Performance of Enzyme-Catalyzed Single-E and Dual-E Homeostatic Controllers

by
Huimin Zhou
Master Thesis in Biological Chemistry
submitted to the
Faculty of Science and Technology
Department of Biology, Chemistry and Environmental Engineering

June 2020

UNIVERSITY OF STAVANGER

Abstract
Faculty of Science and Technology
Department of Biology, Chemistry and Environmental Engineering
Master Thesis in Biological Chemistry
by Huimin Zhou

Mathematical modeling has become an important tool in order to investigate the behavior of biological systems. The concept of homeostasis is central to our understanding how cells and organisms maintain an internal stability despite environmental or internal perturbations/insults. In this thesis the behavior and performance of two classes of homeostatic controllers are investigated. These two classes differ by the number of controller molecules involved in the homeostatic response. Single-E controllers contain one controller species, while dual-E controllers (antithetic controllers) contain two. A novel aspect of this thesis is the role enzymes can play in the performance of these controllers. For this purpose two controller motifs (negative feedback structures, motifs 5 and 2) have been investigated in detail. Enzymatic considerations included steady state and rapid equilibrium systems of ping-pong and ternary complex mechanisms for dual-E controllers and one-substrate Michaelis-Menten kinetics for single-E controllers. For the steady state systems reaction velocities were derived by the King-Altman method, which showed practically identical results in comparison with numerical calculations. For the motif 5 negative feedback arrangement a dual-E controller has a much better ability to withstand perturbations than a single-E controller. The reason for this is the fact that in dual-E controllers robust homeostasis can be achieved independently of the reaction order involving the removal of the two controller species E_{1} and E_{2}. The single-E controller, on the other hand, requires zero-order or near zero-order removal kinetics with respect to its controller molecule E. When considering the ping-pong or ternary complex enzymatic mechanisms the dual-E controllers showed no significant differences in their homeostatic behaviors. Finally, the occurrence of enzyme-catalyzed dual-E controllers in physiology is discussed.

Acknowledgements

I cannot express enough thanks to my supervisor, Prof. Peter Ruoff for the continuous support throughout my master thesis. His broad knowledge, kindness, carefulness, patience and conscientiousness impressed me. I am extremely grateful for what he has offered me. And I could not imagine having a better supervisor besides Peter.

Secondly, I would like to express my gratitude to my engineer, Xiangming Xu for his encouragement and guide.

Finally, I am grateful to my parents who understand and support me taking this opportunity to study at UiS.

Contents

Abstract i
Acknowledgements ii
List of Figures iv
Abbreviations viii
1 Introduction 1
2 Materials and Methods 5
3 Results and Discussion 6
4 Conclusion and Perspectives 41
A Appendix 44
Bibliography 45

List of Figures

1.2 Scheme of the basic negative feedback networks including four inflow controllers (1-4) and four outflow controllers (5-8). The dashed lines refer to signal transduction originating from one species and affecting (stimulating or inhibiting) the other.
1.3 Scheme of the antithetic integral controller in combination with eight basic controller motifs. The removal of E_{1} and E_{2} can be either an uncatalyzed second-order degradation or a catalyzed one by an explicit enzyme ($E z$). .
1.4 Scheme of integral antithetic controller based on motif 5. (a) Basic outflow controller, motif 5 with a single controll molecule E, under an uncatalyzed zero-order degradation or a catalyzed one by an enzyme ($E z$). (b) Antithetic controller based on motif 5 under an uncatalyzed second-order removal of E_{1} and E_{2} or a catalyzed one by an enzyme ($E z$).
1.5 Scheme of two-substrate enzyme systems. (a) Random order ternary complex mechanism. (b) Compulsory order ternary complex mechanism. Note that here E_{1} binds first then E_{2} comes to bind with $E_{1} \cdot E z$. The case that E_{2} binds first is also taken into account in the thesis. (c) Substitution (ping-pong) mechanism. Note that here E_{1} binds first then E_{2} comes to bind with $E z^{*}$. Also here the case that E_{2} binds first to enzyme $E z$ is considered in the thesis
3.1 Scheme of integral antithetic controller based on motif 5. (a) Basic outflow controller, motif 5, uncatalyzed single-E controller. (b) Uncatalyzed antithetic dual-E controller based on motif 5 .
3.2 Comparison between uncatalyzed single-E motif 5 and corresponding antithetic dual-E controller (Fig.3.1). (Row a) Step-wise perturbation in k_{1}; left panel, phase 1 ($0-5$ time units): $k_{1}=2$, phase 2 ($5-35$ time units): $k_{1}=4$, phase 3 (35-65 time units): $k_{1}=6$; right panel, behavior of controlled variable $A_{m 5}$ for zero-order controller motif 5 in black and controlled variable $A_{\text {uncat }}^{\text {anti }}$ for uncatalyzed antithetic controller in red. (Row b) Linear increases of k_{1}; left panel: phase 1 ($0-5$ time units): k_{1} is kept constant at 2.0, phase 2 ($5-50$ time units): k_{1} starts to increase with (1) $\dot{k_{1}}=10.0$, (2) $\dot{k_{1}}=50.0$, (3) $\dot{k_{1}}=200.0$; right panel: behavior of controlled variable $A_{m 5}$ for zero-order controller in black and controlled variable $A_{\text {uncat }}^{\text {anti }}$ for uncatalyzed antithetic controller in red. Rate constants: $k_{2}=1.0, k_{3}=1.0$, $k_{4}=1.0, k_{5}=1.0, k_{6}=2.0, k_{7}=2.0, K_{M}=1 \times 10^{-6}$.
3.3 Comparing the response times with an increasing k_{7} value in uncatalyzed antithetic controller. Left panel: behavior of controlled variables, $A_{m 5}$ for motif 5 in black and uncatalyzed antithetic controller outlined in red (1, 2, 3); Right panel: behavior of manipulated variables, E for motif 5 and E_{1} / E_{2} for uncatalyzed antithetic controller. Perturbations k_{1} and rate constants are the same as in Fig.3.2 row a, but with the following changes: $1, k_{7}=20.0 ; 2, k_{7}=2.0$ (unaltered); $3, k_{7}=1.0$. 9
3.4 Comparing the response times with an increasing aggressiveness for zero- order motif 5 controller (in black) and uncatalyzed antithetic controller (in red). Perturbations k_{1} and rate constants are the same as in Fig.3.2 row a, And keep the ratio $\left(k_{6} / k_{5}\right)$ at 2.0, but with the following changes: Left column: row a, $k_{5}=0.5, k_{6}=1.0$; row $\mathbf{b}, k_{5}=1.0, k_{6}=2.0$ (unaltered); row c, $k_{5}=10.0, k_{6}=20.0$. Right column: behavior of manipulated variables, E, E_{1} and E_{2}. Note that red-dots indicate the time when controllers arrive at steady state. 10
3.5 Comparison of accuracy with increasing K_{M} in zero-order (single-E) motif 5 controller. Perturbations k_{1} and rate constants are the same as in Fig.3.2 rowa, but with the following changes: $1, K_{M}=1 \times 10^{-6}$ (unaltered); 2 , $K_{M}=1 \times 10^{-1} ; 3, K_{M}=1.0$. 10
3.6 Motif 5 single-E controller: removal of E by enzyme $E z$ using a Michaelis- Menten mechanism. 12
3.7 Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ternary complex mechanism with random binding order. 13
3.8 The scheme of motif 5 dual-E controller with random order ternary com- plex mechanism using the King-Altman method. The four enzymatic species are arranged in form of a square. 15
3.9 Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ternary complex mechanism with compulsory order when E_{1} binds first to $E z$. 17
3.10 The scheme of motif 5 dual-E controller under compulsory order when E_{1} binds first to $E z$ using the King-Altman method. The three enzymatic species are arranged in form of a triangle. 18
3.11 Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ternary complex mechanism with compulsory order when E_{2} binds first to $E z$. 19
3.12 The scheme of motif 5 dual-E controller under compulsory order when E_{2} binds first to Ez using the King-Altman method. Enzymatic species are placed in form of a triangle. 20
3.13 Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ping-pong mechanism when E_{1} binds first to $E z$. 21
3.14 The scheme of motif 5 dual-E controller with a ping-pong mechanism when E_{1} binds first to $E z$ using the King-Altman method. Enzymatic species are arranged in form of a square 23
3.15 Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ping-pong mechanism when E_{2} binds first to $E z$. 24
3.16 The scheme of motif 5 dual-E controller with a ping-pong mechanism when E_{2} binds first using the King-Altman method. The four enzymatic species are arranged in form of a square 25
3.17 The comparison of motif 5 single-E and dual-E controllers to defend their set point. Perturbation: 1-3, $k_{1}=1.0 ; \mathbf{4 - 6}, k_{1}=1000.0$. Rate constants: $k_{2}=1.0, k_{3}=0.0, k_{4}=1.0, k_{5}=50, k_{7}=10^{+5}, k_{8}=0.1, k_{9}=1 \times 10^{+9}$, $k_{10}=1 \times 10^{+3}, k_{11}=1 \times 10^{+9}, k_{12}=1 \times 10^{+3}, k_{13}=1 \times 10^{+9}, k_{14}=1 \times 10^{+3}, k_{15}=1 \times 10^{+9}$, $k_{16}=1 \times 10^{+3}, E z_{t o t}=1 \times 10^{-3}$. For 1 and $\mathbf{4}, k_{6}=10^{+3}$ with the set point $A_{\text {set }}^{\text {dual }-E}=20.0$ while $A_{\text {set }}^{\text {single }-E}=2.0$. For the rest 2, 3, $\mathbf{5}$ and $\mathbf{6}, k_{6}=20$ with the set point $A_{\text {set }}^{\text {single }-E}=2.0$ and $A_{\text {set }}^{\text {dual }-E}=0.4$ respectively. In parallel, a set of Matlab programs are in Appendix for verification and further exploration.
3.18 The behavior of controller species E, E_{1} and E_{2} in single-E and dual-E controllers. (a) The controller species from Fig.3.17 (1). (b) The controller species from Fig.3.17 (4). (c) The controller species from Fig.3.17 (2). (d) The controller species from Fig.3.17 (3).
3.19 The comparison of motif 5 single-E and dual-E controllers to defend a set point. Rate constants are same as in Fig.3.17, but $k_{7}=1 \times 10^{+8}$, $E z_{t o t}=1 \times 10^{-6}$.
3.20 Switch between single-E and dual-E control mode in motif 5 catalyzed antithetic controller, with random order ternary complex mechanism in the removal of E_{1} and E_{2}. (a) $A_{s s}$ as a function of k_{6}. The A value for single-E and dual-E control mode are shown as red and blue lines, respectively. The gray solid points are the numerically calculated steady state values. The outlined red and blue circles show the k_{6} values (1000.0 and 20.0) used in panels \mathbf{c} and \mathbf{d}. (b) Steady state values of v (Eq.3.46) calculated by King-Altman method (red line) and numerical velocities (gray points). (c) and (d) Single-E and dual-E control mode with k_{6} equaling 1000.0 and 20.0 respectively. They come from Fig. 3.17 (4) and (6) with plotting only the A values for random order ternary complex mechanism. (e) The part of the network outlined in red is active during single-E control mode with E_{2} continuously increasing. (f) The entire network is active during dual-E control mode (outlined in blue).
3.21 Scheme of antithetic controller based on motif 2. (a) Uncatalyzed antithetic controller based on motif 2. (b) Basic inflow controller, motif 2.
3.22 Comparison between integral motif 2 negative and uncatalyzed antithetic controller. (Row a) Step-wise perturbations in k_{2}; left panel, phase 1 ($0-10$ time units): $k_{2}=10.0$, phase 2 (10-100 time units): $k_{2}=20.0$, phase 3 (100-200 time units): $k_{2}=40.0$; right panel: behavior of controlled variable $A_{z o}$ for zero-order controller motif 2 in black and controlled variable $A_{\text {uncat }}^{\text {antith }}$ for uncatalyzed antithetic controller in orange. (Row b) Linear increases of k_{2}; left panel, phase 1 ($0-10$ time units): k_{2} is kept constant at 10.0, phase 2 (10-200 time units): k_{2} starts to increase with (1) $\dot{k_{2}}=20.0$, (2) $\dot{k_{2}}=50.0$, (3) $\dot{k_{2}}=200.0$; right panel: behavior of controller variable $A_{z o}$ for zero-order controller in black and $A_{\text {uncat }}^{\text {antith }}$ for uncatalyzed antithetic controller in orange. (Row c) Exponential increase of k_{2}; left panel, phase 1 ($0-10$ time units): k_{2} is kept constant at 10.0 , phase $2(10-200$ time units): k_{2} starts to increase according to $k_{2}(\mathrm{t})=10+0.1\left(e^{[0.1(t-10)]}\right.$ 1); right panel, behavior of controlled variable $A_{z o}$ for zero-order controller in black and $A_{\text {uncat }}^{\text {antith }}$ for uncatalyzed antithetic controller in orange. Rate constants: $k_{1}=0.0, k_{3}=1 \times 10^{+5}, k_{4}=1.0, k_{5}=10.0, k_{6}=20.0, k_{7}=0.1$, $k_{8}=0.1, k_{9}=1 \times 10^{-6}$.
3.23 Comparison of accuracy with increasing k_{7} in the uncatalyzed antithetic motif 2 controller. Rate constants are the same as in Fig. 3.22 c, but with the following changes: $1, k_{7}=0.1$ (unaltered) $2, k_{7}=1.0 ; 3, k_{7}=10.0 ; 4$, $k_{7}=100.0 ; 5, k_{7}=1000.0$35

3.24 Motif 2 single-E controller: removal of E by enzyme $E z$ using a Michaelis
Menten mechanism. 36

3.25 Motif 2 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a
ternary complex mechanism with random binding order. 37
3.26 The comparison of motif 2 single- E and dual- E controllers to defend a set point. Upper left panel: Behavior of controlled variable A for dual-E controller. Phase 1: $k_{2}=10.0 ;$ phase 2: $1, k_{2}=1 \times 10^{+2} ; 2, k_{2}=1 \times 10^{+3} ; 3$, $k_{2}=2 \times 10^{+4}$. Upper right panel: Behavior of manipulated variables E_{1} and $E z \cdot E_{2}$ for dual-E controller. Rate constants: $k_{1}=0.0, k_{3}=1 \times 10^{+5}$, $k_{4}=1.0, k_{5}=10.0, k_{6}=20.0, k_{7}=1 \times 10^{+9}, k_{8}=0.1, k_{9}=1 \times 10^{+8}, k_{10}=1 \times 10^{+3}$, $k_{11}=1 \times 10^{+8}, k_{12}=1 \times 10^{+3}, k_{13}=1 \times 10^{+8}, k_{14}=1 \times 10^{+3}, k_{15}=1 \times 10^{+8}, k_{16}=1 \times 10^{+3}$.
Lower left panel: Behavior of controlled variable A for single-E controller. Same step-wise perturbation k_{2} as in dual-E controller. Lower right panel: Behavior of manipulated variables E_{1} and $E z \cdot E_{2}$ for single-E controller. Rate constants are same as in dual-E controller except that $k_{5}=50.0$ and $k_{7}=1 \times 10^{+8}$. Total enzyme concentration $E z_{t o t}=1 \times 10^{-6}$.
3.27 Switch between single-E and dual-E control mode in motif 2 catalyzed antithetic controller, with random order ternary complex mechanism in the removal of E_{1} and E_{2}. (a) $A_{s s}$ as a function of k_{6}. The A value for single-E and dual-E control mode are showed in red line and blue line respectively. The gray solid points mean the numerically calculated steady state values. The outlined red and blue circles show the k_{6} values (10.0 and 0.4) used in panels \mathbf{c} and \mathbf{d}. (b) Steady state values of v calculated by King-Altman method (red line) and numerical velocities (gray points). (c) and (d) Single-E and dual-E control mode with k_{6} equaling 10.0 and 0.4 respectively. Rate constants: k_{2} applies step-wise from 10.0 to 500.0 , $k_{1}=0, k_{3}=1 \times 10^{+5}, k_{4}=1.0, k_{5}=0.4, k_{7}=1 \times 10^{+6}, k_{8}=0.1, k_{9}=1 \times 10^{+8}$, $k_{10}=1 \times 10^{+3}, k_{11}=1 \times 10^{+8}, k_{12}=1 \times 10^{+3}, k_{13}=1 \times 10^{+8}, k_{14}=1 \times 10^{+3}, k_{15}=1 \times 10^{+8}$, $k_{16}=1 \times 10^{+3}$. (e) The part of the network outlined in red is active during single-E control mode. (f) The entire network is active during dual-E control mode outlined in blue.39
4.1 A protein kinase reaction, corresponding with Fig.3.25, follows random order ternary complex mechanism. E_{1} : inhibitor; E_{2} : ATP; Ez: kinase, respectively.

Abbreviations

ATP Adenosine TriPhosphate
ADP Adenosine DiPhosphate
NAD ${ }^{+}$Nicotinamide Adenine Dinucleotide

Introduction

The concept of "homeostasis" is more and more realized important to the public nowadays, particularly in physiology. But what is homeostasis? Homeostasis is, a concept, it is all the steady states of our human body, and other living organisms as well. However, it is not only the result, or the situation for steady state, but also includes the procedures to such a balancing tendency [1] in the internal environment when external disturbances.

The term of homeostasis was introduced by Walter B. Cannon with the Greek-derived prefix "homeo" $[2,3]$. "Homeo" means similar and like instead of "same", which the specific property toward "to keep steady states within narrow limits" [3-5]. To stay homeostatic, difference mechanisms were discovered. Particularly, integral control, within negative feedback loop (Fig.1.1), has the remarkable ability to remain functional even under an extreme perturbation [5-8], which called robust homeostasis.

Figure 1.1: Scheme of the integral control within a negative feedback. A, the controlled variable, is corrected by using a negative feedback loop calculating the $\operatorname{error}(\epsilon)$ as $\epsilon=A_{\text {set }}-A$.

Basing on the negative feedback networks, a homestatic controller has one controlled variable A and one manipulated variable E, which E inhibites or activates acting on A ' synthesis or degradation processes in order to stay homeostasis. With the development,
homestatic controllers are divided into two classes including four inflow controllers and four outflow controllers (Fig.1.2) [7]. As for inflow controllers, they compensate by adding A into the system while outflow controllers compensate by removing A from system.

1

2

3

4

5

6

8

Figure 1.2: Scheme of the basic negative feedback networks including four inflow controllers (1-4) and four outflow controllers (5-8). The dashed lines refer to signal transduction originating from one species and affecting (stimulating or inhibiting) the other.

What's more, a new integral feedback mechanism, the so-called antithetic controller (Fig.1.3) [1, 9, 10], came out. Antithetic controller means a bimolecular replacement of single manipulated variable (E) by dual contoller pairs E_{1} and E_{2}. The term "antithetic" is used, because of the opposing roles of the dual contoller pairs [11], which can consume each other to produce a product.

Figure 1.3: Scheme of the antithetic integral controller in combination with eight basic controller motifs. The removal of E_{1} and E_{2} can be either an uncatalyzed second-order degradation or a catalyzed one by an explicit enzyme ($E z$).

In this thesis, an enzyme-catalyzed reaction is proposed which removes the manipulated variable species, E and E_{1} / E_{2} (Fig.1.4) [12], called single-E and dual-E controller, respectively. This kind of enzymatic catalyzed removal of E and E_{1} / E_{2} may be more realistic with respect to a living organism.

Figure 1.4: Scheme of integral antithetic controller based on motif 5. (a) Basic outflow controller, motif 5 with a single controll molecule E, under an uncatalyzed zero-order degradation or a catalyzed one by an enzyme (Ez). (b) Antithetic controller based on motif 5 under an uncatalyzed second-order removal of E_{1} and E_{2} or a catalyzed one by an enzyme (Ez).

Aim of thesis

The aim of this thesis is to introduce the new idea of enzyme-catalyzed antithetic controllers, i.e., where E_{1} and E_{2} are removed enzymatically. Especially, we compare the performance between catalyzed and uncatalyzed motif 5 and motif 2 controllers. More specifically, different mechanisms for the second-order reaction in the enzymatic antithetic controllers are taken into consideration including random order ternary complex mechanisms, compulsory order ternary complex mechanisms, and substitution (pingpong) mechanisms (Fig.1.5) [13]. Reaction velocities determined by using the KingAltman steady state method are compared with numerical result and rapid equilibrium assumption.

b

Figure 1.5: Scheme of two-substrate enzyme systems. (a) Random order ternary complex mechanism. (b) Compulsory order ternary complex mechanism. Note that here E_{1} binds first then E_{2} comes to bind with $E_{1} \cdot E z$. The case that E_{2} binds first is also taken into account in the thesis. (c) Substitution (ping-pong) mechanism. Note that here E_{1} binds first then E_{2} comes to bind with $E z^{*}$. Also here the case that E_{2} binds first to enzyme $E z$ is considered in the thesis.

This enzymatic depletion reaction may apply to all 8 kinds of motifs. In this thesis, I focus only on controller motifs 5 and 2 (Fig.1.3).

Materials and Methods

For mathematical modelling, computations were performed by using the Fortran subroutine LSODE [14], and in parallel, MATLAB (www.mathworks.com). Gnuplot (www.gnuplot.info) was used for plotting and Adobe Illustrator (www.adobe.com) was used for annotating pdfs. Concentrations of substances are represented by compound names without square brackets to make notation simpler. The "dot" notation is generally used for time derivatives. Concentrations and rate constants are given in arbitrary units (a.u.). Several runs for each individual model have been performed with different rate parameters. However, in this thesis, only the main results are presented.

Results and Discussion

Motif 5 uncatalyzed antithetic integral controller in comparison with zero-order

Figure 3.1: Scheme of integral antithetic controller based on motif 5. (a) Basic outflow controller, motif 5, uncatalyzed single-E controller. (b) Uncatalyzed antithetic dual-E controller based on motif 5 .

Motif 5 (Fig. $3.1 \mathbf{a}$) is an outflow controller compensating inflow perturbation by activating manipulated variable (E). Its set point $\left(A_{\text {set }}\right)$ at steady state is defined by

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot A \cdot E \tag{3.1}\\
\dot{E}=k_{5} \cdot A-\frac{k_{6} \cdot E}{K_{M}+E} \tag{3.2}
\end{gather*}
$$

With assuming \dot{E} equal to zero, then

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}} \cdot \frac{E}{K_{M}+E} \tag{3.3}
\end{equation*}
$$

From Eq.3.3, when the value of K_{M} is particular small comparing with E, we can say that it is under zero-order condition. Thus, $A_{\text {set }}$ becomes

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}} \tag{3.4}
\end{equation*}
$$

The uncatalyzed antithetic dual-E controller from motif 5 (Fig.3.1b) includes two manipulated variables, E_{1} and E_{2}, with the rate equations

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot E_{1} \cdot A \tag{3.5}\\
\dot{E}_{1}=k_{5} \cdot A-k_{7} \cdot E_{1} \cdot E_{2} \tag{3.6}\\
\dot{E}_{2}=k_{6}-k_{7} \cdot E_{1} \cdot E_{2} \tag{3.7}
\end{gather*}
$$

For getting the steady state, the time derivations \dot{E}_{1} and \dot{E}_{2} are set to zero. Thus, the set point is given by combining Eq.3.6 and Eq.3.7.

$$
\begin{equation*}
\dot{E}_{1}-\dot{E}_{2}=k_{5} \cdot A-k_{6}=0 \tag{3.8}
\end{equation*}
$$

Therefore, for the above two controllers, the set point $A_{\text {set }}$ is

$$
\begin{equation*}
A_{s e t}=\frac{k_{6}}{k_{5}} \tag{3.9}
\end{equation*}
$$

The parameters k_{1} / k_{2} represent inflow/outflow perturbation respectively (Fig.3.1). Since motif 5 is a outflow controller compensating for inflow perturbations, an increased perturbation (k_{1}) was applied to both controllers.
The results are showed in Fig.3.2. Both motif 5 uncatalyzed single-E controller and uncatalyzed antithetic dual-E controller have the ability to defend the their set points under the step-wise perturbation in Fig.3.2 (Row a). However, when k_{1} is increased linearly in Fig.3.2 (Row b), both controllers show an off-set from the set point, which is increased with larger $\dot{k_{1}}$ and the off-set is same between controller motif 5 and uncatalyzed antithetic controller. Furthermore, in previous paper [5], the findings showed that controller motif 5 breaks down under a exponential/hyperbolic time-dependence perturbation and is not displayed here.

Figure 3.2: Comparison between uncatalyzed single-E motif 5 and corresponding antithetic dual-E controller (Fig.3.1). (Row a) Step-wise perturbation in k_{1}; left panel, phase 1 ($0-5$ time units): $k_{1}=2$, phase 2 ($5-35$ time units): $k_{1}=4$, phase 3 (35-65 time units): $k_{1}=6$; right panel, behavior of controlled variable $A_{m 5}$ for zero-order controller motif 5 in black and controlled variable $A_{\text {uncat }}^{\text {anti }}$ for uncatalyzed antithetic controller in red. (Row b) Linear increases of k_{1}; left panel: phase 1 ($0-5$ time units): k_{1} is kept constant at 2.0, phase 2 (5-50 time units): k_{1} starts to increase with (1) $\dot{k_{1}}=10.0,(2) \dot{k_{1}}=50.0,(3) \dot{k_{1}}=200.0$; right panel: behavior of controlled variable $A_{m 5}$ for zero-order controller in black and controlled variable $A_{\text {uncat }}^{\text {anti }}$ for uncatalyzed antithetic controller in red. Rate constants: $k_{2}=1.0, k_{3}=1.0, k_{4}=1.0, k_{5}=1.0, k_{6}=2.0$, $k_{7}=2.0, K_{M}=1 \times 10^{-6}$.

Controller basing on motif 5: response times and accuracy

Response times and accuracy are two significant qualities for a homeostatic controller. Controller response time means the time when a perturbation enters the controller system until the system arrives at a steady state. Aggressiveness is a kind of property, which can influence the response times. In simple terms, different aggressiveness means the ratio of $k_{6} / k_{5}=A_{\text {set }}$, when $A_{\text {set }}$ is kept constant but the values of k_{6} and k_{5} are changed. The term "accuracy" means how close the controller steady state to its theoretical set point.

In the following, the controller response times will be compared using two aspects, k_{7} and aggressiveness, separately.

Figure 3.3: Comparing the response times with an increasing k_{7} value in uncatalyzed antithetic controller. Left panel: behavior of controlled variables, $A_{m 5}$ for motif 5 in black and uncatalyzed antithetic controller outlined in red (1, 2, 3); Right panel: behavior of manipulated variables, E for motif 5 and E_{1} / E_{2} for uncatalyzed antithetic controller. Perturbations k_{1} and rate constants are the same as in Fig.3.2 row a, but with the following changes: $1, k_{7}=20.0 ; 2, k_{7}=2.0$ (unaltered); $3, k_{7}=1.0$.

Fig.3.3 shows that when applying an increased k_{7} value, response times become shorter. Since k_{7} is the parameter working on the degradations of E_{1} and E_{2}, while a higher value of k_{7}, a rapid consumption of E_{1} actives the compensatory outflow flux ($k_{4} \cdot A \cdot E_{1}$) to oppose perturbation k_{1}. What's more, the response times of the uncatalyzed antithetic controller can be quick with an increased k_{7}. However,the uncatalyzed antithetic controller's response time will not be lower than the response time of motif 5 , single-E controller.

As for aggressiveness, in this case, set point is kept at 2.0 all the time, while the value of k_{5} and k_{6} are altered.

It is obvious from Fig.3.4 that the response of both zero-order integral motif 5 and the uncatalyzed antithetic controller become faster with increasing aggressiveness and also approach minimum response times. The restriction that the antithetic (dual-E) controller will not be faster than the single-E controller appears to be caused by the following reason. When focusing on the behavior of manipulated variables (right panel of Fig.3.3 and right column of Fig.3.4), E_{1} and E have a similar tendency to increase, while E_{2} decreases. Thus, the level of E_{1} cannot exceed E which is a kind of limitation to restrict the speed for how E_{1} can change.

Figure 3.4: Comparing the response times with an increasing aggressiveness for zero-order motif 5 controller (in black) and uncatalyzed antithetic controller (in red). Perturbations k_{1} and rate constants are the same as in Fig.3.2 row a, And keep the $\operatorname{ratio}\left(k_{6} / k_{5}\right)$ at 2.0 , but with the following changes: Left column: row a, $k_{5}=0.5$, $k_{6}=1.0$; row $\mathbf{b}, k_{5}=1.0, k_{6}=2.0$ (unaltered); row $\mathbf{c}, k_{5}=10.0, k_{6}=20.0$. Right column: behavior of manipulated variables, E, E_{1} and E_{2}. Note that red-dots indicate the time when controllers arrive at steady state.

In the following, the level of K_{M} is altered to find out how it influences controller accuracy. In this section, K_{M} plays a role only in motif 5 single-E controller, but not in the uncatalyzed antithetic controller.

Figure 3.5: Comparison of accuracy with increasing K_{M} in zero-order (single-E) motif 5 controller. Perturbations k_{1} and rate constants are the same as in Fig.3.2 rowa, but with the following changes: $1, K_{M}=1 \times 10^{-6}$ (unaltered); $2, K_{M}=1 \times 10^{-1}$; $3, K_{M}=1.0$.

From Eq.3.3, we know that K_{M} plays an important role in calculating the theoretical set point of basic motif 5 when it works under zero-order condition (low K_{M}). For the result (Fig.3.5), an increased K_{M} would increase the off-set from its theoretical set point $A_{\text {set }}$. Interestingly, from phase 1 to 3 with increased perturbations, the off-set becomes smaller. This would be a typical phenomenon for motif 5 because it is an activation kinetic outflow controller, where a large inflow perturbation of A will increase E such that the term $E /\left(K_{M}+E\right)$ (Eq.3.3) becomes smaller and smaller.

And this increasing accuracy with increasing k_{1} should adopt for all motif 5 -based controllers including the uncatalyzed antithetic controller and the catalyzed antithetic controllers in the following section.

Therefore, in fact, both lower K_{M} and higher perturbation $\left(k_{1}\right)$ can increase the accuracy. Response time can be reduced by either higher k_{7} or higher aggressiveness.

Motif 5 antithetic controller with enzymatic catalyzed mechanisms

In the following, comparisons are shown between controller motif 5 and the antithetic controller with an explicitly enzyme-catalyzed degradation of the manipulated variables, E and E_{1} / E_{2}.

Mechanism of motif 5 catalyzed single-E and dual-E controllers and the rate equations derivation

Before comparison, all the interested controllers are introduced in detail including the mechanism in schemes, rate equations derivation, and the velocity calculated by using rapid equilibrium assumption and King-Altman steady state mechanism.

Motif 5 single-E controller with Michaelis-Menten degradation of \mathbf{E}

The scheme of motif 5 single-E controller is in Fig. 3.6 below.

Figure 3.6: Motif 5 single-E controller: removal of E by enzyme $E z$ using a Michaelis-Menten mechanism.

The rate equations for motif 5 single-E controller are as follows:

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot E \cdot A \tag{3.10}\\
\dot{E}=k_{5} \cdot A-k_{9} \cdot(E) \cdot(E z)+k_{10} \cdot(E \cdot E z) \tag{3.11}\\
\dot{E} z=-k_{9} \cdot(E z) \cdot(E)+k_{10} \cdot(E \cdot E z)+k_{7} \cdot(E \cdot E z) \tag{3.12}\\
\frac{d(E \cdot E z)}{d t}=k_{9} \cdot(E z) \cdot(E)-k_{10} \cdot(E \cdot E z)-k_{7} \cdot(E \cdot E z) \tag{3.13}
\end{gather*}
$$

In order to find the set point, Eq.3.11 and Eq.3.12 are set to zero at steady state. Then

$$
\begin{gather*}
A \cdot k_{5}=k_{9} \cdot(E) \cdot(E z)-k_{10} \cdot(E \cdot E z) \tag{3.14}\\
k_{7} \cdot(E \cdot E z)=k_{9} \cdot(E z) \cdot(E)-k_{10} \cdot(E \cdot E z) \tag{3.15}\\
A \cdot k_{5}=k_{7} \cdot(E \cdot E z) \tag{3.16}
\end{gather*}
$$

And Eq. 3.16 combines with the conversion from Eq.3.13. When it is under zero-order condition, the set point $A_{\text {set }}$, is

$$
\begin{equation*}
A_{s e t}=\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.17}
\end{equation*}
$$

Here, $E z_{t o t}$ means the total enzyme concentration, i.e.,

$$
\begin{equation*}
E z_{t o t}=(E z)+(E \cdot E z) \tag{3.18}
\end{equation*}
$$

Motif 5 dual-E controller with random order ternary complex mechanism

Fig.3.7 is the scheme of the motif 5 dual-E controller with random order ternary complex mechanism.

Figure 3.7: Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ternary complex mechanism with random binding order.

The rate equations are,

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot E_{1} \cdot A \tag{3.19}\\
\dot{E}_{1}=k_{5} \cdot A-k_{9} \cdot\left(E_{1}\right) \cdot\left(E_{2}\right)+k_{10} \cdot\left(E_{1} \cdot E z\right)-k_{15} \cdot\left(E_{1}\right) \cdot\left(E z \cdot E_{2}\right)+k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.20}\\
\dot{E}_{2}=k_{6}-k_{13} \cdot E_{2} \cdot E z+k_{14}\left(E z \cdot E_{2}\right)-k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot E_{2}+k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.21}\\
\dot{E z}=-k_{9} \cdot\left(E_{1}\right) \cdot(E z)+k_{10} \cdot\left(E_{1} \cdot E z\right)+k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right)-k_{13} \cdot(E z) \cdot\left(E_{2}\right)+k_{14} \cdot\left(E z \cdot E_{2}\right) \tag{3.22}\\
\frac{d\left(E_{1} \cdot E z\right)}{d t}=k_{9} \cdot\left(E_{1}\right) \cdot\left(E_{2}\right)-k_{10} \cdot\left(E_{1} \cdot E z\right)-k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot\left(E_{2}\right)+k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.23}
\end{gather*}
$$

$$
\begin{align*}
\frac{d\left(E_{1} \cdot E z \cdot E_{2}\right)}{d t}= & k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot\left(E_{2}\right)-k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right)-k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right)+k_{15} \cdot\left(E z \cdot E_{2}\right) \cdot\left(E_{1}\right) \\
& -k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.24}
\end{align*}
$$

$$
\begin{equation*}
\frac{d\left(E z \cdot E_{2}\right)}{d t}=k_{13} \cdot\left(E_{2}\right) \cdot(E z)-k_{14} \cdot\left(E z \cdot E_{2}\right)-k_{15}\left(E z \cdot E_{2}\right) \cdot\left(E_{1}\right)+k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.25}
\end{equation*}
$$

The reaction velocity v is,

$$
\begin{equation*}
v=\dot{P}=k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.26}
\end{equation*}
$$

With a rapid equilibrium assumption, we have the equilibrium expressions as follows:

$$
\begin{gather*}
K_{M 1}=\frac{(E z) \cdot\left(E_{1}\right)}{\left(E_{1} \cdot E z\right)}=\frac{k_{10}}{k_{9}} \tag{3.27}\\
K_{M 2}=\frac{\left(E_{1} \cdot E z\right) \cdot\left(E_{2}\right)}{\left(E_{1} \cdot E z \cdot E_{2}\right)}=\frac{k_{12}}{k_{11}} \tag{3.28}\\
K_{M 3}=\frac{(E z) \cdot\left(E_{2}\right)}{\left(E z \cdot E_{2}\right)}=\frac{k_{14}}{k_{13}} \tag{3.29}\\
K_{M 4}=\frac{\left(E_{1}\right) \cdot\left(E z \cdot E_{2}\right)}{\left(E_{1} \cdot E z \cdot E_{2}\right)}=\frac{k_{16}}{k_{15}} \tag{3.30}
\end{gather*}
$$

In order to get the expression of v in Eq.3.26, the total concentration of $E z$ is $E z_{\text {tot }}$,

$$
\begin{equation*}
E z_{\text {tot }}=\left(E_{1} \cdot E z\right)+\left(E z \cdot E_{2}\right)+\left(E_{1} \cdot E z \cdot E_{2}\right)+(E z) \tag{3.31}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(E_{1} \cdot E z\right)=\frac{K_{M 2}}{\left(E_{2}\right)} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.32}\\
\left(E z \cdot E_{2}\right)=\frac{K_{M 4}}{\left(E_{1}\right)} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.33}\\
(E z)=\frac{K_{M 1}}{\left(E_{1}\right)} \cdot\left(E_{1} \cdot E z\right)=\frac{K_{M 1}}{\left(E_{1}\right)} \cdot \frac{K_{M 2}}{\left(E_{2}\right)} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.34}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
E z_{t o t}=\left(\frac{K_{M 2}}{\left(E_{2}\right)}+\frac{K_{M 4}}{\left(E_{1}\right)}+\frac{K_{M 1} \cdot K_{M 2}}{\left(E_{1}\right) \cdot\left(E_{2}\right)}+1\right) \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.35}
\end{equation*}
$$

The rapid equilibrium approximation for velocity, v, is then

$$
\begin{equation*}
v_{\text {rapid_eq }}^{\text {random }}=\frac{k_{7} \cdot E_{z_{\text {tot }}}}{\left(1+\frac{K_{M 4}}{\left(E_{1}\right)}+\frac{K_{M 2}}{\left(E_{2}\right)}+\frac{\left.K_{M 1} \cdot K_{M 2}\right)}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right)}=\frac{V_{\text {max }}}{\left(1+\frac{K_{M 4}}{\left(E_{1}\right)}+\frac{K_{M 2}}{\left(E_{2}\right)}+\frac{K_{M 11} \cdot K_{M 2}}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right)} \tag{3.36}
\end{equation*}
$$

Note that $K_{M 1}, K_{M 2}, K_{M 3}$ and $K_{M 4}$ should comply with the principle called detailed balance [15], i.e.,

$$
\begin{equation*}
K_{M 1} \cdot K_{M 2}=K_{M 3} \cdot K_{M 4} \tag{3.37}
\end{equation*}
$$

However, the expression of v becomes much complex with a steady state assumption and it comes up later with the King-Altman method.
Actually, the set point of the dual-E controller is dependent on the concentration of E_{2},
which can be divided into two cases. When the concentration value of E_{2} is much lower than E_{1}, the set point would be same as for the uncatalyzed one (3.9),

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}} \tag{3.38}
\end{equation*}
$$

But, when E_{2} is relative large, the dual-E controller gets the same set point (3.17) as the single-E controller,

$$
\begin{equation*}
A_{s e t}=\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.39}
\end{equation*}
$$

In this thesis, the King-Altman method is also taken into consideration to compare the numerical velocity with the velocity using a steady state approach. Fig.3.8 is the scheme of the motif 5 random order dual-E controller using the King-Altman method.

Figure 3.8: The scheme of motif 5 dual-E controller with random order ternary complex mechanism using the King-Altman method. The four enzymatic species are arranged in form of a square.

For the free enzyme $E z$, its formation is indicated by the arrow in the fractional numerator below (3.40).

Then, apply the coefficient to its represented arrow:

$$
\begin{align*}
\frac{\mathrm{Ez}_{\mathrm{tot}}}{\mathrm{Ez}_{\mathrm{tot}}}= & \frac{k_{14} \cdot k_{10} \cdot k_{12}+k_{15} \cdot E_{1} \cdot k_{12} \cdot k_{10}+k_{11} \cdot E_{2} \cdot k_{16} \cdot k_{14}}{D} \\
& \frac{+k_{16} \cdot k_{14} \cdot k_{10}+k_{7} \cdot k_{14} \cdot k_{10}+k_{11} \cdot E_{2} \cdot k_{15} \cdot E_{1} \cdot k_{7}}{D} \\
& \frac{+k_{10} \cdot k_{15} \cdot E_{1} \cdot k_{7}+k_{14} \cdot k_{11} \cdot E_{2} \cdot k_{7}}{D} \tag{3.41}
\end{align*}
$$

For enzymatic species $E_{1} \cdot E z$, we get the ratio

$$
\begin{align*}
\frac{\left(\mathrm{E}_{1} \cdot \mathrm{Ez}\right)}{\mathrm{Ez}_{\mathrm{tot}}}= & \frac{\uparrow \uparrow+\longrightarrow+\downarrow}{D} \\
= & \frac{k_{14} \cdot k_{9} \cdot E_{1} \cdot k_{12}+k_{9} \cdot E_{1} \cdot k_{12} \cdot k_{15} \cdot E_{1}+k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1} \cdot k_{12}}{D} \\
& \frac{+k_{16} \cdot k_{14} \cdot k_{9} \cdot E_{1}+k_{14} \cdot k_{7} \cdot k_{9} \cdot E_{1}+k_{15} \cdot E_{1} \cdot k_{7} \cdot k_{9} \cdot E_{1}}{D} \tag{3.42}
\end{align*}
$$

For enzymatic species $E_{1} \cdot E z \cdot E_{2}$, we get the ratio

$$
\begin{align*}
& =\frac{k_{14} \cdot k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2}+k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2} \cdot k_{15} \cdot E_{1}+k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1} \cdot k_{11} \cdot E_{2}}{D} \\
& \frac{+k_{10} \cdot k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1}}{D} \tag{3.43}
\end{align*}
$$

For enzymatic species $E z \cdot E_{2}$, we get the ratio

$$
\begin{align*}
\frac{\left(\mathrm{Ez} \cdot \mathrm{E}_{2}\right)}{\mathrm{Ez}_{\mathrm{tot}}}= & \frac{\downarrow \uparrow \longrightarrow+\downarrow}{\square} \\
= & \frac{k_{13} \cdot E_{2} \cdot k_{10} \cdot k_{12}+k_{16} \cdot k_{13} \cdot E_{2} \cdot k_{10}+k_{13} \cdot E_{2} \cdot k_{16} \cdot k_{11} \cdot E_{1}}{D} \\
& \frac{+k_{10} \cdot k_{13} \cdot E_{2} \cdot k_{16}+k_{13} \cdot E_{2} \cdot k_{7} \cdot k_{10}+k_{13} \cdot E_{2} \cdot k_{7} \cdot k_{11} \cdot E_{2}}{D} \tag{3.44}
\end{align*}
$$

The red cross sign in numerator means this formation to enzymatic species is not present because of an irreversible reaction. The denominator, D, is the sum of all numerators. In this case, it is the sum of numerators of Eq.3.41, Eq.3.42, Eq.3.43 and Eq.3.44, i.e.,

$$
\begin{align*}
D= & k_{14} \cdot k_{10} \cdot k_{12}+k_{15} \cdot E_{1} \cdot k_{12} \cdot k_{10}+k_{11} \cdot E_{2} \cdot k_{16} \cdot k_{14}+k_{16} \cdot k_{14} \cdot k_{10}+k_{7} \cdot k_{14} \cdot k_{10} \\
& +k_{11} \cdot E_{2} \cdot k_{15} \cdot E_{1} \cdot k_{7}+k_{10} \cdot k_{15} \cdot E_{1} \cdot k_{7}+k_{14} \cdot k_{11} \cdot E_{2} \cdot k_{7}+k_{14} \cdot k_{9} \cdot E_{1} \cdot k_{12} \\
& +k_{9} \cdot E_{1} \cdot k_{12} \cdot k_{15} \cdot E_{1}+k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1} \cdot k_{12}+k_{16} \cdot k_{14} \cdot k_{9} \cdot E_{1}+k_{14} \cdot k_{7} \cdot k_{9} \cdot E_{1} \\
& +k_{15} \cdot E_{1} \cdot k_{7} \cdot k_{9} \cdot E_{1}+k_{14} \cdot k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2}+k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2} \cdot k_{15} \cdot E_{1}+k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1} \cdot k_{11} \cdot E_{2} \\
& +k_{10} \cdot k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1}+k_{13} \cdot E_{2} \cdot k_{10} \cdot k_{12}+k_{16} \cdot k_{13} \cdot E_{2} \cdot k_{10}+k_{13} \cdot E_{2} \cdot k_{16} \cdot k_{11} \cdot E_{1} \\
& +k_{10} \cdot k_{13} \cdot E_{2} \cdot k_{16}+k_{13} \cdot E_{2} \cdot k_{7} \cdot k_{10}+k_{13} \cdot E_{2} \cdot k_{7} \cdot k_{11} \cdot E_{2} \tag{3.45}
\end{align*}
$$

And finally, the steady state velocity v can be written

$$
\begin{align*}
v_{K-A, s s}^{\text {random }}= & k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \\
= & k_{7} \cdot \frac{k_{14} \cdot k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2}+k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2} \cdot k_{15} \cdot E_{1}+k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1} \cdot k_{11} \cdot E_{2}}{D} \\
& \frac{+k_{10} \cdot k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1}}{D} \cdot\left(E z_{t o t}\right) \tag{3.46}
\end{align*}
$$

Motif 5 dual-E controller with compulsory order ternary complex mechanism E_{1} binding first to $E z$

Fig.3.9 is the scheme of motif 5 dual-E controller with compulsory order ternary complex mechanism. In this case, manipulated variable E_{1} binds first to $E z$, then E_{2} binds with $E_{1} \cdot E z$ to form the ternary complex, $E_{1} \cdot E z \cdot E_{2}$.

Figure 3.9: Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ternary complex mechanism with compulsory order when E_{1} binds first to $E z$.

The rate equations are

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot E_{1} \cdot A \tag{3.47}\\
\dot{E}_{1}=k_{5} \cdot A-k_{9} \cdot E_{1} \cdot E z+k_{10} \cdot\left(E_{1} \cdot E z\right) \tag{3.48}\\
\dot{E}_{2}=k_{6}-k_{11} \cdot E_{2} \cdot\left(E_{1} \cdot E z\right)+k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.49}\\
\dot{E} z=-k_{9} \cdot E_{1} \cdot E z+k_{10} \cdot\left(E_{1} \cdot E z\right)+k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.50}\\
\frac{d\left(E_{1} \cdot E z\right)}{d t}=k_{9} \cdot E_{1} \cdot E z-k_{10} \cdot\left(E_{1} \cdot E z\right)-k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot E_{2}+k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.51}
\end{gather*}
$$

$$
\begin{equation*}
\frac{d\left(E_{1} \cdot E z \cdot E_{2}\right)}{d t}=k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot E_{2}-k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right)-k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.52}
\end{equation*}
$$

The velocity for rapid equilibrium assumption using a same method in the random order mechanism above

$$
\begin{equation*}
v_{\text {rapid_eq }^{c o m p-E}}^{\text {com }}=\frac{V_{\max }}{\left(1+\frac{K_{M 2}}{\left(E_{2}\right)}+\frac{K_{M 1} \cdot K_{M 2}}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right)} \tag{3.53}
\end{equation*}
$$

As for the compulsory order ternary complex mechanism, $K_{M 1}, K_{M 2}, K_{M 3}$ and $K_{M 4}$ should also comply with the principle (Eq.3.37). All the enzymatic catalyzed antithetic controllers in this thesis will follow the principle of detailed balance.

Fig. 3.10 is the scheme of motif 5 dual-E controller under compulsory order ternary complex mechanism E_{1} binding first using the King-Altman steady state method.

Figure 3.10: The scheme of motif 5 dual-E controller under compulsory order when E_{1} binds first to $E z$ using the King-Altman method. The three enzymatic species are arranged in form of a triangle.

Then, the ratio of enzymatic species $E z / E z_{t o t}$ is

$$
\begin{align*}
\frac{\mathrm{Ez}}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{}{D} \\
& =\frac{k_{12} \cdot k_{10}+k_{11} \cdot E_{2} \cdot k_{7}+k_{10} \cdot k_{7}}{D} \tag{3.54}
\end{align*}
$$

For enzymatic species $E_{1} \cdot E z$

$$
\begin{align*}
\frac{\left(\mathrm{E}_{1} \cdot \mathrm{Ez}\right)}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{{ }^{+}+\infty}{D} \\
& =\frac{k_{9} \cdot E_{1} \cdot k_{12}+k_{9} \cdot E_{1} \cdot k_{7}}{D} \tag{3.55}
\end{align*}
$$

For enzymatic species $E_{1} \cdot E z \cdot E_{2}$

$$
\begin{align*}
\frac{\left(\mathrm{E}_{1} \cdot \mathrm{Ez}_{2} \cdot \mathrm{E}_{2}\right)}{\mathrm{Ez}} & =\frac{\mathrm{t}_{\mathrm{tot}}}{D} \\
& =\frac{k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2}}{D} \tag{3.56}
\end{align*}
$$

Finally, the steady state velocity is

$$
\begin{equation*}
v_{K-A, s s}^{c o m p-E_{1}}=k_{7} \cdot \frac{k_{9} \cdot E_{1} \cdot k_{11} \cdot E_{2}}{D} \cdot E z_{t o t} \tag{3.57}
\end{equation*}
$$

Motif 5 dual-E controller with compulsory order ternary complex mechanism

 E_{2} binding first to $E z$Fig.3.11 is the scheme of motif 5 dual-E controller with compulsory order ternary complex mechanism. In this case, manipulated variable E_{2} binds first to $E z$, then E_{1} binds with $E z \cdot E_{2}$ and forms a ternary complex, $E_{1} \cdot E z \cdot E_{2}$.

Figure 3.11: Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ternary complex mechanism with compulsory order when E_{2} binds first to $E z$.

The rate equations are

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot E_{1} \cdot A \tag{3.58}\\
\dot{E}_{1}=k_{5} \cdot A-k_{15} \cdot\left(E z \cdot E_{2}\right) \cdot E_{1}+k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.59}\\
\dot{E}_{2}=k_{6}-k_{13} \cdot E_{2} \cdot E z+k_{14} \cdot\left(E z \cdot E_{2}\right) \tag{3.60}
\end{gather*}
$$

$$
\begin{gather*}
\dot{E z}=k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right)-k_{13} \cdot E z \cdot E_{2}+k_{14} \cdot\left(E z \cdot E_{2}\right) \tag{3.61}\\
\frac{d\left(E_{1} \cdot E z \cdot E_{2}\right)}{d t}=-k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right)+k_{15} \cdot\left(E z \cdot E_{2}\right) \cdot E_{1}-k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.62}\\
\frac{d\left(E z \cdot E_{2}\right)}{d t}=k_{13} \cdot E_{2} \cdot E z-k_{14} \cdot\left(E z \cdot E_{2}\right)-k_{15} \cdot\left(E z \cdot E_{2}\right) \cdot E_{1}+k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.63}
\end{gather*}
$$

The velocity using a rapid equilibrium assumption is

$$
\begin{equation*}
v_{\text {rapid -eq }}^{\text {comp }-E_{2}}=\frac{V_{\max }}{\left(1+\frac{K_{M 4}}{\left(E_{1}\right)}+\frac{K_{M 3} \cdot K_{M 4}}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right)} \tag{3.64}
\end{equation*}
$$

By applying the King-Altman steady state method, Fig.3.12 is the scheme of motif 5 dual-E controller under compulsory order ternary complex mechanism when E_{2} binds first to $E z$.

Figure 3.12: The scheme of motif 5 dual-E controller under compulsory order when E_{2} binds first to $E z$ using the King-Altman method. Enzymatic species are placed in form of a triangle.

For the ratio of each enzymatic species

$$
\begin{align*}
\frac{\mathrm{Ez}}{\mathrm{Ez} \mathrm{totot}} & =\frac{\text { T+ }}{D} \\
& =\frac{k_{16} \cdot k_{14}+k_{7} \cdot k_{15} \cdot E_{1}+k_{14} \cdot k_{7}}{D} \tag{3.65}
\end{align*}
$$

$$
\begin{align*}
\frac{\left(\mathrm{Ez}_{2} \cdot \mathrm{E}_{2}\right)}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{\Gamma^{+}+\mathrm{T}}{D} \\
& =\frac{k_{13} \cdot E_{2} \cdot k_{16}+k_{7} \cdot k_{13} \cdot E_{2}}{D} \tag{3.66}
\end{align*}
$$

$$
\begin{align*}
& \frac{\left(\mathrm{E}_{1} \cdot \mathrm{Ez}_{2} \cdot \mathrm{E}_{2}\right)}{\mathrm{Ez} \mathrm{tot}}=\frac{\text { C}}{D} \\
& =\frac{k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1}}{D} \tag{3.67}
\end{align*}
$$

Thus, the steady state velocity is

$$
\begin{equation*}
v_{K-A, s s}^{c o m p-E_{2}}=k_{7} \cdot \frac{k_{13} \cdot E_{2} \cdot k_{15} \cdot E_{1}}{D} \cdot E z_{t o t} \tag{3.68}
\end{equation*}
$$

Motif 5 dual-E controller with substitution (ping-pong) mechanism E_{1} binding first to $E z$

Fig.3.13 is the scheme of motif 5 dual-E controller using a ping-pong mechanism. In this case, the enzyme $E z$ binds first with E_{1} to release an actived $E z^{*}$. Then E_{2} comes to substitution binding with $E z^{*}$ to generate the final product, P.

Figure 3.13: Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ping-pong mechanism when E_{1} binds first to $E z$.

The rate equations are

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot E_{1} \cdot A \tag{3.69}\\
\dot{E}_{1}=k_{5} \cdot A-k_{9} \cdot E_{1} \cdot E z+k_{10} \cdot\left(E_{1} \cdot E z\right) \tag{3.70}\\
\dot{E}_{2}=k_{6}-k_{13} \cdot E_{2} \cdot E z^{*}+k_{14} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.71}\\
\dot{E} z=-k_{9} \cdot E_{1} \cdot E z+k_{10} \cdot\left(E_{1} \cdot E z\right)+k_{7} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.72}\\
\frac{d\left(E_{1} \cdot E z\right)}{d t}=k_{9} \cdot E_{1} \cdot E z-k_{10} \cdot\left(E_{1} \cdot E z\right)-k_{11} \cdot\left(E_{1} \cdot E z\right)+k_{12} \cdot E z^{*} \tag{3.73}
\end{gather*}
$$

$$
\begin{gather*}
\frac{d\left(E z^{*} \cdot E_{2}\right)}{d t}=k_{13} \cdot E_{2} \cdot E z^{*}-k_{14} \cdot\left(E z^{*} \cdot E_{2}\right)-k_{7} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.74}\\
\frac{d\left(E z^{*}\right)}{d t}=k_{11} \cdot\left(E_{1} \cdot E z\right)-k_{12} \cdot E z^{*}-k_{13} \cdot E_{2} \cdot E z^{*}+k_{14} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.75}
\end{gather*}
$$

The derivation of velocity using a rapid equilibrium assumption are

$$
\begin{align*}
& K_{M 1}=\frac{\left(E_{1}\right) \cdot(E z)}{\left(E_{1} \cdot E z\right)}=\frac{k_{10}}{k_{9}} \tag{3.76}\\
& K_{M 2}=\frac{\left(E_{1} \cdot E z^{*}\right)}{\left(E z^{*}\right)}=\frac{k_{12}}{k_{11}} \tag{3.77}\\
& K_{M 3}=\frac{\left(E z^{*}\right) \cdot(E 2)}{\left(E z^{*} \cdot E_{2}\right)}=\frac{k_{14}}{k_{13}} \tag{3.78}
\end{align*}
$$

Since

$$
\begin{equation*}
v=k_{7} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.79}
\end{equation*}
$$

that we have

$$
\begin{gather*}
E z_{\text {tot }}=(E z)+\left(E_{1} \cdot E z\right)+\left(E z^{*} \cdot E_{2}\right)+\left(E z^{*}\right) \tag{3.80}\\
\left(E z^{*}\right)=\frac{K_{M 3}}{\left(E_{2}\right)} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.81}\\
\left(E_{1} \cdot E z\right)=K_{M 2} \cdot\left(E z^{*}\right)=\frac{K_{M 2} \cdot K_{M 3}}{\left(E_{2}\right)} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.82}\\
(E z)=\frac{K_{M 1}}{\left(E_{1}\right)} \cdot\left(E_{1} \cdot E z\right)=\frac{K_{M 1} \cdot K_{M 2} \cdot K_{M 3}}{\left(E_{1}\right) \cdot\left(E_{2}\right)} \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.83}\\
E z_{\mathrm{tot}}=\left(\frac{K_{M 1} \cdot K_{M 2} \cdot K_{M 3}}{\left(E_{1}\right) \cdot\left(E_{2}\right)}+\frac{K_{M 2} \cdot K_{M 3}}{\left(E_{2}\right)}+\frac{K_{M 3}}{\left(E_{2}\right)}+1\right) \cdot\left(E z^{*} \cdot E_{2}\right) \\
=\left(\frac{K_{M 1} \cdot K_{M 2} \cdot K_{M 3}}{\left(E_{1}\right) \cdot\left(E_{2}\right)}+\frac{K_{M 3} \cdot\left(1+K_{M 2}\right)}{\left(E_{2}\right)}+1\right) \cdot\left(E z^{*} \cdot E_{2}\right) \\
=\left(1+\frac{\alpha}{\left(E_{2}\right)}+\frac{\beta}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right) \cdot\left(E z^{*} \cdot E_{2}\right) \tag{3.84}
\end{gather*}
$$

Finally,

$$
\begin{equation*}
v_{\text {rapid_eq }}^{P P-E_{1}}=\frac{k_{7} \cdot z_{\text {tot }}}{\left(1+\frac{\alpha}{\left(E_{2}\right)}+\frac{\beta}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right)}=\frac{V_{\max }}{\left(1+\frac{\alpha}{\left(E_{2}\right)}+\frac{\beta}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right)} \tag{3.85}
\end{equation*}
$$

Note that, $\alpha=K_{M 3} \cdot\left(1+K_{M 2}\right)$ and $\beta=K_{M 1} \cdot K_{M 2} \cdot K_{M 3}$.
Fig. 3.14 is the scheme of motif 5 dual-E controller under ping-pong mechanism E_{1} binding first to $E z$ using the King-Altman steady state method.

Figure 3.14: The scheme of motif 5 dual-E controller with a ping-pong mechanism when E_{1} binds first to $E z$ using the King-Altman method. Enzymatic species are arranged in form of a square.

For the ratio of each enzymatic species

$$
\begin{align*}
\frac{\mathrm{Ez}}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{\uparrow \uparrow \leftarrow \uparrow \uparrow \downarrow \downarrow}{D} \\
& =\frac{k_{7} \cdot k_{10} \cdot k_{12}+k_{14} \cdot k_{12} \cdot k_{10}+k_{11} \cdot k_{13} \cdot E_{2} \cdot k_{7}+k_{13} \cdot E_{2} \cdot k_{7} \cdot k_{10}}{D} \tag{3.86}
\end{align*}
$$

$$
\begin{align*}
\frac{\left(\mathrm{E}_{1} \cdot \mathrm{Ez}\right)}{\mathrm{Ez}_{\text {tot }}} & =\frac{\uparrow \uparrow \rightarrow+\uparrow \uparrow}{D} \\
& =\frac{k_{7} \cdot k_{9} \cdot E_{1} \cdot k_{12}+k_{14} \cdot k_{12} \cdot k_{9} \cdot E_{1}+k_{13} \cdot E_{2} \cdot k_{7} \cdot k_{9} \cdot E_{1}}{D} \tag{3.87}
\end{align*}
$$

$$
\begin{align*}
\frac{\left(\mathrm{Ez}^{*}\right)}{\mathrm{Ez} \mathrm{tot}} & =\frac{\uparrow \downarrow}{D} \\
& =\frac{k_{7} \cdot k_{9} \cdot E_{1} \cdot k_{11}+k_{9} \cdot E_{1} \cdot k_{11} \cdot k_{14}}{D} \tag{3.88}
\end{align*}
$$

$$
\begin{align*}
\frac{\left(\mathrm{Ez}^{*} \cdot \mathrm{E}_{2}\right)}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{\square}{D} \\
& =\frac{k_{9} \cdot E_{1} \cdot k_{11} \cdot k_{13} \cdot E_{2}}{D} \tag{3.89}
\end{align*}
$$

Finally, the steady state velocity is

$$
\begin{equation*}
v_{K-A, s s}^{P P-E_{1}}=k_{T} \cdot \frac{k_{9} \cdot E_{1} \cdot k_{11} \cdot k_{13} \cdot E_{2}}{D} \cdot E z_{t o t} \tag{3.90}
\end{equation*}
$$

Motif 5 dual-E controller with substitution (ping-pong) mechanism E_{2} binding first to $E z$

Fig.3.13 is the scheme of motif 5 dual-E controller with ping-pong mechanism. In this case, the free enzyme $E z$ binds with E_{2} first to release an actived $E z^{*}$. Then E_{1} comes to substitution binding with $E z^{*}$ to generate the final product, P.

Figure 3.15: Motif 5 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ping-pong mechanism when E_{2} binds first to $E z$.

The rate equations are

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+k_{3}-k_{4} \cdot E_{1} \cdot A \tag{3.91}\\
\dot{E}_{1}=k_{5} \cdot A-k_{9} \cdot E_{1} \cdot E z^{*}+k_{10} \cdot\left(E z^{*} \cdot E_{1}\right) \tag{3.92}\\
\dot{E}_{2}=k_{6}-k_{13} \cdot E_{2} \cdot E z+k_{14} \cdot\left(E_{2} \cdot E z\right) \tag{3.93}\\
\dot{E z}=-k_{13} \cdot E_{2} \cdot E z+k_{14} \cdot\left(E_{2} \cdot E z\right)+k_{7} \cdot\left(E z^{*} \cdot E_{1}\right) \tag{3.94}\\
\frac{d\left(E_{2} \cdot E z\right)}{d t}=k_{13} \cdot E_{2} \cdot E z-k_{14} \cdot\left(E_{2} \cdot E z\right)-k_{11} \cdot\left(E_{2} \cdot E z\right)+k_{12} \cdot E z^{*} \tag{3.95}\\
\frac{d\left(E z^{*} \cdot E_{1}\right)}{d t}=k_{9} \cdot E_{1} \cdot E z^{*}-k_{10} \cdot\left(E z^{*} \cdot E_{1}\right)-k_{7} \cdot\left(E z^{*} \cdot E_{1}\right) \tag{3.96}\\
\frac{d\left(E z^{*}\right)}{d t}=k_{11} \cdot\left(E_{2} \cdot E z\right)-k_{12} \cdot E z^{*}-k_{9} \cdot E_{1} \cdot E z^{*}+k_{10} \cdot\left(E z^{*} \cdot E_{1}\right) \tag{3.97}
\end{gather*}
$$

The velocity using a rapid equilibrium assumption is

$$
\begin{equation*}
v_{\text {rapideq }}^{P P-E_{2}}=\frac{V_{\max }}{\left(1+\frac{\alpha}{\left(E_{1}\right)}+\frac{\beta}{\left(E_{1}\right) \cdot\left(E_{2}\right)}\right)} \tag{3.98}
\end{equation*}
$$

Note that, $\alpha=K_{M 1} \cdot\left(1+K_{M 2}\right)$ and $\beta=K_{M 1} \cdot K_{M 2} \cdot K_{M 3}$.
Fig.3.16 is the scheme of motif 5 dual-E controller under ping-pong mechanism E_{2} binding first using King-Altman steady state method.

Figure 3.16: The scheme of motif 5 dual-E controller with a ping-pong mechanism when E_{2} binds first using the King-Altman method. The four enzymatic species are arranged in form of a square.

For the ratios of each enzymatic species are:

$$
\begin{align*}
\frac{\mathrm{Ez}}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{\uparrow \uparrow+\uparrow+\uparrow+\uparrow}{D} \\
& =\frac{k_{14} \cdot k_{12} \cdot k_{7}+k_{14} \cdot k_{12} \cdot k_{10}+k_{7} \cdot k_{9} \cdot E_{1} \cdot k_{11}+k_{14} \cdot k_{7} \cdot k_{9} \cdot E_{1}}{D} \tag{3.99}
\end{align*}
$$

$$
\begin{align*}
\frac{\left(\mathrm{E}_{2} \cdot \mathrm{Ez}\right)}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{\uparrow \uparrow+\longrightarrow+\downarrow+\uparrow}{D} \\
& =\frac{k_{13} \cdot E_{2} \cdot k_{7} \cdot k_{12}+k_{13} \cdot E_{2} \cdot k_{12} \cdot k_{10}+k_{7} \cdot k_{9} \cdot E_{1} \cdot k_{13} \cdot E_{2}}{D} \tag{3.100}
\end{align*}
$$

$$
\begin{align*}
\frac{\left(\mathrm{Ez}^{*}\right)}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{\uparrow+\rightarrow+\square}{D} \\
& =\frac{k_{7} \cdot k_{13} \cdot E_{2} \cdot k_{11}+k_{13} \cdot E_{2} \cdot k_{11} \cdot k_{10}}{D} \tag{3.101}
\end{align*}
$$

$$
\begin{align*}
\frac{\left(\mathrm{Ez}^{*} \cdot \mathrm{E}_{1}\right)}{\mathrm{Ez}_{\mathrm{tot}}} & =\frac{k_{13} \cdot E_{2} \cdot k_{11} \cdot k_{9} \cdot E_{1}}{D} \\
& =\frac{\text { ? }}{D} \tag{3.102}
\end{align*}
$$

Finally, the steady state velocity is

$$
\begin{equation*}
v_{K-A, s s}^{P P-E_{2}}=k_{7} \cdot \frac{k_{13} \cdot E_{2} \cdot k_{11} \cdot k_{9} \cdot E_{1}}{D} \cdot E z_{t o t} \tag{3.103}
\end{equation*}
$$

Comparing the catalyzed motif 5 controllers: set point defence and enzyme limitation

In this case, the single-E controller is compared with all five kinds of dual-E controllers, which described above, and finally six controllers in total. In the figure, the single-E controller is in cyan and dual-E controllers are: in blue, random order ternary complex mechanism; in red, compulsory order E_{1} binding first; in black, compulsory order E_{2} binding first; in green, ping-pong mechanism E_{1} binding first; in purple, ping-pong mechanism E_{2} binding first. Labels are shown in the bottom of Fig.3.17.

In order to make things simple, the non zero-order condition is defined by a low perturbation, k_{1}, as discussed before.

In Fig.3.17, the left column (1-3) is under non zero-order condition with a small perturbation, while the right column (4-6) is under zero-order condition with a relatively large perturbation. As for 2-3 and 5-6, the all of five kinds of the dual-E controllers can arrive at its set point with the low value of k_{6} no matter in a non zero-order or a zero-order condition, while the single-E controller worked well in zero-order condition but had a off-set from its set point in non zero-order condition. An interesting behavior for dual-E controllers in 2, there is a transition moving A from $A_{s s}^{s i n g l e-E}$ to $A_{s s}^{d u a l-E}$ and same transition can be observed in $\mathbf{5}$ but no in $\mathbf{3}$ and $\mathbf{6}$. The only difference between $\mathbf{2}$ and $\mathbf{3}$, and between $\mathbf{5}$ and $\mathbf{6}$ is the initial concentration of E_{2} is much lower in $\mathbf{3}$ and $\mathbf{6}$ than in $\mathbf{2}$ and 5, respectively.

Figure 3.17: The comparison of motif 5 single-E and dual-E controllers to defend their set point. Perturbation: 1-3, $k_{1}=1.0 ; \mathbf{4 - 6}, k_{1}=1000.0$. Rate constants: $k_{2}=1.0$, $k_{3}=0.0, k_{4}=1.0, k_{5}=50, k_{7}=10^{+5}, k_{8}=0.1, k_{9}=1 \times 10^{+9}, k_{10}=1 \times 10^{+3}$, $k_{11}=1 \times 10^{+9}, k_{12}=1 \times 10^{+3}, k_{13}=1 \times 10^{+9}, k_{14}=1 \times 10^{+3}, k_{15}=1 \times 10^{+9}, k_{16}=1 \times 10^{+3}$, $E z_{\text {tot }}=1 \times 10^{-3}$. For 1 and 4, $k_{6}=10^{+3}$ with the set point $A_{\text {set }}^{\text {dual }-E}=20.0$ while $A_{\text {set }}^{\text {single }-E}=2.0$. For the rest 2, 3,5 and $\mathbf{6}, k_{6}=20$ with the set point $A_{\text {set }}^{\text {single }-E}=2.0$ and $A_{\text {set }}^{\text {dual }-E}=0.4$ respectively. In parallel, a set of Matlab programs are in Appendix for verification and further exploration.

This kind of transition is illustrated by using Fig. 3.18 (c) and (d). As for Fig. 3.18 (c), it is the behavior of controller species from Fig.3.17 (2) and Fig. 3.18 (d) is from Fig.3.17 (3). In Fig.3.18 (c), it can be seen that E_{2} decreased for some times then equaling about zero and it is the time when E_{2} equal to zero that E_{1} increased. During the decrease of E_{2}, the value of E_{2} is quite large compared with E_{1}, that is why the dual-E controllers have a set point at $A_{s s}^{\text {single }-E}$. It is the time, when the value of E_{2} is near zero, E_{1} increased and is relative large comparing with E_{2}, the switch occur moving A to $A_{\text {set }}^{\text {dual-E }}$ corresponding to Fig.3.17 (2). When focusing on Fig.3.18 (d), the value of E_{2} is much lower than E_{1} from the beginning. Thus, dual-E controllers arrive at its set point at very beginning in Fig.3.17 (3). The same is true for Fig.3.17 (5) and (6).

Figure 3.18: The behavior of controller species E, E_{1} and E_{2} in single-E and dual-E controllers. (a) The controller species from Fig.3.17 (1). (b) The controller species from Fig.3.17 (4). (c) The controller species from Fig.3.17 (2). (d) The controller species from Fig.3.17 (3).

As for Fig.3.17 (1) and (4), single-E controller can defend its set point in zero-order condition but fail in non zero-order conditions. And for the dual-E controllers, all fail to get the set point (20.0) both in zero-order and non zero-order conditions. It is noteworthy that the A value of dual-E controllers are equal to the single-E one. The reasons are as follow using Fig.3.18 (a) and (b) for explanation. In Fig.3.18 (a), we can see E_{2} species increase all the time while E_{1} species keep constant near zero, which means a large value of E_{2} keep consuming E_{1} leading to little amount of E_{1} working to defend its set point. Eventually, an off-set occurs. On the other hand, the E_{2} species play no role on the regulation in negative feedback loop, which means only the E_{1} specie participates in regulation and the dual-E controllers work just like the single-E controller as shown in Fig.3.20 (e). Thus, $A_{\text {dual }-E}$ is equal to $A_{\text {single }-E}$ in (1), and called dual-E controllers work in a single-E control mode. The same is true for Fig.3.18 (b) from Fig.3.17 (4). The results above can approve the view before that the set point of a dual-E controller is depended on the concentration of E_{2} in comparison with E_{1}. When E_{2} is relative large compared to E_{1}, dual-E controllers have the same set point as single-E controller, i.e.,

$$
\begin{equation*}
A_{s e t}=\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.104}
\end{equation*}
$$

Alternatively, when E_{2} is relative low, dual-E controllers have the set point

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}} \tag{3.105}
\end{equation*}
$$

To sum up, the dual-E controllers show a better performance than the single-E controllers, since the dual-E controllers can defend their set points both under zero-order and non zero-order conditions when work in the dual-E control mode. When the dual-E controllers work in the single-E control mode, they have the same behavior of A as for the single-E controllers.

Enzyme limitation

Considering the influence of the enzyme concentration, the comparison is done similar to Fig.3.17 but the total concentration of enzyme was changed from 1×10^{-3} to 1×10^{-6} now. As discussed before, the set point is defined by Eq.3.17, which means when $E z_{\text {tot }}$ is decreased by three order of magnitude to 1×10^{-6}, the value of k_{7} should be adjusted correspondingly by three order of magnitude to $1 \times 10^{+8}$ to have the same $A_{\text {set }}$ both in Fig.3.17 and Fig.3.19.

From Fig.3.19, it is easy to see that single-E controller still has an off-set in non zeroorder condition but works well in zero-order conditions. As for the dual-E controllers, roughly it is similar to Fig.3.17 defending the set point successfully independent of non zero-order or zero-order conditions. However, focusing on Fig.3.19 (4), the behavior of A for ping-pong mechanism E_{1} / E_{2} binding first and compulsory order ternary complex mechanism E_{2} binding first have a small off-set different from other dual-E controllers. Actually, in Fig.3.19 (1), these three controllers also have a little different from other, when look into details from the program result that the value of A is equaling 0.915 for these three with others equaling 0.921 , respectively. But when the value of k_{6} is changed becoming smaller (Fig.3.19 2, 3, 5 and 6), all the dual-E controllers defend its set point well.

Therefore, considering an enzyme limitation, it has a little impact on the dual-E controllers for ping-pong mechanism E_{1} / E_{2} binding first and compulsory order ternary complex mechanism E_{2} binding first. Overall, all five dual-E controllers have the ability to defend their set points.

Figure 3.19: The comparison of motif 5 single-E and dual-E controllers to defend a set point. Rate constants are same as in Fig.3.17, but $k_{7}=1 \times 10^{+8}, E z_{t o t}=1 \times 10^{-6}$.

Switching between dual-E and single-E control mode of motif 5 catalyzed antithetic controllers

The case in motif 5 catalyzed antithetic controller, a switching between dual-E and single-E control mode, can be defined as follow. As the set point can be calculated in two ways, we have the equation

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}}=\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.106}
\end{equation*}
$$

As shown in Fig.3.20 (a). It is easy to observe when

$$
\begin{equation*}
\frac{k_{6}}{k_{5}} \geq \frac{k_{7} \cdot E z_{\text {tot }}}{k_{5}} \tag{3.107}
\end{equation*}
$$

a

single-E control mode

$E_{1} \cdot E_{z} \cdot E_{2} \xrightarrow[v]{\mathrm{k}_{7}} \mathrm{P}+\mathrm{EZ}_{7}$

f
dual-E control mode

Figure 3.20: Switch between single-E and dual-E control mode in motif 5 catalyzed antithetic controller, with random order ternary complex mechanism in the removal of E_{1} and E_{2}. (a) $A_{s s}$ as a function of k_{6}. The A value for single-E and dual-E control mode are shown as red and blue lines, respectively. The gray solid points are the numerically calculated steady state values. The outlined red and blue circles show the k_{6} values (1000.0 and 20.0) used in panels cand d. (b) Steady state values of v (Eq.3.46) calculated by King-Altman method (red line) and numerical velocities (gray points). (c) and (d) Single-E and dual-E control mode with k_{6} equaling 1000.0 and 20.0 respectively. They come from Fig. 3.17 (4) and (6) with plotting only the A values for random order ternary complex mechanism. (e) The part of the network outlined in red is active during single-E control mode with E_{2} continuously increasing. (f) The entire network is active during dual-E control mode (outlined in blue).
means $k_{7} \cdot E z_{\text {tot }} / k_{5}$ is dominating (the left part on the red line of Fig.3.20 a). Only manipulated variable E_{1} is functioning properly, while the values of E_{2} is increasing continuously (Fig. 3.18 b). And then we call dual-E controller works in single-E control mode (Fig.3.20 c and e).

On the contrary, when

$$
\begin{equation*}
\frac{k_{6}}{k_{5}}<\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.108}
\end{equation*}
$$

means the set point of the dual-E controller will be equal to the value of k_{6} / k_{5} (the right part on the blue line of Fig.3.20 a). The dual-E controller works in a general dual-E control mode (Fig.3.20 d). As Fig.3.20 (f) shows, both E_{1} and E_{2} take part in the regulation of A.

And the switching not only happens in the zero-order condition (Fig.3.17 (5) and Fig.3.19 (5)) but also in non zero-order condition (Fig.3.17 (2) and Fig.3.19 (2)) and has similar behavior as in (Fig.3.20 a). However, as discussed before, the single-E controller has an off-set under non zero-order condition thus the same off-set will occur in the level of $A_{s s}$ and we would not display the details here.

Reaction velocity of E_{1} / E_{2} degradation

In order to check whether the program is valid, the reaction velocity of degradation of E_{1} and E_{2} is calculated by using the King-Altman steady state method and rapid equilibrium assumption and compared with numerical velocity. The value of velocity from steady state always agrees with the numerical one while the rapid equilibrium one is far away, which is in line with expectations. Fig.3.20 (b) shows one example that velocity from King-Altman steady state method equal to the numerical one. Here, only the ternary complex random order mechanism is plotted. In fact, this occurs for all five dual-E controllers.

Motif 2 uncatalyzed antithetic integral controller in comparison with zero-order integral controller

In order to compare motif 5 -based controllers with motif 2-based controllers, in the following, motif 2 negative feedback loops are introduced and extended to their uncatalyzed versions.
a

b

Figure 3.21: Scheme of antithetic controller based on motif 2. (a) Uncatalyzed antithetic controller based on motif 2. (b) Basic inflow controller, motif 2.

Motif 2 is an inflow type of controller compensating outflow perturbation by derepressing the controlled variable A, which differs from motif 5. For Fig.3.21 (a), we have the rate equations

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+\frac{k_{3} \cdot k_{8}}{k_{8}+E}-k_{4} \cdot E \cdot A \tag{3.109}\\
\dot{E}_{1}=k_{5} \cdot A-k_{7} \cdot E_{1} \cdot E_{2} \tag{3.110}\\
\dot{E}_{2}=k_{6}-k_{7} \cdot E_{1} \cdot E_{2} \tag{3.111}
\end{gather*}
$$

For Fig.3.21 (b), we have the rate equations

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A+\frac{k_{3} \cdot k_{8}}{k_{8}+E}-k_{4} \cdot E \cdot A \tag{3.112}\\
\dot{E}=k_{5} \cdot A-\frac{k_{6} \cdot E}{k_{9}+E} \tag{3.113}
\end{gather*}
$$

When $k_{9} \ll E$, the set point, $A_{\text {set }}$, can be written as

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}} \tag{3.114}
\end{equation*}
$$

Different outflow perturbations, k_{2}, were applied in motif 2 -based controllers to understand their performances.

Firstly, with respect to previous findings [5], the motif 2 zero-order integral controller works well not only under step-wise perturbations but also under linearly increasing perturbations. However, the result (Fig.3.22) shows that the uncatalyzed antithetic motif 2 controller can defend its set point with step-wise perturbation (Row a) but not with
linearly increasing k_{2} values. Row \mathbf{b} shows the increased off-set with increased $\dot{k_{2}}$. Both controllers fail with exponentially increasing perturbations (Row c).

Figure 3.22: Comparison between integral motif 2 negative and uncatalyzed antithetic controller. (Row a) Step-wise perturbations in k_{2}; left panel, phase 1 (0-10 time units): $k_{2}=10.0$, phase 2 (10-100 time units): $k_{2}=20.0$, phase 3 (100-200 time units): $k_{2}=40.0$; right panel: behavior of controlled variable $A_{z o}$ for zero-order controller motif 2 in black and controlled variable $A_{\text {uncat }}^{\text {antith }}$ for uncatalyzed antithetic controller in orange. (Row b) Linear increases of k_{2}; left panel, phase 1 (0-10 time units): k_{2} is kept constant at 10.0, phase 2 (10-200 time units): k_{2} starts to increase with (1) $\dot{k_{2}}=20.0$, (2) $\dot{k_{2}}=50.0$, (3) $\dot{k_{2}}=200.0$; right panel: behavior of controller variable $A_{z o}$ for zero-order controller in black and $A_{\text {uncat }}^{\text {antith }}$ for uncatalyzed antithetic controller in orange. (Row c) Exponential increase of k_{2}; left panel, phase 1 (0-10 time units): k_{2} is kept constant at 10.0 , phase 2 (10-200 time units): k_{2} starts to increase according to $k_{2}(\mathrm{t})=10+0.1\left(e^{[0.1(t-10)]}-1\right)$; right panel, behavior of controlled variable $A_{z o}$ for zero-order controller in black and $A_{\text {uncat }}^{\text {antith }}$ for uncatalyzed antithetic controller in orange. Rate constants: $k_{1}=0.0, k_{3}=1 \times 10^{+5}, k_{4}=1.0, k_{5}=10.0, k_{6}=20.0$, $k_{7}=0.1, k_{8}=0.1, k_{9}=1 \times 10^{-6}$.

Controller basing on motif 2: aggressiveness and accuracy

As considering the aggressiveness, a higher aggressiveness will improved the response time.

As for the accuracy, the result (Fig.3.23) shows that the values of $A_{s s}$ for the uncatalyzed antithetic controller $\left(A_{\text {uncat }}^{\text {antith }}\right)$ comes closer to the value of the zero-order single-E controller ($A_{z o}$) with an increasing k_{7}.

Figure 3.23: Comparison of accuracy with increasing k_{7} in the uncatalyzed antithetic motif 2 controller. Rate constants are the same as in Fig. 3.22 c, but with the following changes: $1, k_{7}=0.1$ (unaltered); $2, k_{7}=1.0 ; 3, k_{7}=10.0 ; 4, k_{7}=100.0 ; 5$, $k_{7}=1000.0$.

The increasing accuracy is because a higher k_{7} value leads to a more rapid removal of E_{1} and E_{2}, which means less E_{1} could work on the inhibition of A accumulation. Then, more inflow A compensate for the outflow perturbations resulting in an approaching value to $A_{z o}$.

Motif 2 antithetic controller with enzymatic catalyzed mechanisms

In the following, an explicitly enzyme is included in motif 2-based controller for the degradation of manipulated variables, E and E_{1} / E_{2}. Since the results in motif 5-based show that there is no significant difference between the different kinetics within the twosubstrate enzyme systems, only ternary complex random order mechanism for dual-E controller of motif 2-based is discussed in this section.

Mechanism of motif 2 catalyzed single-E and dual-E controllers and the rate equations derivation

Firstly, the mechanistic schemes and their rate equations are introduced.

Motif 2 single-E controller with Michaelis-Menten degradation of \mathbf{E}

Fig.3.24 shows the scheme of motif 2 single-E controller explicitly including an enzyme using the Michaelis-Menten mechanism.

Figure 3.24: Motif 2 single-E controller: removal of E by enzyme $E z$ using a Michaelis-Menten mechanism.

The rate equations are

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A-k_{4} \cdot A+\frac{k_{3} \cdot k_{8}}{k_{8}+E} \tag{3.115}\\
\dot{E}=k_{5} \cdot A-k_{9} \cdot(E) \cdot(E z)+k_{10} \cdot(E \cdot E z) \tag{3.116}\\
\dot{E} z=-k_{9} \cdot E \cdot E z+k_{10} \cdot(E \cdot E z)+k_{7} \cdot(E \cdot E z) \tag{3.117}\\
\frac{d(E \cdot E z)}{d t}=k_{9} \cdot(E) \cdot(E z)-k_{10} \cdot(E \cdot E z)-k_{7} \cdot(E \cdot E z) \tag{3.118}
\end{gather*}
$$

Then the set point of single-E controller in zero-order condition is

$$
\begin{equation*}
A_{s e t}=\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.119}
\end{equation*}
$$

Motif 2 dual-E controller with random order ternary complex mechanism

The rate equations for dual-E controller in Fig.3.25 are

$$
\begin{gather*}
\dot{A}=k_{1}-k_{2} \cdot A-k_{4} \cdot A+\frac{k_{3} \cdot k_{8}}{k_{8}+E_{1}} \tag{3.120}\\
\dot{E}_{1}=k_{5} \cdot A-k_{9} \cdot\left(E_{1}\right) \cdot(E z)+k_{10} \cdot\left(E_{1} \cdot E z\right)-k_{15} \cdot\left(E z \cdot E_{2}\right) \cdot\left(E_{1}\right)+k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.121}\\
\dot{E}_{2}=k_{6}-k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot\left(E_{2}\right)+k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right)-k_{13} \cdot\left(E_{2}\right) \cdot(E z)+k_{14} \cdot\left(E z \cdot E_{2}\right) \tag{3.122}
\end{gather*}
$$

$$
\begin{align*}
& \dot{E z=}=-k_{9} \cdot\left(E_{1}\right) \cdot(E z)+k_{10} \cdot\left(E_{1} \cdot E z\right)-k_{13} \cdot\left(E_{2}\right) \cdot(E z)+k_{14} \cdot\left(E z \cdot E_{2}\right)+k_{7} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \\
& \frac{d\left(E_{1} \cdot E z\right)}{d t}=k_{9} \cdot\left(E_{1}\right) \cdot(E z)-k_{10} \cdot\left(E_{1} \cdot E z\right)-k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot\left(E_{2}\right)+k_{12} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.123}\\
& \frac{d\left(E_{1} \cdot E z \cdot E_{2}\right)}{d t}=k_{11} \cdot\left(E_{1} \cdot E z\right) \cdot\left(E_{2}\right)+k_{15} \cdot\left(E z \cdot E_{2}\right) \cdot\left(E_{1}\right)-\left(k_{7}+k_{12}+k_{16}\right) \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.125}
\end{align*}
$$

$$
\begin{equation*}
\frac{d\left(E z \cdot E_{2}\right)}{d t}=k_{13} \cdot\left(E_{2}\right) \cdot(E z)-k_{14} \cdot\left(E z \cdot E_{2}\right)-k_{15} \cdot\left(E z \cdot E_{2}\right) \cdot\left(E_{1}\right)+k_{16} \cdot\left(E_{1} \cdot E z \cdot E_{2}\right) \tag{3.126}
\end{equation*}
$$

Figure 3.25: Motif 2 dual-E controller: removal of E_{1} and E_{2} by enzyme $E z$ using a ternary complex mechanism with random binding order.

Similar to motif 5-based controllers, motif 2 catalyzed antithetic dual-E controller can have two ways to calculate its set point when it has a zero-order condition. One is

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}} \tag{3.127}
\end{equation*}
$$

The other is

$$
\begin{equation*}
A_{s e t}=\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.128}
\end{equation*}
$$

which is the same as for the set point of single-E controller.

Comparing the catalyzed motif 2 controllers: set point defence with step-wise perturbations

Fig.3.26 shows the performance of motif 2 dual-E and single-E controllers encountering the step-wise perturbations. For the upper left panel, it is easy to observe that dualE controller can defend its set point no matter whether zero-order or non zero-order condition are applied. However, the single-E controller (Fig. 3.26 the lower left panel) fails and shows an increasing off-set with increasing k_{2} values. It is interesting to note that dual-E controller breaks down in perturbation 3. The reason for this is because an increasing k_{2} leads to a saturation of $E z$ by E_{2} such that E_{1} cannot decrease to keep its set point (Fig.3.26 the upper right panel).

Figure 3.26: The comparison of motif 2 single-E and dual-E controllers to defend a set point. Upper left panel: Behavior of controlled variable A for dual-E controller. Phase 1: $k_{2}=10.0$; phase 2: $1, k_{2}=1 \times 10^{+2} ; 2, k_{2}=1 \times 10^{+3} ; 3, k_{2}=2 \times 10^{+4}$. Upper right panel: Behavior of manipulated variables E_{1} and $E z \cdot E_{2}$ for dual-E controller. Rate constants: $k_{1}=0.0, k_{3}=1 \times 10^{+5}, k_{4}=1.0, k_{5}=10.0, k_{6}=20.0, k_{7}=1 \times 10^{+9}, k_{8}=0.1$, $k_{9}=1 \times 10^{+8}, k_{10}=1 \times 10^{+3}, k_{11}=1 \times 10^{+8}, k_{12}=1 \times 10^{+3}, k_{13}=1 \times 10^{+8}, k_{14}=1 \times 10^{+3}$, $k_{15}=1 \times 10^{+8}, k_{16}=1 \times 10^{+3}$. Lower left panel: Behavior of controlled variable A for single-E controller. Same step-wise perturbation k_{2} as in dual-E controller. Lower right panel: Behavior of manipulated variables E_{1} and $E z \cdot E_{2}$ for single-E controller. Rate constants are same as in dual-E controller except that $k_{5}=50.0$ and $k_{7}=1 \times 10^{+8}$. Total enzyme concentration $E z_{t o t}=1 \times 10^{-6}$.

Switching between dual-E and single-E control mode for motif 2 catalyzed antithetic controllers

single-E control mode

Figure 3.27: Switch between single-E and dual-E control mode in motif 2 catalyzed antithetic controller, with random order ternary complex mechanism in the removal of E_{1} and E_{2}. (a) $A_{s s}$ as a function of k_{6}. The A value for single-E and dual-E control mode are showed in red line and blue line respectively. The gray solid points mean the numerically calculated steady state values. The outlined red and blue circles show the k_{6} values (10.0 and 0.4) used in panels \mathbf{c} and \mathbf{d}. (b) Steady state values of v calculated by King-Altman method (red line) and numerical velocities (gray points).
(c) and (d) Single-E and dual-E control mode with k_{6} equaling 10.0 and 0.4 respectively. Rate constants: k_{2} applies step-wise from 10.0 to $500.0, k_{1}=0$, $k_{3}=1 \times 10^{+5}, k_{4}=1.0, k_{5}=0.4, k_{7}=1 \times 10^{+6}, k_{8}=0.1, k_{9}=1 \times 10^{+8}, k_{10}=1 \times 10^{+3}$, $k_{11}=1 \times 10^{+8}, k_{12}=1 \times 10^{+3}, k_{13}=1 \times 10^{+8}, k_{14}=1 \times 10^{+3}, k_{15}=1 \times 10^{+8}, k_{16}=1 \times 10^{+3}$.
(e) The part of the network outlined in red is active during single-E control mode. (f) The entire network is active during dual-E control mode outlined in blue.

A switching between dual-E and single-E control mode in motif 2-based controllers can also be observed in Fig.3.27. As the equations derivation before, the set point of dual-E
controller depending on the relative values of k_{6} and $k_{7} \cdot E z_{\text {tot }}$, we have the equation

$$
\begin{equation*}
A_{\text {set }}=\frac{k_{6}}{k_{5}}=\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.129}
\end{equation*}
$$

As the results show, when

$$
\begin{equation*}
\frac{k_{6}}{k_{5}} \geq \frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.130}
\end{equation*}
$$

the value of $k_{7} \cdot E z_{\text {tot }} / k_{5}$ is lower than $\frac{k 6}{k 5}$ and only part of dual-E controller is functioning properly, i.e., the dual-E controller works in single-E control mode (Fig.3.27 \mathbf{c} and e). When

$$
\begin{equation*}
\frac{k_{6}}{k_{5}}<\frac{k_{7} \cdot E z_{t o t}}{k_{5}} \tag{3.131}
\end{equation*}
$$

dual-E controller follows the behavior of general dual-E control mode and all manipulated variables participate in the regulation (Fig. $3.27 \mathbf{d}$ and \mathbf{f}). The same behavior is found for non zero-order condition. dual-E controller follows the behavior of general dual-E control mode and all manipulated variables participate in the regulation (Fig.3.27 \mathbf{d} and \mathbf{f}). The same behavior is found for non zero-order condition.

Conclusion and Perspectives

Conclusion of the comparison between motif 5 -based and motif 2-based controllers

As the results show, we have the following conclusions when comparing motif 5 -based and motif 2-based controllers:

1. Both uncatalyzed antithetic controller and zero-order integral controller for motif 5 and motif 2 can keep their homeostatic function for step-wise perturbations.
2. While as for the linear increased perturbation, motif 2-based controllers show a better ability than the motif 5 -based controllers to defend set points with increasing k_{7} values and leading to an increasing accuracy.
3. A higher aggressiveness will shorten the reaction response time.
4. As considering an explicitly enzyme catalyzed degradation, the antithetic dual-E controllers show a more robust system than the single-E controllers, both for motif 5-based and motif 2-based controller. The dual-E controllers can maintain homeostasis even at non zero-order condition, while single-E controllers can not.
5. Particularly, different two-substrate enzyme mechanisms, including ternary complex compulsory order, ternary complex random order and substitution (ping-pong) mechanism, are studied within motif 5 -based controllers and show no significant difference.
6. It is noteworthy that there is a switching in the dual- E controller between dual-E and single-E control mode. The switching depends on the relative values of k_{6} and $k_{7} \cdot E z_{\text {tot }}$ and applies for both motif 5 -based and motif 2 -based controllers. When k_{6} is lower than $k_{7} \cdot E z_{t o t}$, the dual-E controller switches to a single-E control mode. When, k_{6} is larger than $k_{7} \cdot E z_{t o t}$, the dual- E controllers work in dual-E control mode.

Consider that motif 5 and motif 2 are the in-loop controllers (Fig.1.3) and they show a switch. A further investigation should be done with the out-loop controller, such as motif 4 and motif 7 , which is expected, that they may break down directly, or there is no switch situation at all.
7. A difference between motif 5 -based and motif 2 -based controllers is the behaviors of A with an increasing perturbations under a non zero-order condition, k_{1} for motif 5 -based controllers and k_{2} for motif 2 -based controllers, respectively. An increasing perturbation will decrease the off-set from $A_{s s}$ to $A_{\text {set }}$ for motif 5-based controllers, while an increasing off-set for motif 2-based controllers is observed.

Perspectives

In this thesis, we have dealt with the components, such as $A, E z, E_{1}$ and E_{2}, but we do not assign any specific name. From a physiological view, they could represent different components, respectively, and there are many possibilities. For example, the manipulated variable and controlled variable can represent the reaction constituent, the energy substance ($A T P$ and $A D P$), and the enzyme ($N A D^{+}[16]$) etc.

For example, Fig.4.1 can represent a protein kinase reaction corresponding with motif 2 catalyzed antithetic dual-E controller with random order ternary complex mechanism (Fig.3.25). E_{1}, an inhibitor of the regulated compound A, is phosphorylated by the kinase ($E z$) requiring the existence of ATP $\left(E_{2}\right)$ to produce product P. The vast majority of protein kinases follow the random order ternary complex mechanisms and few of them follow ping-pong mechanisms [17].

Figure 4.1: A protein kinase reaction, corresponding with Fig.3.25, follows random order ternary complex mechanism. E_{1} : inhibitor; E_{2} : ATP; $E z$: kinase, respectively.

An opinion from N.Mrosovsky proposed in Rheostasis [18], is that the set point in homeostatic systems may change and could exhibit the new set points. We have some results (Fig. 3.20 a and Fig.3.27 a) proving this kind of change, which reminds us of a fever, i.e., a temperature change to a higher set point during illness.

In our research, we assume the synthesis of final product P is an irreversible reaction, which is corresponding the opinion from Lotka. Lotka found that "homeostasis can be explained by Le Chatelier's principle" is incorrect [19]. Take Fig.3.25 as an example. If it is reversible in k_{7}, product P can not go into a steady state but increasing continuously because of the increasing ternary complex $E_{1} \cdot E z \cdot E_{2}$ according to the Equilibrium Law. Practically, all life reactions are irreversible, which is in line with reality.

Appendix

Matlab programs. A zip-file with Matlab programs showing the results from Fig.3.17 is attached to this thesis.

Bibliography

[1] Corentin Briat, Ankit Gupta, and Mustafa Khammash. Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Systems, 2 (1):15-26, 2016.
[2] Walter B Cannon. Organization for physiological homeostasis. Physiological Reviews, 9(3):399-431, 1929.
[3] Steven J Cooper. From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite, 51(3):419-427, 2008.
[4] Leroy Lester Langley. Homeostasis: Origins of The Concept. Dowden Hutchinson and Ross, 1973.
[5] Gunhild Fjeld, Kristian Thorsen, Tormod Drengstig, and Peter Ruoff. Performance of homeostatic controller motifs dealing with perturbations of rapid growth and depletion. The Journal of Physical Chemistry B, 121(25):6097-6107, 2017.
[6] J Wilkie, M Johnson, and K Reza. Control Engineering. An Introductory Course. Palgrave, 2002.
[7] T Drengstig, IW Jolma, XY Ni, K Thorsen, XM Xu, and P Ruoff. A basic set of homeostatic controller motifs. Biophysical Journal, 103(9):2000-2010, 2012.
[8] Jordan Ang, Sangram Bagh, Brian P Ingalls, and David R McMillen. Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network. Journal of Theoretical Biology, 266(4):723-738, 2010.
[9] Peter Ruoff, Oleg Agafonov, Daniel M Tveit, Kristian Thorsen, and Tormod Drengstig. Homeostatic controllers compensating for growth and perturbations. PloS One, 14(8), 2019.
[10] Stephanie K Aoki, Gabriele Lillacci, Ankit Gupta, Armin Baumschlager, David Schweingruber, and Mustafa Khammash. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature, 570(7762):533-537, 2019.
[11] James E Ferrell Jr. Perfect and near-perfect adaptation in cell signaling. Cell Systems, 2(2):62-67, 2016.
[12] Irwin H Segel. Enzyme kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems. John Wiley \& Sons, 1975.
[13] W W Cleland. The kinetics of enzyme-catalyzed reactions with two or more substrates or products: I. nomenclature and rate equations. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects, 67:104-137, 1963.
[14] K. Radhakrishnan and A.C. Hindmarsh. Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations. NASA Reference Publication 1327, Lawrence Livermore National Laboratory Report UCRL-ID-113855. National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH 441353191, 1993.
[15] John W Moore and Ralph G Pearson. Kinetics and Mechanism. John Wiley \& Sons, 1981.
[16] Richard A Billington, Santina Bruzzone, Antonio De Flora, Armando A Genazzani, Friedrich Koch-Nolte, Mathias Ziegler, and Elena Zocchi. Emerging functions of extracellular pyridine nucleotides. In Molecular Medicine, volume 12, pages 324327. BioMed Central, 2006.
[17] Zhihong Wang and Philip A Cole. Catalytic mechanisms and regulation of protein kinases. In Methods in Enzymology, volume 548, pages 1-21. Elsevier, 2014.
[18] Nicholas Mrosovsky. Rheostasis: The Physiology of Change. Oxford University Press, 1990.
[19] Alfred J Lotka. Elements of Physical Biology. Williams \& Wilkins Company, 1925.

