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Mathematical modeling has become an important tool in order to investigate the be-

havior of biological systems. The concept of homeostasis is central to our understanding

how cells and organisms maintain an internal stability despite environmental or inter-

nal perturbations/insults. In this thesis the behavior and performance of two classes

of homeostatic controllers are investigated. These two classes differ by the number of

controller molecules involved in the homeostatic response. Single-E controllers contain

one controller species, while dual-E controllers (antithetic controllers) contain two. A

novel aspect of this thesis is the role enzymes can play in the performance of these con-

trollers. For this purpose two controller motifs (negative feedback structures, motifs 5

and 2) have been investigated in detail. Enzymatic considerations included steady state

and rapid equilibrium systems of ping-pong and ternary complex mechanisms for dual-E

controllers and one-substrate Michaelis-Menten kinetics for single-E controllers. For the

steady state systems reaction velocities were derived by the King-Altman method, which

showed practically identical results in comparison with numerical calculations. For the

motif 5 negative feedback arrangement a dual-E controller has a much better ability to

withstand perturbations than a single-E controller. The reason for this is the fact that

in dual-E controllers robust homeostasis can be achieved independently of the reaction

order involving the removal of the two controller species E1 and E2. The single-E con-

troller, on the other hand, requires zero-order or near zero-order removal kinetics with

respect to its controller molecule E. When considering the ping-pong or ternary complex

enzymatic mechanisms the dual-E controllers showed no significant differences in their

homeostatic behaviors. Finally, the occurrence of enzyme-catalyzed dual-E controllers

in physiology is discussed.
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Introduction

The concept of “homeostasis” is more and more realized important to the public nowa-

days, particularly in physiology. But what is homeostasis? Homeostasis is, a concept,

it is all the steady states of our human body, and other living organisms as well. How-

ever, it is not only the result, or the situation for steady state, but also includes the

procedures to such a balancing tendency [1] in the internal environment when external

disturbances.

The term of homeostasis was introduced by Walter B. Cannon with the Greek-derived

prefix “homeo”[2, 3]. “Homeo” means similar and like instead of “same”, which the spe-

cific property toward “to keep steady states within narrow limits” [3–5]. To stay home-

ostatic, difference mechanisms were discovered. Particularly, integral control, within

negative feedback loop (Fig.1.1), has the remarkable ability to remain functional even

under an extreme perturbation [5–8], which called robust homeostasis.

set-
point ∫

−

perturbations

integral
controller process

+
error A

set

A
set
−A E A
ε

Figure 1.1: Scheme of the integral control within a negative feedback. A, the
controlled variable, is corrected by using a negative feedback loop calculating the
error(ε) as ε=Aset-A.

Basing on the negative feedback networks, a homestatic controller has one controlled

variable A and one manipulated variable E, which E inhibites or activates acting on A’

synthesis or degradation processes in order to stay homeostasis. With the development,

1



Introduction 2

homestatic controllers are divided into two classes including four inflow controllers and

four outflow controllers (Fig.1.2) [7]. As for inflow controllers, they compensate by

adding A into the system while outflow controllers compensate by removing A from

system.

A

+

+

E

5

A

+

E

-

6

A

+

-

E

2

A
+

-
E

7

-

A

E

-

8

A

-

-

E

41

A

+

+

E

3

A
+

E
-

negative feedback networks

Figure 1.2: Scheme of the basic negative feedback networks including four inflow
controllers (1-4) and four outflow controllers (5-8). The dashed lines refer to signal
transduction originating from one species and affecting (stimulating or inhibiting) the
other.

What’s more, a new integral feedback mechanism, the so-called antithetic controller

(Fig.1.3) [1, 9, 10], came out. Antithetic controller means a bimolecular replacement of

single manipulated variable (E) by dual contoller pairs E1 and E2. The term “antithetic”

is used, because of the opposing roles of the dual contoller pairs [11], which can consume

each other to produce a product.
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Figure 1.3: Scheme of the antithetic integral controller in combination with eight
basic controller motifs. The removal of E1 and E2 can be either an uncatalyzed
second-order degradation or a catalyzed one by an explicit enzyme (Ez).

In this thesis, an enzyme-catalyzed reaction is proposed which removes the manipulated

variable species, E and E1/E2 (Fig.1.4) [12], called single-E and dual-E controller, re-

spectively. This kind of enzymatic catalyzed removal of E and E1/E2 may be more

realistic with respect to a living organism.

E Ez

A

kM+

+

a b

A

k7

+

E1

E2

+

Por

Ez

or

Figure 1.4: Scheme of integral antithetic controller based on motif 5. (a) Basic
outflow controller, motif 5 with a single controll molecule E, under an uncatalyzed
zero-order degradation or a catalyzed one by an enzyme (Ez). (b) Antithetic
controller based on motif 5 under an uncatalyzed second-order removal of E1 and E2

or a catalyzed one by an enzyme (Ez).
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Aim of thesis

The aim of this thesis is to introduce the new idea of enzyme-catalyzed antithetic con-

trollers, i.e., where E1 and E2 are removed enzymatically. Especially, we compare the

performance between catalyzed and uncatalyzed motif 5 and motif 2 controllers. More

specifically, different mechanisms for the second-order reaction in the enzymatic anti-

thetic controllers are taken into consideration including random order ternary complex

mechanisms, compulsory order ternary complex mechanisms, and substitution (ping-

pong) mechanisms (Fig.1.5) [13]. Reaction velocities determined by using the King-

Altman steady state method are compared with numerical result and rapid equilibrium

assumption.

E1 E2

E2 E1

.E2 E.E1.E2 PEz.

P

Ez Ez
Ez

.E1Ez

Ez

E1
.E1Ez

E2

Ez .E1.E2 PEz.

P

Ez

Ez

E1
.E1Ez

E2
P

Ez
Ez* Ez*.E2 PEz.

a

b

c

Figure 1.5: Scheme of two-substrate enzyme systems. (a) Random order ternary
complex mechanism. (b) Compulsory order ternary complex mechanism. Note that
here E1 binds first then E2 comes to bind with E1·Ez. The case that E2 binds first is
also taken into account in the thesis. (c) Substitution (ping-pong) mechanism. Note
that here E1 binds first then E2 comes to bind with Ez∗. Also here the case that E2

binds first to enzyme Ez is considered in the thesis.

This enzymatic depletion reaction may apply to all 8 kinds of motifs. In this thesis, I

focus only on controller motifs 5 and 2 (Fig.1.3).



Materials and Methods

For mathematical modelling, computations were performed by using the Fortran subrou-

tine LSODE [14], and in parallel, MATLAB (www.mathworks.com). Gnuplot (www.gnuplot.info)

was used for plotting and Adobe Illustrator (www.adobe.com) was used for annotating

pdfs. Concentrations of substances are represented by compound names without square

brackets to make notation simpler. The “dot” notation is generally used for time deriva-

tives. Concentrations and rate constants are given in arbitrary units (a.u.). Several runs

for each individual model have been performed with different rate parameters. However,

in this thesis, only the main results are presented.

5



Results and Discussion

Motif 5 uncatalyzed antithetic integral controller in com-

parison with zero-order

E

k3

k6

k4

k5

k1 k2

A

,KM

+

+

A

k6

k4

k7

+

E1

E2

k5
+

k3

P

k1 k2
a b

Figure 3.1: Scheme of integral antithetic controller based on motif 5. (a) Basic
outflow controller, motif 5, uncatalyzed single-E controller. (b) Uncatalyzed antithetic
dual-E controller based on motif 5.

Motif 5 (Fig.3.1 a) is an outflow controller compensating inflow perturbation by acti-

vating manipulated variable (E). Its set point (Aset) at steady state is defined by

Ȧ = k1 − k2·A+ k3 − k4·A·E (3.1)

Ė = k5·A− k6·E
KM + E

(3.2)

With assuming Ė equal to zero, then

Aset =
k6
k5

· E

KM + E
(3.3)

6
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From Eq.3.3, when the value of KM is particular small comparing with E, we can say

that it is under zero-order condition. Thus, Aset becomes

Aset =
k6
k5

(3.4)

The uncatalyzed antithetic dual-E controller from motif 5 (Fig.3.1b) includes two ma-

nipulated variables, E1 and E2, with the rate equations

Ȧ = k1 − k2·A+ k3 − k4·E1·A (3.5)

Ė1 = k5·A− k7·E1·E2 (3.6)

Ė2 = k6 − k7·E1·E2 (3.7)

For getting the steady state, the time derivations Ė1 and Ė2 are set to zero. Thus, the

set point is given by combining Eq.3.6 and Eq.3.7.

Ė1 − Ė2 = k5·A− k6 = 0 (3.8)

Therefore, for the above two controllers, the set point Aset is

Aset =
k6
k5

(3.9)

The parameters k1/k2 represent inflow/outflow perturbation respectively (Fig.3.1). Since

motif 5 is a outflow controller compensating for inflow perturbations, an increased per-

turbation (k1) was applied to both controllers.

The results are showed in Fig.3.2. Both motif 5 uncatalyzed single-E controller and

uncatalyzed antithetic dual-E controller have the ability to defend the their set points

under the step-wise perturbation in Fig.3.2 (Row a). However, when k1 is increased

linearly in Fig.3.2 (Row b), both controllers show an off-set from the set point, which

is increased with larger k̇1 and the off-set is same between controller motif 5 and un-

catalyzed antithetic controller. Furthermore, in previous paper [5], the findings showed

that controller motif 5 breaks down under a exponential/hyperbolic time-dependence

perturbation and is not displayed here.
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Figure 3.2: Comparison between uncatalyzed single-E motif 5 and corresponding
antithetic dual-E controller (Fig.3.1). (Row a) Step-wise perturbation in k1; left
panel, phase 1 (0-5 time units): k1=2, phase 2 (5-35 time units): k1=4, phase 3 (35-65
time units): k1=6; right panel, behavior of controlled variable Am5 for zero-order
controller motif 5 in black and controlled variable Aanti

uncat for uncatalyzed antithetic
controller in red. (Row b) Linear increases of k1; left panel: phase 1 (0-5 time units):
k1 is kept constant at 2.0, phase 2 (5-50 time units): k1 starts to increase with (1)
k̇1=10.0, (2) k̇1=50.0, (3) k̇1=200.0; right panel: behavior of controlled variable Am5

for zero-order controller in black and controlled variable Aanti
uncat for uncatalyzed

antithetic controller in red. Rate constants: k2=1.0, k3=1.0, k4=1.0, k5=1.0, k6=2.0,
k7=2.0, KM=1×10−6.

Controller basing on motif 5: response times and accuracy

Response times and accuracy are two significant qualities for a homeostatic controller.

Controller response time means the time when a perturbation enters the controller sys-

tem until the system arrives at a steady state. Aggressiveness is a kind of property,

which can influence the response times. In simple terms, different aggressiveness means

the ratio of k6/k5=Aset, when Aset is kept constant but the values of k6 and k5 are

changed. The term “accuracy” means how close the controller steady state to its theo-

retical set point.

In the following, the controller response times will be compared using two aspects, k7

and aggressiveness, separately.
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Figure 3.3: Comparing the response times with an increasing k7 value in
uncatalyzed antithetic controller. Left panel: behavior of controlled variables, Am5 for
motif 5 in black and uncatalyzed antithetic controller outlined in red (1, 2, 3); Right
panel: behavior of manipulated variables, E for motif 5 and E1/E2 for uncatalyzed
antithetic controller. Perturbations k1 and rate constants are the same as in Fig.3.2
row a, but with the following changes: 1, k7=20.0; 2, k7=2.0 (unaltered); 3, k7=1.0.

Fig.3.3 shows that when applying an increased k7 value, response times become shorter.

Since k7 is the parameter working on the degradations of E1 and E2, while a higher

value of k7, a rapid consumption of E1 actives the compensatory outflow flux (k4·A·E1)

to oppose perturbation k1. What’s more, the response times of the uncatalyzed anti-

thetic controller can be quick with an increased k7. However,the uncatalyzed antithetic

controller’s response time will not be lower than the response time of motif 5, single-E

controller.

As for aggressiveness, in this case, set point is kept at 2.0 all the time, while the value

of k5 and k6 are altered.

It is obvious from Fig.3.4 that the response of both zero-order integral motif 5 and

the uncatalyzed antithetic controller become faster with increasing aggressiveness and

also approach minimum response times. The restriction that the antithetic (dual-E)

controller will not be faster than the single-E controller appears to be caused by the

following reason. When focusing on the behavior of manipulated variables (right panel

of Fig.3.3 and right column of Fig.3.4), E1 and E have a similar tendency to increase,

while E2 decreases. Thus, the level of E1 cannot exceed E which is a kind of limitation

to restrict the speed for how E1 can change.
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In the following, the level of KM is altered to find out how it influences controller

accuracy. In this section, KM plays a role only in motif 5 single-E controller, but not in

the uncatalyzed antithetic controller.

 1

 2

 3

 0  10  20  30  40  50  60

A 
(a

u)
 

time (au)

1

2

Aanti
uncat

Aset3

Figure 3.5: Comparison of accuracy with increasing KM in zero-order (single-E)
motif 5 controller. Perturbations k1 and rate constants are the same as in Fig.3.2
rowa, but with the following changes: 1, KM=1×10−6 (unaltered); 2, KM=1×10−1;
3, KM=1.0.
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From Eq.3.3, we know that KM plays an important role in calculating the theoretical

set point of basic motif 5 when it works under zero-order condition (low KM ). For the

result (Fig.3.5), an increased KM would increase the off-set from its theoretical set point

Aset. Interestingly, from phase 1 to 3 with increased perturbations, the off-set becomes

smaller. This would be a typical phenomenon for motif 5 because it is an activation

kinetic outflow controller, where a large inflow perturbation of A will increase E such

that the term E/(KM + E) (Eq.3.3) becomes smaller and smaller.

And this increasing accuracy with increasing k1 should adopt for all motif 5-based con-

trollers including the uncatalyzed antithetic controller and the catalyzed antithetic con-

trollers in the following section.

Therefore, in fact, both lower KM and higher perturbation (k1) can increase the accu-

racy. Response time can be reduced by either higher k7 or higher aggressiveness.

Motif 5 antithetic controller with enzymatic catalyzed mech-

anisms

In the following, comparisons are shown between controller motif 5 and the antithetic

controller with an explicitly enzyme-catalyzed degradation of the manipulated variables,

E and E1/E2.

Mechanism of motif 5 catalyzed single-E and dual-E controllers and the

rate equations derivation

Before comparison, all the interested controllers are introduced in detail including the

mechanism in schemes, rate equations derivation, and the velocity calculated by using

rapid equilibrium assumption and King-Altman steady state mechanism.

Motif 5 single-E controller with Michaelis-Menten degradation of E

The scheme of motif 5 single-E controller is in Fig.3.6 below.
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E
+
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k3

k7 P + Ez
Ez
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k9

k10
v

+

Figure 3.6: Motif 5 single-E controller: removal of E by enzyme Ez using a
Michaelis-Menten mechanism.

The rate equations for motif 5 single-E controller are as follows:

Ȧ = k1 − k2·A+ k3 − k4·E·A (3.10)

Ė = k5·A− k9·(E)·(Ez) + k10·(E·Ez) (3.11)

Ėz = −k9·(Ez)·(E) + k10·(E·Ez) + k7·(E·Ez) (3.12)

d(E·Ez)
dt

= k9·(Ez)·(E) − k10·(E·Ez) − k7·(E·Ez) (3.13)

In order to find the set point, Eq.3.11 and Eq.3.12 are set to zero at steady state. Then

A·k5 = k9·(E)·(Ez) − k10·(E·Ez) (3.14)

k7·(E·Ez) = k9·(Ez)·(E) − k10·(E·Ez) (3.15)

A·k5 = k7·(E·Ez) (3.16)

And Eq.3.16 combines with the conversion from Eq.3.13. When it is under zero-order

condition, the set point Aset, is

Aset =
k7·Eztot
k5

(3.17)

Here, Eztot means the total enzyme concentration, i.e.,

Eztot = (Ez) + (E·Ez) (3.18)
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Motif 5 dual-E controller with random order ternary complex mechanism

Fig.3.7 is the scheme of the motif 5 dual-E controller with random order ternary complex

mechanism.
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.E2
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k15
k16

v

+
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+

Figure 3.7: Motif 5 dual-E controller: removal of E1 and E2 by enzyme Ez using a
ternary complex mechanism with random binding order.

The rate equations are,

Ȧ = k1 − k2·A+ k3 − k4·E1·A (3.19)

Ė1 = k5·A− k9·(E1)·(E2) + k10·(E1·Ez) − k15·(E1)·(Ez·E2) + k16·(E1·Ez·E2) (3.20)

Ė2 = k6 − k13·E2·Ez + k14(Ez·E2) − k11·(E1·Ez)·E2 + k12·(E1·Ez·E2) (3.21)

Ėz = −k9·(E1)·(Ez)+k10·(E1·Ez)+k7·(E1·Ez·E2)−k13·(Ez)·(E2)+k14·(Ez·E2) (3.22)

d(E1·Ez)
dt

= k9·(E1)·(E2) − k10·(E1·Ez) − k11·(E1·Ez)·(E2) + k12·(E1·Ez·E2) (3.23)

d(E1·Ez·E2)

dt
= k11·(E1·Ez)·(E2) − k12·(E1·Ez·E2) − k7·(E1·Ez·E2) + k15·(Ez·E2)·(E1)

− k16·(E1·Ez·E2) (3.24)

d(Ez·E2)

dt
= k13·(E2)·(Ez) − k14·(Ez·E2) − k15(Ez·E2)·(E1) + k16·(E1·Ez·E2) (3.25)
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The reaction velocity v is,

v = Ṗ = k7·(E1·Ez·E2) (3.26)

With a rapid equilibrium assumption, we have the equilibrium expressions as follows:

KM1 =
(Ez)·(E1)

(E1·Ez)
=
k10
k9

(3.27)

KM2 =
(E1·Ez)·(E2)

(E1·Ez·E2)
=
k12
k11

(3.28)

KM3 =
(Ez)·(E2)

(Ez·E2)
=
k14
k13

(3.29)

KM4 =
(E1)·(Ez·E2)

(E1·Ez·E2)
=
k16
k15

(3.30)

In order to get the expression of v in Eq.3.26, the total concentration of Ez is Eztot,

Eztot = (E1·Ez) + (Ez·E2) + (E1·Ez·E2) + (Ez) (3.31)

and

(E1·Ez) =
KM2

(E2)
·(E1·Ez·E2) (3.32)

(Ez·E2) =
KM4

(E1)
·(E1·Ez·E2) (3.33)

(Ez) =
KM1

(E1)
·(E1·Ez) =

KM1

(E1)
·KM2

(E2)
·(E1·Ez·E2) (3.34)

Thus,

Eztot = (
KM2

(E2)
+
KM4

(E1)
+
KM1·KM2

(E1)·(E2)
+ 1)·(E1·Ez·E2) (3.35)

The rapid equilibrium approximation for velocity, v, is then

vrandomrapid eq =
k7·Eztot

(1+KM4
(E1)

+KM2
(E2)

+KM1·KM2
(E1)·(E2)

)
=

Vmax

(1+KM4
(E1)

+KM2
(E2)

+KM1·KM2
(E1)·(E2)

)
(3.36)

Note that KM1, KM2, KM3 and KM4 should comply with the principle called detailed

balance [15], i.e.,

KM1 ·KM2 = KM3 ·KM4 (3.37)

However, the expression of v becomes much complex with a steady state assumption

and it comes up later with the King-Altman method.

Actually, the set point of the dual-E controller is dependent on the concentration of E2,
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which can be divided into two cases. When the concentration value of E2 is much lower

than E1, the set point would be same as for the uncatalyzed one (3.9),

Aset =
k6
k5

(3.38)

But, when E2 is relative large, the dual-E controller gets the same set point (3.17) as

the single-E controller,

Aset =
k7·Eztot
k5

(3.39)

In this thesis, the King-Altman method is also taken into consideration to compare the

numerical velocity with the velocity using a steady state approach. Fig.3.8 is the scheme

of the motif 5 random order dual-E controller using the King-Altman method.

.EzE1
.E2

Ez .EzE1

Ez .E2

k9

k10

E1

k11
k12

E2
k7

k15

k16

E1
k13k14

E2

Figure 3.8: The scheme of motif 5 dual-E controller with random order ternary
complex mechanism using the King-Altman method. The four enzymatic species are
arranged in form of a square.

For the free enzyme Ez, its formation is indicated by the arrow in the fractional numer-

ator below (3.40).

Ez

Eztot
=

+ + + + + + +

D
(3.40)

Then, apply the coefficient to its represented arrow:

Ez

Eztot
=
k14·k10·k12 + k15·E1·k12·k10 + k11·E2·k16·k14

D
+k16·k14·k10 + k7·k14·k10 + k11·E2·k15·E1·k7

D
+k10·k15·E1·k7 + k14·k11·E2·k7

D
(3.41)
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For enzymatic species E1·Ez, we get the ratio

(E1·Ez)

Eztot
=

+ + + + + + +

D

=
k14·k9·E1·k12 + k9·E1·k12·k15·E1 + k13·E2·k15·E1·k12

D
+k16·k14·k9·E1 + k14·k7·k9·E1 + k15·E1·k7·k9·E1

D
(3.42)

For enzymatic species E1·Ez·E2, we get the ratio

(E1·Ez·E2)

Eztot
=

+ + + ++ + +

D

=
k14·k9·E1·k11·E2 + k9·E1·k11·E2·k15·E1 + k13·E2·k15·E1·k11·E2

D
+k10·k13·E2·k15·E1

D
(3.43)

For enzymatic species Ez·E2, we get the ratio

(Ez·E2)

Eztot
=

+ + ++ + + +

D

=
k13·E2·k10·k12 + k16·k13·E2·k10 + k13·E2·k16·k11·E1

D
+k10·k13·E2·k16 + k13·E2·k7·k10 + k13·E2·k7·k11·E2

D
(3.44)

The red cross sign in numerator means this formation to enzymatic species is not present

because of an irreversible reaction. The denominator, D, is the sum of all numerators.

In this case, it is the sum of numerators of Eq.3.41, Eq.3.42, Eq.3.43 and Eq.3.44, i.e.,

D = k14·k10·k12 + k15·E1·k12·k10 + k11·E2·k16·k14 + k16·k14·k10 + k7·k14·k10

+ k11·E2·k15·E1·k7 + k10·k15·E1·k7 + k14·k11·E2·k7 + k14·k9·E1·k12

+ k9·E1·k12·k15·E1 + k13·E2·k15·E1·k12 + k16·k14·k9·E1 + k14·k7·k9·E1

+ k15·E1·k7·k9·E1 + k14·k9·E1·k11·E2 + k9·E1·k11·E2·k15·E1 + k13·E2·k15·E1·k11·E2

+ k10·k13·E2·k15·E1 + k13·E2·k10·k12 + k16·k13·E2·k10 + k13·E2·k16·k11·E1

+ k10·k13·E2·k16 + k13·E2·k7·k10 + k13·E2·k7·k11·E2 (3.45)
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And finally, the steady state velocity v can be written

vrandomK−A,ss = k7·(E1·Ez·E2)

= k7·
k14·k9·E1·k11·E2 + k9·E1·k11·E2·k15·E1 + k13·E2·k15·E1·k11·E2

D
+k10·k13·E2·k15·E1

D
·(Eztot) (3.46)

Motif 5 dual-E controller with compulsory order ternary complex mechanism

E1 binding first to Ez

Fig.3.9 is the scheme of motif 5 dual-E controller with compulsory order ternary complex

mechanism. In this case, manipulated variable E1 binds first to Ez, then E2 binds with

E1·Ez to form the ternary complex, E1·Ez·E2.
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k1 k2
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k6

k7 P + Ez

Ez

Ez

.EzE1

k9
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.EzE1
.E2 v

+

k3

+

Figure 3.9: Motif 5 dual-E controller: removal of E1 and E2 by enzyme Ez using a
ternary complex mechanism with compulsory order when E1 binds first to Ez.

The rate equations are

Ȧ = k1 − k2·A+ k3 − k4·E1·A (3.47)

Ė1 = k5·A− k9·E1·Ez + k10·(E1·Ez) (3.48)

Ė2 = k6 − k11·E2·(E1·Ez) + k12·(E1·Ez·E2) (3.49)

Ėz = −k9·E1·Ez + k10·(E1·Ez) + k7·(E1·Ez·E2) (3.50)

d(E1·Ez)
dt

= k9·E1·Ez − k10·(E1·Ez) − k11·(E1·Ez)·E2 + k12·(E1·Ez·E2) (3.51)
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d(E1·Ez·E2)

dt
= k11·(E1·Ez)·E2 − k12·(E1·Ez·E2) − k7·(E1·Ez·E2) (3.52)

The velocity for rapid equilibrium assumption using a same method in the random order

mechanism above

vcomp−E1

rapid eq =
Vmax

(1+KM2
(E2)

+KM1·KM2
(E1)·(E2)

)
(3.53)

As for the compulsory order ternary complex mechanism, KM1, KM2, KM3 and KM4

should also comply with the principle (Eq.3.37). All the enzymatic catalyzed antithetic

controllers in this thesis will follow the principle of detailed balance.

Fig.3.10 is the scheme of motif 5 dual-E controller under compulsory order ternary

complex mechanism E1 binding first using the King-Altman steady state method.

.EzE1
.E2

Ez

.EzE1k9
k10

E1

k11
k12

E2

k7

Figure 3.10: The scheme of motif 5 dual-E controller under compulsory order when
E1 binds first to Ez using the King-Altman method. The three enzymatic species are
arranged in form of a triangle.

Then, the ratio of enzymatic species Ez/Eztot is

Ez

Eztot
=

+ +

D

=
k12·k10 + k11·E2·k7 + k10·k7

D
(3.54)

For enzymatic species E1·Ez

(E1·Ez)

Eztot
=

+ +

D

=
k9·E1·k12 + k9·E1·k7

D
(3.55)
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For enzymatic species E1·Ez·E2

(E1·Ez·E2)

Eztot
=

+ +

D

=
k9·E1·k11·E2

D
(3.56)

Finally, the steady state velocity is

vcomp−E1

K−A,ss = k7·
k9·E1·k11·E2

D
·Eztot (3.57)

Motif 5 dual-E controller with compulsory order ternary complex mechanism

E2 binding first to Ez

Fig.3.11 is the scheme of motif 5 dual-E controller with compulsory order ternary com-

plex mechanism. In this case, manipulated variable E2 binds first to Ez, then E1 binds

with Ez·E2 and forms a ternary complex, E1·Ez·E2.
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Figure 3.11: Motif 5 dual-E controller: removal of E1 and E2 by enzyme Ez using a
ternary complex mechanism with compulsory order when E2 binds first to Ez.

The rate equations are

Ȧ = k1 − k2·A+ k3 − k4·E1·A (3.58)

Ė1 = k5·A− k15·(Ez·E2)·E1 + k16·(E1·Ez·E2) (3.59)

Ė2 = k6 − k13·E2·Ez + k14·(Ez·E2) (3.60)
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Ėz = k7·(E1·Ez·E2) − k13·Ez·E2 + k14·(Ez·E2) (3.61)

d(E1·Ez·E2)

dt
= −k7·(E1·Ez·E2) + k15·(Ez·E2)·E1 − k16·(E1·Ez·E2) (3.62)

d(Ez·E2)

dt
= k13·E2·Ez − k14·(Ez·E2) − k15·(Ez·E2)·E1 + k16·(E1·Ez·E2) (3.63)

The velocity using a rapid equilibrium assumption is

vcomp−E2

rapid eq =
Vmax

(1+KM4
(E1)

+KM3·KM4
(E1)·(E2)

)
(3.64)

By applying the King-Altman steady state method, Fig.3.12 is the scheme of motif 5

dual-E controller under compulsory order ternary complex mechanism when E2 binds

first to Ez.

.EzE1
.E2

Ez

Ez.E2k13
k14

E2

k15
k16

E1

k7

Figure 3.12: The scheme of motif 5 dual-E controller under compulsory order when
E2 binds first to Ez using the King-Altman method. Enzymatic species are placed in
form of a triangle.

For the ratio of each enzymatic species

Ez

Eztot
=

+ +

D

=
k16·k14 + k7·k15·E1 + k14·k7

D
(3.65)

(Ez·E2)

Eztot
=

+ +

D

=
k13·E2·k16 + k7·k13·E2

D
(3.66)
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(E1·Ez·E2)

Eztot
=

+ +

D

=
k13·E2·k15·E1

D
(3.67)

Thus, the steady state velocity is

vcomp−E2

K−A,ss = k7·
k13·E2·k15·E1

D
·Eztot (3.68)

Motif 5 dual-E controller with substitution (ping-pong) mechanism E1 bind-

ing first to Ez

Fig.3.13 is the scheme of motif 5 dual-E controller using a ping-pong mechanism. In this

case, the enzyme Ez binds first with E1 to release an actived Ez∗. Then E2 comes to

substitution binding with Ez∗ to generate the final product, P .

A

E1

E2

+

k1 k2
k3 k4

k5

k6

k7 P + Ez
Ez

Ez

.EzE1

k9

k10

E2
k11

k12

k13

k14 Ez* .E2 v

+

Ez*

Figure 3.13: Motif 5 dual-E controller: removal of E1 and E2 by enzyme Ez using a
ping-pong mechanism when E1 binds first to Ez.

The rate equations are

Ȧ = k1 − k2·A+ k3 − k4·E1·A (3.69)

Ė1 = k5·A− k9·E1·Ez + k10·(E1·Ez) (3.70)

Ė2 = k6 − k13·E2·Ez∗ + k14·(Ez∗·E2) (3.71)

Ėz = −k9·E1·Ez + k10·(E1·Ez) + k7·(Ez∗·E2) (3.72)

d(E1·Ez)
dt

= k9·E1·Ez − k10·(E1·Ez) − k11·(E1·Ez) + k12·Ez∗ (3.73)
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d(Ez∗·E2)

dt
= k13·E2·Ez∗ − k14·(Ez∗·E2) − k7·(Ez∗·E2) (3.74)

d(Ez∗)

dt
= k11·(E1·Ez) − k12·Ez∗ − k13·E2·Ez∗ + k14·(Ez∗·E2) (3.75)

The derivation of velocity using a rapid equilibrium assumption are

KM1 =
(E1)·(Ez)
(E1·Ez)

=
k10
k9

(3.76)

KM2 =
(E1·Ez∗)

(Ez∗)
=
k12
k11

(3.77)

KM3 =
(Ez∗)·(E2)

(Ez∗·E2)
=
k14
k13

(3.78)

Since

v = k7·(Ez∗·E2) (3.79)

that we have

Eztot = (Ez) + (E1·Ez) + (Ez∗·E2) + (Ez∗) (3.80)

(Ez∗) =
KM3

(E2)
·(Ez∗·E2) (3.81)

(E1·Ez) = KM2·(Ez∗) =
KM2·KM3

(E2)
·(Ez∗·E2) (3.82)

(Ez) =
KM1

(E1)
·(E1·Ez) =

KM1·KM2·KM3

(E1)·(E2)
·(Ez∗·E2) (3.83)

Eztot = (
KM1·KM2·KM3

(E1)·(E2)
+
KM2·KM3

(E2)
+
KM3

(E2)
+ 1)·(Ez∗·E2)

= (
KM1·KM2·KM3

(E1)·(E2)
+
KM3·(1+KM2)

(E2)
+ 1)·(Ez∗·E2)

= (1+
α

(E2)
+

β

(E1)·(E2)
)·(Ez∗·E2) (3.84)

Finally,

vPP−E1
rapid eq =

k7·Eztot
(1+ α

(E2)
+ β

(E1)·(E2)
)

=
Vmax

(1+ α
(E2)

+ β
(E1)·(E2)

)
(3.85)

Note that, α=KM3·(1+KM2) and β=KM1·KM2·KM3.

Fig.3.14 is the scheme of motif 5 dual-E controller under ping-pong mechanism E1

binding first to Ez using the King-Altman steady state method.
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k10

.EzE1

k11k12

Ez*
k13

k14

E2

Ez* .E2

k7

Figure 3.14: The scheme of motif 5 dual-E controller with a ping-pong mechanism
when E1 binds first to Ez using the King-Altman method. Enzymatic species are
arranged in form of a square.

For the ratio of each enzymatic species

Ez

Eztot
=

+ + +

D

=
k7·k10·k12 + k14·k12·k10 + k11·k13·E2·k7 + k13·E2·k7·k10

D
(3.86)

(E1·Ez)

Eztot
=

+ + +

D

=
k7·k9·E1·k12 + k14·k12·k9·E1 + k13·E2·k7·k9·E1

D
(3.87)

(Ez∗)

Eztot
=

+ + +

D

=
k7·k9·E1·k11 + k9·E1·k11·k14

D
(3.88)

(Ez∗·E2)

Eztot
=

+ + +

D

=
k9·E1·k11·k13·E2

D
(3.89)
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Finally, the steady state velocity is

vPP−E1
K−A,ss = k7·

k9·E1·k11·k13·E2

D
·Eztot (3.90)

Motif 5 dual-E controller with substitution (ping-pong) mechanism E2 bind-

ing first to Ez

Fig.3.13 is the scheme of motif 5 dual-E controller with ping-pong mechanism. In this

case, the free enzyme Ez binds with E2 first to release an actived Ez∗. Then E1 comes

to substitution binding with Ez∗ to generate the final product, P .

A

E1

E2

+

k1 k2
k3 k4

k5

k6

+

k7 P + Ez
Ez

Ez

.EzE2

k13

k14

k11

k12

k9

k10E1

Ez*.E1 vEz*

Figure 3.15: Motif 5 dual-E controller: removal of E1 and E2 by enzyme Ez using a
ping-pong mechanism when E2 binds first to Ez.

The rate equations are

Ȧ = k1 − k2·A+ k3 − k4·E1·A (3.91)

Ė1 = k5·A− k9·E1·Ez∗ + k10·(Ez∗·E1) (3.92)

Ė2 = k6 − k13·E2·Ez + k14·(E2·Ez) (3.93)

Ėz = −k13·E2·Ez + k14·(E2·Ez) + k7·(Ez∗·E1) (3.94)

d(E2·Ez)
dt

= k13·E2·Ez − k14·(E2·Ez) − k11·(E2·Ez) + k12·Ez∗ (3.95)

d(Ez∗·E1)

dt
= k9·E1·Ez∗ − k10·(Ez∗·E1) − k7·(Ez∗·E1) (3.96)

d(Ez∗)

dt
= k11·(E2·Ez) − k12·Ez∗ − k9·E1·Ez∗ + k10·(Ez∗·E1) (3.97)
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The velocity using a rapid equilibrium assumption is

vPP−E2
rapid eq =

Vmax

(1+ α
(E1)

+ β
(E1)·(E2)

)
(3.98)

Note that, α=KM1·(1+KM2) and β=KM1·KM2·KM3.

Fig.3.16 is the scheme of motif 5 dual-E controller under ping-pong mechanism E2

binding first using King-Altman steady state method.

Ez
E2 k13

k14

.EzE2

k11k12

Ez*
k9

k10

E1

Ez* .E1

k7

Figure 3.16: The scheme of motif 5 dual-E controller with a ping-pong mechanism
when E2 binds first using the King-Altman method. The four enzymatic species are
arranged in form of a square.

For the ratios of each enzymatic species are:

Ez

Eztot
=

+ + +

D

=
k14·k12·k7 + k14·k12·k10 + k7·k9·E1·k11 + k14·k7·k9·E1

D
(3.99)

(E2·Ez)

Eztot
=

+ + +

D

=
k13·E2·k7·k12 + k13·E2·k12·k10 + k7·k9·E1·k13·E2

D
(3.100)

(Ez∗)

Eztot
=

+ + +

D

=
k7·k13·E2·k11 + k13·E2·k11·k10

D
(3.101)
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(Ez∗·E1)

Eztot
=

+ + +

D

=
k13·E2·k11·k9·E1

D
(3.102)

Finally, the steady state velocity is

vPP−E2
K−A,ss = k7·

k13·E2·k11·k9·E1

D
·Eztot (3.103)

Comparing the catalyzed motif 5 controllers: set point defence and

enzyme limitation

In this case, the single-E controller is compared with all five kinds of dual-E controllers,

which described above, and finally six controllers in total. In the figure, the single-E

controller is in cyan and dual-E controllers are: in blue, random order ternary com-

plex mechanism; in red, compulsory order E1 binding first; in black, compulsory order

E2 binding first; in green, ping-pong mechanism E1 binding first; in purple, ping-pong

mechanism E2 binding first. Labels are shown in the bottom of Fig.3.17.

In order to make things simple, the non zero-order condition is defined by a low pertur-

bation, k1, as discussed before.

In Fig.3.17, the left column (1-3) is under non zero-order condition with a small per-

turbation, while the right column (4-6) is under zero-order condition with a relatively

large perturbation. As for 2-3 and 5-6, the all of five kinds of the dual-E controllers

can arrive at its set point with the low value of k6 no matter in a non zero-order or a

zero-order condition, while the single-E controller worked well in zero-order condition

but had a off-set from its set point in non zero-order condition. An interesting behavior

for dual-E controllers in 2, there is a transition moving A from Asingle−Ess to Adual−Ess and

same transition can be observed in 5 but no in 3 and 6. The only difference between 2

and 3, and between 5 and 6 is the initial concentration of E2 is much lower in 3 and 6

than in 2 and 5, respectively.
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Figure 3.17: The comparison of motif 5 single-E and dual-E controllers to defend
their set point. Perturbation: 1-3, k1=1.0; 4-6, k1=1000.0. Rate constants: k2=1.0,
k3=0.0, k4=1.0, k5 = 50, k7 = 10+5, k8 = 0.1, k9=1×10+9, k10=1×10+3,
k11=1×10+9, k12=1×10+3, k13=1×10+9, k14=1×10+3, k15=1×10+9, k16=1×10+3,
Eztot=1×10−3. For 1 and 4, k6=10+3 with the set point Adual−E

set =20.0 while

Asingle−E
set =2.0. For the rest 2, 3, 5 and 6, k6=20 with the set point Asingle−E

set =2.0
and Adual−E

set =0.4 respectively. In parallel, a set of Matlab programs are in Appendix
for verification and further exploration.

This kind of transition is illustrated by using Fig.3.18 (c) and (d). As for Fig.3.18 (c), it

is the behavior of controller species from Fig.3.17 (2) and Fig.3.18 (d) is from Fig.3.17

(3). In Fig.3.18 (c), it can be seen that E2 decreased for some times then equaling

about zero and it is the time when E2 equal to zero that E1 increased. During the

decrease of E2, the value of E2 is quite large compared with E1, that is why the dual-E

controllers have a set point at Asingle−Ess . It is the time, when the value of E2 is near

zero, E1 increased and is relative large comparing with E2, the switch occur moving A

to Adual−Eset corresponding to Fig.3.17 (2). When focusing on Fig.3.18 (d), the value of

E2 is much lower than E1 from the beginning. Thus, dual-E controllers arrive at its set

point at very beginning in Fig.3.17 (3). The same is true for Fig.3.17 (5) and (6).
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Figure 3.18: The behavior of controller species E, E1 and E2 in single-E and dual-E
controllers. (a) The controller species from Fig.3.17 (1). (b) The controller species
from Fig.3.17 (4). (c) The controller species from Fig.3.17 (2). (d) The controller
species from Fig.3.17 (3).

As for Fig.3.17 (1) and (4), single-E controller can defend its set point in zero-order

condition but fail in non zero-order conditions. And for the dual-E controllers, all fail to

get the set point (20.0) both in zero-order and non zero-order conditions. It is noteworthy

that the A value of dual-E controllers are equal to the single-E one. The reasons are as

follow using Fig.3.18 (a) and (b) for explanation. In Fig.3.18 (a), we can see E2 species

increase all the time while E1 species keep constant near zero, which means a large value

of E2 keep consuming E1 leading to little amount of E1 working to defend its set point.

Eventually, an off-set occurs. On the other hand, the E2 species play no role on the

regulation in negative feedback loop, which means only the E1 specie participates in

regulation and the dual-E controllers work just like the single-E controller as shown in

Fig.3.20 (e). Thus, Adual−E is equal to Asingle−E in (1), and called dual-E controllers

work in a single-E control mode. The same is true for Fig.3.18 (b) from Fig.3.17 (4).

The results above can approve the view before that the set point of a dual-E controller

is depended on the concentration of E2 in comparison with E1. When E2 is relative

large compared to E1, dual-E controllers have the same set point as single-E controller,

i.e.,

Aset =
k7·Eztot
k5

(3.104)
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Alternatively, when E2 is relative low, dual-E controllers have the set point

Aset =
k6
k5

(3.105)

To sum up, the dual-E controllers show a better performance than the single-E con-

trollers, since the dual-E controllers can defend their set points both under zero-order

and non zero-order conditions when work in the dual-E control mode. When the dual-E

controllers work in the single-E control mode, they have the same behavior of A as for

the single-E controllers.

Enzyme limitation

Considering the influence of the enzyme concentration, the comparison is done similar

to Fig.3.17 but the total concentration of enzyme was changed from 1×10−3 to 1×10−6

now. As discussed before, the set point is defined by Eq.3.17, which means when Eztot

is decreased by three order of magnitude to 1×10−6, the value of k7 should be adjusted

correspondingly by three order of magnitude to 1×10+8 to have the same Aset both in

Fig.3.17 and Fig.3.19.

From Fig.3.19, it is easy to see that single-E controller still has an off-set in non zero-

order condition but works well in zero-order conditions. As for the dual-E controllers,

roughly it is similar to Fig.3.17 defending the set point successfully independent of non

zero-order or zero-order conditions. However, focusing on Fig.3.19 (4), the behavior of

A for ping-pong mechanism E1/E2 binding first and compulsory order ternary complex

mechanism E2 binding first have a small off-set different from other dual-E controllers.

Actually, in Fig.3.19 (1), these three controllers also have a little different from other,

when look into details from the program result that the value of A is equaling 0.915 for

these three with others equaling 0.921, respectively. But when the value of k6 is changed

becoming smaller (Fig.3.19 2, 3, 5 and 6), all the dual-E controllers defend its set point

well.

Therefore, considering an enzyme limitation, it has a little impact on the dual-E con-

trollers for ping-pong mechanism E1/E2 binding first and compulsory order ternary

complex mechanism E2 binding first. Overall, all five dual-E controllers have the ability

to defend their set points.
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Figure 3.19: The comparison of motif 5 single-E and dual-E controllers to defend a
set point. Rate constants are same as in Fig.3.17, but k7=1×10+8, Eztot=1×10−6.

Switching between dual-E and single-E control mode of motif 5 catalyzed

antithetic controllers

The case in motif 5 catalyzed antithetic controller, a switching between dual-E and

single-E control mode, can be defined as follow. As the set point can be calculated in

two ways, we have the equation

Aset =
k6
k5

=
k7·Eztot
k5

(3.106)

As shown in Fig.3.20 (a). It is easy to observe when

k6
k5

≥ k7·Eztot
k5

(3.107)
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Figure 3.20: Switch between single-E and dual-E control mode in motif 5 catalyzed
antithetic controller, with random order ternary complex mechanism in the removal of
E1 and E2. (a) Ass as a function of k6. The A value for single-E and dual-E control
mode are shown as red and blue lines, respectively. The gray solid points are the
numerically calculated steady state values. The outlined red and blue circles show the
k6 values (1000.0 and 20.0) used in panels c and d. (b) Steady state values of v
(Eq.3.46) calculated by King-Altman method (red line) and numerical velocities (gray
points). (c) and (d) Single-E and dual-E control mode with k6 equaling 1000.0 and
20.0 respectively. They come from Fig.3.17 (4) and (6) with plotting only the A
values for random order ternary complex mechanism. (e) The part of the network
outlined in red is active during single-E control mode with E2 continuously increasing.
(f) The entire network is active during dual-E control mode (outlined in blue).

means k7·Eztot/k5 is dominating (the left part on the red line of Fig.3.20 a). Only

manipulated variable E1 is functioning properly, while the values of E2 is increasing

continuously (Fig.3.18 b). And then we call dual-E controller works in single-E control

mode (Fig.3.20 c and e).

On the contrary, when
k6
k5
<
k7·Eztot
k5

(3.108)
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means the set point of the dual-E controller will be equal to the value of k6/k5 (the right

part on the blue line of Fig.3.20 a). The dual-E controller works in a general dual-E

control mode (Fig.3.20 d). As Fig.3.20 (f) shows, both E1 and E2 take part in the

regulation of A.

And the switching not only happens in the zero-order condition (Fig.3.17 (5) and Fig.3.19

(5)) but also in non zero-order condition (Fig.3.17 (2) and Fig.3.19 (2)) and has similar

behavior as in (Fig.3.20 a). However, as discussed before, the single-E controller has an

off-set under non zero-order condition thus the same off-set will occur in the level of Ass

and we would not display the details here.

Reaction velocity of E1/E2 degradation

In order to check whether the program is valid, the reaction velocity of degradation

of E1 and E2 is calculated by using the King-Altman steady state method and rapid

equilibrium assumption and compared with numerical velocity. The value of velocity

from steady state always agrees with the numerical one while the rapid equilibrium one

is far away, which is in line with expectations. Fig.3.20 (b) shows one example that

velocity from King-Altman steady state method equal to the numerical one. Here, only

the ternary complex random order mechanism is plotted. In fact, this occurs for all five

dual-E controllers.

Motif 2 uncatalyzed antithetic integral controller in com-

parison with zero-order integral controller

In order to compare motif 5-based controllers with motif 2-based controllers, in the fol-

lowing, motif 2 negative feedback loops are introduced and extended to their uncatalyzed

versions.
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Figure 3.21: Scheme of antithetic controller based on motif 2. (a) Uncatalyzed
antithetic controller based on motif 2. (b) Basic inflow controller, motif 2.

Motif 2 is an inflow type of controller compensating outflow perturbation by derepressing

the controlled variable A, which differs from motif 5. For Fig.3.21 (a), we have the rate

equations

Ȧ = k1 − k2·A+
k3·k8
k8 + E

− k4·E·A (3.109)

Ė1 = k5·A− k7·E1·E2 (3.110)

Ė2 = k6 − k7·E1·E2 (3.111)

For Fig.3.21 (b), we have the rate equations

Ȧ = k1 − k2·A+
k3·k8
k8 + E

− k4·E·A (3.112)

Ė = k5·A− k6·E
k9 + E

(3.113)

When k9 � E, the set point, Aset, can be written as

Aset =
k6
k5

(3.114)

Different outflow perturbations, k2, were applied in motif 2-based controllers to under-

stand their performances.

Firstly, with respect to previous findings [5], the motif 2 zero-order integral controller

works well not only under step-wise perturbations but also under linearly increasing per-

turbations. However, the result (Fig.3.22) shows that the uncatalyzed antithetic motif

2 controller can defend its set point with step-wise perturbation (Row a) but not with
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linearly increasing k2 values. Row b shows the increased off-set with increased k̇2. Both

controllers fail with exponentially increasing perturbations (Row c).
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Figure 3.22: Comparison between integral motif 2 negative and uncatalyzed
antithetic controller. (Row a) Step-wise perturbations in k2; left panel, phase 1 (0-10
time units): k2=10.0, phase 2 (10-100 time units): k2=20.0, phase 3 (100-200 time
units): k2=40.0; right panel: behavior of controlled variable Azo for zero-order
controller motif 2 in black and controlled variable Aantith

uncat for uncatalyzed antithetic
controller in orange. (Row b) Linear increases of k2; left panel, phase 1 (0-10 time
units): k2 is kept constant at 10.0, phase 2 (10-200 time units): k2 starts to increase
with (1) k̇2=20.0, (2) k̇2=50.0, (3) k̇2=200.0; right panel: behavior of controller
variable Azo for zero-order controller in black and Aantith

uncat for uncatalyzed antithetic
controller in orange. (Row c) Exponential increase of k2; left panel, phase 1 (0-10
time units): k2 is kept constant at 10.0, phase 2 (10-200 time units): k2 starts to
increase according to k2(t)=10+0.1(e[0.1(t−10)]-1); right panel, behavior of controlled
variable Azo for zero-order controller in black and Aantith

uncat for uncatalyzed antithetic
controller in orange. Rate constants: k1=0.0, k3=1×10+5, k4=1.0, k5=10.0, k6=20.0,
k7=0.1, k8=0.1, k9=1×10−6.

Controller basing on motif 2: aggressiveness and accuracy

As considering the aggressiveness, a higher aggressiveness will improved the response

time.
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As for the accuracy, the result (Fig.3.23) shows that the values of Ass for the uncat-

alyzed antithetic controller (Aantithuncat ) comes closer to the value of the zero-order single-E

controller (Azo) with an increasing k7.
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Figure 3.23: Comparison of accuracy with increasing k7 in the uncatalyzed
antithetic motif 2 controller. Rate constants are the same as in Fig.3.22 c, but with
the following changes: 1, k7=0.1 (unaltered); 2, k7=1.0; 3, k7=10.0; 4, k7=100.0; 5,
k7=1000.0.

The increasing accuracy is because a higher k7 value leads to a more rapid removal of

E1 and E2, which means less E1 could work on the inhibition of A accumulation. Then,

more inflow A compensate for the outflow perturbations resulting in an approaching

value to Azo.

Motif 2 antithetic controller with enzymatic catalyzed mech-

anisms

In the following, an explicitly enzyme is included in motif 2-based controller for the

degradation of manipulated variables, E and E1/E2. Since the results in motif 5-based

show that there is no significant difference between the different kinetics within the two-

substrate enzyme systems, only ternary complex random order mechanism for dual-E

controller of motif 2-based is discussed in this section.

Mechanism of motif 2 catalyzed single-E and dual-E controllers and the

rate equations derivation

Firstly, the mechanistic schemes and their rate equations are introduced.
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Motif 2 single-E controller with Michaelis-Menten degradation of E

Fig.3.24 shows the scheme of motif 2 single-E controller explicitly including an enzyme

using the Michaelis-Menten mechanism.
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E
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+

k1 k2
k3 k4

k5

k3

k8

k7 P + Ez
Ez

Ez

.EzE
k9

k10
v

Figure 3.24: Motif 2 single-E controller: removal of E by enzyme Ez using a
Michaelis-Menten mechanism.

The rate equations are

Ȧ = k1 − k2·A− k4·A+
k3·k8
k8 + E

(3.115)

Ė = k5·A− k9·(E)·(Ez) + k10·(E·Ez) (3.116)

Ėz = −k9·E·Ez + k10·(E·Ez) + k7·(E·Ez) (3.117)

d(E·Ez)
dt

= k9·(E)·(Ez) − k10·(E·Ez) − k7·(E·Ez) (3.118)

Then the set point of single-E controller in zero-order condition is

Aset =
k7·Eztot
k5

(3.119)

Motif 2 dual-E controller with random order ternary complex mechanism

The rate equations for dual-E controller in Fig.3.25 are

Ȧ = k1 − k2·A− k4·A+
k3·k8
k8 + E1

(3.120)

Ė1 = k5·A− k9·(E1)·(Ez) + k10·(E1·Ez) − k15·(Ez·E2)·(E1) + k16·(E1·Ez·E2) (3.121)

Ė2 = k6 − k11·(E1·Ez)·(E2) + k12·(E1·Ez·E2) − k13·(E2)·(Ez) + k14·(Ez·E2) (3.122)
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Ėz = −k9·(E1)·(Ez) + k10·(E1·Ez) − k13·(E2)·(Ez) + k14·(Ez·E2) + k7·(E1·Ez·E2)

(3.123)
d(E1·Ez)

dt
= k9·(E1)·(Ez) − k10·(E1·Ez) − k11·(E1·Ez)·(E2) + k12·(E1·Ez·E2) (3.124)

d(E1·Ez·E2)

dt
= k11·(E1·Ez)·(E2) + k15·(Ez·E2)·(E1) − (k7 + k12 + k16)·(E1·Ez·E2)

(3.125)
d(Ez·E2)

dt
= k13·(E2)·(Ez)− k14·(Ez·E2)− k15·(Ez·E2)·(E1) + k16·(E1·Ez·E2) (3.126)
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Figure 3.25: Motif 2 dual-E controller: removal of E1 and E2 by enzyme Ez using a
ternary complex mechanism with random binding order.

Similar to motif 5-based controllers, motif 2 catalyzed antithetic dual-E controller can

have two ways to calculate its set point when it has a zero-order condition. One is

Aset =
k6
k5

(3.127)

The other is

Aset =
k7·Eztot
k5

(3.128)

which is the same as for the set point of single-E controller.
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Comparing the catalyzed motif 2 controllers: set point defence with

step-wise perturbations

Fig.3.26 shows the performance of motif 2 dual-E and single-E controllers encountering

the step-wise perturbations. For the upper left panel, it is easy to observe that dual-

E controller can defend its set point no matter whether zero-order or non zero-order

condition are applied. However, the single-E controller (Fig.3.26 the lower left panel)

fails and shows an increasing off-set with increasing k2 values. It is interesting to note

that dual-E controller breaks down in perturbation 3. The reason for this is because an

increasing k2 leads to a saturation of Ez by E2 such that E1 cannot decrease to keep its

set point (Fig.3.26 the upper right panel).
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Figure 3.26: The comparison of motif 2 single-E and dual-E controllers to defend a
set point. Upper left panel: Behavior of controlled variable A for dual-E controller.
Phase 1: k2=10.0; phase 2: 1, k2=1×10+2; 2, k2=1×10+3; 3, k2=2×10+4. Upper
right panel: Behavior of manipulated variables E1 and Ez·E2 for dual-E controller.
Rate constants: k1=0.0, k3=1×10+5, k4=1.0, k5=10.0, k6=20.0, k7=1×10+9, k8=0.1,
k9=1×10+8, k10=1×10+3, k11=1×10+8, k12=1×10+3, k13=1×10+8, k14=1×10+3,
k15=1×10+8, k16=1×10+3. Lower left panel: Behavior of controlled variable A for
single-E controller. Same step-wise perturbation k2 as in dual-E controller. Lower
right panel: Behavior of manipulated variables E1 and Ez·E2 for single-E controller.
Rate constants are same as in dual-E controller except that k5=50.0 and k7=1×10+8.
Total enzyme concentration Eztot=1×10−6.
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Switching between dual-E and single-E control mode for motif 2 catalyzed

antithetic controllers
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Figure 3.27: Switch between single-E and dual-E control mode in motif 2 catalyzed
antithetic controller, with random order ternary complex mechanism in the removal of
E1 and E2. (a) Ass as a function of k6. The A value for single-E and dual-E control
mode are showed in red line and blue line respectively. The gray solid points mean
the numerically calculated steady state values. The outlined red and blue circles show
the k6 values (10.0 and 0.4) used in panels c and d. (b) Steady state values of v
calculated by King-Altman method (red line) and numerical velocities (gray points).
(c) and (d) Single-E and dual-E control mode with k6 equaling 10.0 and 0.4
respectively. Rate constants: k2 applies step-wise from 10.0 to 500.0, k1=0,
k3=1×10+5, k4=1.0, k5=0.4, k7=1×10+6, k8=0.1, k9=1×10+8, k10=1×10+3,
k11=1×10+8, k12=1×10+3, k13=1×10+8, k14=1×10+3, k15=1×10+8, k16=1×10+3.
(e) The part of the network outlined in red is active during single-E control mode. (f)
The entire network is active during dual-E control mode outlined in blue.

A switching between dual-E and single-E control mode in motif 2-based controllers can

also be observed in Fig.3.27. As the equations derivation before, the set point of dual-E
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controller depending on the relative values of k6 and k7·Eztot, we have the equation

Aset =
k6
k5

=
k7·Eztot
k5

(3.129)

As the results show, when
k6
k5

≥ k7·Eztot
k5

(3.130)

the value of k7·Eztot/k5 is lower than k6
k5 and only part of dual-E controller is functioning

properly, i.e., the dual-E controller works in single-E control mode (Fig.3.27 c and e).

When
k6
k5
<
k7·Eztot
k5

(3.131)

dual-E controller follows the behavior of general dual-E control mode and all manip-

ulated variables participate in the regulation (Fig.3.27 d and f). The same behavior

is found for non zero-order condition. dual-E controller follows the behavior of general

dual-E control mode and all manipulated variables participate in the regulation (Fig.3.27

d and f). The same behavior is found for non zero-order condition.
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Conclusion of the comparison between motif 5-based and

motif 2-based controllers

As the results show, we have the following conclusions when comparing motif 5-based

and motif 2-based controllers:

1. Both uncatalyzed antithetic controller and zero-order integral controller for motif 5

and motif 2 can keep their homeostatic function for step-wise perturbations.

2. While as for the linear increased perturbation, motif 2-based controllers show a better

ability than the motif 5-based controllers to defend set points with increasing k7 values

and leading to an increasing accuracy.

3. A higher aggressiveness will shorten the reaction response time.

4. As considering an explicitly enzyme catalyzed degradation, the antithetic dual-E con-

trollers show a more robust system than the single-E controllers, both for motif 5-based

and motif 2-based controller. The dual-E controllers can maintain homeostasis even at

non zero-order condition, while single-E controllers can not.

5. Particularly, different two-substrate enzyme mechanisms, including ternary complex

compulsory order, ternary complex random order and substitution (ping-pong) mecha-

nism, are studied within motif 5-based controllers and show no significant difference.

6. It is noteworthy that there is a switching in the dual-E controller between dual-E and

single-E control mode. The switching depends on the relative values of k6 and k7·Eztot

and applies for both motif 5-based and motif 2-based controllers. When k6 is lower than

k7·Eztot, the dual-E controller switches to a single-E control mode. When, k6 is larger

than k7·Eztot, the dual-E controllers work in dual-E control mode.

41
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Consider that motif 5 and motif 2 are the in-loop controllers (Fig.1.3) and they show

a switch. A further investigation should be done with the out-loop controller, such as

motif 4 and motif 7, which is expected, that they may break down directly, or there is

no switch situation at all.

7. A difference between motif 5-based and motif 2-based controllers is the behaviors

of A with an increasing perturbations under a non zero-order condition, k1 for motif

5-based controllers and k2 for motif 2-based controllers, respectively. An increasing per-

turbation will decrease the off-set from Ass to Aset for motif 5-based controllers, while

an increasing off-set for motif 2-based controllers is observed.

Perspectives

In this thesis, we have dealt with the components, such as A, Ez, E1 and E2, but we do

not assign any specific name. From a physiological view, they could represent different

components, respectively, and there are many possibilities. For example, the manipu-

lated variable and controlled variable can represent the reaction constituent, the energy

substance (ATP and ADP ), and the enzyme (NAD+ [16]) etc.

For example, Fig.4.1 can represent a protein kinase reaction corresponding with motif

2 catalyzed antithetic dual-E controller with random order ternary complex mechanism

(Fig.3.25). E1, an inhibitor of the regulated compound A, is phosphorylated by the

kinase (Ez) requiring the existence of ATP (E2) to produce product P . The vast ma-

jority of protein kinases follow the random order ternary complex mechanisms and few

of them follow ping-pong mechanisms [17].

A

inhibitor (E1)

ATP (E2)

-

+

kinase (Ez) P

Figure 4.1: A protein kinase reaction, corresponding with Fig.3.25, follows random
order ternary complex mechanism. E1: inhibitor; E2: ATP; Ez: kinase, respectively.
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An opinion from N.Mrosovsky proposed in Rheostasis [18], is that the set point in

homeostatic systems may change and could exhibit the new set points. We have some

results (Fig.3.20 a and Fig.3.27 a) proving this kind of change, which reminds us of a

fever, i.e., a temperature change to a higher set point during illness.

In our research, we assume the synthesis of final product P is an irreversible reaction,

which is corresponding the opinion from Lotka. Lotka found that “homeostasis can be

explained by Le Chatelier′s principle” is incorrect [19]. Take Fig.3.25 as an example. If

it is reversible in k7, product P can not go into a steady state but increasing continuously

because of the increasing ternary complex E1·Ez·E2 according to the Equilibrium Law.

Practically, all life reactions are irreversible, which is in line with reality.



Appendix

Matlab programs. A zip-file with Matlab programs showing the results from Fig.3.17

is attached to this thesis.
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