
Title page for master’s thesis
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation:

Spring/ Autumn semester, 20......

Open / Confidential

Author:

Programme coordinator:

Supervisor(s):

Title of master’s thesis:

Credits:

Keywords:

 Number of pages: …………………

+ supplemental material/other: …………

 Stavanger, ………………..
 date/year

Information Technology - Automation
 and Signal Processing

20

Aleksander Borge Nesse

Professor Kjersti Engan
Robert Williams

Professor Kjersti Engan

Classifying Dinoflagellates in Palynological Slides Using Convolutional Neural Networks

30

Deep Learning, Convolutional Neural
Networks, Image Processing, Object
Detection, Transfer Learning,
Dinoflagellates, Microplankton,
Fossils, Palynology

76

14.07/2020

26 pages
and embedded file

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Classifying Dinoflagellates in
Palynological Slides Using Convolutional

Neural Networks

Master’s Thesis in Information Technology - Automation and Signal Processing
by

Aleksander Borge Nesse

Internal Supervisor

Kjersti Engan

External Supervisor

Robert Williams

July 14, 2020

Abstract

The petroleum industry is still one of the largest contributors to the Norwegian economy.
Experts estimates that of the total reserves on the Norwegian shelf only 52 percent have
been discovered. During test drilling, core samples can be taken from the sedimentary
rock and within these samples small fossils from micro-plankton known as dinoflagellates
can be found. By evaluating the distribution and collection of different species and taxon
of dinoflagellate the likelihood of finding petroleum in the area can be estimated.

Palynology is the study of such small objects, and have largely been done manually through
a microscope. The Norwegian Petroleum Directorate have recently acquired a scanner to
digitize their collection of over 200,000 palynological slides. In this thesis a solution is
proposed to automatically detect and identify a number of different dinoflagellate species
by using both traditional image processing and deep neural networks.

With the aid of traditional image processing a detection rate of 93 percent was obtained for
detecting objects in the palynological slides. Using transfer learning, a deep convolutional
neural network based on the VGG-16 network structure obtained a 99 percent accuracy
on test data.

Preface

This thesis marks the end of my degree as Master of Science at the University of Stavanger,
Department of Electrical Engineering and Computer Science.

I would like to thank my lecturers and co-students for the knowledge, help, and fun for
the few last years. A special thanks goes out to Professor Kjersti Engan for the support,
guidance, and reassurance during the writing of this thesis. I would also like to thank
the Norwegian Petroleum Directorate for providing the material used in this thesis.

A final thanks to my family and friends for the support and encouragement, and to my
partner Bettina for enduring with me during the quarantine and lockdown period caused
by covid-19.

iv

Contents

Abstract iii

Preface iv

1 Introduction 1
1.1 Palynology in Petroleum Prospecting . 1
1.2 Previous Work . 2
1.3 Thesis Objective . 3
1.4 Thesis Overview . 3

2 Background 5
2.1 Dinoflagellates . 5
2.2 Whole Slide Imaging . 6

2.2.1 OpenSlide . 6
2.3 Image Processing . 6

2.3.1 Bit Depth and Color Models . 6
2.3.2 Mathematical Morphology . 7
2.3.3 Distance Transform . 10
2.3.4 Segmentation . 12

2.4 Neural Networks . 17
2.4.1 Artificial Neural Networks . 19
2.4.2 Activation Function . 21
2.4.3 Convolutional Neural Networks . 23
2.4.4 Pooling . 26
2.4.5 Loss Function . 26
2.4.6 Evaluation Metrics . 27
2.4.7 Transfer Learning . 29

3 Data and Materials 31
3.1 Palynological Slide Images . 31
3.2 Labeling Data . 33
3.3 Dataset . 34

4 Proposed Method 37
4.1 Preprocess Dataset - Part 1 . 38

v

vi Contents

4.1.1 Implementation . 39
4.2 Object Detection - Part 2 . 40

4.2.1 Palyslide Image Preprocessing . 40
4.2.2 Segmentation and Object Detection 42
4.2.3 Implementation . 47

4.3 Object Classification - Part 3 . 48
4.3.1 Transfer Learning . 48
4.3.2 Implementation . 49

5 Experiments and Results 51
5.1 Object Detection Evaluation . 51

5.1.1 Method . 51
5.1.2 Results . 52
5.1.3 Conclusion . 53

5.2 Backbone Comparison . 54
5.3 Object Classification Performance . 57

5.3.1 Classifier Hyperparameter-Tuning 57
5.3.2 Learning Rate . 59
5.3.3 Data Augmentation . 60
5.3.4 Classification Result . 61

5.4 Palynological Slide Object Detection and Classification 62

6 Discussion 65
6.1 Palynological Slides and Dataset . 65

6.1.1 Object Detection . 66
6.1.2 Convolutional Neural Network . 67
6.1.3 Final Results . 67

7 Conclusion 69
7.1 Conclusion . 69
7.2 Future Work . 69

List of Figures 70

List of Tables 73

A Python Code 81
A.0.1 1_export_annotations.py . 81
A.0.2 2_train_vgg16.py . 81
A.0.3 3_object_deteciton.py . 81
A.0.4 4_object_classification.py . 82
A.0.5 5_quPath_import_annotation.groovy 82
A.0.6 imfun.py . 82

B Dinoflagellates from the palyslides 85

C CNN Transfer learning test 89

Chapter 1

Introduction

1.1 Palynology in Petroleum Prospecting

The petroleum industry is by far the biggest contributor to the Norwegian economy. Over
170,000 are employed directly or indirectly by the industry, and it is alone responsible for
around ten percent of Norway’s GDP, a total of over 14,000 Billion NOK1 since the start
of production in the 1970’s. In 2019, the export of Norwegian crude oil was valued at
248 Billion NOK, approximately 27 percent of all Norwegian goods export [1], however
only covering about two percent of the entire world’s oil requirement. Even though many
industries are transitioning to other, greener types of energy, petroleum will still remain
one of the largest resources in the years to come. It has been estimated that of all the
total reserves on the Norwegian shelf, 48 percent has yet to be discovered [2].

Offshore petroleum prospecting requires a wide range of special fields and techniques
within geology. To survey the ocean floor and the underlying rock formation, both
geophysical and sedimentological methods are used. A common first step is to survey
using seismology. A seismic vessel sends out powerful sound-waves over a large spectrum
down towards the sea bed and are reflected in the transition between the layers of
different rock types. First when a suitable area is found, exploratory drilling is performed.
Geological experiments and core samples can then give more information about the rock
type, age as well as the probability of petroleum in the surrounding area [3], [4].

The study and surveying of sedimentary strata, stratigraphy, have been around since
before the 1700’s, but it was the discovery of William Smith (1769 - 1839) that made
it possible to map the distribution over large geographical areas using biostratigraphy.
While tasked to survey routes for a planned coal canal in 1795, he discovered that

1Adjusted for inflation

1

2 Chapter 1 Introduction

some of the strata contained identifiable fossils, and noticed how the collection of fossils
changed depending on the depth and layer of the sedimentary rock [5]. Geologist still use
biostratigraphy to chart the age of the strata, but in offshore petroleum surveying, both
the depth and shape of the drilling greatly limits the size of the core sample. Because of
this, geologists have been forced to identify extremely small, microscopic fossils. These
types of fossils are mostly composed of marine microplankton such as dinoflagellates,
as well as spores and pollen from land plants. These are part of the organic material
that make up the sedimentary rock which is transformed to petroleum under the right
pressure and temperature [6].

Palynology is a field within geology which is the study of such microfossils. By examining
the number and ratio between different species, these can be presented in a range-chart.
A range-chart shows the differences and relationships between species, such that the
strata’s can be divided to zones and the age can be determined. Dinoflagellates, in a
geological time scale, develop new species fast, as well as old species become extinct,
which makes them especially suited for dating marine sediment. Spores and pollen
however, often exists for extended periods of time, and is therefore unable to give a
precise dating [6]–[9]

Comparing the different ratios of microfossils makes it possible to determine if the
sediment originates from land, the coast or sea, as well as living condition and even
the temperature. By comparing the dinoflagellates of old with newer samples, ocean
temperature and living conditions can be estimated [6]–[9].

1.2 Previous Work

Machine learning have been a hot topic within many fields of research, microbiology
included. All though these are mostly centered around living or newer species instead
of microfossils, the issue remains the same. Identifying objects such as plankton, di-
noflagellates, spores and other microscopical organisms can provide vital information
about the environment, both present day and the long-lost past. Currently, many of
these identifications are done manually through a microscope which is a both a time
consuming and laborious task.

Automatic recognition systems to classify different taxa and species of plankton have
been introduced even as early as 1984, when Jeffries, Berman, Poularikas, et al. [10]
presented a pattern recognition system by feature extraction on different zooplankton.
In 1998, Tang, Kenneth Stewart, Vincent, et al. [11] devised a system to extract features
from plankton images using invariant moment feature and Fourier boundary descriptors

Chapter 1 Introduction 3

and trained a small neural network classifier. V, Reguera, González-Gil, et al. [12]
published in 2002, DiCANN, a network to automatically categorize 23 different species
of dinoflagellates from microscopic images using features extracted by using the Fourier
power spectrum and texture density.

Later work include, by Schulze, Tillich, Dandekar, et al. [13] - PlanktonVision, a system
using local binary pattern, elliptic Fourier descriptors and the histogram to extract
features such as texture, shape, size and pigmentation from plankton, and using a deep
neural network with two hidden layers as a classifier. And by Zheng, Wang, Yu, et al.
[14], in 2017 using multiple kernel learning to classify plankton from features extracted
by using ten different extraction methods.

1.3 Thesis Objective

As of 2020, the Norwegian Petroleum Directorate (NPD) have over 200,000 palynological
slides (palyslides) collected from over one thousand well drilling, with fossils ranging
from 3 to 370 million years old. The NPD is in the process of digitizing their collection
and are interested in the possibility of using image processing or machine learning to aid
geologists in their work.

The main objective of this thesis is to explore the possibility of detecting and classifying
different species of dinoflagellates from palyslide images. To do this, a system to
detect both the position and size of objects from the palyslide images is created by
using traditional image processing techniques. By extracting annotated dinoflagellates
from palyslide images, a deep convolutional neural network can be trained to classify
dinoflagellates from a range of species.

1.4 Thesis Overview

Chapter 2 - Background
In this chapter, relevant background theory is presented.

Chapter 3 - Data and Materials
In this chapter, the dataset, as given from the Norwegian Petroleum Directorate is
presented. The procedure of creating a palynological slide is discussed and the final
dataset used in the thesis is presented.

4 Chapter 1 Introduction

Chapter 4 - Proposed Method
In this chapter, the method for detecting and classifying objects, as well as preprocessing
the dataset is presented.

Chapter 5 - Experiments and Results
In this chapter, the conducted experiments and their results are presented. First the object
detection algorithm and its performance and later tuning and performance evalutation
of the deep neural network.

Chapter 6 - Discussion
In this chapter, the challenges and limitations of the proposed method is discussed
together with the results of the conducted experiments.

Chapter 7 - Conclusion
In this chapter, a summary and conclusion of the thesis is given, as well as suggestions
for future work and potential improvements.

Chapter 2

Background

2.1 Dinoflagellates

As mentioned in the introduction in chapter 1, dinoflagellates (shown in figure 2.1) are a
type of marine microplankton. Mostly considered as a type of algae, dinoflagellates are
single-celled eukaryotes and comprise a large proportion of the planktonic biomass in
both marine and freshwater environment [9].

Some species of dinoflagellates perform a resting stage as a part of their life cycle,
transforming into a dinoflagellate cyst (dinocyst) composed of dinosporin. At this stage
they are capable of being highly preserved in sedimentary rock [7].

Figure 2.1: Example of different species of dinoflagellates This figure is reprinted
in unaltered form from Wikimedia Commons, File: Dinoflagellates.jpg.

Licensed under CC BY 2.0 by the user fickleandfreckled

5

https://commons.wikimedia.org/wiki/File:Dinoflagellates.jpg
https://creativecommons.org/licenses/by/2.0

6 Chapter 2 Background

2.2 Whole Slide Imaging

Whole slide imaging or digital microscopy refer to scanning of a complete microscopic
slide. Usually they are created by stitching many smaller images, creating a single
high-resolution image file. As these images are large in resolution, they also contain
downsampled versions of the image, allowing for greater overview without having to
import the entire image to memory or process downsampling. High-end digital slide
scanners are also able to scan images using several focus points, enabling the user to
manual focus while viewing the image on a computer [15]–[17].

2.2.1 OpenSlide

As there is no standardized whole slide image format, many vendors create proprietary
or use closed undocumented formats, making it difficult to use these images outside the
vendors viewer and applications. OpenSlide is an open source C-library (with Python
bindings) which support many of these formats, enabling users to work with many
different formats without having to depend on vendor-specific software [18], [19].

2.3 Image Processing

2.3.1 Bit Depth and Color Models

A digital image is created by combining smaller picture elements known as pixels. When
displayed on a monitor, each pixel in an image is usually represented by red, green, and
blue sub-pixels. This is the RGB color model, and each pixel is digitally represented
by the value of each red, green, and blue channels. How many different values a single
pixel can have, i.e. how many colors can be displayed, is known as the bit depth. With a
24-bit bit depth, each channel can be represented by 256 different values or 8-bit. This
gives a total of over 16.7 million different color combinations that can be displayed.

An image with a bit depth of one is known as a binary image, as each pixel can only be
represented by one of two values. Gray-scale images have a bit depth of more than one
and can allow for significantly more than only two values but are defined with only one
color channel.

Processing images based on color can be challenging when using the RGB-model. The
way we think of colors is not by their combination of the primary colors, but their hue and
saturation. A more intuitive way to represent colors images is therefore the HSV-model.

Chapter 2 Background 7

This model is a direct conversion of the RGB-model, but instead of portraying a pixel
from its combination of primary colors, it defines a pixel from its hue, saturation and
value as shown in figure 2.2.

Blue

Green

Red

(a) (b)

Figure 2.2: Spatial representation of the (a) RGB-model and (b) HSV-model.

2.3.2 Mathematical Morphology

With mathematical morphology, an image is interpreted as a set of pixels, and common
functions from set theory are utilized to manipulate and transform images. Originally
it was developed for use on binary images, but its use has later been extended to also
include grayscale images as well as continuous functions [20].

The morphological functions have two inputs, the image to be processed and a structuring
element1. These are then combined using set operators, such as intersection and union.

Unlike linear filters, morphological operators do not use cross-correlation or convolution,
but rather the applied set operator together with its structuring element. The structuring
element slides over an image, and at each pixel its elements are compared with the set of
underlying values. If the sets of elements match the condition defined by the set operator
the resulting pixel will be set to a pre-defined value [21].

The structuring element can have different shapes and sizes, as shown in figure 2.3,
depending on the desired result. Some morphological function, e.g. the Hit-and-miss
transform, uses more advanced structuring elements to detect corners of figures, while
the most basic is a 3 by 3 matrix containing only 1’s. The structuring element usually
has its origin or "anchor" in the center, but some operators may use different origins.

1Often (mis)called a kernel, however some believe this should be reserved for convolutional and
cross-correlational functions

8 Chapter 2 Background

1

1

1

1 1

1

1

1

1

(a)

1

1

1

11

(b)

0

1

1 10

0

(c)

Figure 2.3: Example of structuring elements used by mathematical morphology functions
(a) and (b): Basic and commonly used structuring elements. (c): Structuring element

used by the Hit-and-Miss transform for corner detection

2.3.2.1 Erosion and Dilation

The two base operators within mathematical morphology are called erosion and dilation,
usually denoted with 	 and ⊕ respectively. Performed on a binary image, they are
equivalent to the boolean functions AND and OR with regards to the structuring element.

The erosion of a binary image X by the structuring element B is defined as the set of
all points z, such that B, translated by z is contained in X , as shown in equation 2.1 [22]

X 	 B , {z : B+z ⊆ X} =
⋂

y∈B

X−y (2.1)

Expanded from binary to gray scale images, this can be implemented such that for
a given pixel at position (x, y) in the original (src) image, the resulting eroded pixel
dst(x, y) is the minima in the region (x+x′, y+ y′) as defined by the structuring element
superimposed on the original image, as shown by equation 2.2. In the resulting dst image,
equation 2.2 is performed for all pixels in the source image [23], [24].

dst(x, y) = min
(x′,y′):element(x′,y′) 6=0

src(x+ x′, y + y′) (2.2)

The dilation of a binary image X by structuring element B is defined as the set of all
points z such that the intersection of Bs, the symmetric of B with respect of the anchor
point, translated by z, and X is non-zero as shown by equation 2.3 [22].

X ⊕ B = {z : (Bs)+z ∩ X 6= ∅} =
⋃

y∈B

X+y (2.3)

Similarly to erosion, this can be implemented for gray scale images as taking the maxima
in the set of pixels in the region defined by the structuring element [23], [25].

dst(x, y) = max
(x′,y′):element(x′,y′) 6=0

src(x+ x′, y + y′) (2.4)

Chapter 2 Background 9

When applied to images, the erosion function removes the outermost layer of a shape and
the dilation expands it. Figure 2.4 shows the erosion and dilation functions applied on a
small image of an ’A’ using the simplest form of structuring element, a 3 by 3 matrix
with 1’s and its anchor in the center such as shown in figure 2.3a.

1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0

0

0

0 0

0

0 0

0 0

0

0 0

0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0 0

0

0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0

0

0

0

0

0 00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0

0 0 0

0 0 0 0

0 0 00

0

0

0

0 0

0

0 0 0

1

0

0

0

0

0

00

00

0

00

0 0 0 0 0 0 0 0

0

0

0

0

0

0 0

0 0

0 0

0

0 0 0

0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1

1

1

1

1 11

1 1 11

1 1 11

1 1 111 1 111 1 11

1 1 111 1 111 1 11

1 1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1 1 1 1 1 1 11 1 1 1 1 1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

11

1 1

1 1

1 11

1 1

1 1

0

0

0

0

11

1 1

11

1 1

1

(a) Original image

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0

0

0

0 0

0

0 0

0 0

0

0 0

0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0 0

0

0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0

0

0

0

0

0 00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0

0 0 0

0 0 0 0

0 0 00

0

0

0

0 0

0

0 0 0

0

0

0

0

0

00

00

0

00

0 0 0 0 0 0 0 0

0

0

0

0

0

0 0

0 0

0 0

0

0 0 0

0

1

1

1

1

1 1

1

1 1

1

1

1

1

0

0

0

0 1

0

0

000 00 0 00 0

00 00 0 00 0

0

0 0

0 0

0

0 0

0 0

0 0 0 0 00 0 0 0

0 0

0

0

0

0 0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

0 0

0 0

0 0

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0 0

0

0

0 0

0

0

0 0

0

0

0

0 0

0

0

0 0

0 0

0

0

0

00

0

0

0

0

0

0 0

0

0

0

0

(b) Erosion

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0

0 0 0 0

0 0

0 0

0 0

0

0 0

0

0 0

0 0

0

0 0

0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0 0 0 0 0 0 0

0 0 0

0

0 0

0 0

0 0

0

0

0 0 0 0

0 0

0

0

0 0

0 0 0

0 0

0 0 0 0 0 0 0 0

0

0 0

0

0

0

0 00

0 0

00

0

0

0 0

0

0

0

0 0 0 0

0 0

0

0 0 0

1

00 0

00

0

00

0 0 0 0 0 0 0

0

0

0

0

0

0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1

1

1

1

1 1 11

1 1 11

1 1 11

1 1 111 1 111 1 11

1 1 111 1 111 1 11

1 1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1 1 1 1 1 1 11 1 1 1 1 1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

11

1 1

1 1

1 11

1 1

1 1

11

1 1

11

1 1

1

11 1 1 1 1 1

1

11 1

1 1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1 1 1 1

1 1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1

11

1

111 1

11

1

1

1

1 1 1 1 1 1 1 1 1

1

1

1 1 1

1

1 1

1 1

1

1 1 111 1

1

1 1

1

1

1

1 1

1

1 1

1

1

1 1

1 1

1

1

1

1 1

1

1

1

1

(c) Dilation

Figure 2.4: Mathematical morphological basic operations performed with a 3 by 3
kernel composed of only 1’s

Erosion and dilation are known as dual functions such that the erosion of the foreground
is equivalent to the dilation of the background in an image, as shown by equation 2.5
[22], [26].

X ⊕ B = (XC 	 BS)C (2.5)

2.3.2.2 Opening and Closing

Opening and closing are two basic functions for noise reduction using mathematical
morphology and are composed of sequential operations of erosion and dilation.

The opening of an image X by structuring element B is defined as the dilation of the
erosion of the image and is denoted by •-symbol as shown in equation 2.6. This sequence
of operations can be used to remove small objects or noise in an image while retaining
most of its original shape.

X • B , (X 	 B)⊕ B (2.6)

Contrariwise to opening, the erosion of the dilation of an image is called the closing of
the image and is denoted by the ◦-symbol as shown in equation 2.7. Equally opposite,
the closing is used to remove small holes in objects while retaining most of the original
shape.

10 Chapter 2 Background

X ◦ B , (X ⊕ B)	 B (2.7)

In figure 2.5, both opening and closing is shown performed on a small image of an ’A’. As
the image is relatively small, opening removes parts of the object. Closing on the other
hand seems to almost not have any effect on the object. To increase the effect opening
and closing have, multiple iterations can be performed.

1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0

0

0

0 0

0

0 0

0 0

0

0 0

0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0 0

0

0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0

0

0

0

0

0 00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0

0 0 0

0 0 0 0

0 0 00

0

0

0

0 0

0

0 0 0

1

0

0

0

0

0

00

00

0

00

0 0 0 0 0 0 0 0

0

0

0

0

0

0 0

0 0

0 0

0

0 0 0

0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1

1

1

1

1 11

1 1 11

1 1 11

1 1 111 1 111 1 11

1 1 111 1 111 1 11

1 1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1 1 1 1 1 1 11 1 1 1 1 1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

11

1 1

1 1

1 11

1 1

1 1

0

0

0

0

11

1 1

11

1 1

1

(a) Original image

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0

0

0

0 0

0

0 0

0 0

0

0 0

0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0 0

0

0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0 0

0

0 0

0 0

0 0

0 0

0

0 0

0 0

0

0

0

0

0

0

0 00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0

0 0 0

0 0 0 0

0 0 00

0

0

0

0 0

0

0 0 0

0

0

0

0

0

00

00

0

00

0 0 0 0 0 0 0 0

0

0

0

0

0

0 0

0 0

0 0

0

0 0 0

0

1

1

1

1

1 1

1

1 1

1

1

10

0

0

0 1

00 0 0 00 0

00 0 0 00 0

0 0 0 0 00 0 0 0

0 0

0 0

0 0

0 0 0 0

0 0

00

0 0

0

0

0 0

0

0

0 0

0

0

0

0

0

0 0

0 0

0 0

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1 1

1

1 1

1

1

1

1 1

1

1 1

1

1

1

1

1 1

1

1

1

1

1

(b) Opening

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0 0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0

0 0 0 0

0 0

0 0

0 0

0

0 0

0

0 0

0 0

0

0 0

0

0 0

0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0 0

0 0

0 0 0 0 0 0 0 0

0 0 0

0

0 0

0 0

0 0

0

0

0 0 0 0

0 0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

0

0 0

0

0

0

0 00

0 0

00

0

0

0 0

0

0

0

0 0 0 0

0 0

0

0 0 0

1

00 0

00

0

00

0 0 0 0 0 0 0

0

0

0

0

0

0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1

1 1

1

1

1

1 1 11

1 1 11

1 1 11

1 1 111 1 111 1 11

1 1 111 1 111 1 11

1 1 1

1 1 1

1 1 1

1 1

1 1 1

1 1 1 1 1 1 1 1 11 1 1 1 1 1

1

1

1

1 1

1

1

1

1

1

1

1

1 1

11

1 1

1 1

1 11

1 1

1 1

11

1 1

11

1 1

1

1

1

11

1

0 0 0 0 0 0 0 0 0

0

0

0 0

0 0

0

0

0

0

0 0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0 0

0

0

0

0 0

0

0

0 0

0

0

0

0 0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

00

0 00

0 0 0 0 0 0 0 0 0 0 0

0

0 0 0

0

0

0

0

0

0 00 0 0 0 0

0

0 0 0

0

00

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

00

(c) Closing

Figure 2.5: Opening and Closing performed on a image using a 3 by 3 structuring
element of 1’s

2.3.3 Distance Transform

The distance transform calculates the shortest route from the foreground to the back-
ground for all pixels in a binary image. The result is called a distance map, an image
where each pixel value corresponds to the resulting distance in the original image. Several
different metrics can be used to calculate the distance. Most known are the Euclidean,
rectilinear and Chebychev distances.

The most accurate distance metric is the Euclidean distance. For a point in the foreground
(x1, y1), the distance to the closest point in the background (x2, y2) is defined as following:

D(x1, y1)euclidian =
√

(x2 − x1)2 + (y2 − y1)2 (2.8)

The Euclidean distance is however the slowest to calculate and may also produce non-
integer results.

The rectilinear distance, often called city block or taxicab distance results in counting
each pixel when moving in horizontal and vertical directions as shown in equation 2.9.
This is the fastest distance metric to calculate, but also the worst approximation to the
euclidean distance.

Chapter 2 Background 11

D(x1, y1)rectilinear = |x2 − x1|+ |y2 − y1| (2.9)

The Chebychev distance is similar to the rectilinear distance, but also allows for diagonal
movement as shown in equation 2.10. The Chebychev distance is therefore often called
the chessboard distance after how the king is allowed to move on a chessboard.

D(x1, y1)chebychev = max(|x2 − x1|, |y2 − y1|) (2.10)

As both rectilinear and Chebychev are approximations to the Euclidean distance, the
resulting distance map are affected by the choice of metric. Figure 2.6 shows how the
distance map of a small image of an ’A’ by using the different metrics. It can be seen that
the euclidean distance results in a smooth map in all directions, but both the rectilinear
and Chebychev distances creates artifacts in the distance map.

(a) (b)

(c) (d)

Figure 2.6: Distance map produced using the different methods of calculating the
distance of (a) the original image. (b) The Euclidean distance calculates the true
distance, producing a smooth distance map in all directions. (c) The rectilinear distance
only counts vertical and horizontal movement and can create linear artifacts in the
distance map. (d) The Chebychev distance also counts diagonal movement and can

create diagonal artifacts.

12 Chapter 2 Background

Once the distance metric has been chosen, there are several ways to create the distance
map. One way is to perform morphological erosion of the image and count the number of
iterations needed before each pixel have been removed. Using a 3 by 3 cross structuring
element (such as shown in figure 2.3b) will create a rectilinear distance map, while a 3
by 3 structuring element of one’s (as in figure 2.3a) will produce the Chebychev distance
map.

Performing morphological erosion for several iterations is a slow and computational
intensive task, hence many image processing libraries use the method proposed by
Gunilla Borgefors in the paper Distance transformation in digital images, 1986 [27].
Instead of considering the image as a whole, her method considers smaller neighborhood
of pixels and uses a translatory mask of cost-values. Where the distance is the sum of
the cost of jumps necessary. Figure 2.7 shows the different masks and the corresponding
cost-values are listed in table 2.1. This method only requires two passes to calculate the
distance of all foreground pixels in an image[27].

0

+a +b

+a

+b+a+b

+a

+b

(a) 3 by 3 mask

0

+a +b

+a

+b+a+b

+a

+b

+c -- -+c

+c

+c

-+c

-

+c- -

+c

-

+c

(b) 5 by 5 mask

Figure 2.7: Borgefor’s masks for calculating the shortest path to the nearest zero value.
The values for a to c are optimized depending on the chosen distance metric and are

shown in table 2.1

3-by-3 5-by-5

Euclidian a = 0.955, b = 1.3293 a = 1, b = 1.4, c = 2.1969
Rectilinear a = 1, b = 2 Not applicable
Chebychev a = 1, b = 1 Not applicable

Table 2.1: Optimized values for different distance metric using the masks in figure
2.7 from Borgefors’ method of calculating the distance map. Using a 5 by 5 mask for

rectilinear and chebychev distances do not improve the resulting distance map

2.3.4 Segmentation

In image processing, segmentation is the process of separating an image into parts. This
can either be to separate similar areas, e.g. of the same color, texture et cetera or to
separate multiple objects in the same image.

Chapter 2 Background 13

2.3.4.1 Thresholding

Thresholding an image splits the image into two or more parts defined by the threshold
value(s). Binary thresholding contains only one threshold value. For a given pixel in the
image (scr(x, y)), the thresholded result (dst(x, y)) will be set to the maximum value
defined by the image’s bit depth if the pixel value is above the threshold value, and set
to zero if below, as shown in equation 2.11.

dst(x, y) =

2n − 1 (for a n-bit image) if src(x, y) > threshold

0 else
(2.11)

Binary thresholding is the simplest form of thresholding. Multiple defined threshold
values is called multilevel thresholding. For color images, one or more threshold value
defined for each channel it is called multidimensional thresholding.

To perform the segmentation a threshold value must be selected. In figure 2.8 an example
of a grayscale image with its corresponding histogram is shown. In the histogram the
two peaks corresponding to the background area and the foreground area can be clearly
identified, and a good solution would be to select a threshold value somewhere between
100 and 200.

Figure 2.8: Left: A noisy grayscale image. Right: The histogram corresponding to
the image on the left.

Selecting the threshold value by visually evaluating the histogram does however involve
human interaction. In some images it may also not be as obvious what threshold value
to choose.

14 Chapter 2 Background

One popular way of automatically selecting a threshold value is the method proposed by
Ōtsu Nobuyuki in 1979 [28], later known as Otsu’s method. In his proposal he suggest
to look at the variance of the histogram and that the optimal thresholding value is the
one that maximizes the between-class variance (σ2

B), or correspondingly minimizes the
within-class variance in binary thresholding.

For an image with L gray levels, the number of pixels at each i gray level, normalized to the
total number of pixels, is denoted by pi. For a threshold set at the kth level, the zeroth and
first order cumulative moments of the histogram up to the kth level are ω(k) = ∑k

i=1 pi

and µ(k) = ∑k
i=1 i · pi respectively and the total mean level µT = µ(L) = ∑L

i=1 i · pi. The
between-class variance σ2

B is then defined as shown in equation 2.12.

σ2
B(k) = [µTω(k)− µ(k)]2

ω(k)[1− ω(k)] (2.12)

Using Otsu’s method, σ2
B is calculated for all k possible threshold values, such that the

optimal threshold value k∗ is σ2
B is maximized, as shown in equation 2.13. Figure 2.9

shows the result of Otsu’s method performed on the image from figure 2.8.

σ2
B(k∗) = max

1≤k<L
σ2

B(k) (2.13)

Figure 2.9: Left: Result of thresholding the image in figure 2.8 using Otsu’s method.
Right: The histogram of the original image. The vertical line indicates the optimal

threshold value at gray level 138, as found by Otsu’s method.

Chapter 2 Background 15

2.3.4.2 Connected Components Labeling

Connected components labeling is a method to identify multiple objects within an image
by using pixel connectivity and giving each group of pixels their own unique label.

For a pixel at position (x, y), any pixels within its defined neighborhood is said to be
connected, i.e. belongs to the same group, if and only if they have the same value2. In
binary and grayscale images it is common to define the neighborhood using 4-way or
8-way connectivity.

With 4-way connectivity, the neighborhood of a pixel at (x, y) is the region defined by
(x± 1, y) and (x, y± 1). The neighborhood using 8-way connectivity is the same as 4-way
with the addition of (x± 1, y ± 1), i.e. all the surrounding pixels [29].

The whole image is scanned from top to bottom, checking all the pixels. If a pixel
corresponding to the foreground is detected, and it is not connected to any known groups,
it is assigned a new label. Similarly, if it is connected to a known group, it is assigned
the same label as the rest of the group.

Figure 2.10 shows an example of this method performed on a small image. When using
4-way connectivity, only horizontal and vertical connected pixels are regarded as being
in the same group, resulting in more groups than one might expect.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0

0 0 0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

1

1 1

1

1

1 1 1 1 1

1 1 1

11

1 1

11 1

11111

111

1 1

11

1

1 1

1

1 1

1

1 1 1

1 1

1 1 1

11

11

1 1

1 1

1 1

(a) Original image

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0

0 0 0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

2 2

22

2

1 1 1 1 1

1 1 1

11

1 1

111

1 1

11

1

1

1

1

1

1

1

11

11

1

4

333

333

33

3 3

33

33333

333

(b) 4-way connectivity

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0 0 0 0 0

0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0

0 0 0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

1 1

1 1

1 1

1 1

11

1

111

111

11

1

1

1 1

1

1

1 1

1

1 1 1

1

1 1 1

111

1 1

11

1

1 1 1 1 1

1

1

1

1

1 1

1

1

1

(c) 8-way connectivity

Figure 2.10: Connected component labeling using 4-way and 8-way connectivity. With
4-way connectivity, only horizontal and vertically connected pixels are counted as the
same group. Using 8-way connectivity all surrounding pixels of the same value is counted

as the same group

2.3.4.3 Watershed

Instead of segmenting an image based on pixel connectivity or the histogram, the
watershed method views the entire image as a topographical map. In geographical terms,

2or for grayscale images, within a range of values

16 Chapter 2 Background

the watershed is the natural separation of two adjacent catchment basins. By letting
each pixels value indicate its elevation, the image transforms into a terrain composed
by peaks, ridges and valleys, and the watershed method tries to find the basins and
watershed-lines that separates them [30][31].

A common analogy to describe the method is to think of the watershed method as a
flooding of the terrain created by the image. Start by creating holes through the terrain
at all the local minimums and block off the edges. While keeping it flat, slowly and
uniformly lower the terrain into a body of water such that the water emerges through
the holes. As the water level continues to rise it will fill up the catchment basins, but
instead of letting them overflow, create a dam at the points where the water would
meet or overflow into another basin. When the terrain is fully flooded only the dams
are left emerged from the water, and the regions between them indicate the different
segments[32][31].

In practice however, this straightforward method will often result in over segmentation
of the image, often to the point where the result rendered useless. This is because every
local minimum, even those from noise in the image, creates its own catchment basin and
a resulting segment.

One of the more successful method of improving the result is a marker based approach,
where the amount of catchment basins are limited to the marked regions, as presented by
F.Meyer [32]. His approach greatly reduces over segmentation, but the need for markers
is a drawback and cause the method to act as a region growing method rather than
automatic segmentation [32][31].

Figure 2.11 shows a marker-based watershed algorithm performed on an image of a
handful coffee beans. For every bean a corresponding marker, or seed, is placed before
entering the watershed algorithm. The result is then overlaid the original image. In F.
Mayer’s method, which is implemented in the Python image processing library OpenCV,
each marker must have their own label, such as created by connected component labeling.
Since all the starting points have labels, the marker does not need to be continuous or
even whole; if the confluence of flood comes from a minimum with the same label, they
are simply combined. When the algorithm is finished, the resulting segments will all
have the same labels as their corresponding markers.

Chapter 2 Background 17

(a) (b) (c)

Figure 2.11: Example of a marker-based watershed transform performed on an
image. (a) The original image. (b) Markers, or starting points for the water-
shed algorithm. (c) Result from the watershed algorithm, overayed on the original
image. Image taken from pngimg.com, reproduced in unaltered form (a) and

altered form (c). Licensed under CC BY-NC 4.0

2.4 Neural Networks

The brain is one of the most intriguing organs of the human body, and many have tried
to understand its functions and operations. The notion that the brain is the center of
human intelligence and consciousness can even be traced back to the age of Hippocrates
in the fifth century [33]. It would however take many years until the field of neuroscience
would make significant progress. In his publication Histologica du Systéms Nerveux de l’
Homme et des Vertèbres from 1911, Santiago Ramón y Cajal would identify and describe
that the brain and nervous system is composed of one particular type of cell, later known
as the neuron [34].

An individual neuron receives chemical inputs in through receptors on the dendrites of
the cell. Depending on what chemical received, it can either excite or inhibit excitation
of the neuron, and the sum of all the dendritic inputs will decide if the neuron will fire
an electrical impulse or not. If an electrical impulse is sent, it will travel along the axon
of the cell and transmitted to the next neuron, gland or muscle via neurotransmitters at
the end of the axon [35]. Figure 2.12 shows an annotated sketch of the neuron with its
dendrites and axon. The contact points to and from neurons are called synapses, and
each neuron contains between 10,000 and 150,000 of them [36].

In 1943, Warren McCulloch and Walter Pitts presented their mathematical model of a
biological neuron. Their findings showed that emulating a neuron, weighting the synaptic
links, one could create a structure that can compute any mathematical function, given
enough neurons and synaptic links between them [37]. In 1958, Frank Rosenblatt invented

http://pngimg.com/download/9283
https://creativecommons.org/licenses/by-nc/4.0/

18 Chapter 2 Background

the perceptron, and the perceptron algorithm. Unlike the McCulloch and Pitts model, the
perceptron uses weighted inputs that would be adjusted using the perceptron algorithm,
and after several iterations is trained to classify two classes by a linear separation. The
perceptron and other types of artificial neurons are the basic building blocks of a neural
network and combining several layers of these between the input and output layer are
known as a deep neural network [34].

Figure 2.12: A biological neuron is composed by inputs (dendrites) and an output
(axon). The dendrites receive inputs from other axons connected to the cell and will
fire an electrical output if enough charge is created. The charge is transformed to a

biochemical signal in the synapses at the end of the axon.
This figure is reprinted in unaltered form from Wikimedia Commons.
File: Chemical_synapse_schema_cropped.jpg. Created by US National
Institutes of Health, National Institute on Aging. Released in the

public domain.

https://commons.wikimedia.org/wiki/File:Chemical_synapse_schema_cropped.jpg

Chapter 2 Background 19

2.4.1 Artificial Neural Networks

An artificial neuron is a mathematical model that is constructed to mimic a simplified
biological neuron. Each input of the artificial neuron is weighted and summed before
entering an activation function, and if conditions are met, the output is activated. How
the output responds and what conditions are required are dependent on what type of
activation function used. Frank Rosenblatt’s perceptron, for example, used a simple
step-function (Heaviside function) as its activation function; if the sum of all the weighted
inputs are above zero, the perceptron outputs a one, and below, a zero. It is important
to note that in order to create a nonlinear output the activation function itself must also
be nonlinear3, even when combining several neurons in a network. This non-linearity
is part of what makes a neural network able to generalize and outperform traditional
machine learning algorithms and other statistical functions, such as linear regression [38].

Figure 2.13 shows an illustration of an artificial neuron. The inputs [x0, . . . , xn]T are
weighted by [w0, . . . , wn]T . A bias can be added to give preference the output. In many
cases the bias is regarded as being x0, equal to 1, and having a weight w0 equal to the
bias weight b. Given this definition, the output y of the artificial neuron is as shown in
equation 2.14, where f is the neurons activation function.

y = f

(
n∑

i=0
wixi

)
= f(wT · x) (2.14)

∑ f

w0

wi

wn

x0

xi

xn

b

Bias

OutputInputs

Activation
function

Weights

Figure 2.13: Model of an artificial neuron. The weighted inputs are summed before
entering an activation function. The type of activation function will dictate the outputs
response of a given input. Note that in many cases a neuron is drawn as a single circle,

without explicitly drawing the weights and activation function.

In order create an artificial neural network able perform advanced classification tasks it
is often necessary to increase the complexity of the network. This can be done by adding

3More information on activation functions will be discussed later, in section 2.4.2

20 Chapter 2 Background

more neurons and layers of neurons in the network. The layers in between the input
and output layer are called hidden layers as their individual outputs does not necessarily
represent the final prediction. A network composed of multiple hidden layers are known
as deep neural networks. Figure 2.14 shows a type of deep neural network known as a
multilayer perceptron or a deep feedforward4 neural network.

In many cases, the main goal of an artificial network is to output a prediction for a given
input, e.g. what class an object belongs to given its features, or even what is the best
current move in a game of Go[39]. This means that the network itself is often regarded
as a "black box", and the exact mathematical function it approximates is not necessarily
of significant value for the user. The most basic way of training an artificial neural
network is by using what known as supervised learning, training using only data that has
a corresponding ground truth label. The features of the training data is entered to the
network and the output is entered to a loss function. The loss functions task is then to
compare the predicted value with the ground truth label, giving a metric of how well the
model performed. This can then be used to determine how the weights in the network
should be adjusted, for example by using its derivative as in the gradient descent method,
and the test is performed again until the results are adequate.

1

Input layer Hidden layers Output layer

x0

xi

xn

y0

ym

Figure 2.14: A deep neural network is a network structure containing multiple layers of
neurons and is often used for more complex classification tasks. The depicted network

is often called a multilayer perceptron or deep feedforward network
4It is called a feedforward network because there is no feedback-loop in the network. A network with

feedback-loops is called a recurrent neural network

Chapter 2 Background 21

2.4.2 Activation Function

In a regular artificial neuron, the sum (x) of the weighted inputs are entered to the
activation function, and the corresponding output (y) depends on the neurons activation
function. As mentioned in the introduction of section 2.4, Frank Rosenblatt’s perceptron
used a step-function as its activation function, meaning the output of the neuron is
strictly binary. This function is however at a disadvantage, as many effective training
algorithms, such as the gradient descent, use the derivative of the activation function to
calculate the new set of weights.

There are many different activation functions commonly used in neural networks. Research
shows that some functions perform better than other in certain types of networks and
with certain data types, although the performance gain is often marginal [40] [41].

2.4.2.1 Sigmoid

The Sigmoid function, as shown by equation 2.15 and in figure 2.15, has been a commonly
used activation function for neural networks. Since its output is between zero and one,
it can also be used at the output layer such that its output represents a probability. It
does however have the drawback of being unstable when used in the early layers, as the
gradient of the Sigmoid function have a tendency to either vanish or explode [40].

y = 1
1− e−x

(2.15)

Figure 2.15: Plot of the Sigmoid function. A common activation function used in
artificial neural networks

22 Chapter 2 Background

2.4.2.2 Rectified Linear Unit (ReLU)

In later years the ReLU function, equation 2.16 and figure 2.16, has been more popular
for use in hidden layers of a neural network. Especially compared to the Sigmoid function
it converges using fewer iteration, such that the training of the network is much faster
[41].

Like the Sigmoid function, ReLU also has its drawbacks. As the ReLU function outputs
zero for all negative input values, the weights of a neuron can be changed such that
a situation occurs where the neuron outputs zero for all inputs, meaning it will never
activate on any data at all and weights will not be updated further. This phenomenon is
known as the dying ReLU problem. Because of this, there exists many similar functions
to the ReLU that tries to mitigate this issue and improve performance, such as the
Exponential Linear Unit (ELU), Scaled ELU (SELU), Leaky ReLU, Parametric ReLU,
Gaussian Error Linear Unit (GELU), Swish and many more [41].

y =

x, if x > 0

0, if x <= 0
(2.16)

Figure 2.16: Plot of the ReLU function

2.4.2.3 SoftMax

The softmax function, shown in equation 2.17, is commonly used as the activation function
in the output layer of a neural network for multiple class classification. It calculates the
distributed probability, such that it outputs the probability of each outcome, j, over all
C possible outcomes [38].

Chapter 2 Background 23

yj =
ex

j∑C
c=1 e

x
c

, for j = 1, . . . , C (2.17)

2.4.3 Convolutional Neural Networks

Unlike traditional deep neural networks, such as the multilayer perceptron, a convolutional
neural network (CNN) is a specialized network for processing multidimensional data.
Instead of a feature vector, [x0, . . . , xn], and weights [w0, . . . , wn], a CNN’s input is
a multidimensional feature array which is convolved with one or more filter kernels.
Furthermore, this implies that only the kernel’s coefficients are changed during the
training process, which applies to the entire layer. In the subject of deep learning, vectors
and arrays are commonly referred to as tensors [38].

The multidimensional property of a convolutional neural network means its effective at
preserving the spatial correlation of features, which proves useful when classifying images.
This was shown by Le Cun et al in 1989, when their convolutional network for classifying
images of handwritten digits obtained a low five percent error rate using a test set of
over two thousand images [42]. Their method of creating the network has by many been
regarded as the de facto standard of such networks and been the inspiration to much of
the later development.

The progress of image recognition and classification did however stagnate in the 90’s
due to the lack of processing power. Especially in real-time applications, requiring fully
parallel computational operations, often meant designing proprietary hardware such as
FPGA-processors to be able to operate on a useful level. In 2004, Oh and Jung [43] proved
that the computations in a neural network could be implemented on graphical processing
units (GPU) on regular computer hardware, greatly increasing the computational speed.

GPU-accelerated computations are not limited to the field of deep learning and have
greatly increased the possibilities within many research areas. This has also led to the
release of specialized hardware for computational purpose, such as the Nvidia Tesla series.
The Tesla cards processing unit also contains specialized processing cores named tensor
cores, made specifically for the many matrix operations used in deep learning [44].

As the name of the network applies, a CNN relies on the convolution operator. Each
convolutional layer can typically be divided in three stages: the convolution stage, detector
stage and pooling layer. In the first stage, the input to the network is convoluted with
one or more matrices of weights called filter kernels. The kernel slides across the input
tensor, and a 2D-convolution is performed at each index. The result of this operation is
entered to the layers activation function in the detector stage, creating what is known

24 Chapter 2 Background

as a feature map at the output5. The last stage, the pooling layer, is an optional step
that downsamples the image before entering the next layer. The pooling layer is further
explained in section 2.4.4.

The convolutional layers of a CNN are often said to be the feature extractor in the
network, such that the entire network can be split into two parts, the feature extractor
and the classifier. The classifier is made up by fully connected (dense) layers, like a
common feedforward network, with a flattened output from the last pooling layer as the
input [38].

Figure 2.17 shows an illustration of the structure to a CNN network, where the convolu-
tional layers are a part of the feature extraction, and dense layers in the classification.
Each layer in the feature extraction is made up by a convolution, detection, and pooling
step.

y0
y1

Feature extraction Classification

Input image

Convolution
and detection Pooling Convolution

and detectionPooling Dense layers Output layer

Figure 2.17: The two steps of a convolutional neural network: feature extraction and
classification. An input image is first put through convolutional layers where the input
is convoluted with a set of filter kernels before entering an activation function in the
detection stage. Lastly the output from the final pooling layer is flattened and goes

through the classifier

2.4.3.1 Convolution Operator

In a convolutional layer a 2-dimensional discrete convolution is performed on the input
(I) by the filter kernel (K), such that the resulting image (S) contains the result of the

5Depending on the input tensor and the network layer, there may be more than one kernel, creating
multiple feature maps at the output of the layer

Chapter 2 Background 25

inputs convolution at each index (i, j), as shown by equation 2.186. The convolutional
operator is usually denoted by the ∗-symbol.

S(i, j) = (I ∗K)(s, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

=
∑
m

∑
n

I(i−m, j − n)K(m,n)
(2.18)

This means that each pixel of the resulting image, is the result of the sum of all the
pixels within a region defined by the size of the kernel multiplied by a flipped version of
the kernel (or image as the convolution is commutative).

For simplicity, many neural network libraries implement this without flipping, meaning
the convolution operation have been replaced by cross-correlation, as shown by equation
2.19, all though they may call it convolution. This does however not affect the result of
the network; after training, the resulting kernel weights will be the same in both cases,
only flipped [38].

S(i, j) = (I ∗K)(s, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.19)

This process is illustrated in figure 2.18, the resulting pixel s00 = i00k00 + i01k01 + · · ·+
i22k22. For s01, the kernel is moved one step to the right. This procedure is repeated
until all the pixels have been covered. The region of which a single result is representing,
is called its receptive field, i.e. for s00 the receptive field is the region defined by the nine
pixels in the top left corner of the image.

i00

i01

i10

i11

i02

i03

i12

i13

i20

i21

i30

i31

i22

i23

i32

i33

k00

k01

k10

k11

k02

k12

k20

k21

k22

s01

s10

s11

s00

Figure 2.18: The cross-correlation of the image (left) by the filter kernel (middle) and
the result (right). Each element in the result is calculated using the formula from 2.19

6Here the commutative property of the convolution is also shown

26 Chapter 2 Background

As one may notice in the example above and in figure 2.18, the resulting image is smaller
than the input. To keep the output dimension of the image same as the input, a common
solution is to use zero-padding. By expanding the input, creating a boarder of zeros,
the original dimensions are kept. If one wants to reduce the output dimensions even
further, such to reduce the amount of computations, i.e. convolutions performed, the
kernel can be moved more than one step at the time. This parameter is called the stride
of the kernel. In the example above, the stride is set to one and the kernel moves one
step between each calculation.

2.4.4 Pooling

The pooling layer is a step often used in convolutional neural networks, placed after the
detection stage in each layer, as mentioned in section 2.4.3. Figure 2.19 shows pooling
applied to a small 4 by 4 feature map by using a 2 by 2 window and two different methods.
By average pooling, the mean value of each window is extracted, and in max pooling the
maximum value.

By reducing the shape of the feature map within the network, pooling makes it able to
extract translation invariant features, reducing the chance of over training the network.
Pooling also reduces the memory and computational requirements [38].

134 102 59

108 120 8

89

172

161 58 48

115 226 157

241

182

116

140

82

157

134 172

241226

Average pooling

Max pooling

Figure 2.19: Pooling is a method of downsampling the feature map. This makes the
network invariant of small translations, reduces the chance of over training, as well as

reducing memory and computational requirements

2.4.5 Loss Function

When creating an artificial neural network, the goal is to approximate a function that
produces a desired output depending on the input given. In order to generate the best

Chapter 2 Background 27

possible results, the networks run through an iterative optimization process commonly
referred to as training.

To assess the performance of the network, the result is entered to a criterion function
or objective function. When the objective is to minimize the criterion function it is
commonly referred to as a loss function or cost function. Depending on the network
structure, type of data, and desired output from the network, many different loss functions
exists and they play a crucial role in training and performance evaluation of the network.

2.4.5.1 Categorical Cross-Entropy Loss Function

For neural networks created to classify between multiple classes, using the SoftMax
activation function in its output layer, the most common loss function is the categorical
cross-entropy loss function.

Categorical cross-entropy (CE) is defined as the sum of a ground truth label (t) multiplied
with the logarithm of the output prediction from the network (ŷ) over all classes (C) as
shown in equation 2.20.

In multi-class classification it is common to use a one-hot encoded truth vector, such
that the only non-zero value of t is the correct class [38].

CE = −
C∑

i=1
tilog(ŷi) (2.20)

2.4.6 Evaluation Metrics

As the loss function is optimized during the training process it gives a metric for the
performance of the network. These results can however be intricate to interpret and
difficult to compare between different network structures and models.

2.4.6.1 Accuracy

The accuracy metric, shown in equation 2.21, is often used together with loss during the
training process, giving a better representation and making it easier to conceptualize the
networks performance gain for each iteration. A common training strategy is to use the
training data together with validation data, i.e. data only used to check the performance;
If the accuracy of the training data is high while the accuracy of the validation data is
low, the network might be over-fitted.

28 Chapter 2 Background

Accuracy = Number of correct predictions
Number of predictions (2.21)

Most metrics are calculated by comparing correctly identified samples with incorrect
identified samples. In a binary classification scenario, the correct classifications are
often referred to as true positives (TP) and true negatives (TN), and the incorrect
classifications are called false positives (FP) and false negatives (FN). Using this notation,
the accuracy is calculated as shown in equation 2.22.

Accuracy = TP + TN
TP + TN + FP + FN (2.22)

2.4.6.2 Precision, Recall and F1-score

Precision and recall, shown in equation 2.23 and 2.24 respectively, can both provide
additional information as to how well the network performs. These metrics are especially
useful when dealing with multiple classes and imbalanced training data. As the accuracy
metric views all the classifications as a whole, both precision and recall are class dependent
metrices and can shed light on any bias in the network.

Precision is the fraction of those correctly classified of a particular class divided by all
samples that were predicted to be the same class. In other words, that of all the samples
the network predicts to be a particular class, how many were correctly identified. This
provides an indication of how well the network is to identify each individual class, but it
does not take account for cases that were not correctly identified.

Precision = TP
TP + FP (2.23)

Recall is the number of correctly identified of a class divided by the total number of
samples of that class. Recall is sometimes referred to as the sensitivity or true positive
rate. This is particular useful in some instances, for example in a medical trial where it
could be favorable to detect some false positives instead of missing a diagnosis.

Recall = TP
TP + FN (2.24)

The F1-score is what is known as the harmonic mean between precision and recall, and is
shown in equation 2.25. This takes both the precision and recall of a network in account.
A F1-score of one indicates perfect precision and recall.

Chapter 2 Background 29

F1 = 2 · Precision · RecallPrecision + Recall (2.25)

2.4.6.3 Confusion Matrix

The confusion matrix is a valuable tool to visualize and gain insight to a network’s
performance on a per class level. An example of a confusion matrix is shown in figure
2.20. The vertical axis indicates the true class label of the samples, and the horizontal
axis the model’s prediction of all the samples. This means that all correctly predicted
samples are gathered in the diagonal of the matrix. The confusion matrix makes it
trivial to identify incorrect classification and how the inaccuracy of the model affects the
predicted values.

Figure 2.20: Example of a confusion matrix created using the Scikit Python library.
Comparing the true label and predicted label all correctly identified predictions are

represented in the diagonal line from top left to bottom right

2.4.7 Transfer Learning

Transfer learning is the concept of using a pretrained artificial neural network for a
different task than it was originally trained for. The general notion is that a deep neural
network trained using a large enough data set will be able to extract general features
that also applies to similar types of data.

30 Chapter 2 Background

As mentioned in section 2.4.3, a convolutional neural network can be regarded as having
two parts, the feature extractor and the classifier. When using transfer learning in
practice, a pretrained network or backbone can be used as a general feature extractor by
replacing the classifier with new fully connected layers.

Training a deep neural network is often a demanding task, both in computational power
and time. By freezing all the layers in the feature extractor, only the new classifier is
trained. This vastly reduces the amount of trainable weights in the network while still
being able to yield satisfactory results with a small dataset. If the new dataset is large,
the model can be fine-tuned by only freezing some (or even none) of the layers in the
feature extractor.

Within the field of image recognition, a common benchmark for performance is the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [45], where it is competed
to get the best performance using a very large dataset. Many of the entries to this
challenge are readily available to use for transfer learning, for example in the neural
network package Keras for python. Keras’ API even lists the available models after their
performance in the ILSVRC [46].

New modelPretrained model

Feature extractor

Large Dataset

Flatten

New Dataset

Flatten

Classifier New Classifier

CNN

CNN

CNN

FC-layer

FC-layer

FC-layer

Output

FC-layer

FC-layer

Output

Input

CNN

CNN

CNN

Input

Figure 2.21: Transfer learning is the concept of using knowledge from a pretrained
network for a new task

Chapter 3

Data and Materials

3.1 Palynological Slide Images

As the project of digitizing the catalogue of samples at the Norwegian Petroleum
Directorate is still in its starting phase, the data set made available for this thesis was
somewhat limited. Seven palynological slides were made available for this thesis. Six of
the slides were made from core samples taken from the Ekofisk oilfield, and the last one
from Johan Sverdrup. Both these oilfields are located in the North sea, off the coast of
Norway, as shown in figure 3.1. Especially the Ekofisk field has a great historical value;
it was the first oil field discovered in the North sea, in 1969 by the Phillips Petroleum
Company (now ConocoPhillips co.), and marked the beginning of what we now call the
Norwegian oil adventure [47].

31

32 Chapter 3 Data and Materials

Figure 3.1: Map showing the location of the oilfields Ekofisk and Johan Sverdrup
outside the coast of Norway where the dataset were taken from. Map reproduced in
altered form from norskpetroleum.no. Map licensed under CC BY 4.0 and
contains data from the Norwegian Petrolium Directorate licensed under

NLOD

Of the six samples from the Ekofisk field, five were taken from a well named 2/4 C-11
[48] and one from 2/7 14 [49], at depths ranging from 3,064 to 3,249 meters below the
deck of the platform. The last sample from the Johan Sverdup field was taken from a
well named 16/3-2 [50] at a depth of 1,998.8 meters.

To create the palyslide, a small sample is taken from a larger core sample. The position
of the sample is measured, such that the depth can accurately be determined and
labeled. The sample is grounded to dust before it is dissolved in an acid, usually nitric,
hydrochloric, or hydrofluoric acid. The type of acid and how long the process takes is
dependent on the amount and type of residue in the sample. The sample is washed
with tap water before one or two drops are placed on a microscopic slide and let to dry
overnight. A coverslip is glued on top of the sample with resin and a label is placed to
note where the sample is taken from and the procedure used to create the sample.

The samples are digitized using a pathological scanner from 3D Histech, the Pannoramic
1000. This model can hold up to 1000 microscopical slides and have an optical resolution
of 0.25 µm per pixel. It is claimed to be the fastest whole slide scanner on the marked,
able to scan up to 100 slides per hour [15]. As the dinoflagellates are not perfectly
flat, each slide is scanned multiple times at different focus levels. This allow a user to
manually focus the view in the software, or each focus level can be stacked such that
only the parts in focus are kept in the final image. This stacking process creates a bigger
depth of field and allows an entire dinoflagellate to be in focus instead of just parts of it.

https://www.norskpetroleum.no/interaktivt-kart-og-arkiv/interaktivt-kart/
https://www.kartverket.no/data/Lisens/
https://data.norge.no/nlod/en/1.0

Chapter 3 Data and Materials 33

Due to the file size of a slide image and the practicality of a single focus plane, only
stacked slide images have been used in this thesis. Stacking merges each layer such that
the size of each slide is reduced to about three gigabytes. The digital resolution of a
slide image is approximately 184,000 by 96,000 pixels, covering a region of 46 by 24
millimeters. At this resolution, one square millimeter of palyslide is represented by over
16 megapixels.

Figure 3.2 shows a macro image of a palyslide as well as the slide’s label. The label
shows that this sample is taken from a depth of 3,070.2 meters, from well 2/4-C-11. "Ø
1/4’" indicates that the sample has been dissolved in a 40 percent nitric acid solution for
15 seconds.

(a) (b)

Figure 3.2: (a) Macro image of a scanned palyslide. (b) The palyslide’s label. The
label shows that this sample is taken at a depth of 3070.2 meters from well 2/4-C-11. "Ø
1/4’" indicates that this sample have been dissolved in a 40 percent nitric acid solution

for 15 seconds

3.2 Labeling Data

Each slide can contain anything from a few hundred to over a several thousand dinoflag-
ellates and fragments of dinoflagellates as well as inertinite and other types of material
not removed by the acid preparation. The washing procedure may also introduce crystal
structures that originate from the tap water.

As there are many similar species of dinoflagellates and it can be difficult to differentiate
between them, the data were mostly labeled by Robert Williams at the Norwegian
Petroleum Directorate. The annotations were made by using the 3DHistec’s CaseViewer
software. Only whole, or mostly whole dinoflagellates were annotated. Fragments,
crystals, inertinite and other types of residuals were ignored in the annotation process.

34 Chapter 3 Data and Materials

3.3 Dataset

From the seven slide images, 530 dinoflagellates were annotated from 21 different species,
as listed in table 3.11

Species Name Number of samples

Senoniasphera Inornata 173
Fibrocysta Axilis 121
Palaeoperidinium Pyrophorum 117
Spongodinium Delitiense 65
Cribroperidinium "Prominoseptatum" 19
Spongodinium Delitiense (operculum) 13
Dingodinium Tuberculosum 2
Dingodinium Tuberosum 2
Gonyaulacysta Jurassica 2
Sentusidinium Pilosum 2
Systematophora Areolata 2
Tubotuberella Apatela 2
Acanthaulax Venusta 2
Thalassiphora Pelagica 1
Sirmiodinium Grossii 1
Chytroeisphaeridia Cerastes 1
Chytroperidinium Sp. 1
Danea Californica 1
Enoscrinium Galeritum Reticulatum 1
Leptodinium Mirabile 1
Scriniodinium Inritibile 1

Table 3.1: Complete list of samples

3.3.0.1 Dataset Split

A customary practice when training neural networks is to split the dataset into three:
training, validation, and testing. Both training and validation data is used during the
training process and the test data is used afterwards to evaluate the performance of the
network. Since this would mean that many of the classes could not be verified or tested,
all the classes with less than 20 samples were collected in a single class named "Other

1A list of all annotations sorted by slide and example image of all different species can be found on
table B.1 and in Appendix B

Chapter 3 Data and Materials 35

Dinoflagellates". The data were split with 60 percent in Dtrain, and 20 percent in Dval

and Dtest.

Species Name Dtrain Dval Dtest Total

Senoniasphera Inornata 103 34 36 173
Fibrocysta Axialis 72 24 25 121
Palaeoperidinium Pyrophorum 70 23 24 117
Spongodinium Delitiense 39 13 13 65
Other Dinoflagellates 32 10 12 54

Total 316 104 110 530

Table 3.2: The D-dataset. Classes containing less than 20 samples were put together
to a single class, "Other Dinoflagellates"

Chapter 4

Proposed Method

This chapter will explain the methods and process used to process, detect, and identify
dinoflagellates in palynological slides using traditional image processing techniques
together with deep neural networks.

The general idea of this thesis can be divided into three different parts, as illustrated by
figure 4.1. Part 1 covers generating and exporting the training data from the palynological
slides, Part 2 will cover object detection and lastly, Part 3 covers objects identification
using convolutional neural networks. All the parts are however closely linked, as both
the training data and detected objects will need be in the same format for the neural
network to be able to classify the objects.

To view the palyslide images both CaseViewer and QuPath was used. All parts were
created using Python 3.7, apart from a script written in Groovy to import annotations
to QuPath. The code written for the proposed method is embedded in this file and
explained in appendix A.

Palynolocial

slides

Figure 4.1: Overview over the process pipeline. Part 1 covers generating and exporting
the data used to train the neural network. Part 2 is the object detection by using
traditional image processing. Part 3 covers the setup and use of a convolutional neutral

network to classify the dinoflagellates

37

38 Chapter 4 Proposed Method

4.1 Preprocess Dataset - Part 1

The dataset delivered from the Norwegian Petrol Directorate contained annotated palyno-
logical slide images in the mirax (.mrxs) format. This is an industrial and relative closed
format, consisting of one .mrxs file as well as a folder containing the actual image split
into different .dat-files. The folder also contains one configuration file (.ini) containing
metadata. This means that there is no single file where the annotations can be easily
extracted. The Python library OpenSlide have methods to read and extract regions
from the image files but is not able to extract or read annotations from the slide image.
Luckily, the 3DHistec’s Slide converter is able to extract the annotations in a conversion
process and export the annotations to an XML-file, such that each slide will have an
associated XML-file containing all annotations.

Annotations exported from CaseViewer are defined as general polygons using n+1 points,
where n is the number of line segments defined by the polygon. The annotations were
mostly done using squares, such that the location of an annotation consisted of five sets
of (x,y) pixel coordinates.

After parsing, each annotation extracted is defined by five parameters:

• x0 - horizontal position of the top left corner in pixel coordinates

• y0 - vertical position of the top left corner in pixel coordinates

• w - width of object in pixels

• h - height of object in pixels

• name - Extracted name of object from annotation, i.e. object class

By inspecting the shape and size of the different objects, a standardized region size in
the lowest layer of 512 by 512 pixels was chosen. This gave a good overview, about
127 by 127 micrometer, for all of the objects in the dataset without including too much
background as shown in figure 4.2. In practice the file size and resolution were a bit
large, so by using the layer property of the mirax format the second layer was chosen.
This reduces the resolution to 256 by 256, while still covering the same physical region.

Chapter 4 Proposed Method 39

(a) (b) (c)

Figure 4.2: Example of the extracted regions of 127 by 127 µm containing different
species of dinoflagellates: (a) Fibrocysta Axialis, (b) Palaeoperidinium Pyrophorum,

and (c) Senoniasphaera Inornata

To expand the annotated region to a standardized shape, equation 4.1 was used. x0 and
y0 are the original top left corner of the object, w and h are the width and height of the
object, and w′ and h′ are the width and height of the new region. This gives x′0 and y′0
corresponding to the new top left pixel with the object in the center.

x′0 = x0 + w

2 −
w′

2

y′0 = y0 + h

2 −
h′

2

(4.1)

All the images were exported and saved to individual folders named by the species name,
as well as a file containing the filenames, originating slide filename, species name, position
and shape.

4.1.1 Implementation

The methods used in this section was composed of a mixture of pre-made and self-made
function. Table 4.1 shows what packages were used and what was self-made. To parse
the annotation file, the minidom package within python was used. To export the dataset;
pillow was used to save images and numpy was used to save a list of all the objects.

40 Chapter 4 Proposed Method

Method
Python
XML-parser
(minidom)

Numpy Pillow Self Made

Parse Annotation File x x
Expand Object Window x
Export Dataset x x x

Table 4.1: Packages and self-made functions that were used in section 4.1

4.2 Object Detection - Part 2

Object detection is Part 2 as illustrated in figure 4.1. In figure 4.3, this process is shown
in greater detail. Each slide image is preprocessed, before a block-wise object detection
algorithm is performed.

Figure 4.3: Detailed procedure for Part 2. Each slide image is cropped and split into
blocks. A block-wise object detection algorithm is performed and the objects exported

4.2.1 Palyslide Image Preprocessing

The whole slide image as it is created by the scanner is too large to process directly.
Without any preprocessing, the scanned image is in the order of 250,000 by 250,000
pixels, even though the palyslide itself cover a region of about 184,000 by 96,000 pixels.
In figure 4.4, the whole slide image is shown in its entirety (downsampled version).

Chapter 4 Proposed Method 41

Figure 4.4: Raw image file from the 3DHistec’s P1000 scanner as read by OpenSlide in
Python

In section 3.1 it was mentioned that the process of creating the slide, the dinoflagellates
are diluted in a water solution before they are placed on a microscope slide and dried
overnight. This process causes a higher concentration of dinoflagellates in the center of
the coverslip and can just be seen in figure 4.4. This means that some of the edge can be
removed without removing too many dinoflagellates. By removing the outer edge, the
transition region from microscopic slide to coverslip is removed.

As mentioned in section 4.1, a single dinoflagellate will maximum occupy a region of
about 512 by 512 pixels in the highest resolution layer. If a downsampled version of
the whole slide image was to be used in object detection, e.g. layer 4, where the slide
image is "only" 11,250 by 5,625 pixels, the size of the objects as well as artifacts caused
by downsampling will make it to be improbable to distinguish between multiple objects.
Especially for objects in close proximity to each other.

In order to preserve as much detail as possible, but still be able to perform object
detection, the whole slide image is split into a grid, where each block covers a 512 by 512
micrometer region, i.e. 2048 by 2048 pixels at the highest resolution.

To extract the palyslide region in the image, algorithm 1 was used. The result this
algorithm returns the position, width and height of the image region in pixel coordinates

42 Chapter 4 Proposed Method

corresponding to the level of which the image was processed in. As this is a quite simple
method, checking all pixels in the image, it should be self-explanatory that this is not
possible to run at the highest resolution. By using algorithm 2, the pixel coordinates
returned from algorithm 1 can be converted to any layer as for each layer down, the
resolution is halved.

Algorithm 1: Finding the region of the slide (RoS) in the raw slide image
Input: Downsampled raw slide image
Output: Position (x0, y0), and shape (width, height) of the RoS
gray_image ← Convert input to grayscale
RoS ← where gray_image > 0 AND gray_image < 255

x0, y0 ← min(RoS)
width, height ← max(RoS) - (x0, y0)
Return (x0, y0), (width, height)

Algorithm 2: Level based point translation
Input: Point to translate (point), Level to translate from (from_level), Level to

translate to (to_level)
Output: Translated point (translated_point)
translated_point ← pointˆ(from_level - to_level)
Return translated_point

The grid is calculated such that the maximum number of whole blocks are placed within
the width and height, centered in the image at the highest resolution level. To further
remove the edge, i.e. the transition region from the microscope slide to the coverslip,
the outer frame of blocks can be removed. As exporting each block as image files would
occupy unnecessary disk space, only the block number, row and column index, position,
and shape is saved.

4.2.2 Segmentation and Object Detection

As discussed in section 2.3.4 Segmentation, in order to detect and differentiate between
objects in an image there exists a wide verity of methods. Amongst the discussed methods
is the watershed method (in 2.3.4.3) which will be used here in its marker-based form.
The markers will be created by using thresholding and morphological functions and are
inspired by tutorials made available by the creators of OpenCV [51][52].

The first step in the process is to remove the background, such that a resulting binary
image only contains objects in the foreground. A palyslide will often have many different
types of dinoflagellates together with other residual material. This creates a wide range of
shapes, sizes and colors in the image and can make removing the background a non-trivial

Chapter 4 Proposed Method 43

problem. Figure 4.5 shows a block image and the result of thresholding it using Otsu’s
method (as discussed in section 2.3.4.1) directly. As shown, this also removes many of
the objects in the process and would be sub-optimal for use in object detection.

(a) (b)

Figure 4.5: (a) A single block from the grid of the palyslide image. (b) The block
thresholded by using Otsu’s method. The first step in detecting objects is to remove the
background of the image. As seen in (b), Otsu’s method is too aggressive and removes

much of the foreground

By converting the image to the HSV format, the background can much easier be identified.
Figure 4.6 shows each of the channels of the image in the HSV format, represented
as grayscale images. Since the background is unsaturated the objects can easily be
identified in the saturation channel. By subtracting an inverted thresholded version of
the saturation channel from the original image the background could be removed.

(a) (b) (c)

Figure 4.6: Each of the color channels in the image converted to the HSV format. (a)
Hue, (b) Saturation, and (c) Value

44 Chapter 4 Proposed Method

As the image contains both very dark and very bright objects, the morphological and
thresholding functions will most likely remove or over represent certain objects the image.
To detect as many objects as possible the object detection is performed in two steps. First
detect and identify the position of all the darker objects in the image using parameters
that is suited to identify most objects. Afterwards, these are removed from the image,
such that the rest can be detected using more sensitive parameters.

Figure 4.7 shows the process used to perform the object detection for each block in the
palyslide image. Instead of removing the background from the original image, both the
saturation and value channel are used directly. The hue channel does not contain any
useful information about the location and shape of objects in the image and is therefore
not used. Darker objects are found in step one, by inverting and thresholding the value
channel, performing morphological transformation and calculating the distance map of
the objects in the image. The distance map is thresholded to separate objects that are
in close proximity or touching, and the resulting binary image contains the seed markers
for each dark object. All the markers are labeled using connected component labeling
and further used as the markers in the watershed algorithm.

In the step two, the brighter objects are found. In this step, both the saturation and
inverted value channel are used and the darker objects, already detected, are removed.
Darker objects are expanded using morphological dilation to ensure that the entire object
is removed. Afterwards the second step follows the same procedure as in step one.

Chapter 4 Proposed Method 45

Figure 4.7: The process of the object detection method. Dark objects are first detected
in step one, using parameters to detect most objects. Light objects are detected by
using more sensitive parameters on the image in step two, where the dark objects are

first removed

Figure 4.8 show the result of the proposed object detection algorithm performed on a
single block. Each object region has its own label, here represented in different colors,
such that it is possible to locate the position and shape of each object.

46 Chapter 4 Proposed Method

(a) (b)

Figure 4.8: (a) Original image. (b) Resulting markers from the proposed object
detection algorithm. Each object has its own label, here shown as different colors.

To excerpt the objects position and shape from the result of the watershed methods,
algorithm 3 is used. This generates an object list in which each object gets a position
defined by the position of its top left pixel, as well as the width and height of the object.

Algorithm 3: Object list from markers
Input: Output from the watershed algorithm (label_image)
Output: List with the position and size of all objects from the input (object_list)
Initialize empty object_list
for val in range(each unique value in label_image) do

Initialize empty temporary_list
forall pixels in label_image do

if pixel == val then
i, j ← pixel position
add i, j to temporary_list

end
x0, y0 ← min(temporary_list)
width, height ← max(temporary_list) - x0, y0
add x0, y0, width, height to object_list

end
Return object_list

The absolute position of the object is calculated by adding the object position to
the block’s position. Depending on what resolution level the object detection method
was run at, algorithm 2 can be used to transform the pixel coordinates to the correct level.

Chapter 4 Proposed Method 47

Before exporting, all objects smaller than 10 pixels in width or height were removed, as
well as smaller objects contained within the bounding box of larger ones. A standard
region was defined in section 4.1. To define the new window region, equation 4.1 was
used and added for each object in the object list.

The final object list contains all the objects discovered in all the blocks. Numerated
and containing all the objects position, widths and heights as defined by the highest
resolution level of the image, as well as the position and size of a window with the object
in the center.

4.2.3 Implementation

Table 4.2 shows the distribution of ready-made and self-made methods used in section
4.2.

Method OpenCV Numpy Self Made
Find Edge x x
Point Level Transformation x
Generate Grid x x
Convert Color Format x
Invert image x
Smoothing x
Morphological Transformation x
Distance Transform x
Threshold x x
Connected Component Labeling x
Combine Image x
Subtract Image x
Watershed x
Extract Object Position x
Object Size Threshold x
Expand Object Window x
Export Detected Objects x

Table 4.2: Packages and self-made functions that were used in section 4.2

48 Chapter 4 Proposed Method

4.3 Object Classification - Part 3

Object classification is marked as Part 3 in figure 4.1. This section will cover the general
setup of the neural network as well as training and classification of the detected objects.

4.3.1 Transfer Learning

Since the dataset have quite few images, the decision to use transfer learning was made
early on. Transfer learning makes, as discussed in section 2.4.7, a neural network able to
perform better than training from scratch if the dataset is sparse.

To import the backbone network and create the new classifier, Keras [46] was used with
the TensorFlow [53] back-end as this allows for easy implementation with human-readable
code. Once a new model has been created it was trained in the procedure shown in
figure 4.9. The dataset have been split to three parts, Dtrain, Dval and Dtest, such that
during training only Dtrain and Dval are used. Dtest was exclusively used for performance
evaluation and not used in training of the network.

 Part 3.1 Training

Classifier

Preprocessed
Dataset

Ground Truth LabelsTraining

Validation

Testing

Transfer Learning

Pretrained
Feature Exctractor

Update Weights

Loss Function

Performance
Metrics

From Part 1

Figure 4.9: The network is trained by using the training and validation portion and
evaluated using the test portion of the dataset

Once the model was trained to a satisfactory performance level it was saved such that it
could be used to classify the objects detected by the object detection algorithm as shown
in figure 4.10.

Chapter 4 Proposed Method 49

 Part 3.2 Object Classification

Trained Neural Network

Species Name

 and ConfidenceLearned
Classifier

Image, Position and Shape

Detected
Objects

Predicted Result

Fibrocysta Axialis (99%)

From Part 2

Pretrained
Feature Exctractor

Figure 4.10: Detected objects from Part 2 can be entered to the trained neural network
for classification

A separate script was made to be able to import the region as well as predicted class to
QuPath for verification.

4.3.2 Implementation

Table 4.3 shows the distribution of ready-made and self-made methods used in section
4.3.

Method Keras SciKit OpenCV Pillow Numpy Self Made
Import Dataset Path
and Class Labels

x x

Import and Preprocess
Dataset

x x

Load Model Backbone x
Create New Classifier x x
Training, Loss Function and
Updating Weights

x

Performance Metrics x x
Export and Import
Saved Model

x

Export Identified Objects x x x x
Import Annotations to QuPath x

Table 4.3: Packages and self-made functions that were used in section 4.3

Chapter 5

Experiments and Results

5.1 Object Detection Performance Evaluation

The method for detecting objects using the proposed object detection method was
described in section 4.2. The whole slide image is split into a grid before object detection
is performed on each block. In principle, the method should detect all the objects in the
image, such that all objects can be run through the neural network for classification.

In the lower left corner of the slide image from well 2/7-14, a total of 648 individual
objects were marked using QuPath. The object detection algorithm should in principle
detect all objects, not only dinoflagellates, so all objects within the area were marked.

5.1.1 Method

The slide image was split into a grid, as described in section 4.2, and a section of blocks
that contained the markers were extracted. A region of 54 blocks, containing 464 of the
648 marked objects were chosen. The process of manually marking objects led some
blocks not being fully marked and the extracted region was chosen such that all blocks
contained only marked objects.

Figure 5.1 shows the extracted blocks from the slide image. Each block is represented
by its number in the total amount of blocks (the whole image contained a total of 4320
blocks) and each object is marked by a white dot. Each block has a resolution of 2048
by 2048 pixels, which gives the total region 12288 by 18432 pixels or approximately 3.1
by 4.6 millimeter of the palynological slide.

51

52 Chapter 5 Experiments and Results

Figure 5.1: To assess the performance of the object detection algorithm a region
consisting of 54 blocks from slide image 2/7-14 was tested. A total of 464 object are

contained in the image, represented by a white dot

5.1.2 Results

Each block was run through the object detection algorithm producing a list of detected
objects. Each detected object is represented by its position, width and height, creating
a bounding box around the object. For the purpose of testing the performance of this
algorithm, an object was said to be detected if the bounding box contained a marker.

• Objects detected (TP): 433 of 464

• Objects detected only once: 429

• Objects detected more than one: 4

• Undetected objects (FN): 31

• Detections without marker (FP): 269

• Total detections: 676

Accuracy = TP
TP+FP+TN+FN = 433

433 + 269 + 0 + 31 = 59.1% (5.1)

Chapter 5 Experiments and Results 53

Precision = TP
TP+FP = 433

433 + 269 = 61.7% (5.2)

Recall = TP
TP+FN = 433

433 + 31 = 93.3% (5.3)

Figure 5.2 shows the all the blocks, manually marked objects in white and the bounding
box for each object detected in black.

Figure 5.2: Black squares indicates the position and shape of the objects found by the
object detection algorithm. Manually annotated objects are marked as white dots

5.1.3 Conclusion

The focus of the object detection method was to be able to detect all the objects within
each block of the image. This process does however produce some issues; if an object is
on the line between two or more blocks it can and often will be detected multiple times.
In figure 5.2, the corner between blocks 4045, 4046, 4093 and 4094 a single object have
been detected four times, one for each block. As the method is trying to detect as many
objects as possible in two steps, the number of false positives shows that a single object
can be detected several times, this can be seen in the lower right corner of block 4186.

These issues can however be removed in post processing. Within object detection neural
networks, a frequent practice is to use non-maximum suppression. If two or more objects

54 Chapter 5 Experiments and Results

identified to the same class overlap or is adjacent within a certain threshold, only the
object with the highest confidence is kept.

By having some oversegmentation, there is however a higher chance of separating actual
adjacent objects. In the results, only four objects were placed within the same bounding
box as another one. The most important metric for this algorithm will therefore be the
recall. It would be preferred to remove false positives in post-processing than to miss an
object all together. Only 6 percent of the markers were missed by the algorithm.

5.2 Transfer Learning - Backbone Network Comparison

5.2.0.1 Backbone Networks

Different models with different network structure will most likely extract different types
of features. The purpose of this experiment is to see what network structure would
produce the best initial result given the same premise. This does however not reflect
the total performance possible to obtain in a given network, but rather what feature
extractor produce the most separable results given images of dinoflagellates and default
parameters.

A selection of eight different network structures were selected and are shown in table 5.1,
all of which performed above 90 percent in the top-5 accuracy of the ImageNet validation
dataset. The table also shows the total amount of parameters in each network, as well as
the number of parameters that have been trained using the ImageNet dataset. None of
which were trained during this experiment but were included to give a sense of how large
each network is.

Top-1 Top-5 Parameters
Trainable parameters
in feature extractor

InceptionV3 0.779 0.937 23,851,784 21,768,352
MobileNetV2 0.713 0.901 3,538,984 3,206,976
NASNetLarge 0.825 0.960 88,949,818 84,720,150
InceptionResNetV2 0.803 0.953 55,873,736 54,276,192
ResNet152 0.766 0.931 60,419,944 58,219,520
ResNet152V2 0.780 0.942 60,380,648 58,187,904
VGG16 0.713 0.901 138,357,544 14,714,688
VGG19 0.713 0.900 143,667,240 20,024,384

Table 5.1: A selection of the pre-trained networks available with Keras in Python.
Top-1 and Top-5 refers to the networks’ accuracy on the ImageNet validation set [46]

Chapter 5 Experiments and Results 55

5.2.0.2 Network Parameters and Dataset

All the networks were imported as frozen, without the classifying layers and loaded using
the pretrained ImageNet weights. The classifier used in all the tests consisted of three
fully connected layers of 512, 256 and 128 neurons respectively using the ReLU activation
function, structured as shown in figure 5.3. The output layer consisted of five neurons
using the SoftMax activation function. The Adam-optimizer was used in the training
process with default settings, with categorical cross-entropy as the loss function.

N
e

w
 L

e
a

rn
e

d
 C

la
s
s
if
ie

r

Output

Flatten

FC-Layer

FC-Layer

FC-Layer

B
a

c
k
b

o
n

e

Pretrained
Feature Extractor

Input

512

256

128

5

Figure 5.3: Network structure used in the experiment consisted of a pretrained feature
extractor from a base model with four new fully connected layers

All networks were set to use the same input size of 224 by 224, and individual pre-process
functions, as provided by Keras, were applied to all images before entering the network.
They were trained in a total of 20 epochs using a batch size of 32 with Dtrain and
validated on Dval, with the dataset as described in section 3.3.

5.2.0.3 Results

Figure 5.4 and 5.5 shows the shows the accuracy and F1-score obtained by the networks
on the test set. Most of the networks performed surprisingly well, seven out of eight
obtained an accuracy of above 80 percent. Both VGG16 and VGG19 obtained an
accuracy of 95 percent, well above the other six networks, and performed similarly in
both recall and precision. The training graphs also showed a significant low bias over all

56 Chapter 5 Experiments and Results

the networks, but only VGG16 and VGG19 had a low variance as well. Training accuracy
and loss graphs as well as plot over recall and precision is available in appendix C.

Figure 5.4: Accuracy obtained on Dtest using different base networks

Figure 5.5: F1-score obtained on the different classes using different base networks

5.2.0.4 Conclusion

With the same premise both VGG16 and VGG19 outperformed the other deep neural
networks that was tested. While the results might differ if using other settings and

Chapter 5 Experiments and Results 57

hyper-parameters, the point of the test was to determine what network would be the
best backbone for further development of a neural network for classifying dinoflagellates.

VGG16 and VGG19 are both regular convolutional neural networks in the sense that
they only consist of convolutional, pooling and fully connected layers. Not counting
pooling layers, VGG16 have 16 layers and VGG19 have 19 layers, between the input and
the output layer [54]. As the difference between the networks were marginal, VGG16
was chosen to be used further. VGG16 have fewer layers and parameters which might
reduce the memory and hardware requirements during both training and the later image
classification process.

5.3 Object Classification Performance

The VGG16 network that was chosen obtained a 95 percent accuracy on the test set
during the selection process of the base network. This is already a high accuracy, but
might not necessary represent the best possible combination of hyperparameters for the
optimal result.

5.3.1 Classifier Hyperparameter-Tuning

Deciding the hyperparameters in a neural network can be a time-consuming task. Many
parameters can and often are correlated such that changing one will affect the others.
This task will often require changing one or more parameters and retrain the network
multiple times.

There are several tactics in which to try to find the optimal set of parameters. The
most straightforward method is the grid search method, in which all combination in
within a range are tried. This makes it also one of the more time-consuming method
as the network needs to be retrained for all combinations. Another, closely related to
the grid method, is the random search method, in which a randomized set in a range of
hyperparameters are tested.

As a combination of these method, a randomized portion of the grid search was used to
evaluate the performance impact of different hyperparameters in the classifier. Three
sets of hyperparameter ranges were used, where a randomized small amount, a total of
75 of the possible combinations were tried and evaluated as shown in table 5.2.

58 Chapter 5 Experiments and Results

Run 1 2 3
Batch Size 16, 32 16, 32 32
Epochs 20-100 100 20
Dropout 0-0.5 0-0.5 0.3-0.6
Learning Rate 0.1 · 10−6 - 1.8 · 10−3 0.1 · 10−6 - 1.8 · 10−3 0.6 · 10−6 - 1.0 · 10−3

FC-Layer 1 16-128 128-1024 256-512
FC-Layer 2 16-128 128-1024 256-512
FC-Layer 3 16-128 N/A 256-512
Activation
Functions

ELU, SeLU, ReLU ELU, SeLU, ReLU ReLU

Permutations 15 48 12

Table 5.2: Three runs of randomized grid search for selecting the classifier’s hyperpa-
rameters

To automatically perform the training using different hyperparameters the Python
package Talos [55] was used together with Keras [46] and Tensorflow [53]. The input
layer size was increased to 256 by 256 by 3 as to avoid downsampling the images. The
Adam optimizer was used with the categorical cross-entropy loss function as before.

5.3.1.1 Result

For each run, the performance were listed according to the accuracy obtained on the
Dval portion of the dataset. Tables 5.3, 5.4 and 5.5 shows the top 3 performance from
each run.

Epochs
Batch
Size

Dropout FC-1 FC-2 FC-3
Activation
Function

Learning
Rate

Validation
Loss

Validation
Accuracy

20 8 0.1 128 128 128 ReLU 0.0005 0.6328 0.9712
20 32 0.1 128 128 32 ReLU 0.001 1.4315 0.9519
100 8 0.1 128 32 32 ReLU 0.001 2.2653 0.9519

Table 5.3: Top 3 from grid search run one

Epochs
Batch
Size

Dropout FC-1 FC-2 FC-3
Activation
Function

Learning
Rate

Validation
Loss

Validation
Accuracy

100 32 0 256 512 N/A ReLU 0.00124 0.23 0.99
100 16 0.1 256 512 N/A SeLU 0.000806 0.37 0.99
100 32 0 256 256 N/A SeLU 0.001801 0.34 0.98

Table 5.4: Top 3 from grid search run two

Chapter 5 Experiments and Results 59

Epochs
Batch
Size

Dropout FC-1 FC-2 FC-3
Activation
Function

Learning
Rate

Validation
Loss

Validation
Accuracy

20 16 0.4 512 256 256 ReLU 0.00108 2.8988 0.9615
20 32 0.4 256 256 256 ReLU 0.00072 1.2662 0.9615
20 32 0.6 256 512 256 ReLU 0.00084 0.5408 00.952

Table 5.5: Top 3 from grid search run three

5.3.1.2 Conclusion

From the tables above it can be hard to see what hyperparameter have the most impact
and especially since not all combinations were tried. It can however be seen that the
highest accuracy and lowest loss were found using only two fully connected layers, and
the ReLU activation function performed best in all three runs.

5.3.2 Learning Rate

As the grid search experiment above did not test all possible combinations of hyperparam-
eters it was decided to perform a similar search using the best performing configuration,
two fully connected layers using the ReLU activation function with 256 and 512 neurons,
and only change the learning rate.

A selection of ten different learning rates in the range from 0.0001 to 0.00181 were tested.
In figure 5.6 it can be seen that the learning rate affects both the accuracy and the loss
of the network.

60 Chapter 5 Experiments and Results

Figure 5.6: Result of accuracy and loss by different learning rates

From this it was concluded that the optimal learning rate is in the region around 0.00086
as this produced the highest accuracy while maintaining a low loss of the validation data.

5.3.3 Data Augmentation

As the dataset is sparse a technique to improve performance is to use data augmentation.
Using Keras this can be applied to any dataset on-the-fly using the ImageDataGenerator.

In table 5.6 the settings used during the final training run is shown and their effect is
shown in figure 5.7.

Rotation Range 180
Width Shift Range 0.001
Height Shift Range 0.001
Horizontal Flip Yes
Vertical Flip Yes
Zoom Range 0.9 - 1.2
Channel Shift Range 40.0

Table 5.6: Data augmentation parameters

Chapter 5 Experiments and Results 61

Figure 5.7: Image augmented using the ImageDataGenerator from Keras

5.3.4 Classification Result

Using the hyperparameters that were discovered in section 5.3.1 and 5.3.2 together with
augmented data resulted in an accuracy of 99 percent on Dtest, with only one image
miss-classified, as shown by the confusion matrix in figure 5.8. Table 5.7 shows the
classification report as generated by SciKit.

62 Chapter 5 Experiments and Results

Figure 5.8: Confusion matrix showing the classification results of Dtest

Precision Recall F1-Score Support
Fibrocysta Axialis 1.00 0.96 0.98 25
Other Dinoflagellates 1.00 1.00 1.00 12
Palaeoperidinium Pyrophorum 1.00 1.00 1.00 24
Senoniasphaera Inornata 0.97 1.00 0.99 36
Spongodinium Delitiense 1.00 1.00 1.00 13

Accuracy 0.99 110
Macro Avg 0.99 0.99 0.99 110
Weighted Avg 0.99 0.99 0.99 110

Table 5.7: Classification report of Dtest

5.4 Palynological Slide Object Detection and Classification

As a final test both the object detection algorithm and object classifier were run on all
the slides. Table 5.8 lists the number of objects found in each slide and figure 5.9 shows
the distribution of the classified objects.

Chapter 5 Experiments and Results 63

SlideName Num of Objects Time Objects/sec

2_4-C-11 10052.7 ftC = 3064 mC 53335 32 min 47 sec 27.11
2_4-C-11 10070 ftC = 3069.3 mC 25080 15 min 54 sec 26.27
2_7-14 10658ft 8in C 39379 23 min 17 sec 26.75
16_3-2 1998.80 mC 34292 20 min 48 sec 27.47
DigitalSlide_C1M_3S_1 42976 27 min 24 sec 26.13
DigitalSlide_C1M_4S_1 20941 12 min 26 sec 28.06
DigitalSlide_C1M_5S_1 45748 28 min 36 sec 26.66

Table 5.8: Detected objects from the slides

Figure 5.9: Distribution of the classified objects

Chapter 6

Discussion

6.1 Palynological Slides and Dataset

The dataset consisted of seven palynological slides that had been scanned and contained
a total of 530 annotations from 21 different species. 15 of the species had only one or
two annotations, meaning they could not be used as individual classes during training.
The two species Cribroperidinium "Prominoseptatum" and Spongodinium Delitiense
(operculum) had 19 and 13 annotations, respectively. Only three classes had above one
hundred annotations, and none above two hundred.

As mentioned in chapter 3, classes with a low number of annotations were combined
into a single class named "Other dinoflagellates". This was done not only as an attempt
to include more data during training, but also to increase the variance of the dataset.
Having a dataset that only consist of similar images can be prone to overfitting.

Initially, the dataset contained 223 annotations made an expert at the Norwegian
Petroleum Directorate. In an attempt to increase the dataset further, it was found
that Senoniasphera Inornata, Paleoperidinium Pyrophorum, and Fibrocysta Axialis were
distinctive enough to be clearly identified in slides where they had previously confirmed
annotations. 111, 92, and 104 annotations were added to their respective class, bringing
the total number of annotations to 530. There are many different types of dinoflagellates
and many of them can be hard to differentiate for the untrained eye. The different degree
of deterioration of the fossils also makes a complete annotation an almost impossible
task.

As the annotations were all made using 3DHistech’s CaseViewer this meant they were
embedded in the mirax file and had no way to export annotations directly. Currently,
the only way to export the annotations is to convert the file using 3DHistech’s Slide

65

66 Chapter 6 Discussion

Converter. Each file had to be "converted" from MRXS to MRXS in which an option
could be made to export annotation metadata together with a copy of the entire slide
image.

6.1.1 Object Detection

6.1.1.1 Preprocessing

The resolution of the palynological slide images are extremely large. At a full resolution of
250,000 by 250,000 pixels, they are much too large to fit in a normal computer’s memory.
Downsampling or using a lower resolution layer such that the image could be processed
would cause the dinoflagellates to become too small to differentiate. Because of this it
was decided to split the image into parts. Using a grid pattern to partial process large
images is a straightforward technique that was thought to be able to perform adequate.

The size of each block was chosen to be 2048 by 2048 at the highest resolution level, and
thought to be a good balance between the number of blocks and cover area. At this
size, each block contained approximately 20 to 50 objects, at a resolution high enough
to get good separation of the objects in each block. It is possible that the larger block
size would yield better results as larger blocks means fewer edges objects can be split
between. The computational demand of many blocks versus large blocks was also not
considered and could have an impact on the final computational speed.

6.1.1.2 Detection Algorithm

The object detection algorithm was produced using traditional image preprocessing
techniques with the well-established and efficient library OpenCV. By converting the
image to the HSV-format the background could easily be removed regardless of the other
objects in the image and was a process that worked well. All the objects in the image
could then in principle be detected directly by using connected component labeling, but
this would create the same label for adjacent or gatherings of objects. To separate the
objects, the distance map of the image was calculated and thresholded to create markers
for the watershed algorithm. This would first separate objects into smaller markers and
after, expand their region to cover the object. This procedure worked for gatherings and
adjacent darker objects but would cause brighter objects to disappear. Because of this,
the solution was to run the algorithm twice. By first running the algorithm once, the
detected objects could be removed and make way for detecting the remaining brighter
objects.

Chapter 6 Discussion 67

6.1.1.3 Object Detection Performance Experiment

As mentioned in the experiment of section 5.1, there are two current issues with the
algorithm, both regarding over segmentation. By splitting the image into a grid, objects
located on the edge of a block may be detected up to four times. Large objects with
strange color combinations, e.g. black spots, would sometimes be split to multiple objects
by the watershed algorithm. The former could be mitigated by having an overlapping
grid and only detect objects within a frame. For the latter, fine tuning the algorithm
seemed to only help marginally, and it was concluded that it was better to detect some
objects twice and remove them if they are irrelevant in post-processing rather than trying
to further tune the algorithm.

6.1.2 Convolutional Neural Network

As mentioned in section 1.2, previous work seemed to revolve around traditional machine
learning techniques, extracting features such as shape, size, and color, and creating a
support vector machine or small neural network to classify different types of plankton or
dinoflagellates. In later years, the use of convolutional neural networks have skyrocketed
and proved many times that it can produce high performing classifiers, all though it
can be dependent on the amount of training data available. Many high performing
convolutional neural networks have been trained using datasets containing hundreds of
thousands (if not million) images.

6.1.2.1 Transfer Learning

When dealing with sparse dataset, transfer learning seems to be key and as can be seen
from the results in section 5.2 and 5.3 it is possible to obtain well above 90 percent
accuracy even before fine-tuning.

6.1.3 Final Results

Both the object detection algorithm and classification performed good in their individual
performance test. With a detection rate of 94 percent for all objects, and correctly
classifying 99 percent of the data in Dtest.

The small amount of data in the dataset is however greatly limiting in the final evaluation
of the results. The dataset have a low variance of within-class data, i.e. individual classes
within Dtrain, Dval and Dtest look similar and could even be from the same slide image.

68 Chapter 6 Discussion

The optimal solution would be to separate the data such that the split in dataset were
all taken from different slide images and taken from a range of deterioration states. In
addition, each class should have a similar amount of data. Using datasets which have
uneven class distribution can cause imbalanced classification results.

Evaluating the performance on a whole palynological slide image would however be
incredibly difficult. As listed in section 5.4, the amount of detected objects range from
20,000 to over 50,000 objects. These numbers are of course including any over-segmented
objects, such that the actual number would be lower, but is still daunting if one was to
annotate all objects. A final test could be performed on a smaller region in an image,
but would require an expert to verify or to provide a fully annotated region only used
for testing.

Chapter 7

Conclusion

7.1 Conclusion

The objective of this thesis was to explore the possibility of detecting and classifying
dinoflagellates from images created by scanning palynological slides from the Norwegian
Petroleum Directorate. The proposed method consists of detecting objects within the
palynological slide images by using traditional image processing techniques and classifying
them using a convolutional neural network.

From each slide image a grid was created such that each block contained 2048 by 2048
pixels. Using traditional image processing such as thresholding, mathematical morphology,
distance transform and watershed on each block, a detection rate of 93.3 percent of the
objects was obtained when tested on a large region with 464 marked objects within a
palynological slide image.

For the convolutional neural network, the dataset consisted of a total of 530 annotations
divided amongst 21 different species. Because of the imbalanced dataset, several species
were collected into a single class. Despite the sparse dataset, using transfer learning with
a VGG-16 [54] deep convolutional network trained on the ImageNet [56] dataset as the
backbone, an accuracy of 0.99 was obtained as well as 100 percent precision and recall
on four of five classes on the test portion of the dataset.

7.2 Future Work

Further improvement on the object detection algorithm can be done. The issue of
over-segmenting objects can be improved by further fine-tuning the algorithm and
implementing non-maximum suppression on classified objects. For objects near and

69

70 Chapter 7 Conclusion

across several blocks in the grid array this can be improved by using larger blocks or
overlapping grids.

Creating a program to aid professionals annotate objects would be a great method of
improving both the quality and quantity of data in the dataset. By gathering more data,
more classes can be introduced, and a more generalized system can be made.

There is also the possibility of using other deep neural network object detection algorithms,
such as YOLO [57] and the Fast Region-based Convolutional Network method (Fast-
RCNN) [58].

List of Figures

2.1 Example of different species of dinoflagellates 5
2.2 Spatial representation of the RGB and HSV-model 7
2.3 Morphological Structuring Elements . 8
2.4 Erosion and Dilation Example . 9
2.5 Opening and Closing Example . 10
2.6 Distance Map . 11
2.7 Borgefor’s mask for distance map calculation 12
2.8 Noisy image and histogram . 13
2.9 Thresholded image using Otsu’s method 14
2.10 Connected Component Labeling . 15
2.11 Watershed Algorithm Example . 17
2.12 Biological neuron illustration . 18
2.13 Artificial neuron illustration . 19
2.14 Deep neural network illustration . 20
2.15 Plot of the Sigmoid function . 21
2.16 Plot of the ReLU function . 22
2.17 Convolutional neural network illustration 24
2.18 CNN cross-correlation illustration . 25
2.19 Pooling layer illustration . 26
2.20 Confusion Matrix . 29
2.21 Transfer Learning illustration . 30

3.1 Map showing the location of the Ekofisk and Johan Sverdrup oilfields . . 32
3.2 Palynological slide with label . 33

4.1 Proposed method overview . 37
4.2 Extracted regions using annotation data 39
4.3 Object detection overview . 40
4.4 Raw scanned image . 41
4.5 Block image thresholded using Otsu’s method 43
4.6 HSV-channels of a block image . 43
4.7 Object detection flow-chart . 45
4.8 Result of the complete object detection algorithm 46
4.9 Neural Network training flow-chart . 48
4.10 Neural Network classification flow-chart 49

5.1 Image of marked objects to be detected 52
5.2 Result of the object detection algorithm 53

71

72 List of Figures

5.3 Base network test, network structure . 55
5.4 Accuracy obtained on Dtest using different base networks 56
5.5 F1-score obtained on the different classes using different base networks . . 56
5.6 Result of accuracy and loss by different learning rates 60
5.7 Image augmented using the ImageDataGenerator from Keras 61
5.8 Confusion matrix showing the classification results of Dtest 62
5.9 Distribution of the classified objects . 63

B.1 Image of the different species of dinoflagellates contained in the dataset
(1/2) . 87

B.2 Image of the different species of dinoflagellates contained in the dataset
(2/2) . 88

C.1 InceptionV3 training accuracy and loss . 89
C.2 MobileNetV2 training accuracy and loss 90
C.3 NASNetLarge training accuracy and loss 90
C.4 InceptionResNetV2 training accuracy and loss 91
C.5 ResNet152 training accuracy and loss . 91
C.6 ResNet152V2 training accuracy and loss 92
C.7 VGG16 training accuracy and loss . 92
C.8 VGG19 training accuracy and loss . 93
C.9 Comparison of the accuracy of different models using default settings . . . 93
C.10 Comparison of the precision of different models using default settings . . . 94
C.11 Comparison of the recall of different models using default settings 94
C.12 Comparison of the F1-score of different models using default settings . . . 95

List of Tables

2.1 Borgefor’s mask value for distance map calculation 12

3.1 Complete list of samples . 34
3.2 Table showing the dataset used in the thesis 35

4.1 Packages and self-made functions that were used in section 4.1 40
4.2 Packages and self-made functions that were used in section 4.2 47
4.3 Packages and self-made functions that were used in section 4.3 49

5.1 Pre-trained base networks available in Keras 54
5.2 Three runs of randomized grid search for selecting the classifier’s hyperpa-

rameters . 58
5.3 Top 3 from grid search run one . 58
5.4 Top 3 from grid search run two . 58
5.5 Top 3 from grid search run three . 59
5.6 Data augmentation parameters . 60
5.7 Classification report of Dtest . 62
5.8 Detected objects from the slides . 63

B.1 A total of 530 dinoflagellates from 21 different species were annotated
from the seven palyslides . 86

73

Bibliography

[1] The government’s revenues. Norwegianpetroleum.no. Library Catalog: www.norskpetroleum.no.
url: https://www.norskpetroleum.no/en/economy/governments-revenues/
(visited on 06/26/2020).

[2] Resource accounts for the Norwegian shelf. Norwegianpetroleum.no. Library Catalog:
www.norskpetroleum.no. url: https://www.norskpetroleum.no/en/petroleum-
resources/resource-accounts/ (visited on 06/26/2020).

[3] Seismic surveys. Norwegianpetroleum.no. Library Catalog: www.norskpetroleum.no.
url: https://www.norskpetroleum.no/en/exploration/seismic-surveys/
(visited on 06/26/2020).

[4] Nils H. Lundberg and Nils Gundersen. petroleumsleting. In: Store norske leksikon.
May 17, 2020. url: http://snl.no/petroleumsleting (visited on 06/26/2020).

[5] WILLIAM SMITH BIOGRAPHY | William Smith’s Maps - Interactive. Library
Catalog: www.strata-smith.com. url: http://www.strata-smith.com/?page_
id=279 (visited on 06/26/2020).

[6] Birgitte Ferré Hjortkj. “Et geologisk arbejdsredskab”. In: GEOLOGI - Nyt fra Geus
1 (1996), p. 12. issn: 1396-2353. url: https://www.geus.dk/media/16739/nr-1-
1996.pdf (visited on 06/25/2020).

[7] Dinoflagellates. The Palynological Society. Library Catalog: palynology.org. Jan. 3,
2015. url: https://palynology.org/dinoflagellates/ (visited on 06/25/2020).

[8] Dinosporin. In: Wikipedia. Page Version ID: 909770383. Aug. 7, 2019. url: https:
//en.wikipedia.org/w/index.php?title=Dinosporin&oldid=909770383

(visited on 06/25/2020).

[9] Dinocyst. In: Wikipedia. Page Version ID: 953210230. Apr. 26, 2020. url: https:
//en.wikipedia.org/w/index.php?title=Dinocyst&oldid=953210230 (visited
on 06/25/2020).

75

https://www.norskpetroleum.no/en/economy/governments-revenues/
https://www.norskpetroleum.no/en/petroleum-resources/resource-accounts/
https://www.norskpetroleum.no/en/petroleum-resources/resource-accounts/
https://www.norskpetroleum.no/en/exploration/seismic-surveys/
http://snl.no/petroleumsleting
http://www.strata-smith.com/?page_id=279
http://www.strata-smith.com/?page_id=279
https://www.geus.dk/media/16739/nr-1-1996.pdf
https://www.geus.dk/media/16739/nr-1-1996.pdf
https://palynology.org/dinoflagellates/
https://en.wikipedia.org/w/index.php?title=Dinosporin&oldid=909770383
https://en.wikipedia.org/w/index.php?title=Dinosporin&oldid=909770383
https://en.wikipedia.org/w/index.php?title=Dinocyst&oldid=953210230
https://en.wikipedia.org/w/index.php?title=Dinocyst&oldid=953210230

76 Bibliography

[10] H. P. Jeffries, M. S. Berman, A. D. Poularikas, et al. “Automated sizing, counting
and identification of zooplankton by pattern recognition”. In: Marine Biology 78.3
(Feb. 1, 1984), pp. 329–334. issn: 1432-1793. doi: 10.1007/BF00393019. url:
https://doi.org/10.1007/BF00393019 (visited on 06/28/2020).

[11] Xiaoou Tang, W. Kenneth Stewart, Luc Vincent, et al. “Automatic Plankton
Image Recognition”. In: Artificial Intelligence for Biology and Agriculture. Ed. by
S. Panigrahi and K. C. Ting. Dordrecht: Springer Netherlands, 1998, pp. 177–199.
isbn: 978-94-010-6120-9 978-94-011-5048-4. doi: 10.1007/978-94-011-5048-4_9.
url: http://link.springer.com/10.1007/978-94-011-5048-4_9 (visited on
06/28/2020).

[12] Herry V, Beatriz Reguera, Sonsoles González-Gil, et al. “Dinoflagellate categorisa-
tion by artificial neural Network (DICANN)”. In: Sea Technology 43 (Dec. 1, 2002),
pp. 39–46.

[13] Katja Schulze, Ulrich M. Tillich, Thomas Dandekar, et al. “PlanktoVision - an
automated analysis system for the identification of phytoplankton”. In: BMC Bioin-
formatics; London 14 (2013). Num Pages: 115 Place: London, United Kingdom, Lon-
don Publisher: BioMed Central, p. 115. doi: http://dx.doi.org.ezproxy.uis.
no/10.1186/1471-2105-14-115. url: http://search.proquest.com/docview/
1347648600/abstract/2EA99269E0E34CFDPQ/1 (visited on 06/25/2020).

[14] Haiyong Zheng, Ruchen Wang, Zhibin Yu, et al. “Automatic plankton image
classification combining multiple view features via multiple kernel learning”. In:
BMC Bioinformatics 18.16 (Dec. 28, 2017), p. 570. issn: 1471-2105. doi: 10.1186/
s12859-017-1954-8. url: https://doi.org/10.1186/s12859-017-1954-8
(visited on 06/25/2020).

[15] Pannoramic 1000. 3DHISTECH Ltd. Library Catalog: www.3dhistech.com. url:
https://www.3dhistech.com/products-and-software/hardware/pannoramic-

digital-slide-scanners/pannoramic-1000/ (visited on 06/08/2020).

[16] Whole Slide Imaging | MBF Bioscience. url: https://www.mbfbioscience.com/
whole-slide-imaging (visited on 06/27/2020).

[17] Petroleum exploration. 3DHISTECH Ltd. Library Catalog: www.3dhistech.com.
url: https://www.3dhistech.com/solutions/petroleum-exploration/ (vis-
ited on 06/28/2020).

[18] OpenSlide. url: https://openslide.org/ (visited on 03/16/2020).

[19] OpenSlide Python — OpenSlide Python 1.1.1 documentation. url: https://
openslide.org/api/python/ (visited on 03/16/2020).

https://doi.org/10.1007/BF00393019
https://doi.org/10.1007/BF00393019
https://doi.org/10.1007/978-94-011-5048-4_9
http://link.springer.com/10.1007/978-94-011-5048-4_9
https://doi.org/http://dx.doi.org.ezproxy.uis.no/10.1186/1471-2105-14-115
https://doi.org/http://dx.doi.org.ezproxy.uis.no/10.1186/1471-2105-14-115
http://search.proquest.com/docview/1347648600/abstract/2EA99269E0E34CFDPQ/1
http://search.proquest.com/docview/1347648600/abstract/2EA99269E0E34CFDPQ/1
https://doi.org/10.1186/s12859-017-1954-8
https://doi.org/10.1186/s12859-017-1954-8
https://doi.org/10.1186/s12859-017-1954-8
https://www.3dhistech.com/products-and-software/hardware/pannoramic-digital-slide-scanners/pannoramic-1000/
https://www.3dhistech.com/products-and-software/hardware/pannoramic-digital-slide-scanners/pannoramic-1000/
https://www.mbfbioscience.com/whole-slide-imaging
https://www.mbfbioscience.com/whole-slide-imaging
https://www.3dhistech.com/solutions/petroleum-exploration/
https://openslide.org/
https://openslide.org/api/python/
https://openslide.org/api/python/

Bibliography 77

[20] Mathematical morphology. In: Wikipedia. Page Version ID: 937600704. Jan. 26,
2020. url: https://en.wikipedia.org/w/index.php?title=Mathematical_
morphology&oldid=937600704 (visited on 03/20/2020).

[21] Morphology. url: http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm
(visited on 03/20/2020).

[22] Alan C. Bovik, Bovik, and Alan C Bovik. The Essential Guide to Image Processing.
San Diego, UNITED STATES: Elsevier Science & Technology, 2009. isbn: 978-
0-08-092251-5. url: http://ebookcentral.proquest.com/lib/uisbib/detail.
action?docID=452947 (visited on 03/24/2020).

[23] OpenCV: Image Filtering. url: https://docs.opencv.org/trunk/d4/d86/
group__imgproc__filter.html (visited on 03/23/2020).

[24] Morphology - Erosion. url: http://homepages.inf.ed.ac.uk/rbf/HIPR2/
erode.htm (visited on 04/24/2020).

[25] Morphology - Dilation. url: http://homepages.inf.ed.ac.uk/rbf/HIPR2/
dilate.htm (visited on 07/02/2020).

[26] Glossary - Mathematical Morphology. url: https://homepages.inf.ed.ac.uk/
rbf/HIPR2/matmorph.htm (visited on 03/18/2020).

[27] Gunilla Borgefors. “Distance transformations in digital images”. In: Computer Vi-
sion, Graphics, and Image Processing 34.3 (June 1986), pp. 344–371. issn: 0734189X.
doi: 10.1016/S0734-189X(86)80047-0. url: https://linkinghub.elsevier.
com/retrieve/pii/S0734189X86800470 (visited on 03/26/2020).

[28] Nobuyuki Otsu. “A Threshold Selection Method from Gray-Level Histograms”. In:
IEEE Transactions on Systems, Man, and Cybernetics 9.1 (Jan. 1979), pp. 62–
66. issn: 0018-9472, 2168-2909. doi: 10.1109/TSMC.1979.4310076. url: http:
//ieeexplore.ieee.org/document/4310076/ (visited on 04/05/2020).

[29] Robert Fisher, Simon Perkins, Ashley Walker, et al. Image Analysis - Connected
Components Labeling. 2003. url: http://homepages.inf.ed.ac.uk/rbf/HIPR2/
label.htm (visited on 05/22/2020).

[30] The Watershed Transformation page. url: http://www.cmm.mines-paristech.
fr/~beucher/wtshed.html (visited on 05/25/2020).

[31] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. 3rd ed. Upper
Saddle River, N.J: Prentice Hall, 2008. 954 pp. isbn: 978-0-13-168728-8.

[32] F. Meyer. “Color image segmentation”. In: 1992 International Conference on Image
Processing and its Applications. 1992 International Conference on Image Processing
and its Applications. Apr. 1992, pp. 303–306. isbn: 0-85296-543-5.

https://en.wikipedia.org/w/index.php?title=Mathematical_morphology&oldid=937600704
https://en.wikipedia.org/w/index.php?title=Mathematical_morphology&oldid=937600704
http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm
http://ebookcentral.proquest.com/lib/uisbib/detail.action?docID=452947
http://ebookcentral.proquest.com/lib/uisbib/detail.action?docID=452947
https://docs.opencv.org/trunk/d4/d86/group__imgproc__filter.html
https://docs.opencv.org/trunk/d4/d86/group__imgproc__filter.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/matmorph.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/matmorph.htm
https://doi.org/10.1016/S0734-189X(86)80047-0
https://linkinghub.elsevier.com/retrieve/pii/S0734189X86800470
https://linkinghub.elsevier.com/retrieve/pii/S0734189X86800470
https://doi.org/10.1109/TSMC.1979.4310076
http://ieeexplore.ieee.org/document/4310076/
http://ieeexplore.ieee.org/document/4310076/
http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
http://www.cmm.mines-paristech.fr/~beucher/wtshed.html
http://www.cmm.mines-paristech.fr/~beucher/wtshed.html

78 Bibliography

[33] T. Breitenfeld, M. J. Jurasic, and D. Breitenfeld. “Hippocrates: the forefather
of neurology”. In: Neurological Sciences 35.9 (Sept. 2014), pp. 1349–1352. issn:
1590-1874, 1590-3478. doi: 10.1007/s10072-014-1869-3. url: http://link.
springer.com/10.1007/s10072-014-1869-3 (visited on 05/02/2020).

[34] Sergios Theodoridis. Machine learning: a Bayesian and optimization perspective.
OCLC: 910913108. Amsterdam Boston Heidelberg London New York Oxford Paris
San Diego San Francisco Singapore Sydney Tokyo: Elsevier, AP, 2015. 1050 pp.
isbn: 978-0-12-801522-3.

[35] What is a neuron? Library Catalog: qbi.uq.edu.au. Nov. 22, 2016. url: https:
//qbi.uq.edu.au/brain/brain-anatomy/what-neuron (visited on 05/02/2020).

[36] nervecelle – Store medisinske leksikon. url: https://sml.snl.no/nervecelle
(visited on 05/02/2020).

[37] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas immanent
in nervous activity”. In: The Bulletin of Mathematical Biophysics 5.4 (Dec. 1943),
pp. 115–133. issn: 0007-4985, 1522-9602. doi: 10.1007/BF02478259. url: http:
//link.springer.com/10.1007/BF02478259 (visited on 05/03/2020).

[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. url: https://deeplearning.org.

[39] AlphaGo: The story so far. Deepmind. Library Catalog: deepmind.com. url:
/research/case-studies/alphago-the-story-so-far (visited on 05/29/2020).

[40] Ian H. Witten, Eibe Frank, Mark A. Hall, et al. “Chapter 10 - Deep learning”. In:
Data Mining (Fourth Edition). Ed. by Ian H. Witten, Eibe Frank, Mark A. Hall,
et al. Morgan Kaufmann, Jan. 1, 2017, pp. 417–466. isbn: 978-0-12-804291-5. doi:
10.1016/B978-0-12-804291-5.00010-6. url: http://www.sciencedirect.
com/science/article/pii/B9780128042915000106 (visited on 06/12/2020).

[41] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Activation
Functions”. In: arXiv:1710.05941 [cs] (Oct. 27, 2017). arXiv: 1710.05941. url:
http://arxiv.org/abs/1710.05941 (visited on 06/12/2020).

[42] Y. Le Cun, L.D. Jackel, B. Boser, et al. “Handwritten digit recognition: applica-
tions of neural network chips and automatic learning”. In: IEEE Communications
Magazine 27.11 (Nov. 1989), pp. 41–46. issn: 0163-6804. doi: 10.1109/35.41400.
url: http://ieeexplore.ieee.org/document/41400/ (visited on 05/10/2020).

[43] Kyoung-Su Oh and Keechul Jung. “GPU implementation of neural networks”.
In: Pattern Recognition 37.6 (June 2004), pp. 1311–1314. issn: 00313203. doi:
10.1016/j.patcog.2004.01.013. url: https://linkinghub.elsevier.com/
retrieve/pii/S0031320304000524 (visited on 05/10/2020).

https://doi.org/10.1007/s10072-014-1869-3
http://link.springer.com/10.1007/s10072-014-1869-3
http://link.springer.com/10.1007/s10072-014-1869-3
https://qbi.uq.edu.au/brain/brain-anatomy/what-neuron
https://qbi.uq.edu.au/brain/brain-anatomy/what-neuron
https://sml.snl.no/nervecelle
https://doi.org/10.1007/BF02478259
http://link.springer.com/10.1007/BF02478259
http://link.springer.com/10.1007/BF02478259
https://deeplearning.org
/research/case-studies/alphago-the-story-so-far
https://doi.org/10.1016/B978-0-12-804291-5.00010-6
http://www.sciencedirect.com/science/article/pii/B9780128042915000106
http://www.sciencedirect.com/science/article/pii/B9780128042915000106
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
https://doi.org/10.1109/35.41400
http://ieeexplore.ieee.org/document/41400/
https://doi.org/10.1016/j.patcog.2004.01.013
https://linkinghub.elsevier.com/retrieve/pii/S0031320304000524
https://linkinghub.elsevier.com/retrieve/pii/S0031320304000524

Bibliography 79

[44] Tensor Cores in NVIDIA Volta GPU Architecture. NVIDIA. Library Catalog:
www.nvidia.com. url: https : / / www . nvidia . com / en - us / data - center /

tensorcore/ (visited on 05/10/2020).

[45] Olga Russakovsky, Jia Deng, Hao Su, et al. “ImageNet Large Scale Visual Recogni-
tion Challenge”. In: arXiv:1409.0575 [cs] (Jan. 29, 2015). arXiv: 1409.0575. url:
http://arxiv.org/abs/1409.0575 (visited on 06/17/2020).

[46] Keras Team. Keras documentation: Keras Applications. Library Catalog: keras.io.
url: https://keras.io/api/applications/ (visited on 06/20/2020).

[47] Norsk Oljemuseum. Ekofisk. In: Store norske leksikon. Oct. 29, 2019. url: http:
//snl.no/Ekofisk (visited on 05/29/2020).

[48] Wellbore - Factpages - NPD: 2/4-C-11. url: https://factpages.npd.no/en/
wellbore/pageview/development/all/945 (visited on 06/08/2020).

[49] Wellbore - Factpages - NPD: 2/7-14. url: https://factpages.npd.no/en/
wellbore/pageview/exploration/all/116 (visited on 06/08/2020).

[50] Wellbore - Factpages - NPD: 16/3-2. url: https://factpages.npd.no/en/
wellbore/pageview/exploration/all/334 (visited on 06/08/2020).

[51] OpenCV: Image Segmentation with Distance Transform and Watershed Algo-
rithm. url: https://docs.opencv.org/3.4.9/d2/dbd/tutorial_distance_
transform.html (visited on 06/05/2020).

[52] OpenCV: Image Segmentation with Watershed Algorithm. url: https://docs.
opencv . org / master / d3 / db4 / tutorial _ py _ watershed . html (visited on
06/05/2020).

[53] TensorFlow. TensorFlow. Library Catalog: www.tensorflow.org. url: https://
www.tensorflow.org/ (visited on 06/28/2020).

[54] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: arXiv:1409.1556 [cs] (Apr. 10, 2015). arXiv:
1409.1556. url: http://arxiv.org/abs/1409.1556 (visited on 06/16/2020).

[55] autonomio/talos. original-date: 2018-05-04T20:36:41Z. July 3, 2020. url: https:
//github.com/autonomio/talos (visited on 07/05/2020).

[56] ImageNet. url: http://www.image-net.org/ (visited on 06/17/2020).

[57] Joseph Redmon, Santosh Divvala, Ross Girshick, et al. “You Only Look Once:
Unified, Real-Time Object Detection”. In: (June 8, 2015). url: https://arxiv.
org/abs/1506.02640v5 (visited on 07/08/2020).

[58] Ross Girshick. “Fast R-CNN”. In: (Apr. 30, 2015). url: https://arxiv.org/abs/
1504.08083v2 (visited on 07/08/2020).

https://www.nvidia.com/en-us/data-center/tensorcore/
https://www.nvidia.com/en-us/data-center/tensorcore/
https://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://keras.io/api/applications/
http://snl.no/Ekofisk
http://snl.no/Ekofisk
https://factpages.npd.no/en/wellbore/pageview/development/all/945
https://factpages.npd.no/en/wellbore/pageview/development/all/945
https://factpages.npd.no/en/wellbore/pageview/exploration/all/116
https://factpages.npd.no/en/wellbore/pageview/exploration/all/116
https://factpages.npd.no/en/wellbore/pageview/exploration/all/334
https://factpages.npd.no/en/wellbore/pageview/exploration/all/334
https://docs.opencv.org/3.4.9/d2/dbd/tutorial_distance_transform.html
https://docs.opencv.org/3.4.9/d2/dbd/tutorial_distance_transform.html
https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
https://docs.opencv.org/master/d3/db4/tutorial_py_watershed.html
https://www.tensorflow.org/
https://www.tensorflow.org/
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://github.com/autonomio/talos
https://github.com/autonomio/talos
http://www.image-net.org/
https://arxiv.org/abs/1506.02640v5
https://arxiv.org/abs/1506.02640v5
https://arxiv.org/abs/1504.08083v2
https://arxiv.org/abs/1504.08083v2

Appendix A

Python Code

Embedded in this file is both the Python code for extracting annotations, train the neural
network, perform object detection, classification, and a Groovy script for importing the
new annotations in QuPath.

A.0.1 1_export_annotations.py

This script is made to export images based on their placement read from the image’s
annotation file in the XML-format. All annotations will be exported in the center of
a 256 by 256 pixel image from resolution level one in the palynological slide images
sorted in folders by their annotation’s label. In addition, a separate text file is exported
containing the image file name, source image file name, annotation label, position and
shape of all the exported images.

A.0.2 2_train_vgg16.py

This script contains the code to load the pretrained VGG16 network, download the
pretrained weights and add the custom classifier. After training the accuracy and loss
per epoch is plotted as well as a confusion matrix and classification report from the test
set. The best model is automatically exported and saved as a hdf5-file.

A.0.3 3_object_deteciton.py

This script contains the object detection algorithm. For all palyslide images in a folder,
the object detection algorithm is run and exports a text-file containing the position and
shape for all objects.

81

82 Appendix A Python Code

A.0.4 4_object_classification.py

This script contains the code for using the model trained from 2_Learning_VGG16_train.py

and the exported object location file from 3_Locate_objects_in_image.py. Classified
objects are exported in a text file with the position, shape, size, predicted class and
prediction confidence.

A.0.5 5_quPath_import_annotation.groovy

This script contains code to import annotations to QuPath (v.0.1.2). After opening a
slide image go to Automate -> Show script editor or press Ctrl+{. Enter the path to
the file exported from 4_Identify_objects.py and press run to import annotations.

Note: QuPath will crash if too many objects are imported. Limit the number of imported
objects to <1000.

A.0.6 imfun.py

This file contains helper functions used in the various scripts as explained below.

A.0.6.1 expand_region(pos, shape, new_shape)

For a region with pos = tuple(x0, y0) of the top left corner, and shape = tuple(width,

height) this function returns the new position corresponding to a new_shape = tuple(new_width,

new_height) without moving the region.

A.0.6.2 p2level(point, from_level, to_level)

As OpenSlide/Whole slide images contain multiple resolution level where each level is
half the size of the previous one, this function transforms the position of a point =

tuple(x, y) from level int(from_level) to level int(to_level).

A.0.6.3 tuple_sum(tup1, tup2)

This function returns the sum of two tuples

Appendix A Python Code 83

A.0.6.4 tuple_subtract(tup1, tup2)

This function returns the difference between tuple(tup1) and tuple(tup2)

A.0.6.5 find_edge(image)

Used to detect the region of interest in images with a white and black border such as
raw mirax images. Note, this is not usable on full resolution whole slide images, use on
a resolution level from 3 and higher (lower resolution). Returns x0, y0, width, and
height, i.e. the position and shape.

A.0.6.6 generate_grid(openslide_image)

Uses find_edge and p2level and calculates a grid based on the selected block_size

(default tuple(2048, 2048) in level 0 resolution). Returns a list containing [[index,

column_number, row_number, (x0, y0), (width, height)],...].

A.0.6.7 segment_position(markers, block_position, image_level)

Returns a list of the position tuple(x0, y0) and shape tuple(width, height) of
markers created by the object detection algorithm. By entering block_position =

tuple(block_x0, block_y0) and int(image_level) the absolute position and shape
is calculated in the highest resolution level (level 0).

85

86 Appendix B Dinoflagellates from the palyslides

Appendix B

Dinoflagellates from the palyslides

Filename Species name Annotations

2_4-C-11 10052.7 ftC = 3064 mC Senoniasphera inornata 173
2_4-C-11 10070 ftc = 3069.3 mC Fibrocysta Axialis 41

Palaeoperidinium Pyrophorum 22
Spongodinium delitiense 65
Songodinium delitiense (operculum) 13

2_7-14 10658 ft 8 in C Cribroperidinium "prominoseptatum" 19
Danea californica 1
Fibrocysta Axialis 5
Palaeoperidinium pyrophorum 3
Thalassiphora pelagica 1

16_3-2 1998.80 mC Acanthaulax venusta 2
Chytroeisphaeridia cerastes 1
Chytroperidinium sp. 1
Dingodinium tuberculosum 2
Dingodinium tuberosum 2
Endoscrinium galeritum reticulatum 1
Gonyaulacysta jurassica 2
Leptodinium mirabile 1
Scriniodinium inritibile 1
Sentusidinium pilosum 2
Sirmiodinium grossii 1
Systematophora areolata 2
Tubotuberella apatela 2

DigitalSlide_C1M_3S_1 – –
DigitalSlide_C1M_3S_1 Palaeoperidinium pyrophorum 7
DigitalSlide_C1M_5S_1 Fibrocysta Axialis 75

Palaeoperidinium pyrophorum 85

Table B.1: A total of 530 dinoflagellates from 21 different species were annotated from
the seven palyslides

Appendix B Dinoflagellates from the palyslides 87

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure B.1: Image showing the different species of dinoflagellates in the dataset (1/2)
(a) Acanthaulax Venusta, (b) Chytroeisphaeridia Cerastes, (c) Cribroperidinium Promi-
noseptatum, (d) Cribroperidinium sp., (e) Danea Californica, (f) Dingodinium Tu-
berculosum, (g) Dingodinium Tuberosum, (h) Endoscrinium Galeritum Reticulatum,
(i) Fibrocysta Axialis, (j) Gonyaulacysta Jurassica, (k) Leptodinium Mirabile, (l)

Palaeoperidinium Pyrophorum

88 Appendix B Dinoflagellates from the palyslides

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.2: Image showing the different species of dinoflagellates in the dataset (2/2) (a)
Scriniodinium Inritibile, (b) Senoniasphaera Inornata, (c) Sentusidinium Pilosum, (d)
Sirmiodinium Grossii, (e) Spongodinium Delitiense, (f) Spongodinium Delitiense (oper-
culum),(g) Systematophora Areolata, (h) Thalassiphora Pelagica, (i) Tubotuberella

Apatela

Appendix C

CNN Transfer learning test

Figure C.1: InceptionV3 training accuracy and loss

89

90 Appendix C CNN Transfer learning test

Figure C.2: MobileNetV2 training accuracy and loss

Figure C.3: NASNetLarge training accuracy and loss

Appendix C CNN Transfer learning test 91

Figure C.4: InceptionResNetV2 training accuracy and loss

Figure C.5: ResNet152 training accuracy and loss

92 Appendix C CNN Transfer learning test

Figure C.6: ResNet152V2 training accuracy and loss

Figure C.7: VGG16 training accuracy and loss

Appendix C CNN Transfer learning test 93

Figure C.8: VGG19 training accuracy and loss

Figure C.9: Comparison of the accuracy of different models using default settings

94 Appendix C CNN Transfer learning test

Figure C.10: Comparison of the precision of different models using default settings

Figure C.11: Comparison of the recall of different models using default settings

Appendix C CNN Transfer learning test 95

Figure C.12: Comparison of the F1-score of different models using default settings

	FACULTY OF SCIENCE AND TECHNOLOGY
	MASTER’S THESIS
	Abstract
	Preface
	1 Introduction
	1.1 Palynology in Petroleum Prospecting
	1.2 Previous Work
	1.3 Thesis Objective
	1.4 Thesis Overview

	2 Background
	2.1 Dinoflagellates
	2.2 Whole Slide Imaging
	2.2.1 OpenSlide

	2.3 Image Processing
	2.3.1 Bit Depth and Color Models
	2.3.2 Mathematical Morphology
	2.3.3 Distance Transform
	2.3.4 Segmentation

	2.4 Neural Networks
	2.4.1 Artificial Neural Networks
	2.4.2 Activation Function
	2.4.3 Convolutional Neural Networks
	2.4.4 Pooling
	2.4.5 Loss Function
	2.4.6 Evaluation Metrics
	2.4.7 Transfer Learning

	3 Data and Materials
	3.1 Palynological Slide Images
	3.2 Labeling Data
	3.3 Dataset

	4 Proposed Method
	4.1 Preprocess Dataset - Part 1
	4.1.1 Implementation

	4.2 Object Detection - Part 2
	4.2.1 Palyslide Image Preprocessing
	4.2.2 Segmentation and Object Detection
	4.2.3 Implementation

	4.3 Object Classification - Part 3
	4.3.1 Transfer Learning
	4.3.2 Implementation

	5 Experiments and Results
	5.1 Object Detection Evaluation
	5.1.1 Method
	5.1.2 Results
	5.1.3 Conclusion

	5.2 Backbone Comparison
	5.3 Object Classification Performance
	5.3.1 Classifier Hyperparameter-Tuning
	5.3.2 Learning Rate
	5.3.3 Data Augmentation
	5.3.4 Classification Result

	5.4 Palynological Slide Object Detection and Classification

	6 Discussion
	6.1 Palynological Slides and Dataset
	6.1.1 Object Detection
	6.1.2 Convolutional Neural Network
	6.1.3 Final Results

	7 Conclusion
	7.1 Conclusion
	7.2 Future Work

	List of Figures
	List of Tables
	A Python Code
	A.0.1 1_export_annotations.py
	A.0.2 2_train_vgg16.py
	A.0.3 3_object_deteciton.py
	A.0.4 4_object_classification.py
	A.0.5 5_quPath_import_annotation.groovy
	A.0.6 imfun.py

	B Dinoflagellates from the palyslides
	C CNN Transfer learning test

Scripts/1_export_annotations.py

1_export_annotations.py
#
This script export image regions based on annotation data from .mrxs files
#
Image and annotation file must have same name prefix as exported from CaseViewer
E.g.: Example_image.mrxs and Example_image_Annotations.xml
#
Image folder structure should And the export folder
look like this: will have this structure:
Input_Folder/ Export_folder/
├── Example_image/ ├── Species_name1/
│ ├── Data0000.dat │ ├──img_0001.png
│ ... │ ...
│ └── Slidedat.ini │ └──img_xxxx.png
├── Example_image.mrxs └── exported_images.txt
└── Example_image_Annotations.xml
#
Note: Position and shape is saved as tuples, and contains commas.
exported_images.txt uses '|' as a delimiter instead of ','.

To easily split the dataset in train/val/test-parts the python package split-folders
by Johannes Filter (https://pypi.org/project/split-folders/) can be used.
This is not included here as the dataset might need to be sorted or organized differently
than how it's exported by this script

import numpy as np
from xml.dom import minidom
import openslide
import os

from imfun import expand_region, p2level

----Settings---
input_folder = 'PalySlideImages' # Path to a folder containing both .mrxs file(s) and .xml annotation file(s)
export_shape = (256, 256) # Export image size
export_level = 1 # Export image resolution level (0 is highest resolution)
export_folder = 'Export_folder' # Path to the export folder
Default settings export_shape of (256,256)@level 1, corresponds to a region of (512,512)@level 0

----Parse-the-annotation-files---
annotationFiles = [f for f in os.listdir(input_folder) if '_Annotations.xml' in f]
allAnnotations = []
num = 0
for annotationFileName in annotationFiles:
 file = minidom.parse(input_folder + '/' + annotationFileName)
 imageName = annotationFileName.replace('_Annotations.xml', '.mrxs')
 annotations = file.getElementsByTagName('destination')[0].getElementsByTagName('annotation')
 annotationsList = []
 for annotation in annotations:
 aName = annotation.attributes['name'].value
 # Each annotation file contains the path of a polygon,
 # E.g. a square will have five points: starting point, 2nd-4th corner and back to the starting point.
 # All annotations regardless of shape are converted to squares with x0, y0 indicating the top left corner
 # and a shape represented by width and height
 pointsList = []
 for polygonPoint in annotation.childNodes:
 if polygonPoint.nodeName == '#text':
 continue # Skips 'newline' (empty) textnodes
 x = int(polygonPoint.attributes['x'].value)
 y = int(polygonPoint.attributes['y'].value)
 pointsList.append([x, y])
 pointsList = np.array(pointsList)
 x0 = min(pointsList[:,0]) # Top left corner, x
 y0 = min(pointsList[:,1]) # Top left corner, y
 width = max(pointsList[:, 0]) - x0 # Object Width
 height = max(pointsList[:, 1]) - y0 # Object Height
 annotationsList.append(np.array([imageName, aName, (x0, y0), (width, height)]))
 num += len(annotationsList)
 print("{} annotations found from {}".format(len(annotationsList), annotationFileName))
 annotationsList = np.array(annotationsList)
 allAnnotations.extend(annotationsList)
allAnnotations = np.array(allAnnotations)
print("Total annotations found: {}".format(num))
allAnnotations should now contain all annotations in the format:
array([['sourceFile.mrxs', 'annotation_label', tuple(x0, y0), tuple(width, height)],..])

----Export-annotations---
for sourceImageName in np.unique(allAnnotations[:,0]):
 slideImg = openslide.OpenSlide(input_folder+'/'+sourceImageName)
 for i, annotation in enumerate(allAnnotations):
 aFileName, aName, aPos, aShape = annotation
 if sourceImageName is aFileName:
 # Need to expand the region such that it matches export_shape in level 0-coordinates
 export_pos = expand_region(aPos, aShape, p2level(export_shape, export_level))
 if '"' in aName: # Folder names can't contain quotation marks (")
 aName = aName.replace('"','')
 export_path = export_folder+'/'+str(aName)
 if not os.path.exists(export_path):
 os.makedirs(export_path)
 export_image = slideImg.read_region(export_pos, export_level, export_shape)
 export_image.save(export_path+'/'+str(i)+'.png')

----Export-index-file--
Add filename to the annotations array, this should be the same as its index
fName = [str(x)+'.png' for x in np.arange(allAnnotations.shape[0])]
allAnnotations = [np.hstack((name, x)) for x, name in zip(allAnnotations, fName)]
allAnnotations = np.array(allAnnotations)
np.savetxt(export_folder+'/exported_files.txt', allAnnotations, '%s', delimiter='|')

Scripts/2_train_vgg16.py

2_train_vgg16.py
#
This script creates and trains a pretrained VGG16-network
#
The dataset is expected to be split in train/val/test subfolders
as split by the split-folders package (by Johannes Filter (https://pypi.org/project/split-folders/))
#
The best model is exported as best.vgg16.hdf5

import os
import numpy as np
from datetime import datetime
import matplotlib.pyplot as plt

from tensorflow.keras.utils import to_categorical, plot_model
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.applications import VGG16
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, ConfusionMatrixDisplay
from numba import cuda

from imfun import plot_accuracy_and_loss, preprocess_dataset

os.environ['CUDA_VISIBLE_DEVICES'] = '0'
----Settings---
datasetPath = 'D1'

epochs = 100 # Number of epochs to train
batch_size = 32 # Batch size
learning_rate = 0.00086 # Learning rate
dropout_rate = 0.4 # Dropout
first_layer = 256 # Num of neurons in first hidden layer in classifier
second_layer = 512 # Num of neurons in second hidden layer in classifier

Export the model and logs
modelSaveName = 'best.vgg16.hdf5'
logdir = os.path.join('logs', 'VGG16_training' + datetime.now().strftime('%d_%m_%Y-%H_%M_%S'))

----Import-Training-Data---
trainPath = datasetPath + '/train'
valPath = datasetPath + '/val'
testPath = datasetPath + '/test'
train/val/test image paths
train = [trainPath + '/' + label + '/' + img for label in os.listdir(trainPath) for img in
 os.listdir(trainPath + '/' + label)]
val = [valPath + '/' + label + '/' + img for label in os.listdir(valPath) for img in os.listdir(valPath + '/' + label)]
test = [testPath + '/' + label + '/' + img for label in os.listdir(testPath) for img in
 os.listdir(testPath + '/' + label)]

Get the corresponding labels
train_y = [i for i, label in enumerate(os.listdir(trainPath)) for j in os.listdir(trainPath + '/' + label)]
val_y = [i for i, label in enumerate(os.listdir(valPath)) for j in os.listdir(valPath + '/' + label)]
test_y = [i for i, label in enumerate(os.listdir(testPath)) for j in os.listdir(testPath + '/' + label)]
num_classes = len(os.listdir(trainPath))
classLabels = dict(zip(os.listdir(trainPath), np.arange(0, len(os.listdir(trainPath)))))
Convert the labels to one-hot encoded vectors
train_Y = to_categorical(train_y, num_classes)
val_Y = to_categorical(val_y, num_classes)
test_Y = to_categorical(test_y, num_classes)

-----Preprocess-dataset--

train_x = preprocess_dataset(train)
val_x = preprocess_dataset(val)
test_x = preprocess_dataset(test)
Augment training data
trainGen = ImageDataGenerator(rotation_range=180,
 width_shift_range=0.001,
 height_shift_range=0.001,
 fill_mode='nearest',
 horizontal_flip=True,
 vertical_flip=True,
 zoom_range=[0.9,1.2],
 channel_shift_range=40.0)
train_flow = trainGen.flow(train_x, train_Y, batch_size=batch_size, shuffle=True, seed=42)
Validation data is not augmented, but use the imagedatagenerator to shuffle data and the code for training is cleaner
valGen = ImageDataGenerator()
val_flow = valGen.flow(val_x, val_Y, batch_size=batch_size, shuffle=True, seed=42)

----Create-model-with-new-classifier---
backbone_model = VGG16(weights='imagenet', include_top=False, input_shape=(256, 256, 3))
Freeze backbone
for layer in backbone_model.layers:
 layer.trainable = False
x = backbone_model.get_layer('block5_pool').output
x = Flatten()(x)
x = Dropout(dropout_rate)(x)
x = Dense(units=first_layer, activation='relu')(x)
x = Dropout(dropout_rate)(x)
x = Dense(units=second_layer, activation='relu')(x)
x = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=backbone_model.input, outputs=x)
model.summary()
opt = Adam(lr=learning_rate)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
plot_model(model)

Create a checkpoint to save the best model
checkPoint = ModelCheckpoint(filepath=modelSaveName, save_best_only=True)
tensorboardCallback = TensorBoard(log_dir=logdir, histogram_freq=1, write_images=True)
#
steps_per_training = len(train_Y) / batch_size
steps_per_validation = len(val_Y) / batch_size
#

----Train--
history = model.fit(x=train_flow,
 validation_data=val_flow,
 steps_per_epoch=steps_per_training,
 validation_steps=steps_per_validation,
 epochs=epochs,
 callbacks=[checkPoint, tensorboardCallback])

plot_accuracy_and_loss(history)

#Load the best model that was saved
loadedModel = load_model(modelSaveName)

predictions = np.argmax(model.predict(test_x), axis=1)
print(accuracy_score(test_y, predictions))
cm = confusion_matrix(test_y, predictions)
print(cm)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=classLabels)
disp = disp.plot(xticks_rotation=90)
plt.savefig('confusion_matrix.png', format='png')
plt.show()
print(classification_report(test_y, predictions, target_names=classLabels))

cuda.select_device(0)
cuda.close()

Scripts/3_object_detection.py

3_object_detection.py
#
This script will detect objects of all slide images contained within a folder.
Source folder, block size, threshold, detection level and region can be defined under settings.
Exports a numpy-serialized file and/or textFile containing
index|(x0, y0)|(width, height)|(window pos x0/y0)|(window shape width/height)
Name corresponds to the slide image name *_objectList.txt

import numpy as np
import openslide
import cv2
import os

from imfun import generate_grid, p2level, segment_position, expand_region, tuple_sum

----Settings---
imageFolder = 'PalySlideImages'
blockSize = (2048, 2048)
sizeLowerThreshold = (10, 10)
sizeHighThreshold = (500, 500)
objectDetectLevel = 2 # What level to run the object detection at
objectRegion = (512, 512) # Defined @ level 0

imPaths = [os.path.join(imageFolder, i) for i in os.listdir(imageFolder) if '.mrxs' in i]
imNames = [i.replace('.mrxs', '') for i in os.listdir(imageFolder) if '.mrxs' in i]

for imagePath, imageName in zip(imPaths, imNames):
 img = openslide.open_slide(imagePath)
 grid = generate_grid(img, block_size=blockSize, remove_frame=True)
 objectList = []
 for i, block in enumerate(grid):
 bIndex, bRow, bCol, bPos, bSize = block
 print("[Info] Processing block {} of {} in image {}".format(bIndex, len(grid) - 1, imageName))
 bImg = img.read_region(bPos, objectDetectLevel, p2level(bSize, 0, objectDetectLevel))
 bImg = np.array(bImg)
 bImg = cv2.cvtColor(bImg, cv2.COLOR_RGBA2RGB)
 # Convert to HSV and split
 _, s, v = cv2.split(cv2.cvtColor(bImg, cv2.COLOR_RGB2HSV))
 # ----- Segment darker objects first -----
 v = 255 - v # Invert
 v[v < 50] = 0
 v = cv2.blur(v, (3, 3))
 _, vth = cv2.threshold(v, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # Threshold using otsu's method
 kernel3 = np.ones((3, 3), dtype=np.uint8)
 vth = cv2.morphologyEx(vth, cv2.MORPH_OPEN, kernel3, iterations=2) # Remove noise
 vth = cv2.dilate(vth, kernel3, iterations=4) # Grow the regions
 kernel5 = np.ones((5, 5), dtype=np.uint8)
 opening = cv2.morphologyEx(vth, cv2.MORPH_OPEN, kernel5) #
 sure_bg = cv2.dilate(opening, kernel5, iterations=2)
 dist_tf = cv2.distanceTransform(opening, cv2.DIST_L2, 3)
 _, sure_fg = cv2.threshold(dist_tf, 0.4 * dist_tf.max(), 255, cv2.THRESH_BINARY)
 sure_fg = np.uint8(sure_fg)
 unknown = cv2.subtract(sure_bg, sure_fg)
 _, markers = cv2.connectedComponents(sure_fg)
 markers += 1
 markers[unknown == 255] = 0
 dark_segments = cv2.watershed(bImg, markers)
 # --- Grow the dark segments so we can remove them
 dmth = dark_segments
 dmth[dmth <= 1] = 0
 dmth = np.uint8(dmth)
 _, dmth = cv2.threshold(dmth, 0, 255, cv2.THRESH_BINARY)
 dmth = cv2.morphologyEx(dmth, cv2.MORPH_CLOSE, kernel3)
 dmth = cv2.dilate(dmth, np.ones((7, 7), dtype=np.uint8), iterations=3)
 v = cv2.subtract(v, dmth)
 s = cv2.subtract(s, dmth)
 v[v < 55] = 0
 s[s < 35] = 0
 tempImg = cv2.bitwise_or(s, v)
 _, th = cv2.threshold(tempImg, 0, 255, cv2.THRESH_BINARY)
 th = cv2.erode(th, kernel3, iterations=2)
 th = cv2.morphologyEx(th, cv2.MORPH_OPEN, kernel3)
 th = cv2.dilate(th, kernel3, iterations=3)
 th = cv2.morphologyEx(th, cv2.MORPH_CLOSE, np.ones((7, 7)))
 _, th = cv2.threshold(th, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
 opening = cv2.morphologyEx(th, cv2.MORPH_OPEN, kernel5)
 sure_bg = cv2.dilate(opening, kernel5, iterations=2)
 dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 3)
 _, sure_fg = cv2.threshold(dist_transform, 0.2 * dist_transform.max(), 255, 0)
 sure_fg = np.uint8(sure_fg)
 unknown = cv2.subtract(sure_bg, sure_fg)
 _, markers = cv2.connectedComponents(sure_fg)
 markers = markers + 1
 markers[unknown == 255] = 0
 light_segments = cv2.watershed(bImg, markers)

 loc = segment_position(dark_segments, bPos, objectDetectLevel)
 loc += segment_position(light_segments, bPos, objectDetectLevel)
 # Remove small objects contained within larger ones
 tempList = []
 for p1, shape in loc:
 p2 = tuple_sum(p1, shape)
 for i, x in enumerate(loc):
 if p1 < x[0] < p2 and p1 < tuple_sum(x[0], x[1]) < p2:
 tempList.append(x)

 loc = [x for x in loc if x not in tempList]
 # Objects in the loc array now only contains the location and size
 # need to also define a standard window with the object in the center
 # But first discard all objects not within the threshold
 loc = [x for x in loc if np.all([i > lim for i, lim in zip(x[1], sizeLowerThreshold)]) and np.all(
 [i < lim for i, lim in zip(x[1], sizeHighThreshold)])]

 loc = [[pos, shape, expand_region(pos, shape, objectRegion), objectRegion] for pos, shape in loc]

 objectList += loc
 print("Image {} complete. {} objects found".format(imageName, len(objectList)))
 [line.insert(0, i) for i, line in enumerate(objectList)]
 # np.savetxt(imageName + '_objectList.txt', objectList, '%s', delimiter='|') # Uncomment line to export
 # text files containing objects
 np.save(imageName + '_objectList.npy', objectList)

Scripts/4_object_classification.py

4_object_classification.py
#
This file contains the code to identify all the objects found by 3_object_detection.py
using the deep neural network trained by 2_train_vgg16.py
#
Exports a textFile containing
index|(x0, y0)|(width, height)|(window x0,y0)|(window width, height)|PredictedClass|Confidence
File name based on slide image *_Predictions.txt

import numpy as np
import openslide
import time
import cv2
import os
from tensorflow.keras.models import load_model
from imfun import p2level
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.applications.vgg16 import preprocess_input

os.environ['CUDA_VISIBLE_DEVICES'] = '0'

----Settings---
imagePath = 'PalySlideImages'
modelPath = 'best.vgg16.hdf5'
classLabels = {0: 'Fibrocysta axialis',
 1: 'Other Dinoflagellates',
 2: 'Palaeoperidinium pyrophorum',
 3: 'Senoniasphaera inornata',
 4: 'Spongodinium delitiense'}

imagePaths = [i for i in os.listdir(imagePath) if '.mrxs' in i]

Load neural network
loaded_model = load_model(modelPath)

for imageName in imagePaths:
 # Load object list
 slideImage = openslide.open_slide(os.path.join(imagePath,imageName))
 imageName = imageName.replace('.mrxs','')
 objectList = np.load(imageName + '_objectList.npy', allow_pickle=True)
 print("Start detecting objects from image {}. 1 of {}".format(imageName, len(objectList)))
 classifiedObjects = []
 start = time.time()
 for idx, objectPos, objectShape, imPos, imShape in objectList:
 if idx % 1000 == 0:
 print("[Info] @ number {}".format(idx))
 x = slideImage.read_region(imPos, 1, p2level(imShape, 0, 1))
 x = x.convert('RGB')
 x = img_to_array(x)
 x = np.expand_dims(x, axis=0)
 x = preprocess_input(x)
 pred = loaded_model.predict(x)
 mPred = classLabels[pred.argmax()]
 mAcc = pred.max()
 classifiedObjects.append([idx, objectPos, objectShape, imPos, imShape, mPred, mAcc])
 classifiedObjects = np.array(classifiedObjects)
 np.savetxt(imageName+'_Predictions.txt', classifiedObjects, '%s', delimiter='|')
 # np.save(imageName + '_Predictions.npy', classifiedObjects)
 elapsed = time.time() - start
 print("[Info] {} classification complete. Time elapsed: {}".format(imageName, elapsed))

from numba import cuda
cuda.select_device(0)
cuda.close()

Scripts/5_quPath_import_annotation.groovy

Scripts/5_quPath_import_annotation.groovy

/* ---

 5_quPath_import_annotation.groovy

 This file contains the method to import annotations from the prediction-file created by

 4_object_classification.py.

 Run file and select the *_Predictions.txt-file that corresponds to the opened slide image.

 Note: The number of annotations able to be imported to QuPath is limited.

 From experience, limit the number of annotations to < a couple thousand

 --- */

import java.io.File;

import java.io.IOException;

import javax.swing.JFileChooser;

import qupath.lib.objects.*

import qupath.lib.roi.*

JFileChooser fc = new JFileChooser(System.getProperty("user.home"));

int result = fc.showOpenDialog(null);

def File selectedFile;

switch(result){

 case JFileChooser.APPROVE_OPTION:

 selectedFile = fc.getSelectedFile()

 break;

 case JFileChooser.CANCEL_OPTION:

 case JFileChooser.ERROR_OPTION:

 break;

}

for(i in selectedFile.readLines()){

 i = i.replaceAll("[(,)]","")

 i = i.split('\\|')

 def num = i[0].toInteger()

 def pos = i[1].split(' ')

 def x = pos[0].toInteger()

 def y = pos[1].toInteger()

 def shape = i[2].split(' ')

 def width = shape[0].toInteger()

 def height = shape[1].toInteger()

 def name = i[5]

 def acc = i[6].toFloat()

 createNewObject(num, x, y, width, height, acc, name)

}

PathAnnotationObject createNewObject(int num, int x, int y, int w, int h, float acc, String[] name){

 print("Adding annotation: "+[num, x, y, w, h, name, acc])

 def roi = new RectangleROI(x, y, w, h)

 def pathObject = new PathAnnotationObject(roi)

 n = name.toString()+acc.toString();

 pathObject.setName(n)

 def pathClass = getPathClass(name.toString())

 pathObject.setPathClass(pathClass)

 addObject(pathObject)

}

Scripts/imfun.py

#
This file contains helper functions
#

import numpy as np
import matplotlib.pyplot as plt
import cv2
from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.preprocessing.image import load_img, img_to_array

def plot(image, title=''):
 """Plot the image using matplotlib.pyplot"""
 plt.imshow(image), plt.title(title)
 plt.show()
 return

def cvplot(image, title=''):
 """Plot the image using OpenCV"""
 cv2.imshow(title, image)
 print("Press any key to close")
 cv2.waitKey(0)
 cv2.destroyAllWindows()
 return

def expand_region(pos, shape, new_shape):
 """This funciton will expand the region around pos in a zoom-like style.
 Args:
 pos (tuple): (x0, y0) top left corner of the point
 shape (tuple): (width, height)
 newShape (tuple): (newWidth, newHeight) new shape
 returns (tuple): (x0_1, y0_1) new top left corner
 """
 x0, y0 = pos
 w, h = shape
 newWidth, newHeight = new_shape
 x0_1 = np.int(x0 + (w / 2) - (newWidth / 2))
 y0_1 = np.int(y0 + (h / 2) - (newHeight / 2))
 return x0_1, y0_1

def p2level(point, from_level, to_level=0):
 """Transfers a point from one level to another in a multidimensjonal whole-slide image
 Assumes image size dubles for each layer (standard 3DHISTEC *.mrxs)
 Args:
 point (tuple), [list] or (int): (x, y) or x - Coordinate(s)
 fromLevel (int): The level coordinates originates from
 toLevel (int): The level you want the coordinates in
 Returns:
 newPoint (tuple): Coordinates in the new level
 """
 if type(point) == tuple or type(point) == list:
 x, y = point
 x = int(x * 2 ** (from_level - to_level))
 y = int(y * 2 ** (from_level - to_level))
 return x, y
 elif type(point) == int:
 return int(point * 2 ** (from_level - to_level))
 else:
 raise SyntaxError('Point is not an integer or tuple')

def tuple_sum(tup1, tup2):
 """Return the elementwise sum of tup1 and tup2"""
 return tuple(map(sum, zip(tup1, tup2)))

def tuple_subtract(tup1, tup2):
 """Returns the elementwise tup2 subtracted from tup1"""
 return tuple([a - b for a, b in zip(tup1, tup2)])

def find_edge(image):
 """Returns the edges of an image
 Args:
 image: PIL / np.array
 Returns: x0, y0, width, height
 """
 gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGBA2GRAY)
 m = gray > 0
 m &= gray < 255
 y, x = np.where(m)
 x0, y0 = x.min(), y.min()
 width, height = (x.max() - x0), (y.max() - y0)
 return x0, y0, width, height

def generate_grid(openslide_image, block_size=(2048, 2048), edge_detect_level=4, return_edge=False, remove_frame=True):
 """Whole slide images in .mrxs format contains alot of whitespace
 when using OpenSlide.
 In order to ease the image processing this method detects the region of interest (ROI)
 and generates a grid-system.
 Args:
 img (OpenSlide): Image opened with openslide.OpenSlide(filename)
 block_size (tuple): (width, height) of each block in the grid. Default: (1024,1024)
 edge_detect_level (int): What level to run the edge detection function with
 lower is better, but speed decreases rapidly. Default: 4
 return_edge (bool): If you also want (x0, y0, width, height) of the detected ROI.
 x0, y0 are in level 0 pixel coordinates
 Returns (numpy.ndarray): A list of blocks and corresponding pixel coordinates, size, etc.
 [grid_index, grid_col, grid_row, (block_x0, block_y0), (block_width, block_height)]
 if return_edge == True: Also returns x0, y0, width and height
 roi_x0, roi_y0, roi_width, roi_height, grid_list
 """
 print("[Info] Loading image at level: {}.".format(edge_detect_level))
 img = openslide_image.read_region((0, 0), edge_detect_level, openslide_image.level_dimensions[edge_detect_level])
 print("[Info] Loading complete.")
 # Identify the ROI:
 print("[Info] Finding region of interest.")
 *p, w, h = find_edge(img)
 print("[Info] ROI at (x0, y0): {}, width: {}, height: {}".format(p, w, h))
 p = p2level(p, edge_detect_level)
 w, h = p2level((w, h), edge_detect_level)
 print("[Info] ROI in level 0 is at (x0,y0): {}, width/height: {}/{}".format(p, w, h))
 # The grid will start at the point detected by find_edge() translated to level 0 (p)
 print("[Info] Generating grid.")
 startX, startY = p
 # Split the image into a whole number of fixed size blocks (block_size) and center them.
 # So the end of the image is x0+width - blocksize_x, y0+height-blocksize_y
 # endX, endY = tuple_subtract(tuple_sum(p, (w, h)), block_size)
 x_offset = int((w / block_size[0]) // 2)
 y_offset = int((h / block_size[1]) // 2)
 startX, startY = int(startX + x_offset), int(startY + y_offset)
 endX, endY = tuple_subtract(tuple_subtract(tuple_sum(p, (w, h)), block_size), (x_offset, y_offset))
 x_grid = np.arange(startX, endX, block_size[0])
 y_grid = np.arange(startY, endY, block_size[1])
 # Since the edges of the image always contain the edge of the slipcover, meaning nothing useful,
 # We can remove the outer frame of blocks.
 # i.e remove the first and last entry of x_grid and y_grid
 if remove_frame:
 x_grid = x_grid[1:-1]
 y_grid = y_grid[1:-1]
 # print("Grid start {},{}, grid stop {},{}".format(x_grid[0], y_grid[0], x_grid[-1], y_grid[-1]))
 # print("This gives {} columns and {} rows".format(len(x_grid), len(y_grid)))
 grid_array = []
 grid_index = 0
 for grid_row, y0 in enumerate(y_grid):
 for grid_col, x0 in enumerate(x_grid):
 grid_array.append([grid_index, grid_row, grid_col, (x0, y0), block_size])
 grid_index += 1

 grid_array = np.array(grid_array)

 print(
 "[Info] Grid generated:\n\t\t Number of blocks {}\n\t\t Number of columns: {}\n\t\t Number of rows: {}".format(
 grid_array[-1][0] + 1, grid_array[-1][2], grid_array[-1][1]
))

 if return_edge:
 return p, w, h, grid_array
 else:
 return grid_array

def segment_position(markers, block_position, image_level):
 """Returns the markers pixel position in layer 0 pixel coordinates"""
 location = []
 for i in np.unique(markers):
 if i > 1: # -1 to 1 is the frame, border and background (not used)
 pos = np.where(markers == i) # tuple with (y, x)
 y0 = pos[0].min()
 x0 = pos[1].min()
 width = pos[1].max() - x0
 height = pos[0].max() - y0
 # Transformed to lvl 0 px coords and add the offset (block_pos)
 x0, y0 = p2level((x0, y0), image_level)
 x0, y0 = tuple_sum((x0, y0), block_position)
 width, height = p2level((width, height), image_level)
 location.append([(x0, y0), (width, height)])
 return location

def plot_accuracy_and_loss(history):
 fig = plt.figure(figsize=(10,5))
 plt.subplot(121)
 plt.plot(history.history['accuracy'])
 plt.plot(history.history['val_accuracy'])
 plt.title('Model Accuracy')
 plt.ylabel('Accuracy')
 plt.xlabel('Epoch')
 plt.legend(['Train', 'Validation'], loc='lower right')
 plt.subplot(122)
 plt.plot(history.history['loss'])
 plt.plot(history.history['val_loss'])
 plt.title('Model Loss')
 plt.ylabel('Loss')
 plt.xlabel('Epoch')
 plt.legend(['Train', 'Validation'], loc='upper right')
 plt.show()

def preprocess_dataset(dataPath):
 data = []
 for imPath in dataPath:
 im = load_img(imPath)
 im = img_to_array(im)
 im = np.expand_dims(im, axis=0)
 im = preprocess_input(im)
 data.append(im)
 data = np.vstack(data)
 return data

Scripts/README.txt

README.txt

Contained in this folder are the scripts used to export annotations, detect objects, train a neural network
and perform classification on the detected objects from palyslides images of the mirax (.mrxs) format.

All files except 5_quPath_import_annotations.groovy contain their own settings section indicated by:
----Settings---
Where for example folder-paths will need to be set.

1_export_annotations.py
	This script is made to export regions as defined by annotations (.XML-file) from the mirax WSI format.
	Source images and annotation file should be contained in a folder named 'PalySlideImages'.
	The exported regions are saved to a new folder named "Export_folder" with subfolders based on the annotation label.
	A separate file containing image filename, name of the image of origin, label, position, and shape is saved in the "Export_folder".

2_train_vgg16.py
	This scipt will create a network by using transfer learning of the VGG16 backbone with weights from training on the imagenet dataset.
	The best model is saved as 'best.vgg16.hdf5'.	
	Note: The dataset is expected to be split in subfolders named "train", "val", and "test" under the datasetPath that is set under settings.

3_object_detection.py
	This script will detect objects in palyslide images of the mirax WSI format.
	Source images should be contained in a folder named 'PalySlideImages'.
	Detected objects are exported as a numpy serialized or text-file following the format:
	index|(objectPos x0,y0)|(objectShape width,height)|(windowPos x0,y0)|(windowShape width, height)
	Exported files are named from the corresponding source file *_objectList.txt or *_objectList.npy

4_object_classification.py
	This script uses the model saved by 2_train_vgg16.py and the object list from 3_object_detection.py to classify
	objects from palyslide images.
	Classified objects are saved as a text file named from the corresponding source file *_Predicitons.txt in the following format:
	index|(objectPos x0,y0)|(objectShape width, height)|(windowPos x0, y0)|(windowShape x0,y0)|PredictedClass|Confidence
	
5_quPath_import_annotations.groovy
	This script can be opened in QuPath (tested in version 0.1.2) to import the predictions as annotated objects as they are created from
	4_object_classification.py.
	Note: QuPath crashes if you try to import too many objects. Limit the number of objects by copying lines from the *_Predictions.txt to a new file.

To automatically install all packages used run: pip install -r requirements.txt in the console from this folder

Scripts/requirements.txt

matplotlib==3.2.1
numba==0.48.0
numpy==1.18.4
opencv-python==4.1.2.30
openslide-python==1.1.1
pandas==1.0.3
Pillow==7.0.0
scikit-learn==0.22.1
scikit-image==0.16.2
split-folders==0.3.1
tensorflow-gpu==2.2.0
talos==0.6.6

