(Conv2DTranspose(512, (4, 4), strides=(2, 2), padding='same', kernel_initializer=init))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        # model.add(Activation('relu'))

        # Up sampling (32x32x256 -> 64x64x128) [UpS-layer 3]
        model.add(Conv2DTranspose(256, (4, 4), strides=(2, 2), padding='same', kernel_initializer=init))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        # model.add(Activation('relu'))

        # Up sampling (64x64x128 -> 128x128x64) [UpS-layer 4]
        model.add(Conv2DTranspose(128, (4, 4), strides=(2, 2), padding='same', kernel_initializer=init))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        # model.add(Activation('relu'))

        # Up sampling (128x128x64 -> 256x256x32) [UpS-layer 5]
        model.add(Conv2DTranspose(64, (4, 4), strides=(2, 2), padding='same', kernel_initializer=init))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        # model.add(Activation('relu'))

        model.add(Conv2D(32, (4, 4), padding='same', kernel_initializer=init))
        model.add(BatchNormalization(momentum=0.8))
        model.add(LeakyReLU(alpha=0.2))
        # model.add(Activation('relu'))

        # Output layer (256x256x32 -> 256x256x1)
        model.add(Conv2D(1, (7, 7), padding='same', kernel_initializer=init))
        model.add(Activation('tanh'))

        return model

    def build_discriminator(self):
        init = RandomNormal(stddev=0.02)

        model = Sequential()

        # 32
        model.add(Conv2D(self.d_filter, (3, 3), strides=(2, 2), padding='same', input_shape=self.image_shape, kernel_initializer=init))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))

        # 64
        model.add(Conv2D(self.d_filter * 2, (3, 3), strides=(2, 2), padding='same', kernel_initializer=init))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))

        # 128
        model.add(Conv2D(self.d_filter * 4, (3, 3), strides=(2, 2), padding='same', kernel_initializer=init))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))

        # 256
        model.add(Conv2D(self.d_filter * 8, (3, 3), strides=(1, 1), padding='same', kernel_initializer=init))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))

        # 512
        model.add(Conv2D(self.d_filter * 16, (3, 3), strides=(1, 1), padding='same', kernel_initializer=init))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))

        model.add(Flatten())
        model.add(Dense(self.channels, activation='sigmoid'))

        opt = Adam(lr=0.0001, beta_1=0.5)
        model.compile(loss='binary_crossentropy', optimizer=opt, metrics=['accuracy'])

        return model

    def build_gan(self):
        self.discriminator.trainable = False

        model = Sequential()
        model.add(self.generator)
        model.add(self.discriminator)

        opt = Adam(lr=0.0001, beta_1=0.5)
        model.compile(loss='binary_crossentropy', optimizer=opt)

        return model

    def load_real_samples(self, n_samples):
        # choose random instances
        index = randint(0, self.train_target.shape[0], n_samples)
        # retrieve selected images
        tt = self.train_target[index]
        # generate 'real' class labels (1)
        y = np.ones((n_samples, 1))

        return tt, y

    def generate_latent_points(self, n_samples):
        x = randn(self.latent_dim * n_samples)
        x = x.reshape(n_samples, self.latent_dim)

        return x

    def generate_fake_samples(self, n_samples):
        # Generate noisy inputs
        noise = self.generate_latent_points(n_samples)
        # generate fake instance
        x = self.generator.predict(noise)
        # create 'fake' class labels (0)
        y = np.zeros((len(x), 1))

        return x, y

    def plot_d_loss(self):
        plt.figure(figsize=(10, 8))
        plt.plot(self.d_loss_fake, label='Discriminator loss fake')
        plt.plot(self.d_loss_real, label='Discriminator loss real')
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.legend()

        plt.savefig('output/gan_results/images/dcgan_dloss.png')

    def plot_g_loss(self):
        plt.figure(figsize=(10, 8))
        plt.plot(self.g_loss, label='Generator loss')
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.legend()

        plt.savefig('output/gan_results/images/dcgan_gloss.png')

    def save_gen_images_and_model(self, epoch, examples=100, dim=(10, 10), fig_size=(10, 10)):
        # plot table of example images
        noise = np.random.normal(0, 1, size=[examples, 100])
        generated_images = self.generator.predict(noise)

        generated_images = generated_images.reshape(examples, 256, 256)  # 28, 28

        plt.figure(figsize=fig_size)
        for i in range(generated_images.shape[0]):
            plt.subplot(dim[0], dim[1], i + 1)
            plt.imshow(generated_images[i], interpolation='nearest', cmap='gray')  # Gray_r
            plt.axis('off')
        plt.tight_layout()
        # save plot to file
        filename1 = 'output/gan_results/images/gan_generated_image_epoch_%d.png' % epoch
        plt.savefig(filename1)
        plt.close()
        # save the generator model
        filename2 = 'output/gan_results/model_weights/model_%06d.h5' % epoch
        self.generator.save(filename2)

    def train(self, epochs=1):
        batch_per_epoch = self.train_target.shape[0] // self.batch_size
        half_batch = self.batch_size // 2

        skip = 0
        weight_saver = [10]
        ws = False

        for i in range(epochs):
            progress_bar = Progbar(batch_per_epoch)
            print('\n' + 'Epoch %(n)d / %(s)d: ' % {'n': i, 's': epochs})

            for j in range(batch_per_epoch):
                # load random real training data
                x_real, y_real = self.load_real_samples(half_batch)

                # Generate fake samples
                x_fake, y_fake = self.generate_fake_samples(half_batch)

                d_loss_real, _ = self.discriminator.train_on_batch(x_real, y_real)
                d_loss_fake, _ = self.discriminator.train_on_batch(x_fake, y_fake)

                # prepare inputs for generator
                x_gan = self.generate_latent_points(self.batch_size)
                y_gan = np.ones((self.batch_size, 1))

                # Update generator with the the discriminator "loss function"
                g_loss = self.gan.train_on_batch(x_gan, y_gan)

                # Print progress
                progress_bar.update(j + 1, values=[("Generator loss", g_loss),
                                                   ("Disc loss real", d_loss_real),
                                                   ("Disc loss fake", d_loss_fake)])

                if (j + 1) == batch_per_epoch:
                    self.d_loss_fake.append(d_loss_fake)
                    self.d_loss_real.append(d_loss_real)
                    self.g_loss.append(g_loss)

                    print('\n' + str(min(weight_saver)) + '\n')
                    print('\n' + str(g_loss) + '\n')

                    if skip == 1:
                        if ws is True:
                            weight_saver.append(max(self.g_loss))
                            ws = False
                        if g_loss < min(weight_saver):
                            print('\n save weights \n')
                            self.save_gen_images_and_model(i)
                            weight_saver.append(g_loss)

                if i == 10:  # epochs * 0.01:
                    skip = 1
                    ws = True

            if (i + 1) == epochs:
                self.plot_d_loss()
                self.plot_g_loss()
                self.save_gen_images_and_model(i)


if __name__ == "__main__":
    dcgan = DeepConvGAN()
    dcgan.train(epochs=1500)







metrics_and_loss.py

import cv2
import numpy as np
import tensorflow as tf
import SimpleITK as sitk

from scipy.ndimage import morphology
from scipy.ndimage import _ni_support
from scipy.ndimage.morphology import distance_transform_edt, binary_erosion, generate_binary_structure
from scipy.ndimage.measurements import label, find_objects
from tensorflow.python.keras import backend as K
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import map_coordinates
from scipy.spatial.distance import directed_hausdorff


def dice_coef(y_true, y_pred):
    numerator = 2 * tf.reduce_sum(y_true * y_pred, axis=(1, 2, 3))
    denominator = tf.reduce_sum(y_true + y_pred, axis=(1, 2, 3))

    return numerator / denominator


def dice_loss(y_true, y_pred):
    numerator = 2 * tf.reduce_sum(y_true * y_pred, axis=(1, 2, 3))
    denominator = tf.reduce_sum(y_true + y_pred, axis=(1, 2, 3))

    return 1 - numerator / denominator


def numpy_dice(y_true, y_pred, axis=None, smooth=1.0):

    intersection = y_true*y_pred

    return (2. * intersection.sum(axis=axis) + smooth)/ (np.sum(y_true, axis=axis) + np.sum(y_pred, axis=axis) + smooth)


def rel_abs_vol_diff(y_true, y_pred):

    return np.abs((y_pred.sum()/y_true.sum() - 1)*100)


def __surface_distances(result, reference, voxelspacing=None, connectivity=1):
    """
    The distances between the surface voxel of binary objects in result and their
    nearest partner surface voxel of a binary object in reference.
    """
    result = np.atleast_1d(result.astype(np.bool))
    reference = np.atleast_1d(reference.astype(np.bool))
    if voxelspacing is not None:
        voxelspacing = _ni_support._normalize_sequence(voxelspacing, result.ndim)
        voxelspacing = np.asarray(voxelspacing, dtype=np.float64)
        if not voxelspacing.flags.contiguous:
            voxelspacing = voxelspacing.copy()

    # binary structure
    footprint = generate_binary_structure(result.ndim, connectivity)

    # test for emptiness
    if 0 == np.count_nonzero(result):
        raise RuntimeError('The first supplied array does not contain any binary object.')
    if 0 == np.count_nonzero(reference):
        raise RuntimeError('The second supplied array does not contain any binary object.')

        # extract only 1-pixel border line of objects
    result_border = result ^ binary_erosion(result, structure=footprint, iterations=1)
    reference_border = reference ^ binary_erosion(reference, structure=footprint, iterations=1)

    # compute average surface distance
    # Note: scipys distance transform is calculated only inside the borders of the
    #       foreground objects, therefore the input has to be reversed
    dt = distance_transform_edt(~reference_border, sampling=voxelspacing)
    sds = dt[result_border]

    return sds


def hd95(result, reference, voxelspacing=None, connectivity=1):
    """
    95th percentile of the Hausdorff Distance.

    Computes the 95th percentile of the (symmetric) Hausdorff Distance (HD) between the binary objects in two
    images. Compared to the Hausdorff Distance, this metric is slightly more stable to small outliers and is
    commonly used in Biomedical Segmentation challenges.

    Parameters
    ----------
    result : array_like
        Input data containing objects. Can be any type but will be converted
        into binary: background where 0, object everywhere else.
    reference : array_like
        Input data containing objects. Can be any type but will be converted
        into binary: background where 0, object everywhere else.
    voxelspacing : float or sequence of floats, optional
        The voxelspacing in a distance unit i.e. spacing of elements
        along each dimension. If a sequence, must be of length equal to
        the input rank; if a single number, this is used for all axes. If
        not specified, a grid spacing of unity is implied.
    connectivity : int
        The neighbourhood/connectivity considered when determining the surface
        of the binary objects. This value is passed to
        `scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
        Note that the connectivity influences the result in the case of the Hausdorff distance.

    Returns
    -------
    hd : float
        The symmetric Hausdorff Distance between the object(s) in ```result``` and the
        object(s) in ```reference```. The distance unit is the same as for the spacing of
        elements along each dimension, which is usually given in mm.

    See also
    --------
    :func:`hd`

    Notes
    -----
    This is a real metric. The binary images can therefore be supplied in any order.
    """
    hd1 = __surface_distances(result, reference, voxelspacing, connectivity)
    hd2 = __surface_distances(reference, result, voxelspacing, connectivity)
    hd95 = np.percentile(np.hstack((hd1, hd2)), 95)
    return hd95


def obj_asd(result, reference, voxelspacing=None, connectivity=1):
    """
    Average surface distance between objects.
    First correspondences between distinct binary objects in reference and result are
    established. Then the average surface distance is only computed between corresponding
    objects. Correspondence is defined as unique and at least one voxel overlap.
    Parameters
    ----------
    result : array_like
        Input data containing objects. Can be any type but will be converted
        into binary: background where 0, object everywhere else.
    reference : array_like
        Input data containing objects. Can be any type but will be converted
        into binary: background where 0, object everywhere else.
    voxelspacing : float or sequence of floats, optional
        The voxelspacing in a distance unit i.e. spacing of elements
        along each dimension. If a sequence, must be of length equal to
        the input rank; if a single number, this is used for all axes. If
        not specified, a grid spacing of unity is implied.
    connectivity : int
        The neighbourhood/connectivity considered when determining what accounts
        for a distinct binary object as well as when determining the surface
        of the binary objects. This value is passed to
        `scipy.ndimage.morphology.generate_binary_structure` and should usually be :math:`> 1`.
        The decision on the connectivity is important, as it can influence the results
        strongly. If in doubt, leave it as it is.
    Returns
    -------
    asd : float
        The average surface distance between all mutually existing distinct binary
        object(s) in ``result`` and ``reference``. The distance unit is the same as for the
        spacing of elements along each dimension, which is usually given in mm.
    See also
    --------
    :func:`obj_assd`
    :func:`obj_tpr`
    :func:`obj_fpr`
    Notes
    -----
    This is not a real metric, as it is directed. See `obj_assd` for a real metric of this.
    For the understanding of this metric, both the notions of connectedness and surface
    distance are essential. Please see :func:`obj_tpr` and :func:`obj_fpr` for more
    information on the first and :func:`asd` on the second.
    Examples
    --------
    >>> arr1 = np.asarray([[1,1,1],[1,1,1],[1,1,1]])
    >>> arr2 = np.asarray([[0,1,0],[0,1,0],[0,1,0]])
    >>> arr1
    array([[1, 1, 1],
           [1, 1, 1],
           [1, 1, 1]])
    >>> arr2
    array([[0, 1, 0],
           [0, 1, 0],
           [0, 1, 0]])
    >>> obj_asd(arr1, arr2)
    1.5
    >>> obj_asd(arr2, arr1)
    0.333333333333
    With the `voxelspacing` parameter, the distances between the voxels can be set for
    each dimension separately:
    >>> obj_asd(arr1, arr2, voxelspacing=(1,2))
    1.5
    >>> obj_asd(arr2, arr1, voxelspacing=(1,2))
    0.333333333333
    More examples depicting the notion of object connectedness:
    >>> arr1 = np.asarray([[1,0,1],[1,0,0],[0,0,0]])
    >>> arr2 = np.asarray([[1,0,1],[1,0,0],[0,0,1]])
    >>> arr1
    array([[1, 0, 1],
           [1, 0, 0],
           [0, 0, 0]])
    >>> arr2
    array([[1, 0, 1],
           [1, 0, 0],
           [0, 0, 1]])
    >>> obj_asd(arr1, arr2)
    0.0
    >>> obj_asd(arr2, arr1)
    0.0
    >>> arr1 = np.asarray([[1,0,1],[1,0,1],[0,0,1]])
    >>> arr2 = np.asarray([[1,0,1],[1,0,0],[0,0,1]])
    >>> arr1
    array([[1, 0, 1],
           [1, 0, 1],
           [0, 0, 1]])
    >>> arr2
    array([[1, 0, 1],
           [1, 0, 0],
           [0, 0, 1]])
    >>> obj_asd(arr1, arr2)
    0.6
    >>> obj_asd(arr2, arr1)
    0.0
    Influence of `connectivity` parameter can be seen in the following example, where
    with the (default) connectivity of `1` the first array is considered to contain two
    objects, while with an increase connectivity of `2`, just one large object is
    detected.
    >>> arr1 = np.asarray([[1,0,0],[0,1,1],[0,1,1]])
    >>> arr2 = np.asarray([[1,0,0],[0,0,0],[0,0,0]])
    >>> arr1
    array([[1, 0, 0],
           [0, 1, 1],
           [0, 1, 1]])
    >>> arr2
    array([[1, 0, 0],
           [0, 0, 0],
           [0, 0, 0]])
    >>> obj_asd(arr1, arr2)
    0.0
    >>> obj_asd(arr1, arr2, connectivity=2)
    1.742955328
    Note that the connectivity also influence the notion of what is considered an object
    surface voxels.
    """
    sds = list()
    labelmap1, labelmap2, _a, _b, mapping = __distinct_binary_object_correspondences(result, reference, connectivity)
    slicers1 = find_objects(labelmap1)
    slicers2 = find_objects(labelmap2)
    for lid2, lid1 in mapping.items():
        window = __combine_windows(slicers1[lid1 - 1], slicers2[lid2 - 1])
        object1 = labelmap1[window] == lid1
        object2 = labelmap2[window] == lid2
        sds.extend(__surface_distances(object1, object2, voxelspacing, connectivity))
    asd = np.mean(sds)
    return asd


def __combine_windows(w1, w2):
    """
    Joins two windows (defined by tuple of slices) such that their maximum
    combined extend is covered by the new returned window.
    """
    res = []
    for s1, s2 in zip(w1, w2):
        res.append(slice(min(s1.start, s2.start), max(s1.stop, s2.stop)))
    return tuple(res)


def __distinct_binary_object_correspondences(reference, result, connectivity=1):
    """
    Determines all distinct (where connectivity is defined by the connectivity parameter
    passed to scipy's `generate_binary_structure`) binary objects in both of the input
    parameters and returns a 1to1 mapping from the labelled objects in reference to the
    corresponding (whereas a one-voxel overlap suffices for correspondence) objects in
    result.
    All stems from the problem, that the relationship is non-surjective many-to-many.
    @return (labelmap1, labelmap2, n_lables1, n_labels2, labelmapping2to1)
    """
    result = np.atleast_1d(result.astype(np.bool))
    reference = np.atleast_1d(reference.astype(np.bool))

    # binary structure
    footprint = generate_binary_structure(result.ndim, connectivity)

    # label distinct binary objects
    labelmap1, n_obj_result = label(result, footprint)
    labelmap2, n_obj_reference = label(reference, footprint)

    # find all overlaps from labelmap2 to labelmap1; collect one-to-one relationships and store all one-two-many for later processing
    slicers = find_objects(labelmap2)  # get windows of labelled objects
    mapping = dict()  # mappings from labels in labelmap2 to corresponding object labels in labelmap1
    used_labels = set()  # set to collect all already used labels from labelmap2
    one_to_many = list()  # list to collect all one-to-many mappings
    for l1id, slicer in enumerate(slicers):  # iterate over object in labelmap2 and their windows
        l1id += 1  # labelled objects have ids sarting from 1
        bobj = (l1id) == labelmap2[slicer]  # find binary object corresponding to the label1 id in the segmentation
        l2ids = np.unique(labelmap1[slicer][
                                 bobj])  # extract all unique object identifiers at the corresponding positions in the reference (i.e. the mapping)
        l2ids = l2ids[0 != l2ids]  # remove background identifiers (=0)
        if 1 == len(
                l2ids):  # one-to-one mapping: if target label not already used, add to final list of object-to-object mappings and mark target label as used
            l2id = l2ids[0]
            if not l2id in used_labels:
                mapping[l1id] = l2id
                used_labels.add(l2id)
        elif 1 < len(l2ids):  # one-to-many mapping: store relationship for later processing
            one_to_many.append((l1id, set(l2ids)))

    # process one-to-many mappings, always choosing the one with the least labelmap2 correspondences first
    while True:
        one_to_many = [(l1id, l2ids - used_labels) for l1id, l2ids in
                       one_to_many]  # remove already used ids from all sets
        one_to_many = [x for x in one_to_many if x[1]]  # remove empty sets
        one_to_many = sorted(one_to_many, key=lambda x: len(x[1]))  # sort by set length
        if 0 == len(one_to_many):
            break
        l2id = one_to_many[0][1].pop()  # select an arbitrary target label id from the shortest set
        mapping[one_to_many[0][0]] = l2id  # add to one-to-one mappings
        used_labels.add(l2id)  # mark target label as used
        one_to_many = one_to_many[1:]  # delete the processed set from all sets

    return labelmap1, labelmap2, n_obj_result, n_obj_reference, mapping







pix2pix.py

# import files

import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from numpy.random import randint, random, choice
from data_pros import load_data

from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.initializers import RandomNormal
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.models import Input
from tensorflow.python.keras.layers import Conv2D
from tensorflow.python.keras.layers import Conv2DTranspose
from tensorflow.python.keras.layers import Activation
from tensorflow.python.keras.layers import Concatenate
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import BatchNormalization
from tensorflow.python.keras.layers import LeakyReLU
from tensorflow.python.keras.utils.generic_utils import Progbar

# Uncomment these lines to remove deprecated warning messages
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False

# Select GPU
os.environ['CUDA_VISIBLE_DEVICES'] = '5'

# INFO=0, WARNING=1, ERROR=2, FATAL=3, NUM_SEVERITIES=4
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)


class Pix2Pix:
    def __init__(self):
        # input shape
        self.image_width = 256
        self.image_height = 256
        self.channels = 1
        self.image_shape = (self.image_width, self.image_height, self.channels)

        # load data
        self.train_target, self.train_source, self.val_target, self.val_source = load_data(without_black_masks=1)

        # Number of filters in first layer of generator and discriminator
        self.generator_filters = 64
        self.discriminator_filters = 64

        # define batch size
        self.batch_size = 1

        # optimizer
        self.optimizer = Adam(0.0001, 0.5)

        # Build discriminator
        self.discriminator = self.build_discriminator()

        # Build the generator
        self.generator = self.build_generator()

        # define loss
        self.d_loss_fake = []
        self.d_loss_real = []
        self.g_loss = []
        self.gen_mae = []

    def build_generator(self):
        """
        This is a generator based on an reverted U-net structure

        """

        # define an encoder block
        def define_encoder_block(layer_in, n_filters, batchnorm=True):
            # weight initialization
            init = RandomNormal(stddev=0.02)
            # add downsampling layer
            g = Conv2D(n_filters, (4, 4), strides=(2, 2), padding='same', kernel_initializer=init)(layer_in)
            # conditionally add batch normalization
            if batchnorm:
                g = BatchNormalization()(g, training=True)
            # leaky relu activation
            g = LeakyReLU(alpha=0.2)(g)

            return g

        # define a decoder block
        def decoder_block(layer_in, skip_in, n_filters, dropout=True):
            # weight initialization
            init = RandomNormal(stddev=0.02)
            # add upsampling layer
            g = Conv2DTranspose(n_filters, (4, 4), strides=(2, 2), padding='same', kernel_initializer=init)(layer_in)
            # add batch normalization
            g = BatchNormalization()(g, training=True)
            # conditionally add dropout
            if dropout:
                g = Dropout(0.5)(g, training=True)
            # merge with skip connection
            g = Concatenate()([g, skip_in])
            # relu activation
            # g = Activation('relu')(g)
            g = LeakyReLU(alpha=0.2)(g)

            return g

        # image input
        input_image = Input(shape=self.image_shape)

        # encoder model: C64-C128-C256-C512-C512-C512-C512-C512
        e1 = define_encoder_block(input_image, self.generator_filters, batchnorm=False)
        e2 = define_encoder_block(e1, self.generator_filters * 2)
        e3 = define_encoder_block(e2, self.generator_filters * 4)
        e4 = define_encoder_block(e3, self.generator_filters * 8)
        e5 = define_encoder_block(e4, self.generator_filters * 8)
        e6 = define_encoder_block(e5, self.generator_filters * 8)
        e7 = define_encoder_block(e6, self.generator_filters * 8)

        # bottleneck, no batch norm and relu
        b = Conv2D(512, (4, 4), strides=(2, 2), padding='same', kernel_initializer=RandomNormal(stddev=0.02))(e7)
        b = Activation('relu')(b)

        # decoder model: CD512-CD1024-CD1024-C1024-C1024-C512-C256-C128
        d1 = decoder_block(b, e7, self.generator_filters * 8)
        d2 = decoder_block(d1, e6, self.generator_filters * 8)
        d3 = decoder_block(d2, e5, self.generator_filters * 8)
        d4 = decoder_block(d3, e4, self.generator_filters * 8, dropout=False)
        d5 = decoder_block(d4, e3, self.generator_filters * 4, dropout=False)
        d6 = decoder_block(d5, e2, self.generator_filters * 2, dropout=False)
        d7 = decoder_block(d6, e1, self.generator_filters, dropout=False)

        # output
        generator = Conv2DTranspose(self.channels, (4, 4), strides=(2, 2),
                                    padding='same', kernel_initializer=RandomNormal(stddev=0.02))(d7)
        output_image = Activation('tanh')(generator)

        model = Model(input_image, output_image)

        return model

    def build_discriminator(self):
        def d_layer(layer_input, filters, f_size=(4, 4), stride=(2, 2), batch_norm=True, leaky_relu=True):
            # weight initialization
            init = RandomNormal(stddev=0.02)
            # add down sampling layer
            d = Conv2D(filters, f_size, strides=stride, padding='same', kernel_initializer=init)(layer_input)
            # add batch normalization if this is required
            if batch_norm:
                d = BatchNormalization(momentum=0.8)(d)
            # leaky ReLu activation
            if leaky_relu:
                d = LeakyReLU(alpha=0.2)(d)

            return d

        # source image input
        input_source_image = Input(shape=self.image_shape)
        # target image input
        input_target_image = Input(shape=self.image_shape)
        # concatenate images channel-wise
        merged = Concatenate()([input_source_image, input_target_image])

        # 64 output filters in the convolution
        d1 = d_layer(merged, self.discriminator_filters, batch_norm=False)
        # 128 output filters in the convolution
        d2 = d_layer(d1, self.discriminator_filters * 2)
        # 256 output filters in the convolution
        d3 = d_layer(d2, self.discriminator_filters * 4)
        # 512 output filters in the convolution
        d4 = d_layer(d3, self.discriminator_filters * 8)
        # 512 output filters in the convolution
        d5 = d_layer(d4, self.discriminator_filters * 8, stride=(1, 1))
        # patch output
        d6 = d_layer(d5, 1, stride=(1, 1), batch_norm=False, leaky_relu=False)
        patch_out = Activation('sigmoid')(d6)

        model = Model([input_source_image, input_target_image], patch_out)

        return model

    def build_gan(self):
        # Compile the discriminator
        self.discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, loss_weights=[0.5])

        # make weights in the discriminator not trainable
        self.discriminator.trainable = False

        # define the source image
        source_image = Input(shape=self.image_shape)

        # connect the source image to the generator input
        fake_image = self.generator(source_image)

        # connect the source input and generator output to the discriminator input
        validation = self.discriminator([source_image, fake_image])

        self.discriminator.trainable = True

        # src image as input, generated image and classification output
        model = Model(source_image, [validation, fake_image])

        return model

    def load_real_samples(self, ats, att, number_of_samples=1, n_patch=16):
        def smooth_positive_labels(label):
            return label - 0.3 + (random(label.shape) * 0.5)

        def noisy_labels(label, p_flip):
            # determine the number of labels to flip
            n_select = int(p_flip * label.shape[0])
            # choose labels to flip
            flip_ix = choice([i for i in range(label.shape[0])], size=n_select)
            # invert the labels in place
            y[flip_ix] = 1 - label[flip_ix]
            return label

        # choose random instances
        index = randint(0, self.train_source.shape[0], number_of_samples)
        # retrieve selected images
        tx, ty = ats[index], att[index]
        # generate 'real' class labels (1)
        y = np.ones((number_of_samples, n_patch, n_patch, 1))
        y = smooth_positive_labels(y)
        y = noisy_labels(y, 0.05)

        return [tx, ty], y

    def load_real_val_samples(self, ats, att, number_of_samples=1):
        # choose random instances
        index = randint(0, self.val_source.shape[0], number_of_samples)
        # retrieve selected images
        tx, ty = ats[index], att[index]

        return [tx, ty]

    def generate_fake_samples(self, samples, n_patch=16):
        def noisy_labels(label, p_flip):
            # determine the number of labels to flip
            n_select = int(p_flip * label.shape[0])
            # choose labels to flip
            flip_ix = choice([i for i in range(label.shape[0])], size=n_select)
            # invert the labels in place
            label[flip_ix] = 1 - label[flip_ix]
            return label

        # generate fake instance
        x = self.generator.predict(samples)
        # create 'fake' class labels (0)
        y = np.zeros((len(x), n_patch, n_patch, 1))
        y = noisy_labels(y, 0.05)

        return x, y

    def plot_dloss(self):
        plt.figure(figsize=(10, 8))
        plt.plot(self.d_loss_fake, label='Discriminator loss fake')
        plt.plot(self.d_loss_real, label='Discriminator loss real')
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.legend()

        plt.savefig('output/pix2pix_results/images/pix2pix_dloss.png')

    def plot_gloss(self):
        plt.figure(figsize=(10, 8))
        plt.plot(self.gen_mae, label='Generator loss')
        plt.xlabel('Epoch')
        plt.ylabel('Loss')
        plt.legend()

        plt.savefig('output/pix2pix_results/images/pix2pix_gloss.png')

    def summarize_performance(self, step, number_of_samples=4):
        # select a sample of input images
        [real_source_images, real_target_images] = self.load_real_val_samples(self.val_source,
                                                                              self.val_target,
                                                                              number_of_samples=number_of_samples)
        # generate a batch of fake samples
        fake_target_images, _ = self.generate_fake_samples(real_source_images, n_patch=1)
        # scale all pixels from [-1,1] to [0,1]
        real_source_images = (real_source_images + 1) / 2.0
        real_target_images = (real_target_images + 1) / 2.0
        fake_target_images = (fake_target_images + 1) / 2.0
        # plot real source images
        for i in range(number_of_samples):
            plt.subplot(3, number_of_samples, 1 + i)
            plt.axis('off')
            plt.set_cmap('gray')
            plt.imshow(real_source_images[i, ..., 0])
        # plot generated target image
        for i in range(number_of_samples):
            # fake_target_images[i, ..., 0] = equalize_adapthist(fake_target_images[i, ..., 0], clip_limit=0.05)
            plt.subplot(3, number_of_samples, 1 + number_of_samples + i)
            plt.axis('off')
            plt.set_cmap('gray')
            plt.imshow(fake_target_images[i, ..., 0])
        # plot real target image
        for i in range(number_of_samples):
            plt.subplot(3, number_of_samples, 1 + number_of_samples * 2 + i)
            plt.axis('off')
            plt.set_cmap('gray')
            plt.imshow(real_target_images[i, ..., 0])
        # save plot to file
        filename1 = 'output/pix2pix_results/images/plot_%06d.png' % step
        plt.savefig(filename1)
        plt.close()

        filename2 = 'output/pix2pix_results/model_weights/generator_model_%06d.h5' % step
        self.generator.save(filename2)

        pred = np.load('data/dcgan_pred_correct.npy')
        pred_images, _ = self.generate_fake_samples(pred)
        filename3 = 'data/pix2pix_mri_%06d.npy' % step
        np.save(filename3, pred_images)

    def train(self, epochs=1):
        # Build and compile GAN model
        gan_model = self.build_gan()
        gan_model.compile(loss=['binary_crossentropy', 'mae'], optimizer=self.optimizer, loss_weights=[1, 100])

        # calculate the number of batches per training epoch
        bat_per_epo = self.train_source.shape[0] // self.batch_size

        skip = 0
        weight_saver = []
        ws = False

        # manually enumerate epochs
        for i in range(epochs):
            progress_bar = Progbar(bat_per_epo)
            print('\n' + 'Epoch %(n)d / %(s)d: ' % {'n': i, 's': epochs})

            for u in range(bat_per_epo):
                # select a batch of real samples
                [X_realA, X_realB], y_real = self.load_real_samples(self.train_source,
                                                                    self.train_target,
                                                                    number_of_samples=self.batch_size)

                # generate a batch of fake samples
                x_fake_b, y_fake = self.generate_fake_samples(X_realA)

                # update discriminator for real samples
                d_loss1 = self.discriminator.train_on_batch([X_realA, X_realB], y_real)
                # update discriminator for generated samples (Separate Batches of Real and Fake Images)
                d_loss2 = self.discriminator.train_on_batch([X_realA, x_fake_b], y_fake)
                # update the generator (generator loss, which is a weighted average of adversarial and L1 loss)
                g_loss, a, _ = gan_model.train_on_batch(X_realA, [y_real, X_realB])

                gen_total_loss = g_loss.tolist()
                gen_total_loss = min(gen_total_loss, 1000000)
                gen_mae = a.tolist()
                gen_mae = min(gen_mae, 1000000)

                progress_bar.update(u + 1, values=[("Gen total", gen_total_loss),
                                                   ("Gen L1 (mae)", gen_mae),
                                                   ("d_loss_real", d_loss1),
                                                   ("d_loss_fake", d_loss2)])

                if (u + 1) == bat_per_epo:
                    self.d_loss_fake.append(d_loss2)
                    self.d_loss_real.append(d_loss1)
                    self.g_loss.append(g_loss)
                    self.gen_mae.append(gen_mae)

                    print('\n' + str(min(self.g_loss)) + '\n')
                    print('\n' + str(g_loss) + '\n')

                    if skip == 1:
                        if ws is True:
                            weight_saver.append(max(self.g_loss))
                            ws = False
                        if g_loss < min(weight_saver):
                            self.summarize_performance(i)
                            weight_saver.append(g_loss)

                if i == 1:  # epochs * 0.1:
                    skip = 1
                    ws = True

            if (i + 1) == epochs:
                self.plot_dloss()
                self.plot_gloss()
                self.summarize_performance(i)


if __name__ == "__main__":
    pix2pix_gan = Pix2Pix()
    pix2pix_gan.train(epochs=200)







test_dcgan.py

from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.models import Input, Model, Sequential
from tensorflow.python.keras.layers import Conv2D
from tensorflow.python.keras.layers import Activation
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import BatchNormalization
from tensorflow.python.keras.layers import LeakyReLU
from tensorflow.python.keras.layers import Flatten
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import Reshape
from tensorflow.python.keras.layers import UpSampling2D, Conv2DTranspose
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.keras.initializers import RandomNormal
from tensorflow.python.keras.utils.vis_utils import plot_model

import os
import cv2
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from numpy.random import randint
from data_pros import load_data
from dcgan import DeepConvGAN
from PIL import Image

# Uncomment these lines to remove deprecated warning messages
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False

# run on GPUs at UIS
# os.environ['CUDA_VISIBLE_DEVICES'] = '5'


# ------------ SET GPU DEBUG LEVEL --------
# Disable debugging information from tensorflow
# INFO=0, WARNING=1, ERROR=2, FATAL=3, NUM_SEVERITIES=4
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)


def show_image(data, i):
    data = np.squeeze(data, axis=(2,))  # Convert to 2D
    xsize = data.shape[0]
    ysize = data.shape[1]

    margin = 0.05
    dpi = 80
    fig_size = (1 + margin) * xsize / dpi, (1 + margin) * ysize / dpi

    plt.figure(figsize=fig_size, dpi=dpi, tight_layout=True)
    ax = plt.gca()

    t = ax.imshow(data, interpolation=None)
    t.set_cmap("gray")
    plt.title(str(i))
    plt.show()


def generate_seg_masks(save=False, print_shape=False, examples=1):
    dcgan = DeepConvGAN()

    optimizer = Adam(0.0002, 0.5)
    loss_function = 'binary_crossentropy'
    model_weights = 'output/gan_results/test/god_nok/model_001499.h5'

    noise = np.random.normal(0, 1, size=[examples, 100])

    generator = dcgan.build_generator()
    generator.load_weights(model_weights)
    generator.compile(loss=loss_function, optimizer=optimizer)

    generated_images = generator.predict(noise)
    generated_images = np.reshape(np.concatenate(generated_images, axis=0), (-1, image_width, image_height, 1))

    if save is True:
        np.save('data/dcgan_pred.npy', generated_images)

    if print_shape is True:
        print(generated_images.shape)

    return generated_images


def edit_seg_mask_array():
    correct = []
    wrong = []

    pred = np.load('data/dcgan_pred_correct.npy')
    for i in range(pred.shape[0]):
        if i not in wrong:
            correct.append(pred[i, ...])

    correct = np.reshape(np.concatenate(correct, axis=0), (-1, image_width, image_height, 1))
    np.save('data/dcgan_pred_correct.npy', correct)


def plot_examples_two(p):
    a = np.squeeze(p[10, ...], axis=(2,))  # Convert to 2D
    b = np.squeeze(p[15, ...], axis=(2,))  # Convert to 2D
    c = np.squeeze(p[30, ...], axis=(2,))  # Convert to 2D
    d = np.squeeze(p[40, ...], axis=(2,))  # Convert to 2D

    fig, ax = plt.subplots(1, 4, figsize=(20, 10))
    ax[0].imshow(a, cmap='gray')
    ax[1].imshow(b, cmap='gray')
    ax[2].imshow(c, cmap='gray')
    ax[3].imshow(d, cmap='gray')
    plt.show()


if __name__ == "__main__":
    pred_mask = []
    image_width = 256
    image_height = 256
    dim = (10, 10)

    pred = generate_seg_masks(save=True, print_shape=False, examples=2000)
    # edit_seg_mask_array()

    # pred = np.load('data/dcgan_pred_correct.npy')
    pred = (pred + 1) / 2.0
    pred[pred <= 0] = 0

    plot_examples_two(pred)







test_unet.py

import os
import cv2
import numpy as np
import SimpleITK as sitk
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from skimage.measure import find_contours
from numpy.core.umath_tests import inner1d

from metrics_and_loss import *
from data_pros import load_data
from unet import Generator

from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.models import load_model

# Switch backend for mat plot lib
plt.switch_backend('agg')

uis_gpu = 0

if uis_gpu == 1:
    # Uncomment these lines to remove deprecated warning messages
    from tensorflow.python.util import deprecation
    deprecation._PRINT_DEPRECATION_WARNINGS = False

    # run on GPUs at UIS
    os.environ['CUDA_VISIBLE_DEVICES']='4'

    # ------------ SET GPU DEBUG LEVEL --------
    # Disable debugging information from tensorflow
    # INFO=0, WARNING=1, ERROR=2, FATAL=3, NUM_SEVERITIES=4
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    config = tf.compat.v1.ConfigProto()
    config.gpu_options.allow_growth = True
    session = tf.compat.v1.Session(config=config)

else:
    # Uncomment these lines to remove deprecated warning messages
    from tensorflow.python.util import deprecation

    deprecation._PRINT_DEPRECATION_WARNINGS = False

    # ------------ SET GPU DEBUG LEVEL --------
    # Disable debugging information from tensorflow
    # INFO=0, WARNING=1, ERROR=2, FATAL=3, NUM_SEVERITIES=4
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

    config = tf.compat.v1.ConfigProto()
    config.gpu_options.allow_growth = True
    session = tf.compat.v1.Session(config=config)


class PredictSegmentation:
    def __init__(self):
        # Input shape
        self.image_width = 256
        self.image_height = 256
        self.channels = 1
        self.image_shape = (self.image_width, self.image_height, self.channels)

        # Optimizer
        self.optimizer = Adam()

        # Load training data
        self.train_source, self.train_target, self.val_source, self.val_target = load_data()

        # Load model weights
        self.model_weights = 'output/segmentation_results/resultchapter/ordata/weights_epoch_100.h5'
        # self.model_weights = 'output/segmentation_results/resultchapter/orgdata_expanded/weights_epoch_20.h5'
        # Load training model
        self.model = self.load_your_model()

        # Load test data
        self.test_source = np.load('data/X_test.npy')

        # Validation list
        self.validation_list = [5, 15, 25, 35, 45]

        # Training list
        self.training_list = list(set(range(50)) - set(self.validation_list))
        self.training_list.sort()

    def load_your_model(self):
        g = Generator()
        model = g.build_model()
        model.load_weights(self.model_weights)

        model.compile(optimizer=self.optimizer, loss=dice_loss, metrics=[dice_coef])

        return model

    def resize(self, target_prediction, shape):
        correct_shaped_image = np.zeros(shape)
        for i in range(len(target_prediction)):
            correct_shaped_image[i, :, :] = cv2.resize(src=target_prediction[i, :, :, 0],
                                                       dsize=(shape[1], shape[2]),
                                                       interpolation=cv2.INTER_NEAREST)

        return correct_shaped_image.astype(int)

    def load_target_files_to_array(self):
        training_target = sorted(os.listdir('trainingdata/'))
        training_target = list(filter(lambda x: '.mhd' in x, training_target))
        training_target = filter(lambda x: 'segm' in x.lower(), training_target)

        for filename in training_target:
            segmentation_file = sitk.ReadImage('trainingdata/' + filename)
            segmentation_image = sitk.GetArrayFromImage(segmentation_file)

            yield segmentation_image, segmentation_file.GetSpacing()[::-1]

    def load_files(self, the_list=None, mask=True):
        filelist = sorted(os.listdir('trainingdata/'))
        filelist = list(filter(lambda x: '.mhd' in x, filelist))

        if mask:
            filelist = filter(lambda x: 'segm' in x.lower(), filelist)

        if the_list is not None:
            filelist = filter(lambda x: any(str(ff).zfill(2) in x for ff in the_list), filelist)

        for filename in filelist:
            itkimage = sitk.ReadImage('trainingdata/' + filename)
            image = sitk.GetArrayFromImage(itkimage)
            tall = image.shape[0] // 2
            aaaa = image[tall]

            yield image, itkimage.GetSpacing()[::-1]

    def check_prediction_stats(self, validation=0):
        end_index = 0
        val_list = [5, 15, 25, 35, 45]

        if validation == 1:
            target_prediction = self.model.predict(self.val_source, verbose=1, batch_size=128)
            print('Results on validation set')
            print('Dice accuracy:', numpy_dice(self.val_target, target_prediction))
            the_list = val_list

        else:  # If training set
            target_prediction = self.model.predict(self.train_source, verbose=1, batch_size=128)
            print('Results on train set:')
            print('Dice accuracy:', numpy_dice(self.train_target, target_prediction))
            the_list = list(set(range(50)) - set(val_list))

        # Mean volumetric DSC
        vol_scores = []
        # Mean Relative Absolute Volume
        rav = []
        # NYE
        scores = []
        hauss_dist = []
        mean_surf_dist = []

        for train_target, spacing in self.load_files(the_list):
            # Start and end index
            start_ind = end_index
            end_index += train_target.shape[0]

            # Resize training target
            resize_target_prediction = self.resize(target_prediction[start_ind:end_index], train_target.shape)

            # Add calculated scores to list for each case
            rav.append(rel_abs_vol_diff(train_target, resize_target_prediction))
            vol_scores.append(numpy_dice(train_target, resize_target_prediction, axis=None))

            hauss_dist.append(hd95(resize_target_prediction, train_target))
            mean_surf_dist.append(obj_asd(resize_target_prediction, train_target))
            axis = tuple(range(1, train_target.ndim))
            scores.append(numpy_dice(train_target, resize_target_prediction, axis=axis))

        # Transform from list to array
        rav = np.array(rav)
        vol_scores = np.array(vol_scores)

        # Print different scores
        print('Mean volumetric DSC:', vol_scores.mean())
        print('Median volumetric DSC:', np.median(vol_scores))
        print('Std volumetric DSC:', vol_scores.std())
        print('Mean Rel. Abs. Vol. Diff:', rav.mean())
        print('Mean Hauss. Dist:', np.mean(hauss_dist))
        print('Mean MSD:', np.mean(mean_surf_dist))

    def generate_mhd_files_for_predictions(self):
        end_ind = 0

        # Predict segmentation based on test source file
        target_prediction = self.model.predict(self.test_source, verbose=1, batch_size=128)

        # Sort the file directory in ascending order and "remove" .raw files
        test_data = sorted(os.listdir('test_data/'))
        test_data = list(filter(lambda x: '.mhd' in x, test_data))

        # Iterate over all files in test_data directory
        for filename in test_data:
            # Load .mhd source files and transform them to NumPy array to get their shape
            mhd_file = sitk.ReadImage('test_data/' + filename)
            image = sitk.GetArrayFromImage(mhd_file)

            # Use shape loaded above to define start and end
            start_ind = end_ind
            end_ind += image.shape[0]

            # Resize prediction image to the same size as the loaded image
            prediction = self.resize(target_prediction[start_ind:end_ind], image.shape)
            prediction = np.squeeze(prediction)

            # Transform the predicted images to .mhd files
            mhd_prediction_mask = sitk.GetImageFromArray(prediction)
            mhd_prediction_mask.SetOrigin(mhd_file.GetOrigin())
            mhd_prediction_mask.SetDirection(mhd_file.GetDirection())
            mhd_prediction_mask.SetSpacing(mhd_file.GetSpacing())
            sitk.WriteImage(mhd_prediction_mask, 'predictions' + '/' + filename[:-4] + '_segmentation.mhd')


if __name__ == '__main__':
    # Define test class for segmentation model
    pred = PredictSegmentation()

    # Check the score for both training cases and validations
    # pred.check_prediction_stats(validation=0)
    pred.check_prediction_stats(validation=1)

    # pred.generate_mhd_files_for_predictions()







unet.py

import os
import numpy as np
import tensorflow as tf
from functools import partial
import matplotlib.pyplot as plt

from tensorflow.python.keras import backend as K
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.keras.initializers import RandomNormal
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.callbacks import ModelCheckpoint
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from tensorflow.python.keras.layers import Dropout, BatchNormalization, Concatenate

from data_pros import load_data
from metrics_and_loss import dice_coef, dice_loss

# Uncomment these lines to remove deprecated warning messages
from tensorflow.python.util import deprecation
deprecation._PRINT_DEPRECATION_WARNINGS = False

# run on GPUs at UIS
os.environ['CUDA_VISIBLE_DEVICES']='2'


# ------------ SET GPU DEBUG LEVEL --------
# Disable debugging information from tensorflow
# INFO=0, WARNING=1, ERROR=2, FATAL=3, NUM_SEVERITIES=4
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)


# ---------------- Program ----------------
class ReduceLROnPlateau(tf.keras.callbacks.Callback):
    """
    !! This function is copied from tensorflow.python.keras.callbacks
    and modified to print the learning rate progress during training !!


    Reduce learning rate when a metric has stopped improving.

    Models often benefit from reducing the learning rate by a factor
    of 2-10 once learning stagnates. This callback monitors a
    quantity and if no improvement is seen for a 'patience' number
    of epochs, the learning rate is reduced.

    Example:

    ```python
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
                                    patience=5, min_lr=0.001)
    model.fit(X_train, Y_train, callbacks=[reduce_lr])
    ```

    Arguments:
        monitor: quantity to be monitored.
        factor: factor by which the learning rate will be reduced. new_lr = lr *
            factor
        patience: number of epochs with no improvement after which learning rate
                  will be reduced.
        verbose: int. 0: quiet, 1: update messages.
        mode: one of {auto, min, max}. In `min` mode, lr will be reduced when the
            quantity monitored has stopped decreasing; in `max` mode it will be
            reduced when the quantity monitored has stopped increasing; in `auto`
            mode, the direction is automatically inferred from the name of the
            monitored quantity.
        min_delta: threshold for measuring the new optimum, to only focus on
                   significant changes.
        cooldown: number of epochs to wait before resuming normal operation after
                  lr has been reduced.
        min_lr: lower bound on the learning rate.
    """

    def __init__(self,
                 monitor='val_loss',
                 factor=0.1,
                 patience=10,
                 verbose=0,
                 mode='auto',
                 min_delta=1e-4,
                 cooldown=0,
                 min_lr=0.1,
                 **kwargs):
        super(ReduceLROnPlateau, self).__init__()

        self.monitor = monitor
        if factor >= 1.0:
            raise ValueError('ReduceLROnPlateau ' 'does not support a factor >= 1.0.')

        if 'epsilon' in kwargs:
            min_delta = kwargs.pop('epsilon')
            logging.warning('`epsilon` argument is deprecated and will be removed, use `min_delta` instead.')

        self.factor = factor
        self.min_lr = min_lr
        self.min_delta = min_delta
        self.patience = patience
        self.verbose = verbose
        self.cooldown = cooldown
        self.cooldown_counter = 0  # Cooldown counter.
        self.wait = 0
        self.best = 0
        self.mode = mode
        self.monitor_op = None
        self.lr_p = 0
        self.nr_to_plot = []
        self._reset()

    def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            logging.warning('Learning Rate Plateau Reducing mode %s is unknown, fallback to auto mode.', self.mode)
            self.mode = 'auto'

        if self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor):
            self.monitor_op = lambda a, b: np.less(a, b - self.min_delta)
            self.best = np.Inf

        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta)
            self.best = -np.Inf

        self.cooldown_counter = 0
        self.wait = 0

    def on_train_begin(self, logs=None):
        self._reset()

    def on_epoch_begin(self, epoch, logs=None):
        if epoch == 0:
            self.lr_p = float(K.get_value(self.model.optimizer.lr))

        print('\nThe learning rate is: ' + str(self.lr_p) + '\n')
        self.nr_to_plot.append(self.lr_p)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        logs['lr'] = K.get_value(self.model.optimizer.lr)
        current = logs.get(self.monitor)
        if current is None:
            logging.warning('Reduce LR on plateau conditioned on metric `%s` '
                            'which is not available. Available metrics are: %s',
                            self.monitor, ','.join(list(logs.keys())))

        else:
            if self.in_cooldown():
                self.cooldown_counter -= 1
                self.wait = 0

            if self.monitor_op(current, self.best):
                self.best = current
                self.wait = 0

            elif not self.in_cooldown():
                self.wait += 1
                if self.wait >= self.patience:
                    old_lr = float(K.get_value(self.model.optimizer.lr))
                    if old_lr > self.min_lr:
                        new_lr = old_lr * self.factor
                        new_lr = max(new_lr, self.min_lr)
                        K.set_value(self.model.optimizer.lr, new_lr)
                        self.lr_p = new_lr

                        if self.verbose > 0:
                            print('\nEpoch %05d: ReduceLROnPlateau reducing learning rate to %s.' % (epoch + 1, new_lr))

                        self.cooldown_counter = self.cooldown
                        self.wait = 0

    def on_train_end(self, logs=None):
        plt.plot(self.nr_to_plot)
        plt.ylabel('learning rate')
        plt.xlabel('epoch nr')
        plt.savefig('output/segmentation_results/images/lrcurve.png')

    def in_cooldown(self):
        return self.cooldown_counter > 0


class Generator:
    def __init__(self):
        # Input shape
        self.image_width = 256
        self.image_height = 256
        self.channels = 1
        self.image_shape = (self.image_width, self.image_height, self.channels)

        # Load data
        # self.train_source, self.train_target, self.val_source, self.val_target = load_data(some_black_masks=1)
        org_train_mri, org_train_segm_mask, self.val_mri, self.val_segm_mask = load_data(some_black_masks=1)
        synthetic_segmentation_mask = np.load('data/dcgan_pred_correct.npy')
        synthetic_mri = np.load('data/pix2pix_mri_000162.npy')
        synthetic_segmentation_mask = (synthetic_segmentation_mask + 1) / 2.0
        synthetic_mri = (synthetic_mri + 1) / 2.0
        self.train_source = np.concatenate((org_train_mri, synthetic_mri))
        self.train_target = np.concatenate((org_train_segm_mask, synthetic_segmentation_mask))

        # -- DEFINE RUN SETTINGS --
        # Set augmentation by default equal to false
        self.augmentation = 0
        # The number of images we want to generate with augmentation
        self.augment_number = 15 * (10 ** 4)
        # Seed value
        self.seed = 42
        # Number of epochs
        self.epochs = 200
        # Network will be trained with one batch at the same time, aka. this amount of samples
        self.batch_size = 32
        # Number of result examples we want to print
        self.sample_num = 5

        # -- DEFINE MODEL SETTINGS --
        # Define filter size
        self.u_net_filters = 8

        # Load model
        self.gen_model = self.build_model()

    def build_model(self):
        # define an encoder block
        def define_encoder_block(layer_in, n_filters, wi, bn=False, mp=False, do=False, acti='relu'):
            layer_in = MaxPooling2D()(layer_in) if mp else layer_in
            layer = Conv2D(n_filters, 3, activation=acti, padding='same', kernel_initializer=wi)(layer_in)
            layer = BatchNormalization()(layer) if bn else layer
            layer = Dropout(0.5)(layer) if do else layer
            layer = Conv2D(n_filters, 3, activation=acti, padding='same', kernel_initializer=wi)(layer)
            layer = BatchNormalization()(layer) if bn else layer

            return concatenate([layer, layer_in], axis=3)

        # define a decoder block
        def decoder_block(layer_in, skip_l, n_filters, wi, bn=False, acti='relu'):
            layer = Conv2DTranspose(n_filters, 3, strides=2, activation=acti, padding='same')(layer_in)
            c_layer = Concatenate()([layer, skip_l])
            layer = Conv2D(n_filters, 3, activation=acti, padding='same', kernel_initializer=wi)(c_layer)
            layer = BatchNormalization()(layer) if bn else layer
            layer = Conv2D(n_filters, 3, activation=acti, padding='same', kernel_initializer=wi)(layer)
            layer = BatchNormalization()(layer) if bn else layer

            return concatenate([layer, c_layer], axis=3)

        # weight initialization
        init = RandomNormal(stddev=0.02)
        # image input
        input_image = Input(shape=self.image_shape)

        # Encoder
        e1 = define_encoder_block(input_image, self.u_net_filters, init, bn=True, mp=False, do=False)
        e2 = define_encoder_block(e1, self.u_net_filters * 2, init, bn=True, mp=True, do=True)
        e3 = define_encoder_block(e2, self.u_net_filters * 4, init, bn=True, mp=True, do=True)
        e4 = define_encoder_block(e3, self.u_net_filters * 8, init, bn=True, mp=True, do=True)
        e5 = define_encoder_block(e4, self.u_net_filters * 16, init, bn=True, mp=True, do=True)
        e6 = define_encoder_block(e5, self.u_net_filters * 32, init, bn=True, mp=True, do=True)
        e7 = define_encoder_block(e6, self.u_net_filters * 64, init, bn=True, mp=True, do=True)

        mid_layer = define_encoder_block(e7, self.u_net_filters * 128, init, bn=True, mp=True, do=True)

        # Decoder
        d1 = decoder_block(mid_layer, e7, self.u_net_filters * 64, init, bn=True)
        d2 = decoder_block(d1, e6, self.u_net_filters * 32, init, bn=True)
        d3 = decoder_block(d2, e5, self.u_net_filters * 16, init, bn=True)
        d4 = decoder_block(d3, e4, self.u_net_filters * 8, init, bn=True)
        d5 = decoder_block(d4, e3, self.u_net_filters * 4, init, bn=True)
        d6 = decoder_block(d5, e2, self.u_net_filters * 2, init, bn=True)
        d7 = decoder_block(d6, e1, self.u_net_filters, init, bn=True)

        # output
        output = Conv2D(filters=1, kernel_size=1, activation='sigmoid')(d7)

        model = Model(input_image, output)

        return model

    def fit(self):

        if self.augmentation == 1:
            # image_number = self.augment_number
            image_number = self.train_source.shape[0]
        else:
            # The real number of training samples
            image_number = self.train_source.shape[0]

        # Creates local variables to be able to use Keras fit generator
        train_source = self.train_source
        train_target = self.train_target

        # ModelCheckpoints save the best model parameters during training
        # ReduceLROnPlateau reduces the learning rate while training to improve the accuracy

        callbacks = [
            ModelCheckpoint(
                filepath='output/segmentation_results/model_weights/weights_epoch_{epoch:02d}.h5',
                monitor='val_loss',
                verbose=0,
                save_best_only=True,
                save_weights_only=True,
                mode='min',
                period=5),

            ReduceLROnPlateau(
                monitor='val_loss',
                factor=0.1,
                patience=7,
                verbose=1,
                mode='auto',
                epsilon=0.001,
                cooldown=1,
                min_lr=0.000000001)
        ]

        self.gen_model.compile(optimizer=Adam(lr=0.001), loss=dice_loss, metrics=[dice_coef])

        history = self.gen_model.fit_generator(self.batch_generator(train_source, train_target),
                                               steps_per_epoch=image_number // self.batch_size,
                                               epochs=self.epochs,
                                               validation_data=(self.val_mri, self.val_segm_mask),
                                               verbose=1,
                                               max_queue_size=30,
                                               shuffle=True,
                                               use_multiprocessing=True,
                                               callbacks=callbacks)

        return history

    def batch_generator(self, train_source, train_target):
        if self.augmentation == 1:
            data_generator = ImageDataGenerator().flow(train_source, train_source, self.batch_size, seed=self.seed)
            mask_generator = ImageDataGenerator().flow(train_target, train_target, self.batch_size, seed=self.seed)
        else:
            data_generator = ImageDataGenerator().flow(train_source, train_source, self.batch_size, seed=self.seed)
            mask_generator = ImageDataGenerator().flow(train_target, train_target, self.batch_size, seed=self.seed)

        while True:
            x_batch, _ = data_generator.next()
            y_batch, _ = mask_generator.next()
            yield x_batch, y_batch

    def batch_generator_two(self, train_source, train_target):
        if self.augmentation == 1:
            data_generator = ImageDataGenerator(
                width_shift_range=0.1,
                height_shift_range=0.1,
                rotation_range=10,
                horizontal_flip=True,
                vertical_flip=True,
                zoom_range=[1, 1.2]).flow(train_source, train_source, self.batch_size, seed=self.seed)
            mask_generator = ImageDataGenerator(
                width_shift_range=0.1,
                height_shift_range=0.1,
                rotation_range=10,
                horizontal_flip=True,
                vertical_flip=True,
                zoom_range=[1, 1.2]).flow(train_target, train_target, self.batch_size, seed=self.seed)
        else:
            data_generator = ImageDataGenerator().flow(train_source, train_source, self.batch_size, seed=self.seed)
            mask_generator = ImageDataGenerator().flow(train_target, train_target, self.batch_size, seed=self.seed)

        while True:
            x_batch, _ = data_generator.next()
            y_batch, _ = mask_generator.next()
            yield x_batch, y_batch

    def plot_examples(self):
        # Predict on validation data
        pred_val = self.gen_model.predict(self.val_mri, verbose=1)

        # Print i number of examples with org MRI, org. seg, predicted and binary predicted
        for i in range(self.sample_num):
            # Decide random sample
            ix = np.random.randint(0, self.val_mri.shape[0])

            has_mask = self.val_segm_mask[ix].max() > 0

            fig, ax = plt.subplots(1, 3, figsize=(20, 10))
            ax[0].imshow(self.val_mri[ix, ..., 0], cmap='gray')
            if has_mask:
                ax[0].contour(self.val_segm_mask[ix].squeeze(), colors='y', levels=[0.5])
            ax[0].set_title('Original MRI')

            ax[1].imshow(self.val_segm_mask[ix].squeeze(), cmap='gray')
            ax[1].set_title('Prostate gland solution')

            ax[2].imshow(pred_val[ix].squeeze(), cmap='gray', vmin=0, vmax=1)
            if has_mask:
                ax[2].contour(self.val_segm_mask[ix].squeeze(), colors='y', levels=[0.5])
            ax[2].set_title('Prostate gland prediction')

            plt.savefig('output/segmentation_results/images/pred_im' + str(i + 1) + '.png')

    def run(self, augmentation=0, epochs=1, batch_size=32):
        # Specifying important parameters
        self.augmentation = augmentation
        self.epochs = epochs
        self.batch_size = batch_size

        # Start training
        history = self.fit()

        # summarize history for loss
        plt.plot(history.history['loss'])
        plt.plot(history.history['val_loss'])
        plt.title('model loss')
        plt.ylabel('loss')
        plt.xlabel('epoch')
        plt.legend(['train', 'test'], loc='upper left')
        plt.savefig('output/segmentation_results/images/loss_plot.png')


if __name__ == "__main__":
    # Define segmentation generator
    g = Generator()
    # Start code and specify some parameters
    g.run(augmentation=1, epochs=200, batch_size=32)
    # Print some random result
    g.sample_num = 15
    g.plot_examples()
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G.3 metrics_and_loss.py

This file includes all custom matrics and loss functions used in this thesis. This file is
not executed individually but used by this thesis’ python scripts.

G.4 dcgan.py

The file dcgan.py includes the DCGAN generator model, discriminator model, and the
code to train these models. This script is executed to train the DCGAN models and save
model weights that can be used to generate synthetic segmentation masks.

G.5 test_dcgan.py

This file loads the saved DCGAN model weights and uses the generator model in dcgan.py

to generate new segmentation masks and save them in a separate NumPy array.

G.6 pix2pix.py

The pix2pix.py file contains the generator model, discriminator model, the code to train
these models, and the code to generate synthetic MRIs based on the DCGAN generated
segmentation masks. These MRIs are generated during training and saved in a separate
NumPy array. This file does also saves model weights that can be used to generate new
MRIs separately. The pix2pix.py file is executed to train the pix2pix models and to
generate synthetic MRIs.

G.7 unet.py

The file unet.py contains the U-Net model and the code to train this model using the
original data, the augmented data, and the generated data. This file is executed to train
the segmentation model and save model weights that can be used to test the performance
on a separate dataset.
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G.8 test_unet.py

The unet_test.py file includes the code to test the segmentation performance using
the saved model weights and the model in unet.py. This code is executed to test the
segmentation performance.
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