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Abstract

The petroleum industry is still one of the largest contributors to the Norwegian economy.
Experts estimates that of the total reserves on the Norwegian shelf only 52 percent have
been discovered. During test drilling, core samples can be taken from the sedimentary
rock and within these samples small fossils from micro-plankton known as dinoflagellates
can be found. By evaluating the distribution and collection of different species and taxon

of dinoflagellate the likelihood of finding petroleum in the area can be estimated.

Palynology is the study of such small objects, and have largely been done manually through
a microscope. The Norwegian Petroleum Directorate have recently acquired a scanner to
digitize their collection of over 200,000 palynological slides. In this thesis a solution is
proposed to automatically detect and identify a number of different dinoflagellate species

by using both traditional image processing and deep neural networks.

With the aid of traditional image processing a detection rate of 93 percent was obtained for
detecting objects in the palynological slides. Using transfer learning, a deep convolutional
neural network based on the VGG-16 network structure obtained a 99 percent accuracy

on test data.
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Chapter 1

Introduction

1.1 Palynology in Petroleum Prospecting

The petroleum industry is by far the biggest contributor to the Norwegian economy. Over
170,000 are employed directly or indirectly by the industry, and it is alone responsible for
around ten percent of Norway’s GDP, a total of over 14,000 Billion NOK! since the start
of production in the 1970’s. In 2019, the export of Norwegian crude oil was valued at
248 Billion NOK, approximately 27 percent of all Norwegian goods export [1], however
only covering about two percent of the entire world’s oil requirement. Even though many
industries are transitioning to other, greener types of energy, petroleum will still remain
one of the largest resources in the years to come. It has been estimated that of all the

total reserves on the Norwegian shelf, 48 percent has yet to be discovered [2].

Offshore petroleum prospecting requires a wide range of special fields and techniques
within geology. To survey the ocean floor and the underlying rock formation, both
geophysical and sedimentological methods are used. A common first step is to survey
using seismology. A seismic vessel sends out powerful sound-waves over a large spectrum
down towards the sea bed and are reflected in the transition between the layers of
different rock types. First when a suitable area is found, exploratory drilling is performed.
Geological experiments and core samples can then give more information about the rock

type, age as well as the probability of petroleum in the surrounding area [3], [4].

The study and surveying of sedimentary strata, stratigraphy, have been around since
before the 1700’s, but it was the discovery of William Smith (1769 - 1839) that made
it possible to map the distribution over large geographical areas using biostratigraphy.

While tasked to survey routes for a planned coal canal in 1795, he discovered that

! Adjusted for inflation
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some of the strata contained identifiable fossils, and noticed how the collection of fossils
changed depending on the depth and layer of the sedimentary rock [5]. Geologist still use
biostratigraphy to chart the age of the strata, but in offshore petroleum surveying, both
the depth and shape of the drilling greatly limits the size of the core sample. Because of
this, geologists have been forced to identify extremely small, microscopic fossils. These
types of fossils are mostly composed of marine microplankton such as dinoflagellates,
as well as spores and pollen from land plants. These are part of the organic material
that make up the sedimentary rock which is transformed to petroleum under the right

pressure and temperature [6].

Palynology is a field within geology which is the study of such microfossils. By examining
the number and ratio between different species, these can be presented in a range-chart.
A range-chart shows the differences and relationships between species, such that the
strata’s can be divided to zones and the age can be determined. Dinoflagellates, in a
geological time scale, develop new species fast, as well as old species become extinct,
which makes them especially suited for dating marine sediment. Spores and pollen
however, often exists for extended periods of time, and is therefore unable to give a

precise dating [6]-]9]

Comparing the different ratios of microfossils makes it possible to determine if the
sediment originates from land, the coast or sea, as well as living condition and even
the temperature. By comparing the dinoflagellates of old with newer samples, ocean

temperature and living conditions can be estimated [6]-]9].

1.2 Previous Work

Machine learning have been a hot topic within many fields of research, microbiology
included. All though these are mostly centered around living or newer species instead
of microfossils, the issue remains the same. Identifying objects such as plankton, di-
noflagellates, spores and other microscopical organisms can provide vital information
about the environment, both present day and the long-lost past. Currently, many of
these identifications are done manually through a microscope which is a both a time

consuming and laborious task.

Automatic recognition systems to classify different taxa and species of plankton have
been introduced even as early as 1984, when Jeffries, Berman, Poularikas, et al. [10]
presented a pattern recognition system by feature extraction on different zooplankton.
In 1998, Tang, Kenneth Stewart, Vincent, et al. [11] devised a system to extract features

from plankton images using invariant moment feature and Fourier boundary descriptors
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and trained a small neural network classifier. V, Reguera, Gonzélez-Gil, et al. [12]
published in 2002, DiCANN, a network to automatically categorize 23 different species
of dinoflagellates from microscopic images using features extracted by using the Fourier

power spectrum and texture density.

Later work include, by Schulze, Tillich, Dandekar, et al. [13] - PlanktonVision, a system
using local binary pattern, elliptic Fourier descriptors and the histogram to extract
features such as texture, shape, size and pigmentation from plankton, and using a deep
neural network with two hidden layers as a classifier. And by Zheng, Wang, Yu, et al.
[14], in 2017 using multiple kernel learning to classify plankton from features extracted

by using ten different extraction methods.

1.3 Thesis Objective

As of 2020, the Norwegian Petroleum Directorate (NPD) have over 200,000 palynological
slides (palyslides) collected from over one thousand well drilling, with fossils ranging
from 3 to 370 million years old. The NPD is in the process of digitizing their collection
and are interested in the possibility of using image processing or machine learning to aid

geologists in their work.

The main objective of this thesis is to explore the possibility of detecting and classifying
different species of dinoflagellates from palyslide images. To do this, a system to
detect both the position and size of objects from the palyslide images is created by
using traditional image processing techniques. By extracting annotated dinoflagellates
from palyslide images, a deep convolutional neural network can be trained to classify

dinoflagellates from a range of species.

1.4 Thesis Overview

Chapter 2 - Background

In this chapter, relevant background theory is presented.

Chapter 3 - Data and Materials
In this chapter, the dataset, as given from the Norwegian Petroleum Directorate is
presented. The procedure of creating a palynological slide is discussed and the final

dataset used in the thesis is presented.
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Chapter 4 - Proposed Method
In this chapter, the method for detecting and classifying objects, as well as preprocessing

the dataset is presented.

Chapter 5 - Experiments and Results
In this chapter, the conducted experiments and their results are presented. First the object
detection algorithm and its performance and later tuning and performance evalutation

of the deep neural network.

Chapter 6 - Discussion
In this chapter, the challenges and limitations of the proposed method is discussed

together with the results of the conducted experiments.

Chapter 7 - Conclusion
In this chapter, a summary and conclusion of the thesis is given, as well as suggestions

for future work and potential improvements.



Chapter 2

Background

2.1 Dinoflagellates

As mentioned in the introduction in chapter 1, dinoflagellates (shown in figure 2.1) are a
type of marine microplankton. Mostly considered as a type of algae, dinoflagellates are
single-celled eukaryotes and comprise a large proportion of the planktonic biomass in

both marine and freshwater environment [9].

Some species of dinoflagellates perform a resting stage as a part of their life cycle,
transforming into a dinoflagellate cyst (dinocyst) composed of dinosporin. At this stage

they are capable of being highly preserved in sedimentary rock [7].

Figure 2.1: Example of different species of dinoflagellates This figure is reprinted
in unaltered form from Wikimedia Commons, File: Dinoflagellates. jpg.
Licensed under CC BY 2.0 by the user fickleandfreckled

5
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2.2 Whole Slide Imaging

Whole slide imaging or digital microscopy refer to scanning of a complete microscopic
slide. Usually they are created by stitching many smaller images, creating a single
high-resolution image file. As these images are large in resolution, they also contain
downsampled versions of the image, allowing for greater overview without having to
import the entire image to memory or process downsampling. High-end digital slide
scanners are also able to scan images using several focus points, enabling the user to

manual focus while viewing the image on a computer [15]-[17].

2.2.1 OpenSlide

As there is no standardized whole slide image format, many vendors create proprietary
or use closed undocumented formats, making it difficult to use these images outside the
vendors viewer and applications. OpenSlide is an open source C-library (with Python
bindings) which support many of these formats, enabling users to work with many

different formats without having to depend on vendor-specific software [18], [19].

2.3 Image Processing

2.3.1 Bit Depth and Color Models

A digital image is created by combining smaller picture elements known as pixels. When
displayed on a monitor, each pixel in an image is usually represented by red, green, and
blue sub-pixels. This is the RGB color model, and each pixel is digitally represented
by the value of each red, green, and blue channels. How many different values a single
pixel can have, i.e. how many colors can be displayed, is known as the bit depth. With a
24-bit bit depth, each channel can be represented by 256 different values or 8-bit. This

gives a total of over 16.7 million different color combinations that can be displayed.

An image with a bit depth of one is known as a binary image, as each pixel can only be
represented by one of two values. Gray-scale images have a bit depth of more than one
and can allow for significantly more than only two values but are defined with only one

color channel.

Processing images based on color can be challenging when using the RGB-model. The
way we think of colors is not by their combination of the primary colors, but their hue and

saturation. A more intuitive way to represent colors images is therefore the HSV-model.
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This model is a direct conversion of the RGB-model, but instead of portraying a pixel
from its combination of primary colors, it defines a pixel from its hue, saturation and

value as shown in figure 2.2.

(a) (b)
Figure 2.2: Spatial representation of the (a) RGB-model and (b) HSV-model.

2.3.2 Mathematical Morphology

With mathematical morphology, an image is interpreted as a set of pixels, and common
functions from set theory are utilized to manipulate and transform images. Originally
it was developed for use on binary images, but its use has later been extended to also

include grayscale images as well as continuous functions [20].

The morphological functions have two inputs, the image to be processed and a structuring

element!. These are then combined using set operators, such as intersection and union.

Unlike linear filters, morphological operators do not use cross-correlation or convolution,
but rather the applied set operator together with its structuring element. The structuring
element slides over an image, and at each pixel its elements are compared with the set of
underlying values. If the sets of elements match the condition defined by the set operator

the resulting pixel will be set to a pre-defined value [21].

The structuring element can have different shapes and sizes, as shown in figure 2.3,
depending on the desired result. Some morphological function, e.g. the Hit-and-miss
transform, uses more advanced structuring elements to detect corners of figures, while
the most basic is a 3 by 3 matrix containing only 1’s. The structuring element usually

has its origin or "anchor" in the center, but some operators may use different origins.

'Often (mis)called a kernel, however some believe this should be reserved for convolutional and
cross-correlational functions
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1111 1
1(1]1 1(1]1
1111 1

(a) (b) (c)

Figure 2.3: Example of structuring elements used by mathematical morphology functions
(a) and (b): Basic and commonly used structuring elements. (c): Structuring element
used by the Hit-and-Miss transform for corner detection

2.3.2.1 Erosion and Dilation

The two base operators within mathematical morphology are called erosion and dilation,
usually denoted with & and @ respectively. Performed on a binary image, they are

equivalent to the boolean functions AND and OR with regards to the structuring element.

The erosion of a binary image X by the structuring element B is defined as the set of

all points z, such that B, translated by z is contained in X', as shown in equation 2.1 [22]

XoB&{z:B.Cx}=[)x, (2.1)
yeB

Expanded from binary to gray scale images, this can be implemented such that for
a given pixel at position (z,y) in the original (src) image, the resulting eroded pixel
dst(z,y) is the minima in the region (x + ',y + ') as defined by the structuring element
superimposed on the original image, as shown by equation 2.2. In the resulting dst image,

equation 2.2 is performed for all pixels in the source image [23], [24].

dst(z,y) = sre(z + 2,y +9) (2.2)

min
(z',y"):element(x’ ,y’)#0
The dilation of a binary image X by structuring element B is defined as the set of all
points z such that the intersection of B*, the symmetric of B with respect of the anchor

point, translated by z, and X is non-zero as shown by equation 2.3 [22].

XoB={z:(B).NnX#0t= ] X4y (2.3)
yeB

Similarly to erosion, this can be implemented for gray scale images as taking the mazima

in the set of pixels in the region defined by the structuring element [23], [25].

dst(z,y) = sre(x + 2,y +1v) (2.4)

max
(z',y"):element(x’,y")#0
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When applied to images, the erosion function removes the outermost layer of a shape and
the dilation expands it. Figure 2.4 shows the erosion and dilation functions applied on a
small image of an A’ using the simplest form of structuring element, a 3 by 3 matrix

with 1’s and its anchor in the center such as shown in figure 2.3a.

00 0 0
0000000000

(c) Dilation

(a) Original image

Figure 2.4: Mathematical morphological basic operations performed with a 3 by 3
kernel composed of only 1’s

Erosion and dilation are known as dual functions such that the erosion of the foreground
is equivalent to the dilation of the background in an image, as shown by equation 2.5
[22], [26].

XoB=(x%oB%¢ (2.5)

2.3.2.2 Opening and Closing

Opening and closing are two basic functions for noise reduction using mathematical

morphology and are composed of sequential operations of erosion and dilation.

The opening of an image X by structuring element B is defined as the dilation of the
erosion of the image and is denoted by e-symbol as shown in equation 2.6. This sequence
of operations can be used to remove small objects or noise in an image while retaining

most of its original shape.

XeB=(XoB)aB (2.6)

Contrariwise to opening, the erosion of the dilation of an image is called the closing of
the image and is denoted by the o-symbol as shown in equation 2.7. Equally opposite,
the closing is used to remove small holes in objects while retaining most of the original

shape.
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XoB=(X®B)oB (2.7)

In figure 2.5, both opening and closing is shown performed on a small image of an "A’. As
the image is relatively small, opening removes parts of the object. Closing on the other
hand seems to almost not have any effect on the object. To increase the effect opening

and closing have, multiple iterations can be performed.

°

coooooo

o ENEERE o o
0

C 00 0
00000000

(a) Original image (b) Opening (c) Closing

Figure 2.5: Opening and Closing performed on a image using a 3 by 3 structuring
element of 1’s

2.3.3 Distance Transform

The distance transform calculates the shortest route from the foreground to the back-
ground for all pixels in a binary image. The result is called a distance map, an image
where each pixel value corresponds to the resulting distance in the original image. Several
different metrics can be used to calculate the distance. Most known are the Euclidean,

rectilinear and Chebychev distances.

The most accurate distance metric is the Euclidean distance. For a point in the foreground

(1,¥1), the distance to the closest point in the background (z2,y2) is defined as following:

D(«Tlv yl)euclidian = \/(«TQ - $1)2 + (yQ - y1)2 (28)

The Euclidean distance is however the slowest to calculate and may also produce non-

integer results.

The rectilinear distance, often called city block or taxicab distance results in counting
each pixel when moving in horizontal and vertical directions as shown in equation 2.9.
This is the fastest distance metric to calculate, but also the worst approximation to the

euclidean distance.
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D(xla yl)rectilinear = |$2 - 3?1| + ‘y2 - y1| (29)

The Chebychev distance is similar to the rectilinear distance, but also allows for diagonal
movement as shown in equation 2.10. The Chebychev distance is therefore often called

the chessboard distance after how the king is allowed to move on a chessboard.

D(21, Y1) chebychev = max(|ze2 — 21, [y2 — y1|) (2.10)

As both rectilinear and Chebychev are approximations to the Fuclidean distance, the
resulting distance map are affected by the choice of metric. Figure 2.6 shows how the
distance map of a small image of an ’A’ by using the different metrics. It can be seen that
the euclidean distance results in a smooth map in all directions, but both the rectilinear

and Chebychev distances creates artifacts in the distance map.

|
.
(a) (b)
(c) (d)
Figure 2.6: Distance map produced using the different methods of calculating the
distance of (a) the original image. (b) The Euclidean distance calculates the true
distance, producing a smooth distance map in all directions. (c) The rectilinear distance
only counts vertical and horizontal movement and can create linear artifacts in the

distance map. (d) The Chebychev distance also counts diagonal movement and can
create diagonal artifacts.
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Once the distance metric has been chosen, there are several ways to create the distance
map. One way is to perform morphological erosion of the image and count the number of
iterations needed before each pixel have been removed. Using a 3 by 3 cross structuring
element (such as shown in figure 2.3b) will create a rectilinear distance map, while a 3
by 3 structuring element of one’s (as in figure 2.3a) will produce the Chebychev distance

map.

Performing morphological erosion for several iterations is a slow and computational
intensive task, hence many image processing libraries use the method proposed by
Gunilla Borgefors in the paper Distance transformation in digital images, 1986[27].
Instead of considering the image as a whole, her method considers smaller neighborhood
of pixels and uses a translatory mask of cost-values. Where the distance is the sum of
the cost of jumps necessary. Figure 2.7 shows the different masks and the corresponding
cost-values are listed in table 2.1. This method only requires two passes to calculate the

distance of all foreground pixels in an image[27].

- |+c| - |+c]| -

+c|+b|+a|+b|+C

+b|+a|+b - |[+aj\l+a| -

+a M +a +c|+b|+a|+b|+C
+b|+a|+b - [+c| - [+cf -
(a) 3 by 3 mask (b) 5 by 5 mask

Figure 2.7: Borgefor’s masks for calculating the shortest path to the nearest zero value.
The values for a to ¢ are optimized depending on the chosen distance metric and are
shown in table 2.1

3-by-3 5-by-5

Euclidian | a =0.955,6=1.3293 | a=1,b=1.4, c =2.1969
Rectilinear | a =1,b=2 Not applicable
Chebychev | a=1,b=1 Not applicable

Table 2.1: Optimized values for different distance metric using the masks in figure
2.7 from Borgefors’ method of calculating the distance map. Using a 5 by 5 mask for
rectilinear and chebychev distances do not improve the resulting distance map

2.3.4 Segmentation

In image processing, segmentation is the process of separating an image into parts. This
can either be to separate similar areas, e.g. of the same color, texture et cetera or to

separate multiple objects in the same image.
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2.3.4.1 Thresholding

Thresholding an image splits the image into two or more parts defined by the threshold
value(s). Binary thresholding contains only one threshold value. For a given pixel in the
image (scr(z,y)), the thresholded result (dst(x,y)) will be set to the maximum value
defined by the image’s bit depth if the pixel value is above the threshold value, and set

to zero if below, as shown in equation 2.11.

2" — 1 (for a n-bit image) if sre(x,y) > threshold
dst(x,y) = (2.11)

0 else

Binary thresholding is the simplest form of thresholding. Multiple defined threshold
values is called multilevel thresholding. For color images, one or more threshold value

defined for each channel it is called multidimensional thresholding.

To perform the segmentation a threshold value must be selected. In figure 2.8 an example
of a grayscale image with its corresponding histogram is shown. In the histogram the

two peaks corresponding to the background area and the foreground area can be clearly

identified, and a good solution would be to select a threshold value somewhere between
100 and 200.

Histogram

5000 4

4000 -

w
o
(=]
o

Pixel count

2000 4

1000 -

0 50 100 150 200 250
Gray value

Figure 2.8: Left: A noisy grayscale image. Right: The histogram corresponding to
the image on the left.

Selecting the threshold value by visually evaluating the histogram does however involve
human interaction. In some images it may also not be as obvious what threshold value

to choose.
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One popular way of automatically selecting a threshold value is the method proposed by
Otsu Nobuyuki in 1979 [28], later known as Otsu’s method. In his proposal he suggest
to look at the variance of the histogram and that the optimal thresholding value is the
one that maximizes the between-class variance (0123), or correspondingly minimizes the

within-class variance in binary thresholding.

For an image with L gray levels, the number of pixels at each 7 gray level, normalized to the
total number of pixels, is denoted by p;. For a threshold set at the kth level, the zeroth and
first order cumulative moments of the histogram up to the kth level are w(k) = SF_; p;
and pu(k) = Y%, i - p; respectively and the total mean level up = u(L) = Y25 i p;. The

between-class variance 0% is then defined as shown in equation 2.12.

0_2 ( ) _ [MTw(k) - N(k)P
b w(k)[1 —w(k)]

(2.12)

Using Otsu’s method, 0% is calculated for all k possible threshold values, such that the
optimal threshold value k* is 0'% is maximized, as shown in equation 2.13. Figure 2.9

shows the result of Otsu’s method performed on the image from figure 2.8.

2 *\ 2
op(k”) = maz op(k) (2.13)

Histogram

5000 1

4000 -

3000 4

Pixel count

2000 1

1000 A

0 50 100 150 200 250
Gray value

Figure 2.9: Left: Result of thresholding the image in figure 2.8 using Otsu’s method.
Right: The histogram of the original image. The vertical line indicates the optimal
threshold value at gray level 138, as found by Otsu’s method.
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2.3.4.2 Connected Components Labeling

Connected components labeling is a method to identify multiple objects within an image

by using pixel connectivity and giving each group of pixels their own unique label.

For a pixel at position (z,y), any pixels within its defined neighborhood is said to be
connected, i.e. belongs to the same group, if and only if they have the same value®. In
binary and grayscale images it is common to define the neighborhood using 4-way or

8-way connectivity.

With 4-way connectivity, the neighborhood of a pixel at (z,y) is the region defined by
(x+1,y) and (z,y £ 1). The neighborhood using 8-way connectivity is the same as 4-way
with the addition of (z £ 1,y + 1), i.e. all the surrounding pixels [29].

The whole image is scanned from top to bottom, checking all the pixels. If a pixel
corresponding to the foreground is detected, and it is not connected to any known groups,
it is assigned a new label. Similarly, if it is connected to a known group, it is assigned

the same label as the rest of the group.

Figure 2.10 shows an example of this method performed on a small image. When using
4-way connectivity, only horizontal and vertical connected pixels are regarded as being

in the same group, resulting in more groups than one might expect.
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(a) Original image (b) 4-way connectivity (c) 8-way connectivity

Figure 2.10: Connected component labeling using 4-way and 8-way connectivity. With

4-way connectivity, only horizontal and vertically connected pixels are counted as the

same group. Using 8-way connectivity all surrounding pixels of the same value is counted
as the same group

2.3.4.3 \Watershed

Instead of segmenting an image based on pixel connectivity or the histogram, the

watershed method views the entire image as a topographical map. In geographical terms,

2or for grayscale images, within a range of values
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the watershed is the natural separation of two adjacent catchment basins. By letting
each pixels value indicate its elevation, the image transforms into a terrain composed
by peaks, ridges and valleys, and the watershed method tries to find the basins and
watershed-lines that separates them [30][31].

A common analogy to describe the method is to think of the watershed method as a
flooding of the terrain created by the image. Start by creating holes through the terrain
at all the local minimums and block off the edges. While keeping it flat, slowly and
uniformly lower the terrain into a body of water such that the water emerges through
the holes. As the water level continues to rise it will fill up the catchment basins, but
instead of letting them overflow, create a dam at the points where the water would
meet or overflow into another basin. When the terrain is fully flooded only the dams
are left emerged from the water, and the regions between them indicate the different

segments[32][31].

In practice however, this straightforward method will often result in over segmentation
of the image, often to the point where the result rendered useless. This is because every
local minimum, even those from noise in the image, creates its own catchment basin and

a resulting segment.

One of the more successful method of improving the result is a marker based approach,
where the amount of catchment basins are limited to the marked regions, as presented by
F.Meyer [32]. His approach greatly reduces over segmentation, but the need for markers
is a drawback and cause the method to act as a region growing method rather than

automatic segmentation [32][31].

Figure 2.11 shows a marker-based watershed algorithm performed on an image of a
handful coffee beans. For every bean a corresponding marker, or seed, is placed before
entering the watershed algorithm. The result is then overlaid the original image. In F.
Mayer’s method, which is implemented in the Python image processing library OpenCV,
each marker must have their own label, such as created by connected component labeling.
Since all the starting points have labels, the marker does not need to be continuous or
even whole; if the confluence of flood comes from a minimum with the same label, they
are simply combined. When the algorithm is finished, the resulting segments will all

have the same labels as their corresponding markers.
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(C)) (b) (c)

Figure 2.11: Example of a marker-based watershed transform performed on an

image. (a) The original image. (b) Markers, or starting points for the water-

shed algorithm. (c) Result from the watershed algorithm, overayed on the original

image. Image taken from pngimg.com, reproduced in unaltered form (a) and
altered form (c). Licensed under CC BY-NC 4.0

2.4 Neural Networks

The brain is one of the most intriguing organs of the human body, and many have tried
to understand its functions and operations. The notion that the brain is the center of
human intelligence and consciousness can even be traced back to the age of Hippocrates
in the fifth century [33]. It would however take many years until the field of neuroscience
would make significant progress. In his publication Histologica du Systéms Nerveuz de I’
Homme et des Vertebres from 1911, Santiago Ramén y Cajal would identify and describe
that the brain and nervous system is composed of one particular type of cell, later known

as the neuron [34].

An individual neuron receives chemical inputs in through receptors on the dendrites of
the cell. Depending on what chemical received, it can either excite or inhibit excitation
of the neuron, and the sum of all the dendritic inputs will decide if the neuron will fire
an electrical impulse or not. If an electrical impulse is sent, it will travel along the axon
of the cell and transmitted to the next neuron, gland or muscle via neurotransmitters at
the end of the axon [35]. Figure 2.12 shows an annotated sketch of the neuron with its
dendrites and axon. The contact points to and from neurons are called synapses, and
each neuron contains between 10,000 and 150,000 of them [36].

In 1943, Warren McCulloch and Walter Pitts presented their mathematical model of a
biological neuron. Their findings showed that emulating a neuron, weighting the synaptic
links, one could create a structure that can compute any mathematical function, given

enough neurons and synaptic links between them [37]. In 1958, Frank Rosenblatt invented


http://pngimg.com/download/9283
https://creativecommons.org/licenses/by-nc/4.0/
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the perceptron, and the perceptron algorithm. Unlike the McCulloch and Pitts model, the
perceptron uses weighted inputs that would be adjusted using the perceptron algorithm,
and after several iterations is trained to classify two classes by a linear separation. The
perceptron and other types of artificial neurons are the basic building blocks of a neural
network and combining several layers of these between the input and output layer are

known as a deep neural network [34].

Figure 2.12: A biological neuron is composed by inputs (dendrites) and an output
(axon). The dendrites receive inputs from other axons connected to the cell and will
fire an electrical output if enough charge is created. The charge is transformed to a
biochemical signal in the synapses at the end of the axon.

This figure is reprinted in unaltered form from Wikimedia Commons.

File: Chemical_synapse_schema_cropped.jpg. Created by US National
Institutes of Health, National Institute on Aging. Released in the

public domain.


https://commons.wikimedia.org/wiki/File:Chemical_synapse_schema_cropped.jpg
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2.4.1 Artificial Neural Networks

An artificial neuron is a mathematical model that is constructed to mimic a simplified
biological neuron. Each input of the artificial neuron is weighted and summed before
entering an activation function, and if conditions are met, the output is activated. How
the output responds and what conditions are required are dependent on what type of
activation function used. Frank Rosenblatt’s perceptron, for example, used a simple
step-function (Heaviside function) as its activation function; if the sum of all the weighted
inputs are above zero, the perceptron outputs a one, and below, a zero. It is important
to note that in order to create a nonlinear output the activation function itself must also

be nonlinear®

, even when combining several neurons in a network. This non-linearity
is part of what makes a neural network able to generalize and outperform traditional

machine learning algorithms and other statistical functions, such as linear regression [38].

Figure 2.13 shows an illustration of an artificial neuron. The inputs [z, ..., z,]| are

weighted by [wo, ..., w,]T. A bias can be added to give preference the output. In many
cases the bias is regarded as being zg, equal to 1, and having a weight wg equal to the
bias weight b. Given this definition, the output y of the artificial neuron is as shown in

equation 2.14, where f is the neurons activation function.

y=1r <Zn: wi$i> = f(w" - ) (2.14)
=0

Weights Activation
- function
X0 e WwWo
Inputs '< Xi : > w; f ——> Output
Xn, — W,
— b
Bias

Figure 2.13: Model of an artificial neuron. The weighted inputs are summed before

entering an activation function. The type of activation function will dictate the outputs

response of a given input. Note that in many cases a neuron is drawn as a single circle,
without explicitly drawing the weights and activation function.

In order create an artificial neural network able perform advanced classification tasks it

is often necessary to increase the complexity of the network. This can be done by adding

3More information on activation functions will be discussed later, in section 2.4.2
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more neurons and layers of neurons in the network. The layers in between the input
and output layer are called hidden layers as their individual outputs does not necessarily
represent the final prediction. A network composed of multiple hidden layers are known
as deep neural networks. Figure 2.14 shows a type of deep neural network known as a

multilayer perceptron or a deep feedforward? neural network.

In many cases, the main goal of an artificial network is to output a prediction for a given
input, e.g. what class an object belongs to given its features, or even what is the best
current move in a game of Go[39]. This means that the network itself is often regarded
as a "black box", and the exact mathematical function it approximates is not necessarily
of significant value for the user. The most basic way of training an artificial neural
network is by using what known as supervised learning, training using only data that has
a corresponding ground truth label. The features of the training data is entered to the
network and the output is entered to a loss function. The loss functions task is then to
compare the predicted value with the ground truth label, giving a metric of how well the
model performed. This can then be used to determine how the weights in the network
should be adjusted, for example by using its derivative as in the gradient descent method,

and the test is performed again until the results are adequate.

Input layer Hidden layers

Output layer

X0

Yo

X

Figure 2.14: A deep neural network is a network structure containing multiple layers of
neurons and is often used for more complex classification tasks. The depicted network
is often called a multilayer perceptron or deep feedforward network

41t is called a feedforward network because there is no feedback-loop in the network. A network with
feedback-loops is called a recurrent neural network



Chapter 2 Background 21

2.4.2 Activation Function

In a regular artificial neuron, the sum (x) of the weighted inputs are entered to the
activation function, and the corresponding output (y) depends on the neurons activation
function. As mentioned in the introduction of section 2.4, Frank Rosenblatt’s perceptron
used a step-function as its activation function, meaning the output of the neuron is
strictly binary. This function is however at a disadvantage, as many effective training
algorithms, such as the gradient descent, use the derivative of the activation function to

calculate the new set of weights.

There are many different activation functions commonly used in neural networks. Research
shows that some functions perform better than other in certain types of networks and

with certain data types, although the performance gain is often marginal [40] [41].

2.4.2.1 Sigmoid

The Sigmoid function, as shown by equation 2.15 and in figure 2.15, has been a commonly
used activation function for neural networks. Since its output is between zero and one,
it can also be used at the output layer such that its output represents a probability. It
does however have the drawback of being unstable when used in the early layers, as the

gradient of the Sigmoid function have a tendency to either vanish or explode [40].

(2.15)

Sigmoid

1.01

0.8
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Figure 2.15: Plot of the Sigmoid function. A common activation function used in
artificial neural networks
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2.4.2.2 Rectified Linear Unit (ReLU)

In later years the ReLU function, equation 2.16 and figure 2.16, has been more popular
for use in hidden layers of a neural network. Especially compared to the Sigmoid function

it converges using fewer iteration, such that the training of the network is much faster
[41].

Like the Sigmoid function, ReLU also has its drawbacks. As the ReLLU function outputs
zero for all negative input values, the weights of a neuron can be changed such that
a situation occurs where the neuron outputs zero for all inputs, meaning it will never
activate on any data at all and weights will not be updated further. This phenomenon is
known as the dying ReLLU problem. Because of this, there exists many similar functions
to the ReLLU that tries to mitigate this issue and improve performance, such as the
Exponential Linear Unit (ELU), Scaled ELU (SELU), Leaky ReLU, Parametric ReLU,
Gaussian Error Linear Unit (GELU), Swish and many more [41].

x, ifz >0
y = (2.16)
0, fz<=0

RelLU

Figure 2.16: Plot of the ReLU function

2.4.2.3 SoftMax

The softmax function, shown in equation 2.17, is commonly used as the activation function
in the output layer of a neural network for multiple class classification. It calculates the
distributed probability, such that it outputs the probability of each outcome, j, over all
C possible outcomes [38].
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et
] .
Yj=——— forj=1,...,C (2.17)
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2.4.3 Convolutional Neural Networks

Unlike traditional deep neural networks, such as the multilayer perceptron, a convolutional
neural network (CNN) is a specialized network for processing multidimensional data.
Instead of a feature vector, [xo,...,x,], and weights [wp,...,w,], a CNN’s input is
a multidimensional feature array which is convolved with one or more filter kernels.
Furthermore, this implies that only the kernel’s coefficients are changed during the
training process, which applies to the entire layer. In the subject of deep learning, vectors

and arrays are commonly referred to as tensors [38].

The multidimensional property of a convolutional neural network means its effective at
preserving the spatial correlation of features, which proves useful when classifying images.
This was shown by Le Cun et al in 1989, when their convolutional network for classifying
images of handwritten digits obtained a low five percent error rate using a test set of
over two thousand images [42]. Their method of creating the network has by many been
regarded as the de facto standard of such networks and been the inspiration to much of

the later development.

The progress of image recognition and classification did however stagnate in the 90’s
due to the lack of processing power. Especially in real-time applications, requiring fully
parallel computational operations, often meant designing proprietary hardware such as
FPGA-processors to be able to operate on a useful level. In 2004, Oh and Jung [43] proved
that the computations in a neural network could be implemented on graphical processing

units (GPU) on regular computer hardware, greatly increasing the computational speed.

GPU-accelerated computations are not limited to the field of deep learning and have
greatly increased the possibilities within many research areas. This has also led to the
release of specialized hardware for computational purpose, such as the Nvidia Tesla series.
The Tesla cards processing unit also contains specialized processing cores named tensor

cores, made specifically for the many matrix operations used in deep learning [44].

As the name of the network applies, a CNN relies on the convolution operator. Each
convolutional layer can typically be divided in three stages: the convolution stage, detector
stage and pooling layer. In the first stage, the input to the network is convoluted with
one or more matrices of weights called filter kernels. The kernel slides across the input
tensor, and a 2D-convolution is performed at each index. The result of this operation is

entered to the layers activation function in the detector stage, creating what is known
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as a feature map at the output®. The last stage, the pooling layer, is an optional step
that downsamples the image before entering the next layer. The pooling layer is further

explained in section 2.4.4.

The convolutional layers of a CNN are often said to be the feature extractor in the
network, such that the entire network can be split into two parts, the feature extractor
and the classifier. The classifier is made up by fully connected (dense) layers, like a
common feedforward network, with a flattened output from the last pooling layer as the

input [38].

Figure 2.17 shows an illustration of the structure to a CNN network, where the convolu-
tional layers are a part of the feature extraction, and dense layers in the classification.
Each layer in the feature extraction is made up by a convolution, detection, and pooling

step.

Feature extraction Classification
e J

Yo
Y1

C
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Convolution

and Jetecteer 3nc‘1’gtlggé(i)glnPooling Dense layers Output layer
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fnput image

Figure 2.17: The two steps of a convolutional neural network: feature extraction and

classification. An input image is first put through convolutional layers where the input

is convoluted with a set of filter kernels before entering an activation function in the

detection stage. Lastly the output from the final pooling layer is flattened and goes
through the classifier

2.4.3.1 Convolution Operator

In a convolutional layer a 2-dimensional discrete convolution is performed on the input

(I) by the filter kernel (K), such that the resulting image () contains the result of the

®Depending on the input tensor and the network layer, there may be more than one kernel, creating
multiple feature maps at the output of the layer
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inputs convolution at each index (i, j), as shown by equation 2.18%. The convolutional

operator is usually denoted by the *-symbol.
m n

(2.18)
= ZZI(Z —m,j—n)K(m,n)

This means that each pixel of the resulting image, is the result of the sum of all the
pixels within a region defined by the size of the kernel multiplied by a flipped version of

the kernel (or image as the convolution is commutative).

For simplicity, many neural network libraries implement this without flipping, meaning
the convolution operation have been replaced by cross-correlation, as shown by equation
2.19, all though they may call it convolution. This does however not affect the result of
the network; after training, the resulting kernel weights will be the same in both cases,
only flipped [38].

S(i,5) = I+ K)(s,5) = >_ > 1(i+m,j +n)K(m,n) (2.19)

m n
This process is illustrated in figure 2.18, the resulting pixel sgg = igokoo + to1ko1 + - +
i99koo. For sg1, the kernel is moved one step to the right. This procedure is repeated
until all the pixels have been covered. The region of which a single result is representing,
is called its receptive field, i.e. for sgg the receptive field is the region defined by the nine

pixels in the top left corner of the image.

Figure 2.18: The cross-correlation of the image (left) by the filter kernel (middle) and
the result (right). Each element in the result is calculated using the formula from 2.19

SHere the commutative property of the convolution is also shown
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As one may notice in the example above and in figure 2.18, the resulting image is smaller
than the input. To keep the output dimension of the image same as the input, a common
solution is to use zero-padding. By expanding the input, creating a boarder of zeros,
the original dimensions are kept. If one wants to reduce the output dimensions even
further, such to reduce the amount of computations, i.e. convolutions performed, the
kernel can be moved more than one step at the time. This parameter is called the stride
of the kernel. In the example above, the stride is set to one and the kernel moves one

step between each calculation.

2.4.4 Pooling

The pooling layer is a step often used in convolutional neural networks, placed after the
detection stage in each layer, as mentioned in section 2.4.3. Figure 2.19 shows pooling
applied to a small 4 by 4 feature map by using a 2 by 2 window and two different methods.
By average pooling, the mean value of each window is extracted, and in max pooling the

maximum value.

By reducing the shape of the feature map within the network, pooling makes it able to
extract translation invariant features, reducing the chance of over training the network.

Pooling also reduces the memory and computational requirements [38].

116 82
134 102 59 89 Average pooling
>
108 120 8 172 140 157
161 58 48 241 134 179
>
115 226 157 182 i
Max pooling 996 241

Figure 2.19: Pooling is a method of downsampling the feature map. This makes the
network invariant of small translations, reduces the chance of over training, as well as
reducing memory and computational requirements

2.4.5 Loss Function

When creating an artificial neural network, the goal is to approximate a function that

produces a desired output depending on the input given. In order to generate the best
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possible results, the networks run through an iterative optimization process commonly

referred to as training.

To assess the performance of the network, the result is entered to a criterion function
or objective function. When the objective is to minimize the criterion function it is
commonly referred to as a loss function or cost function. Depending on the network
structure, type of data, and desired output from the network, many different loss functions

exists and they play a crucial role in training and performance evaluation of the network.

2.4.5.1 Categorical Cross-Entropy Loss Function

For neural networks created to classify between multiple classes, using the SoftMax
activation function in its output layer, the most common loss function is the categorical

cross-entropy loss function.

Categorical cross-entropy (CE) is defined as the sum of a ground truth label (¢) multiplied
with the logarithm of the output prediction from the network (g) over all classes (C) as

shown in equation 2.20.

In multi-class classification it is common to use a one-hot encoded truth vector, such

that the only non-zero value of ¢ is the correct class [38].

C
CE = —> tilog(i;) (2.20)
=1

2.4.6 Evaluation Metrics

As the loss function is optimized during the training process it gives a metric for the
performance of the network. These results can however be intricate to interpret and

difficult to compare between different network structures and models.

2.4.6.1 Accuracy

The accuracy metric, shown in equation 2.21, is often used together with loss during the
training process, giving a better representation and making it easier to conceptualize the
networks performance gain for each iteration. A common training strategy is to use the
training data together with validation data, i.e. data only used to check the performance;
If the accuracy of the training data is high while the accuracy of the validation data is

low, the network might be over-fitted.
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Number of correct predictions

Accuracy = (2.21)

Number of predictions
Most metrics are calculated by comparing correctly identified samples with incorrect
identified samples. In a binary classification scenario, the correct classifications are
often referred to as true positives (TP) and true negatives (TN), and the incorrect
classifications are called false positives (FP) and false negatives (FN). Using this notation,

the accuracy is calculated as shown in equation 2.22.

TP + TN
TP + TN+ FP + FN

Accuracy = (2.22)

2.4.6.2 Precision, Recall and F1-score

Precision and recall, shown in equation 2.23 and 2.24 respectively, can both provide
additional information as to how well the network performs. These metrics are especially
useful when dealing with multiple classes and imbalanced training data. As the accuracy
metric views all the classifications as a whole, both precision and recall are class dependent

metrices and can shed light on any bias in the network.

Precision is the fraction of those correctly classified of a particular class divided by all
samples that were predicted to be the same class. In other words, that of all the samples
the network predicts to be a particular class, how many were correctly identified. This
provides an indication of how well the network is to identify each individual class, but it

does not take account for cases that were not correctly identified.

TP
Precision = —— 2.23
recision = Z s (2.23)
Recall is the number of correctly identified of a class divided by the total number of
samples of that class. Recall is sometimes referred to as the sensitivity or true positive

rate. This is particular useful in some instances, for example in a medical trial where it

could be favorable to detect some false positives instead of missing a diagnosis.

TP
l=—— 2.24
Recall = 75771 (224)
The Fl-score is what is known as the harmonic mean between precision and recall, and is

shown in equation 2.25. This takes both the precision and recall of a network in account.

A Fl-score of one indicates perfect precision and recall.
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Precision - Recall
Fr=2. 2.25
! Precision + Recall ( )

2.4.6.3 Confusion Matrix

The confusion matrix is a valuable tool to visualize and gain insight to a network’s
performance on a per class level. An example of a confusion matrix is shown in figure
2.20. The vertical axis indicates the true class label of the samples, and the horizontal
axis the model’s prediction of all the samples. This means that all correctly predicted
samples are gathered in the diagonal of the matrix. The confusion matrix makes it

trivial to identify incorrect classification and how the inaccuracy of the model affects the

predicted values.

True label

Predicted label

Figure 2.20: Example of a confusion matrix created using the Scikit Python library.
Comparing the true label and predicted label all correctly identified predictions are
represented in the diagonal line from top left to bottom right

2.4.7 Transfer Learning

Transfer learning is the concept of using a pretrained artificial neural network for a
different task than it was originally trained for. The general notion is that a deep neural
network trained using a large enough data set will be able to extract general features

that also applies to similar types of data.
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As mentioned in section 2.4.3, a convolutional neural network can be regarded as having
two parts, the feature extractor and the classifier. When using transfer learning in
practice, a pretrained network or backbone can be used as a general feature extractor by

replacing the classifier with new fully connected layers.

Training a deep neural network is often a demanding task, both in computational power
and time. By freezing all the layers in the feature extractor, only the new classifier is
trained. This vastly reduces the amount of trainable weights in the network while still
being able to yield satisfactory results with a small dataset. If the new dataset is large,
the model can be fine-tuned by only freezing some (or even none) of the layers in the

feature extractor.

Within the field of image recognition, a common benchmark for performance is the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [45], where it is competed
to get the best performance using a very large dataset. Many of the entries to this
challenge are readily available to use for transfer learning, for example in the neural
network package Keras for python. Keras’ API even lists the available models after their
performance in the ILSVRC [46].
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Figure 2.21: Transfer learning is the concept of using knowledge from a pretrained
network for a new task
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Data and Materials

3.1 Palynological Slide Images

As the project of digitizing the catalogue of samples at the Norwegian Petroleum
Directorate is still in its starting phase, the data set made available for this thesis was
somewhat limited. Seven palynological slides were made available for this thesis. Six of
the slides were made from core samples taken from the Ekofisk oilfield, and the last one
from Johan Sverdrup. Both these oilfields are located in the North sea, off the coast of
Norway, as shown in figure 3.1. Especially the Ekofisk field has a great historical value;
it was the first oil field discovered in the North sea, in 1969 by the Phillips Petroleum
Company (now ConocoPhillips co.), and marked the beginning of what we now call the

Norwegian oil adventure [47].

31
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Figure 3.1: Map showing the location of the oilfields Ekofisk and Johan Sverdrup

outside the coast of Norway where the dataset were taken from. Map reproduced in

altered form from norskpetroleum.no. Map licensed under CC BY 4.0 and

contains data from the Norwegian Petrolium Directorate licensed under
NLOD

Of the six samples from the Ekofisk field, five were taken from a well named 2/4 C-11
[48] and one from 2/7 14 [49], at depths ranging from 3,064 to 3,249 meters below the
deck of the platform. The last sample from the Johan Sverdup field was taken from a
well named 16/3-2 [50] at a depth of 1,998.8 meters.

To create the palyslide, a small sample is taken from a larger core sample. The position
of the sample is measured, such that the depth can accurately be determined and
labeled. The sample is grounded to dust before it is dissolved in an acid, usually nitric,
hydrochloric, or hydrofluoric acid. The type of acid and how long the process takes is
dependent on the amount and type of residue in the sample. The sample is washed
with tap water before one or two drops are placed on a microscopic slide and let to dry
overnight. A coverslip is glued on top of the sample with resin and a label is placed to

note where the sample is taken from and the procedure used to create the sample.

The samples are digitized using a pathological scanner from 3D Histech, the Pannoramic
1000. This model can hold up to 1000 microscopical slides and have an optical resolution
of 0.25 pum per pixel. It is claimed to be the fastest whole slide scanner on the marked,
able to scan up to 100 slides per hour [15]. As the dinoflagellates are not perfectly
flat, each slide is scanned multiple times at different focus levels. This allow a user to
manually focus the view in the software, or each focus level can be stacked such that
only the parts in focus are kept in the final image. This stacking process creates a bigger

depth of field and allows an entire dinoflagellate to be in focus instead of just parts of it.


https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/
https://www.kartverket.no/data/Lisens/
https://data.norge.no/nlod/en/1.0
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Due to the file size of a slide image and the practicality of a single focus plane, only
stacked slide images have been used in this thesis. Stacking merges each layer such that
the size of each slide is reduced to about three gigabytes. The digital resolution of a
slide image is approximately 184,000 by 96,000 pixels, covering a region of 46 by 24
millimeters. At this resolution, one square millimeter of palyslide is represented by over

16 megapixels.

Figure 3.2 shows a macro image of a palyslide as well as the slide’s label. The label
shows that this sample is taken from a depth of 3,070.2 meters, from well 2/4-C-11. '@
1/4’" indicates that the sample has been dissolved in a 40 percent nitric acid solution for

15 seconds.

(@) (b)

Figure 3.2: (a) Macro image of a scanned palyslide. (b) The palyslide’s label. The

label shows that this sample is taken at a depth of 3070.2 meters from well 2/4-C-11. "Q

1/4’" indicates that this sample have been dissolved in a 40 percent nitric acid solution
for 15 seconds

3.2 Labeling Data

Each slide can contain anything from a few hundred to over a several thousand dinoflag-
ellates and fragments of dinoflagellates as well as inertinite and other types of material
not removed by the acid preparation. The washing procedure may also introduce crystal

structures that originate from the tap water.

As there are many similar species of dinoflagellates and it can be difficult to differentiate
between them, the data were mostly labeled by Robert Williams at the Norwegian
Petroleum Directorate. The annotations were made by using the 3DHistec’s CaseViewer
software. Only whole, or mostly whole dinoflagellates were annotated. Fragments,

crystals, inertinite and other types of residuals were ignored in the annotation process.
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3.3 Dataset

From the seven slide images, 530 dinoflagellates were annotated from 21 different species,

as listed in table 3.11

Species Name Number of samples
Senoniasphera Inornata 173

Fibrocysta Axilis 121
Palaeoperidinium Pyrophorum 117

Spongodinium Delitiense 65

Cribroperidinium "Prominoseptatum" 19

—_
w

Spongodinium Delitiense (operculum)
Dingodinium Tuberculosum
Dingodinium Tuberosum
Gonyaulacysta Jurassica
Sentusidinium Pilosum
Systematophora Areolata
Tubotuberella Apatela

Acanthaulax Venusta

Thalassiphora Pelagica
Sirmiodinium Grossii
Chytroeisphaeridia Cerastes
Chytroperidinium Sp.

Danea Californica

Enoscrinium Galeritum Reticulatum

Leptodinium Mirabile

e i e e i e e e " B S G R O R NG NG R )

Scriniodinium Inritibile

Table 3.1: Complete list of samples

3.3.0.1 Dataset Split

A customary practice when training neural networks is to split the dataset into three:
training, validation, and testing. Both training and validation data is used during the
training process and the test data is used afterwards to evaluate the performance of the
network. Since this would mean that many of the classes could not be verified or tested,

all the classes with less than 20 samples were collected in a single class named "Other

LA list of all annotations sorted by slide and example image of all different species can be found on
table B.1 and in Appendix B



Chapter 3 Data and Materials

35

Dinoflagellates". The data were split with 60 percent in Dyyqin, and 20 percent in D,y

and Dtest-

Species Name Dirgin Dyar Diest  Total
Senoniasphera Inornata 103 34 36 173
Fibrocysta Axialis 72 24 25 121
Palaeoperidinium Pyrophorum 70 23 24 117
Spongodinium Delitiense 39 13 13 65
Other Dinoflagellates 32 10 12 54
Total 316 104 110 530

Table 3.2: The D-dataset. Classes containing less than 20 samples were put together

to a single class, "Other Dinoflagellates"






Chapter 4

Proposed Method

This chapter will explain the methods and process used to process, detect, and identify
dinoflagellates in palynological slides using traditional image processing techniques

together with deep neural networks.

The general idea of this thesis can be divided into three different parts, as illustrated by
figure 4.1. Part 1 covers generating and exporting the training data from the palynological
slides, Part 2 will cover object detection and lastly, Part 3 covers objects identification
using convolutional neural networks. All the parts are however closely linked, as both
the training data and detected objects will need be in the same format for the neural

network to be able to classify the objects.

To view the palyslide images both CaseViewer and QuPath was used. All parts were
created using Python 3.7, apart from a script written in Groovy to import annotations
to QuPath. The code written for the proposed method is embedded in this file and

explained in appendix A.

Part 1 Part 3

Palynolocial
slides

Preprocess Processed data

dataset

Training

| Convoiutionai |
Nerual Network

Export prediction Predicted
Classify (and image) results

Object Detected objects

detection

Figure 4.1: Overview over the process pipeline. Part 1 covers generating and exporting

the data used to train the neural network. Part 2 is the object detection by using

traditional image processing. Part 3 covers the setup and use of a convolutional neutral
network to classify the dinoflagellates

37
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4.1 Preprocess Dataset - Part 1

The dataset delivered from the Norwegian Petrol Directorate contained annotated palyno-
logical slide images in the mirax (.mrxs) format. This is an industrial and relative closed
format, consisting of one .mrxs file as well as a folder containing the actual image split
into different .dat-files. The folder also contains one configuration file (.ini) containing
metadata. This means that there is no single file where the annotations can be easily
extracted. The Python library OpenSlide have methods to read and extract regions
from the image files but is not able to extract or read annotations from the slide image.
Luckily, the 3DHistec’s Slide converter is able to extract the annotations in a conversion
process and export the annotations to an XML-file, such that each slide will have an

associated XML-file containing all annotations.

Annotations exported from CaseViewer are defined as general polygons using n+ 1 points,
where n is the number of line segments defined by the polygon. The annotations were
mostly done using squares, such that the location of an annotation consisted of five sets

of (x,y) pixel coordinates.

After parsing, each annotation extracted is defined by five parameters:

e xo - horizontal position of the top left corner in pixel coordinates

e 1o - vertical position of the top left corner in pixel coordinates

e w - width of object in pixels

e h - height of object in pixels

e name - Extracted name of object from annotation, i.e. object class
By inspecting the shape and size of the different objects, a standardized region size in
the lowest layer of 512 by 512 pixels was chosen. This gave a good overview, about
127 by 127 micrometer, for all of the objects in the dataset without including too much
background as shown in figure 4.2. In practice the file size and resolution were a bit

large, so by using the layer property of the mirax format the second layer was chosen.

This reduces the resolution to 256 by 256, while still covering the same physical region.
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(a) (b) ()

Figure 4.2: Example of the extracted regions of 127 by 127 pm containing different
species of dinoflagellates: (a) Fibrocysta Axialis, (b) Palaeoperidinium Pyrophorum,
and (c) Senoniasphaera Inornata

To expand the annotated region to a standardized shape, equation 4.1 was used. xg and
yo are the original top left corner of the object, w and h are the width and height of the
object, and w’ and b’ are the width and height of the new region. This gives z{, and y,

corresponding to the new top left pixel with the object in the center.

:E/—(L’ w_w
0= 0T 9 T 11
y0=yo+§—5

All the images were exported and saved to individual folders named by the species name,
as well as a file containing the filenames, originating slide filename, species name, position

and shape.

4.1.1 Implementation

The methods used in this section was composed of a mixture of pre-made and self-made
function. Table 4.1 shows what packages were used and what was self-made. To parse
the annotation file, the minidom package within python was used. To export the dataset;

pillow was used to save images and numpy was used to save a list of all the objects.
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Python

Method XML-parser | Numpy | Pillow | Self Made
(minidom)

Parse Annotation File X X

Expand Object Window X

Export Dataset X X X

Table 4.1: Packages and self-made functions that were used in section 4.1

4.2 Object Detection - Part 2

Object detection is Part 2 as illustrated in figure 4.1. In figure 4.3, this process is shown
in greater detail. Each slide image is preprocessed, before a block-wise object detection

algorithm is performed.

Part 2

( Identify ROI \

and crop

( Export objects \

2048 x 2048 px

Image processing
and segmentation

\ 256 x 256 px J

Palynological slides RRR LTI '
246016 x 256768 px

180000 x 100000 px

o
L

Figure 4.3: Detailed procedure for Part 2. Each slide image is cropped and split into
blocks. A block-wise object detection algorithm is performed and the objects exported

4.2.1 Palyslide Image Preprocessing

The whole slide image as it is created by the scanner is too large to process directly.
Without any preprocessing, the scanned image is in the order of 250,000 by 250,000
pixels, even though the palyslide itself cover a region of about 184,000 by 96,000 pixels.

In figure 4.4, the whole slide image is shown in its entirety (downsampled version).
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Figure 4.4: Raw image file from the 3DHistec’s P1000 scanner as read by OpenSlide in
Python

In section 3.1 it was mentioned that the process of creating the slide, the dinoflagellates
are diluted in a water solution before they are placed on a microscope slide and dried
overnight. This process causes a higher concentration of dinoflagellates in the center of
the coverslip and can just be seen in figure 4.4. This means that some of the edge can be
removed without removing too many dinoflagellates. By removing the outer edge, the

transition region from microscopic slide to coverslip is removed.

As mentioned in section 4.1, a single dinoflagellate will maximum occupy a region of
about 512 by 512 pixels in the highest resolution layer. If a downsampled version of
the whole slide image was to be used in object detection, e.g. layer 4, where the slide
image is "only" 11,250 by 5,625 pixels, the size of the objects as well as artifacts caused
by downsampling will make it to be improbable to distinguish between multiple objects.

Especially for objects in close proximity to each other.

In order to preserve as much detail as possible, but still be able to perform object
detection, the whole slide image is split into a grid, where each block covers a 512 by 512

micrometer region, i.e. 2048 by 2048 pixels at the highest resolution.

To extract the palyslide region in the image, algorithm 1 was used. The result this

algorithm returns the position, width and height of the image region in pixel coordinates
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corresponding to the level of which the image was processed in. As this is a quite simple
method, checking all pixels in the image, it should be self-explanatory that this is not
possible to run at the highest resolution. By using algorithm 2, the pixel coordinates
returned from algorithm 1 can be converted to any layer as for each layer down, the

resolution is halved.

Algorithm 1: Finding the region of the slide (RoS) in the raw slide image

Input: Downsampled raw slide image

Output: Position (x0, y0), and shape (width, height) of the RoS
gray_image < Convert input to grayscale

RoS < where gray_image > O AND gray_image < 255

%0, yO < min(RoS)

width, height < max(RoS) - (x0, yO)

Return (x0, y0), (width, height)

Algorithm 2: Level based point translation

Input: Point to translate (point), Level to translate from (from_ level), Level to
translate to (to_level)

Output: Translated point (translated_point)

translated_point < point”~ (from_level - to_level)

Return translated_point

The grid is calculated such that the maximum number of whole blocks are placed within
the width and height, centered in the image at the highest resolution level. To further
remove the edge, i.e. the transition region from the microscope slide to the coverslip,
the outer frame of blocks can be removed. As exporting each block as image files would
occupy unnecessary disk space, only the block number, row and column index, position,

and shape is saved.

4.2.2 Segmentation and Object Detection

As discussed in section 2.3.4 Segmentation, in order to detect and differentiate between
objects in an image there exists a wide verity of methods. Amongst the discussed methods
is the watershed method (in 2.3.4.3) which will be used here in its marker-based form.
The markers will be created by using thresholding and morphological functions and are

inspired by tutorials made available by the creators of OpenCV [51][52].

The first step in the process is to remove the background, such that a resulting binary
image only contains objects in the foreground. A palyslide will often have many different
types of dinoflagellates together with other residual material. This creates a wide range of

shapes, sizes and colors in the image and can make removing the background a non-trivial
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problem. Figure 4.5 shows a block image and the result of thresholding it using Otsu’s
method (as discussed in section 2.3.4.1) directly. As shown, this also removes many of

the objects in the process and would be sub-optimal for use in object detection.
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Figure 4.5: (a) A single block from the grid of the palyslide image. (b) The block

thresholded by using Otsu’s method. The first step in detecting objects is to remove the

background of the image. As seen in (b), Otsu’s method is too aggressive and removes
much of the foreground

By converting the image to the HSV format, the background can much easier be identified.
Figure 4.6 shows each of the channels of the image in the HSV format, represented
as grayscale images. Since the background is unsaturated the objects can easily be
identified in the saturation channel. By subtracting an inverted thresholded version of

the saturation channel from the original image the background could be removed.
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Figure 4.6: Each of the color channels in the image converted to the HSV format. (a)
Hue, (b) S