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Abstract

This master thesis studies the process control analysis using control charts.
It starts with a detailed presentation of the basic types of control charts,
with a special focus on the EWMA control chart. An excessive examination
is performed on the error arising when the unknown process distribution is
being estimated and on ways of eliminating this error. More precisely, the
control limits are being adjusted with two di�erent ways and the results are
being reviewed. Finally, the theoretical results are applied on data from a
study on newborn's birth weight.
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1. Introduction
In all processes, regardless of how well they have been designed and how
carefully they are being operated, it is common that an amount of varia-
tion is present. This variability can be natural or inherent. When this is
the case, variation consists of a white noise for the process, meaning that
is an uncontrollable (random) variation. In statistical quality control pro-
cedures, a process operating under this natural variation is called ”stable
system of chance causes” and is said to be in statistical control.
On the other hand, a non random variation which consists of a control-
lable type of variation may be present. Such variability which generally is
statistically signi�cant compared to the background noise, causes an un-
acceptable unstable operating performance. This is the reason why it is
crucial to identify and encounter these assignable causes of variation that
lead to non random variability.
The following graph is an illustration of the impact of chance and assignable
causes of variation on a process.
When a process is under control, its mean and standard variation will

Figure 1.1.: Chance and assignable causes of variation. With permission: "Copyright
© 2009 by John Wiley & Sons, Inc. All rights reserved." [7]

be in its in control values µ0 and σ0 and most of the observations will lie
between two limits the Upper Speci�cation Limit (USL) and Lower Speci�-
cation Limit (LSL). In this thesis the more standard abbreviation for these
limits UCL and LCL will be used, which stand for Upper Control Limit and
Lower Control Limit respectively. But when assignable causes occur, they
e�ect violently the mean or the variation. As seen on �gure 1.1 an increase
on mean to value µ1 leads the process distribution out of the limits, moving
a remarkable amount of the data beyond the USL. While a simultaneous
shift on both mean and standard deviation (µ2 < µ0 and σ1 > σ0) widens
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the sample distribution and moves it further to the left of the LSL. These
are cases at which the process is said to be out of control. It is critical then
to detect the assignable causes of variation and take action in order the
process to be back under control. An e�ective statistical tool for detecting
and de�ning the assignable causes is the control charts.
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2. Control Charts

A control chart is a graphical display of a quality characteristic of a process
versus the sample number or time. A basic control chart contains a central
line (CL) which represent the mean value of the quality characteristic when
only white noise occurs. In a basic form of the chart there are also two
limit lines UCL and LCL which represent the Upper Control Limit and
the Lower Control Limit respectively.

Figure 2.1.: Typical Shewharth's Control Chart

A basic control chart plots both chance and assignment causes of variation.
In general, random causes of variability give observations which lie inside
the control limits, while under non random variation, the sample data tend
to fall o� the limits. Control chart's basic operation is to monitor the
variations. When an assignable cause of variation exists, the control charts
depicts it showing sample data beyond the control limits.

2.1. Statistical Base for Control Charts
A typical type of a control chart (Shewhart's control chart) consists of two
control lines, the Upper Control Limit and the Lower Control Limit. The
basic rule of control charts denotes that if one or more sample points fall out
of UCL or LCL, the process may be out of control and further investigation
is needed. According to control charts theory, the case in which all points
lie inside the control limits does not necessarily mean that the process is
in control. When the points do not exceed limits but seem to follow a
speci�c pattern, for example most of the sample is above central line, this
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could utmost lead to the suspicion of lack of control. In order to have
some indication of a process in control the sample should be in an essential
random pattern.
Statistical process control is performed in two phases Phase I and Phase
II. In Phase I or retrospective phase, historic data are collected in order to
start the process analysis. Firstly, the control charts are being designed by
de�ning the control limits and plotting the collected data. This is when the
sample is being checked for any points that lie beyond the control limits
or follow any pattern. If such a behavior is spotted, new control limits
are being calculated discarding the abnormal data and using the remaining
sample. The �nal scope is to obtain an in control process. When this is
accomplished, the Phase II or prospective phase follows. During this phase,
the established control limits are used in order to monitor the process
regularly, for spotting any assignable variation.

2.1.1. General model for Shewhart type control chart
Let w denote a sample statistic of a process that describes a quality char-
acteristic with a mean value µw and a standard deviation σw, for example
the mean value x. Then the Central Line, the Upper and Lower Control
Limits of a Shewharts control chart are as follows

UCL = µw + Lσw

CL = µw

LCL = µw − Lσw

where the threshold L is the distance from the central line. Specifying L
(width of the control limits), is critical for the forming of a control chart.
A common method is to assume that when the process is in control, and
by using the Central Limit Theorem, it is accepted that w follows a normal
distribution and a 100(1−α)% of the samples w are expected to fall between
µw−Zα/2σw and µw+Zα/2σw. If a Zα/2 equal to 3 is chosen then the control
chart is a three sigma control chart . Generally, a wider L reduces the
Type I error which is de�ned as a test concludes to an out of control process
when actually the process is in control. However, a more narrow control
space can reduce error of Type II the control chart shows a process to be
in control when it is actually out of control. The plot of Type II error
named operating characteristic curve is used to illustrate the probability
of process shifts in di�erent magnitudes. For example, for the three-sigma
control chart assuming that our statistic w is approximately normal and α
the Type I error probability, the 1 − α is the probability that there is no
signal when the process is in control.

1− a = P (LCL < w < UCL) = P (µw − 3σw < w < µw + 3σw =

= P (−3 < Z < 3) = 0.9973

This shows that the probability the statistic w to be erroneously beyond
control limits for a three-sigma control chart indicating an out of control
process (Type I error), is 1− 0.9973 = 0.0027, meaning out of 10000 sam-
ples, 27 (or 1 in every 370 approximately) will be falsely spotted as out of
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control. Alternatively, the Type I error probability can speci�ed and the
corresponding control limits may be calculated. Therefore, for example the
probability could be chosen to be 0.001 so that in order to have symmetrical
limits, the L is computed by the equations :

P (w ≥ µw + Lσw) = P (Z ≥ L) = 0.0005

or
P (w ≤ µw + Lσw) = P (Z ≤ −L) = 0.0005

with Z ∼ N(0, 1). Following the normal distribution table (see A), L = 3.9.

2.1.2. Average Run Length
A control chart monitors a process's stability and ideally should quickly
and e�ectively detect any undesired behavior. Therefore, while designing a
control chart it is important to ensure its quality by specifying parameters
such as sample size, frequency of sampling, central and control lines.
It is usual for a process evaluation to collect a number of data as a sam-
ple in each predetermined time interval and its mean value to be plotted.
That indicates that a big number of data in each sample can detect more
precisely any abnormality, by spotting smaller shifts. On the other hand,
when alterations are larger, a smaller sample is likely to give a more e�ec-
tive control chart.
An important element to be de�ned, is how to allocate the sample e�ort.
It is obvious that ideally a big number of observations would be chosen
for each sample point along with a small sampling interval. In practice
however, this is not generally feasible. In order to have an indication about
a suitable sample size, a combination of the basic control chart parameters
ARL and L, as presented in the following is being used. One of the fun-
damental parameters for a control chart is the Run Length, which denotes
the number of points plotted until the very �rst observation to exceed one
of the control limits. The Run Length is a discrete random variable with
a probability mass function (pmf). Its mean value which represents the
expected number of control statistics until the �rst out of control signal,
is named Average Run Length (ARL). In case that the observations are
uncorrelated and the process is in control or in the same out of control all
the time, it follows the geometric distribution and then the Average Run
Length for the Shewharth's control chart is given by the formula

ARL =
1

α

where α is the probability an observation exceeds a control limit. When
the process is in control, the ARLIC denotes the average number of points
until the �rst out of control signal is given. On the other hand, ARLOOC ,
is the Average Run Length until the out of control process is detected. A
control chart is e�cient when the ARLIC is big and ARLOOC is small. So
to ensure a small Type I error, the control chart should have a large ARLIC
and a ARLOOC small enough for optimum performance in spotting shifts
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of a relevant size. For a discrete process ARL, which from now on will
denote the in control ARLIC unless stated otherwise, depends only on the
probability that an element lies beyond the de�ned control limits when the
process is in control. If the limits are wide, this probability will be small,
giving a big ARL value. For example, as found before, the False Alarm
Probability for the three-sigma control chart is 0.0027 and the equivalent
ARL = 1

0.0027
= 370. Reducing the value of L to 2.68,

1− a = P (LCL < w < UCL) = P (µw − 2.68σw < w < µw + 2.68σw =

= P (−2.68 < Z < 2.68) = 0.9264

and p = 0.00736. So the corresponding value of ARL is 136, that is out
of 136 one sample will give a false alarm in the long run. By changing
therefore the value of L, the Average Run Length can be controlled or vise
versa, for a certain value of ARL, the control limits may be adjusted.
Although the ARL is the most widely used performance indicator for the
control charts, the signi�cant skewness of the Run Length distribution, ren-
der it as a potential misleading operator for the chart analysis. Indeed, the
Run Length distribution is considerably right skewed. The last years, some
researchers [1] suggested that if some percentiles instead of the average are
used, the e�ects of the skewness could be reduced. The most appropri-
ate from robustness point of view seems to be the 50th percentile (median)
and the Median Run Length (MRL). Similarly to ARL, an e�cient control
chart has large MRLIC and signi�cant small MRLOOC . In some occasions
actually, it is convenient instead of ARL to use the Average Time to Signal
(ATS), which is the average Run Length when the samples are taken in
speci�ed time intervals. That is:

ATS = ARLh

2.1.3. Control Charts and hypothesis testing
Control charts and hypothesis testing can easily be considered equivalent
as statistical control methods. Let S a process statistic with its standard
deviation σS to be an unbiased estimator for the process parameter θ (e.g.
E(S) = θ and V ar(S) = σ2

S). Using a control chart, actually a test is
performed on whether the sample's estimator value equals to the value of
individual measurements.

H0 : θ = θ0 ∨H1 : θ 6= θ0

In case this statistic is the mean, the control charts tests the hypothesis
this mean value (µ) to be equal to the mean of the individual measurements
(µ0), so as to test the following:

H0 : The process is in control

H1 : The process is out of control

The control chart practically tests the hypothesis whether the process is in
control. A basic di�erence between control chart and hypothesis testing is
that in a control chart for the evaluation of a process the test is repeated
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sequentially, while in hypothesis testing it is usual that a test is applied
once. Additionally, comparing hypothesis testing and control chart test
for a process the use of the control chart the essential assumptions of an
hypothesis testing, such as independence in order to reduce variability, can
easily be omitted. In the framework of control charts, the actual use of
hypothesis testing is for to evaluate the performance of the control, by
calculating the Type I and Type II errors.

2.2. An example on Shewhart’s control chart
This example consists a demonstration of a Shewhart's control chart. For
the presentation of this chart data are simulated from a normal distribution
and their mean value is plotted. The control limits are being calculated by
a desired prede�ned value for ARL and by using the formula,

α =
1

ARL

the α is derived and subsequently the factor L in order Upper and Lower
Control Limits to be computed. More precisely, a set of 5 observation from
a normal distribution with mean value 1500 and standard deviation 50
are simulated and their mean value is being calculated. This way the �rst
element of the variable Xi, i = 1, . . . , 50 is being obtained. This is repeated
until a total of 50 simulated mean values is gathered and plotted. The
mean value of the sample equals to µ̂x = 1499.434 and its sample standard
deviation is σ̂x = 17.0537. Choosing an ARL equal to 370 gives L = 3. The
control limits UCL, CL and LCL are then respectively 1550.59, 1499.43
and 1448.28.
Then, the derived control chart is the following:

Figure 2.2.: Control chart for grouped data. The control limits have been
calculated on estimated µ̂ and σ̂.
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The chart spots an extreme value equal to 1447.16. This would be natural
because since there is a point that exceeds one of the control limits, it easily
could be claimed that the chart signals our sample to be out of control.
But as it is proved also by the following, this is a typical example of false
alarm of a point exceeding the control limits while the process in control
(Type I error). In this �rst simulation the control limits are calculated on
the sample's mean and standard deviation. If instead in the simulation the
same factors are preserved but instead UCL CL and LCL are based on the
true values of µx = 1500 and σx = 22.4, the control chart is as follows.

Figure 2.3.: Control chart for grouped data. Control limits are calculated
on true values of mean and standard deviation.

In this case the limit space (LCL,CL,UCL) = (1567.1915001432.81), is
so big that if a decent value for ARL is needed(e.g the 3-sigma ARL which
equals to 370), even if the process is out of control will be di�cult to be
tracked (big value for Type II error).
In the following example the Shewhart control chart is used in order to
examine its behavior in small shifts of the mean value. For this case two
samples of 30 and 50 equivalently observations each of size 5 are being
generated. The �rst 30 are in control (µ0 = 0 and σ0 = 1) while the next
50 have a shift in the mean equal to δ = 0.4 (µ = 0.4 and σ = 1). For
this chart ARL = 370. As it is clear although the points seem to have a
trend to be over CL line, all the data remain inside the control limits so
the process control fails to spot assignable variation of the process for such
a small shift.
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Figure 2.4.: Shewhart's Control Chart for small shift

In real life it is more convenient to use the standardized form of a con-
trol chart. This form plots the data in standard deviation units. For the
statistic w the standardized mode is

Wx =
x− µx
σx

(2.1)

If x follows the normal distribution, the Wx follows the standard normal
distribution which gives a constant value of L since standard deviation is
absorbed in the standardized statistic.
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3. The CUSUM and EWMA
Control Charts

3.1. The Cumulative Sum (CUSUM) Control
Chart

The example of �gure 2.4 demonstrated in the previous chapter, is charac-
teristic of the drawbacks a typical Shewhart's control chart may have. This
type of control charts could be ine�cient for small shifts of the process. Ad-
ditionally, in its implementation only the last observation of the process is
being used, ignoring in reality the whole process. These de�ciencies make
Shewhart's control chart less useful on Phase II control when small shifts
occur.
So, although Shewhart's control chart is a convenient and easy to imple-
ment method and is usually preferred for a statistical process control for
large shifts, when the process itself displays small shifts the method could
be proved rather ine�cient. This is where other alternative type of con-
trol charts can be used. Two very good choices are the Cumulative Sum
(CUSUM) control chart and the Exponentially Weighted Moving Average
(EWMA) control chart.
Let {Xi}, i = 1, 2, ..., n be a process following a normal distribution with
known in control mean µ0 and standard deviation σ0. Assuming subse-
quently that {Xij}, i = 1, 2, ..., n and j = 1, 2, ..., k is the ith sample group
of the process in the 1 ≤ i ≤ n time interval. Now let w be the main
quality statistic which e.g. will be the estimator of the process mean[1]

w = ψ{X1, X2, ..., Xk}

where ψ a function. A very common function ψ is the mean value xi =
{Xij}. For the CUSUM control chart the aggregate distance of each sample
mean value from the process mean value Ci for i = 1 . . . , n is plotted where

Ci =
i∑

j=1

(xj − µ0) (3.1)

The Ci is the cumulative sum of the sample and in practice is the sum of
the preceding xi distance from the in control mean µ0. So the (3.1) becomes

Ci = (xi − µ0) +
i−1∑
j=1

(xj − µ0)

Ci = (xi − µ0) + Ci−1
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When a process is in control, the cumulative sum �uctuates around zero,
while a di�erent value indicates an out of control process. A typical
CUSUM control chart has the following form.[9]

Figure 3.1.: Cusum Control Chart for out of control process

The chart depicts the quantities xi − µs, s = 0, 1 using the data used
for depicting the Shewharth control chart of the �gure 2.4. The �rst 30
observations therefore have mean value µ0 = 0 and its Ci values are close
to 0, so there seems to be in control. For the following 50 points the
mean for the sample shifted to µ1 = 0.4 giving an out of control process
with Ci > 0. The two processes plotted in 3.1 represent the negative and
positive deviation of the in control CUSUM. There are two methods for
representing CUSUM control charts. The tabular or algorithmic method
and the v-mask method. The last throughout the years it was proved to be
less appropriate so in practice it is not used.
Let xi be the i

th observation of the distribution as de�ned above. The value
µ0 is often called target value[7]. The CUSUM control chart monitors and
signals the shift from this target value. The CUSUM chart may have three
forms. The Upper One-Sided CUSUM, the Lower One-Sided CUSUM and
the Two-Sided CUSUM.
The Upper One-sided CUSUM identi�es the quantities Ci that are greater
than the statistic

C+
i = max[0, xi − µ0 −K + C+

i−1] for i = 1, 2, 3, ... (3.2)

where the starting value of C+
0 = 0 and K is called reference value (or slack

value or allowance). The parameter K is usual of the form K = kσ0 and
according to Montgomery [7] a convenient form for K would be

K =
δ

2
· σ0 =

|µ1 − µ0|
2
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The test signals when the �rst sample point C+
i > H, where H the decision

interval. For the Lower one-sided CUSUM control chart the statistic is
given by the formula

C−i = max[0, (µ0 −K)− xi + C−i−1] (3.3)

or by
C−∗i = min[0, xi − µ0 +K + C−∗i−1] (3.4)

with initial values C−0 = 0 and C−∗0 = 0. The test then signals when the
�rst C−i > H if (3.3) and when C−∗i < −H if (3.4). The two-sided CUSUM
signals the sample element which either C+

i > H or C−i > H if (3.3) and
when Ci∗

i < −H if (3.4). Which ever of these types of CUSUM control
chart is used, when there is a signal, an assignable cause of variation is
present, so there is a shift in the mean of the sample. This new mean is
estimated by the formula

µ̂ =

{
µ0 +K +

C+
i

N+ , if C
+
i > H

µ0 −K − C−∗
i

N− , if C
−
i > H

The counters N+ and N− compute the time interval until the �rst signal
for statistics C+

i , C
−
i or C−∗i .

Specifying K and H

In the designing of the CUSUM control chart two basic parameters need to
be speci�ed. The reference value K and the decision interval H. Regarding
the allowanceK, as mentioned before it is a product of the process standard
variation σ0 with a constant k. (K = kσ0). This is a choice based on the
shift of the mean. For example for 1

2
σ0, the k = 1

2
and the K = 1

2
δ,

where δ is the absolute di�erence between the mean of the sample and the
�xed process mean. Equivalently, H can be written as product of σ with a
constant h. In order the cusum chart to be appropriate for the statistical
control it is essential that the ARLIC is as large as possible. So an optimal
combination of K and H that could obtain this is necessary. Since the
values of k can be prede�ned, the proper h are to be speci�ed to reach
this desired ARL. For example,if ARL needs to be 370 (3-sigma Shewhart
control chart ARL), then for di�erent values of k in a two-sided CUSUM
control chart the combination of k and l is : [6]

ARL=370
k 0.25 0.50 0.75 1.25
l 8.01 4.77 3.34 1.99

Table 3.1.: Combination of k and l for given ARL

There are numerous ways of calculating ARL in the cusum method.
Siegmund's approximations for one-sided cusum control chart is one of
them [7]

ARL =
exp(−2∆b) + 2∆b− 1

2∆2
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where ∆ = δ∗ − k 6= 0 for C+
i and ∆ = −δ∗ − k 6= 0 for C−i , b = h+ 1.116

and δ∗ = µ1−µ0
σ0

. For two-sided CuSum, the ARL can be computed by the
formula

1

ARL
=

1

ARL+
+

1

ARL−

3.2. The Exponentially Weighted Moving
Average (EWMA) Control Chart

Besides the CUSUM control chart in 1959 Roberts introduced Exponen-
tially Weighted Moving Average (EWMA) Control Chart [7]. The EWMA
method is gaining ground in statistical process analysis because it is re-
markable e�ective both in detecting small shifts and also for securing an
e�ective Phase II process analysis. The EWMA control chart is using the
sample's exponential weighted moving average as a reference statistic which
is calculated gradually on the previous observation. The EWMA control
chart can be used also on non normal distributed processes. This thesis is
going to deal with the EWMA control chart in detail. Firstly, there will be
an introduction of the design of the EWMA control chart when the process
distribution is known. Afterwards the thesis will focus on unknown process
distribution which will be estimated and then will de�ne and deal with the
impact of the estimation errors arising.
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4. The EWMA Control Chart for
known process distribution

Let {Xij}, i = 1, ..., n and j = 1, ..., k a set of n samples from a process
with a known distribution which have mean µ0 and standard deviation σ0.
From each sampling k elements are derived. Let now {xi}, i = 1, .., n be
the mean of each sampling xi = Xij. The Exponentially Weighted Moving
Average core statistic is then de�ned as

zi = λxi + (1− λ)zi−1, for i = 1, 2, ..., n (4.1)

where the smoothing parameter 0 < λ ≤ 1 is a constant and which satis�es
the initial condition z0 = µ0. Using the (4.1) and substituting zi−1 with
λxi−1 + (1− λ)zi−2

zi = λxi + (1− λ)[λxi−1 + (1− λ)zi−2]

= λxi + λ(1− λ)xi−1 + (1− λ)2zi−2

= λxi + λ(1− λ)xi−1 + (1− λ)2[λxi−2 + (1− λ)zi−3]

= λxi + λ(1− λ)xi−1 + λ(1− λ)2xi−2 + (1− λ)3zi−3

This eventually gives

zi = λ
i−1∑
j=0

(1− λ)jxi−j + (1− λ)iz0 (4.2)

By the equation (4.2) is derived that the statistic zi is a weighted average
of the previous observations. Additionally, the weights λ(1 − λ)j decrease
geometrically towards zero.
Recall that

i−1∑
j=0

λ(1− λ)j = λ
i−1∑
j=0

(1− λ)j = λ
1− (1− λ)i

1− (1− λ)
= 1− (1− λ)i (4.3)

The expected value of the statistic zi is

E(zi) =E[
i−1∑
j=0

(λ(1− λ)jxi−j) + (1− λ)iz0]

=
i−1∑
j=0

λ(1− λ)jE(xi−j) + (1− λ)iE(z0)

=
i−1∑
j=0

λ(1− λ)jµ0 + (1− λ)iµ0

=(1− (1− λ)i)µ0 + (1− λ)iµ0 = µ0
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Its variance σ2

V ar(zi) =V ar[
i−1∑
j=0

(λ(1− λ)jxi−j) + (1− λ)iz0]

=λ2
i−1∑
j=0

(1− λ)2jV ar(xi−j) + (1− λ)2iV ar(z0)

=λ2
1− (1− λ)2i

1− (1− λ)2
σ2
0

=λ2
1− (1− λ)2i

2λ− λ2
σ2
0

=λ
1− (1− λ)2i

2− λ
σ2
0

=σ2
0(

λ

2− λ
)[1− (1− λ)2i], for i = 1, 2, ..., n

Respectively to Shewhart's and the CuSum control chart, EWMA control
chart is the plot of the statistics zi against time. The control limits of the
method are

UCL = µ0 + Lσ0

√
λ

2− λ
[1− (1− λ)2i]

CL = µ0

LCL = µ0 − Lσ0
√

λ

2− λ
[1− (1− λ)2i]

The constant L is a parameter of the width of the control limits (thresh-
old). When the smoothing parameter equals to 1, the EWMA control
chart reduces to Shewhart's control chart since (LCL,CL,UCL) = (µ0 −
Lσ0, µ0, µ0 +Lσ0). For big values of i the weight (1− (1−λ))2i approaches
to unity so steady state for the EWMA control limits is

UCL = µ0 + Lσ0

√
λ

2− λ

LCL = µ0 − Lσ0
√

λ

2− λ

(4.4)

In practice the control limits are often set to have width equal to L times

σ0

√
λ

2−λ . For a two-sided EWMA control chart an indication of an out of

control chart is when an observation exceeds one of the two control limits.
For the one-sided version of this control chart the charting statistics are as
follows

z+i = max[µ0, λxi + (1− λ)zi−1]

z−i = min[µ0, λxi + (1− λ)zi−1]
(4.5)

with starting value z0 = µ0. The parameters L and λ are the core design
parameters for the EWMA control chart. The speci�cation of the values of

16



both L and λ consists the essence for a reliable control chart. The procedure
which is normally used is to �rst choose a proper λ to the shift magnitude
desired to be spotted. The parameter λ in practice determines how much
the weight will be between old and new observations. The λ depends on the
length of memory. When λ is close to zero needs longer memory for smaller
shift while a greater λ signals bigger shifts using shorter memory. After the
choice of λ a convenient for the process ARL is picked and afterwards L is
calculated on λ and ARL. The following table demonstrates a combination
of λs and Ls that give ARL to be equal to 100, 370 and 450 respectively
[3].

ARL=100 ARL=370 ARL=450

λ 0.01 0.05 0.20 0.40 0.01 0.05 0.20 0.40 0.01 0.05 0.20 0.40
L 1.15 1.88 2.36 2.50 1.82 2.49 2.86 2.96 1.92 2.57 2.93 3.02

Table 4.1.: Combination of λ and L for various values of ARL for IC
process

It is common to use standardized data

yi =
xi − µ0

σ0/
√
n

(4.6)

(2.1)which gives the EWMA control chart statistic

Zi = λyi + (1− λ)Zi−1 (4.7)

and if xi is normally distributed, Zi follows the standard normal distribu-
tion giving constant control limits

UCL = L

√
λ

2− λ
CL = 0

LCL = −L
√

λ

2− λ

From this point unless it is stated otherwise the standardized statistic will
be used.

4.1. An example of EWMA control chart for
known process distribution

In this section there will a presentation of an example on the EWMA
statistical analysis control chart. In this example a sample of 80 points
of size 5, {Xi,j}, i = 1, . . . , 80, j = 1, . . . , 5 from a normal distribution is
simulated. Then their mean xi = {Xi,j} is derived and the standardized
EWMA statistic of this mean

Wi =
xi − µ0

σ0/
√
k
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is computed, where µ0 and σ0 are the reference mean and standard devia-
tion for an in control process. For an illustration of the method the 30 �rst
points generated from the standard normal distribution use the assump-
tion that the sample simulates an in control process and then the next 50
points are derived from a normal distribution with mean 0.4 and standard
deviation 1. In this way we demonstrate an out of control process caused
by a small shift in the mean. For the example we chose an ARL equal
to the 3-sigma Shewhart's control chart (ARL = 370) and a smoothing
parameter λ = 0.05. The EWMA chart we eventually get is the following.

Figure 4.1.: EWMA control chart for standardized data. The �rst 30 �rst
observations are generated from the standard normal

distribution and the next 50 from a normal distribution with
mean 0.4 (δ = 0.4) and standard deviation 1

From the �gure 4.1 it is very clear that the �rst 30 observations are
in control since all of them lie around the CL = 0 central line. When the
shift in the mean occurs, the exponentially weighted moving average for the
standardized data increase and after a while the control statistic exceeds
the UCL control limit con�rming the fact that the process is out of control.
This example actually performs a process control of the same parameters
as the Shewhart's control chart 2.4 of chapter 2. Indeed for such a small
shift EWMA control chart is successful in spotting it in contrast to the
Shewhart control chart.
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5. The EWMA Control Chart for
unknown distribution

The EWMA control chart that was presented in the previous chapter could
be seen as a theoretical basis for the statistical process control using the
exponentially weighted moving average. In reality the cases that the dis-
tribution of a process is known are really rare to �nd. In the majority of
applications of a statistical control chart the real mean value µ0 and stan-
dard deviation σ0 are unknown. In such cases the only option is to estimate
the distribution parameters. However this might have a large impact on
the performance of the chart.

5.1. EWMA Control Chart with estimated
parameters

Let as in the previous chapter assume a k element sample {Xij}, i =
1, . . . , n and j = 1, . . . , k of size n and {xi} = {Xij} the set of their mean
value. If the sample follows a normal distribution with a mean value µ0

and a standard deviation σ0, the EWMA standardized data would be

yi =
xi − µ0

σ0/
√
k

(5.1)

the control chart statistic

zi = λyi + (1− λ)zi−1

and the control limits

(LCL,CL,UCL) = (−L
√

λ

2− λ
, 0, L

√
λ

2− λ
)

But when the process' distribution is unknown, in the equation (5.1) the
estimated values from the Phase I data of µ0 and σ0 should be used. Thus
the (5.1) takes the form

ŷi =
xi − µ̂
σ̂/
√
k

(5.2)

or [8]

ŷi =
1

Q
(vi + γ − Y√

n
) (5.3)

where Q = σ̂/σ0 is the ratio of the estimated standard deviation to the real
in control standard deviation, vi =

√
k(xi−(µ0+δ))/σ0 is the standardized

sample mean for a δ shift in the mean, γ =
√
kδ/σ is the standardized mean
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shift and Y =
√
mk(µ̂− µ0)/σ0 is the standardized di�erence between the

estimated and the real in control mean. A good estimator of the process
mean is

µ̂ =

∑n
i=1 xi
n

(5.4)

Regarding the standard deviation there are a number of estimators. Two
of them are [8]

σ̂1 =
Spooled
c4(v + 1)

,

σ̂2 = c4(v + 1)Spooled

(5.5)

where Spooled =
√

(
∑n

i=1 S
2
i )/n, with S

2
i =

∑k
j−1(Xij−xi)2

k−1 , v = n(k − 1) and
c4(v + 1) is a control constant which is given by the equation

c4(v + 1) =

√
2Γ(n(k−1)+1

2
)√

n(k − 1)Γ(n(k−1)
2

)

and ful�lls the condition E[Spooled] = c4(v+1)σ0. In [7] there is a table with
values c4(v+1). Their main di�erences are that σ̂1 estimator is unbiased in
contrast with the σ̂2, while the latter has the smallest mean squared error.
[8]

Impact of estimation error on in control ARL

The estimation of the process distribution apparently a�ects the control
chart performance in�uencing the value of ARL. For an IC process, a
µ̂ > µ0 reduces the value of the statistic ŷi. That gives shorter ARL. In
parallel, the underestimated mean µ̂ < µ0 increases also the statistic and
returns smaller RLs and shorter ARL. Additionally, and underestimation
of σ̂ < σ0 increases the ŷi and returns shorter ARLs, while on the other
hand, the σ̂ > σ0 returns smaller ŷi and gives longer ARL.

5.1.1. An example of EWMA control chart with
estimated parameters

In order to demonstrate a simple EWMA control chart with estimated
parameters a simulation of a sample of N = 100 of single observations
(k = 1) from the standard normal distribution N(µ0 = 0, σ2

0 = 1) was
performed in order to represent an IC process. The ARL0 = 370 and the
smoothing parameter λ = 0.2. The estimation of the parameters were made
on a sample of size nest = 100 from a standard normal distribution and for
the standard deviation estimator the standard deviation of the sample was
used. The plot depicts the standardized statistic with estimated parameters
µ̂ = 0.0904 and σ̂1 = 0.9128.
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Figure 5.1.: EWMA control chart for an IC estimated distribution for a
Xi, i = 1, . . . , 100 sample from standard normal distribution
and parameters ARL0 = 370 and λ = 0.2. The estimated

µ̂ = 0.0904 and σ̂1 = 0.9128.

5.2. Control chart’s ARL for estimated
parameters

In the previous example the EWMA chart with estimated parameters al-
though the process is in control, seems to spot a shift in the mean. If
nevertheless two EWMA control charts for the same process but with the
�rst to standardized the EWMA statistic on estimated distribution while
the second one uses the known process distribution for standardization are
compared, the derived combined plot of the �gure 5.2 of both EWMA con-
trol charts with the blue line to depict the estimated chart and the purple
one the process control based on known process distribution is obtained.
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Figure 5.2.: Comparison of EWMA control chart for an IC estimated
distribution for a Xi, i = 1, . . . , 100 sample from standard

normal distribution and parameters ARL0 = 370 and λ = 0.2.
The estimated µ̂ = 0.0904 and σ̂1 = 0.9128.

In �gure 5.2 the control chart statistic for the estimated parameters as
mentioned exceeds the lower control limit in a point, while the one with the
true parameters lies inside the control limits for the whole process. This
leads to the assumption that there exists an estimation error on the run
length of the control chart generated by the unknown distribution of Phase
I in the process analysis. In this example increases the Type I error of the
control chart.

Estimation error on the RL distribution

In order to start studying the estimation error for the EWMA control chart
the boxplot in the �gure 5.3 is presented in which there is a demonstration
(not showing the extreme values) of the simulated RLs for a process. The
simulation size is NRL = 2500, the IC ARL0 = 200, the smoothing parame-
ter λ = 0.2 and the estimation of the distribution was made on a nest = 100
observations of the standard normal distribution. In this chart it can be
seen that when the EWMA control chart is designed on the real distri-
bution and for an IC process the statistical control gives RL distribution
with median equal to 135 and mean value 196.2. A small deviation of the
ARL0 = 200 which can be justi�ed by the simulation error. On the other
hand, when the distribution is being estimated with parameters µ̂ = 0.1205
and σ̂ = 0.9499, the control chart's mean RL decreases to 111.14 and me-
dian to 79, adding therefore an estimation error to the simulation error,
increasing here the Type I error.
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Figure 5.3.: Comparison of IC RL distributions for an EWMA statistical
control process both true and estimated, for a

Xi, i = 1, . . . , 100 sample from the standard normal
distribution and estimated process for ARL0 = 200, λ = 0.2.
The simulation size for RL is NRL = 2500. The µ̂ = 0.1205
and σ̂ = 0.9499 were estimated on a nest = 100 sample of

standard normal distribution.
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Figure 5.4.: Comparison histogram of IC RL distributions for an EWMA
statistical control process both true and estimated, for a
Xi, i = 1, . . . , 100 sample from the standard normal

distribution and estimated process for ARL0 = 200, λ = 0.2.
The simulation size for RL is NRL = 2500. The µ̂ = −0.0056
and σ̂ = 0.9352 were estimated on a nest = 100 sample of
standard normal distribution. The limits of the plot have

been adjusted so as not to show the extreme values for both
distributions.

The histogram in �gure 5.4 con�rms the trend of error in the Run Length
of the EWMA control chart when mean and variance are being estimated.
The nature of the error depends on the estimation itself. In the previous
estimation for example, where σ̂ < σ0 and µ̂ > µ0, the distribution is
steeper, but less skewed and less long tailed with the majority of RL values
to be concentrated around RL = 80 considerable smaller than the desired
ARL0 = 200 (Type I error). For another estimation as presented in �gure
5.5 with µ̂ > µ0 but σ̂ > σ0, the EWMA control chart generates bigger
RLs while it has a steeper, more skewed and long tailed distribution.
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Figure 5.5.: Comparison of IC RL distributions for an EWMA statistical
control process both true and estimated, for a

Xi, i = 1, . . . , 100 sample from the standard normal
distribution and estimated process for ARL0 = 200, λ = 0.2.
The simulation size for RL is NRL = 2500. The µ̂ = 0.0354
and σ̂ = 1.0272 were estimated on a nest = 100 sample of

standard normal distribution.

The study so far indicates that the estimation of a process causes an
error on the statistical process control. In order to examine further this
assumption, EWMA control charts for an In Control process are simulated
altering a number of parameters. For this purpose an a R-code has been
designed which �rstly estimates the distribution parameters µ̂ and σ̂ in a
nest = 100 set of standard normal distribution observation set. Then, the
code generates a sample of NRL = 2500 from standard normal distribution
(to simulate an IC process) and calculates the standardized statistic zi, i =
1, . . . , nrl. It examines when the process exceeds the control limits and
returns the smaller value. It repeats the procedure for NARL = 5000 and
take the mean value of RLs to return the ARL. The code �nally, simulates
narl = 500 repeating the above loop. The standard parameters used
are λ = 0.2, and ARL0 = 200. To start a plot depicting a simple ARL
distribution is presented.

Estimation error on the ARL distribution

The estimation of the process distribution, as seen so far, shifts the run
length distribution from the desired ARL. This inevitably leads to the
assumption that the process estimation generates error on the ARL distri-
bution.
It is interesting therefore to compare the EWMA control chart for the same
sample's statistic z computed on real and estimated distribution. Then the
statistical error derived by the estimation can more clearly be identi�ed and
distinguished it from the less signi�cant simulation error. According to the
�gure 5.6 when the control chart is designed on an estimated distribution,
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it has a range of 953 with a median of 161.5, while the true EWMA statis-
tic for IC process has a 35 range (simulation error) and a median equal to
200). This is in total agreement with the theory presented in paragraph
5.1. The estimation error of the mean µ̂, gives too short ARL, while on the
other hand, the estimation error of the standard variation σ̂ works both
ways causing the big range and the long tails. But the combination of the
estimation of the two parameters, return more shorts ARLs.

Figure 5.6.: Comparison of ARL distribution for simulated ARLs. The
estimation of the parameters has been made on a nest = 100

sample from the standard normal distribution. The
simulation parameters are ARL0 = 200 and λ = 0.2. The
simulation size for RL is NRL = 2500 and each ARL was

calculated on NARL = 5000 RLs. The ARL simulation size is
nARL = 500.

The histogram of both simulated ARLs illustrates that while for the
true parameters the ARL is distributed almost normally with mean 200
(again as a result of the simulation), for estimated parameters the ARL
distribution is steep, skewed and long tailed. (For presentation reason
the extreme values of ARL for estimated process are not shown in the
histogram).
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Figure 5.7.: ARL distribution histogram for estimated process
distribution. The estimation of the parameters has been
made on a nest = 100 sample from the standard normal

distribution. The simulation parameters are ARL0 = 200 and
λ = 0.2. The simulation size for RL equals to NRL = 2500
and each ARL was calculated on NARL = 5000 RLs. The

ARL simulation size is nARL = 500.

In a boxplot for the ARL error distribution for the above EWMA control
charts, is clear that the EWMA control chart designed on true distribution
has insigni�cant simulation errors. But if therefore the EWMA control
chart is designed on estimated parameters, the corresponding error has a
range of 918 with median to be−38.5, meaning that spots OOC observation
in an earlier time (Type I error).
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Figure 5.8.: Error distribution for estimated EWMA Control Chart. The
estimation of the parameters has been made on a nest = 100

sample from the standard normal distribution. The
simulation parameters are ARL0 = 200 and λ = 0.2. The
simulation size for RL is NRL = 2500 and each ARL was

calculated on NARL = 5000 RLs. The ARL simulation size is
nARL = 500.

The following histogram con�rms that the errors when EWMA control
chart is designed on unknown process, are in majority negative while on the
other hand have also a big range giving long-tailed and skewed distribution.
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Figure 5.9.: Error distribution histogram for estimated EWMA Control
Chart. The estimation of the parameters has been made on a
nest = 100 sample from the standard normal distribution.

The simulation parameters are ARL0 = 200 and λ = 0.2. The
simulation size for RL is NRL = 2500 and each ARL was

calculated on NARL = 5000 RLs. The ARL simulation size is
nARL = 500.

The presence of this error makes it crucial to examine the impact various
statistical control parameters have on it. To begin, the e�ect the desired IC
ARL0 has on the distribution of the estimated ARL will be examined. In
the following boxplot therefore, which was derived by a 500 times process
simulation using the code 5.2 with λ = 0.2 but for four di�erent ARL
i.e. ARL1 = 100, ARL2 = 200, ARL3 = 370 and ARL4 = 500 (�gure
5.10), the median ARL for each case deviates from the IC ARL (table
(refrangevariousarl).
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Figure 5.10.: Distribution of ARL for ARL0 = 100, ARL0 = 200,
ARL0 = 370 and ARL0 = 500. The estimation of the

parameters has been made on a nest = 100 sample from the
standard normal distribution. The process sample has been
derived from standard normal distribution. The simulation

parameter λ = 0.2. The simulation size for RL is
NRL = 2500 and each ARL has been calculated on

NARL = 5000 RLs. The ARL simulation size is nARL = 500.

ARL0 100 200 370 500
median 84.00 187.50 277.00 357.00

median-ARL0 16.00 12.50 93.00 143
range 333.00 1361.00 2082.00 2321

Table 5.1.: Median and range for ARL distribution derived from
simulation for ARL0 = 100, ARL0 = 200, ARL0 = 370 and

ARL0 = 500

The range of the ARL distribution appears therefore to correlate to the
value of the IC ARL0. For bigger ARL0 the distribution median has larger
deviation fromARL0. Additionally, the range of the simulatedARLs is also
a�ected by the estimation of the process. In the �gure 5.10 the smaller IC
ARL0 the smaller this estimation error Table 5.1. In this table are presented
the median and its di�erence ARL0 of the corresponding distributions as
well as the range of the distribution in order to study more precisely the
impact the ARL0 has to ARL′s range. It is now more clear that too
large ARL0 gives a right tailed distribution reducing the Type I error and
increasing the e�ectiveness of the control chart.
So far the e�ect of simulation size and IC ARL0 on estimated ARL has been
studied. Further on, the estimated error distribution variation for di�erent
values of the smoothing parameter λ and then for di�erent sample sizes
will be audited. The �gure 5.11 depicts the ARL when λ varies.

30



Figure 5.11.: Distribution of ARL for
(λ1 = 0.01, L1 = 1, 5), (λ2 = 0.02, L2 = 1.83),
(λ2 = 0.2, L2 = 2.64), (λ2 = 0.5, L2 = 2.78) and

(λ3 = 1, L3 = 2.81). The estimation of the parameters has
been made on a nest = 100 sample from the standard normal

distribution. The process sample was generated by a
standard normal distribution with ARL0 = 200. The

simulation size for RL is NRL = 2500 and each ARL has
been calculated on NARL = 5000 RLs. The ARL simulation

size is nARL = 500.

According to �gure 5.11 smaller smoothing parameter has smaller ARL.
This means that for small λ the control chart spots OOC observations
sooner (Type I error). On the other hand, for bigger λ the ARL distribution
seem to give a median more close to the IC ARL0, but the range is very
big (analogous to the value of λ), while the extreme cases increase both
in number and value. This outcome is in absolute line with the study
presented in table 1 of the paper of Jones & al. (2001). [5]
Finally the ARL distribution for three di�erent samples sizes nest1 = 100,
nest2 = 1000 and nest3 = 16000 is :
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Figure 5.12.: ARL distribution estimation on a 100 process simulation
where the process parameters have been estimated on a

nest1 = 100, nest2 = 1000 and nest3 = 16000 sample size from
the standard normal distribution. The simulation

parameters are ARL0 = 200 and λ = 0.2. The simulation
size for RL is NRL = 2500 and each ARL has been

calculated on NARL = 5000 RLs.

It is clear as seen in �gure 5.12 that the sample size de�nes the e�ec-
tiveness of the EWMA control chart. Smaller sample size increases the
estimation error. It is then obvious that in order to achieve an e�cient
process control when the process is being estimated, a really big sample
size for the estimation of the parameters should be used.
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6. Proposal for handling the
estimation error in EWMA
Control Chart.

As seen so far, it is very rare for a process distribution to be known. So,
when trying to apply a statistical control chart it is essential that the
process should be estimated using Phase I data. This estimation eventually
transforms ARL to a random variable. When the process is estimated, as
already seen, the EWMA control chart often tends to give smaller ARLs
than the desired ARL0. This deviation from the ARL0 is also a�ected by
a number of other parameters (see section 5.2). This chapter deals with a
study on methods for taking into account the estimation error with focus
on adjustment of the threshold.

6.1. General setting for the adjustment
The estimation of process parameters, a�ects theARL distribution. Wrongly
estimated µ̂ (both over or underestimated) will tend to imply too small in
control ARL. On the other hand a miss-estimated σ̂ may increase ARL
(when σ̂ > σ) or reduce it (when σ̂ < σ). That means that the statis-
tic zi exceeds sooner one of the control limits. By adjusting therefore
the control limits the false alarm error can be reduced. The method in-
troduced by Gandy and Kvaløy (2013)[4] suggests the construction of an
bootstrapped approximate con�dence interval for the control limits. The
bootstrap method is a re-sampling method for the estimation of a distri-
bution [8].
For an EWMA control chart, let P be the real in control distribution of
the process and P̂ an estimation of it. The parameters of the process are
the ξ = (µ0, σ0) and equivalently ξ̂ = (µ̂, σ̂) is their estimation. Let q
be a function denoting the in control condition the statistical chart holds
which depends on P and ξ (q(P ; ξ)) or their estimates (e.g. q(P ; ξ̂)). For
instance, this function q could be the threshold to achieve a certain ARL.
Since the process distribution is unknown, the function q(P ; ξ̂) is random
and thus for the bootstrap estimation of the con�dence interval the q(P̂ ; ξ̂)
is used. Let α ∈ (0, 1) constant. The subject is to determine an one-sided
con�dence interval which will guarantees that (1 − α)% of the q(P̂ ; ξ̂) to
be equal or bigger to ARL0. So, if pα is a constant that represents the α
percentile of the q(P̂ ; ξ̂)− q(P ; ξ̂) (assuming that it actually exists),

P (q(P̂ ; ξ̂)− q(P ; ξ̂)) > pα) = 1− a

gives
P (q(P̂ ; ξ̂)− pα > q(P ; ξ̂)) = 1− a
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. The interval (−∞, q(P̂ ; ξ̂) − pα) is therefore a lower limit for the CI of
q(P̂ ; ξ̂).
The constant pα is unknown, and Gandy and Kvaløy proposed the use of
the following bootstrap method to estimate the (−∞, q(P̂ ; ξ̂)− pα).

� First estimate the P̂ and the ξ̂

� Then take a bootstrap sample for P̂ to estimate P̂ ∗ and ξ̂∗ .

� Repeat the bootstrap B times to get the two sets of estimations
P̂ ∗i , i = 1, . . . , B and ξ̂∗i , i = 1, . . . , B.

� Then p∗α is an estimation of pα which represents the empirical α quan-
tile of q(P̂ ∗i ; ξ̂∗i )− q(P̂ ; ξ̂∗i ), : i = 1, . . . , B.

� The adjusted threshold therefore is q(P̂ ; ξ̂)− p̂∗α

To demonstrate how the adjustment of the control limits works on an
EWMA control chart, follows an application on the data from �gure 5.1 in
order to obtain an one-sided con�dence interval that ensures that 90% of
the ARLs will be at greater than or equal to desired ARL0. (For all the
simulations the threshold is being estimated using the R package spcadjust
[3].)

Figure 6.1.: EWMA control chart for an IC estimated distribution for a
Xi, i = 1, . . . , 100 sample from the standard normal

distribution and parameters ARL = 370 and λ = 0.2. Both
the adjusted and non-adjusted Control Limits are included.

The estimated µ̂ = 0.0904 and σ̂1 = 0.9128.

The adjusted control limits are wider and thus prevent the control chart
from spotting falsely an abnormal observation as the regular plot did. Al-
though it follows a further study on this adjustment at �rst sight it seems
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that it has the potentials to reduce the Type I error the process estimation
caused. For this purpose there will be a try to replicate some of the Sec-
tion's 5 plots comparing this time the estimated EWMA control chart for
both control limits.

6.1.1. Evaluation of the adjusted control limits
In the �gure 5.3 the estimated EWMA control chart gives RLs smaller
than the desired ARL0 = 200. In order to increase the e�ectiveness of the
control chart, these small RLs should be eliminated. So, if an adjustment
on the threshold was applied, the control limits would be broadened and
thus both the alarm time and the RL values would be increased.

Figure 6.2.: Comparison of IC RL distributions for an EWMA statistical
control process for adjusted and non-adjusted CL, for a
Xi, i = 1, . . . , 100 sample from the standard normal

distribution and estimated process for ARL0 = 200, λ = 0.2.
The simulation size for RL is NRL = 2500. The µ̂ = −0.0599
and σ̂ = 1.0154 were estimated on a nest = 100 sample of

standard normal distribution.

The new control limits allow the EWMA control chart to avoid in control
observations to be labeled as out of control. This is what the boxplot 6.2
indicates. That for adjusted threshold, the run length of the control chart
returns bigger values e.g in the example the median of the RL is 365.5 for
145 when the unadjusted threshold is used. This may be easily con�rmed
by the equivalent histogram (�gure 6.3) in which for the adjusted threshold
the RL distribution is more smooth with bigger predominant RL value.
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Figure 6.3.: Comparison of IC RL distributions for an EWMA statistical
control process both unadjusted and adjusted threshold, for a

Xi, i = 1, . . . , 100 sample from the standard normal
distribution and estimated process for ARL0 = 200, λ = 0.2.
The simulation size for RL is NRL = 2500. The µ̂ = −0.0599
and σ̂ = 1.0154 were estimated on a nest = 100 sample of the

standard normal distribution.

Indeed when it comes to ARL the adjustment of the threshold gives a
skewer distribution which median is 200 compared to non adjusted ARL
which have median 163. Additionally, by the �gure 6.4 it is con�rmed that
this threshold guaranteed that 90% of the ARLs are bigger that ARL0 =
200.
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Figure 6.4.: Comparison of ARL distribution for simulated ARLs for
adjusted and unadjusted threshold. The estimation of the
parameters has been made on a nest = 100 sample from the
standard normal distribution. The simulation parameters are
ARL0 = 200 and λ = 0.2. The simulation size for RL is

NRL = 2500 and each ARL was calculated on NARL = 5000
RLs. The ARL simulation size is nARL = 500. The extreme

values have been excluded from the plot.

Accordingly to the study of the previous chapter follows a simulation of
the process for various ARL0 (i.e ARL = 100, 200, 370 and 500) to conclude
through the �gure 6.5 that when the CLs are adjusted the probability of a
very early false alarm is being remarkable reduced. The new control chart
gives bigger ARLs, the distribution range is being increased with the ARL0

value and the 90% seems to hold.
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Figure 6.5.: Comparison of ARL distribution for simulated ARLs for
adjusted and unadjusted threshold for various ARL0 (e.g.
ARL1 = 100, ARL2 = 200, ARL3 = 370 and ARL4 = 500).

The estimation of the parameters has been made on a
nest = 100 sample from the standard normal distribution.
The simulation parameter λ = 0.2. The simulation size for

RL is NRL = 2500 and each ARL was calculated on
NARL = 5000 RLs. The ARL simulation size is nARL = 500.

Furthermore, the impact of the adjustment of the threshold can be seen
also while the estimation size for the process alters. For the reference value
of ARL0 = 200, the smaller the nest, the most e�cient the adjustment
seem to be. But also for the pretty large nest = 16000, although the con-
ventional threshold can be e�cient the adjusted one is even better as seen
in �gure 6.6. Actually, the larger the estimation sample the less adjustment
is needed.
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Figure 6.6.: Comparison of ARL distribution for simulated ARLs for
adjusted and unadjusted threshold for various sizes for
estimation of the parameters nest = 100, nest = 1000 and

nest = 16000 sample from the standard normal distribution.
The simulation parameters are ARL0 = 200 and λ = 0.2. The

simulation size for RL is NRL = 2500 and each ARL was
calculated on NARL = 5000 RLs. The ARL simulation size is
nARL = 500. The extreme values have been excluded from the

plot.

The in�uence of the smoothing parameter λ has been shown to be im-
portant for the EWMA control chart. Regarding the interaction between
the smoothing parameter and the adjusted threshold the new control limits
seem to give indeed larger ARLs while for smaller λs the ARL distribution
appears more right skewed than for distribution with bigger λs (λ > 0.1)
(�gure 6.7).

39



Figure 6.7.: Comparison of ARL distribution for simulated ARLs for
adjusted and unadjusted threshold for various λ (e.g.

λ1 = 0.01, λ2 = 0.02, λ3 = 0.2, λ4 = 0.5 and λ5 = 1). The
estimation of the parameters has been made on a nest = 100

sample from the standard normal distribution. The
simulation parameter ARL0 = 200. The simulation size for

RL is NRL = 2500 and each ARL was calculated on
NARL = 5000 RLs. The ARL simulation size is nARL = 500.

The extreme values have been excluded from the plot.

6.2. Another threshold adjustment
The threshold adjustment proposed by Gandy and Kvaløy (2013)[4], and
applied above, ensures a 90% of the ARL to be bigger than ARL0. This
particular estimation is based on a bootstrap method which in practice
estimates the already estimated process.
Another interesting threshold adjustment is the one Diko, Chakraborti and
Does proposed [2]. This adjustment method estimates the conditional ARL
distribution (CARL) for various Phase I sample size. The implementation
of the method suggests to trial various L from the interval (L0,∞), where
L0 is the starting L each time. The method seeks for the value of L that
gives CARLIC,p > ARL0 (1 − ε) for a known probability p. Enhancing
�gure 6.1 with control limits derived for the new threshold, it can be seen
that these control limits may also prevent false alarms, but tend to be more
narrow than the one studied above.
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Figure 6.8.: EWMA control chart for an IC estimated distribution for a
Xi, i = 1, . . . , 100 sample from the standard normal

distribution and parameters ARL = 370 and λ = 0.2. The
adjusted and two type of unadjusted Control Limits are
included (adj. threshold holds for Gandy & Kvaløy [3]

adjustment while threshold* for Diko, Chakraborti & Does
approximation for ε = 0 [2]). The estimated µ̂ = 0.0904 and

σ̂1 = 0.9128.

By depicting the RL distribution for Diko, Chakraborti & Does (L?)
threshold it is interesting to note that the RLs given using this threshold
are a little smaller than the ones Gandy & Kvaløy's threshold (L) gives. It
has a smaller range, but overall seem to handle nicely the unwanted smaller
RL values. The run length is by means smaller e.g. L? is 400.95 while L is
440.27, with median for L? to be 281 and for L to be 311.
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Figure 6.9.: Comparison of IC RL distributions for an EWMA statistical
control process for adjusted and unadjusted thresholds L and
L? (for ε = 0), for a Xi, i = 1, . . . , 100 sample from the
standard normal distribution and estimated process for
ARL0 = 200, λ = 0.2. The simulation size for RL is

NRL = 2500. The µ̂ = 0.022 and σ̂ = 1.04 were estimated on
a nest = 100 sample of the standard normal distribution.

The boxplot for the ARL for all the three thresholds, shows as expected
that the two adjustments increase the Average Run Length reducing the
false alarm probability. In fact, the ARL has a mean of 589.196 with a range
of 3091 for the ARL? mean of 605.53 and range of 3078. It seems that the
two di�erent adjustment tend to produce similar results, but judging by the
following plots, in general the Diko, Chakraboti and Does threshold (L?)
gives slightly bigger ARLs. This is not the case, nevertheless, when the
smoothing parameter λ is very small. Then L? are much larger than L. So,
L? seems to reduce estimation error more e�ectively when λ is relatively
small. Indeed for λ = 0.02 and for λ = 0.1, the L? gives ARL closer to the
ARL0 according to the Tables 6.1 and 6.2. But for larger λ the di�erences
are reduced.

ARLL ARLL?

10% 183.80 208.00
5% 149.95 167.95

Table 6.1.: Table of the 10% and 5% of ARL distribution for adjusted
thresholds. The L denotes the Gandy & Kvaløy's threshold
while the L? the Diko, Chakraboti and Does threshold. The
λ = 0.02 while the nARL = 500, the NRL = 2500 and the

nest = 100.
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ARLL ARLL?

10% 191.90 205.90
5% 156.00 168.90

Table 6.2.: Table of the 10% and 5% of ARL distribution for adjusted
thresholds. The L denotes the Gandy & Kvaløy's threshold
while the L? the Diko, Chakraboti and Does threshold. The
λ = 0.1 while the nARL = 500, the NRL = 2500 and the

nest = 100.

The group of all the following plots compare the two threshold adjust-
ments when the control chart parameters varied. As said both adjustments
seem pretty much similar with adjusted L? to give slightly bigger ARLs.
What seem to be di�erent in the two adjustments is the range of the ARL
distribution. The adjusted L? has larger range and actually this range is
wider when ARL0 is larger, �gure 6.11, and when either of λ and estimation
sample is smaller as seen in �gures 6.12 and 6.10 respectively.

Figure 6.10.: Comparison of ARL distribution for unadjusted and
adjusted thresholds. The estimation of the parameters has
been made on a nest = 100 sample from the standard normal
distribution. The simulation parameters are ARL0 = 200

and λ = 0.2. The simulation size for RL is NRL = 2500 and
each ARL was calculated on NARL = 5000 RLs. The ARL
simulation size is nARL = 500. The thresholds used are the
Gandy-Kvaløy's estimation (L) and Diko, Chakraborti &

Does 's (L?).
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Figure 6.11.: Distribution of ARL for ARL0 = 200, ARL0 = 370 and
ARL0 = 500 for unadjusted and adjusted thresholds. The

estimation of the parameters has been made on a nest = 100
sample from the standard normal distribution. The process
sample has been derived from standard normal distribution.
The simulation parameter λ = 0.2. The simulation size for
RL is NRL = 2500 and each ARL has been calculated on

NARL = 5000 RLs. The ARL simulation size is nARL = 500.
The thresholds used are the Gandy-Kvaløy's estimation (L)

and Diko, Chakraborti & Does 's (L?).
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Figure 6.12.: Distribution of ARL for λ1 = 0.02, λ2 = 0.1, λ3 = 0.2,
λ4 = 0.5 and λ5 = 1 for unadjusted and adjusted thresholds.

The estimation of the parameters has been made on a
nest = 100 sample from the standard normal distribution.
The process sample has been derived from standard normal
distribution. The ARL0 = 200. The simulation size for RL

is NRL = 2500 and each ARL has been calculated on
NARL = 5000 RLs. The ARL simulation size is nARL = 500.
The thresholds used are the Gandy-Kvaløy's estimation (L)

and Diko, Chakraborti & Does 's (L?).

Figure 6.13.: Distribution of ARL for estimation of the parameters to be
made on a nest1 = 100, nest2 = 1000 and nest3 = 16000

sample from the standard normal distribution. The process
sample has been derived from standard normal distribution.
The ARL0 = 200 and the λ = 0.5. The simulation size for
RL is NRL = 2500 and each ARL has been calculated on

NARL = 5000 RLs. The ARL simulation size is nARL = 500.
The thresholds used are the Gandy-Kvaløy's estimation (L)

and Diko, Chakraborti & Does 's (L?).
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6.3. Adjusted Thresholds for Out Of Control
process

So far, the error the process estimation causes to an EWMA control chart
has been widely examined and there have been proposed ways of handling
it using adjusted thresholds. For this purpose two di�erent threshold ad-
justments have been applied, the one Gandy and Kvaløy [3] and the one
Diko, Chakraborti and Does [2] proposed. Also a number of simulations
have been performed for an in control process to examine the behavior the
adjusted control limits on the EWMA check statistic.
In this section the simulations will depict an out-of-control process for
evaluating the adjusted thresholds when they must indeed deal with an
abnormal observation. For an OOC process the plot 6.14 shows that the
two adjusted tests �nd the out of control observations in the same time
slot. This is also depicted in a boxplot for the RL distribution. The run
length given by the unadjusted threshold has a mean of 18.77 while the
adjusted ones are 27.87 for L and 29.13 for L?.

Figure 6.14.: EWMA control chart for an OOC estimated distribution for
a Xi, i = 1, . . . , 100 sample from a normal distribution with

µ0 = 0.5 and σ0 = 1 and parameters ARL = 370 and
λ = 0.2. The adjusted and two type of unadjusted Control
Limits are included (adj. threshold holds for Gandy &

Kvaløy [3] adjustment while threshold* for Diko,
Chakraborti & Does approximation [2]). The estimated

µ̂ = 0.0904 and σ̂1 = 0.9128.
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Figure 6.15.: Comparison of OOC RL distributions for an EWMA
statistical control process for adjusted and non-adjusted CL
for an OOC process e.g for a Xi, i = 1, . . . , 100 sample from

a normal distribution with µ0 = 0.5 and σ0 = 1 and
estimated process for ARL0 = 200, λ = 0.2. The simulation
size for RL is NRL = 2500. The µ̂ = −0.078 and σ̂ = 0.964
were estimated on a nest = 100 sample of standard normal

distribution.

Regarding the ARL distribution in the basic simulation where desired
value of ARL is 200, and with a δ = 0.5, the two adjusted thresholds give
equivalent distributions with a median of 43 and 44 for L and L? respec-
tively which can be satisfying in process control with such characteristics.
For di�erent starting values of ARL0, plot 6.17 shows that when the thresh-
olds are being adjusted, the control chart may variate more e�ectively in
the increase of the ARL0. The adjustment itself may potentially come with
a cost. It could detect abnormal observations later. This is the cost for
avoiding too short IC ARL0. But according to �gure 6.15 this cost is not
in practice so big.
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Figure 6.16.: Comparison of ARL distribution for unadjusted and
adjusted thresholds for an OOC process. The estimation of
the parameters has been made on a nest = 100 sample from

a normal distribution with µ0 = 0.5 and σ0 = 1. The
simulation parameters are ARL0 = 200 and λ = 0.2. The
simulation size for RL is NRL = 2500 and each ARL was

calculated on NARL = 5000 RLs. The ARL simulation size is
nARL = 500. The thresholds used are the Gandy-Kvaløy's
estimation (L) and Diko, Chakraborti & Does 's (L?).
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Figure 6.17.: Distribution of ARL for an OOC process and for
ARL0 = 200, ARL0 = 370 and ARL0 = 500 for unadjusted
and adjusted thresholds. The estimation of the parameters

has been made on a nest = 100 sample from a normal
distribution with µ0 = 0.5 and σ0 = 1. The process sample
has been derived from standard normal distribution. The

simulation parameter λ = 0.2. The simulation size for RL is
NRL = 2500 and each ARL has been calculated on

NARL = 5000 RLs. The ARL simulation size is nARL = 500.
The thresholds used are the Gandy-Kvaløy's estimation (L)

and Diko, Chakraborti & Does 's (L?).

An equivalent result can be retrieved in the �gure 6.18 for di�erent λs.
It is more than obvious that for larger λ, the ARL distribution is wider
and has bigger values. This of course has to do with the fact that δ = 0.5
a fair small mean deviation especially for λ = 1.
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Figure 6.18.: Distribution of ARL for an OOC process and λ1 = 0.02,
λ2 = 0.1, λ3 = 0.2, λ4 = 0.5 and λ5 = 1 for unadjusted and
adjusted thresholds. The estimation of the parameters has

been made on a nest = 100 sample from a normal
distribution with µ0 = 0.5 and σ0 = 1. The process sample
has been derived from standard normal distribution. The
ARL0 = 200. The simulation size for RL is NRL = 2500 and
each ARL has been calculated on NARL = 5000 RLs. The
ARL simulation size is nARL = 500. The thresholds used are
the Gandy-Kvaløy's estimation (L) and Diko, Chakraborti &

Does 's (L?).

As expected, the variation of estimation sample just con�rms what said
above. For confronting estimation error, two di�erent threshold adjustment
methods were practiced. Both of them seem to respond satisfactory to
handling of the Type I error. More precisely, the L? of Diko, Chakraborti
& Does gives slightly larger ARL distribution reducing the probability of
false alarm and because of the fact that produces values for the parameter
L it is more �exible to di�erent types of control limits and can also be
used for derivation of non-steady state control limits. Additionally it is a
code that although time consuming it has to be calculated only once. On
the other hand, the Gandy and Kvaløy's threshold refers just to the steady
state limits (4.5) which could potential restrict the process control and it
needs to run a bootstrap for each data set. In contrary, it is more easily to
interpret and more user friendly .
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Figure 6.19.: Distribution of ARL for an OOC process and for estimation
of the parameters to be made on a nest1 = 100, nest2 = 300
and nest3 = 16000 sample from a normal distribution with
µ0 = 0.5 and σ0 = 1. The process sample has been derived
from standard normal distribution. The ARL0 = 200 and
the λ = 0.5. The simulation size for RL is NRL = 2500 and
each ARL has been calculated on NARL = 5000 RLs. The
ARL simulation size is nARL = 500. The thresholds used are
the Gandy-Kvaløy's estimation (L) and Diko, Chakraborti &

Does 's (L?).
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7. Baby birth weight analysis

So far, a wide study on EWMA process control analysis has been made
focusing mainly on the error arising from the process estimation. In this
chapter the EWMA chart will be applied for evaluation of real data. The
data used are from the Helping Babies Breath (HBB) project at Haydom
Lutheran Hospital in Northern Tanzania. The data consist of measure-
ments of important variables of newborn e.g birth weight, height, heart rate.
The data spread over 7 years of measurements (February 2010-February
2017). The analysis following will concentrate on the evaluation of the im-
pact the application of two new fees charged, one on ambulance use after
July 2013 and one delivery fee after January 2014, have on the hospital's
newborn weight.
On 1st of July 2013 the Haydom Lutheran Hospital applied a fee for the
ambulance transfer of women in labor. Additionally, next year's (2014)
January an extra fee has been charged on delivery services provided by the
hospital. The main subject of the analysis will be to evaluate how these fees
a�ect the decision of women to deliver in the hospital in relation with their
pregnancy progress and overall situation and how this eventually depicts
on the newborn's babies birth weight. For this an EWMA process control
chart will be used evaluating the control statistic with both adjusted and
unadjusted control limits. For the Phase I estimation, the data before the
ambulance fee will be used, i.e the data up until 30 of June 2013 which is a
set of 16164 measurements. Phase II data for the process control will the be
11025 observations after the application of the hospital fee (1st of January
2014). The in between data will be omitted because the control concerns
the birth weight depending on both fees. Later on a regression model will
be applied in order to specify which particular variables are related to the
baby's birth weight.

7.1. EWMA control chart for birth weight
Using the EWMA control chart studied in the above chapters, �rst there
will be an estimation of the birth weight distribution from 1st February
2010 to 30th June 2013 to approximate the birth weight distribution. The
sample of these data although at the Anderson-Darling test for normality
seem not to be normal distributed, marginally the deviation the normal
distribution as seen in �gure 7.1 can be accepted. Actually the rejection
of the normality hypothesis at the test may be attributed to the extreme
cases as seen in the qqplot. This estimation therefore gives µ̂ = 3099 and
σ̂ = 484.55. For the EWMA control chart the λ will be equal to 0.02 and the
desired ARL0 = 40000. The unadjusted control limits are (−0.357, 0.357)
while the adjusted one, computed using the Gandy and Kvaløy's bootstrap
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are (−0.391, 0.391). These two control limits are not very di�erent, but
this due to large Phase I sample.

Anderson-Darling normality test

data: hbbdataphaseI$BIRTH_WEIGHT

A = 44.927, p-value < 2.2e-16

Figure 7.1.: Test for normality for the distribution of birth weight for the
data from 1st February 2010 to 30th June 2013 using an

histogram and a qqplot

Figure 7.2.: EWMA control chart for birth weight of newborns of HBB
data. The birth weight distribution estimation has been made
on the measurements before 1st July 2013 giving µ̂ = 3099
and σ̂ = 484.55 and the control chart applied on data after

1st January 2014 with λ = 0.02 and ARL0 = 40000.

The plot 7.2 used as parametric factors λ = 0.02 and ARL0 = 40000.
The choice of λ to be small depends on the fact that it is expected the
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birth weight to have a small persistence change in the mean and the pro-
cess analysis seeks for small changes in longer time while the choice of
ARL0 is based on the big data set, e.g the data size which is 31122 and
a big ARL0 suppresses the false alarms into one out of 40000 and this
reference to one false alarm every 10 years. Following the �gure 7.2, the
birth weight distribution tends to increase leading to an out of control pro-
cess which in practice means that after the application of the two fees the
mean birth weight increases from the estimated µ̂ = 3099. I.e mothers
to be of average or smaller income with no seen complications and with a
healthy normal weight fetus decide to avoid giving birth in the hospital.
So, the number of babies born with signi�cantly di�erent weight from the
mean values in the hospital increases. There is actually the tendency for
a slight increase of the birth weight which could indicates that after the
extra expenses more healthier women with higher weighted fetus choose to
give birth in the hospital. This is an expected result as when the expenses
raise and if the prenatal control secures a healthy baby to be born and
an easy delivery, mothers decide to avoid additional expenses. Another
interesting result arising from the control chart is that towards the end of
the observations, EWMA statistic tends to lessen. This potentially means
that after years of applied fees, people take the extra expenses for granted
or that they do not have experience of fee free hospital so and the fees will
eventually stop being a disincentive for giving birth in the hospital. As
said the smoothing parameter is being chosen on the size of the shift and
on the research's interest. In order to study the e�ect the choice of λ has
on the EWMA control chart for the birth weight two more control charts
for di�erent smoothing parameters are applied. The �rst has a smaller
smoothing parameter λ = 0.01, which means that the shift which is de-
sired to be spotted is smaller in a more wider time frame then the plot
7.3 indicates that indeed the process goes out of control due to the fees
introduce but also that towards the last observations this variance is being
reduced. The second is derived for a larger λ = 0.05 for �nding larger shifts
in a smaller time space. The plot 7.4 fails actually to spot this birth weight
abnormality. This actually shows that the birth weight alters with smaller
shifts which need some time to pick up.
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Figure 7.3.: EWMA control chart for birth weight of newborns of HBB
data. The birth weight distribution estimation has been made
on the measurements before 1st July 2013 giving µ̂ = 3099
and σ̂ = 484.55 and the control chart applied on data after

1st January 2014 with λ = 0.01 and ARL0 = 40000.

Figure 7.4.: EWMA control chart for birth weight of newborns of HBB
data. The birth weight distribution estimation has been made
on the measurements before 1st July 2013 giving µ̂ = 3099
and σ̂ = 484.55 and the control chart applied on data after

1st January 2014 with λ = 0.05 and ARL0 = 40000.

7.2. Regression model for birth weight
The process control showed that the application of two extra fees in the
birth procedure, a�ects the weight of newborns in the hospital. In the
following, a linear model will be �tted on the Phase I data in order to
be determined which variables also in�uence the birth weight. The vari-
ables which are going to be considered are PREG_COMP , INFECTION,
CS_indication, PREECLAMP, BLEEDING, GEST_AGE which repre-
sent equivalently Compilations during pregnancy, Presence of infection dur-
ing pregnancy, Indication for cesarean section, Pregnancy's preeclampsia,
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Bleeding before labor, Gestational age in weeks. Firstly, a model including
all the variables gives

Call:

lm(formula = BIRTH_WEIGHT ~ PREG_COMP + INFECTION + CS_indication +

PREECLAMP + BLEEDING + GEST_AGE, data = hbbdataphaseI)

Residuals:

Min 1Q Median 3Q Max

-2084.21 -284.88 -24.21 285.71 2216.46

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3553.160 197.804 -17.963 < 2e-16 ***

PREG_COMP 109.200 37.668 2.899 0.00375 **

INFECTION 117.270 25.408 4.615 3.95e-06 ***

CS_indication -34.113 7.078 -4.820 1.45e-06 ***

PREECLAMP 367.922 69.529 5.292 1.23e-07 ***

BLEEDING 196.678 48.359 4.067 4.78e-05 ***

GEST_AGE 139.331 2.563 54.359 < 2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 443 on 16157 degrees of freedom

Multiple R-squared: 0.1643, Adjusted R-squared: 0.164

F-statistic: 529.6 on 6 and 16157 DF, p-value: < 2.2e-16

This linear model suggests that all the variables are signi�cant. So the
model which will be chosen will include all the variables. The suitability
of this regression model con�rmed also by the residuals, it is somewhat
expected as all the variables chosen have generally an impact on the way
of labor. The model �tting therefore, gives the incentive to apply a new
EWMA control chart on the residuals of the predicted data.

7.2.1. EWMA control chart on the residuals of the
predicted data

An EWMA control chart on the residuals of the predicted data is [3]

Zi = λ(Yi −Xiβ) + (1− λ)Zi−1, Z0 = 0 (7.1)

where Z is the control chart statistic, Y is the response variable, X the vec-
tor of the independent variables and β the coe�cient vector. The smoothing
parameter λ as usual determines how to weight the recent data versus the
past ones. The coe�cient vector β has been estimated on Phase I data,
while the chart used the Phase II data. Using the regression model, an
EWMA control chart is derived
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Figure 7.5.: EWMA control chart for predicted birth weight of newborns
using HBB data. The control chart applied on data after 1st

January 2014 with λ = 0.02 and ARL0 = 40000. The
regression model uses the Compilations during pregnancy,
Presence of infection during pregnancy, Indication for

cesarean section, Pregnancy's preeclampsia, Bleeding before
labor, Gestational age in weeks and the �tting has been made
on the Phase I data (measurements before 1st July 2013).

The EWMA chart on the �tted residuals shows that the prediction of
the birth weight con�rms the fact that the process actually will be out of
control after the application of the extra fees. The statistic on the residuals
is greater than zero and exceeds soon the control limit. This means that
the �tted model fails to fully explain the birth weight for the period of
interest i.e. after the application of the fees.

7.2.2. Discussion on birth weight
The analysis performed on the data of 7 years birth statistics provided by
the Haydom Lutheran Hospital in Northern Tanzania focused mainly on the
evaluation of birth weight value of newborns. The critical point that made
this variable of particular interest was the fact that after July 2013 and Jan-
uary 2014 two consequent fees where applied by the hospital. A process
control therefore was conducted on birth weight data and more precisely
an EWMA control chart. For the unknown birth weight distribution an es-
timation was made on the data before July 2013 while the EWMA analysis
was performed on data after January 2014. The control chart showed that
indeed the application of the extra fees altered the birth weight deviating it
from the estimated mean value and more precisely showed the upward ten-
dency of the variable. In order to evaluate the other factors in�uencing the
birth weight, linear regression was used. The study showed that compila-
tions during pregnancy, presence of infection during pregnancy, indication
for cesarean section, pregnancy's preeclampsia, bleeding before labor and
gestational age in weeks were critical in determination of birth weight val-
ues. The regression model failed to fully explain change in the birth weight
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when the explanatory variables vary after the hospital fees are applied.

58



8. Conclusion

In this thesis the aim was to determine and reduce the error arising from
the estimation of the distribution when performing a process analysis using
the EWMA control chart. Firstly this error was de�ned and reviewed both
individually and in relation with other also important control chart factors,
the smoothing parameter λ, the desired ARL0, the process estimation size
and the number of simulations for the determination of ARL. Later on,
two di�erent threshold adjustment for reducing this error were prescribed,
tested and evaluated.
The �rst one was the one Gandy and Kvaløy [3] proposed. This threshold
consists a bootstrap approximation of the threshold that guarantees a cer-
tain α% amount of ARLs to lie inside the control limits. This adjusted
threshold indeed provides the control chart with wider control limits some-
thing that prevents Type I error. This was con�rmed with proper compar-
ison plots for adjusted and unadjusted thresholds.
The second was the one Diko, Chakraborti and Does proposed [2]. This
particular threshold calculates the parameter L successively from a start-
ing value L0. This method of adjusting the threshold provides a matrix
which contains values of L for a combination of process estimation size, a
desired λ and an speci�c ARL0. Once again the suitability of this adjust-
ment was examined and tested with proper simulations subject to the two
other thresholds. The study of the two adjustment con�rmed that both of
them are almost equal e�ective on reducing false alarms. But the second
one was pretty inconvenient regarding its use. Because of the fact that the
calculation is made on particular combination of three di�erent parameters
a unique matrix had to be calculated for each case. Additionally, this whole
simulation was very time consuming that prevent its use in the real data
study carried out in the next chapter.
In the �nal chapter an application of the so far study methods was made
on real data. The data involve measurements made on mothers in labor
and their newborns for a time interval of 7 years and were provided by the
Haydom Lutheran Hospital in Northern Tanzania. The EWMA control
chart with unadjusted and adjusted control limits was applied in order to
con�rm a change of newborn babies weight after an extra charge on ambu-
lance use and hospitalization as this appears in the newborns birth weight.
After the out of control process speci�cation a linear model was applied
in order to specify the other parameters that also a�ect birth weight. The
outcome of the data examination was that indeed the birth weight varied
from the mean value determined from the data before the fee application
and for the future prediction of birth weight a model was constructed and
a new EWMA control chart was applied on the prediction residuals.
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A. Appendix A

A.1. Z distribution table

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.50 0.50 0.51 0.51 0.52 0.52 0.52 0.53 0.53 0.54

0.1 0.54 0.54 0.55 0.55 0.56 0.56 0.56 0.57 0.57 0.58

0.2 0.58 0.58 0.59 0.59 0.59 0.60 0.60 0.61 0.61 0.61

0.3 0.62 0.62 0.63 0.63 0.63 0.64 0.64 0.64 0.65 0.65

0.4 0.66 0.66 0.66 0.67 0.67 0.67 0.68 0.68 0.68 0.69

0.5 0.69 0.69 0.70 0.70 0.71 0.71 0.71 0.72 0.72 0.72

0.6 0.73 0.73 0.73 0.74 0.74 0.74 0.75 0.75 0.75 0.75

0.7 0.76 0.76 0.76 0.77 0.77 0.77 0.78 0.78 0.78 0.79

0.8 0.79 0.79 0.79 0.80 0.80 0.80 0.81 0.81 0.81 0.81

0.9 0.82 0.82 0.82 0.82 0.83 0.83 0.83 0.83 0.84 0.84

1 0.84 0.84 0.85 0.85 0.85 0.85 0.86 0.86 0.86 0.86

1.1 0.86 0.87 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.88

1.2 0.88 0.89 0.89 0.89 0.89 0.89 0.90 0.90 0.90 0.90

1.3 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.92

1.4 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93

1.5 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

1.6 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

1.7 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

1.8 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

1.9 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98

2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

2.1 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99

2.2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

2.3 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

2.4 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

2.5 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00

2.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.1.: Z-table for Normal Distribution
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A.2. R codes

A.2.1. R-code for the EWMA control chart
This is is the code for the EWMA control chart for both real and estimated
distribution

l ibrary ( spc )
l ibrary ( ggp lot2 )
l ibrary ( ANOVAreplication )
l ibrary (IQCC)
l ibrary ( qcc )
l ibrary ( gr idExtra )
l ibrary ( x tab l e )

#func t i on f o r c a l c u l a t i n g z s t a t i s t i c f o r EWMA con t r o l char t .
ewmadis t r ibut ionszx <= function (ARL, l , nest , muest=0,

sde s t =1, mu, sd=1, nr l ,
Narl ){

# Der iva t ion o f t h r e s h o l d L
L <= xewma . c r i t ( l ,ARL, s ided=' two ' )

# Estimation o f d i s t r i b u t i o n
xes t <= rnorm( nest , muest , sd e s t )
muestimated <= mean( xe s t )
sdest imated <= sd ( xe s t )

# Ca l cu l a t i on o f Contro l Limits ( s teady=s t a t e )
UCL <= +L*sqrt ( l /(2= l ) )
LCL <= =L*sqrt ( l /(2= l ) )
CL <= 0

# Ca l cu l a t i on o f s t a t i s t i c z
szx=matrix (nrow=Narl , ncol=nr l )
RL=numeric ( n r l )
szx1=matrix (nrow=Narl , ncol=nr l )
RL1=numeric ( n r l )

# Se t t i n g s t a r t i n g va l u e s o f x , y and
# szx ( s t andard i z ed z )
x <= rnorm( nr l ,mu, sd )
y <= (x=muestimated )/ sdest imated
szx [ 1 , ] <= l *y
y1 <= (x=0)/1
szx1 [ 1 , ] <= l *y1

# for loop f o r each s zx ( wi th r e p l a c i n g )
# fo r es t imated d i s t r i b u t i o n
for ( i in 2 : Narl ){

x <= rnorm( nr l ,mu, sd )
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y <= (x=muestimated )/ sdest imated
szx [ i , ] <= l *y+(1= l )* szx [ ( i =1) , ]
y1 <= (x=0)/1
szx1 [ i , ] <= l *y1+(1= l )* szx1 [ ( i =1) , ]

}

# Spo t t ing va l u e s which exceed the
# Contro l Limits
count <= 0
for ( i in 1 : n r l ){

RL[ i ] <= which( szx [ , i ]>UCL | szx [ , i ]<LCL) [ 1 ]
i f ( i s .na(RL[ i ] ) ) {
RL[ i ] <= Narl
count <= count+1

}
}

# Compute the Average Run Length
ARL <= round(mean(RL) , 0 )

# for r e a l d i s t r i b u t i o n
count1 <= 0
for ( i in 1 : n r l ){

RL1 [ i ] <= which( szx1 [ , i ]>UCL | szx1 [ , i ]<LCL) [ 1 ]
i f ( i s .na(RL1 [ i ] ) ) {

RL1 [ i ] <= Narl
count1 <= count1+1

}
}
ARL1 <= round(mean(RL1) , 0 )

# Returns a l i s t o f the s t a t i s t i c s to p l o t ,
# the es t imated d i s t r i b u t i o n
# the con t r o l l im i t s and the Run Length
outcome <= l i s t ( szx , szx1 ,RL,RL1 , muestimated ,

sdest imated ,UCL,CL,LCL)
return ( outcome )

}

A.2.2. R code for the distribution of ARL for estimated
distribution

l ibrary ( spc )
l ibrary ( ggp lot2 )
l ibrary ( ANOVAreplication )
l ibrary (IQCC)
l ibrary ( qcc )
l ibrary ( gr idExtra )
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l ibrary ( x tab l e )

# Function f o r d e r i v i n g a s i n g l e ARL
ewmadistr ibut ion1 <= function (ARL, l , nest , muest=0,

sde s t =1, mu, sd=1,
nr l , Narl ){

# Ca l cu l a t i on o f L
L <= xewma . c r i t ( l ,ARL, s ided=' two ' )

# Estimation o f the d i s t r i b u t i o n
xes t <= rnorm( nest , muest , sd e s t )
muestimated <= mean( xe s t )
sdest imated <= sd ( xe s t )

# Der iva t ion o f s teady=s t a t e c on t r o l l im i t s
UCL <= +L*sqrt ( l /(2= l ) )
LCL <= =L*sqrt ( l /(2= l ) )
CL <= 0

# Se t t i n g s t a r t i n g va l u e s f o r s t a t i s t i c z and RL
szx=matrix (nrow=Narl , ncol=nr l )
RL=numeric ( n r l )

# Simulat ion x [ 1 ] and c a l c u l a t i n g y [ 1 ] and z [ 1 ]
x <= rnorm( nr l ,mu, sd )
y <= (x=muestimated )/ sdest imated
szx [ 1 , ] <= l *y

# For loop f o r ob t a in ing Narl z wi th r e p l a c i n g
for ( i in 2 : Narl ){

x <= rnorm( nr l ,mu, sd )
y <= (x=muestimated )/ sdest imated
szx [ i , ] <= l *y+(1= l )* szx [ ( i =1) , ]

}

# Find RL
count <= 0
for ( i in 1 : n r l ){

RL[ i ] <= which( szx [ , i ]>UCL | szx [ , i ]<LCL) [ 1 ]
i f ( i s .na(RL[ i ] ) ) {
RL[ i ] <= Narl
count <= count+1

}
}

# Ca l cu l a t i n g ARL

ARL <= round(mean(RL) , 0 )
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# Return es t imated d i s t r i b u t i o n , and ARL.
# Count i s the number o f t r i a l s t h a t RL
# i s b i g g e r than Narl
outcome <= l i s t (muestimated , sdest imated ,ARL, count )
return ( outcome )

}

# Function f o r r epea t ing the ewmadis t r i bu t ion1
# in order to f i nd the ARL d i s t r i b u t i o n
ar l s im <= function ( nar l , ARL, l , nest , muest=0,

sde s t =1, mu, sd=1, nr l ,
Narl ){

ARL <= r e p l i c a t e ( nar l , ewmadistr ibut ion1 (ARL, l ,
nest , muest , sdest ,
mu, sd , nr l , Narl ) )

return (ARL)
}

A.2.3. R code for adjusted ARL distribution
Following is the code for the ARL distribution for adjusted EWMA control
chart. The code refers to both adjustments

l ibrary ( spc )
l ibrary ( boot )
l ibrary ( spcad jus t )

# Reads the matrix f r o the Diko t h r e s h o l d s
Diko500 <= readRDS( ' DikoLarl500 .RDS ' )
Diko001 <= readRDS( ' DikoLlamda001 .RDS ' )
Diko370 <= readRDS( 'DikoL .RDS ' )

# Function f o r d e r i v a t i on o f e lemenents
# from prev ious matr ices
findLD <= function ( l , nest ,ARL){

i f (ARL==200 & nest !=16000 & l !=0 .01 & l !=0 .02 ){
i f ( l ==0.1){ i=1}

i f ( l ==0.2){ i=2}
i f ( l ==0.5){ i=3}
i f ( l ==1){ i=4}
i f ( nes t==1000){ j=2}
i f ( nes t==300){ j=3}
i f ( nes t==100){ j=4}
L <= f indL [ i , j ]
}
i f (ARL==500){
i f ( l ==0.1){ i=1}
i f ( l ==0.2){ i=2}
i f ( l ==0.5){ i=3}
i f ( l ==1){ i=4}
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i f ( nes t==1000){ j=2}
i f ( nes t==300){ j=3}
i f ( nes t==100){ j=4}
L <= Diko500 [ i , j ]

}
i f (ARL==370){
i f ( l ==0.1){ i=1}
i f ( l ==0.2){ i=2}
i f ( l ==0.5){ i=3}
i f ( l ==1){ i=4}
i f ( nes t==1000){ j=2}
i f ( nes t==300){ j=3}
i f ( nes t==100){ j=4}
L <= Diko500 [ i , j ]

}
i f (ARL==200 && ( nes t==16000 | l ==0.01 | l ==0.02| l ==0.5)){
i f ( l ==0.01){ i=1}
i f ( l ==0.02){ i=2}
i f ( l ==0.5){ i=3}
i f ( l ==1){ i=4}
i f ( nes t==16000){ j=2}
i f ( nes t==300){ j=3}
i f ( nes t==100){ j=4}
L <= Diko001 [ i , j ]

}

return (L)
}

# EWMA simu la t i on
ewmadistr ibut ionszxadjD <= function (ARL, l , nest , muest=0,

sde s t =1, mu, sd=1,
nr l , Narl ){

# Der iva t ion o f e s t ima t ion sample
xes t <= rnorm( nest , muest , sd e s t )

# Set up char t f o r ad ju s t ed t h r e s h o l d
EWMAchart <= new( "SPCEWMA" ,model=SPCModelNormal ( Delta=0) ,

lambda=l )
th r e sho ldad j <= SPCproperty (data=xest , nrep=50,

property="calARL" ,
chart=EWMAchart ,
params=l i s t ( t a r g e t=ARL) ) @res

# Unadjusted t h r e s h o l d
L <= xewma . c r i t ( l ,ARL, s ided=' two ' )

# Diko ' s ad ju s t ed t h r e s h o l d
LD <= findLD ( l , nes t )
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# Estimation o f d i s t r i b u t i o n
muestimated <= mean( xe s t )
sdest imated <= sd ( xe s t )

# Finding o f the t h r ee d i f f e r e n t c on t r o l l im i t s
UCL <= +L*sqrt ( l /(2= l ) )
LCL <= =L*sqrt ( l /(2= l ) )
CL <= 0
UCLadj <= th r e sho ldad j
LCLadj <= =th r e sho ldad j
UCLadjD <= +LD*sqrt ( l /(2= l ) )
LCLadjD <= =LD*sqrt ( l /(2= l ) )

# Se t t i n g up s t a r t i n g va l u e s f o r a l l v a r i a b l e s
szx=matrix (nrow=Narl , ncol=nr l )
RL=numeric ( n r l )
RLadj <= numeric ( n r l )
RLadjD <= numeric ( n r l )
szx1=matrix (nrow=Narl , ncol=nr l )
RL1=numeric ( n r l )
x <= rnorm( nr l ,mu, sd )
y <= (x=muestimated )/ sdest imated
szx [ 1 , ] <= l *y
y1 <= (x=0)/1
szx1 [ 1 , ] <= l *y1

# For loop f o r d e r i v a t i on o f s t a t i s t i c , RL and ARL
# fo r both ad ju s t ed and unadjus ted t h r e s h o l d s
for ( i in 2 : Narl ){

x <= rnorm( nr l ,mu, sd )
y <= (x=muestimated )/ sdest imated
szx [ i , ] <= l *y+(1= l )* szx [ ( i =1) , ]
y1 <= (x=0)/1
szx1 [ i , ] <= l *y1+(1= l )* szx1 [ ( i =1) , ]

}
count <= 0
for ( i in 1 : n r l ){

RL[ i ] <= which( szx [ , i ]>UCL | szx [ , i ]<LCL) [ 1 ]
i f ( i s .na(RL[ i ] ) ) {
RL[ i ] <= Narl
count <= count+1

}
}
ARL <= round(mean(RL) , 0 )
countadj <= 0
for ( i in 1 : n r l ){

RLadj [ i ] <= which( szx [ , i ]>UCLadj | szx [ , i ]<LCLadj ) [ 1 ]
i f ( i s .na(RLadj [ i ] ) ) {
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RLadj [ i ] <= Narl
countadj <= countadj+1

}
}
ARLadj <= round(mean(RLadj ) , 0 )
countadjD <= 0
for ( i in 1 : n r l ){

RLadjD [ i ] <= which( szx [ , i ]>UCLadjD | szx [ , i ]<LCLadjD ) [ 1 ]
i f ( i s .na(RLadjD [ i ] ) ) {

RLadjD [ i ] <= Narl
countadjD <= countadjD+1

}
}
ARLadjD <= round(mean(RLadjD ) , 0 )
##rea l d i s t r i b u t i o n
count1 <= 0
for ( i in 1 : n r l ){

RL1 [ i ] <= which( szx1 [ , i ]>UCL | szx1 [ , i ]<LCL) [ 1 ]
i f ( i s .na(RL1 [ i ] ) ) {

RL1 [ i ] <= Narl
count1 <= count1+1

}
}
ARL1 <= round(mean(RL1) , 0 )
outcome <= l i s t ( szx , szx1 ,RL,RL1 , RLadj , RLadjD ,

muestimated , sdest imated ,UCL,CL,LCL,
UCLadj , LCLadj ,UCLadjD , LCLadjD)

return ( outcome )
}

A.2.4. R code for regression model

# Finding the r e g r e s s i on model
lma l l <= lm(BIRTH_WEIGHT ~ PREG_COMP + INFECTION +

CS_i n d i c a t i o n + PREECLAMP
+ BLEEDING + GEST_AGE,
data = hbbdataphaseI )

summary( lma l l )

# Deriv ing the EWMA con t r o l char t
# fo r p r ed i c t e d r e s i d u a l s
EWMAchartreg <= new( "SPCEWMA" , model = SPCModellm( Delta = 0 ,

formula = "BIRTH_WEIGHT ~ PREG_COMP +
                    INFECTION + CS_i n d i c a t i o n  + PREECLAMP
             + BLEEDING + GEST_AGE" ) , lambda = l )
calEWMA <= SPCproperty (data = hbbdataphaseI ,

nrep = 50 , property = "calARL" ,
chart = EWMAchartreg , params = l i s t ( t a r g e t = ARL) ,

qu i e t = TRUE)
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x ihat <= x i o fda ta (EWMAchartreg , hbbdataphaseI )
S <= runchart (EWMAchartreg , newdata = hbbdataphaseII ,

x i=x ihat )
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