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Introduction

For any n ≥ 1, the holomorphy or complex differentiability of a function in
the domain of Cn implies its analyticity. This fact was discovered by Cauchy
in the year 1830 − 1840 and it helps us to explain the nice properties of
holomorphic functions. Now, when we come towards the integral represen-
tation of holomorphic functions of several variables, it becomes complicated
as compare to the situation of one variable and we will see that the simple
integral formulas in terms of boundary values will exist only for Cn domains
that are the product of C1 domains. As the result, the function theory for a
ball in Cn is different from the function theory for a polydisc.

We will see that there are many similarities between complex analysis in
several variables and one variable but there are also some important differ-
ences between holomorphic functions of a single variable and holomorphic
functions of n variables, for n ≥ 2.

For example in a single variable, for every domain Ω ⊂ C there will be
a holomorphic function in Ω which will be holomorphic in no larger domain.
But the situation will be different in case of several variables. If there is a
bounded domain Ω ⊂ Cn with connected boundary ∂Ω where n ≥ 2 then
every function holomorphic on a neighborhood of ∂Ω can be extended to a
function holomorphic on Ω. This result was introduced by Friedrich Hartogs1

and it is known as Hartogs’ phenomenon.

Another new and unexpected property of functions of several complex
variables is described by Hartogs in his theorem on separate analyticity, which
states that for a function of several complex variables, the separate analyticity
of a function in each of the variables implies its joint analyticity.

1Friedrich Mortiz ”Fritz” Hartogs (20 May 1874-18 August 1943) was a German math-
ematician. His basic work was in several complex variables.
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The main object of the thesis is to obtain the two results of Hartogs,
Hartogs phenomenon and Hartogs Theorem on separate analyticity which
have been described above.

The thesis is based on reading, understanding, and presenting the corre-
sponding results from [1]-[10].

The thesis comprises four Chapters. In Ch. 1, first, we define complex
numbers and holomorphic functions in a single complex variable, then we
show that holomorphic functions satisfy Cauchy- Riemann equations. We
also describe the Cauchy integral representation of holomorphic functions
and it’s consequences. We show that holomorphic functions have power series
representation and they are also called analytic functions. Then we define
inhomogeneous Cauchy Riemann equations for a single complex variable. The
Cauchy Green formula for a function of class C1 is proved and then it is
shown that Cauchy Green transform provides the solution of inhomogeneous
Cauchy-Riemann equation for the case of a single complex variable. At
the end of the chapter, a short introduction on Power series, Taylor series,
Maclaurin series, and Laurent series is given, and it is proved that a function
analytic in an annulus domain can be represented by Laurent series.

In Ch. 2, there are two sections. In the first section, we define harmonic
functions in Rm and give some simple examples of harmonic functions. We
describe the relation between harmonic functions and analytic functions in
a single complex variable. Then we give some basic properties of harmonic
functions and prove that harmonic functions satisfy the mean value prop-
erty. Likewise, in the second section, we define subharmonic functions which
are a class of harmonic functions. Then we give examples of subharmonic
functions. In the end, Hartogs’ lemma for subharmonic functions is proved
which will have an application in the proof of Hartogs’ theorem on separate
analyticity.

In Ch. 3, there are six sections. In the first section, we define the Cn

space and different types of domains in that space. In section 2, we define
holomorphic functions in Cn in three different ways. Then in the third sec-
tion, we show that a continuous and separately holomorphic function f in
a polydisc can be represented by Cauchy integral formula and a multiple
power series, which means that holomorphic functions are analytic. Then
by Abel’s lemma, we show that analytic functions are holomorphic and we
show that a separately holomorphic and continuous function in a polydisc
is jointly holomorphic in the disc. At the end of this section, in uniqueness
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theorem, we prove that if a function f is holomorphic in a domain D ⊂ Cn

and it vanishes at some point in a nonempty subset of D then it will be 0 all
over the D. In the fourth section, we prove the Schwarz lemma, and then we
show that a separately holomorphic and bounded function in a polydisc will
be continuous at each point of the disc with respect to all the variables. And
then we see that a function which is continuous with respect to each variable
separately in a polydisc D will be bounded in a smaller polydisc W ⊂ D. We
also see that if a separately holomorphic function in a polydisc D is jointly
holomorphic in a smaller polydisc W ⊂ D then it will be jointly holomor-
phic in the disc D. Then finally it is proved that a separately holomorphic
function in a domain D is jointly holomorphic in D which is the fundamental
theorem of Hartogs or Hartogs’ theorem on separate analyticity. In section
five, we define complete Reinhardt domains and domains of convergence of
the power series in Cn for n ≥ 2 and prove that the domains of convergence
of multiple power series are complete Reinhardt set. And it is also observed
that the role of complete Reinhardt domains is the same for functions of
several variables as of discs in case of a single complex variable. In the last
section, we prove that a holomorphic function f on a connected multicircular
domain D can be represented by a uniformly convergent multiple Laurent
series in D.

In Ch. 4, first, we prove the original Hartogs’ result which says that
if a function f is analytic on a Hartogs’ figure then it extends analytically
on the whole unit bidisc. In the second section, we prove another Hartogs’
result which states that if a function is holomorphic in a spherical shell then
it extends holomorphically on the whole unit ball. In the third section,we
define the ∂- problem. Then by using the result from the case of a single
complex variable case we show that the inhomogeneous Cauchy-Riemann
equation has a unique solution of class with compact support. In section
4, there is a short introduction to smooth approximate identities and cutoff
functions. Finally, in section 5, we prove the general Hartogs’ phenomenon.

For the sake of brevity, some of the proofs are presented for the functions
of two complex variables. The proofs for the general case are essentially the
same.
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Chapter 1

Analyticity in One Complex
Variable

In this chapter, some basic concepts and results for analytic functions in case
of a single complex variable are presented which will be used as a tool for
analytic functions in case of several complex variables.

1.1 Review of analyticity in one complex vari-

able

This section is based on [7]
The Complex analysis deals with complex numbers so it will be wise to

introduce complex numbers. To get the set of complex numbers which is
denoted by C, we add

√
−1 in the set of real numbers. We call this square

root i. And we write the complex number z as

z = x+ iy,

where z ∈ C and (x, y) ∈ R2.

An important transformation of a complex number is its conjugate and
is defined as

z = x− iy.

The size of z can be measured by taking its modulus

|z| =
√
zz =

√
x2 + y2.

4



For a given complex number z = x+ iy for x, y ∈ R, x is called the real part
and y is called the imaginary part and these can be written as follows

Re(z) = Re(x+ iy) =
z + z

2
= x, Im(z) = Im(x+ iy) =

z − z
2

= y.

In order to describe holomorphic functions we use continuously differentiable
function, which is a function f : U ⊂ Rn → C whose first(real) partial
derivatives exist and are continuous. Such functions are denoted by C1.

Holomorphic Functions : A function f : U → C for an open set
U ⊂ C, is said to be holomorphic in U if it is complex differentiable at every
point of U which means that

f ′(z) = lim
ξ∈C→0

f(z + ξ)− f(z)

ξ
∀ z ∈ U.

Here it is important to note that ξ is complex.
Another way is to start with a continuously differentiable function f =

u+ iy ,and we say that this function will be holomorphic if it will satisfy the
following Cauchy Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

In order to understand the above equations , we can take the help of following
operators

∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
),

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

The above operators are called Wirtinger operators and to determine these
operators we assume that

∂

∂z
z = 1,

∂

∂z
z = 0

∂

∂z
z = 1.

The function f will be holomorphic iff it will depend only on z, which can
be describe as a single complex equation.

∂f

∂z
= 0.

We can check it for a given function f = u+ iv as follows.
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By applying one of the Wirtinger operator on f

∂f

∂z
=

1

2
(
∂f

∂x
+ i

∂f

∂y
)

=
1

2
(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y
)

=
1

2
(
∂u

∂x
− ∂v

∂y
) +

i

2
(
∂v

∂x
+
∂u

∂y
).

The above expression will be zero if

∂u

∂x
− ∂v

∂y
= 0 and

∂v

∂x
+
∂u

∂y

⇒ ∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

From the last above expression, we can see that Cauchy Riemann equations
are satisfied.

Now it can be seen that,if the function will be holomorphic then the
derivative in z will be standard complex derivative. By applying one of the
Wirtinger operator and Cauchy Riemann equations we can show it as follows

∂f

∂z
=

1

2

(
∂u

∂x
+
∂v

∂y

)
+
i

2

(
∂v

∂x
− ∂u

∂y

)
,

∂u

∂x
+ i

∂v

∂x
=
∂f

∂x
,

=
1

i

(
∂u

∂y
+ i

∂v

∂y

)
=

∂f

∂(iy)
.

Cauchy Integral Formula and some useful results
The following part is based on [7], [1].
It is one of the most important formulas in one variable.

Theorem 1.1.1. Let U ⊂ C be a bounded domain and the boundary ∂U is
piecewise smooth simple closed curve. Let f : U → C be a continuous and
holomorphic function in U . Then

f(z) =
1

2πi

∫
∂U

f(ξ)

ξ − z
dξ ∀z ∈ U,

where ∂U is oriented positively.
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Cauchy Integral Formula For Derivatives

Theorem 1.1.2. If there is a function f which is analytic inside and on a
simple closed positively oriented contour Γ and if z is any point inside Γ,then

fn(z) =
n!

2πi

∫
Γ

f(ξ)

(ξ − z)n+1
dξ , n = 1, 2, ...

The above formula can also be written as∫
Γ

f(z)

(z − z0)n
dz =

2πi

(n− 1)!
f (n−1)(z0), n = 1, 2, ...

where z0 lies inside Γ.

Maximum Modulus Principle
It is another important result which follows from Cauchy integral.
Let there is a function f(z), which is analytic in an open disc centered at

z0 and |f(z0)| is the maximum value of |f(z)| over this disc, then |f(z)| will
be constant in that disc.

Theorem 1.1.3. If a function f will be analytic in a domain S and |f(z)|
achieves its maximum value at a point z0 in s, then f will be constant in S.

Theorem 1.1.4. If a function will be holomorphic in a bounded domain and
also will be continuous up to and including its boundary, then it will attain
its maximum modulus on the boundary.

Theorem 1.1.5. ( Cauchy - Goursat Theorem) If f is analytic in a simple
connected domain D, and inside D there is a simple closed rectifiable contour
γ, then ∫

γ

f(z)dz = 0.

Theorem 1.1.6. (Morera’s Theorem) If a function f is continuous in a
domain D and

∫
γ
f(z)dz = 0 for every closed contour γ in D, then f is

holomorphic in D.

Theorem 1.1.7. Let there are two positively oriented simple closed contour
γ1 and γ2 ,with γ2 interior to γ1. If a function f is analytic on the closed
reigon containig {γ1} and {γ2} and the points between them, then∫

γ1

f(z)dz =

∫
γ2

f(z)dz.
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Theorem 1.1.8. Holomorphic functions can be represented by a uniformely
convergent power series in z at each point a

f(z) =
∞∑
j=0

cj(z − a)j.

Such type of functions which can be represented by power series are called
analytic functios. So we can use the terms holomorphic and analytic inter-
changeably and holomorphic functions are also called analytic functions.

Proof. We can prove it by using the Cauchy integral formula, for a disc of
radius ρ ≥ 0 around the centre a ∈ C. The disc is defined as follows

∆ρ(a) = {z ∈ C}, |z − a| ≤ ρ}

Suppose that f : U → C is holomorphic, U is open, a ∈ U and ∆ρ(a) ⊂ U
(which means that the boundary∂∆ρ(a) is also in U).

For z ∈ ∆ρ(a) and ξ ∈ ∂∆ρ(a)∣∣∣z − a
ξ − a

∣∣∣ =
|z − a|
ρ

.

Here
∣∣∣ z−aξ−a

∣∣∣ ≤ ρ′

ρ
< 1, if |z − a| ≤ ρ′ < 1,

then the geometric series

∞∑
j=0

(z − a
ξ − a

)j
=

1

1− z−a
ξ−a

=
ξ − a
ξ − z

will converge uniformly and absolutely for (z, ξ) ∈ ∆ρ′(a)× ∂∆ρ(a). Let us
compute the integral from Cauchy formula.

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − a
dξ

where γ is the path going around ∂∆ρ(a) in the positive direction.

f(z) =
1

2πi

∫
γ

f(ξ)(ξ − a)

(ξ − z)(ξ − a)
dξ

=
1

2πi

∫
γ

f(ξ)

ξ − a

∞∑
j=0

(z − a
ξ − a

)j
dξ
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=
∞∑
j=0

(
1

2πi

∫
γ

f(ξ)

(ξ − a)j+1
dξ

)
(z − a)j,

whereas we can interchange the limit on sum because of the uniform conver-
gence of the series. If z is fix and M is supremum of

∣∣ f(ξ)
(ξ−a

∣∣ = |f(ξ)|
ρ

on ∆ρ(a)
then ∣∣∣ f(ξ)

ξ − a

∣∣∣(z − a
ξ − a

)j
≤M

( |z − a|
ρ

)j
and

|z − a|
ρ

< 1.

So the function f(z) can also be represented by the power series

f(z) =
∞∑
j=0

cj(z − a)j.

We also have computed that the radius of convergence will be atleast ρ, where
ρ is the maximum ρ such that∆ρ(a) ⊂ U and

cj =
1

2πi

∫
f(ξ)

(ξ − a)j+1
dξ

is the formula for the coefficients cj of series. From here we also obtain
Cauchy inequalities

|cj| ≤
M

ρj
.

A function f : C → C is called entire function if f is a holomorphic
function in C.

Theorem 1.1.9. (Liouville) If a function f is entire and bounded then f is
constant.

Theorem 1.1.10. If there is a domain U ⊂ C and a holomorphic function
f : U → C such that the zero set f−1(0) has a limit point in U , then f ≡ 0.

1.2 Inhomogeneous Cauchy-Riemann equation

for single variable

This section is based on [6].
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Let v be a function in C. Consider the equation

∂u

∂z
=

1

2

(
∂u

∂x
− ∂u

i∂y

)
= v on C. (1.1)

This is the inhomogeneous Cauchy-Riemann equation for a single complex
variable.

Support of a function: The support of a function f is the smallest
closed set outside of which the function is equal to zero.

In equation (1.1), v(z) = v(x+ iy) is a function of class C1 with compact
support.

Pompeiu’s Formula or Cauchy-Green Formula

Proposition 1.2.1. Let D be a bounded domain in C whose boundary Γ
consists of finitely many piecewise smooth curves and D lies to the left of Γ.
If f(z) = f(x+ iy) be a function of class C1 on D then

f(a) =
1

2πi

∫
Γ

f(z)

(z − a)
dz − 1

π

∫
D

∂f

∂z

1

z − a
dxdy ∀a ∈ D. (1.2)

In the proof of this formula, the Cauchy Green’s formula for integration
by parts will be used ,which is∫

∂D

Ldx+Mdy =

∫
D

(
∂M

∂x
− ∂L

∂y

)
dxdy

where L and M are the continuously differentiable functions over D and ∂D
is the oriented boundary of D. In order to obtain a complex form of the
Green’s formula ,we put L = F and M = iF in the above formula with
F (z) = F (x+ iy) in C1(D)∫

∂D

F (z)dz =

∫
∂D

Fdx+ iFdy =

∫
D

(
i
∂F

∂x
− ∂F

∂y

)
dxdy. (1.3)

= 2i

∫
D

∂F

∂z
dxdy.

Proof. In order to prove (1.2), we will apply (1.3) to the function

F (z) =
f(z)

(z − a)
a ∈ D.

10



But the above function is not smooth at z = a. So we will apply Green’s
formula to F on

Dε = D −Bε

where Bε = B(a, ε) is a closed disc of radius ε < d(a,Γ). The boundary ∂Dε

will consist of Γ and the circle −C(a, ε).
Since 1

(z−a)
is holomorphic throughout the Dε, so

∂F

∂z
=
∂f

∂z

1

z − a
+ f(z)

∂

∂z

1

z − a
=
∂f

∂z

1

z − a
, z ∈ Dε. (1.4)

Now by applying Green’s formula (1.3) for F (z)∫
Γ

f(z)

z − a
dz +

∫
−C(a,ε)

f(z)

(z − a)
dz = 2i

∫
Dε

∂f

∂z

1

z − a
dxdy. (1.5)

Since, on C(a, ε), z = a+ εeit and dz = εieitdt
so, ∫

−C(a,ε)

f(z)

z − a
dz = −

∫ 2π

0

f(a+ εeit)

a+ εeit − a
εieitdt

when ε→ 0 ∫
−C(a,ε)

f(z)

z − a
dz = −2πif(a). (1.6)

Furthermore, since ∂f
∂z

is continuous on D and let M is a bound for |∂f
∂z
| on

D, then∣∣∣∣ ∫
D

∂f

∂z

1

z − a
dxdy−

∫
Dε

∂f

∂z

1

z − a
dxdy

∣∣∣∣ =

∣∣∣∣ ∫
Bε

∂f

∂z

1

z − a
dxdy

∣∣∣∣ ≤M

∫
Bε

1

|z − a|

= M

∫ ε

0

∫ π

−π

1

r
rdrdt = M2πε.

When ε→ 0 ∣∣∣∣ ∫
D

∂f

∂z

1

z − a
dxdy −

∫
Dε

∂f

∂z

1

z − a
dxdy

∣∣∣∣ = 0. (1.7)

From Equation (1.6) and (1.7), Equation (1.5) will become

f(a) =
1

2πi

∫
Γ

f(z)

z − a
dz − 1

π

∫
D

∂f

∂z

1

z − a
dxdy

which is the required result.
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Corollary 1.2.2. Any C1 function f(z) = f(x+iy) on C of compact support
can be represnted by the following

f(z) =
−1

π

∫
C

∂f

∂z
(ζ)

1

ζ − z
dεdη where ζ = ε+ iη.

Proof. Let there is a disc D = B(0, R) which contains a fix a ∈ C and support
of f . And let Γ be the boundary of B, then the integral over Γ in (1.2) will
vanish and Pompeiu’s formula will become

f(a) = − 1

π

∫
C

∂f

∂z

1

z − a
dxdy.

Finally if we replace z by ζ = ε+ iη and then a by z

f(z) = − 1

π

∫
C

∂f

∂z
(ζ)

1

ζ − z
dεdη.

Now we will show that the equation ∂u
∂z

= v has a solution and it will be
given by the following

u(z) = − 1

π

∫
C

v(ζ)

ζ − z
dεdη ∀z ∈ C, (1.8)

which is called the Cauchy-Green transform u of v.

Theorem 1.2.3. Let v be a Cp function (1 ≤ p ≤ ∞) on C of compact
support. Then the Cauchy-Green transform u of v provides a Cp solution of
the equation ∂u

∂z
= v on C. This solution is unique and smooth and it tends

to 0 as |z| → ∞.

Proof. If we replace ζ by ζ ′ + z in transformation (1.8), then

u(z) = − 1

π

∫
C

v(z + ζ ′)

ζ ′
dεdη.

Rewrite the above expression without the prime

u(z) = − 1

π

∫
C

v(z + ζ)

ζ
dεdη. (1.9)

12



In order to get the first order partial derivative of u with respect to x we will
differentiate u under the integral sign. Let there is a fixed large disc D(0, R),
which contains a fixed a. We will vary z = a + h over a small disc D(0, r),
since the function v(z + ζ) will be 0 for all ζ outside the D(0, R). Here h is
real and h 6= 0, So that

1

h

∫ h

0

{
∂v

∂x
(a+ t+ ζ)− ∂v

∂x
(a+ ζ)

}
dt =

v(a+ h+ ζ)− v(a+ ζ)

h
− ∂v
∂x

(a+ ζ).

The left hand side of above equation is a function of h and ζ and it will tends
to zero as h→ 0 uniformly in ζ, because ∂v

∂x
is a continuous and of compact

support function. Now if we multiply the above expression by the absolutely
integrable function 1

ζ
over B(0, R) and integrate it over B then ,

0 =

∫
B

v(a+ h+ ζ)− v(a+ ζ)

h

1

ζ
dεdη −

∫
B

∂v

∂x
(a+ ζ)

1

ζ
dεdη.

By using (1.9), the above expression becomes

−πu(a+ h)− u(a)

h
=

∫
B

∂v

∂x
(a+ ζ)

1

ζ
dεdη

and hence

− 1

π

∂u

∂x
(a) =

∫
B

∂u

∂x
(a+ ζ)

1

ζ
dεdη.

So the partial derivative of u with respect to x exists at a and it will be
continuous because ∂v

∂x
is uniformly continuous.

Similarly we can find the partial derivative with respect to y. So u is
a continuously differentiable function and if we combine the both partial
derivatives, then

∂u

∂z
(a) = − 1

π

∫
C

∂v

∂z
(a+ ζ)

1

ζ
dεdη

which can also be written as

∂u

∂z
=
−1

π

∫
C

∂v

∂z
(ζ)

1

ζ − a
dεdη.

As v is a continuously differentiable function of bounded support, so by
corollary 1.2.2

∂u

∂z
= v(a).
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Hence the Cauchy transform u of v satisfies the inhomogeneous Cauchy
Reimann equation which means it is the solution of inhomogeneous Cauchy
Reimann equation.

Likewise for p ≥ 2 ,it can be proved that higher order partial derivatives
of u exist and are continuous on C. Hence Cauchy transform u of v provides
a Cp solution of (1.1). It can also be seen from (1.8), that u(z) → 0 as
|z| → ∞ and this solution is the unique smooth solution of (1.1).

1.3 Series

This section is based on [1]
Power Series
An infinite series of the form

∞∑
j=0

cj(z − z0)j = c0 + c1(z − z0) + c2(z − z0)2 + ...+ cj(z − z0)j...

is called a power series. Here z0 is point of expansion and the constants cj are
called the coefficients of the power series. This series converges at z0. If this
series converges absolutely for|z−z0| < R and diverges for |z−z0| > R ,then
R is called the radius of convergence. The following theorem determines the
domain of convergence of the power series.

Theorem 1.3.1. If the power series
∑∞

j=0 cj(z− z0)j converges at z = z1( 6=
z0), then it converges uniformly and absolutely in the closed disc ∆(z0, r)
where |z1 − z0| > r.

Theorem 1.3.2. (Weierstrass’s M-Test) Let |fj(z)| be a sequence of func-
tions and

∑∞
j=0Mj be a convergent series of positive numbers such that

|fj(z)| ≤ Mj for all z on a domain D and j ≥ 0, then
∑∞

j=0 fj(z) converges
uniformly and absolutely on D.

If R is the radius of convergence of the above power series then g(z) =∑∞
j=0 cj(z− z0)j is an analytic function on the disc D(z0, R) and by term by

term differentiation

g′(z) =
d

dz

∞∑
j=0

cj(z − z0)j =
∞∑
j=0

jcj(z − z0)j−1.

14



This series is infinitely differentiable for any z ∈ D(z0, R) and for any n

gn(z) =
∞∑
j=n

j(j − 1)...(j − n+ 1)cj(z − z0)(j−n).

At z = z0

cn =
gn(z0)

n!

for any n = 0, 1, 2...

Taylor Series
The series of the form

f(z) = f(z0) +
f
′
(z0)

1!
(z − z0) +

f
′′
(z0)

2!
(z − z0)2 + ... =

∞∑
j=0

f j(z0)

j!
(z − z0)j

is called the Taylor series of f at z0. It follows that if f(z) =
∑∞

j=0 cj(z−z0)j

for all z ∈ D(z0, R) ,then this series is the Taylor series of f(z) at z0.

Maclaurin Series
Taylor’s series reduces to the following series at z0 = 0

f(z) = f(0) +
f ′(0)

1!
z +

f ′′(0)

2!
z2... =

∞∑
j=0

f j(0)

j!
zj

which is called the Maclaurin series of f .

Laurent Series Now we will see that a function that is analytic in an
annulas domain can be expanded in a series, this series is called the Laurent
series. We will use this series while proving the Hartogs’ phenomenon.

Theorem 1.3.3. If a function f(z) is analytic in an annulus domain D =
{z : r < |z − z0| < R}, then this function can be represented by the Laurent
series.

f(z) =
∞∑
j=0

cj(z − z0)j +
∞∑
j=1

dj
(z − z0)j

∀z ∈ D (1.10)

where

cj =
1

2πi

∫
γ

f(ξ)

(ξ − z0)j+1
dξ j = 0, 1, 2...

15



and

dj =
1

2πi

∫
γ

f(ξ)(ξ − z0)j−1dξ j = 1, 2, ...

and γ is positively oriented simple closed contour around z0 and lying in
domain D.

Proof. Since function is analytic in the domain D = {z : r < |z − z0| < R},
so from Cauchy’s integral formula

f(z) =
1

2πi

∫
γ2

f(ξ)

ξ − z
dξ − 1

2πi

∫
γ1

f(ξ)

ξ − z
dξ (1.11)

where γ1 and γ2 are circles with centre at z0 and contained in D,with γ1 lies
interior to γ1 and γ lies between γ2 and γ1.

It follows that

For ξ ∈ γ2,

∣∣∣∣z − z0

ξ − z0

∣∣∣∣ < 1

and
1

ξ − z
=

1

ξ − z − z0 + z0

=
1

ξ − z0(1− z−z0
ξ−z0 )

=
1

ξ − z0

∞∑
j=0

(z − z0

ξ − z0

)j
which converges uniformly and hence

1

2πi

∫
γ2

f(ξ)

ξ − z
dξ =

1

2πi

∫
γ2

f(ξ)
∞∑
j=0

(z − z0)j

(ξ − z0)j+1
dξ

=
∞∑
j=0

[ 1

2πi

∫
γ

f(ξ)

(ξ − z0)j+1
dξ
]
(z − z0)j

1

2πi

∫
γ2

f(ξ)

(ξ − z)
dξ =

∞∑
j=0

cj(z − z0)j. (1.12)

For

ξ ∈ γ1,

∣∣∣∣ξ − z0

z − z0

∣∣∣∣ < 1
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and
1

z − ξ
=

1

z − z0 + z0 − ξ

=
1

z − z0

∞∑
j=0

(ξ − z0

z − z0

)j
,

the above series converges uniformly and absolutely on γ1. Hence we have

− 1

2πi

∫
γ1

f(ξ)

ξ − z
dξ =

1

2πi

∫
γ1

f(ξ)
∞∑
j=0

(ξ − z0)j

(z − z0)j+1
dξ

=
∞∑
j=1

[ 1

2πi

∫
γ

f(ξ)(ξ − z0)j−1
] 1

(z − z0)j

− 1

2πi

∫
γ1

f(ξ)

ξ − z
dξ =

∞∑
j=0

dj
(z − z0)j

. (1.13)

By using Equations (1.12) and (1.13) into Equation (1.11), we get the re-
quired representation.

If the function will be holomorphic in D(z0, R) then f(ξ)
(ξ−z0)j−1 will be

holomorphic in D(z0, R) and the second sum in Equation (1.10) which is
called the principal part of Laurent series will become 0 by Theorem 1.1.5
and hence the Laurent series will become the Taylor series of f(z)
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Chapter 2

Basics on Harmonic and
Subharmonic Functions

For working with analytic functions of several variables, we will need some
tools from the theory of subharmonic functions, which we present in this
chapter. This section is based on [2] and [10].

2.1 Harmonic Functions

2.1.1 Definition and Examples

Definition 2.1.1. Let Ω be a nonempty open subset of Rm. A real valued
function u of class C2, defined on Ω is said to be harmonic on Ω if

∆u = 0

where ∆ = D2
1 + ...D2

m.

Examples
Let x = (x1, x2, ...xm) be a typical point in Rm and |x| = (x2

1 + ...+ x2
m)

1
2

be the Euclidean norm of x

1. In R, harmonic functions are those whose second derivative equals zero,
so they are just linear functions u(x) = ax+ b.

2. If m = 2, the function
u(x) = ln |x|

is harmonic in R2 \ {0}.

18



3. u(x) = |x|2−m is harmonic on Rm \ {0} for m > 2.

2.1.2 Harmonic functions and Analytic functions in
R2 ∼ C

For an analytic function f(z) = u(x, y) + iv(x, y) on a region A, both u and
v are harmonic functions on A. This is a consequence of Cauchy-Riemann
equations. u and v are called the harmonic conjugates.

Theorem 2.1.2. If there is a harmonic function u(x, y) on a simply con-
nected region A, then u is the real part of an analytic function f(z) =
u(x, y) + iv(x, y).

From the above theorem, it follows that u will be infinitely differentiable.

2.1.3 Properties of Harmonic Functions

The Mean Value property

If u is harmonic on B(a, r) then u equals the average of u over ∂B(a, r).
More precisely

u(a) =

∫
S

u(a+ rζ)dσ(ζ). (2.1)

In order to prove this property we will use Green’s identity∫
Ω

(u∆v − v∆u)dV =

∫
∂Ω

(uDnv − vDnu)ds. (2.2)

Here Ω is a bounded open subset of Rm, u and v are C2 functions on a neigh-
bourhood of Ω, V is Lebesgue volume measure on Rm, s is the surface area
measure on ∂Ω and Dn denotes the differentiation with respect to outward
unit normal n. For gradient of u,∇u = (D1u, ...Dmu) and ζ ∈ ∂Ω

(Dnu)(ζ) = (∇u)(ζ) · n(ζ).

For a harmonic function u and v ≡ 1 ,the Green’s identity becomes∫
∂Ω

Dnuds = 0. (2.3)

In the proof of mean value property we will use the Green’s identity for the
unit ball B. The boundary of B is denoted by S which is the unit sphere
and σ is the normalized surface area measure on S so that σ(S) = 1.
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Proof. (Mean Value Property) Let m > 2.
let there is a unit ball B and a fix ε ∈ (0, 1) . If we apply Green’s identity

with Ω = {x ∈ Rm : ε < |x| < 1} and v(x) = |x|2−m, we obtain

0 = (2−m)

∫
S

uds− (2−m)ε1−m
∫
εS

uds−
∫
S

Dnuds− ε2−m
∫
εS

Dnuds.

By (2.3), the last equation will become∫
S

uds = ε1−m
∫
εS

uds,

because S = ∂B and εS = ∂εB and ζ ∈ ∂B, so the last equation can be
written as ∫

S

udσ =

∫
S

u(εζ)dσ(ζ).

Since u is continuous at 0 and if we assume ε→ 0, then

u(0) =

∫
S

u(ζ)dσ(ζ). (2.4)

For m = 2, the function v(x) = ln |x| should be chosen.

Mean Value property, Volume Version

Harmonic functions also have mean value property with respect to volume,which
states that, if u is a harmonic function on B(a, r) then u(a) equals to the
average of u over B(a, r)

u(a) =
1

V (B(a, r))

∫
B(a,r)

udV. (2.5)

Proof. We will prove it for the unit ball B. The polar co-ordinate formula
for a Borel measurable integrable function f on Rm states that

1

mV (B)

∫
Rm

fdV =

∫ ∞
0

rm−1

∫
S

f(rζ)dσ(ζ)dr. (2.6)

By using (2.6) for u over B

1

V (B)

∫
B

udV =

∫
S

u(ζ)dσ(ζ).

And hence by (2.4)
1

V (B)

∫
B

udV = u(0). (2.7)
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The Maximum Principle

Following are the different versions of maximum principle

1. Let Ω be connected and u be a harmonic function on Ω. If |u| has
maximum in Ω, then u is constant.

2. Let Ω be connected and u be a function on Ω that is harmonic on Ω.
Then |u| attains maximum value over Ω on ∂Ω.

3. Let u be a harmonic function on Ω and suppose that

lim sup
k→∞

u(ak) ≤M

for every sequence ak in Ω converging either to point in ∂Ω or to ∞.
Then u ≤M on Ω.

The Poisson Kernel for the Ball

For every harmonic function u on B and x ∈ B, u(x) is a weighted average
of u over S. More precisely there exists a function P on B × S such that

u(x) =

∫
S

u(ζ)P (x, ζ)dσ(ζ). (2.8)

The function P in the above integral is called the Poisson Kernel for the ball
and it is

P (x, ζ) =
1− |x|2

|x− ζ|n
.

Uniformly convergent sequence of harmonic functions

Theorem 2.1.3. If a sequence {uj} of harmonic functions on Ω converges
uniformly to a function u on each compact subset of Ω, then u is harmonic
on Ω. And for every multi-index α, Dα{uj} converges uniformly to Dαu on
each compact subset of Ω.
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Converse of the Mean-Value Property

Theorem 2.1.4. Let u is a locally integrable function on Ω such that

u(a) =
1

V (B(a, r))

∫
B(a,r)

udV

whenever B(a, r) ⊂ Ω,then u is harmonic on Ω

From the above theorem it follows that the Mean Value property charac-
terizes harmonic functions.

2.2 Subharmonic Functions

Most of the part of this section is based on [10]

2.2.1 Definition and Examples

Definition 2.2.1. A function f(x), defined on a set S ⊂ Rm with values in
[−∞,∞) is said to be upper semi continuous at a point x0 ∈ S if for every
number L > f(x0) there exists a number δ = δ(x0, L) such that f(x) < L
whenever |x− x0| < δ and x ∈ S. If f is continuous at each point of S then
it is said to be upper semi continuous on S.

Let for x ∈ Rm there is a function u(x), with values in [−∞,∞). Further
suppose that u(x) is measurable and bounded above on the sphere

Sr(x0) = {x : |x− x0| = r}.

The average of the function u(x) on the sphere Sr(x0) is

Avu(S(x0, r)) =
1

σm
rm−1

∫
Sr(x0)

u(x)dσ (2.9)

where σm is the area of the unit sphere in Rm

σm =
mπ

m
r

Γ(m
r

+ 1)

and dσ is the area element on the sphere Sr(x0).
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The average of the measurable and bounded above function u(x) in the
ball Br(x0) is

Avu(B(x0, r)) =
1

Vmrm

∫
Br(x0)

u(x)dV (2.10)

where Vm is the volume of the unit ball and dV is the volume element in Rm

and

Vm =
π
m
2

Γ(m
2

+ 1)
.

By using the value of σm and Vm in the Equations (2.9) and (2.10) respec-
tively, it can be seen that

Avu(B(x0, r)) =
m

rm

∫ r

0

Avu(S(x0, t))t
m−1dt. (2.11)

In the last section we have seen that the necessary and sufficient condition
for a function u(x) to be harmonic is

u(x) = Avu(B(x, r)). (2.12)

Or

u(x0) =
1

V (B(x0, r))

∫
B(x0,r)

udV.

Definition 2.2.2. A function u(x) defined in a domain D ⊂ Rm is said to
be subharmonic in D if is upper semi continuous in D and, for any point
x ∈ D and all sufficiently small positive r,

u(x0) ≤ 1

V (B(x0, r))

∫
B

udV. (2.13)

So subharmonic functions are obtained by replacing the equality sign in
( 2.12) by an inequality sign. It follows from definition that every harmonic
function is also subharmonic

Examples

1. For m > 2 the function u(x) = −|x|2−m is subharmonic. This is an
upper semi continuous. It can also be noted that this function satisfies
the inequality (2.13). Since u(x) is harmonic everywhere except at the
origin. Thus at every point x 6= 0 the inequality in (2.13) will become
equality for all r ∈ (0, |x|). The inequality (2.13) also holds clearly at
x = 0.
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2. For m = 2, the primary example of a subharmonic function is u(z) =
log |f |, where f(z) is an analytic function. In this case also,u is an upper
semi continuous function. In order to prove that u is a subharmonic
function it will be sufficient to show that the inequality (2.13) holds for
u. The case is trivial for all z such that f(z) = 0. When f(z) 6= 0 at
some point z0, then there is an analytic branch of log f around z such
that u(z) = Re(log(f(z)) is harmonic around z0 and hence (2.13) holds
with the sign of equality.

2.2.2 Properties and Application of Subharmonic func-
tions

Simple properties of subharmonic functions

1. The product of a subharmonic function and a constant will also be a
subharmonic function.

2. The sum of finitely many subharmonic functions will be a subharmonic
function.

3. If the functions u1(x), ..., un(x) are subharmonic in a domain D ⊂
Rm,then the function u(x) = max1≤k≤n uk(x) will also be subharmonic
in D.

4. The limit of a uniformly convergent sequence of subharmonic functions
will be a subharmonic function.

5. The limit of a monotonically decreasing sequence of subharmonic func-
tions will be a subharmonic function.

The next result, known as Hartogs’ lemma, will be used in Chapter 3 for
proving Hartogs’ theorem. This lemma follows [4] and [8]

Lemma 2.2.3. (Hartogs’ lemma) Let {uj}∞j=1 be a sequence of subharmonic
functions in a domain Ω ⊂ Rm, which are uniformly bounded above on every
compact subset K of Ω and assume that lim supj→∞ uj(x) ≤ C for each
x ∈ Ω, then for any ε > 0 and any compact set K ∈ Ω, one can find a
number j0 such that

uj(x) ≤ C + ε ∀x ∈ K, ∀j > j0.
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Proof. let there is a closed ball of radius r in a compact set K ∈ Rm. Since
K is compact so in order to prove the lemma, it will be enough to show that
for each point x0 in the closed ball, there is a neighbourhood U of x0 and a
natural number j0 such that uj(x) ≤ C + ε when j ≥ j0 and this j0 will be
independent of x.

Let δ be a fixed positive number such that δ < (C−r)
3

. By Fatou’s lemma

lim sup
j→∞

∫
|x−x0|<δ

uj(x)dV ≤
∫
|x−x0|<δ

lim sup
j→∞

uj(x)dV.

Since lim supj→∞ ≤ C ,so

lim sup
j→∞

∫
|x−x0|<δ

uj(x)dV ≤
∫
|x−x0|<δ

lim
j→∞

uj(x)dV ≤ C × V

where V is the volume of ball B ∈ Rm and there is a natural number j0 such
that ∫

|x−x0|<δ
uj(x)dV < (C +

ε

2
)V when j ≥ j0.

Now let γ is a sufficiently small positive number less than δ and x1 is a
point such that |x1 − x0| < γ, then the ball of radius δ + γ centered at
x1 contains the ball of radius δ centered at x0 with increased volume. The
above last inequality will also hold for the ball centered at x1 Because the
given sequence of functions is bounded above so the above integral will be
stable under small change of the center point. The sub mean-value-property
of subharmonic function implies that

V1uj(x1) ≤
∫
|x−x1|<δ+γ

uj(x)dV < (C +
ε

2
)V

where we have introduced a constant V1 which is the volume of the ball of
radius δ + γ. When j ≥ j0, or

uj(x1) <
(C + ε

2
)V

V1

.

When lim γ → 0 then the right side of above will be (C + ε
2
). Hence there

will be a small positive γ for which uj(x1) < C + ε when j ≥ j0 and x1 is
an arbitrary point of a ball of radius γ centered at x0. Now for any x0 ∈ K
there is a U(x0) where

uj(x) ≤ C + ε ∀j ≥ j0 (j0 = j(x0)).
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But K ⊂ ∪x0+KU(x0) which implies that

K ⊂
⋃
x0∈K

U(x0).

So there will be finitely many such open sets whose union contains K and
the lemma will be true for compact set K.
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Chapter 3

Holomorphy in Several
Complex Variables

Here we present basic notions on holomorphic functions of several complex
variables, including the fundamental theorem of Hartogs on separate analyt-
icity. The presentation is based on [3], [6] [7] and [9].

3.1 The Cn Space

The n-dimensional Euclidean complex space is denoted by

Cn = C× C × ...× C

(n times) and its coordinates can be denoted by z = (z1, z2, ..., zn). The form
of zj will be zj = xj + iyj for every j = 1, 2, ..., n. In that way we can identify
Cn by R2n.

Different types of domains in Cn

This section is based on [7]

Definition 3.1.1. For ρ = (ρ1, ρ2, ..., ρn) where ρj > 0 and a ∈ Cn define a
polydisc in Cn

∆ρ(a) = {z ∈ Cn : |zj − aj| < ρj, j = 1, 2, ..., n}.

We call a the centre and ρ the polyradius or simply the radius of the polydisc
∆ρ(a).
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The unit polydisc in several complex variable will actually be the product
of n unit discs in one complex variable, that is

Dn = D ×D × ...×D = ∆1(0) = {z ∈ Cn : |zj| < 1, j = 1, 2, ..., n}.

The set Γ = {z ∈ Cn : |zj| = 1; ∀j = 1, 2, ...n} which is the product of n
unit circles is called the distinguished boundary of the unit polydisc.

For n = 2 the polydisc D = D1 ×D2 is called the bidisc.

Definition 3.1.2. As the Euclidean inner product on Cn is

< z,w >= z1, w1 + z2w2 + ...+ znwn.

The inner product gives us the standard Euclidean norm on Cn

‖z‖ =
√〈

z, z
〉

=
√
|z1|2 + |z2|2 + ...+ |zn|2.

And we define the balls in Cn as

Bρ(a) = {z ∈ Cn : ‖z − a‖ < ρ}

and define the unit ball as

B1(0) = {z ∈ Cn : ‖z‖ < 1}.

3.2 Holomorphic functions inCn

This section is based on [7]

Definition 3.2.1. Let there is a domain Ω in Cn. A function f : Ω → C
is said to be holomorphic on Ω if it is complex differentiable at every point
z ∈ Ω ie,

f ′(z) = lim
ξ∈Cn→0

f(z + ξ)− f(z)

ξ
exists ∀z ∈ Ω.

Definition 3.2.2. A function f : Ω → C is said to be separately holomor-
phic if it is holomorphic in each variable, which means that f has complex
derivative with respect to zj when other variables are kept fixed ie,

lim
ξ→0

f(z1, ...zj + ξ, ...zn)− f(z)

ξ
exists ∀z ∈ Ω and j = 1, 2...n

where ξ ∈ Cn.
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We can see that a holomorphic function will be separately holomorphic,as
it will be holomorphic for all ξ = (0, 0, ..ξj, ...0). But it is nontrivial that
separate holomorphy implies joint holomorphy. In the fourth section, we will
show in several steps that separate holomorphy implies joint holomorphy.

Definition 3.2.3. A function f : Ω → C that is continuously differentiable
with respect to each pair of variables (xj, yj) on Ω ⊂ Cn is said to be holo-
morphic if it satisfies the Cauchy Riemann equations in each variable.

∂f

∂z
= 0

which means that
∂u

∂xj
=

∂v

∂yj
,
∂v

∂xj
= − ∂u

∂yj

which is the necessary and sufficient condition for f to be complex differ-
entiable at z ∈ Cn.

3.3 Cauchy Integral Formula

This section is based on [9] and [3].
Any function which is separately holomorphic on a polydisc can be rep-

resented by the Cauchy integral of its values on the distinguished boundary
of the polydisc.

Theorem 3.3.1. Let f be a separately holomorphic function on the closed
unit polydisc D

n
.Then

f(z) =
1

(2πi)n

∫
|ξ1|=1

∫
|ξ2|=1

...

∫
|ξ|n=1

f(ξ1, ξ2, ...ξn)∏n
j=1(ξj − zj)

dξ1dξ2...dξn

for each z = (z1, z2, ...zn) ∈ Dn.

Proof. To be simple we will prove it for n = 2. If we fix z2 in the unit bidisc,
the function f(z1, z2) will be holomorphic in z1, for|z1| < 1. By applying
Cauchy integral formula for one variable

f(z1, z2) =
1

2πi

∫
|ξ1|=1

f(ξ1, z2)

ξ1 − z1

dξ1.

29



Now if we fix ξ1, then f(ξ1, z2) will be holomorphic in z2 in closed unit disc
and for |z2| < 1

f(ξ1, z2) =
1

2πi

∫
|ξ2|=1

f(ξ1, ξ2)

ξ2 − z2

dξ2.

By combining the above two expresions we will get

f(z1, z2) =
1

(2πi)2

∫
|ξ1|=1

∫
|ξ2|=1

f(ξ1, ξ2)

(ξ1 − z1)(ξ2 − z2)
dξ1dξ2.

The above theorem which we stated for a unit polydisc, holds for polydiscs
in general. It says that if a function will be holomorphic in the neighborhood
of a closed polydisc then it can be expressed in the polydisc in the form of its
Cauchy integral over the distinguised boundary Γ. Particularly, the values
of a function in a polydisc can be determined completely by its values on the
distinguished boundary.

Theorem 3.3.2. If a function will be holomorphic in a polydisc U = {z :
|zv − av| < rv} and continuous in U , then at any point z ∈ U , it can be
represented by a multiple Cauchy integral

f(z) =
1

(2πi)n

∫
Γ

f(ξ)

(ξ1 − z1)(ξ2 − z2)...(ξn − zn)
dξ1dξ2...dξn,

where Γ is the product of boundary circles γv = {|zv−av| = rv} v = 1, 2, ...n.

Proof. Since the given function is holomorphic, so it can be written as a
repeated integral:

f(z) =
1

(2πi)n

∫
γ1

dξ1

ξ1 − z1

...

∫
γn

f(ξ1, ..., ξn)

(ξn − zn)
dξn.

Because of the continuity of f in the closure of the polydisc, the repeated
integral can be written as a multiple Cauchy integral over the product of
boundary circles

f(z) =
1

(2πi)n

∫
Γ

f(ξ1, ..., ξn)

(ξ1 − z1)...(ξn − zn)
dξ1...dξn.

It can also be written in abbreviated form:

f(z) =
1

(2πi)n

∫
Γ

f(ξ)

(ξ − z)
dξ (3.1)

where dξ = dξ1...dξn and (ξ − z) = (ξ1 − z1)...(ξn − zn).
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As a consequence of this, we can get the representation of such functions
by multiple power series.

Theorem 3.3.3. If a function f is separately holomorphic in U and contin-
uous in U , then at each point z ∈ U it can be represented as multiple power
series

f(z) =
∞∑
|k|=0

ck(z − a)k

where (z− a)k = (z1− a1)k1 , (z2− a2)k2 , ..., (zn− an)kn and the coefficients ck
will be

ck =
1

(2πi)n

∫
Γ

f(ξ)

(ξ − a)k+1
dξ.

Proof. From the Cauchy integral representation of a function, we can also
obtain its power series represenation as follows:

1

(ξ − z)
=

1

(ξ − z + a− a)
=

1

(ξ − a)
((

1− z1−a1
ξ1−a1

)
...
(
1− zn−an

ξn−an

))
=

1

ξ − a

∞∑
|k|=0

(
z − a
ξ − a

)k

.

The above expanision can also be written as follows:

1

ξ − z
=

∞∑
|k|=0

(z − a)k

(ξ − a)k+1

here |k| = k1 + k2 + ... + kn and k = (k1, ..., kn) which is an integer vector,
k + 1 = (k1 + 1, ..., kn + 1). The above series will converge uniformly and
absolutely in ξ on Γ for any z ∈ U .

And from the Cauchy integral representation we will obtain

f(z) =
1

(2πi)n

∫
Γ

f(ξ)

ξ − z
dξ =

∞∑
|k|=0

ck(z − a)k

where

ck =
1

(2πi)n

∫
Γ

f(ξ)

(ξ − a)k+1
dξ.
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So we have shown that holomorphic functions are analytic because they
can be represented as multiple power series, on the other hand we are going
to show that multiple power series are holomorphic functions.

Theorem 3.3.4. (Abel’s Lemma) If there is a multiple power series
∑∞
|k|=0 ck(z−

a)k and its terms are bounded at some point ξ ∈ Cn. Then this series con-
verges absolutely and uniformly on any compact subset K of the polydisc U of
center a and vector radius ρ with ρv = |ξv−av| and therefore be a holomorphic
function.

Proof. Since the terms of the multiple power series are bounded at some
point ξ ∈ Cn so we can write

|ck(ξ − a)k| = |ck|ρk ≤M

where
ρk = ρk11 ...ρ

kn
n .

If K ⊂⊂ U , then it follows

qv = max
z∈K

1

ρv
|zv − av| < 1,

therefore we have
|ck(z − a)k| ≤M.qk.

Since all qv < 1, so the multiple geometric progression
∑
Mqk will converge

and hence the given series will converge absolutely and uniformly on any com-
pact subset K of the polydisc. Since each term of this series is holomorphic
so the uniform limit f of the holomorphic functions is also holomorphic.

Theorem 3.3.5. If a function f is given by a multiple power series in a
polydisc U , then at any point z ∈ U its partial derivatives of all orders will
exist and will be holomorphic.

Proof. Let

f(z) =
∞∑
|k|=0

ck(z − a)k at any point z ∈ U.
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From the case of one variable the partial derivative of f of all orders f will
also exist. These derivatives can be obtained as follows:

fk(z) =
∞∑
|k|=0

ck
∂k

∂zk
(z − a)k. (3.2)

From (3.2) we can see that these derivatives are also in the form of the
power series and are obtained by the corresponding term by term differenti-
ation of the power series

∑∞
|k|=0 ck(z − a)k.

By Abel’s lemma, this series converges uniformly on compact subsets of U .
The terms of these series will be continuous with respect to all the variables,
so any of the derivatives is R differentiable in U and as this derivative is
holomorphic in each variable, therefore, it will be holomorphic in U .

Theorem 3.3.6. If a function f(z) is separately holomorphic in a polydisc
U and continuous in U , then it is holomorphic in U .

Proof. By Theorem 3.3.3, the function can be represented as a power series.
And from Theorem 3.3.5 this function will be C differentiable and hence it
will be holomorphic in the polydisc.

Theorem 3.3.7. For the power series expansion of a holomorphic function
at a point a, the coefficients of this series are defined by Taylor’s formula

ck =
1

k1!...kn!

∂k1+...+knf

∂zk11 ...∂z
kn
n

∣∣∣∣∣
z=a

=
1

k!

∂|k|f

∂zk

∣∣∣∣∣
z=a

.

Proof. The Cauchy integral formula for derivatives is

∂|k|f(z)

∂zk
=

1

(2πi)n

∫
Γ

k!f(ξ)

(ξ − a)k+1
dξ. (3.3)

Or
1

(2πi)n

∫
Γ

f(ξ)

(ξ − a)k+1
dξ =

1

k!

∂|k|f(z)

∂zk

where Γ is the distinguished boundary and |k| = k1+k2...kn and k! = k1!...kn!.
Since

f(z) =
∞∑
|k|=0

ck(z − a)k
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and

ck =
1

(2πi)n

∫
Γ

f(ξ)

(ξ − a)k+1
dξ (3.4)

hence

ck =
1

k!

∂|k|f(z)

∂zk
.

Cauchy’s Inequalities
If the function f is separately holomorphic on U and continuous on U

and f ≤M on Γ ,then

ck ≤
M

rk

where rk = rk11 ...r
kn
n .

Theorem 3.3.8. For a rectifiable curve γµ : ξµ = ξµ(t) in the plane of ξµ
,where µ = 1, 2, ...k and γ = γ1 × γ2 × ...× γk and ξ = ξ1, ξ2, ...ξk and let D
be a domain in Cn and ξ = ξ1, ξ2, ...ξk and z ∈ Cn , if the function f(ξ, z) is
continuous on γ × D and holomorphic with respect to z for any ξ ∈ γ and
has continuous partial derivatives ∂f

∂zν
on γ ×D , then the integral

F (z) =

∫
γ1

dξ1...

∫
γk

f(ξ, z)dξk =

∫
γ

f(ξ, z)dξ

is holomorphic in D and

∂F

∂zν
=

∫
γ

∂f(ξ, z)

∂zν
dξ , ν = 1, 2, ...n.

Proof. Let for z ∈ D and arbitrary r > 0 ,there is a polydisc ∆(z, r) ⊂ D
and let there is a vector u = (0, 0, ...uν , , ...0) ∈ Cn such thet |uν | < r.

We have

1

uν
{F (z + u)− F (z)} =

1

uν

∫
γ

{f(ξ, z + u)− f(ξ, z)}dξ

=

∫
γ

dξ

∫ 1

0

∂f(ξ, z + tu)

∂zν
dt
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and

1

uν
{F (z+u)−F (z)}−

∫
γ

∂f(ξ, z)

∂zν
dξ =

∫
γ

dξ

∫ 1

0

{∂f(ξ, z + tu)

∂zν
−∂f(ξ, z)

∂zν

}
dt.

Since ∂f(ξ,z+tu)
∂zν

continuous uniformly for a fixed z on the compact set
γ × [0, 1], so for any ε > 0 there exists a very small δ > 0 such that for all
(ξ, t) ∈ γ × [0, 1] and for |u| < δ , the following inequality will hold∣∣∣∣∂f(ξ, z + tu)

∂zν
− ∂f(ξ, z)

∂zν

∣∣∣∣ < ε

and hence
∂F

∂zν
≤ ε|γ| for |u| < δ

which means that at each point z ∈ D the partial derivaties of F exist and
it will be as follows

∂F

∂zν
=

∫
γ

∂f(ξ, z)

∂zν
dξ

and hence F is holomorphic in D.

Theorem 3.3.9. (Uniqueness Theorem) Let a function f is holomorphic in
a domain D ⊂ Cn. If f vanishes at some point in a nonempty open subset
S ⊂ D with all of its partial derivatives, then f ≡ 0 in the whole domain D.

This proof follows [7]

Proof. Let Z be the set of points where all derivatives are 0. Z is nonempty
because S ⊂ Z. Since all derivatives are continuous, So Z is closed in D.
Since at an arbitrary point a ∈ Z, f can be expanded in a power series,
which will converge to f in a polydisc ∆ρ(a) ⊂ D. Now the coefficients of
that power series which are given by derivatives of f become 0. So the power
series becomes a zero series. Hence f is identically 0 in ∆ρ(a) ∈ D, which
implies that Z is open. But we have seen that Z is also closed and nonempty
and D is connected hence Z ≡ D.

There is another form of the uniqueness theorem which follows easily from
the previous one.
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Theorem 3.3.10. Let f and φ be analytic on a connected domain D ⊂ Cn

and suppose that f = φ throughout the nonempty open subset U of D. This
will in particular be if f and φ have same power series at some point a ∈ D.
Then f = φ throughout the D.

3.4 The fundamental theorem of Hartogs

This section follows [3].
According to Hartogs’ theorem on separate analyticity, if a function of

several complex variables will be holomorphic with respect to each variable
separately then it will be holomorphic with respect to all variables. In the
last section, it has been proved for continuous functions, see Theorem 3.3.6.
Therefore, in order to prove the general case, it will be sufficient to prove
that if a function is holomorphic with respect to each variable then it is
continuous with respect to the set of all the variables. In order to be simple,
we will prove it for a function of two complex variables in a bidisc centered
at 0.

In order to prove this theorem, we will take the help of a number of
lemmas. In the proof of first lemma we will use the Schwarz lemma which
says that, if a function φ : D → C is holomorphic and φ(0) = 0, then

1. |φ(z)| ≤ |z|, and

2. |φ′(0)| ≤ 1.

We will use the general form of lemma given below.

Lemma 3.4.1. Schwarz Lemma: Suppose that the function φ is holomorphic
in the disc Dr = {|z| < r} ⊂ C where φ(z0) = 0 at some point z0 ∈ Dr and
|φ| ≤M everywhere in Dr. Then everywhere in Dr we have the estimate

|φ(z)| ≤Mr
|z − z0|
|r2 − z0z|

Proof. In order to prove this lemma we can consider the following linear
fractional mapping of Dr onto the unit disc D

µ : z → r
z − z0

r2 − z0z
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where µ−1 is the inverse mapping D → Dr.
Then the function

Ψ =
φ ◦ µ−1(z)

M
vanishes at 0 and bounded by 1 on D. So it satisfies the hypothesis of usual
Schwarz lemma and hence

|Ψ(z)| ≤ |z|
and ∣∣φ ◦ µ−1(z)

M

∣∣ ≤ |z|.
Replacing z by µ(z)

|φ(z)| ≤M |µ|
which proves that

|φ(z)| ≤Mr
|z − z0|
|r2 − z0z|

.

If r = M = 1 and z0 = 0 then we will obtain

|φ(z)| ≤ |z|

which is the usual statement of Schwarz lemma.

Lemma 3.4.2. Let a function f(z1, z2) be holomorphic with respect to each
variable z1 and z2 separately in the polydisc D = D(0, r) and it is also bounded
in D, then it will be continuous at each point of D with respect to both
variables.

Proof. For any two points zo, z ∈ D, we can write the increment of f(z1, z2)
as a sum of increments with respect to the individual coordinates as follows

f(z)− f(zo) =
(
f(z1, z2)− f(zo1, z2)

)
+
(
f(zo1, z2)− f(zo1, z

o
2)
)
. (3.5)

Let the both terms of above are functions φ1 and φ2 with variables z1 and
z2 respectively. Since the given function is bounded in D, then each of the
functions φ1 and φ2 will satisfy the general form of the Schwarz lemma, and
by applying this lemma on each term of the sum in Equation (3.5), we can
find that

φ1 = |f(z1, z2)− f(zo1, z2)| ≤M
r1|z1 − zo1|
|r2

1 − zo1z1|
,
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φ2 = |f(zo1, z2)− f(zo1 − zo2| ≤M
r2|z2 − zo2|
|r2

2 − zo2z2|
and

|f(z)− f(zo)| ≤M

(
r1|z1 − zo1|
|r2

1 − zo1z1|
+
r2|z2 − zo2|
r2

2 − zo2

)
.

In a unit bidisc at origin it will be

|f(z1, z2)− f(0, 0)| ≤M(|z1|+ |z2|)

which proves that f(z1, z2) is continuous with respect to the set of both
variables.

In the above lemma, we have proved that the boundedness of a function
implies its continuity. So now we will prove the boundedness of a function in
some bidisc, which follows from the continuity of f in each variable separately.

Lemma 3.4.3. (Osgood’s lemma)
Let there is a bidisc D = D1 × D2 = {z ∈ C2 : ‖z‖ < R}, where

D1 = {z1 ∈ C : |z1| < R} and D2 = {z2 ∈ C : |z2| < R}. If the function
f(z1, z2) is continuous with respect to z1 in D1 for any z2 ∈ D2 and is
continuous with respect to z2 in D2 for any z1 ∈ D1,then there exists a
smaller bidisc W ⊂ D in which f is bounded.

Proof. For a fix z1 ∈ D1 we can write

M(z1) = max |f(z1, z2)| : z2 ∈ D2.

Now consider the sets Sm such that Sm = {z1 ∈ D1 : M(z1) ≤ m}. These

sets Sm will be closed , since if z
(µ)
1 ∈ Sm for (µ = 1, 2...) and z

(µ)
1 → z1 then

z1 ∈ Sm because in fact |f(z
(µ)
1 , z2)| ≤ m for any z2 ∈ D2 and it is also given

that f is continuous in z1, so |f(z1, z2)| ≤ m for any z2 ∈ D2, which means
that M(z1) ≤ m. The Sm will form an increasing sequence and any point
z1 ∈ D1 will also belong to all the Sm except for finitely many because of the
boundedness.

Because Sm are closed and D1 ⊂ D1 = ∪Sm. So, if S1 = D1 ⇒ D1 ⊂ S1.
If S1 6= D1 ⇒ D1\S1 is open and there would exist a ball B1 in D1:

B1 ∩ S1 = ∅,
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likewise, if B1 6⊂ S2 ⇒ B1\S2 is open

⇒ B21 : B2 ∩ S2 = ∅.

So there would exist a sequence of balls B1 ⊃ B2 ⊃ ...Bm such that

zo1 ∈ ∩Bm 6= ∅

⇒ zo1 6∈ ∪Sm.
Which is a contradiction. So there will exist an SM containing some

domain ′G ⊂ D1 such that |f(z1, z2)| ≤ M for any z2 ∈ D2. Now if we
choose a bidisc ′W = {z1 : |z1 − zo1| < r} in ′G then we will have |f | ≤M in
W =′ W ×D2 which means that f is bounded in the small bidisc W .

Now, by using the holomorphy of f with respect to each variable sepa-
rately we will prove the boundedness of in the whole bidisc. We will do it
by the help of Hartogs lemma on subharmonic functions, and we will use the
following notations in this lemma

D1 = D(a,R),′W = D(a, r) where (r < R) and both are scalar)
D2 = {|z2| < R}, V = D1 ×D2 and W =′ W ×D2

Lemma 3.4.4. If the fun f(z1, z2) is holomorphic with respect to z1 in D1

for any z2 ∈ D2 and jointly holomorphic in a smaller bidisc W , then it is
holomorphic in the entire bidisc V .

Proof. Without lose of generality we can assume that a = 0. Since the given
function is holomorphic with respect to z1, so it can be represented by a
convergent power series for any fixed z2 ∈ D2 and any z1 ∈ D1.

f(z) =
∞∑
|k|=0

ck(z2)(z1)k (3.6)

for k = (k1, k2, ...kn−1). The coefficients of this series will be as follows

ck(z2) =
1

k!

∂|k|f(0, z2)

(∂z1)k
.

These coefficients will be holomorphic in the disc D2 because these are
the derivatives of a function which is holomorphic in z2. So the functions
1
|k| ln |ck(z2)| are subharmonic functions in D2.
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Let’s choose an arbitrary number ρ < R and since for any z2 ∈ D2

|ck(z2)|ρ|k| → 0 as |k| → ∞,

then for any z2 ∈ D2 we will have a |k| such that

1

|k|
ln |ck(z2) + ln ρ ≤ 0

lim
|k|→∞

1

|k|
ln |ck(z2)| ≤ ln (ρ)−1

lim
|k|→∞

1

|k|
ln |ck(z2)| ≤ ln

1

ρ
.

Since the function is holomorphic and bounded in W and let |f | ≤ M and
the Cauchy inequalities hold for any z2 ∈ D2,i.e.,

|ck(z2)|r|k| ≤M.

So for any z2 ∈ D2 and any |k| we will have

1

|k|
ln |ck(z2)| ≤ ln

M
1
|k|

r
≤ L.

These subharmonic functions satisfiy the hypothesis of Lemma 2.2.3. By
using this lemma we can find a number k0 for any σ < ρ, such that for all
|k| > k0 and for all z2, |z2| < σ, we will have

1

|k| ln |ck(z2)|
≤ 1

σ

and it can also be written as

|ck(z2)|σ|k| ≤ 1.

So from the last expression it follows that the series in Equation 3.6 con-
verges uniformly in anyD(0, σ′) and σ′ < σ. But the terms of this series
are continuous in z so the sum will be also continuous and hence it will be
bounded in D(0, σ′). We can assume this bidisc arbitrarily close to V and f
will be bounded in V and then by Lemma 3.4.2 it will be continuous in V
and hence by Theorem 3.3.6 it will be holomorphic in V .
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Now we can prove the fundamental theorem of Hartogs by the help of the
last three lemmas.

Hartogs’ Theorem: If the function f(z) where z = z1, z2, ...zj(j =
1, ..., n) is holomorphic at any point of the domain U ∈ Cn with respect to
each of the variables zj, then it is jointly holomorphic in U .

Proof. Again for the simplicity of presentation we will prove it for n = 2.
It will be sufficient to show that if f(z1, z2) is holomorphic separately in the
bidisc D(0, R) then it will be holomorphic in some bidisc with center 0.

Let D′1 = D(0, R
3

), then it follows that the function f(z1, z2) is continuous

with respect to z1 in D1 for any z2 in D2 = {|z2| < R} and with respect to z2

in D2 for any z1 ∈ D1.Then the function f will be bounded by Lemma 3.4.3
and hence it will be holomorphic in some bidisc W = D

′ × D2 whereas
D
′
= D(a, r) ⊂ D1

′.
Let us now consider the bidisc V = D1 ×D2 where D1 = D(a, 2R

3
). As,

V ⊂ D(0, R), so f is holomorphic with respect to z1 in D1 for any z2 ∈ D2

and it has been proved above that f is holomorphic with respect to z in W .
So, by Lemma 3.4.4 f is holomorphic with respect to both variables in V
and V also contains the point z = 0. Hence proved that f(z1, z2) will be
holomorphic in a bidisc with center 0.

3.5 Multiple power series and multicircular

domains

Most of the part of this section is based on [3] and [6]

Definition 3.5.1. M ⊂ Cn is called a multicircular set or a Reinhardt set if

a = (a1, ...an) ∈M ⇒ a′ = (eiθ1a1, ...e
iθnan) ∈M

for all real θ1, θ2, ...θn and an open multicircular set is called the multicircular
domain or Reinhardt domain.

Multicircular sets can be represented by their ”trace” in the space Rn
+, in

which all coordinates are positive.

Definition 3.5.2. If M is a multicircular set, then it’s trace is given by

trM = {(|a1|, ...|an|) ∈ Rn
+ : (a1, ...an) ∈M}.
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Definition 3.5.3. M ⊂ Cn is called a complete multicircular set or a com-
plete Reinhardt set if

a = (a1, a2, ...an) ∈M ⇒ a′ = (a′1, a
′
2...a

′
n) ∈M

when |a′j| ≤ |aj| for all j = 1, 2, ...n.

Since any function f that is holomorphic in the polydisc D(a, r) can be
expanded in a multiple power series with center at a. In the case of a single
variable, the set of points of convergence of this series will be an open disc.
But the situation will be different in case of several complex variables.

For example:
1

1− z1z2

=
∞∑
α=0

zα1 z
α
2 .

The set of convergence of the above series in C2 is the complete Reinhardt
domain {|z1z2| < 1}.

Definition 3.5.4. Let S be the set of the points z ∈ Cn where the power
series

∞∑
|α|=0

cα(z − a)α (3.7)

converges absolutely then the interior S0 of S is called the domain of conver-
gence of the series.

Theorem 3.5.5. The closed polydisc D = {z ∈ Cn : |zj − aj| ≤ |z0
j − aj|

belongs to So, for the point z0 belongs to the domain of convergence of the
power series (3.7) and this series converges uniformly and absolutely in D.

Proof. Since z0 ∈ So and the interior So is open, so there exists a point
ζ ∈ So such that |ζj − aj| ≥ |z0

j − aj|, j = 1, 2, ..., n and the power series
converges at point ζ. As D ⊂⊂ {z ∈ Cn : |zj − aj| < |ζj − aj|}, so by Abel’s
lemma the series converges uniformly and absolutely in D.

The above theorem can also be described as follows

Proposition 3.5.6. The domain of convergence So of a multiple power series
with centre 0 is a complete multicircular domain.
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Proof. Let So be nonempty and a is an arbitrary point in So. So So contains
a ball B(a, r), and this ball contains a point b such that |bj| > |aj| ,∀j.
Since the multiple power series converges absolutely at b, so it will also be
convergent throughout the polydisc ∆(0, ...0; |b1|, ...|bn|). So this polydisc in
So will contain all points |a′j| ≤ |aj|. Hence So is a complete multicircular
set.

Theorem 3.5.7. Any holomorphic function f in a complete Reinhardt do-
main D ⊂ Cn with center at a is represented by the Taylor series expansion
in this domain.

f(z) =
∞∑
|α|=0

(z − a)α. (3.8)

Proof. For an arbitrary z0 ∈ D, the polydisc

U = {|zj − aj| ≤ |z0
j − aj|} ⊂⊂ D.

By Theorem 3.3.3 f is represented in U by series (3.8), with coefficients com-
puted in Theorem 3.3.5. Hence f is represented as Taylor series expansion
in D.

It means that complete Reinhardt domains play the same role for func-
tions of several complex variables as discs do for functions of a single complex
variable.

3.6 Multiple Laurent series on general multi-

circular domains

This section is based on [6].
The analog of Laurent series in a single variable for general n ≥ 2 is a

Laurent series in n variables.

Theorem 3.6.1. Let f be holomorphic on a connected multicircular domain
D ⊂ Cn(n ≥ 2). Then there is a unique n variable Laurent series with center
0 and constant coefficients. This series converges to f at each point of D for
some ordering of its terms.

The series is ∑
α1∈Z...αn∈Z

cα1...αnz
α1
1 ...zαnn (3.9)
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and the coefficients are given by the formula

cα1...αn =
1

(2πi)n

∫
Γ(0,r)

f(z)

(z1)α1+1...(zn)αn+1
dz1...dzn (3.10)

for any r = r1, r2, ...rn in trace of the D. The series will be convergent
absolutely on D and will converge uniformly to f on any compact subset of
D.

Proof. For the simplicity of presentation we will consider the case for n = 2.
Let there is an annular domain

Aδ(r) = {(z1, z2) ∈ C2 : rj − δj < |zj| < rj + δj, j = 1, 2}.

For r = (r1, r2) > 0 and 0 < δ = (δ1, δ2) < r. Let there is a small ε < 1
2
r

such that A2ε(r) also belongs to D. If there is a series as given in (3.9) and
let it’s terms form a bounded sequence at each point of A2ε(r) = rj − 2εj ≤
|zj| ≤ rj + 2εj. Then from the boundedness of the sequence {cαzα} at the
point z = r + 2ε it follows, that the power seris∑

α1≥o,α2≥0

cαz
α1
1 zα2

2

converges uniformly and absolutely on the polydisc ∆(0, r+ ε) and hence on
Aε(r). Now let us consider another point z = (r1−2ε1, r2 +2ε2) and by using
the boundedness of the sequence at this point it follows that the power series
in two variables converges uniformly and absolutely for |z1| > r1 − ε1 and
|z2| < r2 + ε2 and hence on Aε(r). Similarly by using the boundedness of the
sequence at z = (r − 2ε) and at z = (r1 + 2ε1, r2 − 2ε2), it follows that the
given series converges uniformly and absolutely on Aε(r) and the sum will
be f(z) for any arrangement of terms.

Now if we integrate termwise ,the absolutely and uniformly convergent
series

f(z)z−β−1 =
∑
α∈Z2

cαz
α−β−1 [−β − 1 = −β1 − 1,−β2 − 2]

over Γ(0, r) in Aε(r) ,then we will get

1

(2πi)2

∫
Γ(0,r)

f(z)z−β−1dz =
∑
β

cβ (3.11)
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where we have used that

1

2πi

∫
C(0,rj)

z
αj−βj−1
j dzj = 1 for αj = βj

and
= 0 for αj 6= βj.

Hence the coefficient formula has been proved and if f is represented by the
series (3.9) then the coefficient formula is given by (3.10) and this represen-
tation is unique. Now if K is a compact subset of D, then the Laurent series
will converge uniformly and absolutely on K since this compact set can be
covered by finitely many annular domains Aε(r) such that A2ε(r) ⊂ D.

Now we will see that such a series really exists for a function f on D and
Γ(0, r) ⊂ D. By Theorem 1.1.7, the following will be true for s2 < r2∫

C(0,r2)

f(z1, z2)z−α2−1
2 dz2 =

∫
C(0,s2)

f(z1, z2)z−α2−1
2 dz2

where z1 ∈ C(0, r1) = C(0, s1). Multiplying above expression by z−α1−1
1 and

integrating with respect to z1 we can see that

cα(r) = cα(s)

which means that coefficients are independent of r. So we can associate the
coefficients in (3.10) with f . Now for a point w in D with |wj| = rj, j = 1, 2
,we can observe that

|cα1cα2w
α1
1 wα2

2 | =
∣∣∣ 1

(2πi)2

∫
Γ(0,r)

f(z)
(w1

z1

)α1
(w2

z2

)α2 dz1

z1

dz2

z2

∣∣∣ ≤ sup
Γ(0,r)

|f(z)|.

(3.12)
So with these coefficients each term of the series in (3.9) will form a bounded
sequence at each point of D.

Now let for a fix r > 0 in trace of D, Aε(r) be an annulus ,where ε < r such
that Aε(r) belong to D. If we fix z1 in the annulus r1−ε1 < |z1| < r1+ε2 ,then
the function becomes holomorphic in z2 on the annulus r2−ε2 < |z2| < r2+ε2
and it can be represented by a one variable absolutely convergent Laurent
series by Theorem 1.3.3

f(z1, z2) =
∑
α2∈Z

dα2(z1)zα2
2 ; z ∈ Aε(r) (3.13)
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with coefficients

dα2(z1) =
1

2πi

∫
C(0,r2)

f(z1, z2)z−α2−1
2 dz2. (3.14)

These coefficients will be holomorphic function of z1 on the annulus r1− ε1 <
|z1| < r1 + ε1 by Theorem 3.3.8 and hence these coefficients can also be
represented by absolute convergent Laurent series

dα2(z1) =
∑
α1∈Z

dα1α2z
α1
1 (3.15)

with

dα1α2 =
1

2πi

∫
C(0,r1)

dα2(z1)z−α1−1
1 dz1. (3.16)

Substituting the values from (3.15) into (3.13) we will get

f(z1, z2) =
∑
α2

{∑
α1

d1α2z
α2
1

}
zα2

2 ∈ Aε(r) (3.17)

and

dα1α2 =
1

(2πi)2

∫
C(0,r1)

{∫
C(0,r2)

f(z1, z2)zα2−1
2 dz2

}
zα1−1

1 dz1. (3.18)

Since f is continuous on Γ(0, r), so the above equation can be written as

dα1α2 =
1

(2πi)2

∫
Γ(0,r)

f(z1, z2)z−α1−1
1 z−α2−1

2 dz1dz2. (3.19)

It can be noticed that

dα1α2 = cα1α2(r) = cα1α2 .

Hence f can be represented locally and globally by a series on D as given in
(3.9) and (3.10). And from (3.12), the terms form a bounded sequence at
each point of D. Thus the series converges absolutely and hence converges
to f on D for any arrangement of the terms.
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Chapter 4

Hartogs’ Extension
Phenomenon

This chapter is based on [6] and [4].
The subject of analytic continuation reveals a very remarkable difference

between several complex variables n ≥ 2 and a single variable. For a domain
D in C and any point a ∈ ∂D there always exist an analytic function f in
D which can not be continued analytically across the point a. By suitable
distribution of singularities along ∂D, we can construct analytic functions
on D which cannot be continued analytically across any boundary point and
D is called the maximal domain of existence of these functions. However
in Cn with n ≥ 2 there are many domains D in which all holomorphic
functions can be continued analytically across a certain part of the boundary.
Several examples of this phenomenon that we are going to discuss in this
chapter were discovered by Friedrich Hartogs around 1905 and known as
Hartogs’ Extension Phenomenon. A general form of the Hartogs extension
theorem was obtained by means of the so-called ∂̄-problem, a much more
recent technique appeared in the 60s, see [5].

4.1 Analytic Extension for an analytic func-

tion on a punctured polydisc

We start with an original Hartogs’ result showing that the boundary of a
domain of holomorphy can not be arbitrary. The domain in the following
theorem is known as Hartogs’ figure.
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Figure 4.1: Hartogs figure
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Theorem 4.1.1. If f is an analytic function on a Hatrogs figure D = D1∪D2,
where

D1 = {(z1, z2) ∈ C2 : |z1| < δ, |z2| < 1}

and
D2 = {(z1, z2) ∈ C2 : |z1| < 1, 1− δ < |z2| < 1},

then f extends to be analytic on the whole unit bidisc

D = {(z1, z2) : |z1| < 1 and |z2| < 1}.

Proof. If we fix z1 then the function f(z1, z2) is analytic in an annulas 1−δ <
r < 1 and hence can be expanded in Laurent series

∞∑
k=−∞

ck(z1)zk2

and let

g(z2) = f(z1, z2) =
∞∑

k=−∞

ck(z1)zk2

where the co-efficients are

ck(z1) =
1

(2πi)n

∫
|z2|=r

f(z1, z2)

zk+1
2

dz2 (4.1)

where r is an arbitrary radius such that 1− δ < r < 1.
This analytic function g(z2) can be extended analytically to the unit

bidisc D(0, 1) if all co-efficients with k < 0 becomes 0.
The function f(z1, z2) is holomorphic and hence continuous jointly in both

variables and it will be holomorphic in z1 when |z1| < 1 and |z2| = r, therefore
the itegral in equation (4.1) is a holomorphic function of z1 by Theorem 3.3.8.
It follows that ck(z1) is a holomorphic function of z1 in the unit disc. So for
|z1| < δ, all coefficients of the Laurent series with k < 0 become 0 and by
uniqueness Theorem 3.3.9 the coefficients ck(z1) for all k < 0 becomes 0 in
the whole unit disc.

So the Laurent series for f(z1, z2) becomes the Maclaurin series

∞∑
k=0

ck(z1)(z2)k
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for all values of z1 in the unit disc.
If this power series with holomorphic coefficients converges uniformly and

absolutely on every compact subset of E = {(z1, z2) : |z1| < 1, |z2| < r}
then by Abel’s lemma the function f(z1, z2) is holomorphic in the whole unit
bidisc. Let E0 = {|z1| < m and |z2| < r} be a compact subset of E, where
m < 1 is an arbitrary fix number. Since the function f(z1, z2) is continuous
so |f(z1, z2)| ≤M on the compact set for |z1| < 1 and |z2| = r, where M is a
finite number. And we will get the estimation of integral in (4.1) as follows

|ck(z1)| ≤ M

rk

and similarly for |z1| < m and |z2| < n where n an arbitrary positive number
< r

|ck(z1)| ≤M
(n
r

)k
and

∞∑
k=0

M
(n
r

)k
is a convergent series. So by Comparison test

∞∑
k=0

ck(z1)(z2)k ≤
∞∑
k=1

M
(n
r

)k
converges uniformly and absolutely and hence by Abel’s lemma f(z1, z2) is a
holomorphic function in the unit bidisc.

4.2 Spherical Shell Theorem

Theorem 4.2.1. Let f is a holomorphic function in a spherical shell {(z1, z2) ∈
C2 : σ2 < |z1|2 + |z2|2 < 1} for a positive σ < 1. Then f can be extended
holomorphically to the whole unit ball.

Proof. The given function is holomorphic in the spherical shell, if we fix z1

then the function becomes holomorphic in an annulus σ < |z2| < 1 and hence
by Theorem 1.3.3 can be represented by one variable Laurent series

f(z1, z2) =
∞∑
−∞

ck(z1)zk2
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Figure 4.2: Spherical shell
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ck(z1) =
1

2πi

∫
|z2|=r

f(z1, z2)

zk+1
2

dz2 (4.2)

where r is an arbitrary radius between 1 and 1 − σ. It follows from the
Theorem 3.3.8 that the integral on the right hand side of Equation (4.2) is
a holomorphic function of z1 when |z1| < 1 and |z2| = r and hence ck(z1)
is a holomorphic function of z1 in the unit disc. Here it also is noted by
Theorem 3.6.1 that for each fixed z1 in the unit disc there is a neighborhood
U of z1 and a corresponding radius s < r such that the cartesian product
U × {z2 ∈ C : |z2| = s} is contained in a compact subset of the spherical
shell.

The above Laurent series is the Maclaurin series when |z1| < σ. Which
means that for k < 0 the coefficients will become zero when |z1| < σ. But
by Theorem 3.3.9 the holomorphic function ck(z1) will be zero in the whole
unit disc for k < 0 and hence

f(z1, z2) =
∞∑
0

ck(z1)zk2 .

So f has a power series representation and we can see from Theorem 4.1.1
that, this series converges uniformly on any compact subset of {(z1, z2), |z1| <
1 and |z2| < r}. Hence f will be holomorphic in the unit ball.

4.3 Inhomogenous Cauchy-Riemann equation

for n ≥ 2 with compact support

The differential form

f =
n∑
j=1

(ujdzj + vjdzj)

is said to be defined and of class Cp on Ω ⊂ Cn if the coefficients uj and vj
are defined and of class Cp on Ω as functions of real variables x1, y1, ...xn, yn.
If all coefficients vanish on an open subset of Ω then the above form also
vanishes on that open subset.

Support of f :Let there be a maximal open subset M of Ω ⊂ Cn on
which f = 0, then the complement of M is the support of f .

The 1-form:The above differential form is called a (0, 1) form or a 1-form
if it does not contain any ujdzj.
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The ∂-Equation:
Let D be a domain in Cn. Then the system of PDE’s

∂u

∂zj
= vj on Cn for j = 1, 2...n

subject to the integrability condition

∂vj
∂zk

=
∂vk
∂zj

∀ j 6= k

are called the ∂-equation or ∂-problem.

Theorem 4.3.1. Let M be a compact subset of Cn, n ≥ 0 with connected
complement M c = Cn −M .

Let v =
∑n

j=1 vjdzj be a (0, 1) form of class Cp (1 ≤ p ≤ ∞) on Cn whose
support belongs to M . Then the system of equations

∂u

∂zj
= vj , j = 1, 2..., n

subject to the condition

∂vk
∂zj

=
∂vj
∂zk

, ∀ j, k

has a unique solution u of class Cp on Cn with support in M .

Proof. For simplicity of presentation we will prove it for n = 2. If we fix z2

then the Cauchy-Green transform of v1 with respect to z1 is

u(z1, z2) = − 1

π

∫
C

v1(ζ, z2)

ζ − z1

dεdη (4.3)

= − 1

π

∫
C

v1(z1 + ζ, z2)

ζ
dεdη. (4.4)

Since v1(z1, z2) which is the function of variable z1 is smooth and has compact
support so, by Theorem 1.2.3, the above transform (4.4) provides the solution
of the equation

∂u

∂z1

= v1. (4.5)
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Now, in order to obtain an expression for ∂u
∂z2

we will take (4.3) and

∂u

∂z2

= − 1

π

∫
C

∂v1(ζ, z2)

∂z2

1

ζ − z1

dεdη. (4.6)

Since,
∂v1

∂z2

=
∂v2

∂z1

.

Using above integrability condition in (4.6) we will get

∂u

∂z2

(z) = − 1

π

∫
C

∂v2

∂z1

(ζ, z2)
1

(ζ − z1)
dεdη. (4.7)

For fixed z2, the smooth function v2(z1, z2) of one variable z1 also has bounded
support. So by corollary 1.2.2, the Equation (4.7) will be equal to v2(z1, z2)

∂u

∂z2

= v2. (4.8)

Hence from Equation (4.5) and (4.8),

∂u

∂zj
= vj , j = 1, 2

Since v is zero outside M , so it follows that ∂u = 0 throughout M c and hence
u is holomorphic on the domain M c. Infact u = 0 on M c, Let us prove it.

Let there is a ball B(0, R) of radius R > 0 such that the set M is contained
in the ball. So v1(ζ, z2) = 0 for |z2| > R and for arbitrary ζ. Thus for z1 and
all |z2| > R, u(z1, z2) = 0. So that u = 0 on an open subset of M c. But by
uniqueness Theorem 3.3.9, u = 0 throughout the connected domain M c

4.4 Smooth approximate identities and cutoff

functions

This section follows [6].
In the next section, we will prove the general result of the Hartogs’ ex-

tension phenomenon. In that proof, we will use the smooth cutoff function
and construct the smooth approximate solution. Cutoff functions can be
constructed by the help of suitable C∞ functions.
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For example, the test function which is C∞ on R and is defined as

σ(x) =

{
e−

1
x for x > 0

0 for x ≤ 0.

Now we define a C∞ function τ on R with support [−1, 1]

τ(x) = σ{2(1 + x)}σ{2(1− x)} =

{
exp

(
− 1

1−x2

)
for |x| < 1

0 for |x| ≥ 1.

In case of Rn the function τ |x| provides a C∞ function, where |x|2 =
x2

1 + ...+ x2
n and the support of τ is the closed unit ball B(0, 1). In order to

make the integral over Rn equal to 1 we introduce ρ(x)

ρ(x) = cnτ(|x|) =

{
cn exp

(
− 1

1−x2

)
for |x| < 1

0 for |x| ≥ 1 , x ∈ Rn

where
∫
Rn ρ(x)dx = 1 because of the choice of constant cn.

From the last function, the important family of C∞ functions can be
derived as follows

ρε(x) =
1

εn
ρ
(x
ε

)
, x ∈ Rn, ε > 0

with support B(0, ε). It can be noted that by change of scale, the following
equality will hold∫

Rn
ρε(x)dx =

∫
B(0,ε)

1

εn
ρ
(x
ε

)
dx =

∫
B(0,1)

ρ(x)dx = 1.

Approximate Identities:
The standard example of C∞ approximate identity on Rn relative to con-

volution is the above family of functions {ρε} ,ε→ 0 of ρ(x) and ρε(x). The
family of functions {ρε} is said to be an approximate identity for convolution
if it possess the following properties

1. ρε(x)→ 0 as ε→ 0, outside every neighbourhood of 0.

2. ρε is integrable over Rn and
∫
Rn ρε(x)dx = 1.
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3. ρε(x) ≥ 0 throughout Rn.

From above three properties, it follows that for any continuous function f
on Rn of compact support, when ε→ 0

(f ∗ ρε)(x) =

∫
Rn
f(x− y)ρε(y)dy → f(x)

and

f(x) =

∫
Rn
f(x)ρε(y)dy.

Proposition 4.4.1. For any set N in Rn and ε → 0, there is a cutoff
function ω(0 ≤ ω ≥ 1) on Rn which is equal to 1 on N and equal to zero at
all points of Rn at a distance ≥ 2ε from N .

Proof. Let there is a set N in Rn and Nε is the ε neighbourhood of N .
Further, let χε be the characteristic function of Nε, which means that χε
is 1 on Nε and is zero elsewhere. Now we will obtain the required ω as a
convolution of the characterestic function with the C∞ approximation ρε to
the identity

ω(x) = (χε ∗ ρε)(x) =

∫
Rn
χε(x− y)ρε(y)dy =

∫
B(0,ε)

χε(x− y)ρε(y)dy (4.9)

Or

ω(x) =

∫
Rn
χε(y)ρε(x− y)dy =

∫
B(0,ε)

χε(y)ρε(x− y)dy. (4.10)

If we take x ∈ N then |x− y| will be < ε for all y ∈ B(0, ε), So (x− y) ∈ Nε

and χε(x− y) = 1 throughout B(0, ε) and then Equation (4.9) will become

ω(x) =

∫
B(0,ε)

ρε(y)dy

and hence
ω(x) = 1.

Now if we take x outside N2ε then |x− y| > ε for all y belongs to B(0, ε), so
the point (x− y) will lie outside Nε and hence

ω(x) = 0.
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It can also be noted by definition of ρε that ,0 ≤ ω(x) ≤
∫
ρε = 1 throughout

Rn.
By the method of Theorem 4.3.1, the continuous partial derivatives of ω

exist and by repeating differentiation under the integral sign we can get the
higher-order partial derivatives of ω. Hence ω be a smooth function.

4.5 Hartogs’ Continuation Theorem

This is the general version of Hartogs’ Phenomenon.
This theorem follows [6]

Theorem 4.5.1. If K is a compact subset of an open set D in Cn(n ≥ 2)
and D/K is connected, then every analytic function f on D/K extends to
an analytic function on D.

Proof. Let Kε be the ε neighborhood of K. Choose ε such that 0 < ε <
1
3
d(k, ∂D) and S = Cn−K3ε, so that the the boundary ∂D is contained in S.

And the unbounded component of S will be denoted by S∞. By Proposition
4.4.1 there is a C∞ cutoff function ω on Cn ∼ R2n which is equal to 1 on S
and equal to zero on Kε.

Now we will find a holomorphic function F on D which will satisfy a cer-
tain condition and for that purpose first we construct a smooth approximate
solution φ

φ =

{
ωf on D −K
0 on K

and ω = 1 on D ∩ S so φ = f on D ∩ S. So φ provides a C∞ continuation of
f .

Now in order to obtain the required holomorphic extension F of f , we
will subtract the non analytic part u from φ

F = φ− u . (4.11)

From uniqueness Theorem 3.3.10, it will be sufficient to show that F be
hlomorphic on D and F will be equal to f on a subdomain of D − K. If
we take the subdomain D ∩ S∞, then u will be 0 there, because φ = f on
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D ∩ S∞ and f is holomorphic and hence ∂F = 0. So, it follows that u solves
the ∂ problem

∂φ = ∂u on D, u = 0 on D ∩ S∞. (4.12)

φ can be extended to a C∞ (0, 1)-form v on Cn,

v =

{
∂φ on D

0 on Cn −D .

The form v will satisfy the integrability conditions ∂vk
∂zj

=
∂vj
∂zk

. It can also
be noted that v has compact support, as support of v ∈ Cn−S, which is the
part of the compact set M = Cn − S∞

Hence by theorem 4.3.1 there exists a unique u such that

∂u = v on Cn, u = 0 on M c = S∞ .

Now by Equation (4.12) and the expression after that assures that F = φ−u
is holomorphic on D. As φ = f on D ∩ S∞, so F = f throughout the
connected domain D −K. Hence f can be extended analytically on D.
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Conclusion

We proved the fundamental theorem of Hartogs, which states that separate
analyticity implies joint analyticity. This is one of the most interesting fea-
tures of analyticity in several complex variables. There is no analog of this
feature in the case of a single complex variable or for the smooth functions
of several variables.

For example the function

f(x, y) =
xy

x2 + y2
, f(0, 0) = 0

is differentiable with respect to the both variables separately, but is not
continuous at the point (0, 0) ⊂ R2.

We also proved different results and general form of Hartogs’ extension
phenomenon, which reveals a basic difference between the analytic function
of a single complex variable and analytic function of the several variables.
For the proof, we used the ∂̄ - technique which is one of the main tools of
modern complex analysis.
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