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“If you can’t explain it simply, you don’t understand it well enough.”

Albert Einstein



Abstract

The purpose of this work is to study structural differences of the left hippocampus between
patients with Parkinson’s disease (PD) and healthy control group (CG) based on shape models
like skeletal representation (s-rep) and spherical harmonics point distribution model (SPHARM-
PDM). We apply a permutation test on the s-reps of CG and PD to detect significant differences
between the means of their geometric object properties (GOPs). We also introduce a parametric
test for s-rep, constructed on multivariate Hotelling’s T2 test. We discuss different methods
of alignment, their impact on the result, and propose the elimination algorithm to have an
adequate alignment. To make the test independent from the alignment, we propose a method
according to distance matrices. We explain possible approaches to define mean and variation
of directional data, including principal nested spheres (PNS), and principal geodesic analysis
(PGA). Besides, we propose a non-linear PGA (NLPGA) on rotating tangent space of the unit
sphere. Finally, we discuss the results of the hypothesis tests and show there are statistically
significant differences between PD and CG.
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Chapter 1

Introduction

1.1 Motivation

With the improvement of non-invasive medical imaging techniques like Magnetic Resonance
Imaging (MRI) to picture the internal human organs, medical scientists became increasingly
interested in studying shape and structure of internal organs in order to improve treatment and
diagnosis. Often the goal is to scrutinize the morphological changes of a target object during a
period or to detect the structural differences between organs among healthy controls and patients.
In this manner, statistical shape analysis as a field of research to study shapes and objects within
a population became the center of attention. However, data collection, shape visualization,
generating models, and data analysis require collaboration between medical specialists, computer
scientists, and statisticians. In this regard, there are evolving interdisciplinary research areas,
including mathematical and medical sciences, to assist physicians by shedding light on the hidden
aspects of diseases such as dementia.

Various studies show there is a direct relationship between the aetiology of mental diseases and
shrinkage or deformation of brain parts. For example, a comprehensive study about chronic
neurodegenerative disorders such as Alzheimer’s disease (AD) and their psychological affection on
patients’ behavior and memory loss can be found in (Budson and Solomon, 2011, 2015). Although
there are many reports about the brain lesion and abnormality in such diseases (Perl, 2010; Barber
et al., 2000; Snowdon et al., 1997), in many cases including early Parkinson’s disease (PD) global
brain atrophy and white matter hyperintensities (WMH) do not indicate significant differences
between the normal control group (CG) and patients e.g. (Dalaker et al., 2009). To improve
diagnosis, it is reasonable to focus on the most vulnerable brain structures. "Hippocampus can be
damaged by a variety of stimuli, e.g., stress, hypoxia, hypoperfusion, hypoglycemia, and seizures"
(Dhikav and Anand, 2011). Consequently, in neuropathological studies, hippocampus has been
one of the first candidates for the analysis. Besides, there is strong evidence that dementia can
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Chapter 1. Introduction 2

cause the hippocampus as part of the medial temporal lobe structure to lose volume substantially
(Csernansky et al., 2005; Fox et al., 1996; Ikeda et al., 1994; Acton, 2012). Despite the fact that
neurologists categorize Parkinson’s disease as a progressive neurodegenerative disorder that can
be diagnosed after months of progression, it is still challenging to recognize and confirm it at early
stages. Also, autopsy studies show that clinical diagnosis of PD, even with correctly identified
symptoms, might be incorrect up to 25% (Pfeiffer et al., 2012, ch.51). Thereby, developing
methods for early PD diagnosis, to start the treatment as soon as possible and increase the
diagnosis accuracy is vital. Conventionally, medical scientists use scale measuring and volumetric
analysis to study the structure of the hippocampus in PD (de la Monte et al., 1989; Junqué et al.,
2005), and early PD (Brück et al., 2004). Although these types of analyses highlight the changes
of hippocampal degeneration and atrophy, they are not suitable for detecting precise location
of the differences specifically for the early PD, where the degeneration process has started just
recently. One possible accurate approach is based on the radial distance (i.e., distance from the
object’s medial core to the surface points) (Thompson et al., 2004). (Apostolova et al., 2012)
applied radial distance analysis and showed a significant level of hippocampal atrophy in PD.
There are some disadvantageous in radial distance analysis, which we discuss briefly in Section
5.1. On the other hand, (Nobis et al., 2019) studied the hippocampal volume of over 19,700
people in the UK. The study discussed various parameters like sex, age, smoking, etc. affect the
volume of the hippocampus, so the size of the hippocampus or temporal lobe varies even among
healthy people. For this reason, we need more accurate object analysis methods to capture small
disparities between corresponding elements of the object even when we remove the scale of the
shapes. The question is whether there are any differences between shapes of study after removing
size and scale or not. Therefore, the first motivation of this thesis is to implement a sensitive
method of hypothesis testing (with and without removing scale) to detect locational differences
of left hippocampi among a healthy control group and a group of patients with early PD.

To have an accurate testing method, we need suitable models that reflect accurate dissimilarity
between the corresponding geometric object properties (GOP). One such model is the skeletal
representation (s-rep) (Siddiqi and Pizer, 2008) introduced in Section 2.1.3 that characterizes the
interior as well as the exterior properties of an object by a set of GOP including positions, radii
(local widths), and directions. For statistical analysis of s-rep, (Schulz et al., 2016) designed a
permutation test, which might be computationally expensive in practice. As a result, the second
motivation of this thesis is to improve the current hypothesis testing method.

1.2 Scope

The next chapter intends to acquaint the reader with some advanced types of object representa-
tions for shape analysis, e.g., landmark modeling, point distribution model (PDM), s-rep, and
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spherical harmonics point distribution model (SPHARM-PDM). These shape representations
help us to compare objects with a high level of precision. Then it discusses the general definition
of shape, shape space, shape distance, and mean shape on manifolds as prerequisites of shape
analysis. Follow, different alignment methods are elaborated that is a necessary pre-processing
step for the shape analysis.

Chapter 3 outlines several dimension reduction methods for data on Euclidean and non-Euclidean
spaces, including Principal Component Analysis (PCA), Principal Geodesic Analysis (PGA),
and Principal Nested Spheres Analysis (PNS). It also introduces a Non-Linear PGA (NLPGA)
method on rotating tangent space of the unit sphere S2. Given that, analyzing s-rep data needs
a method that covers both Euclidean and non-Euclidean data, Composite PNS (CPNS) will also
be discussed.

Chapter 4 introduces the general concepts of hypothesis testing, p-value, multiple comparisons
problem, and controlling false positives. It discusses different hypothesis testing methods suitable
for each shape representation and tries to improve the available hypothesis testing method for
s-rep. Furthermore, as a fast approach, it introduces an alternative testing method for s-rep
with the normality assumption. Finally, in this chapter, we propose a novel hypothesis testing
method independent from the alignment based on distance matrices.

In chapter 5, the proposed methods and concepts are applied to find the difference between
the hippocampi of healthy controls and PD patients. The data set consists of MRI images
provided by ParkWest (ParkWest, 2020) in collaboration with Stavanger University Hospital
(Helse Stavanger, 2020). Data analysis workflow consists of three main parts: 1. Model fitting.
2. Implementation of different methods of hypothesis testing. 3. Analyzing tests’ results and
classification.

Chapter 6 discusses the results, summarises the study, and suggests possible directions for future
work.

1.3 Contributions

In Section 2.1.6, we introduce a shape representation called Middle Surface PDM, for flat
slabbed-objects. This representation parameterizes the middle part of the object, fits a nonlinear
surface inside the shape, and approximates the s-rep skeletal locus’s location. The idea to design
this representation is to compare and support the analysis result of the s-rep skeletal PDM.

We introduce the elimination algorithm for PDMs and landmark models in Section 2.5.5. The
algorithm detects suspicious points that cause the mean shape differences. Since the result of the
hypothesis test depends on the alignment, we use the unsuspicious points to design a covariance



Chapter 1. Introduction 4

matrix for the weighted Procrustes alignment. This approach, by using weighted alignment,
reduces the variance of the points with more similarity among the groups (see Section 2.5.6).

In this work, we propose a dimension reduction method in Section 3.4, analogous to PGA called
NLPGA. The method fits a principal curve to the log-mapped data on the rotating tangent
space. It tries to find a geodesic submanifold on the sphere, which maximizes the variance of the
projected data. Further, we discuss the advantage of this method to find the sample mean on
the sphere in comparison with Fréchet mean and PNS mean.

The computation cost to calculate mean s-rep by CPNS is exceptionally high. In this regard, to
reduce the time of computation, we introduce a mean s-rep by substituting the PNS mean of the
skeletal PDM with the Procrustes mean (see Section 4.4.2). This approach is helpful when we
want to apply the permutation test to detect partial differences. In Section 4.6.2, we propose a
parametric hypothesis testing method for s-rep as a fast approach by the normality assumption.

In Section 4.7.1 to make the hypothesis tests independent from the alignment, we propose a
testing method based on GOP distances. The method tries to rank the GOPs (e.g., points and
directions) by using distance matrices. Further, we use Kernel Density Function (KDE) on
p-values to standardize the ranking procedure. In addition, we discuss a similar approach for
planner shapes, which uses angles (instead of distances) to rank the points.



Chapter 2

Shape and Shape Space

In this chapter, we introduce shape representations relative to our study. We also become familiar
with shape and shape space. Then we explain different methods of alignment and propose a
weighted alignment method based on the elimination algorithm. Most of the definitions in this
chapter are taken from (Dryden and Mardia, 2016; Pizer et al., 2013; Fletcher et al., 2004).

2.1 Shape Representations

One of the obstacles in statistical shape analysis is how to model the objects to be correspondent.
In other words, we need to parameterize object representations by using geometric models that
relate GOPs together. Among a wide variety of modeling methods, we mention some of them
relevant to this work, including Landmark modeling, PDM, m-rep, s-rep, and SPHARM-PDM.
Later in Chapter 5, we use s-rep and SPAHRM-PDM for data analysis.

2.1.1 Landmark modeling and PDM

To understand a landmark model, we begin with the most fundamental definition.

Definition 2.1. "A landmark is a point of correspondence on each object that matches between
and within populations" (Dryden and Mardia, 2016, ch.1).

The landmark model introduced in (Kendall, 1984; Bookstein et al., 1986), tries to model an
object with k landmarks by a k ×m configuration matrix X = (x1, ...,xk)T , where xi ∈ Rm

is the cartesian coordinate of the ith landmark, and m is equal to 2 or 3. (see Figure 2.1(a)). In
some sections of this work, we use the notation li instead of xi as the ith landmark.

5
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Although landmark modeling is one of the oldest shape representations, it is still important. In
this respect, the book (Dryden and Mardia, 2016) presents landmark modeling with applications
in R programming that shows the power of this representation.

As a drawback, one of the main difficulties in landmark modeling is to find suitable, corresponding
landmarks in a population. Conventionally, anatomists locate landmarks based on the organs’
biological properties, which could be an overwhelming task. Also, in some organs like the
prostate, it is challenging or hardly possible to identify landmarks.

PDM

Researchers commonly use PDM (point distribution model) instead of landmark modeling. A
PDM is defined as a discrete set of points sampled from the object (Tu et al., 2017). Although
both of the models consist of a set of corresponding points, the methods of generating these
points are different. Also, a landmark usually represents a characteristic of the object, but in
PDM, points are sampled data. However, in this work, based on the definition of landmark, we
consider PDM as a set of landmarks and vice versa.

2.1.2 Medial representation m-rep

The medial representation introduced in (Siddiqi and Pizer, 2008, ch.1), describes a model
according to the medial locus of the objects. The medial locus is formed by the center of
all interior spheres bitangent or multitangent to the object boundary. Vectors connecting the
center of an inscribed sphere to the boundary and are tangent to the boundary are called
spokes. By sampling the inscribed spheres, we can define medial atoms. A medial atom in
Rm (m = 2 or m = 3), is a tuplem = (p,u0,u1, r), where p ∈ Rm is located on the medial locus
and represents the center of an inscribed sphere, u0,u1 ∈ S(m−1) are spoke directions where
S(m−1) = {x ∈ Rm | ‖x‖ = 1} is the unit sphere, and r ∈ R+ is the radius of the inscribed
sphere represents the common spoke length. In this sense, an m-rep model is a collection of finite
number of medial atoms (Fletcher et al., 2004; Siddiqi and Pizer, 2008) (see Figures 2.1(b,c)).

Have a good insight into the medial locus would be constructive in understanding the medial
representation. A formulated definition of the medial locus of the object Ω is given by

MΩ = {p ∈ Rm | | {q ∈ ΩB | ‖p− q‖ = d(p,ΩB)}|c > 1},

where d(p,ΩB) is the minimum Euclidean distance between the point p to the object boundary
ΩB, and | |c is the cardinality sign (Schulz, 2013, part.1).
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The advantage of m-rep is that it captures the interior part of object. Therefore it is more stable
in comparison with models that only capture the surface.

As a negative point, m-rep suffers from branching instability. In fact, boundary protrusions
result in additional medial branches. Therefore usually, an m-rep without a number of skeletal
branches cannot capture the inner part of a non-branching object (Breuß et al., 2013, ch.5).
To fix the extra branching problem, (Pizer et al., 2013) introduced skeletal representation
(s-rep).

Figure 2.1: Landmark model and m-rep.
(a) Landmark model of a hand with 14 landmarks. (b) Illustration of medial locus formed by the center of 2D
spheres bitangent or multitangent to the boundary. (c) Medial atom with the position p and two equal-length

spokes of size r. The spokes are tangent to the boundary ΩB , and u0, u1 represent their directions.

2.1.3 Skeletal representation s-rep

s-rep is an evolved version of m-rep introduced by (Siddiqi and Pizer, 2008; Pizer et al., 2013).
Here we define the continuous form of s-rep, then to obey the correspondence, we define and use
discrete s-rep. Notice that s-rep can be defined for all shapes with the topology of the sphere,
but in this work, we focus on slabular s-rep, which is suitable for slab-shaped objects such as the
hippocampus.

Continuous s-rep for slab-shaped objects is a locus of vectors we call spokes (p,v) with tail
at p and tip at p+ v such that

1. Spokes do not cross each other.

2. The union of the spokes forms the interior part of the object and the union of the spoke
tips forms the object boundary.

3. The union of the spoke tails, forms the skeletal locus which is a double-sided sheet with a
cyclic fold curve.
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(Pizer et al., 2013).

For the parameterization assume ζ with the topology of a sphere. Let the equator of the
parametrizing sphere map onto the fold of the skeletal locus. Thus, two sides of the skeletal
locus associate with the north and south of the sphere. For each ζ, we have a spoke v(ζ) with its
tail on p(ζ) and its tip on an implied boundary point b(ζ). ζ parametrizes the skeletal locus as
p(ζ). It also parametrizes the object boundary as b(ζ), and the spokes as v(ζ). The lengths of
the spokes, is r(ζ) = ‖v(ζ)‖, and the directions of the spokes, is u(ζ) = v(ζ)/r(ζ). As a result,
ζ parametrizes the whole s-rep s(ζ) = (p(ζ),u(ζ), r(ζ)) (Pizer et al., 2013).

Now we categorize the spokes in three groups: 1. Crest spokes with tail position on the fold of
the skeletal sheet. 2. Up spokes with tail position on the skeletal sheet and tips on the upper
boundary of the object relative to the north side of the sheet. 3. Down spokes similar to up
spokes but point to the south part of the sheet. Since the crest spoke tail is on the fold of the
skeletal sheet, the inverse of its length represents the curvature of the object boundary at its tip.
In other words, κ = 1/r, where κ is the curvature of the object surface ΩB at the tip of the crest
spoke, and r is the length of the crest spoke (Pizer et al., 2013; Siddiqi and Pizer, 2008).

For correspondence, by sampling, we restrict continuous s-rep to have a finite number of spokes.
A discrete s-rep s† with ns spokes can be described as a feature vector

s† = (pi,ui, ri), i = 1, 2, ..., ns, (2.1)

where for the ith spoke, pi ∈ R3 is the tail position or skeletal position on the skeletal locus,
ui ∈ S2 is the spoke direction (S2 is the unit sphere), and ri ∈ R+ is the spoke length. (Breuß
et al., 2013, ch.5). Note that depending on the method of model fitting, some spokes may
have identical skeletal positions thus, the number of skeletal positions would be less than the
number of spokes (i.e., s† = (p1, ...,pnp ,u1, ...,uns , r1, ..., rns), np ≤ ns). Figure 2.2(c) illustrates
a discrete s-rep fitted in a left hippocampus.

In this work we use skeletal PDM or skeletal positions to denote all the spokes’ tail positions of
a discrete s-rep.

s-rep model fitting

(Hong, 2018) proposed a model fitting procedure based on the Mean Curvature Flow (MCF).
MCF is a geometric flow method where the object boundary deformation according to time t is
given by

∂

∂t
ΩB(x, t) = C(x, t)O(x, t),

ΩB(x, 0) = ΩB0(x),
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where ΩB0 is the initial object boundary, ΩB is the deforming boundary, x is a point on ΩB,
C(x, t) is the mean curvature of ΩB at x at time t, O(x, t) is the boundary normal of ΩB at x
at time t, and ΩB will converge to a sphere as t→∞ (Hong, 2018).

Briefly, the model fitting algorithm consists of two steps 1. Initialization, and 2. Refinement. In
the initialization, we use an algorithm that iteratively deforms the object boundary by MCF. At
each iteration, we check whether the deformed surface is approximately ellipsoidal, and if it is,
we fit an s-rep to the ellipsoid. Then we apply the reverse MCF so that the s-rep fits the original
boundary. Finally, in the refinement step, we refine the s-rep to fit tighter to the initial object
boundary (Pizer et al., 2020; Hong, 2018). Figure 2.2 shows the workflow of s-rep model fitting.

Figure 2.2: Workflow of s-rep model fitting.
(a) Target object. (b) Approximated ellipsoid by MCF. (c) The ellipsoid s-rep with the grid of 5 × 9 as the

skeletal positions. (d) Fitted s-rep by the reverse MCF. (e) Refined s-rep. Cyan, magenta, and yellow indicate up,
down, and crest spokes, respectively. Grid vertices in green are the positions of the up and down spokes. (f)

Overlaid images of the target object and the refined s-rep.

One important outcome of this model fitting is a point located approximately at the center of
the object. Usually, in c-shape objects (e.g., hippocampus), the centroid (center of gravity, see
Equation 2.5) of the boundary is located outside or close to the boundary. By deforming the
s-rep of the ellipsoid to fit the target object, the center of the s-rep, which represents the center
of the ellipsoid (see the blue point in Figure 2.2(c)) moves to locate relatively at the center of
the object. Later in Section 2.5, we will see how the Procrustes alignment uses the centroid to
remove the shape location (i.e., after the alignment, the centroid of all shapes coincide with each
other). Since the centroid is not necessarily in the middle of the object, it seems reasonable to
align c-shape objects based on the middle point of the s-rep rather than their centroid. This
type of alignment could be the subject of further study.

2.1.4 SPHARM-PDM

Spherical harmonics point distribution model (SPHARM-PDM) introduced in (Styner et al.,
2006), uses spherical harmonics basis functions as presented by (Brechbühler et al., 1995) to
estimate the object boundary and generate a PDM for the objects with the spherical topology.
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In summary, according to (Styner et al., 2006) and (Gerig et al., 2001), we assume spherical
harmonics basis functions Yn` ,−` ≤ n ≤ ` of degree ` and order n defined on θ ∈ [0, π]×φ ∈ [0, 2π)
such that

Yn` (θ, φ) =
√

2`+ 1
4π

(`− n)!
(`+ n)!P

n
` (cosθ)einφ,

where i is the imaginary unit number, and Pn` denotes the associated Legendre polynomials as

Pn` (w) = (−1)n
2``! (1− w2)

n
2
dn+1

dwn+1 (w2 − 1)`,

where d/dw indicates the derivative with respect to w.

Therefore, we can estimate the surface as

Ω̂B(θ, φ) =
∞∑
`=0

∑̀
n=−`

cn` Yn` (θ, φ),

where coefficients cn` are obtainable by solving a least-squares problem. The sampling points xi
at the locations (θi, φi) are given by

xi =
∞∑
`=0

∑̀
n=−`

cn` Yn` (θi, φi),

(Styner et al., 2006).

Triangle mesh

SPHARM-PDM provides triangulated surfaces that form the object triangle mesh. These
triangulated surfaces are correspondent. We can calculate the perpendicular unit normal vector
of them and analyze them as directional data. The unit normal vector of a triangulated surface
with vertices a, b, c is n = v/‖v‖, where v = (a2b3−a3b2, a3b1−a1b3, a1b2−a2b1)T is the normal
vector perpendicular to the surface. The size of v reflects the area of the triangle (i.e., ‖v‖/2).
Thus, we can also analyze the size of the corresponding triangulated surfaces as Euclidean data.
Figure 2.3 illustrates a sample of SPHARM-PDM and a triangle mesh with the unit normal
vectors.

The detailed explanation of the correspondence and model fitting procedure of s-rep and
SPHARM-PDM is beyond the scope of this thesis. For more detail, see (Pennec et al., 2019;
Styner et al., 2007; Hong, 2018).
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Figure 2.3: SPHARM-PDM.
(a) Target object. (b) SPHARM-PDM with 1002 points. (c) Triangle mesh in blue and unit normal vectors in red.

2.1.5 SPHARM-PDM plus skeletal PDM

A possible shape representation could be a PDM as a combination of SPHARM-PDM and s-rep
skeletal PDM. Analyzing this enriched PDM that represents the internal part and the object’s
boundary is easier and computationally less expensive than s-rep, where directional data is
included. Also, this PDM contains skeletal middle point (see Section 2.1.3), which may help
us to align boundary PDMs more appropriately. The black and blue points in Figure 2.4(c)
illustrates this model.

2.1.6 Flat slabbed-shape middle part parameterization

To parameterize the middle part of the objects, we use non-linear surfaces. Non-linear surfaces can
be generated by the polynomial regressions. Here we briefly explain the polynomial regressions.

Polynomial regression

With n observation (x1, y1)T , ..., (xn, yn)T , the standard normal linear regression model y =
βX + ε describes a relationship between the covariate matrix X and the response vector
y = (y1, ..., yn)T , where β is a vector of unknown regression coefficients, and ε = (ε1, ..., εn)T is
the vector of random errors (e.g., εi ∼ N (0, σ2) , i = 1, ..., n). Univariate polynomial regression
is a specific case of linear regression in a quadratic form such that,

y1

y2
...
yn

 =


1 x1 x2

1 . . . xm1

1 x2 x2
2 . . . xm2

...
...

... . . . ...
1 xn x2

n . . . xmn




β1

β2
...
βm

+


ε1

ε2
...
εn

 .
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As a matter of fact, we model the expected value of the variable y as an m-degree polynomial
y = ∑m

i=0 βix
i+ε (i.e., y is a function of x, y = f(x)) where y, x, ε ∈ R, and ∀i βi ∈ R. Regression

coefficients can be estimated by the method of least squares estimation β̂ = (XTX)−1XTy. To
cover the 3D data (x1, y1, z1)T , ..., (xn, yn, zn)T we need to work with bivariate polynomials as

z =
∑
i,j

βi,jx
iyj + ε, (2.2)

where x, y, z ∈ R. Note that z is a function of x and y (i.e., z = f(x, y)). Polynomial regression
is a popular method, details can be found in (Montgomery et al., 2015, ch.7); (Jorgensen, 1993,
ch.4).

Polynomial regression of SPHARM-PDM

By using PCA (introduced in detail in Section 3.1), we can align the object according to the
principal axes. Assume SPHARM-PDM of a flat slabbed-shape object (e.g., left hippocampus).
Since the object is slabular, the surface points are distributed along first and second principal axes
rather than the third one. Besides, we know SPHARM-PDM points are relatively distributed
uniformly on the boundary. Thus, we can fit the bivariate polynomial regression model, according
to the third principal axis. The fitted non-linear surface crosses the middle part of the shape
and parameterize it by coefficients βi,j from Equation (2.2).

In practice, we observe the fitted polynomial surface with a suitable degree (in this work, we
used 4-degree polynomial) is very close to the skeletal positions of the fitted s-rep. Now, if we
project the SPHARM-PDM on the fitted polynomial surface, we have a PDM called Middle
Surface PDM at the middle part of the shape (see Figure 2.4). The obtained PDM inherit
the correspondence from the SPHARM-PDM. In this thesis, the motivation for generating the
Middle Surface PDM is to compare and support the outcome of the skeletal PDM analysis.

Figure 2.4: Middle Surface PDM.
(a) Fitted polynomial surface to a left hippocampus in blue, and the SPHARM-PDM in red. (b) Middle Surface
PDM (i.e., Projection of SPHARM-PDM points on the polynomial surface) in red. (c) Overlaid SHPARM-PDM

in blue, Skeletal PDM in black, s-rep spokes in yellow, and Middle Surface PDM in red.
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2.2 Shape space

In statistical shape analysis, the study of mean and variation of GOPs within a shape distribution
is desired. Therefore, having a clear explanation for shape is necessary. For this purpose (Kendall,
1977) defined shape.

Definition 2.2. "Shape is all the geometrical information that remains when location, scale
and rotational effects are removed from an object" (Dryden and Mardia, 2016, ch.1).

In other words, shape of an object is invariant under the act of translation, rotation and scaling.

In medical research scale or the size of the objects could be important in some aspects (e.g., study
the size of brain tumors), as a result (Dryden and Mardia, 1998) introduced size-and-shape.

Definition 2.3. "size-and-shape is all the geometrical information that remains when location
and rotational effects are removed from an object" (Dryden and Mardia, 2016, ch.1).

Shape definition is a prerequisite for shape analysis. Before taking any action based on the shape
definition, we need to remove translation, rotation, and scale from the shape representations.
Here for a better explanation of the shape, size-and-shape, and pre-shape, we stick to the
landmark analysis.

Definition 2.4. An m×m matrix Γ is a rotation matrix if ΓTΓ = ΓΓT = Im and det(Γ) = 1
(Dryden and Mardia, 2016, ch.3).

If m = 2 then θ ∈ [−π, π] parameterizes the rotation matrix Γ as

Γ =

 cos θ sin θ
− sin θ cos θ

 , (2.3)

where the rotation takes place clockwise around the origin. If m = 3 we can parameterize the
rotation matrix by three angles θ1, θ2, θ3 around z-axis, y-axis, and x-axis by

Γ =


cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1




1 0 0
cos θ2 sin θ2 0
− sin θ2 cos θ2 0




cos θ1 sin θ1 0
− sin θ1 cos θ1 0

0 0 1

 .

Special orthogonal group SO(m) is the set of all m×m rotation matrices (Dryden and Mardia,
2016, ch.3).

Definition 2.5. Given a set of points xi ∈ Rm, i = 1, ..., k. The point x̄ that minimizes the
sum of squared Euclidean distances to the given points is the arithmetic mean i.e.,

x = arg min
x∈Rm

k∑
i=1
‖x− xi‖2, (2.4)
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(Fletcher et al., 2004).

Euclidean distance between two points is a length of a straight line segment connecting them.
Thus, Equation (2.4) is equivalent to

x = 1
k

k∑
i=1
xi, (2.5)

(Fletcher et al., 2004).

The centroid (i.e., the center of gravity) of a set of points is the arithmetic mean of the points.

Definition 2.6. "The Euclidean similarity transformations of a configuration matrix X
are the set of translated, rotated and isotropically rescaled X, that is

{βXΓ + 1kγT : β ∈ R+,Γ ∈ SO(m),γ ∈ Rm}, (2.6)

where β is the scale, Γ is a rotation matrix, γ is a translation m-vector", and 1k is k × 1 vector
of ones. By omitting the scaling factor from Euclidean similarity transformations (i.e., β = 1)
we have rigid-body transformations (Dryden and Mardia, 2016, ch.3).

With the definition of Euclidean similarity transformations and Rigid-body transformations the
shape, and size-and-shape of any configuration matrix is obtainable. We remove translation
of the configuration matrix X based on the centroid. This can be done by using the centring
matrix

C = Ik −
1
k

1k1Tk , (2.7)

where Ik is the k × k identity matrix. Thus, the centered landmark coordinates of X is

XC = CX. (2.8)

The result of CX is the same as subtracting the elements of the X by its centroid (Dryden and
Mardia, 2016, ch.2).

Alternatively, we can remove translation by using Helmert submatrix. Helmert submatrix H
is a Helmert matrix without the first row. A Helmert matrix is an orthogonal square k×k matrix
where the elements of its first row are equal to 1/

√
k, and the remaining rows are orthogonal to

the first row. The ith row of H is given by

(hi, ..., hi,−ihi, 0, ..., 0)T , hi = −(i(i+ 1))−
1
2 , i = 1, ..., k − 1.
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Then similar to Equation (2.8) the Helmertized landmark coordinates of X is given by

XH = HX ∈ R(k−1)m \ {0},

(Dryden and Mardia, 2016, ch.2). An example of Helmert submatrix is presented in the Appendix
A.2.1.

Note that HTH = C, and we can transfer Helmertized landmark coordinates to centered
landmark coordinates by

HTHX = CX,

(Dryden and Mardia, 2016, ch.3).

For removing the scale factor, we standardize the configuration matrix X by its size. We define
the size of the configuration matrix X = (x1, ...,xk)T as its centroid size. The centroid size is
the sum of squared Euclidean distances from the centroid to each landmark and is given by

S(X) = ‖CX‖ =

√√√√ k∑
i=1
‖xi − x̄‖2, (2.9)

where x̄ is the centroid (i.e., arithmetic mean) of x1, ...,xk, and ‖CX‖ =
√
trace((CX)T (CX))

(Dryden and Mardia, 2016, ch.2).

By removing scale from the configuration matrix X we have the pre-shape of X as

ZC = CX

‖CX‖
. (2.10)

An alternative representation of the pre-shape is

ZH = XH

‖XH‖
.

(Dryden and Mardia, 2016, ch.3).

So far, we managed to remove the scale and location of the configuration matrices. Now we
define pre-shape space, which is an essential concept in shape analysis.

Definition 2.7. "The pre-shape space is the space of all pre-shapes. Formally, the pre-shape
space Skm is the orbit space of the non-coincident k point set configurations in Rm under the
action of translation and isotropic scaling" (Dryden and Mardia, 2016, ch.3).

Since ‖ZC‖ = 1, the pre-shape space is a unit hypersphere as

Skm−1 = {x ∈ Rkm | ‖x‖ = 1}. (2.11)
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By removing rotation from a pre-shape of a configuration we have the shape of a configuration.
Thus "the shape of a configuration matrix X is all the geometrical information of X that is
invariant under Euclidean similarity transformations. The shape of X can be represented by the
set [X] as follows

[X] = {ZCΓ : Γ ∈ SO(m)},

where ZC is the pre-shape of X" (Dryden and Mardia, 2016, ch.3).

Note that a shape of a configuration matrix is a set of configuration matrices not a single one.

The Shape space is the space of all configurations with the same number of landmarks. Assume
k-landmark model in Rm. We have overall km coordinates. By reducing m dimensions for
location, one dimension for scale, and m(m−1)

2 for rotation, the dimension of the shape space is

ms = km−m− 1− m(m− 1)
2 , (2.12)

(Dryden and Mardia, 2016, ch.3).

2.3 Manifolds

In Section 2.2 we saw the shapes and pre-shapes live on hyperspheres. Therefore it is necessary
to know how to calculate the mean and variation of data on manifolds to analyze the shape
distributions. In this regard, we describe manifolds and mean data on manifolds.

"A Manifold M is a space which can be viewed locally as Euclidean space" (Dryden and Mardia,
2016, ch.3). More precisely, "an m-dimensional manifold M is a topological Hausdorff space with
a countable basis such that each point on M has a neighborhood that is locally homeomorphic to
an open subset of Rm." A one-dimensional manifold is a curve, and a two-dimensional manifold
is a surface, e.g., sphere S2 is a two-dimensional manifold (Adhikari, 2016, ch.1).

There are different ways to define distance on manifolds, but a standard definition comes from
the Riemannian metric. In this regard, we define tangent space.

If q is a point in the manifold M and γ(t) ∈ M is a differentiable curve where t ∈ R, and
γ(0) = q. Then the tangent vector at q is γ′(0) = limt→0

dγ
dt and the unit tangent vector is

ξ = γ′(0)
‖γ′(0)‖ . Tangent space Tq(M) of M at point q is the set of all tangent vectors γ′(0) of all

curves passing through q (Dryden and Mardia, 2016, ch.3).

If x,y ∈ M , the Riemannian distance between x and y is the minimum length over all
possible smooth curves on M connecting x and y. A curve on M that locally minimizes the
length between two points is a geodesic curve (Fletcher et al., 2004).
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Assume a tangent vector v ∈ Tq(M) at point q. There is a unique geodesic γ(t) on the manifold
M passing through q, with the initial tangent vector γ′(0) = v. Then, the exponential map
from the tangent space to the manifold is Expq(v) = γ(1) and the inverse exponential map
or the logarithmic map from the manifold to the tangent space is Logq(γ(1)) = v. In a
neighborhood of zero the exponential map is a diffeomorphism (i.e. map between manifolds
which is differentiable and has a differentiable inverse). Therefore, the geodesic distance (i.e.,
Riemannian distance) between x and y by assuming x as the base point is given by

dg(x,y) = ‖Logx(y)‖, (2.13)

(Dryden and Mardia, 2016, ch.3); (Fletcher et al., 2004).

In a case that the manifold is the unit sphere Sm. The geodesic distance is the the arc length of
the shortest great circle segment connecting x and y, given by

dg(x,y) = cos−1(xTy), (2.14)

(Jung et al., 2012).

Assume q = (0, 0, 1)T i.e., north pole of the unit sphere. The geodesics at the base point q are
the meridians (i.e., great circles) passing through q. Now, if v = (v1, v2, 0)T is a tangent vector
in TqS2, then the exponential map to the sphere is given by

Expq(v) =
(
v1.

sin‖v‖
‖v‖

, v2.
sin‖v‖
‖v‖

, cos‖v‖
)T

, (2.15)

where ‖v‖ =
√
v2

1 + v2
2. The corresponding inverse log map for a point x = (x1, x2, x3)T ∈ S2 to

the tangent plane is given by

Logq(x) =
(
x1.

θ

sin(θ) , x2.
θ

sin(θ)

)T
, (2.16)

where θ = arccos(x3) is the angle between q and x (Fletcher et al., 2004).

Definition 2.8. The intrinsic mean of a set of points x1, ...,xk ∈M is a point that minimizes
the sum of squared Riemannian distances to the given points

µ = arg min
x∈M

k∑
i=1

dg(x,xi)2, (2.17)

where dg(., .) is the Riemannian distance on M (Fletcher et al., 2004).

The intrinsic mean is known as the Fréchet mean because the general idea was first introduced
by (Fréchet, 1948). To calculate the Fréchet mean, (Fletcher et al., 2004) presented a gradient
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descent algorithm (see Algorithm 2.1). The algorithm starts by a point on the manifold µ0 as
an initial mean. Next, based on µ0, log maps the data to the tangent space and calculate the
arithmetic mean of the data on the tangent space. Then, maps back the data to the manifold
and considers the exponential map of the arithmetic mean as the updated mean. The algorithm
iterates until the distance between two sequential means become very small.

Algorithm 2.1 Fréchet Mean.
Input: x1, ...,xk ∈M
Output: µ ∈M , is the Fréchet mean
1: µ0 ← x1, j ← 0
2: While ∆µ > ε Do
3: µj+1 ← Expµj (

τ
k

∑k
i=1 Logµjxi)

4: ∆µ← dg(µj+1,µj)
5: j ← j + 1

(dg is the geodesic distance, τ is the step size usually equal to 1, and ε is a small number.)

Definition 2.9. A differentiable manifold G is a Lie group that forms an algebraic group,
with the group operations of multiplication and inverse such that

τ : (x, y)→ xy : G×G→ G,

ι : x→ x−1 : G→ G,

(Fletcher et al., 2004).

Generally, we use Lie groups to define the transformation of smooth manifolds. For example,
affine transformations, rotations, and scaling of Rm, all form Lie groups. (Fletcher et al., 2004).

Another way to define a mean on the manifold M is to embed M in a Euclidean space, find the
mean, and then project the mean back to the manifold. The obtained mean is called extrinsic
mean.

Definition 2.10. Assume the embedding Φ : M → Rm, the extrinsic mean of a set of points
x1, ...,xk ∈M is given by

µΦ = arg min
x∈M

k∑
i=1
‖Φ(x)− Φ(xi)‖2,

(Fletcher et al., 2004). Or equivalently, we can calculate the arithmetic mean of Φ(xi) in Rm by
(2.5), and project it on the embedded manifold. Let ϕ(x) : Rm → G be a projection mapping
to the lie group G (embedded manifold) as ϕ(x) = arg miny∈M ‖Φ(y)− x‖2, then the extrinsic
mean is

µΦ = ϕ

(
1
k

k∑
i=1

Φ(xi)
)
,

(Fletcher et al., 2004). For more detail see (Srivastava and Klassen, 2002).
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2.4 Shape distances

First we introduce shape distances only for landmark models with configuration matrices, but
for the m-rep and s-rep, we need to define shape distances in a different manner. (Fletcher et al.,
2004) proposed an algorithm to find the optimal distance between m-reps. In Section 2.5.3 we
follow the same procedure to find the minimum distance for s-reps.

The idea to measure the shape distance is to find the minimum distance between two pre-shapes,
by rotating or scaling one relative to another. Notice that shape distance is different from
the distance between data on manifolds. Actually, by transferring two configurations to the
pre-shape space, it is possible to measure the distance between them, but the obtained distance
is not necessarily infimum. Therefore, we define shape distance as the infimum distance between
pre-shapes.

Definition 2.11. The partial Procrustes distance can be estimated by matching the pre-
shapes ZC1 and ZC2 of X1 and X2 over rotations as closely as possible. Thus,

dp(X1, X2) = inf
Γ∈SO(m)

‖ZC2 − ZC1Γ‖, (2.18)

(Dryden and Mardia, 2016, ch.4).

By adding the scaling factor to Equation (2.18) we have the full Procrustes distance.

Definition 2.12. The full Procrustes distance between two configuration matrices X1 and
X2 is

dF (X1, X2) = inf
Γ∈SO(m),β∈R+

‖ZC2 − βZC1Γ‖, (2.19)

where ZC1 and ZC2 are the pre-shapes of X1 and X2 respectively (Dryden and Mardia, 2016,
ch.4).

Note that scaling factor β in (2.19) is different from the centroid size.

Definition 2.13. Let ZC1 and ZC2 be the pre-shapes of X1 and X2 respectively. Riemannian
distance of configurations dρ(X1, X2) is the closest geodesic distance between ZC1 and ZC2

on the pre-shape sphere where the minimization is carried out by rotation (Dryden and Mardia,
2016, ch.4).

Note that Definition 2.13 consider the minimum Riemannian distance, and is different from
Definition 2.8.

We consider Riemannian distance of configurations as an intrinsic distance, and partial and
full Procrustes distances as extrinsic distances. The range of partial Procrustes, full Procruste,
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and Riemannian distance of configurations are 0 ≤ dF ≤ 1 , 0 ≤ dp ≤
√

2, and 0 ≤ dρ ≤ π/2
respectively (Dryden and Mardia, 2016, ch.4).

2.5 Alignment

2.5.1 Alignment of configurations

As we mentioned in Section 2.4, to find the infimum distance between shapes (e.g., Procrustes
distance), we need to rotate and scale them relative to each other. Therefore, shapes are aligned
if they have minimized distances. In shape analysis, before taking any actions, we need to align
the shapes. The main reason is after the alignment, the distances between shapes are minimized
concerning translation, rotation, and occasionally scaling. We will see in Section 2.5.6 that the
alignment is even more crucial when we attempt to detect the partial differences.

A fast approach to align a set of configuration matrices and estimate the extrinsic mean shape is
the full Generalized Procrustes Analysis (GPA). The purpose of the GPA is to minimize a
total sum of squares distances of a set of configurations (of k landmarks) relative to each other.
Thus, we minimize

G(X1, ..., Xn) =
n∑
i=1
‖(βiXiΓi + 1kγTi )− µ‖2, (2.20)

with respect to βi, Γi, γi, and µ, where i = 1, ..., n. Then, the Procrustes fits (i.e., aligned
configurations) are given by

XP
i = β̂iXiΓ̂i + 1kγ̂i, (2.21)

(Dryden and Mardia, 2016, ch.7).

Result 1. The shape of the full Procrustes mean

µ̂F = arg inf
µ

1
n

n∑
i=1

d2
F (Xi, µ),

has the same shape as the arithmetic mean of the Procrustes fits

X̄ = 1
n

n∑
i=1

XP
i , (2.22)

(Dryden and Mardia, 2016, page.135).

Result 1 is intuitively important as it shows the full Procrustes mean is obtainable by calculating
the arithmetic mean of the corresponding landmarks after the alignment.

We became familiar with the shape space of landmak models and PDMs such as SPHARM-PDM.
Now we explain s-rep shape space.
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2.5.2 s-rep space

In general, a discrete s-rep s† (2.1) with ns spokes is living in a manifold M(ns) as a product of
Euclidean and non-Euclidean spaces, R3ns × (S2)ns × Rns+ where R3ns is the space of ns skeletal
positions, (S2)ns is the space of ns spokes’ directions, and Rns+ is the space of ns spokes’ lengths.
We know from Equation (2.11) that the pre-shape space of ns points in R3 is S3ns−1 (N.B.
we consider pre-shape as ZC not ZH). Thus, the pre-shape space of centered s-reps can be
expressed by S3ns−1 × (S2)ns × Rns+ .Further, we may need to remove scale so the s-reps become
commensurate. By considering the scale factor as a property of the s-reps, the feature space
of the scaled s-reps is S3ns−1 × Rns+1

+ × (S2)ns . Based on Equation (2.12), after removing the
rotation from the s-reps, shape space dimension of the skeletal positions would be 3ns− 7. Thus,
the s-rep shape space is a product of Riemannian symmetric spaces as R3ns−7 × (S2)ns × Rns+1

+

or more precisely S3ns−8 × (S2)ns × Rns+1
+ (Schulz et al., 2016).

2.5.3 s-rep alignment

For the m-rep alignment (Fletcher et al., 2004) defined Riemannian distance between medial
atoms and minimized overall distances between a collection of m-reps with action of Euclidean
similarity transformation on medial atoms. Here we follow the same procedure to align the
s-reps.

Consider two spokes s1 = (p1,u1, r1) and s2 = (p2,u2, r2) from two discrete s-reps s†1 and s†2.
The spoke space is the manifold M(1) = R3 × S2 × R+. Let q = (0,u0, 1) ∈M(1) be the base
point where 0 = (0, 0, 0)T is the base point of positional element, and u0 = (0, 0, 1)T is the base
point of the spherical element. Assume a tangent vector w ∈ TqM(1) as w = (p,v, ρ), where
p ∈ R3 is the positional element, v ∈ R2 is the spherical element, and ρ ∈ R is the radius element
of w on the tangent space. The direct product of the exponential map for each element defines
the exponential map for M(1). Thus, we define the exponential map for R3 as the identity map,
for S2 as the spherical exponential map given by Equation (2.15), and for R as the exponential
function f(ρ) = eρ. Thus, we have

Expq(w) = (p, Expu0(v), eρ),

where the Expu0(v) is the spherical exponential map of v from (2.15). Then, the log map of a
point s = (p,u, r) ∈M(1) is the direct product of the log map for each element

Logq(s) = (p, Logu0(u), log(r)),
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where the Logu0(u) is the spherical log map of u from (2.16). As a result, direct product of ns
exponential or logarithmic map for the spoke space M(1) defines the exponential or logarithmic
map for the s-rep space M(ns).

In the tangent space the positional element p, spherical tangent element v, and radius ρ are in
different units. To commensurate v and ρ with the positional element p, we scale the v and ρ
with the average spoke length over all corresponding spokes in the population. Thus, the norm
of the vector w ∈ TqM(1) becomes

‖w‖T = (‖p‖2 + r̄2(‖v‖2 + ρ2))
1
2 , (2.23)

where r̄ is the average spokes’ length over all corresponding spokes.

By using the norm (2.23), the Riemannian distance of (2.13) between two spokes s1, s2 ∈M(1)
is given by

d(s1, s2) = ‖Logs1(s2)‖T . (2.24)

Let T = (β,Γ,γ) be an Euclidean similarity transformation (2.6). We define the action of T on
a spoke si = (pi,ui, ri), i ∈ {1, ..., ns} of an s-rep by,

T · si = T · (pi,ui, ri) = (βpTi Γ + γ,uTi Γ, βri),

The action of T on the s-rep s† = {si : i = 1, ..., ns} is,

T · s† = {T · si : i = 1, ..., ns}.

Assume a set of sreps s†1, ..., s
†
N ∈M(ns) that we want to align. Let sαi be the αth spoke in the

ith s-rep. The squared distance metric between s-reps s†i and s
†
j is

d(s†i , s
†
j)2 =

ns∑
α=1

d(sαi, sαj)2,

where d(., .) for spokes on the right-hand side is given by (2.24).

For the s-reps alignment, we calculate the set of similarity transforms T1, ..., TN that minimize
the following total sum of squares distances between the s-reps

d(T1, ..., TN ; s†1, ..., s
†
N ) =

N∑
i=1

∑
j 6=i

d(Ti · s†i , Tj · s
†
j)2. (2.25)

For removing translation, we multiply centering matrix to the skeletal PDMs (see Equation (2.8)).
Removing rotation and scale is an optimization problem that can be solved by the gradient
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descent algorithm to minimizes the metric of (2.25). Notice that there is no guaranty for the
convergence of the gradient descent algorithm, and it is important to find a suitable starting
point. For that reason, the alignment can be initialized by aligning the s-rep skeletal PDMs with
GPA. For more detail see (Fletcher et al., 2004).

Alternatively, by treating spokes as the joined pair of tips and tails, then an s-rep with ns

spokes consists of 2ns positions in R3 (i.e., the collection of skeletal and implied boundary
points). Thus, we can express the distance of two s-reps as the Procrustes distance between two
configuration matrices where each one represents a PDM with 2ns points. As a result, we can
use GPA (2.20) to align s-reps. Note that after the alignment, it is crucial to update the spokes’
directions because the rotation of the skeletal sheet affects the spokes’ directions. Also, we need
to update spokes’ lengths if we remove scaling by GPA (this can be done by scaling skeletal
PDMs, preserving the scaling factor for each s-rep and then using this scaling factor to resize
the spokes’ lengths). In a case that we define the distance between two s-reps only based on
the skeletal positions, we can align s-reps by applying GPA on skeletal PDM and then update
the directions. Note that after aligning the s-reps with this method (i.e., alignment only by the
skeletal positions), as we ignore the spokes’ directions and lengths, we may observe less variation
in skeletal positions and more variation in spokes’ directions in comparison with other methods
of alignment.

Although it is common practice to align objects by GPA, we will discuss other possible approaches,
such as weighted alignments in the next section.

2.5.4 Weighted Procrustes alignment

In Procrustes alignment we use the Euclidean norm ‖X‖2 = trace(XTX) and treat all the
landmarks equally as uncorrelated. In weighted Procrustes, the aim is to estimate the covariance
relation between landmarks then, use this covariance structure for the alignment. For this
purpose we substitute the Euclidean norm with the Mahalanobis norm

‖X‖2Σ = vec(X)TΣ−1vec(X), (2.26)

where Σ is the covariance matrix, and vec(X) is the vectorize operator of the configuration X
with columns x1,x2, ...,xm as vec(X) = (xT1 ,xT2 , ...,xTm)T (Dryden and Mardia, 2016, ch.7,ch.4).

Generally, estimating the covariance relation is a matter of debate. (Goodall, 1991) estimated
the covariance matrix as

Σ̂ = 1
n

n∑
i=1

vec(XP
i − X̄)vec(XP

i − X̄)T ,
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where X̄ is the mean shape, and XP
i , i = 1, ..., n are the Procrustes fits from Equation (2.21).

After estimating the covariance matrix, we can use GPA(Σ̂) to weight the landmarks and align the
shapes based on the Mahalanobis norm (2.26), where GPA(Σ̂) denotes the weighted Procrustes
with the covariance matrix Σ̂. Also, without estimating Σ, we can specify a covariance matrix
and use GPA to align the shapes based on it.

Notice that ordinary Procrustes alignment is weighted Procrustes alignment with the identity
matrix as the covariance matrix Σ = I.

To have a weighted alignment, (Brignell et al., 2016) introduced an algorithm starts by aligning
the shapes with GPA(I). Then, iteratively calculates Σ̂ by a suitable estimator and aligns shapes
by GPA(Σ̂) until convergence. For further detail about the suitable estimators and the algorithm
see (Dryden and Mardia, 2016, page.148).

Most of the methods in this area, consider only one group of shapes and try to align shapes
based on the group covariance matrix. However, there might be two groups, and we want to
find the differences between them. (Goodall, 1991) suggested to estimate the covariance matrix
of each group, find the mean of the groups based on the weighted alignment, and superimpose
obtained mean to see the differences. The drawback of this method is that we estimate the
covariance matrix of each group without considering the structure of the other group. In this
respect, in Section 2.5.6 we specify a new covariance matrix for the weighted alignment that
decreases the variance of landmarks, which are similar among two groups of shapes. For this
purpose first, we need to introduce a new algorithm.

2.5.5 Elimination algorithm

Assume two groups of k-landmark models A1 and A2. In the proposed method, we remove
landmarks one by one from both groups and measure the Procrustes distance of the groups’
means by Equation (2.19). In each step, we eliminate a landmark from both groups, which
is associated with the greatest Procrustes distance while it was involved in the models. We
repeat the procedure until two landmarks remain. The idea is to eliminate a landmark in each
iteration which causes more difference between the means. In this sense, the distance between
means decreases and they become more similar after each round. Now, assume a small number
δ ∈ [0, 1] as the threshold (dF ∈ [0, 1] so δ ∈ [0, 1], see Section 2.4). The threshold divides the
measured distances set in two subsets with the value greater or smaller than δ. Each measured
distance is associated with an eliminated landmark. Thus we classify landmarks in two groups
of "suspicious" and "unsuspicious" according to their corresponding distances. In other words,
by removing suspicious landmarks, the Procrustes distance between the means is less than δ.
The value of δ can be the subject of further study. In our analysis, δ = 0.03 has shown good
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results. As an effect in Section 2.5.6, we will see the alignment is more robust against outliers.
Algorithm 2.2 explains the method.

Algorithm 2.2 Elimination Algorithm.
Input: (i) Two groups of k-landmark models A1 and A2 (ii) Threshold δ (iii) x = {1, ..., k}
Output: (i) Suspicious-landmarks (ii) Unsuspicious-landmarks
1: Sorted-Landmarks← [ ] , distances← [ ] , s← 0 , j ← 1
2: While |x|c > 2 Do:
3: dmin←∞ , distances[j]← procdis(A1, A2)
4: Iterate through x by i
5: d← procdis(A1 \ li, A2 \ li)
6: If d < dmin
7: dmin← d, s← i
8: Sorted-Landmarks[j]← ls, A1 ← A1 \ ls, A2 ← A2 \ ls, x← x \ s, j ← j + 1
9: Sorted-Landmarks←[ lx, distances←[ (0, 0)
10: y ← indices of distances’ elements which are greater than δ
11: Suspicious-landmarks ← Sorted-Landmarks[y],

Unsuspicious-landmarks ← Sorted-Landmarks[{1, ..., k} \ y]
(li is the ith landmark. A\ li is A without li. A is the mean shape of A. procdis is the Procrustes
distance. ← and ←[ indicate assign and push operators respectively. [ ] indicates empty array.
A[x] is the elements of A with the indices of set x. |x|c is the cardinality of x.)

Example (Dryden and Mardia, 2016, p.190-196) tested the mean shape similarity of 8-landmark
models of male versus female chimpanzee skulls (panm vs. panf) and male versus female gorilla
skulls (gorf vs. gorm). The overall result shows no significant difference between females and
males chimpanzees but a significant difference in the gorilla group. Also (Dryden and Mardia,
2016, ch.9) discussed the mean difference between 13-landmark models of Schizophrenia vs. The
Control group and concluded that different methods of testing provide different results. Some
tests show there is a significant difference between Schizophrenia and Control, and some show
no significant difference. However it was stated (Dryden and Mardia, 2016, page.257) the shape
change is related to the splenium and the two landmarks just below it (i.e., landmarks l1, l13, l6).
We use these three pared groups of shapes to test the elimination method. Table 2.1 shows
the sorted landmarks and Procrustes distances of the elimination algorithm for the mentioned
groups. By using the threshold δ = 0.03, there is no suspicious point in panm vs. panf. In other
words, even without removing any points, the distance between the mean shapes is less than δ.
In gorf vs. gorm, we classify landmarks (l8, l4, l5, l7) as suspicious landmarks. In Schizophrenia
vs. Control the algorithm classifies landmarks (l1, l13) as suspicious, which is compatible with
the observation of the book. Figure 2.5 shows the pooled mean shape of pared groups, and red
dots indicate suspicious landmarks.
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Table 2.1: Elimination examples.
Sorted landmarks and associated Procrustes distances from the elimination algorithm.

Figure 2.5: Suspicious landmarks.
Suspicious landmarks depicted in red. Threshold δ = 0.03. Left: female gorilla skull vs. male gorilla skull. Middle:

female chimpanzee skull vs. male chimpanzee skull. Right: Schizophrenia vs. Control.
Data are taken from (Dryden, 2018).

2.5.6 Weighted alignment by elimination

Often researchers use Procrustes alignment to compare shapes and to detect differences. The
critical issue is that Procrustes alignment introduces undesirable differences as it tries to minimize
the dissimilarities between shapes. As a result, we may fail to expose actual differences. For
instance, we know the main difference between cats’ heads and dogs’ heads is in the muzzle.
Assume landmark models as depicted in Figure 2.6. In this case, the muzzle landmark acts as
leverage to rotates and translates other landmarks. Thereby, the hypothesis test introduces
non-existing differences (i.e., increase in the false positive), or in some cases fail to introduce
real ones (i.e., increase in the false negative). In this regard, the idea is to ignore parts of the
shapes that cause differences and align the remaining shapes. Thereby, we can have a better
alignment concerning the similarity of the mean shapes. Figure 2.6 illustrates the idea which we
call weighted alignment by elimination.
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Figure 2.6: Comparison of alignments.
(a) Profile sketch of a cat and a dog with landmarks. (b) Visualization of the Procrustes alignment. (c) Desired alignment

to detect muzzle as the main difference obtainable by alignment without the muzzle landmark.

To reach the desired alignment, we detect unsuspicious points by the elimination algorithm from
Section 2.5.5. Then, we define a covariance matrix and take advantage of weighted Procrustes
alignment as described in Section 2.5.4. Assume shapes with k landmarks li, i = 1, ..., k. In
ordinary Procrustes alignment the covariance matrix is Σ = I. We can stabilize unsuspicious
landmarks by adjusting Σ. This can be done by deceasing the associated diagonal element of Σ
with unsuspicious landmarks. Thus, we have

Σ =


a1 0 . . . 0
0 a2 . . . 0
...

... . . . ...
0 0 . . . ak

 s.t
 ai = 1,
ai = ε,

if li is suspicious
if li is unsuspicious

, i = 1, ..., k,

where ε is a small number depending on how intensively we want to stabilize unsuspicious points
relative to the suspicious points. Based on our observation ε = 10−4 seems to be suitable.

Example As an intuitive example, we create two groups of landmarks by modifying female
gorilla skulls (taken from (Dryden, 2018)) in a way that two groups are identical in five bottom
landmarks (l2, l3, l4, l6, l7) but different in two top landmarks (l1, l5). Also we remove one
landmark (landmark no. 3 in the original data) to have a better illustration. By applying
elimination algorithm we obtain landmarks l1 and l5 as suspicious. Thus, we define covariance
matrix as Σ = diag(1, ε, ε, ε, 1, ε, ε). Obviously, by Procrustes alignment shapes are different in
all the landmarks. But the weighted alignment by elimination aligns the identical landmarks
and exposes the real differences (see Figure 2.7).

A major drawback of this method is the cost of computation for shapes with a large number of
landmarks (e.g., SPHARM-PDM) unless we eliminate more than one landmark in each iteration
of the elimination algorithm.

Note that by applying this method, we decrease and increase the variation of unsuspicious and
suspicious landmarks, respectively. This change in variation may bias the result of the hypothesis
testing. We discuss this issue in Section 5.3.2.
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Figure 2.7: Procrustes vs. weighted alignment by elimination.
(i) Two groups of landmark models which are identical at l2, l3, l4, l6, l7 and different at l1, l5. (ii) Ordinary

Procrustes alignment. (iii) Suggested weighted alignment by elimination with δ = 0.03 and ε = 10−4.
Data are modified version of female gorilla skulls taken from (Dryden, 2018).

An alternative method to reveal local differences is deformation (Dryden and Mardia, 2016,
ch.12). The idea is to deform mean shapes of two groups to the pooled mean shape, and then to
use a thin-plate spline to observe the differences. However, depending on the alignment method,
the mean shapes vary, and again it is important to have an appropriate alignment.
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Dimensionality Reduction

In this chapter, we discuss different methods of dimensionality reduction, including Principal
Component Analysis (PCA), Principal Geodesic Analysis (PGA), and Principle Nested Sphere
Analysis (PNS). Then we introduce Non-Linear PGA (NLPGA) to find the mean of the spherical
data based on the rotation of the tangent space. Finally, we explain the Euclideanization of the
s-rep data by Composite PNS (CPNS).

3.1 Principal Component Analysis (PCA)

PCA is one of the oldest multivariate techniques and the most widely used dimensionality
reduction method in data analysis. It has a long history, but the modern formalization is
introduced by (Hotelling, 1933).

Given a set of observations yi ∈ Rm, i = 1, ..., k. We assume the arithmetic mean ȳ = 1
k

∑k
i=1 yi

as the PCA mean. Similar to (2.8) we center the data to the origin based on ȳ. Let xi = yi − ȳ,
i = 1, ..., k be the centered data. PCA determines an n ≤ m dimensional subspace such that after
projecting data on this subspace, the variation of the data points is optimally retained. This
subspace is defined based on n orthogonal axes, known as principal axes or principal components
(i.e., eigenmodes) (Theodoridis, 2015, page.940). To derive the principal axes, first assume n = 1,
the aim is to find a direction in Rm so that the variance of the corresponding projections of the
data points on this direction is maximized. Let v1 denote the first principal axes. The variance
of the projected data on v1 is given by

J (v1) = 1
k

k∑
i=1

(vT1 xi)2 = 1
k

k∑
i=1

(vT1 xi)(xTi v1) = vT1 Σ̂v1,

29
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where Σ̂ is the sample covariance matrix of the of observed data

Σ̂ = 1
k

k∑
i=1
xix

T
i .

Since we maximize the variance, the optimization problem will be

v1 = argmax
v
vT Σ̂v , s.t. vTv = 1.

The corresponding Lagrangian is given by

L(v, λ) = vT Σ̂v − λ(vTv − 1). (3.1)

Taking the gradient of (3.1) with respect to v and setting it to zero we have

vT Σ̂v = λ.

In other words, the first principal direction is an eigenvector corresponding to the maximum
eigenvalue of Σ̂. The second principle component v2 can be selected in a way that v2 is orthogonal
to v1 and v2 maximizes the variance after projecting the data on this direction. With the above
procedure and the orthogonality condition vT2 v1 = 0, we can show that v2 is the eigenvector
corresponding to the second largest eigenvalue of Σ̂. We continue the process until we obtain
m principal components. In this regard, the obtained principal axes are corresponding to the
sorted eigenvalues λ1 > λ2 > ... > λm of Σ̂ (Theodoridis, 2015, Chapter 19); (Jolliffe, 2013).

PCA of m-dimensional data can be calculated in forward and backward directions. We already
explained the forward approach in a Euclidean space where we start by calculating the sample
mean (arithmetic mean) as the best fitted 0-dimensional subspace. Mean with the first eigenvector
describe a line as the best fitted one-dimensional subspace. Then mean with the first and second
eigenvectors describe the best-fitted plane as a two-dimensional subspace. Consequently, we can
increase the dimension of the best fitting sub-spaces. However, PCA could also be calculated in a
backward direction. We start with the best fitted (m− 1)-dimensional subspace, and then within
that, we find the best fitted (m− 2)-dimensional subspace, etc. which results in a sequence of
best fitted subspaces (Damon and Marron, 2014).

Although, PCA is simple, fast and easily applicable data analysis for data lying in the Euclidean
vector space Rm, it is not directly applicable for data on manifolds. From Chapter 2 we know
that shapes are living on manifolds. As an extrinsic approach if we embed the shape space
manifold in an Euclidean space (e.g., Rm) then, it is possible to use PCA on the embedded space.
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Various methods are accessible to analyse the data on manifolds. In Section 2.5.2 we discussed
the s-rep shape space which is a combination of Euclidean space with spheres and a hypersphere.
Thus, we prefer to use rather new methods for spherical data like PNS (Jung et al., 2012).

Before discussing PNS we briefly explain PGA to have a better intuition about PNS.

3.2 Principal Geodesic Analysis (PGA)

PGA is a generalization of PCA to manifolds and is a forward approach. PGA introduced by
(Fletcher et al., 2004) is a general method applicable on manifolds, and it is not restricted to the
spheres.

In Section 2.3 we discussed the Fréchet mean of a data set xi ∈M , i = 1, ..., k in a manifold M .
Similar to PCA, the aim is to find a sequence of nested geodesics as the manifold subspaces that
maximize the variance of the projected data. (Fletcher et al., 2004) showed that by applying PCA
on the tangent space we can approximate PGA of the data. In this sense, first we use the Fréchet
mean µ ∈M as the base point of the tangent space TµM . Let U ∩ TµM be a neighborhood of
the base point, and assume the data is localized enough to lie within U . With a well-defined
logarithmic mapping we can map the data from the manifold to the tangent space as Logµ(xi).
Then we use PCA to find principal directions v1, ...,vm ∈ TµM of the tangent space (m is the
dimension of the tangent space). The obtained vectors form a basis of the tangent space, and
generate a sequence of nested subspaces Vn = span({v1, ...,vn}) ∩ U where n = 1, ...,m. Finally,
the principal geodesics submanifolds are the projection of Vn with the exponential map Expµ(Vn)
on the manifold. If the manifold is the unit sphere S2, as a straightforward approach we can
translate data to the north pole by Fréchet mean (see Equation 3.4). Then log map the data to
the tangent space by (2.16) and use PCA to analyse the data. The Algorithm 3.1 explains the
procedure (Fletcher et al., 2004).

Algorithm 3.1 PGA approximation.
Input: x1, ...,xk ∈M
Output: Principal components vn ∈ TµM , Variances λn ∈ R
1: µ← Fréchet mean of {xi}ki=1 (Algorithm 2.1)
2: ui ← Logµ(xi), i = 1, ..., k
3: Σ̂← 1

k

∑k
i=1 uiu

T
i

4: {vn, λn} ← eigenvectors and eigenvalues of Σ̂
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3.3 Principal Nested Sphere (PNS)

Basically, the idea of PNS is based on fitting a geodesic to a data set on a manifold, then by
projecting the data on the geodesic, the mean can be estimated by minimizing the sum of squares
distances of the projected data within the geodesic path. (Jung et al., 2012) generalized the idea
as a backward approach for high-dimensional spherical data.

Assume an m-dimensional unit sphere Sm. By using a decomposition of Sm, PNS tries to
capture the maximal non-geodesic variation in an (m-1)-dimensional subsphere. Sequentially for
i = m− 1, ..., 1, 0 the decomposition provides the best i-dimensional approximation Ψi of the
spherical data. The subsphere Ψi is called the i-dimensional principal nested sphere. Ψi is a
submanifold of Ψj , j = i+ 1, ...,m. Thus we have

Ψ0 ⊂ Ψ1 ⊂ ... ⊂ Ψm−1 ⊂ Sm.

The fitting procedure reduces the dimension of the data iteratively. First we fit an (m − 1)-
dimensional subsphere Ψm−1 of Sm which best approximate the data. Therefore, we can associate
each data point to a residual based on the its distance to Ψm−1. In this sense, the residual is
a signed geodesic distance to its projection on Ψm−1. Then we find the best fitting subsphere
Ψm−2 of Ψm−1, and continue until the best fitting subsphere has zero dimension. Note that
0-dimensional subsphere Ψ0 is a point, and we consider it as the Fréchet mean of the projected
data on one-dimensional subsphere (circle) Ψ1 (Jung et al., 2012).

Definition 3.1. If v ∈ Sm and ρ ∈ (0, π/2] then a subsphere Am−1 of Sm is defined as

Am−1(v, ρ) = {x ∈ Sm | dg(v,x) = ρ},

where dg is the geodesic distance function from Equation (2.14). Thus, Am−1 can be considered
as an intersection of Sm and an m-dimensional hyperplane {x ∈ Rm+1|vTx− cos(ρ) = 0}, where
v is the axis of Am−1 and also the unit normal vector of the hyperplane (Jung et al., 2012).

Am−1 is a unit sphere, but its axis does not coincide with the axis of Sm−1 (i.e., north pole).
By a transformation function f1 : Am−1 → Sm−1 we rotate Am−1 such that its axis v reach the
north pole (for the definition of f see (Jung et al., 2012)).

Definition 3.2. An (m− i)-dimensional nested sphere Ψm−i of Sm is

Ψm−i =

 f−1
1 ◦ ... ◦ f−1

i−1(Am−i)
Am−1

(i = 2, ...,m− 1),
(i = 1),

(3.2)

where f−1
i is the inverse transformation of fi : Am−i → Sm−i (Jung et al., 2012).



Chapter 3. Dimensionality Reduction 33

Let x1, ...xk be a set of data on Sm. An estimation of the best fitting subsphere Âm−1 =
Am−1(v̂1, ρ̂1) can be found by minimizing the sum of squares of the residuals ξj , j = 1, ..., k (i.e.,
sum of squares of the geodesic distances between data and Âm−1). Thus, to find v̂1 and ρ̂1 we
minimize

k∑
j=1

ξj(v1, ρ1)2 =
k∑
j=1

(dg(xj ,v1)− ρ1)2, (3.3)

with respect to v1 ∈ Sm and ρ1 ∈ (0, π/2] (Jung et al., 2012).

After finding Âm−1, we project {xj}kj=1 on Âm−1 along the minimal geodesic joining xj to Âm−1.
The projection function is given by

proj{x; Âm−1(v, ρ)} = sin(ρ)x+ sin{dg(x,v)− ρ}v
sin{dg(x,v)} .

By repeating the above procedure and by using the transformation functions (3.2), we obtain
a sequence of sample principal nested spheres Ψ̂m−1, ..., Ψ̂1 of Sm. At the lowest level, Ψ̂1 is a
circle, and we consider Ψ̂0 as the Fréchet mean of the projected data (Jung et al., 2012).

3.3.1 PNG

In PNS, we use a sequence of non-geodesic nested great or small spheres. It means radii of the
nested subspheres could be one or less than one. If we use only subspheres with radius one, then
we have Principal Nested Great-spheres (PNG). Note that in dealing with S2, nested spheres
are great or small circles (i.e., 2D subspheres).

3.4 Non-Linear PGA (NLPGA)

Although PNS has an outstanding performance for girdle and von Mises distributions, it can be
shown that in some cases (e.g., spherical semi-ellipse or s-like distributions) the obtained mean is
far from our expectation. Inspired from principal flows (Panaretos et al., 2014), which determines
curves on manifolds as principal components, we introduce a nonlinear dimensionality reduction
method on the tangent space of S2. This method is analogous to PGA from Section 3.2 but
instead of using PCA on the tangent space we define and use a specific form of Non-Linear PCA
(NLPCA) based on the principal curve. " Principal curves are smooth one-dimensional curves
that pass through the middle of a m-dimensional data set, providing a nonlinear summary of the
data" (Hastie and Stuetzle, 1989). A comprehensive explanation about NLPCA can be found in
(Kruger et al., 2008; Scholz, 2002).
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Imagine we have a set of spherical data samples zi ∈ S2, i = 1, ..., k, with the Fréchet mean µF .
Given a spherical rotation matrix R(c, θ), the rotation of µF along its meridian to the north
pole is RµF = (0, 0, 1)T . The spherical rotation matrix is given by

R(c, θ) = I3 + sinθ[c]× + (1− cosθ)(ccT − I3), (3.4)

where I3 is the 3× 3 identity matrix, [c]× is the cross product matrix satisfying [c]×v = c× v
∀v ∈ R3, and θ ∈ [0, π/2] is the rotation angle (i.e., the angle between µF and the north pole)
(Schulz et al., 2016).

Consequently Rzi is the transformation of zi, i = 1, ..., k. Let ∀i, yi = Logq(Rzi) be the log-map
of Rzi to the tangent space by Equation (2.16), where q = (0, 0, 1)T . By applying PCA on
the log-mapped data yi, i = 1, ..., k, we find ȳ as the PCA mean (i.e., arithmetic mean on the
tangent space). Also, we can express yi in the PCA coordinate based on the principal axes PC1
and PC2. Let xi indicate the PCA coordinate of yi. Similar to PGA we transformed data from
spherical coordinate to the PCA coordinate on the tangent space. Also we know due to the Log
and Exp map, the tangent space of S2 is a circular disc with radius π inscribed in a square of
the width 2π. Thus, we can consider the centered data (i.e., centered by PCA) inscribed in a
square with the same size. The two line segments connecting the middle points of the square’s
parallel sides indicate PC1 and PC2. In this coordinate system we implement curve fitting
techniques to the find principal curve. In this work, to make sure we can define isomorphic
transformation between sphere and the tangent space, we only use the polynomial regression
method (see Section 2.1.6), however it is possible to apply other techniques. As a result, an
m-degree polynomial f(x) = ∑m

i=1 βix
i + ε with the domain [−π, π] represent the fitted curve.

The principal curve (i.e., fitted polynomial) defines the first principal axis of an NLPCA.

Let x̃i be the projection of xi along PC2 to the polynomial. The principal curve f is a
one-dimensional manifold thus, the Fréchet mean of projected data on f is given by

µ = arg min
x∈f

k∑
i=1

dc(x, x̃i)2,

where dc(u,v) =
∫ v1
u1

√
1 + (df(x)

dx )2dx is the curve distance between points u = (u1, f(u1))T and
v = (v1, f(v1))T .

Note that the domain of the polynomial is limited and relatively small so we can estimate the
Fréchet mean by the Monte Carlo random sampling method. We can produce N + 1 large
enough uniformly distributed real numbers vj ∈ R, j = 0, ..., N such that vj ∈ [−π, π] , or simply
choose vj = −π + 2πj/N , j = 0, ..., N . The projection of vj on f along PC2 is f(vj), and
vj = (vj , f(vj))T is a point of tangent space located on f . Therefore, the estimation of Fréchet
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mean on the principle curve is given by

µ̂ = arg min
v

N∑
j=0

k∑
i=1

dc(vj , x̃i)2.

Recall ri = xi2 − x̃i2 is the regression residual of sample xi. We consider, di = dc(µ̂, x̃i) and ri
as the first and second coordinates of xi in NLPCA respectively. In this regard, µ̂ is the origin of
NLPCA axes, and the reduced dimensional data are located on the principle curve. We consider
PC2 as the second principle axis of NLPCA. Furthermore, let Γpca be the matrix of ordered
PCA eigenvectors known as PCA rotation matrix. To map back µ̂ to the sphere, we rotate and
translate µ̂ to the north pole with µ̂TΓ−1

pca + ȳ (i.e., ȳ coincide with (0, 0, 1)T ). Applying Exp
map from (2.15) and multiplying the result with R−1, map the µ̂ on the sphere. Therefore we
have

µ∗ = R−1(Expq(µ̂TΓ−1
pca + ȳ)), (3.5)

where µ∗ is the obtained NLPGA mean, and q = (0, 0, 1)T .

In Figure 3.1 x (the solid points) indicates a data point on the tangent space, x̃ is the projection
of x along PC2, x̂ is the projection of x based on the Mean Squared Error (MSE) (i.e.,
e = ‖x − x̂‖2)), µ is the Fréchet mean on the principal curve, and d± and r± indicate the
NLPCA coordinates with positive and negative signs.

Figure 3.1: Illustration of NLPCA.
Solid points indicate log-mapped data on the tangent space, x̃ is the projection of x along PC2, x̂ is the projection
of x based on MSE, µ is the Fréchet mean on the fitted curve, and d and r indicate the NLPCA coordinates.

Rotation to improve fitting

In most cases, the performance of NLPGA is not satisfactory. To improve the method, by
a small degree of rotation (e.g. θ = 2πn/360, n = 1, ..., 360), we rotate the PCA coordinate
on the tangent space from 0 to 2π. The rotation take place around ȳ by the rotation matrix
(2.3). During the rotation we find the principle curve and form NLPCA. Further, we estimate
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the performance of the NLPCA in order to find the best NLPCA coordinate system. The
performance of the NLPCA like PNS and PGA can be measured by the percentage contribution
of the eigenmodes. Note that this approach is different from performance estimation of the
principal curve by MSE, because we consider the both residuals r± and d±. After a complete
rotation we choose an NLPCA with the best performance. Figure 3.2 illustrate the procedure.

Figure 3.2: Rotation of the tangent space.
Figures from left to right include data points and fitted 4-degree polynomial during the rotation of the tangent

space. The right figure visualize the best fit for this sample.

Since we rotated the tangent space, to calculate NLPGA mean, we need to include this rotation
in Equation (3.5). Assume Γ̂nl represent the estimated rotation matrix corresponding to an
NLPCA with the best performance, and µ̂nl be the corresponding estimated mean. Then, map
of the µ̂nl on the sphere, provides the NLPGA mean as

µ∗nl = R−1(Expq(µ̂TnlΓ̂−1
nl Γ−1

pca + ȳ)),

where µ∗nl indicates NLPGA mean after rotation.

The same way ∀x ∈ TµFS2 we define mapping from the tangent space to the sphere as

z = R−1(Expq(xT Γ̂−1
nl Γ−1

pca + ȳ)),

where z ∈ S2. As a result, the NLPCA axes on the tangent space correspond to two geodesic
submanifolds on the unit sphere where one of them is a great circle and the other one is the
image of the principal curve.

Note that if we choose to project the data on the fitted curve by MSE which is always positive,
we may fail to define an isomorphic transformation between spherical coordinate and NLPCA
coordinate. Also, if we try to fit a closed curve (e.g., ellipse) we may encounter a similar issue.
Because, it would require to specify which points belong to the inside or to the outside of the
curve that could be a difficult task specifically for the complicated curves. In Figure 3.3 we
compare the NLPGA with PNS for some artificial s-shape, v-shape and w-shape distributions.
In the left column of Figure 3.3, blue lines on the spheres indicate the mapping of the principal
curve. Choosing the degree of the polynomial not only here but in the most regression problems
is a matter of controversy. For our examples we chose polynomials of degrees three and four.
Also to increase the performance of NLPGA we can map tangent space as a circular disk to a
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square as discussed in (Fong, 2015), and after finding the best fitted curve inverse map data
from square to the disk but there are cautions about the distance preservation which merit the
further study.

The spokes’ directions of the fitted s-reps in this thesis have concentrated von Mises distributions.
As a result the application of NLPGA has no superiority over PNG or PGA and we ignore to
use it.

Figure 3.3: PNS vs. NLPGA.
Left column indicates the PNS means of the fitted small and great circles, Fréchet mean, and NLPGA mean of
the fitted curve on S2. Middle column shows the NLPCA mean and fitted polynomial on the tangent space.

Right column compares the performance of PNS, PNG and NLPCA.

3.5 Composite Principal Nested Spheres (CPNS)

As we discussed in Section 2.5.2, an s-rep consists of a set of points, directions and lengths living
on a product of Euclidean and non-Euclidean spaces. For analysing the s-reps variability one



Chapter 3. Dimensionality Reduction 38

possible option is to consider each s-rep component separately. First, using PNS to produce
Euclidean scores (i.e., residuals) from spherical data, namely the pre-shape of skeletal positions
and the spokes’ directions. Second, compose the scores with the Euclidean data (i.e., logarithms
of the scale factors and spoke lengths). Finally this composition can be used to present the mean
and variation of the s-reps. This method is called Composite Principal Nested Spheres (CPNS)
in (Jung, 2011; Pizer et al., 2013) and is discussed in more details in the following.

Note that in this part we follow the similar mathematical notation used in (Jung, 2011; Pizer
et al., 2013). Assume a set of N centered and aligned discrete s-reps {s†1, ..., s

†
N}, each one with

ns spokes as defined in Section 2.1.3 such that

s†i = (Pi,u1(i), ...,uns(i), r1(i), ..., rns(i)), (3.6)

where Pi = (p1(i), ...,pns(i))T represent the skeletal positions of the ith s-rep, and i = 1, ..., N .

Since we assumed aligned and centered s-reps, the centroid size of Pi is γi =
√∑ns

j=1 ‖pj(i)‖2.
Let ∀i, PCi = Pi/γi be the scaled skeletal positions of Pi. The centroid size of PCi is 1 thus, PCi
is the pre-shape of Pi (see Equation 2.10).

We know from Section 2.5.2 that the space of the skeletal positions is a hypersphere PCi ∈ S3ns−1.
Therefore we can use PNS to analyse the skeletal position of N s-reps. By using PNS we obtain
principal scores as an m×N matrix Z = (zki) where m = min(N − 1, 3ns − 1) is the number of
nontrivial components, and zki is the ith sample’s deviation from the PNS mean along the kth
principal subsphere. The principal nested spheres can be represented by a collection of axes and
radii as

{(v1, ρ1), ..., (v3ns−2, ρ3ns−2),v3ns−1}.

Since γi ∈ R+, we use the geometric mean γ̄ = (∏N
i=1 γi)

1
N to define γ∗i = log(γi/γ̄). Hence, the

scale factors are normalized by their geometric mean. Let γ = (γ∗1 , ..., γ∗N )T denotes a vector of
all scale factors. To incorporate the correlation between pre-shapes and scale factors we scale Z
by

Zs = γ̄

Z
γ


(m+1)×N

.

In this way, the normalized scale factor of ith sample is located below the corresponding column
of Z.

Spoke directions are spherical data, so for the jth spoke direction the PNS input is uj(i) ∈ S2,
i = 1, ..., N . We obtain principal scores as a 2×N matrix ZSj = (zSjki )i=1,...,N

k=1,2 . The principal
nested spheres can be represented as a collection of two axes and a radius {(vj1, ρ

j
1),vj2}.
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Spoke lengths can be treated just like the scale factors. Let r̄j = (∏N
i=1 rj(i))

1
N be the geometric

mean of the spoke lengths and define r∗j (i) = log(rj(i)/r̄j) and R∗j = (r∗j (1), ..., r∗j (N))T . Now
we can scale the score variables ZSj and R∗j by multiplying with r̄j .

Data are Euclideanized and commensurate, and we can compose them in a Euclidean matrix.

Composite space

We compose the s-rep Euclideanized data from the previous Section 3.5 in a matrix as follows

Zcomp =



Zs

r̄1Z
S1

...
r̄nsZ

Sns

r̄1R
∗
1

...
r̄nsR

∗
ns



−→
−→
...
−→
−→
...
−→

(m+ 1)×N
2×N
...
2×N
1×N
...
1×N

(skeletal positions and scale factors)
(1st spoke direction)
...
(nsth spoke direction)
(1st spoke length)
...
(nsth spoke length)

, (3.7)

where columns of Zcomp belong to the vector space Ecomp ⊂ Rm+1+3ns .

Similar to PCA we can form the covarience matrix 1
N−1ZcompZ

T
comp = UΛUT where columns of

U are the principal components and the diagonal elements of Λ are the eigenvalues of Zcomp.
Again the eigenvectors and corresponding eigenvalues represent the direction and magnitude of
data variation in the space of Ecomp. Note that the mean of the Zcomp is at the origin of Ecomp
because the Zcomp variables are centered (Jung, 2011; Pizer et al., 2013; Jung, 2014).

3.5.1 Composite Principal Nested Great Sphere (CPNG)

In Section 3.3.1 we introduced PNG. By substituting PNS with PNG in CPNS, we have CPNG.
In practice, CPNG is a faster approach in comparison with CPNS. Because it avoids a sequential
testing procedure to check whether a small or great sphere is a good choice. Besides, CPNG
assures better permutation test correspondence because it guarantees correspondences between
PNS decompositions for each iteration (permutation is discussed in Section 4.3). However, we
show in Section 4.4, because of the cost of computation, applying permutation with CPNG for
s-reps with a large number of skeletal positions is not reasonable (e.g., for 10000 permutation
we need 8772 hours, see Table 4.2). Moreover, in this study, CPNS and CPNG have no
superiority over PGA to capture the s-rep data (see Figure 5.3). Thus, we use CPNG only for
the classification but not the permutation.
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3.5.2 s-rep classification based on CPNG

The objective of this study is the hypothesis testing. However, we briefly discuss s-rep classifica-
tion.

As we explained in Section 3.5, columns of the Zcomp matrix (3.7) belongs to the Euclidean
space Ecomp. In this regard, we consider Ecomp as a feature space and the columns of Zcomp as
the feature vectors. Each column of Zcomp is associated with a unique s-rep. If we have two or
more groups of s-reps, we can form a pooled Zcomp and label the columns of the pooled matrix
to indicate the group that each s-rep belongs to it. Now we can implement different methods of
classification (e.g., Bayesian classifier).

Note that in the classification problem, we deal with a High Dimensional Low Sample Size
(HDLSS) problem because the dimension of the feature space is higher than the number of
available samples. Therefore, applying common classification techniques like Support Vector
Machin (SVM) might be inappropriate as we may encounter data piling issue. (Marron et al.,
2007) introduced Distance Weighted Discrimination (DWD) to overcome the data piling obstacle
in SVM. (Hong, 2018) applied DWD and SVM to classify the s-rep data. Similarly in this work,
we use both methods to classify the s-reps.

Detail of the SVM and DWD algorithms is beyond the scope of this work. For more detail see
(Marron et al., 2007), (Pennec et al., 2019, ch.6), and (Theodoridis, 2015, ch.11).
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Hypothesis Testing

In this chapter, we discuss parametric and non-parametric hypothesis testing approaches to
compare the mean of two data sets. Next, we extend the non-parametric approach to find
locational differences between the GOPs of two groups of s-reps. We then discuss the global
test based on empirical p-values. Also, we introduce a parametric approach for s-rep hypothesis
testing under the normality assumption. Finally, we propose a method of hypothesis testing
independent from the alignment.

4.1 Overview of hypothesis testing

For the hypothesis testing, assume we have two independent random samples A1 = {x1, ...,xn1}
and A2 = {y1, ...,yn2} from distributions FA1 and FA2 respectively. Then the objective is to
test the null hypothesis H0 : FA1 = FA2 against alternative H1 : FA1 6= FA2 . In other words,
under the null hypothesis, A1 and A2 and the pooled sample A = A1 ∪A2 are all from the same
distribution FA1 . Moreover, under the null hypothesis, any subset A∗1 ⊂ A of size n1 from the
pooled sample A, and its complement A∗2 = A \A∗1, represent independent random samples from
distribution FA1 . Let T be a two-sample statistic that measure the distance between FA1 and
FA2 (e.g., T = ‖µFA1

− µFA2
‖ distance between sample means). Without loss of generality, we

can consider large values of test statistic T support the alternative FA1 6= FA2 (Rizzo, 2007,
page.219).

In this study, we focus on testing the mean of the populations. The general form of the hypothesis
test can be expressed as follows

H0 : µA1 = µA2 vs. H1 : µA1 6= µA2 .

41
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4.1.1 Parametric vs. non-parametric approach

The parametric approach is based on making assumptions about the distributions and relative
parameters. In contrast, the non-parametric approach does not make such assumptions. The
Student’s t-test (known as t-test) is an example of the parametric approach. Assume random
samples from normal distributions with equal variances x1, ..., xn1 ∼ N (µx, σ2) and y1, ..., yn2 ∼
N (µy, σ2). Then, a classical parametric approach to test the hypothesis H0 : µx = µy vs.
H1 : µx 6= µy is a two-sample t-test. The test statistic is

T = x̄− ȳ
Sp
√

1
n1

+ 1
n2

,

where x̄ = 1
n1

∑n1
i=1 xi and ȳ = 1

n2

∑n2
i=1 yi are the arithmetic means of the samples. The pooled

standard deviation is given by

Sp =
√

(n1 − 1)S2
x + (n2 − 1)S2

y

n1 + n2 − 2 ,

where S2
x = 1

n1−1
∑n1
i=1(xi − x̄)2 and S2

y = 1
n2−1

∑n2
i=1(yi − ȳ)2 are unbiased estimators of the

variances.

Under the null hypothesis H0, T follows the Student’s t-distribution T ∼ t(n1 + n2 − 2). If the
obtained T is unlikely we reject null hypothesis. For more detail see (de Winter and Cahusac,
2014, ch.6).

To reject the null hypothesis, we need a scale to measure how much T is unlikely or extreme.
For this purpose, we define p-value and level of significance.

4.1.2 p-value

As an informal definition, "a p-value is the probability under a specified statistical model that
a statistical summary of the data would be equal to or more extreme than its observed value"
(Wasserstein et al., 2016). Thus, by assuming α as a significance level of the test, we reject
the null hypothesis when p-value< α. As an example, the p-value for two-sample t-test can be
defined as p-value= P (|T | > Tobs|H0), where Tobs is the observed test statistic.

The significance level α is the probability of making a type I error. In other words, the probability
that we falsely reject a true null hypothesis (Kim and Bang, 2016). In most cases, it is acceptable
to consider α ∈ [0.01, 0.05]. Still, in multiple comparisons problem (see Section 4.2 ), to control
false positives, we need to define the significance level.
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4.2 Multiple comparisons problem

Assume testing n simultaneously null hypotheses that n0 of them are true. Let u be the number
of truly declared non-significant, v be the number of type I errors (i.e., false positive), r be
the total number of rejected null hypotheses, and t be the number of type II errors (i.e., false
negative). The situation can be summarized the in Table 4.1 (Benjamini and Hochberg, 1995).

Declared non-significant Declared significant Total
True null hypotheses u v n0

Non-true null hypotheses t s n− n0
Total n− r r n

Table 4.1: Multiple testing.
Number of errors committed by testing n null hypotheses.

Table is taken from (Benjamini and Hochberg, 1995).

4.2.1 FDR and FWER

Basically, family wise error rate (FWER) can be considered as "the probability of at least one type
I error", i.e., FWER = P (v ≥ 1), while false discovery rate (FDR) is "the expected proportion of
type I errors among all the rejected hypotheses", i.e.,

FDR = E(v/r; r > 0) = E(v/r|r > 0)P (r > 0),

(Candes, 2018).

A well-known method to control the probability of type I error is based on controlling FWER
proposed by (Bonferroni, 1936). Bonferroni’s method, tests individually each hypothesis at
level α/n and guaranties that P (v ≥ 1) ≤ α. This method is highly conservative because by
having a large number of hypotheses, significance level is α/n� 1, which increases the chance
of committing type II error (i.e., fail to reject the false null hypotheses).

(Benjamini and Hochberg, 1995) proposed a more moderate method than Bonferroni by controlling
FDR. Consider n tested null hypotheses H01, ...,H0n and their corresponding p-values p1, ..., pn.
Let p(1) ≤ p(2) ≤ ... ≤ p(n) be the ordered p-values. Assume the null hypothesis H0(i) corresponds
to p(i). For controlling FDR by δ (e.g., δ ≤ 1.5) let k be the largest i for which p(i) ≤ i

nδ, then
reject all H0(i), i = 1, ..., k.

The following theorem states the assumption of independence for implementing Benjamini-
Hochberg method.

Theorem 4.1. "For independent test statistics and for any configuration of false null hypotheses,
the above procedure (i.e., Benjamini-Hochberg) controls the FDR at δ" (Benjamini and Hochberg,
1995).



Chapter 4. Hypothesis Testing 44

In practice, it is common to use adjusted p-values. There are variety of techniques for the
adjustment. In a simple way, assume we have a set of p-values p1, ..., pn, and the corresponding
ordered p-values p(1), ..., p(n). By the Bonferroni’s method {np1, ..., npn}, and by the Benjamini-
Hochberg method {np(1)

1 ,
np(2)

2 , ...,
np(n)
n }, are the adjusted p-values respectively.

A drawback of controlling false positives (e.g., by FWER or FDR) is the increase of false negatives.
The consequences of false negatives can be higher than false positives (Kim and Bang, 2016).
Therefore in medical research judging the results based on the adjusted p-values is not always
reasonable.

4.3 Permutation test

A permutation test is a non-parametric approach with minimum assumptions, which is applicable
when we can randomly rearrange the data under the null hypothesis in any order. In general,
permutation tests and inferences for a sample space χ (i.e., set of all possible outcomes) are
architectured based on the following principle.

"Permutation Testing Principle If two experiments, taking values on the same sample space
χ and respectively with underlying distribution F1 and F2, both members of F , give the same data
set x, then the two inferences conditional on x and obtained using the same test statistic must
be the same, provided that the exchangeability of data with respect to groups is satisfied in the
null hypothesis. Consequently, if two experiments, with underlying distributions F1 and F2 give
respectively x1 and x2, and x1 6= x2, then the two conditional inferences may be different."(Pesarin,
2001, page.6)

4.3.1 Permutation distribution

Suppose we observed two independent random samples A1 = {x1, ...,xn1} and A2 = {y1, ...,yn2}
from the distributions FA1 and FA2 , respectively. Assume an ordered set A = {z1, ...,zn1+n2},
indexed by υ = {1, ..., n1, n1 + 1, ..., n1 + n2}. Let n = n1 + n2 then, zi = xi if 1 ≤ i ≤ n1, and
zi = yi−n1 if n1 + 1 ≤ i ≤ n. Thus, A is the pooled sample of A1 and A2. Let A∗ = (A∗1, A∗2) be
a partition of A, where A∗1 and A∗2 are of sizes n1 and n2 respectively. Then, A∗ corresponds to
a permutation π of the integer set υ. Let Aπ(υ) = A∗, i.e, Aπ(υ) is a partition of A corresponds
to π(υ). The number of possible partitions is equal to

( n
n1

)
(i.e., there are

( n
n1

)
possible ways

to partition the pooled sample A into two subsets of size n1 and n2). If T (A1, A2) = T (Aυ)
be the observed test statistic, then the permutation distribution of T ∗ is the distribution
of replicates {T ∗} = {T (Aπj(υ)), j = 1, ...,

( n
n1

)
} where πj(υ) is the jth permutation of υ. The
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cumulative distribution function of T ∗ is given by

FT ∗(t) = P (T ∗ ≤ t) = n1!n2!
n!

n∑
j=1

I(Tj ≤ t), (4.1)

where I(X) is the indicator function on the set X (i.e., I(x) = 1 if x ∈ X and I(x) = 0 if x /∈ X)
(Rizzo, 2007, ch.8).

The achieved significance level (ASL) is given by

P (T ∗ ≥ T ) = n1!n2!
n!

n∑
j=1

I(Tj ≥ T ),

where T = T (Aυ) is the observed test statistic (Rizzo, 2007, ch.8).

In practice for large numbers of permutations, we use the empirical p-value described in (Davison
et al., 1997, Ch.4) as the ASL given by

η =
1 +∑B

j=1 I(Tj ≥ T )
B + 1 , (4.2)

where B (usually B ≥ 10000) is the number of permutations, and ∀j, Tj = T (Aπj(v)) is the
permutation test statistic. Thus, we reject the null hypothesis at significance level α if η ≤ α
(Rizzo, 2007, ch.8).

4.4 Mean s-rep and s-rep test statistic

Before testing the mean differences of s-rep GOPs, we need to calculate the mean s-rep. This
can be done by different methods. In this section we explain two possible approaches.

4.4.1 Mean s-rep by CPNS

Assume a set of scaled and aligned s-reps s†1, ..., s
†
N . As discussed in Section 3.5, to build the

Zcomp matrix we apply PNS on skeletal positions and directions to calculate the residuals. Then
we find the geometric mean of the spokes’ lengths and scale factors. Finally we scaled the data
to become commensurate. In the same manner we can define mean s-rep (s̄†, γ̄) as follows

(s̄†, γ̄) = (γ̄, P̄ , ū1, ..., ūns , r̄1, ..., r̄ns), (4.3)

where γ̄ is the geometric mean of scale factors (i.e., mean of centroid sizes), P̄ is the PNS mean
of skeletal positions, ūi, i = 1, ..., ns is the PNS mean of ith spoke’s direction and r̄i, i = 1, ..., ns
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is the geometric mean of ith spoke’s length. In this sense, we defined the mean s-rep element
wise.

(Jung, 2011, 2014; Pizer et al., 2013) by applying PNS, defined transformations between the
s-rep space S and the Euclidean space Ecomp such that, H : S → Ecomp and H̃ : Ecomp → S,
where H̃ is the inverse transformation of H. The definitions of H and H̃ are given by

H((s†, γ)) =



γ̄hP (PC)
γ̄ log(γ/γ̄)
r̄1h1(u1)

...
r̄nshns(uns)
r̄1 log(r1/r̄1)

...
r̄ns log(rns/r̄ns)



∈ Ecomp, H̃(z) =



h̃P ((z1, ..., zm)T /γ̄)
γ̄ exp( zγγ̄ )
h̃1(zs1/r̄1)

...
h̃ns(zsns/r̄ns)
r̄1 exp( zr1

r̄1
)

...
r̄ns exp( zrnsr̄ns

)



∈ S,

where hP , h1, ..., hns are transformation functions to calculate PNS residuals, h̃P , h̃1, ..., h̃ns

are transformation functions to return spherical data based on the Euclidean data (e.g, PNS
residuals), and the rest of the variables are defined in Section 3.5.

Since the mean of the Zcomp is at the origin (i.e., Zcomp mean is a zero vector). The mean s-rep
can be defined as the inverse transformation of the zero vector H̃((0, ..., 0)T ) ∈ S. We can show,
this approach could be identical to computing mean s-rep element wise. Assume H and H̃ define
an isomorphism. We search for an s-rep ŝ† such that H((ŝ†, γ̂)) = (0, ..., 0)T By inserting the
s-rep (s̄†, γ̄) from (4.3) in H we have

H((s̄†, γ̄)) =



γ̄hP (P̄ )
γ̄ log(γ̄/γ̄)
r̄1h1(ū1)

...
r̄nshns(ūns)
r̄1 log(r̄1/r̄1)

...
r̄ns log(r̄ns/r̄ns)



=



γ̄hP (P̄ )
0

r̄1h1(ū1)
...

r̄nshns(ūns)
0
...
0



.
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Furthermore, the outcomes of hP , h1, ..., hns , are equal to zero because the principle scores
(residuals) of the PNS means are zero. Thus,

H((s̄†, γ̄)) = (0, ..., 0)T ⇒ H̃(H((s̄†, γ̄))) = H̃((0, ..., 0)T )⇒

(s̄†, γ̄) = H̃((0, ..., 0)T )⇒ (s̄†, γ̄) = (ŝ†, γ̂).

Therefore, the inverse transformation of the zero vector is (s̄†, γ̄).

The definition of transformation functions (i.e., h, h̃) is beyond the scope of this thesis. R
implementation of them can be found in shapes::PNSs2e and shapes::PNSe2s from the package
"shapes" (Dryden, 2018). For more detail see (Jung, 2011, 2014; Pizer et al., 2013; Jung et al.,
2012).

Note that as we discussed in Section 3.5.1 we prefer to find mean s-rep by CPNG rather than
CPNS and the procedure is the same.

4.4.2 Mean s-rep by GPA and PGA

(Dryden and Mardia, 2016, ch.6) calculated the mean of the landmark models by different
methods and compared the results. Based on both intrinsic and extrinsic distances the book
concluded the means are very similar unless we have outliers. Also, (Jung, 2011, ch.7) confirms
that GPA mean and PNG mean in most cases are virtually the same. On the other hand, by
increasing the number of spokes, the dimension of the pre-shape space S3ns−1 increases, and the
PNG has to fit higher dimensional sub-spheres. Therefore, by adding new spokes to the model,
the PNG performance becomes noticeably slower. Since as a part of our analysis, we want to
apply a permutation test on mean s-reps, it is reasonable to reduce cost of computation. In this
regard, to find mean skeletal PDM we substitute PNG mean with GPA mean (2.22). Also, for
spokes’ directions if they have concentrated distributions, we can use PGA mean instead of PNG
mean. Note that if we have concentrated spherical data then, Fréchet mean, PGA mean and the
projection of the center of gravity on the sphere (extrinsic mean (Mardia et al., 1982, ch.15))
are close. Again it is logical to choose the fastest approach (e.g., Fréchet mean for the spokes’
directions). Table 4.2 indicates the average computation time to calculate mean s-rep in R.
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Method to calculate mean s-rep Computation time
CPNG mean (Max iteration 300 default) ∼3158 sec.

CPNG mean (Max iteration 50) ∼793 sec.
GPA mean of skeletal positions + PNG mean of directions +

Geometric mean of spokes’ lengths and scale factors ∼60 sec.

GPA mean of skeletal positions + Fréchet mean of directions
+ Geometric mean of spokes’ lengths and scale factors ∼10 sec.

Table 4.2: Mean s-rep computation time.
Computation time to find mean of 108 s-reps (control group) with 114 spokes in R (CPU: Core i5).

Max iteration is associated with nls.lm function of "shapes" package in
shapes::pns::getSubSphere::sphereFit.

4.4.3 s-rep test statistic

To define test statistics, first we need to define s-rep distance element-wise. (Schulz et al., 2016)
introduced distance for scaled s-reps with respect to the s-rep GOPs as follows:

ds†
(
(s†1, γ1), (s†2, γ2)

)
=
(
d(log(γ1), log(γ2)),

d(p11,p21), ..., d(p1ns ,p2ns),

dg(u11,u21), ..., dg(u1ns ,u2ns),

d(log(r11), log(r21))), ..., d(log(r1ns), log(r2ns))
)T
,

(4.4)

where d is the Euclidean distance, and dg is the geodesic distance.

In Section 4.4, we discussed how to calculate mean s-rep of a population, and ds† (4.4) defines
the distance between two s-reps according to their GOPs’ differences. Based on ds† , the test
statistic T consists of K partial tests, where K is the number of GOPs (i.e., skeletal positions,
spokes’ directions, and spokes’ lengths) plus the scale factor.

Assume two sample groups of s-reps A1 = {s†A11, ..., s
†
A1n1
} and A2 = {s†A21, ..., s

†
A2n2
} of sizes n1

and n2. The test statistic can be defined as a vector by

T (A1, A2) = ds†
(
(s̄†A1

, γ̄A1), (s̄†A2
, γ̄A2)

)
,

where (s̄†A1
, γ̄A1) and (s̄†A2

, γ̄A2) are the observed sample mean of A1 and A2. Let Tk be the kth
element of T (A1, A2), k = 1, ...,K. Obviously, T (A1, A2) consists of K partial test statistics Tk,
associated with partial distances of ds† . Consequently we can design k partial tests for each
GOP to test the mean difference. Let s†(k) be the kth GOP of the s-rep s†. The partial test is
given by

H0k : s̄†A1
(k) = s̄†A2

(k) vs. H1k : s̄†A1
(k) 6= s̄†A2

(k)
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4.5 Non-parametric approach for s-reps

4.5.1 Partial test with FWER

Consider s-reps with K number of GOPs. For the partial test, we have the test statistics
T0 = T (A1, A2) of the observed samples and Ti = T (A1i, A2i), i = 1, ..., B from B permuted
samples. Ti = (Ti1, ..., TiK)T , ∀i ∈ {0, 1, ..., B}. (Schulz et al., 2016) proposed a non-parametric
method of testing based on GOPs differences and controlling by FWER. Since test statistic Ti
measures the GOP differences in different units, its elements are not commensurate. We map
the normalized GOP differences to a common coordinate system in a way that preserves the
multivariate dependence structure between GOPs. In this regard, at the first step, we map
all GOP differences to an approximately uniform distribution on the interval [0, 1] by using a
cumulative distribution function (CDF) of Tik as

Ck(Tik) = 1
B

B∑
j=1

I(Tjk ≤ Tik) , k = 1, ...,K,

where I is the indicator function (see Equation (4.1)). Now we can map Ck(Tik) to N (0, 1) and
represent GOP differences as standard normally distributed variables by

Uik = Φ−1(C̃k(Tik)), (4.5)

where Φ−1 is the inverse CDF of standard normal distribution, k = 1, ...,K, i = 1, ..., B, and

C̃k(Tik) = sc− 2
sc

Ck(Tik) + 1
sc
, sc = 10, 000.

Φ−1 is a monotonic function on (−∞,∞) and Φ−1(x) → ±∞ when x → 0, 1. we use C̃k(Tik)
as scaled form of Ck(Tik) to make sure the input value of Φ−1 is between zero and one. The
marginal distribution of Uik is standard normal Uik ∼ N (0, 1), k = 1, ...,K. With the same
procedure we map the observed GOP differences T0k to U0k.

We design an FWER method to control type I error for all GOPs simultaneously. Assume a
threshold δ for all Uik ∼ N (0, 1). The aim is to find GOPs such that

P (U01 ≤ δ, ..., U0K ≤ δ) = 1− α

2 , (4.6)

where α is the level of significance (e.g., α = 0.05).

Theorem 4.2. (Multivariate Central Limit Theorem) "Let U1, ...,UB be i.i.d random
vectors Ui = (Ui1, ..., UiK)T ∈ RK , i = 1, ..., B with mean vector 0 and covariance matrix Σ.



Chapter 4. Hypothesis Testing 50

Then
1√
B

B∑
i=1
Ui

w→ NK(0,Σ),

where NK is a K-dimensional multivariate normal distribution with mean 0, covariance Σ, and
w→ denote the weak convergence i.e., convergence in distribution" (Schulz et al., 2016).

From (4.5) we have B independent and identically distributed vectors Ui = (Ui1, ..., UiK)T ,
i = 1, ..., B. Therefore by theorem 4.2, Ui is approximately distributed as NK(0, Σ̂U ) where

Σ̂U = 1
B − 1U

TU, U = (U1, ...,UB)T . (4.7)

Each marginal distribution is Uik ∼ N (0, 1). With the level of significance α, similar to (4.6) we
have

P (Ui1 < δ, ..., UiK < δ) = 1− α

2 , i = 1, ..., B.

For the variable Ui ∼ NK(0, Σ̂U ) the probability P is a multiple integral from −∞ to δ. Thus
we can consider it as a function of δ like

G(δ) = P (Ui1 < δ, ..., UiK < δ).

G is a monotonically increasing function with a horizontal asymptote at 1. By assuming α ≤ 0.05
the threshold δ will be near 1, because G(δ) = 1 − α/2 and ∀i, Uik ∼ N (0, 1). Now let
δ1 = Φ−1(1− α

2 ) be the threshold for perfectly correlated Uik and δ2 = Φ−1
(
(1− α

2 )1/K
)
be the

threshold for independent Uik. Since δ � 0, we can assume 0 < δ1 ≤ δ ≤ δ2. (Schulz et al., 2016)
showed that G(δ) is concave downwards in the interval [δ1, δ2]. By a given δ, the value of G(δ)
can be estimated by N large enough number (e.g., 200,000) of random samples yj ∼ NK(0, Σ̂U ),
j = 1, ..., N as follows

Ĝ(δ) =
∑N
j=1 Iδ(yj)∑N
j=1 ϑ(yj)

, Iδ(yj) =

ϑ(yj) ϑ(yj) < δ,

0 otherwise,

where yj = (yj1, ..., yjK)T , and ϑ is the density function of NK(0, Σ̂U ). With the estimated
values Ĝ(δ1) and Ĝ(δ2), and by applying the iterative Regula Falsi method on the interval [δ1, δ2],
we can solve the equation G(δ) = 1 − α/2. At the end, we consider GOPs with |U0k| ≥ δ,
k = 1, ...,K as significant (Schulz et al., 2016).

4.5.2 Partial test with FDR

By the strong assumption of independence as we discussed in Section 4.2, we can implement
FWER or FDR methods on the empirical p-values to control type I error.
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Assume we have K independent partial tests. A classical approach to test partial differences
is based on calculating empirical p-values from Equation (4.2). Assume B is the number of
permutations. The empirical p-values for the partial tests are given by

ηk = 1 +∑B
i=1 I(Tik ≥ T0k)
B + 1 , k = 1, ...,K.

A set of K obtained empirical p-values are significant if {ηj}j∈J ≤ α where J ⊆ {1, ...,K}, and
α is the significance level (e.g., α = 0.05). Since we have multiple testing, we use FWER or FDR
(e.g., Benjamini-Hochberg method) to control false positives. Also, it would be easier to work
with adjusted p-values. As a result, with the Benjamini-Hochberg method if δ be the FDR rate,
we mark a GOP as statistically significant if the corresponding adjusted empirical p-value is less
than δ.

4.5.3 Global test for non-parametric approach

Generally, if we have n individual null hypotheses H01, ...,H0n, the global hypothesis test is to
test the global null H0 = ∩ni=1H0i. Thus, we reject global null if at least one of the individual
nulls is rejected (Candes, 2018). In s-rep we designed K partial tests (see Section 4.4.3) so we
have K null hypothesis and the globall null is ∩Kk=1H0k. With the assumption that partial tests
are marginally consistent, significant, and unbiased, a suitable combining function would produce
an unbiased test for the global test (Schulz et al., 2016).

For the permutation testing, (Pesarin, 2001, ch.6) discussed different combining functions to
define global test for the permutation.

Assume two groups of s-reps A1, A2 . Let A = A1 ∪A2 be the ordered pooled group, and A∗ be
a partition of A where the random samples are s-reps with K number of GOPs. As discussed
in Section 4.3.1 the vector of observed test statistic is T0 = TA where TA = T (A1, A2). Let
T ∗ = TA∗ be the vector of test statistic correspond to a partition A∗, and r = 1, ..., B be the rth
permutation. Then ∀x ∈ R and i = 1, ...,K,

L̂i(x|A) = 1/2 + ΣB
r=1I(T ∗ir ≥ x)

(B + 1) ,

gives an estimate of the marginal permutation significant level function Li(x|A) = Pr{T ∗i ≥ x|A}.
Therefore, the k observed p-values are estimated on A by η̂i = L̂i(Ti0|A) where Ti0 is the observed
test statistic of the ith GOP, i = 1, ...,K. Also, η∗ir = L̂i(T ∗ir|A) represent the empirical p-value
associated with the ith GOP in the rth permutation (Pesarin, 2001, ch.6); (SALMASO and
Brombin, 2013, ch.2).
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Now, assume ψ as a combining function, then T ′′0 = ψ(η̂1, ..., η̂K) and T ′′∗r = ψ(η∗1r, ..., η∗Kr)
represent the combined p-values of observed values and vector statistics respectively. Hence, the
p-value of combined test T ′′ can be estimated by

η̂′′ψ =
B∑
r=1

I(T ′′∗r ≥ T ′′0 )/B.

We reject the global null hypothesis H0 at α level if η̂′′ψ ≤ α (Pesarin, 2001, ch.6).

Combining functions

Assume i = 1, ...,K, where K is the number of s-rep GOPs plus scale factor. The combining
functions we use in this thesis (discussed in more detail in (Pesarin, 2001, ch.6)) are as follows:

• Fisher omnibus combining function: T ′′F = −2∑K
i=1log(ηi).

• Liptak combining function: T ′′L = ∑K
i=1Φ−1(1− ηi) where Φ is the standard normal CDF.

• Logistic Liptak combining function: T ′′L = ∑K
i=1 log((1− ηi)/ηi).

• Tippett combining function: T ′′T = max1≤i≤K(1− ηi).

• Mahalanobis quadratic combining function: T ′′Q = UT (R∗U )−1U where

UT = ( Φ−1(1− η1), ...,Φ−1(1− ηK))T , (4.8)

Φ−1 is the inverse of standard normal CDF, and R∗U is the correlation matrix of the
transformed permutation p-values. The transformation of the permuttion p-values η∗r =
(η∗1r, ..., η∗Kr)T , r = 1, ..., B is similar to (4.8). R∗U assumed to be positive definite and can
be estimated by R∗U ij = ∑B

r=1U
∗
jr ·U∗ir/B where U∗ij = Φ−1(1− η∗ij), i, j = 1, ...,K (Pesarin,

2001, ch.6).

Note that in practice we substitute ηi with η̂i.

Tables 4.3 and 4.4 from (Pesarin, 2001, page.146-150) summarize the non-parametric combination
method for the global test.

In addition, (Schulz, 2013) defined global test for s-rep based on Mahalanobis distance. Assume
M0 = UT

0 Σ̂−1
U U0 and Mi = UT

i Σ̂−1
U Ui where Σ̂−1

U , U0 and Ui come from (4.6) and (4.7). Then
the empirical global p-value is

η̂ = 1
B

B∑
i=1

I(Mi ≥M0)

we reject the global null if η̂ ≤ α. According to our observation, the result of this approach is
close to the result of the global test by the Mahalanobis quadratic combining function.
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Z Z∗1 . . . Z∗r . . . Z∗B
T10 T ∗11 . . . T ∗1r . . . T ∗1B
...

...
...

...
TK0 T ∗K1 . . . T ∗Kr . . . T ∗KB

↓
η̂1 η∗11 . . . η∗1r . . . η∗1B
...

...
...

...
η̂K η∗K1 . . . η∗Kr . . . η∗KB

↓
T ′′0 T ′′∗1 . . . T ′′∗r . . . T ′′∗B

Table 4.3: Non-parametric combination.

Z Z∗1 . . . Z∗r . . . Z∗B
T10 T ∗11 . . . T ∗1r . . . T ∗1B
...

...
...

...
TK0 T ∗K1 . . . T ∗Kr . . . T ∗KB

↓
η̂1 η∗11 . . . η∗1r . . . η∗1B
...

...
...

...
η̂K η∗K1 . . . η∗Kr . . . η∗KB

↓
U10 U∗11 . . . U∗1r . . . U∗1B
...

...
...

...
UK0 U∗K1 . . . U∗Kr . . . U∗KB

↓
T ′′Q0 T ′′∗Q1 . . . T ′′∗Qr . . . T ′′∗QB

Table 4.4: Quadratic combination.

4.6 Parametric approach

We can see from Table 4.2 the non-parametric hypothesis test for s-rep is hugely time-consuming.
In this regard, we attempt to introduce a parametric approach to test both partial and global
differences as a fast approach. Before going any further, let us discuss the Hotelling’s T2 test for
multivariate data.

4.6.1 Hotelling’s T2 test

Hotelling’s T2 test is the generalization of the t-test (discussed in Section 4.1.1) for multivariate
normal distributions. Suppose x1, ...,xn1 ∼ Nm(µ1,Σ) and y1, ...,yn2 ∼ Nm(µ2,Σ) are two
independent random samples, where Nm(µ,Σ) is an m-dimentsional multivariate distribution
with mean µ, and covariance matrix Σ. The aim is to test the mean difference as

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2.

Let x̄ = 1
n1

∑n1
i=1 xi, and ȳ = 1

n2

∑n2
i=1 yi be sample means, and

Σ̂x = 1
n1 − 1

n1∑
i=1

(xi − x̄)(xi − x̄)T , Σ̂y = 1
n2 − 1

n2∑
i=1

(yi − ȳ)(yi − ȳ)T ,

be sample covariance matrices. Assume n = n1 + n2 then, sample Mahalanobis distance is given
by

d2
M = (x̄− ȳ)T Σ̂−1

p (x̄− ȳ), (4.9)
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where Σ̂p = (n1Σ̂x + n2Σ̂y)/(n− 2) is an unbiased estimate of common covariance matrix. By
using test statistic

T = n1n2(n−m− 1)
n(n− 2)m d2

M ∼ F(m,n−m−1), (4.10)

we reject H0 for large value of T , where F(m,n−m−1) is the F distribution with m and (n−m− 1)
degrees of freedom (Mardia et al., 1982, ch.3), (Dryden and Mardia, 2016, page.188).

4.6.2 s-rep partial tests with parametric approach

A closer look at Equation (2.22) helps us to understand the skeletal PDM mean shape after the
alignment and inspires us to design a parametric hypothesis test for s-rep.

Assume after the alignment we have two sample groups of s-reps A1 = {s†A11, ..., s
†
A1n1
}, and

A2 = {s†A21, ..., s
†
A2n2
}. Let pA1

ji , and p
A2
jk , be the jth spoke positions of all s-reps in A1 and

A2 respectively, where i = 1, ..., n1, k = 1, ..., n2, and j = 1, ..., ns. Assume ∀j pA1
j1 , ...,p

A1
jn1
∼

N3(µA1
j ,Σj), and pA2

j1 , ...,p
A2
jn2
∼ N3(µA2

j ,Σj) where N3 is the 3-dimensional multivariate normal
distribution. Then ns partial hypothesis tests can be defined as

H0j : µA1
j = µA2

j vs. H1j : µA1
j 6= µA2

j ,

j = 1, ..., ns.

We assumed points have multivariate normal distributions. Thus we can implement Hotelling’s T2

test and calculate the p-values. Also, we have ns corresponding spoke directions. Similar to the
spoke positions let uA1

ji , and u
A2
jk , be the jth spoke directions of all s-reps in A1 and A2 respectively.

As we discussed PGA in Section 3.2, ∀j, we can project directions to their tangent spaces TµujS2

with their pooled means µuj , j = 1, ..., ns. The tangent spaces are two-dimensional plane. Assume
∀j, logµuj (u

A1
j1 ), ..., logµuj (u

A1
jn1

) ∼ N2(µA1
uj ,Σj), and logµuj (u

A2
j1 ), ..., logµuj (u

A2
jn2

) ∼ N2(µA2
uj ,Σj).

The partial tests become H0j : µA1
uj = µA2

uj vs. H1j : µA1
uj 6= µA2

uj , j = 1, ..., ns. Therefore, we
can apply Hotelling’s T2 test on the log-mapped data and calculate the p-values. ((Dryden
and Mardia, 2016, ch.9) used similar method to hypothesize mean shapes on the pre-shape
tangent space). Next, we use a t-test for log scale factors and log spoke lengths and compute the
associated p-values. As a result we have (3ns + 1) p-values, (i.e., ns for skeletal positions, ns for
directions, ns for spokes’ lengths and 1 for scale factor). Finally, we have a multiple comparisons
problem, and by the assumption of independence, we can use the Benjamini-Hochberg method
to control the false positives. Analogous to this method, (McClure et al., 2013) applied FDR in
the study of localized differences in caudate and hippocampal of schizophrenia based on m-rep.

Although this method considers strong assumptions of normality and independence, it could be
helpful as it is swift (i.e., computation time is less than a minute) and approximates the result
of the permutation test.
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4.6.3 Global test for the parametric approach

We can use the most popular methods for the global test: Fisher’s combination test and
Bonferroni’s method.

Bonferroni’s method

Bonferroni’s method is simple and straightforward but conservative. Assume n null hypotheses
H01, ...,H0n. Let p-value pi corresponds to H0i then, we reject global null H0 at α level if
mini pi ≤ α/n (Candes, 2018).

Fisher combination test

Suppose we have n independent p-values p1, ..., pn then we reject global null hypothesis for
the large value of the test statistics T = −2∑n

i=1 log(pi) ∼ χ2
2n, where χ2

2n is the Chi-square
distribution with 2n degrees of freedom. (Mosteller and Fisher, 1948; Candes, 2018).

4.6.4 SPHARM-PDM partial test with parametric approach

In SPHARM-PDM with k points, we have k partial tests. (Styner et al., 2006) used the Hotelling
T2 metric (i.e., Mahalanobis distance (4.9)) in the permutation. Then applied the Benjamini-
Hochberg method to control false positive. In practice, the results of the permutation and the
parametric approach (with normality assumption and Hotelling’s T2 test) are close. In this
regard, the parametric method might be preferred as a noticeably faster approach (compare
Figures 5.9 and A.1). Also, by having k p-values, we can apply the Bonferroni’s method and
Fisher combination test from Section 4.6.3 to test the global differences.

4.6.5 Partial test for triangle mesh normal vectors

From Section 2.1.4, we saw that SPHARM-PDM provides us with corresponding triangulated
surfaces and, consequently, corresponding unit normal vectors. The parametric hypothesis
approach to test the mean direction of the unit normal vectors could be the same as in the
hypothesis test for s-rep spokes’ directions in Section 4.6.2. Note that it is crucial to align meshes
before extracting the directional information of normal vectors.
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4.7 Hypothesis test independent from the alignment

Most of the hypothesis testing methods are dependent on alignment. We will see later (see
Figure 5.7) different methods of alignment cause different results. In this regard, we propose a
novel hypothesis test independent from the alignment by considering the intrinsic properties of
shapes.

4.7.1 Hypothesis test with distance

One intrinsic property of the shapes is the distance between GOPs. Distance is a general concept
and may vary depending on the space. For example, we can use Euclidean distance between pair
of points, Manhattan distance between pair of pixels, or geodesic distance between directions.
For more detail see (Christensen, 2010) which discussed different norms in vector spaces, and
(Pennec et al., 2019) which studied the shape statistics with geodesic distance.

The distance between shape GOPs (e.g., the distance between two landmarks of a shape) is an
intrinsic property independent from the shape location and orientation. We build a hypothesis
test to look at locational mean differences among shape populations. For further elaboration, let
us first define the distance matrix for a landmark model.

Definition 4.3. Assume a configuration matrix X = (x1, ...,xk)T , xi ∈ Rm. The distance
matrix DX for X is given by

DX =


d(x1,x1) . . . d(x1,xk)

... . . . ...
d(xk,x1) . . . d(xk,xk)

 , (4.11)

where d is a selected distance measure (e.g., Euclidean distance). Similar definition for the
Euclidean distance matrix can be found in (Dryden and Mardia, 2016, ch.15).

Obviously, by considering the geodesic distance, we can define a geodesic distance matrix. The
geodesic distance matrix can be used for the directions of shape representations containing
directional data (e.g., s-rep). On the other hand, one may use the effect of distance on the
GOPs. For instance, in Newton’s universal gravitation law, F = Gm1m2

r2 , objects impose more
gravitational force on each other when they are closer (Goldstein et al., 2013). The inverse
squared distance defines the force between identical masses where the force is a function of
distance. We will explain some possible ways to determine distances and forces briefly in Section
6.2.2. Study of the distance on shape requires extensive discussion and could be the subject of
future study.
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Whether we choose a distance matrix or a force matrix, the hypothesis test that we provide
has the same procedure. Therefore, for simplicity, we focus on the distance matrix with the
Euclidean distance. Note that for s-rep analysis, we substitute the Euclidean distance matrix
with the geodesic distance matrix to analyze spokes’ directions.

Any infinitesimal change in the position of a landmark is traceable from the distance matrix.
In other words, if we transform shape to another one, during the transformation, the elements
of the distance matrix start to change. The change is traceable, so we can find which points
have more effect on the transformation based on the differences between the initial distance
matrix and the last one. For example, in Figure 4.1 we can see, by transforming the shape 1 to
the shape 2 which are different in one landmark, the corresponding distance matrices become
different in the row and column associated with that landmark (i.e., here landmark number 1).

Figure 4.1: Distance matrices.
Left: Similar shapes with the difference in the first landmark. Right: Distance matrices highlight the difference of
distances associate to the first landmark. (Illustrated shapes are modified version of female gorilla skull sample

no.1, taken from (Dryden, 2018))

Assume two sets of k-landmark models A1 = {X1, ..., Xn1}, and A2 = {Y1, ..., Yn2}. Let
{DX1 , ..., DXn1

}A1 , {DY1 , ..., DYn2
}A2 be the corresponding sets of distance matrices. Then,

(DXi)rs and (DYj )rs represent the elements of two 3D-arrays of distances where i = 1, ..., n1 ,
j = 1, ..., n2, and r, s = 1, ..., k. The 3D-arrays contain all distances of A1 and A2 in a form of
arranged distance matrices. We design k2 partial tests based on the distance between points r
and s as follows

H0(rs) : µ
(
{(DXi)rs}

n1
i=1
)

= µ
(
{(DYj )rs}

n2
j=1
)
vs.H1(rs) : µ

(
{(DXi)rs}

n1
i=1
)
6= µ

(
{(DYj )rs}

n2
j=1
)
.

The calculation of the mean depend on the distance measure, and if we consider Euclidean
distance the geometric mean might be preferred.

If we assume the distances are normally distributed then we can apply t-test and assign prs as the
p-value associated with the distance between points r and s. (N.B. in the absence of normality
assumption, we can apply a permutation test). By applying the same hypothesis test for all
pairs of points, we form a square p-value matrix (Π)rs, r, s = 1, ..., k. Each row of Π corresponds
to the distances of a landmark to all the other landmarks. By having the significant distances at
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α level, we count the number of significant elements of Π in each row, and associate the number
as a rank to the corresponding point. By this method, we rank all the points of the model in a
way that the points with higher rank have more significant connections with other points among
the population. Note that by considering Euclidean distance, we have d(xi,xj) = d(xj ,xi), but
this reciprocal relation between xi and xj is not necessarily true in a case of using force or other
types of distances. For example, a point may impose greater forces to the other one depending on
the force definition so F (xi,xj) 6= F (xj ,xi). Also, in the directed graph, the distance definition
between two points is based on the graph directions and d(xi,xj) 6= d(xj ,xi) (e.g., the distance
that one travels from the home to a shopping center is not the same as shopping center to home
depending on the road he/she chooses).

In general Π has diagonal elements equal to 1 and contains k2 − k p-values. By considering
Euclidean distance, Π becomes symmetric with k2−k

2 p-values. Also, it is possible to adjust the
obtained p-values as described in Section 4.2.1 and based on the FDR rate count the significant
adjusted p-values. To elaborate more, the Euclidean distance Π is symmetric and can be shown
as Π = UT + I +U , where U is an upper triangular matrix with diagonal elements equal to zero,
and I is the identity matrix. By ignoring the zero elements we can adjust the remaining part of
U (i.e., unique p-values). The adjusted p-value matrix can be shown as Πadj = UTadj + I + Uadj ,
where Uadj is U after the adjustment. Then we count the number of adjusted p-values smaller
than the FDR rate in each row. Figure 4.2 illustrates the workflow.

Figure 4.2: Workflow of the hypothesis test independent from alignment.
Two groups of shapes Group A and Group B with 7 landmarks are identical except in one landmark. Test shows

one point with 6 significant distances and 6 point each one with one significant distance.
(The illustrated groups of shapes are modified version of female gorilla skulls taken from (Dryden, 2018)).

KDE on p-values

Counting the number of significant distances is not suitable, specifically in shape analysis. The
reason is after removing scale, we may need to reduce the level of significance extremely to
capture any differences. Another possible option is to rank the landmarks based on the smallest
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p-value obtained from the combined test (e.g., Fisher combination test from Section 4.6.3). Again
this method is not appropriate since a point with only one extremely significant p-value could
be ranked before the points with multiple small p-values but without an extreme one. In this
regard, we introduce a method based on kernel density estimation (KDE).

In feature space Rm we express the KDE of a sample x1, ...,xn ∈ Rm as

f̂(x) = 1
nhm

n∑
i=1
K
(
xi − x
h

)
,

where K : Rm → R is the kernel function and h is the smoothing parameter known as the
bandwidth (Terrell and Scott, 1992). By choosing K as a Gaussian probability distribution
function (pdf) then we have the KDE method known as Parzen approximation as

f̂(x) = 1
nhm

n∑
i=1

1
(2π)m/2

exp
(
−(x− xi)T (x− xi)

2h2

)
. (4.12)

(Theodoridis, 2015, ch.3).

Note that in (4.12), 0 < exp
(
− (x−xi)T (x−xi)

2h2
)
≤ 1 thus, the maximum possible value of f̂(x) is

1/(hm(2π)m/2).

Let p(i) = {pi1, ..., pik}, where pi1, ..., pik are the ith row elements of the p-value matrix Π,
i = 1, ..., k. Assume p(i) ∪ −p(i) (mirrored p-values) as a set of one-dimensional data points in
[−1, 1]. We calculate f̂i(0) by (4.12), where f̂i(0) is the KDE of p(i) ∪ −p(i) at zero, and the
maximum possible value of f̂i(0) is 1/(h

√
2π). Therefore, we have a set of estimated KDEs

f̂1(0), ..., f̂k(0), which based on their magnitudes we can rank the landmarks. For this purpose,
let κ = 1/(h

√
2π) + ε where ε � 1 and divide the interval [0, κ] into b ∈ N sub intervals

[0, κb ), ..., [ (b−1)κ
b , κ]. Then, the rank of the landmark li is j if f̂i(0) ∈ [ (j−1)κ

b , jκb ), j ∈ {1, ..., b}.

This test could be applied with or without removing scale. To remove scale, we can use GPA to
minimize the scale among the population. Alternatively, to be independent of the Procrustes
analysis we can scale shapes by their centroid size (see Equation (2.10)).

Note that it is possible to apply this method for the adjusted p-values but, since the nature
of this method is based on ranking the GOPs rather than classifying them as significant and
non-significant, we prefer to use raw p-values.

For the visualization, we can define a color map based on the rank of the landmarks (see Figure
4.4).

Pros and cons Hypothesis test with distance is a powerful approach for shapes as it includes
all possible distances between points. But, it is a weak test when the two groups are symmetric
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relative to each other. For example, beaks of pied avocet, and white-faced ibis (two types of
birds) are relatively symmetric as one turned upward and the other downward (see Figure 4.3).
Possibly, by removing scale, the hypothesis test with distance is incapable of detecting differences
even though they are apparent. To overcome this issue, we can add more landmarks to the
object to violate the symmetry. In bird example, it can be done by adding a landmark to the
bird’s neck.

Figure 4.3: Symmetric objects.
Illustration of 3-landmark models of a white-faced ibis at left and a pied avocet at right.

Another intrinsic shape property is the angles between the landmarks which is invariant under
the act of rotation, translation, and scale. In this regard, we propose a hypothesis testing method
to find the significant landmarks based on the analysis of the angles.

4.7.2 Hypothesis test with angle for planer shapes

For 2D-shapes by using angle instead of distance, a similar procedure as described in Section
4.7.1 can be applied. Obviously, a planer shape with k landmarks consists of

(k
3
)
triangles and

consequently s = 3
(k

3
)
counterclockwise angles θi ∈ [0, 2π], i = 1, ..., s (N.B., ∠abc 6= ∠cba).

Thus, we can assign a vector of angles θ = (θ1, ..., θs)T to a k-landmark model. Assume two
groups of k-landmark models A1 = {X1, ..., Xn1}, A2 = {Y1, ..., Yn2}. We can arrange the angles
of the groups in two matrices as follows:

ΘA1 =


(θX1)1 . . . (θX1)s

... . . . ...
(θXn1

)1 . . . (θXn1
)s

 , ΘA2 =


(θY1)1 . . . (θY1)s

... . . . ...
(θYn2

)1 . . . (θYn2
)s

 ,

where (θXi)j and (θYi′ )j represent the jth angle of the configuration matrices Xi and Yi′

respectively, i = 1, ..., n1, i′ = 1, ..., n2, and j = 1, ..., s.

We design s partial hypothesis tests based on the corresponding columns of ΘA1 and ΘA2 such
that,

H0(r) : µ
(
{(θXi)r}

n1
i=1

)
= µ

(
{(θYi′ )r}

n2
i′=1

)
vs. H1(r) : µ

(
{(θXi)r}

n1
i=1

)
6= µ

(
{(θYi′ )r}

n2
i′=1

)
,

where r = 1, ..., s.
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Note that the angles could be acute or obtuse, so to test the mean difference, we need to treat
angles as directional data. Similar to the parametric test for s-rep directions in Section 4.6.2,
we project data to the tangent line (one-dimensional space) of the unit circle with the pooled
Fréchet mean. Then we apply t-test with normality assumption on the log-mapped data to
obtain p-values. Thus, we have p = (p1, ..., ps)T as a vector of all p-values. Each landmark
associates with

(k−1
2
)
angles so we can arrange the elements of p in a p-value matrix Π with k

rows and
(k−1

2
)
columns where the rows are associated with the landmarks. Again we rank the

landmarks as we described in Section 4.7.1.

Pros and cons Similarity transformations (i.e., scale, rotation, and translation) do not affect
the angles, so the method is suitable for shape analysis rather than size-and-shape. A drawback
is by increasing the number of landmarks, the number of angles, and consequently, the cost of
computation increase dramatically.

Applying this method for SPHARM-PDM and s-rep skeletal needs generalization for 3D shapes,
and we avoid using it for the thesis data analysis.

4.7.3 Example

To detect locational differences, we apply the introduced tests with distance and angle on the
chimpanzee skull data (i.e., panf and panm) from (Dryden, 2018) (discussed before in Section
2.5.5). Then, we compare the result with the conventional method of alignment, as discussed
in Section 4.6. For the hypothesis test, we consider shapes with and without removing scale.
In Section 2.5.5, we mentioned that by removing scale, there are no significant differences
between the groups’ means. Furthermore, we can check the means are significantly different in
size-and-shape analysis. Although we expect to see no local differences in shapes after removing
the scale, the Hotelling’s T2 test (after controlling false positive by FDR) shows four significant
landmarks that this might be an unfavorable effect of alignment (see Figure 4.4(v)). KDE plots
in Figure 4.5 for the distance test clearly explain the situation. The plot shows that before
removing the scale, for most of the landmarks, we have a concentration of p-values near zero
but, by removing the scale, the distances become similar, and consequently, the height of the
KDEs decrease. This fact is reflected in Figure 4.4, where we use a color map to rank landmarks
based on the KDE magnitude at zero such that brighter colors indicate lower ranks. In the test
with distance, after removing the scale, the color of landmarks becomes brighter, which means
they become more similar. Besides, landmarks’ colors of test with angles are not so much dark,
which indicates similarity in angles.
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Figure 4.4: Test with alignment vs. Test with distance and angle.
(i) Overlaid size-and-shapes. (ii) Circles indicate significant landmarks of size-and-shape analysis. (iii) Result

based on ranking distances of size-and-shapes. (iv) Overlaid shapes. (v) Circles indicate significant landmarks of
shape analysis. (vi) Result based on ranking distances of shapes. (vii) Landmarks are ranked by color based on
test with angle. In (iii), (vi), and (vii) brighter and darker colors respectively indicate lower and higher KDE

value at zero. (Data are taken from (Dryden, 2018))

Figure 4.5: KDE on mirrored p-values.
KDE on mirrored p-values of test with distance for chimpanzee skulls with eight landmarks. On the left after

removing the scale and on the right without removing the scale.
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Data Analysis

In this chapter, we analyze data from the ParkWest study (http://www.parkvest.no) pro-
vided by The Norwegian Centre for Movement Disorders at the Stavanger University Hospital
(https://helse-stavanger.no). For the analysis, we apply different methods of hypothesis testing,
including permutation test, parametric test with normality assumption, and test by distance
matrices from Chapter 4. We compare the results for different alignment methods, as discussed
in Chapter 2. Also, we analyze the performance of CPNG, CPNS, and PNG, from Chapter 3.
In addition, we implement DWD and SVM to classify s-reps based on the CPNG data as we
explained in Section 3.5.2.

5.1 Data

ParkWest provided overall 667 MR images with the segmentation of the healthy controls and
patients with early PD. MR images were taken at baseline and after three and five years. The
baseline contains 108 images for CG and 182 for PD. Figure 5.1 shows one sample of the baseline
data. In previous studies on the same set of data, (Apostolova et al., 2012) applied radial distance
analysis and showed the hippocampal atrophy in PD, and (Beyer et al., 2013) investigated the
association between memory performance and hippocampal radial distance reduction. Although,
radial distance approach is more accurate than volumetric analysis, there are some disadvantages,
including the method of alignment and the centroid movement. In radial distance analysis,
we first align and scale shapes based on the brain size and orientation, which is not suitable
when our concentration is on a specific part of the brain. Then, radial distances are measured
slice-by-slice, i.e., for each slice, the distance between the boundary points to the centroid of
the slice is measured. The problem is, the centroid is not a good reference as its position is
highly dependent on the shape formation. Therefore we may report inflation (increase in radial
distances) as atrophy (decrease in radial distances) and vice versa. Also, parallel slicing of curvy

63

http://www.parkvest.no
https://helse-stavanger.no/
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shapes such as the hippocampus may mislead us to associate irrelevant object parts. In this
work, we study the structural contrast of the left hippocampus between early PD and normal
control with s-rep, SPHARM-PDM, and middle surface PDM. The same method of hypothesis
testing applies to other brain parts, which can be the subject of further study, see Section 6.2.1.

Figure 5.1: ParkWest data.
Left: Views of an MR image with the segmentations including Left and Right (LR) thalamus-proper, LR caudate, LR

putamen, LR pallidum, LR hippocampus, LR amygdala, LR accumbens-area and brain-Stem. Right: Left hippocampus

5.2 Software and model fitting

The used software in this work for the model fitting is a part of SlicerSalt (http://salt.slicer.org)
and 3DSlicer (https://www.slicer.org). As the object meshes were not smooth enough for the
model fitting, we used Meshmixer (http://www.meshmixer.com) to repair holes and sharp
protrusions (see Figure 5.2). We repaired meshes one by one manually, which needs time and
patience. Then, we used 3DSlicer shape analysis extension to generate SPHARM-PDMs and
suitable triangle meshes for the s-rep model fitting.

The s-rep model fitting consists of two steps: 1. Initialization, 2. Refinement. In this work, we
kept the default parameters for the initialization and chose the skeletal positions as a grid of
5 × 9. As a result, we obtained discrete s-reps with 114 spokes (i.e., 45 up spokes, 45 down
spokes, 24 crest spokes). The model fitting procedure is based on MCF (see Section 2.1.3), so
the positions of the up and down spokes coincide. Therefore, we have 69 points as the skeletal
positions (i.e., 45 up and down spokes, 24 crest spokes). For the refinement, we used default
parameters except for Image-Match-Weight=5, which cause spokes’ tips to become closer to the
boundary (see Figure 2.2).

In this study, we used R and Python programming languages. For s-reps, SlicerSalt provided *.vtp
files associated with Up, Down, and Crest spokes. We used Python to extract the information

http://salt.slicer.org/
https://www.slicer.org/
http://www.meshmixer.com/
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Figure 5.2: SPHARM-PDM smooth triangle mesh.
Left: Jagged mesh of a left hippocampus with holes and sharp protrusions. Right: Smooth SPHARM-PDM

triangle mesh.

from these files. The output is a *.csv file containing all the information of the fitted s-reps. By
importing the *.csv file as a data frame into the R studio environment, we could analyze the
s-rep data. We did a similar procedure for the SPHARM-PDMs. Two R packages we frequently
used in this work are "shapes" (Dryden, 2018) (for the analysis), and "rgl" (for the visualization).

Medical data of this work are confidential. However, some codes we used for the analysis
accompanied by some examples are available at
(https://www.dropbox.com/sh/bs18vmg44beb6bb/AADSnPq1mfEIBIOf8jrcuQJAa?dl=0).

5.3 Analysis

In some sense, the centroid size of SPHARM-PDM and s-rep boundary points (spokes’ tips),
reflect the volume of the object. Thus, let us test the mean difference of the centroid sizes
between CG and PD before we dive deep into the data analysis. t-test indicates no significant
differences between the means of the two groups (see Table 5.1). Furthermore, s-rep skeletal
alignment by GPA provides us with scale factors (i.e., GPA scale factors relevant to the mean
shape of the pooled group). The p-value of the t-test on s-rep skeletal scale factor is 0.15, which
supports the test on the centroid size.

Note that by increasing the number of points, the centroid size increases. Therefore, the centroid
sizes of SPHARM-PDMs are greater than the centroid sizes of the s-reps spokes’ tips.

5.3.1 Global tests

The global test for the parametric approach on SPHARM-PDM, Middle Surface PDM, and s-rep
even with Bonferroni as a conservative method indicates a significant difference between PD

https://www.dropbox.com/sh/bs18vmg44beb6bb/AADSnPq1mfEIBIOf8jrcuQJAa?dl=0
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Table 5.1: T-test on centroid size.

and CG. The reason is the existence of at least one minimal p-value. In the non-parametric
approach, tests with Fisher, Liptak, Logistic Liptak, and Tippet as combining functions indicate
a significant difference but not with the Mahalanobis quadratic form.

Table 5.2: Global tests.

5.3.2 s-rep analysis

In Section 4.4, we discussed different methods to calculate mean s-rep. Figure 5.3 compares
CPNG and CPNS performance with CG data and shows there is no advantage in using PNS
or PNG instead of PGA, to calculate mean s-rep. In fact, since the data is concentrated, PNS,
PNG, PGA, and even PCA capture the same amount of data. Besides, the good performance of
PCA in comparison to PNS and PNG underline the fact that the spherical data (i.e., skeletal
positions on hypersphere and spokes’ directions on S2) are very concentrated and possibly
normally distributed. The two identical plots (denoted by a double headed arrow) in Figure 5.3
show that the sequential test within PNS always chooses great spheres for the fitting, so the
PNS on the skeletal PDMs is identical to PNG.

According to the fact that PNS and PNG are computationally expensive and for the current
data their performance is not better than PGA, it is logical to calculate mean s-rep by using
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GPA and Fréchet means (i.e., GPA mean for skeletal positions + Fréchet mean for directions +
Geometric mean for spokes length) in the permutation test.

Figure 5.3: Eigenmode contributions of CG s-reps.
Left column corresponds to the eigenmode contributions of CPNS and CPNG. Middle and right columns are

associated with Eigenmode contributions of PNS, PNG, PGA, PCA on skeletal positions and spokes’ directions.
Double-headed arrow indicates identical plots.

Hypothesis tests with alignment

As we mentioned, there is no significant difference between the s-reps’ scale factors, and the
results of s-rep shape analysis and size-and-shape analysis are similar. To prevent repetition,
we only consider shape analysis. In Section 2.5.3 we discussed s-rep alignment by GPA. Here
we remove scale and align the s-reps based on spokes’ tips and tails. Figure 5.4 illustrate the
result of parametric and non-parametric approaches where the significant GOPs are depicted in
red. To control false positives we use Benjamini-Hochberg method (Section 4.2.1, FDR=0.05)
and Schulz correction method (Section 4.5.1) for the non-parametric approach, and for the
parametric approach we use Benjamini-Hochberg method (FDR=0.05).
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The results of parametric and non-parametric approaches are comparable. Still, since we
use different metrics for the tests (e.g., geodesic distance in non-parametric approach and
Mahalanobis distance in parametric approach for the spokes’ directions) nonconformity of the
results is predictable.

Although we observe plenty of significant GOPs, the similarity of mean s-reps (see Figure
5.5) brings up the discussion about the reason. Seemingly, we have concentrated data both
in positions and directions. Concentrated data have small variances, usually, in multivariate
analysis, minor variations increase the test statistic and consequently decrease the p-value, so
we may encounter significant p-values even if the means are very close (see Equations (4.9) and
(4.10)). In this regard, considering multivariate confidence interval for future study could be
helpful (definition of the confidence interval for multivariate data is not a straightforward task,
some attempts can be found in (Šidák, 1967; Korpela et al., 2017)).

Effect of weighted alignment

The Procrustes distance between mean skeletal of PD and CG is 0.013, which indicates that
the skeletal mean shapes are very close, and weighted alignment (see Section 2.5.6) might be
unnecessary. But to study the effect of weighted alignment (see Section 2.5.5), we assume a
small threshold δ = 0.006 and extract unsuspicious points with the elimination algorithm 2.2.

In Figure 5.6(b) blue indicates unsuspicious points. Weighted alignment causes more stability
and less variation in unsuspicious points, which is evident in the left side of Figure 5.6(d). Figure
5.7 compares the result of the Hotelling T2 test on the Procrustes and weighted Procrustes
alignment. Note that in this part, we align skeletal positions without considering spokes’ tips, so
the result of the Procrustes alignment is slightly different from the result in Figure 5.4.

Test by distance matrices

We apply Euclidean distance matrices for the skeletal positions and geodesic distance matrices
for the spokes’ directions. To compare the result with the test results from the SPHARM-PDM,
we consider skeletal positions with and without removing scale (see Figure 5.8). By removing
scale, the differences become more obvious. Test for the spokes’ lengths in Section 5.3.2 was
independent of the alignment, so we exclude spokes’ lengths in this part.

Note that scaling does not affect spokes’ directions.
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Figure 5.4: s-rep results.
Red color indicates significant GOPs. FDR=0.05 for Benjamini–Hochberg correction. Method of alignment is

GPA on spokes’ tips and tails

5.3.3 SPHARM-PDM analysis

Hypothesis test with alignment

Each SPHARM-PDM of the left hippocampus includes 1002 points. Here we implement the
parametric hypothesis test (with the multivariate normality assumption) and analyze SPHARM-
PDMs’ shapes and size-and-shapes based on GPA alignment. Bear in mind that, without
correction, we have a considerable amount of significant points on the bottom side of the
hippocampi. To highlight the more significant area, we apply the Benjamini-Hochberg correction
as described in Section 4.2.1 and decrease FDR to 0.01 (see Figure 5.9). Seemingly, by removing
scale, the differences become more observable. Figure 5.10 reflects the fact that sorted p-values
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Figure 5.5: s-rep CPNG means.
Left: Mean s-rep of CG and PD. Right: Overlaid mean s-reps. Red and blue associate with PD and CG

respectively.

Figure 5.6: Effect of weighted alignment on s-rep skeletal.
(a) Ranked skeletal positions based on their level of suspiciousness. (b) Classified suspicious and unsuspicious
points with threshold δ = 0.006. (c) Aligned CG by GPA. (d) Aligned CG by weighted GPA where data variation

in unsuspicious points (left side) is less that suspicious points (right side).

and consequently adjusted p-values from the size-and-shape analysis have relatively higher values
compared with shape analysis.

Generalized Shapiro-Wilk test (Villasenor Alva and Estrada, 2009) for multivariate normality on
aligned SPHARM-PDMs indicates about 20% and 45% of the points in CG, and PD respectively
do not have multivariate normal distributions, so implementing non-parametric hypothesis test
as described in (Styner et al., 2006) might be necessary. However, in practice, the outcome
of permutation is similar to the parametric approach. The result of the permutation test on
SPHARM-PDMs can be found in Appendix A.1.1.
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Figure 5.7: Significant positions by GPA alignment vs. weighted Procrustes alignment.
Red indicate significant points.

Test by distance matrices

The outcome of the hypothesis test by distance matrices from Section 4.7.1 is similar to the test
with alignment. Again, after removing scale, groups dissimilarity turn out to be more explicit.
In Figure 5.11, darker colors indicate high-rank points. Obviously, there is a close relationship
between the result of SPHARM-PDM and skeletal positions since both of them point to the
same hippocampal area as a significant region (see Figures 5.8 and 5.11).

5.3.4 Further analysis

For further analysis and results, including the non-parametric approach for SPHARM-PDM,
analysis of the boundary normal vectors, analysis of Middle Surface PDM, and analysis of
SPHARM-PDM plus skeletal PDM, see Appendix A.1.

5.3.5 s-rep classification

For the s-rep classification based on CPNG, the dimension of feature space is higher than the
sample size (for s-rep with 114 spokes the dimension of the feature space is 549 i.e., 69× 3− 1
and 114 × 2 for PNG residuals of positions and directions respectively, 114 for lengths and 1
for scale factor). Therefore, we encounter an HDLSS problem. For the classification, we use
DWD and SVM, as discussed in Section 3.5.2. As we expected, we have data piling problem in
SVM, thus DWD might be a better choice (see Figure 5.12(b) and 5.12(c)). By using half of the
samples as training data, the result of classification is not promising (see Table 5.3).
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Figure 5.8: s-rep hypothesis test independent from alignment.
Color map ranks GOPs from 1 to 10 based on the KDEs’ magnitude. Top left: Ranked skeletal positions after
removing scale. Top right: Ranked skeletal positions without removing scale. Bottom: Ranked spokes’ directions.

Note that the CPNG data subordinate the alignment. With proper alignment, the data may
become separated in one or more features, which can improve the classification. To elaborate
more, in the cat and dog example (see Figure 2.6), by the weighted alignment we can easily
distinguish a muzzle landmark belongs to a cat or a dog, leading to better classification. But
by GPA alignment, the landmarks become very close, and it would be challenging to classify
dogs and cats (based on the muzzle or any other landmarks). In fact, GPA hides the groups’
differences. We have the same situation in CPNG, where GPA alignment makes the spokes’
information of different groups similar.

Table 5.3: DWD vs. SVM.

5.3.6 PD with dementia

So far, we detected GOPs’ mean differences between PD and CG, but the dissimilarity may
come from other factors such as dementia rather than PD. At the baseline, we have no PD
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Figure 5.9: Significance plot of SPHARM-PDMs by Procrustes alignment.
Visualization of Hotelling’s T2 test on SPHARM-PDMs of the left hippocampi from two angles. The left column
indicates significant points (α = 0.05) in red without correction. The right column indicates significant points
after correction (FDR=0.01). Top and bottom rows are associated with shape analysis and size-and-shape

analysis, respectively.

Figure 5.10: Ordered p-values and adjusted p-values of SPHARM-PDM.
p-values in red, adjusted p-values by the Benjamini-Hochberg and Bonferroni methods in blue and orange

respectively.

with dementia (PDD), but the longitudinal study shows 11 and 44 cases expanded dementia
before and after year 3, respectively. The t-test on SPHARM-PDM centroid size of CG and
PDD before year 3 shows a significant difference (p-value=0.008 and 95% CI=(4.55, 26.74)).
Thus, it is possible that the deformation between PD and CG caused by dementia. On the other
hand, PD without dementia has significantly larger centroid size than CG (p-value=0.01 and
95% CI=(1.91, 15.05)). Generally, as we mentioned in Sections 1.1, the size of the hippocampus
can be affected by different parameters (e.g., aging) and this needs to be checked in further
studies. The overlaid mean SPHARM-PDM of CG and PDD before year 3 in Figure 5.13(a)
shows the difference in their size-and-shape means. Box plots in Figure 5.13(b) illustrate the
centroid size distributions in different groups.
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Figure 5.11: SPHARM-PDM hypothesis test independent from alignment.
Top row associates with test after removing scale and bottom row corresponds to test with preserving scale.

(KDE bandwidth h = 0.05 and the maximum possible value δ = 7.97)

Figure 5.12: s-rep classification.
(a) Paired plot of PCA on CPNG data of CG and PD. (b) KDE plot for the projection of classified data on DWD

direction. (c) KDE plot for the projection of classified data on SVM direction.
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Figure 5.13: PD with dementia.
(a) Overlaid SPHARM-PDM mean shapes from size-and-shape analysis, mean PDD in red mesh and mean CG in

blue wired mesh. (b) SPHARM-PDM centroid size box plots of CG, PD and PDD.



Chapter 6

Discussion and Future Work

6.1 Discussion

We applied two sensitive shape representations, s-rep, and SPHARM-PDM to study the mor-
phological difference of the left hippocampus between PD and CG. For the hypothesis test,
finding mean s-rep was necessary. Therefore, we discussed dimensionality reduction methods for
spherical data such as PNG and its expansion CPNG to obtain mean s-rep. Besides, we proposed
NLPGA on the rotating tangent space of S2 to analyze spherical data. Although we ignored
using NLPGA in this work, we believe it can be advantageous for the study of directional data
because of its simplicity.

Each s-rep of this study had 114 spokes and 69 skeletal positions, so the pre-shape space of
skeletal positions was a 68-dimensional hypersphere. Thus, the implementation of PNS to find
the mean shape was computationally costly. Also, in the s-reps, spherical GOPs had concentrated
distributions, so the CPNG had no superiority over PGA. To boost the speed of the permutation
test, we defined mean s-rep as a combination of GPA mean for skeletal positions, Fréchet mean
for spokes’ directions, and the geometric mean for spokes’ lengths. Besides, we introduced a
parametric approach based on multivariate Hotelling’s T2 test (with normality assumption)
and controlled the false positive with the Benjamini-Hochberg method. The analysis of GOPs
exposed statistically global and partial significant differences.

Both the parametric and non-parametric approaches are highly dependent on the method of
alignment. Hence, we explained weighted alignment and introduced the elimination algorithm,
which classifies points in two suspicious and unsuspicious groups. Then we defined an appropriate
covariance matrix for the weighted Procrustes alignment based on unsuspicious points. The
skeletal means of two groups were extremely similar, and applying the elimination algorithm
was unnecessary. Nevertheless, to study the effect of weighted alignment, we considered a small
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threshold δ = 0.006 to extract a set of unsuspicious points. By the weighted alignment, we
stabilized unsuspicious points and displayed the effect of this act on the result.

We discussed a hypothesis testing method independent from the alignment. This method is
constructed on the distance matrices and is applicable for PDMs and shapes with directional
data like s-rep. We mentioned how to use KDE on the mirrored p-values to rank the GOPs and
assign a color map for the visualization. Also, we explained a similar test with angles for planner
shapes.

The application of different tests without controlling false positive indicates a similar significant
area of the hippocampi. Nonetheless, by correcting false positives, depending on the method we
choose for the correction (e.g., FDR), differences in size-and-shapes may disappear. Likewise,
the analysis of shape and size-and-shape illuminates the fact that removing scale exposes more
differences.

Further analysis of normal vectors and size of the corresponding SPHARM-PDM triangulated
surfaces after correction showed no significant differences even with a large FDR (e.g., FDR=0.15).
Besides, the analysis outcome of the Middle Surface PDM supports the obtained results of the
analysis of s-rep skeletal positions.

Implementation of DWD and SVM took place on the CPNG data to classify s-reps with half
of the samples as the training set. Although DWD had a better performance, result of the
classification (on the test set) was not promising. On average, the classification accuracy we
reached was less than 60%.

Finally, despite the dissimilarity between PD and CG, we briefly discussed the differences might
come from dementia rather than PD, but further investigation is needed.

6.2 Future work

6.2.1 Analysis of other brain parts and their relationship

In this thesis, we focused on the left hippocampus and applied some advanced shape represen-
tations such as s-rep and SPHARM-PDM for the analysis. The same procedure is considered
for other brain structures, including Caudate, Thalamus, Putamen, Amygdala, and Pallidum.
Figure 6.1 shows the fitted s-rep for four particular brain sections.

On the other hand, we can study the multi-object shape model, which considers multiple objects
and their relationship instead of focusing on one specific brain segment.
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Figure 6.1: Samples of s-rep for different brain parts.
Left to right: Fitted s-rep samples of Left-Amygdala, Left-Caudate, Left-Putamen, and Left-Thalamus.

6.2.2 Distance and Force

Different shape representations provide us with a variety of intrinsic shape properties, which
could be a matter of future research. For instance, in Section 4.7.1 for landmark modeling, we
discussed distance and force between landmarks as intrinsic properties. The distance is a general
concept and can be defined in different ways. One possible way to measure the distance, as
explained in (Gattone et al., 2017), is to add uncertainty level to the landmarks and consider
each landmark as a multivariate density function (6.1). Thus, to calculate the distance between
two landmarks in a shape we can use Fisher information distance (Fisher–Rao metric) (Costa
et al., 2015).

Another intrinsic property could be the force. In reality, the force decreases when we move
away from the source. This concept is expressible by statistical distributions, for example in
multivariate normal distribution the probability density function

p(x;µ,Σ) = 1
(2π)m/2|Σ|1/2

exp(−1
2(x− µ)TΣ−1(x− µ)), (6.1)

decreases exponentially when we move away from the mean (more straight forward approach is
to replace Σ with the identity matrix I). In this sense, we consider each landmark as a mass or
a center of the multivariate normal distribution. Thus, in the feature space, force could be the
value of the (6.1), and we can build force matrix (F )ij , i, j = 1, ..., k the same way we introduced
the distance matrix at (4.11). Each element of F (i.e., F (xi,xj)) represent the force that xj
imposes on xi.

It is also possible to think of the overall forces that all the landmarks impose on a specific one.
Therefore, we can assign a KDE value (4.12) to each landmark. Assume n landmarks x1, ...,xn

as data points then, the overall force in coordinate x can be estimated by (4.12). Figure 6.2
illustrates the KDE value of the feature space with the projection of skeletal points to xy plane
as data points.
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Figure 6.2: KDE.
Left: The KDE value of the feature space with the projected skeletal points to the xy plane as data points. Right:

Contour map of the left figure

6.2.3 Classification improvement

In the s-rep analysis, we usually encounter HDLSS. To deal with the data and classify s-reps
(Hong, 2018) applied DWD as a classifier and tried to improve outcomes based on the Bayes’
theorem. Another strategy could be dimensionality reduction. Dimensionality reduction can
be made by the classical feature selection method or PCA 3.1. Since we introduced the fast
approach of hypothesis testing, in binomial classification, it is reasonable to select features that
are significantly different between the two groups. Seemingly, fisher information distance could
help us to choose features with adequate separation. This strategy can improve the classification
as we avoid the curse of dimensionality.

6.2.4 Alignment

With the alignment, locational shape differences is a relative concept, and it is necessary to
develop methods independent from the alignment or improve the methods of alignment to expose
real differences.

The elimination algorithm we introduced is computationally expensive because, in each iteration,
the algorithm needs to calculate the mean shape, so the implementation for shapes with a large
number of points such as SPHARM-PDM is not rational. Further, the alignment (to find mean
shape) occurs within the algorithm, which can lead to inappropriate point selection. Therefore,
developing suitable alignment methods applicable to the hypothesis testing merit further study.
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Appendix A

Appendix

A.1 Analysis

A.1.1 Non-parametric result for SPHARM-PDM

Result of the 10000 permutation with Hotelling T2 metric on size-and-shape of SPHARM-PDMs.
Figure A.1 visualizes the results.

Figure A.1: Significance plot of SPHARM-PDMs by permutation.
Visualization of permutation test on SPHARM-PDMs of the left hippocampi from two angles. Red color indicates
significant points. Left column shows significant points without controlling false positive (α = 0.05). Middle
column shows significant points after correction with Benjamini-Hochberg method FDR=0.05. Right column

indicates significant points after correction with Benjamini-Hochberg method FDR=0.01.

A.1.2 Analysis of boundary normal vectors

We introduced SPHARM-PDM triangulated surfaces, their size and normal direction in Section
2.1.4. Thus, we hypothesize the mean direction of normal vectors of CG and PD hippocampus
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meshes by Hotelling-T2 on tangent space same as the parametric approach for s-rep spokes’
directions in Section 4.6.2 and then we test the triangles’ sizes by T-test. Although we observe a
considerable amount of significant directions and sizes (see Figure A.2), by Benjamini–Hochberg
controlling FDR= 0.15 literally there is no difference between two groups neither in directions
nor in sizes.

Figure A.2: Triangle mesh analysis.
(a) Significant unit normal vectors in red accompanied by their brightened corresponding triangles (b) Significant
normal vectors in red after correction FDR=0.15 (c) Significant triangles in size depicted in red (d) No significant

triangles in size after correction FDR=0.15

A.1.3 Middle Surface PDM analysis

Analysis of Middle Surface PDMs supports the result of s-rep skeletal analysis as we see the
same significant area (see Figure A.3).

Figure A.3: Middle Surface PDM
Yellow indicates significant points.
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A.1.4 Analysis of SPHARM-PDM plus skeletal PDM

In Section 2.1.5 we introduced a PDM as a combination of SPHARM-PDM and skeletal PDM.
Outcome of the analysis on this PDM is very similar to the analysis outcome of SPHARM-
PDM and s-rep skeletal individually. However, it was tempting to align meshes’ points (i.e.
SPHARM-PDMs) based on the skeletal position with the weighted alignment and study the
outcome. Seemingly this attempt add more variation to the SPHARM-PDMs and as a result we
see more significant points on the mesh. Figure A.4 illustrate the results.

Figure A.4: Significance plot of SPHARM-PDMs by permutation
Red indicates SPHARM-PDM significant points and yellow indicates skeletal PDM

A.2 Example

A.2.1 Helmert submatrix

E.g., for k = 4 landmarks the Helmert submatrix would be,

H =


−1√

2
1√
2 0 0

−1√
6

−1√
6

2√
6 0

−1√
12

−1√
12

−1√
12

3√
12

 .

(Dryden and Mardia, 2016, ch.2)
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