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Preface
This thesis is the final work of our Master’s degree in Industrial Economics. The
thesis consists of two separate papers, where both have their own abstract, content-list,
chapters and reference-list. We first present paper one: "Impact of energy efficiency
on house prices and the role of temperature" and then paper two: "Impact of
temperature on house prices in Norway". The first paper has been our main focus,
and is the more comprehensive work of the two papers. Writing the first paper gave us
access to large and well-detailed datasets and as a result, we decided to write the second
paper to utilize the data even further. While we are proud and have put a lot of effort in
to both papers, paper one is more finalized compared to paper two.
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Abstract

Energy Performance Certificate, a measure of a dwelling’s energy efficiency, is a leg-
islatively approved instrument for reducing energy consumption in households. We
empirically investigate the impact of energy efficiency on house prices and how the impact
vary with the type of dwelling and in disparate climate zones using average temperature.
To accomplish this, we utilize Norwegian microdata, through a large and detailed dataset
covering 222 392 dwellings with energy ratings. We find that there are increasing price
premiums with increasing energy efficiency, and the effect is more significant for detached
houses compared to apartments. Furthermore, the energy efficiency of buildings is valued
more for houses in cold areas.
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Chapter 1

Introduction

Over the past decades, human activity has caused an increase in the release of greenhouse
gases (Skripnuk & Samylovskaya, 2018; Shine & Forster, 1999). One major contribution is
emissions caused by energy usage in the building sector and especially within the heating
of dwellings. Since 2010, building-related CO2 emissions have increased by 1% annually.
Moreover, in 2015, 82% of total energy consumption in buildings was supplied by fossil
fuels (Environment & Agency, 2017). In addition, 40% of total energy consumption in
Europe stems from the building sector (EU, 2002). Improvements in this sector will be a
major step towards achieving a reduced carbon footprint and improved environmental
performance by reducing the release of greenhouse gases.

The growing concern regarding man-made climate change has resulted in increasing
policy focus on reducing greenhouse gas emissions. This has rooted mitigation strategies in
many markets, including real estate, through the retrofitting of buildings to achieve more
energy-efficient homes. The introduction of mandatory Energy Performance Certificates
(EPC) for all dwellings is one of these strategies1, as it is intended to provide buyers
with reliable information regarding the energy performance of dwellings. The desired
result is increased awareness for energy performance of buildings and reducing the energy
consumption, through affecting the decision-making process of home-buyers and allowing
existing owners to calculate for potential savings from investing in energy efficiency
improvements and contribute to the modern green energy society.

Since the launch of EPC, researchers have investigated whether the use of such cer-
tificates has had any significant impact on the real estate market (Bio Intelligence Service
& IEEP, 2013). However, there is no clear consensus in the literature, and previous
studies have catered to a variety of conclusions. A well-known and one of the first studies
in the field of EPC and economy, Brounen & Kok (2011), empirically analyzed the
residential real estate in the Netherlands. They concluded that there exists a positive

1The framework was introduced by the Energy Performance of Buildings Directive (directive
2002/91/EC), which is the main policy instrument to promote the energy efficiency of buildings in
the European Union

1



Chapter 1. Introduction 2

price premium for dwellings with higher energy ratings such as A (10%), B (5.5%) and
C (2%). Using other geographical regions, other studies confirm the positive correlation
between EPC and house price, however, with varying strength (Cerin et al., 2014; Fuerst
et al., 2015, 2016; Bisello et al., 2020; de Ayala et al., 2016). Similar pattern was found
even for rental prices in Ireland (Hyland et al., 2013). Furthermore, Fleckinger et al.
(2019) theoretically presented the short term effect of the EPC as being a tool to reduce
energy use and increase willingness to invest in energy efficiency.

Although there is empirical and theoretical evidence indicating a correlation between
EPCs and house prices, a survey-based study in the Netherlands found that only 10%
take EPC classification into account when buying a dwelling (Murphy, 2014). Likewise,
Lainé (2014) and Amecke (2012) drew similar survey-based conclusions for the UK and
Germany, respectively. This might indicate that the reported correlations are driven by
uninvestigated confounders, or that the phrasing of the questioning hindered to capture
the true effect of EPCs on the decision-making process.

In the context of Norway, findings from the Swedish real estate market is particularly
interesting for our study, mainly because it is a country comparable in size, infrastructure,
and geographical location. Wahlström (2016) found no price premium related to energy
consumption in dwellings, following the same path, Hårsman et al. (2016) found no price
premium related to the EPCs. In contradiction, Cerin et al. (2014) investigated the
impact of energy ratings in the Swedish housing market, and identified a positive price
premium for higher ratings. Additionally, Wilhelmsson (2019) found evidence of EPCs
being appreciated to a greater extent in the northern and colder parts of Sweden.

The intersection of energy efficiency and house prices in disparate climate zones is
rarely discussed in the existing literature. In fact, we find few studies focusing on this
topic; Dell’Anna et al. (2019) found evidence of EPCs being appreciated differently for
Barcelona and Turin, and the differences in climate. In California, Kahn & Kok (2014)
concluded that houses labeled "green" have higher price premiums in warmer areas with
a greater energy need for cooling.

To the authors’ best of knowledge, there has to date only been two studies conducted
with Norway as a geographical area of interest, but limited to the capital, Oslo. Utilizing
transaction data of dwellings, Olaussen et al. (2017) were able to perform a quasi-natural
experiment by applying a hedonic price model in the periods pre- and post-implementation
of the EPCs in Norway. The results revealed price premiums being present even before
the implementation of the EPC, and thereby argue that the price premium found are not
associated directly with the implementation of EPCs. Building on the previous study,
they further analyzed the results while considering energy price, however, their initial
conclusion remains (Olaussen et al., 2019).

Another limitation of Olaussen et al. (2017, 2019), is that the limited geographical
location did not allow for meteorological considerations. Like Sweden, the Norwegian
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climate is relatively cold, and the energy efficiency of buildings is likely of greater
importance than in countries with a warmer climate. Climatic conditions also vary within
Norway; not only is northern Norway much colder than the southern Norway, but areas
further from the ocean have a significantly different climate compared to the coastal
areas. Therefore, Norway is a perfect country to study with regard to this topic.

To overcome the limitation of previous studies, we accessed open weather data from
The Norwegian Meteorological Institute2 and established corporate collaborations (Alva
Technologies and ENOVA SF) to compose a complete dataset of all sales in Norway over
the last ten years with energy labeling and historical meteorological information. Energy
consumption is highly correlated with temperature regulation of buildings, and it is
therefore of interest how house prices vary with climate and energy efficiency. Our large
dataset allows us to investigate the impact of climate and energy efficiency separately for
each building type. Which ultimately can be used to evaluate the current use of EPC as
a measure for energy efficiency and to cater to the solution of reducing the energy usage
in the building sector.

We find that in Norway, houses with higher energy efficiency are sold at higher
prices. Our estimates show a clear increasing price premium as we move from the lowest
rating (G) to the highest (A). This relationship is stronger in colder regions where a
higher degree of heating is needed throughout the year. Moreover, our results indicate
that energy efficiency does not matter equally for all building types. We find that the
price of detached dwellings is significantly more dependent on energy efficiency, compared
to apartments.

Part one of the thesis proceeds by first providing an explanation of the EPC scheme
in Norway in Section 2. Section 3 presents an exploratory analysis of the data. Section 4
presents the methods used and discusses the results. Section 5 concludes.

2https://frost.met.no

https://frost.met.no


Chapter 2

Background

In Norway, the EPCs were first introduced in 2010 and implemented as mandatory for
all new buildings, private dwellings for sale, and all commercial buildings exceeding 1000
square meters. The Norwegian EPC is composed of two independent components:

• The energy rating, which ranges between the characters A and G in a letter-scale.
The scale is defined such that character A indicates the highest energy efficiency,
while G indicates worst. The rating is purely based on estimated delivered energy
per square meter.

• The heating rating, which is given in the form of a color from a scale (shown
in Figure 3.3) ranging from red to green, and ranks the building according to the
heating system installed, i.e., the percentage of heating covered by electricity, oil,
gas, etc. The green color indicates the best heating rating (1), while red indicates
the worst (5) (ENOVA SF, 2019).

Moreover, there are two main types of certificates in Norway. The type of certificate
issued is determined by the level of dwelling-details attached in the application.

• Simple: A certificate only containing the basic characteristics of a dwelling, man-
ually inserted by the applicant. The rest of the dwelling-attributes are automated
standardized values for the dwelling-type.

• Advanced: Certificates containing a more extensive level of details about a
dwelling, ranging from the shape of each floor and walls to roof structure with a
higher degree of technical information.

When applying for a certificate, the applicants can choose to do it themselves or,
alternatively, have a qualified energy advisor who meets the competency requirements to
aid in the process. A qualified expert is an individual who holds some form of relevant
education, usually a university degree, and is approved by an accreditation agency

4
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(Arcipowska et al., 2015). A certificate issued by an expert often contains additional
information retrieved from an advanced external computational tool and the EPC will
include precise computational data used to categorize the dwelling.

The vast majority of certificates issued the last decade is of the type simple, typically
carried out through self-assessment by home-owners. Norway is among the very few
countries that allow a self-assessment option. However, this option remains only for
owners of existing buildings.

Originally when the EPC was introduced, the energy rating scale was designed with
other energy requirements, compared to recent time. The latest change was in June 2015
where the energy requirements were tightened for obtaining a high rating(A/B), and
buildings constructed according to the minimum criteria listed in Regulations on technical
requirements for building works TEK10, published by Direktoratet for byggkvalitet, was
set as the limit for obtaining a rating C. However, the follow-up regulations implemented
in the new building regulation TEK17 introduced in 2017 with even tighter energy
requirements, are yet to be implemented in the energy rating scale.

According to ENOVA SF’s official statistics1, a total of approximately one million
certificates have been issued in Norway, indicating EPC coverage of approximately 38%
of all dwellings2. Furthermore, there is evidence indicating a lack of attention towards
the EPC among home-buyers and real-estate agents in Norway (ENOVA SF, 2019).

Potential explanations to the lack of attention towards EPC are 1) home-owners
may have not felt the need of improving energy features because of limited knowledge
about EPC, 2) the current building legislation has made it hard for older buildings
to achieve a good grade without major renovations, and 3) it is also believed that the
current certificate composed of two different ratings is too complex (ENOVA SF, 2019).

Recognizing these flaws in the current system in Norway, it is evident the system is
yet to reach its full potential. As a consequence, several instances led by ENOVA SF,
has called for a change in the energy labeling scheme (Energimerkeordningen) and is
currently working on a more accurate and simplified energy labeling scheme. Expected
modifications include a merged total rating instead of two different ratings, enhanced
design, and a more sophisticated calculation formula with incorporating the effect of
electric power (ENOVA SF, 2019).

Not only is a renewal of the EPC scheme in Norway in development, but recently
the Climate bonds standard and certification scheme3 (Technical Expert Group, 2019a)
was introduced. Briefly explained, this a scheme for further increasing the reduction of

1As of today, the state-owned enterprise Enova SF, is responsible for issuance and maintenance of the
EPC program in Norway.

2There are approximately 2.6 million dwellings in Norway. Assuming a 1:1 relationship between EPC
and dwelling, correspond to a coverage of 38%. However, as a dwelling may hold several certificates, the
actual coverage may be significantly lower.

3https://www.climatebonds.net/certification

https://www.climatebonds.net/certification
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greenhouse gases in the building sector, while utilizing the EPC scheme to issue "green"
bonds and loans for energy-efficient buildings. In the real-estate market, the scheme has
introduced "green" loans with a lower mortgage rate when buying dwellings with energy
ratings A and B (Technical Expert Group, 2019b), or if investing in energy improvements
in new or existing dwellings.



Chapter 3

Data

3.1 Datasets

The data was acquired by affiliating with two independent companies, Alva Technologies
and Enova SF. Alva Technologies provided us with two large and well-detailed datasets
containing transaction history for dwellings in Norway and several characteristics of each
dwelling. Both datasets contain an internal identifier with an ID linking each entry to a
dwelling.

Enova SF provided us with a dataset containing information regarding energy
characteristics and performance certificates for dwellings. The dataset contains all
energy performance certificates which have been quality assured and verified in the land
register, thereby not containing all certificates issued in total in Norway. Additionally, a
single dwelling may have several certificates, and duplicates occur. Some of the entries
also contain values regarding the energy consumption of the dwelling, however, only if
manually inserted by users when applying for an EPC.

In addition, we utilize freely available meteorological data for Norway. We use
the MET Frost API developed by the Meteorological Institute of Norway, and extract
meteorological data for each specific dwelling, in particular temperature data, which was
transformed into Heating Degree Days (HDD). An overview of the datasets is displayed
in Table 3.1.

Table 3.1: Overview of the Datasets

Dataset Type size(n) Source Time-span
Dwelling characteristics CSV 2 572 317 Alva Technologies
Transactions history CSV 2 792 731 Alva Technologies Jan 1991-Dec 2019
EPC CSV 420 975 Enova SF Dec 2009-Dec 2019
Meteorological data API MET Frost API

7
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3.2 Data Pre-Processing

3.2.1 Data Merging

The first step is to merge the datasets and have a combined dataset of all the above. The
purpose is to obtain a historical dataset containing all transactions with the respective
dwelling-characteristics, HDD data, and the valid energy certificate issued before the
dwelling was sold. The merge process is as follows: i) First we match the entries in
Dwelling characteristics data to the corresponding transactions in Transactions
history data, using a common identifier address id located in both datasets. ii) Attach
the EPC-entry in EPC dataset with matching land register-/building number and for
some dwellings the residential unit number, to the corresponding transaction. iii) Finally,
adding the wanted temperature data as HDD for each location of all the dwellings.

Step ii) is a vital step, where we match the two main components in our research,
transactions and EPC. Due to the reasons and limitations discussed in Section 3.3.2,
data entries are matched differently. The different merging criteria are dependent on
the building type and in cases where the residential number is lacking. As a result, we
classify the merging in three different classification types. Each entry obtains one of
the three following classifications: A - Dwellings with matching land register, building
and residential unit number, B - Detached/semi-detached dwellings with matching land
register and building number, and C - Apartments with matching land register and
building number, but with missing residential number. Additional condition in class
C is the size of the dwelling comparatively equal to the size-specification in the EPC.
Whereby the classification-types is ranked according to the possibility for a merge-error
to occur, where A has the lowest probability and C has the highest.

Table 3.2: Overview of merged dataset

Classification Merge Condition % of Total Data
A LR1/Building/residential number 35.0%
B LR/Building number 45.5%
C LR/Building number and size 19.4%

3.2.2 Data Cleaning

The merged dataset consists of multiple entries of each transaction with different energy
certificate values. Thereby, the next step includes connecting the correct EPC and the
removal of duplicate and extraneous transaction-entries. Which in our case is performed
by first exclude all transactions completed before the first EPC was issued. Furthermore,

1Land Register
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considering that one dwelling may have several certificates issued, we compute the
difference between the issuance dates of the EPC and the official sold date, and assign
the newest certificate at the time of the sale as shown in equation 3.1.

min((soldDate− issuedDate) >= 0) (3.1)

After assigning correct EPC, we omit all transactions prior to 2010, i.e., transactions
pre-dating the EPC. Transactions between this period, but which do not possess a
certificate issued before the official sold date, are also excluded. Table 3.4 lists the
attributes we extract from the merged dataset and further analyze in Section 3.3. Initially,
the primary room size was to be used as a measure for a dwelling’s size. However, as the
percentage missing data for this variable is fairly high, consequently, we decide to use
the heated usable area instead, and hereby refer to it as size2.

Table 3.4: List of attributes selected.

Data Type Description
Official price Numerical The official sold price
Size Numerical The dwellings size in square meters
Number of rooms Numerical The dwelling’s total number of rooms
Number of bathrooms Numerical The dwelling’s total number of bathrooms
Number of wc Numerical The dwelling’s total number of toilets
Age Numerical Age of the dwelling at sales date
Build year Numerical Building construction year
HDD Numerical Mean yearly HDD-value for the past decade
Postal location Categorical
Energy rating Categorical Range from A-G
Heating rating Categorical Range from 1-5
EPC type Categorical Four types: simple, advanced, XML and schema
Building unit type Categorical Detached, semi-detached, apartments
Building material Categorical Wood, brick, steel, concrete
Heating source(s) Categorical Type of heating source installed in the dwelling
Elevator Categorical Whether or not the building has an elevator

Furthermore, as shown in Table 3.5, there is a significant amount of missing data in
our dataset. To cope with the missing values, we use the imputation method presented
in Allison (2001), by imputing values for data points with missing values for number
of rooms, bathrooms and WC, with the mean values of all remaining dwellings. To
minimize the resulting bias, we group dwellings by size using intervals of 50m2 starting
from 0 − 50m2. Further examining Table 3.5 and the correlation between the variables,
substantiates the imputation and grouping method, as the correlations between the
variables are relatively high.

2Comparing the data for entries with both variables present (Primary room/heated usable are), results
in an absolute mean size difference of 10.04 square meter and a mean relative absolute error(mRAE)
of 13.6%.
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Table 3.5: Correlation and missing values of selected variables

# Rooms # Bathrooms # WC Size % missing values

# Rooms 1.000 0.568 0.657 0.818 26.98%
# Bathrooms 0.568 1.000 0.750 0.534 35.53%

# WC 0.657 0.750 1.000 0.651 35.65%
Size 0.818 0.534 0.651 1.000 0.00%

As a final step, we clean the dataset further by excluding data points containing
extreme numerical values. The steps are described below.

1. Remove all buildings that are either commercial and hence, out of range for our
research, or seasonal vacation houses, as these do not represent an actual dwelling
with stable annual energy consumption. This corresponds to 6.0% of the total data.

2. Remove all transactions with missing energy and heating rating. This corresponds
to < 0.1% of the total data.

3. Remove all transactions outside the size range 10m2 - 600m2, which corresponds
to < 0.1%. These are, as observed, either dwellings with faulty inputs or abnormal
building types.

4. Finally, we group dwellings by size intervals of 50m2 once more, and remove highly
suspicious transactions within each group with the number of rooms exceeding
mean(groupi) + 3 ∗ SD(groupi). This results in an additional < 0.4% trim.

3.3 Exploratory Data Analysis

This section presents and visualizes the data after performing the cleaning process.
Moreover, the results of the exploratory data analysis serve as a basis for the design of
models in Section 4. We focus on showcasing the important aspects of our data with
regards to the research topic.

Correlated Variables

First of all, deciding which dwelling-characteristics to include in the analysis of house
prices need to be carefully considered, especially when dealing with similar variables
which might be highly correlated.

The first step of selecting variables was done in the cleaning process, and the next step
is to examine correlation and dependencies among the numerical variables. The variables
Number of WC and Number of bathrooms were excluded due to a high dependency with
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# Rooms. The correlation matrices for all remaining numerical variables are shown in
Tables 3.6 (Pearson’s correlation) and 3.7 (Spearman’s correlation).

Table 3.6: Pearsons Correlation of numerical variables

# Rooms Size Energy Rating Heating Rating Age HDD

# Rooms 1 0.781 -0.020 -0.024 -0.044 0.116
Size 0.781 1 0.053 -0.040 0.011 0.133

Energy Rating -0.020 0.053 1 0.107 0.704 0.027
Heating Rating -0.024 -0.040 0.107 1 0.072 -0.011

Age -0.044 0.011 0.704 0.072 1 -0.040
HDD 0.116 0.133 0.027 -0.011 -0.040 1

Table 3.7: Spearman Correlation of numerical variables

# Rooms Size Energy Rating Heating Rating Age HDD

# Rooms 1 0.851 -0.013 -0.169 0.002 0.112
Size 0.851 1 0.033 -0.196 0.050 0.137

Energy Rating -0.013 0.033 1 0.042 0.853 0.022
Heating Rating -0.169 -0.196 0.042 1 0.014 -0.056

Age 0.002 0.050 0.853 0.014 1 -0.012
HDD 0.112 0.137 0.022 -0.056 -0.012 1

Unsurprisingly, the correlations matrices show a positive correlation between Age/Energy
Rating and Size/# Rooms. Having variables with high correlation imply that there is
a high dependency between the variables, and the value of one can be used to predict
the other. Such cases are referred to as multicollinearity (Alin, 2010), and can affect the
price analysis. A concern following the selection of variables is Omitted Variable Bias,
which is stated as the challenge of excluding and deciding which variables to include
to design the best-fitted model. Excluding may cause interference and result in other
variables capturing the effect of excluded variables. Such exclusion may cause bias, but
it is inevitably (Clarke, 2005).

Building Type

In our processed dataset, we have 222 392 dwellings and a total of 283 173 transactions.
Thus, a portion of the transactions are resales of dwellings. This portion accounts for
60 781 transactions for 51 740 dwellings, sold two or more times. In the interest of
capturing the effect of energy efficiency through the EPCs and price gap in different
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building types, we divide the dwellings into six separate building types: apartment (small
complex), apartment (large complex), semi-detached, townhouses, Detached and Detached
w/apartment. Apartments are separated by the size of the building they are located
in. Large complex specifies apartment-buildings with four or more floors, while small
complex defines buildings with three or fewer floors. Detached houses are likewise divided
into two types, depending on if the dwelling has a separate apartment within the building
structure. The reasoning behind the separation of some of the building types is to capture
gaps in price and/or differences in heating/energy ratings. In the way that the energy
need of an apartment may differ regarding the size and form of the apartment complex
(Choi et al., 2012; Danielski, 2012) and houses with a separate apartment often have a
higher price, due to the possibility of rental income. Figure 3.1 illustrates all transactions
by each building type and the portion of resales in each group.

Figure 3.1: Distribution of building type

Energy/Heating Rating

Further, we present the distribution of energy and heating ratings in Figure 3.2 and
3.3. Occurrences of the highest energy ratings A/B are significantly lower compared to
other ratings. A probable cause of this may be associated with the strict regulations
implemented for obtaining the highest ratings. This phenomenon can also be observed in
other similar studies (Brounen & Kok, 2011; Olaussen et al., 2017). The heating rating
displayed in Figure 3.3 reveals that most dwellings are in category 4 and 5.
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Figure 3.2: Distribution of Energy
Ratings

Figure 3.3: Distribution of Heating
Ratings

Even though both of the ratings share similarities in the distribution, it is important
to clarify that the ratings are independent, as can be observed from the close-to-zero
correlation between these two variables, in Table 3.6 and 3.7. Furthermore, it is useful to
examine the occurrences of the ratings combined. Table 3.8 shows the relative frequencies
of all combinations of heating ratings and energy ratings in our datasets. To ensure the
quality of the dataset and confirm that our dataset is a representative selection of issued
EPCs in Norway, we compare the prevalence of heating/energy rating in our dataset to
statistics about the official numbers produced by ENOVA as shown in Table 3.9. We
observe a very similar pattern with respect to the magnitude of the frequencies.

Table 3.8: Relative frequencies
of Heating/Energy Rating obser-

vations in our dataset.

1 2 3 4 5

A 0.2% 0.1% 0.2% 0.1% 0.1%
B 0.7% 0.6% 0.5% 1.5% 1.2%
C 1.7% 0.9% 1.2% 3.4% 3.2%
D 1.3% 1.6% 1.8% 8.3% 7.0%
E 0.4% 0.5% 3.1% 8.3% 4.8%
F 0.9% 1.0% 3.2% 11.1% 6.4%
G 1.1% 1.0% 3.4% 12.5% 6.9%

Table 3.9: Relative frequencies
of Heating/Energy Rating obser-
vations in the official ENOVA

dataset3

1 2 3 4 5

A 0.5% 0.4% 0.7% 0.3% 0.1%
B 1.4% 1.4% 0.9% 2.1% 1.5%
C 2.3% 1.7% 1.1% 2.9% 3.1%
D 1.6% 1.7% 1.5% 5.9% 7.1%
E 0.6% 0.8% 2.4% 6.1% 6.0%
F 1.1% 1.1% 2.6% 9.0% 7.2%
G 1.3% 1.0% 2.7% 12.3% 7.8%

In addition, the distribution of energy ratings/heating rating amongst the various
building types is shown in Table 3.10 and 3.11. For the heating rating, we observe that
85% of the EPC with the highest heating rating (1) are held by apartments. Similar
for the highest energy rating (A), 79% are amongst apartments. Examining the tables

3Source:https://www.energimerking.no/no/energimerking-bygg/energimerkestatistikk/
(24.04.2020)

https://www.energimerking.no/no/energimerking-bygg/energimerkestatistikk/
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gives us an indication of differences in the rating distribution between the building types,
which is an interesting aspect to analyze further in Section 4.

Table 3.10: Relative frequencies of heating rating by each building type

1 2 3 4 5

Apartment (large complex) 3.5% 2.9% 0.3% 1.3% 7.2%
Apartment (small complex) 1.9% 1.5% 0.6% 7.4% 12.1%

Detached 0.5% 0.5% 9.4% 21.4% 4.0%
Detached w/apartment < 0.1% 0.1% 0.9% 2.2% 0.6%

Semi-detached 0.1% 0.1% 1.5% 7.3% 2.7%
Townhouses 0.3% 0.3% 0.9% 5.8% 2.8%

Table 3.11: Relative frequencies of energy rating by each building type

A B C D E F G

Apartment (large complex) 0.4% 0.9% 2.1% 3.7% 2.1% 3.1% 3.2%
Apartment (small complex) 0.2% 1.1% 2.4% 5.2% 3.1% 5.1% 6.7%

Detached < 0.1% 0.9% 2.5% 5.3% 7.5% 8.6% 11.1%
Detached w/apartment < 0.1% 0.2% 0.4% 0.9% 0.9% 0.8% 0.5%

Semi-detached < 0.1% 0.8% 1.7% 2.8% 1.6% 2.4% 2.5%
Townhouses 0.1% 0.7% 1.3% 2.3% 2.0% 2.8% 1.1%

Geographical location

Geographical location is a major influence on the price of a dwelling, and some parts of
Norway are more desired by buyers. While focusing on EPC in the different climatic
zones, it is important for our dataset to include differences in the location of dwellings.

Our dataset contains transactions for all 356 municipalities in Norway. Some regions
are more populated and naturally, there is a substantial difference in the total number of
transactions in each municipality. Such variations are also present in our dataset. Figure
3.4 shows how the dwellings in our dataset are distributed in Norway. The plot displays
a good coverage of geographical differences with observations in each municipality. The
variations in the dataset are more precisely shown in the heatmap of counties in Figure
3.5. To investigate the effect of EPC, climate, and geographical location, it is imperative
that we accurately access these variations in the model.
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Figure 3.4: Geographical overview of all the transactions

40000 2000030000 10000

Number of Transactions

Figure 3.5: County heatmap of transactions

3.3.1 Temperature Data

When evaluating the effect of temperature on electricity demand (Do et al., 2016),
electricity price (Do et al., 2019) or energy consumption in buildings (Quayle & Diaz,
1980; Eto, 1988), the concept of Heating Degree Days (HDD) is commonly used. In our
study, we investigate the impact of energy efficiency on house prices, through the use
of EPC. Since the impact of energy efficiency likely depends on how much heating is
required in a given geographical area, it is highly useful to utilize HDD as a feature in
our analysis.
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Meteorological data is freely accessible in Norway, and we use the Met Frost API to
collect the yearly sum of HDD with a temperature threshold of 17°C. The Met Frost API
is built upon data from about 1300 weather sensor-systems in and around the Norwegian
mainland. We are interested in the period 2010-2019, and retrieve the annual HDD value
for each year, while omitting sensors with missing values. Then, using the geographical
distance between each dwelling and the location of the sensors, we attach the closest
sensor to each dwelling and the corresponding value. We choose to use the average of the
annual values over the last decade, for the sake of collecting as much data as possible.
The result of the process is HDD values from 387 different sensor systems. We further
assign the mean yearly HDD using the data gathered as a feature for each dwelling. The
descriptive statistics of the value are shown in Table 3.12. To ensure the validity of
spatial geographical differences, we plot the distribution of the sensors in figure 3.6.

Table 3.12: Descriptive statistics of HDD value

Min value Max value Mean St. Dev

2920 7504 3794 557

Figure 3.6: Distribution of sensors containing HDD data

3.3.2 Data Limitations and Simplifications

Using a unique identifier for each dwelling throughout each dataset was crucial in order
to match each transaction with the exact dwelling, and EPC. The common identifier
between dwellings in Norway is the land register number. As a consequence of land
register numbers being modified and outdated, in particular with the municipality reform
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in 20204, we observe occurrences of mismatching identifiers in the EPC-dataset. To
mitigate the problem, we add the building number as a merge-condition to ensure
merging-correctness.

On the other hand, each property can have several different residential units, whereby
the land register number stays the same. Such cases include apartment complex and
other divided properties, however, each residential unit has its own unique residential
number together with the other identifiers. For this reason, we merge apartments, and
similar building types using the land register, building and residential number, but
quickly realizing that approximately 50% of the apartment residents in the EPC- dataset
is lacking this number.

Having consulted with experts at ENOVA and data scientists, we decide to account
for the missing residential numbers, by merging based on the land register and building
number and attach the same EPC for similar apartments within the same building with
the approximately same size. This assumption is further enhanced by the EPC scheme
and the written regulations for the EPC.

4//www.regjeringen.no/no/tema/kommuner-og-regioner/kommunereform/kommunereform/
id2548377/

//www.regjeringen.no/no/tema/kommuner-og-regioner/kommunereform/kommunereform/id2548377/
//www.regjeringen.no/no/tema/kommuner-og-regioner/kommunereform/kommunereform/id2548377/
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Methodology and Results

4.1 Hedonic Pricing Method

The hedonic pricing approach is a commonly used method for the valuation of het-
erogeneous goods, particularly in the residential real estate market (Balk et al., 2013).
Introduced by Rosen (1974), he argues that products are composites of various at-
tributes or characteristics. The hedonic method recognizes that a product’s value can
be partitioned into the individual value of each attribute, and measures the marginal
contribution of each part to the overall value. The main objective of this research is to
determine the impact of energy efficiency on house prices, by estimating the contribution
of the EPC characteristics, namely the energy rating and heating rating. Hence, we add
these characteristics as explanatory variables in our model. Considering the informative
dataset available, another interesting aspect to study in this context, is if the impact
of energy efficiency varies with respect to building type. We therefore fit a regression
model including all building types to begin with, and thereafter look more closely into
each building type separately to investigate if the impact of energy efficiency remains
similar across the types of buildings.

To effectively detect and interpret the impact of different attributes, we proceed by
estimating several regressions. We start off with a base model including eight explanatory
variables which are common for all dwellings, and add more variables in each succeeding
step. Moreover, as our study includes dwellings from all over the country of Norway, we
take into account regional differences by using a fixed effect model with the municipality
code being the fixed parameter. The hedonic model is written as the following equation:

ln(Pijt) = α+
K∑

k=1
βkXik +

L∑
l=1

λldtl +
N∑

n=1
δnmjn + εijt (4.1)

Where the dependent variable P denotes the transaction price per square meter of
dwelling i in cluster j, and we use the logarithm as it allows us to easily interpret

18
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the model. X represents a set of K explanatory variables for dwelling i, and β the
corresponding regression coefficients to be estimated. The additive term (

∑N
n=1 δnmjn)

in eq. 4.1 accounts for the variations of housing prices in each municipality. To ensure
sufficient data in each group, we merge municipalities with less than 20 transactions with
the closest municipality, resulting in 295 regions (N) from the original 356. In eq. 4.1,
mi represents a set of N regions (dummies), where the corresponding code for building i
is set to the binary value 1, and all the others to 0. The vector δ holds the estimated
fixed-effect coefficients relative to the intercept, α. Note that this constant is derived
based on all the selected baselines for the categorical variables.

Since our dataset contains transactions made in the time span from 2010 to 2019,
we account for quarterly fluctuations in the house prices by the term

∑L
l=1 λldtl, where dt

is the set of quarterly dummies and holds a value of 1 only for the sales in period t. The
estimated fixed-effect coefficients for each quarter, relative to α, is held in the vector λ.

Similar to Olaussen et al. (2017), rather than using the direct age of a dwelling, we
specify the inverse of age in our model, mainly because we believe that a dwelling’s age
matter more at sale for newer buildings, and is less important as age increases. For the
remaining categorical variables building type and material, we transform the values by
utilizing dummy variables. In the first step of the regression with our base model, we
define the baselines as detached and wood for the variables building type and material,
respectively. The last variable Elevator indicates whether the building has an elevator
(1) or not (0).

Additionally, our dataset can be seen as clusters of samples, with each cluster
representing a municipality. To achieve more precise estimates, we want the clustered
standard errors in order to capture variations within each municipality. Abadie et al.
(2017) imply that in the case of clustering in sampling, cluster adjustment is important.

In the next step of the regression, we add energy performance variables and define
the baseline to be the lowest rating (5) for the heating rating. In the case of the energy
rating, the baseline is set to the second-lowest rating (F). The reason behind this is the
same as Olaussen et al. (2017) discussed, that all dwellings that fail to insert the correct
data or neglect the energy certification process, will automatically obtain the lowest
rating (G).

The first two steps in our modelling follow several of the same principles and theories
as other studies (Brounen & Kok, 2011), but adjusted and tweaked to fit the Norwegian
real estate market and EPC scheme. In addition, we fit the models for the whole country
rather than segments. Moreover in the last regression step, we utilize the temperature
data and study if energy efficiency has a stronger impact on house prices in colder areas.
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4.2 Base Model

The results for the base model are presented in Table 4.1. This model includes the
traditional explanatory variables used in the greater portion of related literature, control
variables for sales year, and municipality fixed effects to control for regional variations.
The adjusted R squared is 0.771 for this model. We also calculate the mean absolute
percentage error (MAPE)1 for this model, resulting in approximately 23.1%, which is
decent. All variables appear to be significant at the 1% level, with the exception of
dummies Brick, Steel, Semi-detached and Townhouses for building material and type.
The coefficient of 1/age variable shows that newer dwellings have a higher price than
older buildings. Dwellings with higher number of rooms have higher prices.

The time coefficients plot in Figure 4.1 visualizes the trend in the Norwegian real
estate market, which has been increasing annually over the past decade. Moreover, the
results indicate a small price discount for building materials Concrete and Steel compared
to the baseline material, Wood. Apartments have a price premium of 8% compared
to the baseline type Detached. This is not surprising, as we are modelling price per
square meter, which is usually higher for smaller dwellings. Correspondingly the size
coefficient is negative for the same reason. A detached house which includes a separate
apartment results in approximately 7.3% price premium (per square meter) compared to
one without.

1The MAPE is based on the difference between observed price per square meter and predicted price
per square meter.
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Table 4.1: Base model including the control variables, where the baselines are defined
as follows: Wood (material) and detached (building type), and the age is transformed

to 1/age.

Dependent variable: log(price per square meter)

1/age 0.425∗∗∗

(0.033)
Rooms 0.015∗∗∗

(0.002)
Size −0.003∗∗∗

(0.0001)
Elevator 0.046∗∗∗

(0.010)
Material Brick 0.024∗

(0.012)
Material Concrete −0.059∗∗∗

(0.014)
Material Steel −0.007

(0.048)
Material Unknown −0.139∗∗∗

(0.019)
Apartment (large complex) 0.080∗∗∗

(0.018)
Apartment (small complex) 0.052∗∗∗

(0.012)
Detached w/apartment 0.073∗∗∗

(0.010)
Semi-detached −0.004

(0.011)
Townhouse −0.020∗

(0.011)

Region fixed effect Y es

Quarterly fixed effect Y es

Observations 283,170
R2 0.772
Adjusted R2 0.771

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 4.1: Plot of quarterly fixed effect coefficients for the base model

4.3 Models with Energy and Heating Ratings

In the next step, we run the same base model with all control variables, but add the
energy- and heating rating variables in two separate models. We estimate the regression
for each building type separately. The reason is that impact of explanatory variables on
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price per square meter can differ across building types. Moreover, we have a very large
dataset, and we are therefore able to estimate models separately for each building type
with sufficient precision. The results are shown in Table 4.2. In this table, we display
three models for each building type: (1) the base model + energy rating, (2) base model
+ heating rating and (3) base model + energy + heating rating.

First of all, looking at model (1) for each building type, the results show that energy
ratings are significant for almost all building types, except for energy rating G, which is
significant only for detached dwellings.

In model (2) with heating rating alone, we observe that the heating rating overall is
less significant and the magnitude and the sign of the coefficients is less intuitive and
gives us an indicator that the heating rating may not be a decisive factor of the price of
a dwelling, or capturing some other effect.

In the last model (3), when adding both ratings together, we can see the effect
of the energy ratings mainly stays the same, while the heating rating becomes less
significant for some types(detached). The effect of the heating rating is also reduced,
further substantiating the results in model (2).

More interestingly, comparing the magnitude of energy rating coefficients amongst
the building types, we observe a monotonic relationship between ratings A-G for detached
dwellings. As the rating increase/decreases with respect to the baseline category F, the
price of the dwelling follows. Similarly, the same relationship is present in semi-detached
and detached with apartment but with reduced coefficients. However the results are
not as clear in the case of apartments and townhouses, as the coefficients indicate little
to none difference in impacts of ratings E or G. Furthermore, rating B has a higher
effect compared to A (except for the apartment in small complex). Even though the
energy rating seem to have an impact on the price in apartments and townhouses, the
differences in the ratings seem to be less important, and the relationship amongst the
energy ratings seem unclear. This indicates that the energy efficiency of a dwelling is
appreciated differently, with regards to the type of dwelling.

In Figure 4.2, we include plots of coefficients and standard errors of the energy ratings
from model (1) for each building type. The plots clearly demonstrate the differences
between the building types and the price premium associated with the energy efficiency
through the ratings. The standard errors indicate the estimates’ accuracy and how values
may overlap, and are always highest for the A rating, as there are fewer observations
with this rating.
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Table 4.2: Results of the base model(with the control variables) and energy/heating rating for each building type, with three models for each building
type: (1) the base model + energy rating, (2) base model + heating rating and (3) base model + energy + heating rating. The baseline for each

rating is F (energy) and 5 (heating).

Dependent variable: log(price per square metre)

Detached Detached w/ap. Semi-Detached Ap Large Ap Small Townhouse
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

1/age 0.156∗∗∗ 0.586∗∗∗ 0.142∗∗∗ 0.204∗∗∗ 0.458∗∗∗ 0.195∗∗∗ 0.193∗∗∗ 0.338∗∗∗ 0.188∗∗∗ 0.050 0.188∗∗∗ 0.017 0.305∗∗∗ 0.358∗∗∗ 0.307∗∗∗ 0.227∗∗∗ 0.339∗∗∗ 0.235∗∗∗

(0.017) (0.026) (0.017) (0.036) (0.040) (0.037) (0.018) (0.018) (0.018) (0.043) (0.055) (0.042) (0.023) (0.028) (0.027) (0.044) (0.045) (0.045)

Rooms 0.010∗∗∗ 0.018∗∗∗ 0.010∗∗∗ 0.009∗∗∗ 0.015∗∗∗ 0.008∗∗∗ 0.018∗∗∗ 0.023∗∗∗ 0.019∗∗∗ 0.008 0.011 0.007 0.015∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.017∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.004) (0.003) (0.006) (0.008) (0.006) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Size −0.003∗∗∗−0.003∗∗∗−0.003∗∗∗−0.002∗∗∗−0.002∗∗∗−0.002∗∗∗−0.003∗∗∗−0.004∗∗∗−0.003∗∗∗−0.004∗∗∗−0.004∗∗∗−0.004∗∗∗−0.004∗∗∗−0.004∗∗∗−0.004∗∗∗−0.004∗∗∗−0.004∗∗∗−0.004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0002) (0.001) (0.001) (0.001) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Elevator 0.060∗ 0.086∗∗ 0.060∗ 0.075 0.077 0.083 0.139∗∗∗ 0.164∗∗∗ 0.138∗∗∗ 0.006 0.040∗∗∗ 0.008 0.072∗∗∗ 0.081∗∗∗ 0.074∗∗∗ 0.036 0.035 0.033
(0.035) (0.036) (0.035) (0.053) (0.058) (0.053) (0.050) (0.055) (0.050) (0.009) (0.010) (0.008) (0.014) (0.016) (0.016) (0.052) (0.052) (0.050)

Material Brick 0.008 −0.012 0.007 −0.028 −0.033∗ −0.028 0.038∗∗∗ 0.022 0.038∗∗∗ 0.082∗∗∗ 0.059∗∗ 0.084∗∗∗ 0.051∗∗∗ 0.048∗∗∗ 0.052∗∗∗ 0.095∗∗∗ 0.080∗∗∗ 0.095∗∗∗

(0.010) (0.011) (0.010) (0.019) (0.019) (0.019) (0.014) (0.015) (0.014) (0.029) (0.030) (0.030) (0.008) (0.011) (0.010) (0.023) (0.023) (0.023)

Material Concrete −0.005 −0.006 −0.006 0.016 0.030 0.014 −0.005 −0.005 −0.006 −0.028 −0.029 −0.023 −0.056∗∗∗−0.060∗∗∗−0.053∗∗∗−0.003 −0.012 −0.003
(0.010) (0.011) (0.010) (0.018) (0.019) (0.018) (0.011) (0.011) (0.011) (0.027) (0.025) (0.026) (0.018) (0.015) (0.014) (0.013) (0.013) (0.013)

Material Steel −0.076 −0.070 −0.081 0.112∗∗∗ 0.104 0.103∗∗ 0.041 0.058 0.041 −0.020 0.022 −0.014 −0.016 −0.015 −0.018 0.001 0.008 −0.006
(0.100) (0.098) (0.100) (0.040) (0.066) (0.042) (0.119) (0.131) (0.123) (0.040) (0.041) (0.040) (0.120) (0.120) (0.120) (0.043) (0.047) (0.047)

Material Unknown −0.053∗∗ −0.094∗∗∗−0.057∗∗ −0.033 −0.041 −0.031 −0.068 −0.096∗ −0.068 0.020 0.005 0.029 −0.083∗∗ −0.070∗∗ −0.069∗∗ −0.132∗∗ −0.168∗∗ −0.125∗

(0.024) (0.026) (0.023) (0.086) (0.103) (0.088) (0.060) (0.051) (0.061) (0.029) (0.029) (0.028) (0.036) (0.031) (0.030) (0.065) (0.070) (0.064)

A 0.361∗∗∗ 0.364∗∗∗ 0.320∗∗∗ 0.308∗∗∗ 0.192∗∗∗ 0.191∗∗∗ 0.197∗∗∗ 0.210∗∗∗ 0.097 0.085 0.035 0.040
(0.062) (0.058) (0.087) (0.089) (0.054) (0.054) (0.067) (0.062) (0.060) (0.062) (0.118) (0.114)

B 0.322∗∗∗ 0.312∗∗∗ 0.206∗∗∗ 0.193∗∗∗ 0.143∗∗∗ 0.140∗∗∗ 0.235∗∗∗ 0.226∗∗∗ 0.071∗∗∗ 0.070∗∗∗ 0.093∗∗∗ 0.092∗∗∗

(0.011) (0.010) (0.019) (0.019) (0.014) (0.013) (0.043) (0.038) (0.014) (0.014) (0.024) (0.023)

C 0.260∗∗∗ 0.258∗∗∗ 0.172∗∗∗ 0.170∗∗∗ 0.134∗∗∗ 0.131∗∗∗ 0.251∗∗∗ 0.240∗∗∗ 0.079∗∗∗ 0.079∗∗∗ 0.118∗∗∗ 0.126∗∗∗

(0.008) (0.008) (0.013) (0.014) (0.011) (0.011) (0.023) (0.019) (0.010) (0.010) (0.015) (0.013)

D 0.183∗∗∗ 0.182∗∗∗ 0.110∗∗∗ 0.109∗∗∗ 0.107∗∗∗ 0.104∗∗∗ 0.179∗∗∗ 0.179∗∗∗ 0.039∗∗∗ 0.040∗∗∗ 0.093∗∗∗ 0.096∗∗∗

(0.007) (0.007) (0.012) (0.012) (0.009) (0.009) (0.014) (0.010) (0.011) (0.011) (0.011) (0.011)

E 0.065∗∗∗ 0.067∗∗∗ 0.036∗∗∗ 0.038∗∗∗ 0.030∗∗∗ 0.030∗∗∗ 0.052∗∗∗ 0.062∗∗∗ 0.015∗∗ 0.015∗ 0.013 0.015
(0.006) (0.006) (0.008) (0.008) (0.007) (0.007) (0.017) (0.020) (0.007) (0.008) (0.010) (0.009)

G −0.045∗∗∗ −0.047∗∗∗−0.026∗ −0.029∗∗ 0.008 0.006 0.052∗∗∗ 0.053∗∗∗ 0.040∗∗∗ 0.039∗∗∗ 0.016 0.013
(0.010) (0.009) (0.014) (0.014) (0.011) (0.011) (0.012) (0.009) (0.012) (0.012) (0.012) (0.012)

Heating Rating 1 0.022 −0.008 0.047 0.033 0.003 −0.007 0.104∗∗∗ 0.079∗∗∗ 0.015 0.012 −0.048 −0.069
(0.081) (0.075) (0.034) (0.033) (0.023) (0.022) (0.022) (0.015) (0.039) (0.038) (0.057) (0.053)

Heating Rating 2 0.103∗∗∗ 0.019 0.104∗∗∗ 0.039∗ 0.051∗ 0.030 0.059∗∗∗ 0.045∗∗∗ −0.056 −0.057 −0.024 −0.048
(0.036) (0.034) (0.023) (0.021) (0.028) (0.028) (0.018) (0.014) (0.057) (0.057) (0.061) (0.060)

Heating Rating 3 −0.048∗∗∗−0.058∗∗∗ −0.036∗∗∗−0.044∗∗∗ −0.039∗∗∗−0.031∗∗∗ −0.021 −0.022 0.013 0.009 −0.038∗∗ −0.035∗∗

(0.011) (0.010) (0.011) (0.011) (0.010) (0.010) (0.054) (0.041) (0.021) (0.018) (0.015) (0.015)

Heating Rating 4 −0.037∗∗∗−0.034∗∗∗ −0.027∗∗∗−0.018∗ −0.023∗∗∗−0.013∗∗ 0.057∗∗∗ 0.075∗∗∗ 0.003 0.003 −0.011 −0.004
(0.009) (0.009) (0.010) (0.010) (0.006) (0.006) (0.018) (0.024) (0.005) (0.005) (0.007) (0.007)

Quarterly fixed effectY es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y Y es
Region fixed effect Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es
Observations 101,282 101,282 101,282 10,546 10,546 10,546 33,320 33,320 33,320 42,976 42,976 42,976 66,263 66,263 66,263 28,783 28,783 28,783
R2 0.662 0.636 0.663 0.695 0.682 0.697 0.727 0.719 0.728 0.572 0.554 0.577 0.663 0.662 0.664 0.674 0.665 0.675
Adjusted R2 0.661 0.635 0.662 0.687 0.673 0.688 0.725 0.717 0.725 0.570 0.552 0.576 0.661 0.660 0.662 0.671 0.662 0.672

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Detached (b) Detached w/apartment

(c) Apartments large complex (d) Apartments small complex

(e) Semi-detached (f) Townhouse

Figure 4.2: Energy rating coefficient estimates with std. error for each building type in
the base model with energy ratings. Rating F is chosen as the energy rating baseline.
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4.4 Model with HDD

Having investigated the effect of attributes on house prices, we further utilize transformed
temperature data as HDD-values. We introduce the HDD variable to our base model,
and the results are presented in Table 4.3. As mentioned in Section 3.3.1, the HDD
variable ranges from 2920 to 7504. We standardize this variable, resulting in a mean of 0
with a standard deviation of 1. This has two practical advantages; estimated regression
coefficients will be more similar in magnitude to estimated coefficients of other variables,
and interpretation of this coefficient will be more intuitive. The standardization is
performed following the formula:

z = (X − µ)
σ

(4.2)

Where z is the standardized value for the HDD value X, µ is the mean of all HDD
values present in our dataset and σ is the standard deviation. The results remain almost
identical to those presented previously, which means that the model is able to capture
the HDD variations by a significance level of 5%. Furthermore, the coefficient for HDD
appears with the expected sign and indicates a moderate price discount (of approximately
6% as the HDD increases by one standard deviation) for dwellings located in colder parts
of Norway.

Table 4.3: Base model with the addition of HDD-values

Dependent variable: log(price per square metre)
1/age 0.423∗∗∗

(0.034)
Rooms 0.015∗∗∗

(0.002)
Size −0.003∗∗∗

(0.0001)
Elevator 0.047∗∗∗

(0.010)

Material Brick 0.016
(0.014)

Material Concrete −0.057∗∗∗

(0.013)
Material Steel −0.010

(0.047)
Material Unknown −0.139∗∗∗

(0.018)

Apartment (large complex) 0.072∗∗∗

(0.017)
Apartment (small complex) 0.052∗∗∗

(0.012)
Detached w/apartment 0.072∗∗∗

(0.011)
Semi-detached −0.003

(0.012)
Townhouse −0.018

(0.011)

HDD −0.062∗∗

(0.026)
Region fixed effects Y es
Quarterly fixed effects Y es
Observations 283,170
R2 0.773
Adjusted R2 0.773

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.5 Interaction between Energy Rating and HDD

To investigate if energy efficiency appreciation varies in different climate zones, we define
the interaction of energy rating and the HDD value as a variable. This is based on the
intuition that energy rating is a measure of energy efficiency, and the HDD value is a
measure of the amount of heating needed. The model is explained by Equation 4.1 with
an additional set of explanatory variables

L∑
l=1

ζlRilZi (4.3)

where R is the set of l energy rating dummies and Z is the standardized HDD value
for dwelling i. ζ represents the corresponding coefficients to be estimated for each
combination. Thus, the total impact of energy efficiency on house prices as designed
in these models is not only the estimated coefficient for energy rating but also the
contribution (ζ) of energy efficiency with respect to climatic conditions.

The results are presented in Table 4.4. The same control variables as before are
included, and no significant deviations from previous models can be observed. All
coefficients for HDD appear with the expected signs, with variations in magnitude and
significance level across the different building types. The models for All and Detached
indicate strong significance levels for all interaction variables except A*HDD, which may
be due to data limitations for this category. The coefficients show a small increasing price
premium for energy ratings B (and A for detached)-E compared to F, and a small discount
for G in both All and Detached models. For other detached types and townhouses,
the effect seem to be moderate, however, with lower significance levels for some energy
ratings.

To put the coefficients into perspective, consider model (2) in Table 4.4. For instance,
the price premium associated with an energy rating of B is estimated to 21% compared
to the baseline, F. However, to get the total impact, we must consider the coefficient for
B*HDD as well, resulting in a price premium of 21% + (5.7%*HDD). Hence, the actual
impact varies significantly in different climate zones.

Furthermore, the results show no strong evidence of the interaction variables having
any significant effect on house prices for apartments in large and small complexes.
Some mixed and counter-intuitive coefficients appear for the A*HDD and G*HDD, with
possible explanations being 1) as mentioned earlier, the uncertainty associated with the
G category, and 2) the wide-spread, but potentially false assumption that dwellings in
larger complexes tend to keep heat more effectively compared to detached types (Wright,
2008). Another explanation could be that occupants in larger complexes are given a fixed
price energy deal, and compared to other building types, apartments in large complex
often have a central district heating system as heating source (ENOVA SF, 2017).
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The overall result is that energy efficiency is more appreciated in colder environments,
however, only for building types with few units. On the other hand, as the building
structure takes a larger form, the energy efficiency seem to matter less regardless of
temperature.



C
hapter

4.
M
ethodology

and
Results

28

Table 4.4: Models with respect to energy rating, climate and prices. These are estimated for each building type to investigate the impact of energy
efficiency more closely. Base variables (age, size etc.), quarterly and region fixed effects are included. The baseline for energy rating is set to F.

Dependent variable: log(price per square metre)

All Detached Detached w/ap. Semi-Detached ApLarge ApSmall Townhouse
(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

A 0.194∗∗∗ 0.192∗∗∗ 0.361∗∗∗ 0.350∗∗∗ 0.320∗∗∗ 0.318∗∗∗ 0.192∗∗∗ 0.195∗∗∗ 0.197∗∗∗ 0.198∗∗∗ 0.097 0.100 0.035 0.027
(0.038) (0.038) (0.062) (0.051) (0.087) (0.085) (0.054) (0.053) (0.067) (0.060) (0.060) (0.061) (0.118) (0.133)

B 0.210∗∗∗ 0.210∗∗∗ 0.322∗∗∗ 0.326∗∗∗ 0.206∗∗∗ 0.207∗∗∗ 0.143∗∗∗ 0.144∗∗∗ 0.235∗∗∗ 0.224∗∗∗ 0.071∗∗∗ 0.068∗∗∗ 0.093∗∗∗ 0.100∗∗∗

(0.009) (0.009) (0.011) (0.011) (0.019) (0.020) (0.014) (0.015) (0.043) (0.047) (0.014) (0.014) (0.024) (0.022)

C 0.199∗∗∗ 0.199∗∗∗ 0.260∗∗∗ 0.264∗∗∗ 0.172∗∗∗ 0.174∗∗∗ 0.134∗∗∗ 0.135∗∗∗ 0.251∗∗∗ 0.237∗∗∗ 0.079∗∗∗ 0.076∗∗∗ 0.118∗∗∗ 0.121∗∗∗

(0.008) (0.007) (0.008) (0.008) (0.013) (0.014) (0.011) (0.011) (0.023) (0.030) (0.010) (0.011) (0.015) (0.014)

D 0.143∗∗∗ 0.141∗∗∗ 0.183∗∗∗ 0.184∗∗∗ 0.110∗∗∗ 0.109∗∗∗ 0.107∗∗∗ 0.107∗∗∗ 0.179∗∗∗ 0.165∗∗∗ 0.039∗∗∗ 0.038∗∗∗ 0.093∗∗∗ 0.092∗∗∗

(0.007) (0.008) (0.007) (0.007) (0.012) (0.013) (0.009) (0.009) (0.014) (0.018) (0.011) (0.011) (0.011) (0.011)

E 0.054∗∗∗ 0.051∗∗∗ 0.065∗∗∗ 0.065∗∗∗ 0.036∗∗∗ 0.034∗∗∗ 0.030∗∗∗ 0.030∗∗∗ 0.052∗∗∗ 0.047∗∗∗ 0.015∗∗ 0.015∗∗ 0.013 0.013
(0.006) (0.005) (0.006) (0.006) (0.008) (0.009) (0.007) (0.006) (0.017) (0.014) (0.007) (0.007) (0.010) (0.009)

G −0.005 −0.007 −0.045∗∗∗ −0.044∗∗∗ −0.026∗ −0.027∗∗ 0.008 0.007 0.052∗∗∗ 0.049∗∗∗ 0.040∗∗∗ 0.032∗∗ 0.016 0.010
(0.014) (0.011) (0.010) (0.009) (0.014) (0.013) (0.011) (0.011) (0.012) (0.013) (0.012) (0.015) (0.012) (0.010)

HDD −0.066∗∗ −0.042∗ −0.063 −0.051 −0.083∗∗ −0.094∗∗∗ −0.086∗∗

(0.027) (0.024) (0.039) (0.032) (0.039) (0.035) (0.036)

A*HDD 0.010 0.109∗ 0.007 0.012 −0.017 −0.059 0.081
(0.027) (0.057) (0.073) (0.036) (0.032) (0.045) (0.088)

B*HDD 0.057∗∗∗ 0.054∗∗∗ 0.048∗∗ 0.042∗∗∗ 0.051 0.019 0.049∗∗

(0.013) (0.012) (0.020) (0.013) (0.042) (0.016) (0.022)

C*HDD 0.041∗∗∗ 0.037∗∗∗ 0.030∗∗∗ 0.022∗∗ 0.043 0.021 0.039∗∗∗

(0.009) (0.009) (0.011) (0.009) (0.032) (0.014) (0.010)

D*HDD 0.030∗∗ 0.021∗∗∗ 0.019∗ 0.013∗ 0.043 0.009 0.011
(0.012) (0.006) (0.011) (0.008) (0.041) (0.017) (0.009)

E*HDD 0.018∗∗∗ 0.013∗∗∗ 0.016∗∗ 0.015∗∗ 0.015 0.013 0.019∗∗∗

(0.004) (0.003) (0.008) (0.007) (0.009) (0.010) (0.007)

G*HDD −0.024∗∗∗ −0.028∗∗∗ −0.011 −0.002 0.022 −0.001 0.007
(0.006) (0.005) (0.013) (0.008) (0.019) (0.006) (0.013)

Quarterly fixed effectY es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es
Region fixed effect Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es
Base variables Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es Y es
Observations 283,170 283,170 101,282 101,282 10,546 10,546 33,320 33,320 42,976 42,976 66,263 66,263 28,783 28,783
R2 0.782 0.784 0.662 0.664 0.695 0.697 0.727 0.729 0.572 0.580 0.663 0.669 0.674 0.679
Adjusted R2 0.781 0.784 0.661 0.663 0.687 0.688 0.725 0.726 0.570 0.578 0.661 0.668 0.671 0.676

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Conclusion

Energy Performance Certificate (EPC) is a measure of a dwelling’s energy efficiency,
introduced as a tool to reduce household energy consumption. Using an empirical
approach with a hedonic pricing method, we find evidence of a positive relationship
between price per square meter and energy efficiency ratings from the EPC. Our estimates
indicate that compared to dwellings rated F, those in band A-C are sold at a premium of
approximately 20% and those in band D and E at a premium of 14% and 5%, respectively.
Additionally, dwellings rated G are sold at a slight discount of 0.5% compared to F.

The energy rating estimates are further strengthened with the addition of interaction
between HDD and energy rating, indicating that energy efficiency play an even more
important role in colder regions of Norway. Furthermore, we find that the impact of
energy efficiency on dwelling prices vary in magnitude across the different building types.
We find the most significant difference to be between detached dwellings and apartments
in the upper bands of energy rating. For instance, a detached dwelling with rating B is
sold at a price premium of 25% compared to one with rating E, while this price premium
is only 18% for apartments in large complexes.

Moreover, we find mixed results and less intuitive associations between the heating
rating and price. This may have important implications for policymakers. As explained
in Section 2, one drawback of the current system is thought to be the complexity with
the composition of two separate ratings: energy rating and heating rating. We find no
evidence of heating rating as an important determinant in house prices. In addition,
the EPC scheme as of today is slightly biased towards newer dwellings1, as indicated
by the high correlation between the age of the dwelling and the energy ratings, thereby
supporting the idea of abandoning heating rating, and renewal of the EPC framework in
Norway.

1The increased energy requirements in building regulations (TEK10 and TEK17), has made it even
harder for older buildings (a major part of the current building stock, dwellings built before 1981 (39 years)
account for approximately 38% of the current building stock source: https://www.ssb.no/statbank/
table/06266/ (08.06.2020)
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The existing literature is inconclusive regarding the impact of energy performance
certificates. Although EPC has been active in most countries for about ten years, the
implementation varies across countries (de Ayala et al., 2016; Bio Intelligence Service &
IEEP, 2013), and the data quality and quantity also varies considerably throughout the
literature (Pasichnyi et al., 2019). Thus, one explanation for the discrepancies in the
literature is the varying data quality. The data used in this study are comprehensive with
respect to both quantity and quality, and by utilizing the data we are able to capture
the price premiums of energy efficiency for all building types across the country. Besides,
compared to some of the existing literature (Brounen & Kok, 2011; Bio Intelligence Service
& IEEP, 2013), our dataset have an advantage of decent distribution among all the
energy ratings, especially the upper-scale ratings A/B, which allow us to estimate models
with sufficient data in each category.

In accordance with our results, Olaussen et al. find that houses with better energy
certification are sold for higher prices. Olaussen et al. argue that the price premiums
related to the EPC ratings are a proxy for general building characteristics, which may be
a valid explanation. However, our results show that the effect of energy efficiency ratings
are stronger in colder areas. This is a very strong reason to believe that the energy rating
serve as a measure for a dwelling’s energy efficiency, even though they might also be
capturing the effect of some other building characteristics.

Inspecting the current state of the EPC in Norway, we notice that the relative
percentages of good ratings (A, B and C) issued since 2010 has slightly increased annually,
ranging from 10.5% of ABC ratings in 2010 to 31.2% in 20202. Which corresponds to the
findings of Franke & Nadler (2019), that the importance of EPC has increased with time.
However, it is challenging to distinguish whether the increase in good ratings in Norway
is a result of the stricter requirements in the building regulations (TEK10 and TEK17)3,
or if home buyers invest in better energy efficiency, nevertheless, it demonstrates how
the building stock is slowly moving towards better energy efficiency.

2Number as of 10.06.2020, source: the official ENOVA SF statistics: https://www.energimerking.no/
no/energimerking-bygg/energimerkestatistikk/

3The current baseline for obtaining the energy rating C is the requirements in TEK10, and if a building
is built by TEK17, it is more likely to get a higher grade (B), assuming a high efficient heating system is
installed.

https://www.energimerking.no/no/energimerking-bygg/energimerkestatistikk/
https://www.energimerking.no/no/energimerking-bygg/energimerkestatistikk/
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Abstract

Meteorological conditions are used as a determining factor in relocation decisions, and
the cost of nice weather is often referred to as an amenity. We utilize temperature data
from Norway and apply the common hedonic pricing method to determine the impact of
different temperature transformations on house prices. When utilizing the temperature
as a climate variable, we find that the different temperature transformations are almost
equally good, with HDD being the slightly better transformation. The results suggest
that overall in Norway, temperature is an amenity, and higher winter temperatures are
slightly more appreciated compared to summer. Our dataset consists of well-detailed
house transactions and weather data with good spatial distribution, and this research
can serve as a base for future research.
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Chapter 1

Introduction

House prices vary naturally with time, and can be described with macro- and micro
economical factors. However, there are also environmental and geographical variations
which are important to take into account.

There is a global trend of migration towards locations with mild winters (Rappaport,
2007), warm summers and places with less rain and wind. People seem to use, consciously
or unconsciously, meteorological conditions as a determinant for choosing where to live, in
combination with other socioeconomic conditions. Such migration can be found enclosed
within a country, or across borders. The cost of nice weather is often referred to as price
premiums related to different amenities, and existing literature uses various methods to
find the impact of weather on house prices. Rosen (1974) and Roback (1982) were the
first to perform hedonic regression to analyse how different geographical locations are
linked to differences in house prices and wages.

Studies investigating the impact of meteorological conditions on house prices are
present, but the number of geographical locations studied are limited. Due to recent
increase in global temperature (Giannakopoulos et al., 2005) and climate change, me-
teorological factors are of increasing importance (Costa & Kahn, 2003)1. Butsic et al.
(2011) found that a reduction in snowfall in ski resorts due to global warming lead to a
reduction in house prices. Studies from Italy, Germany, and Britain have shown that
there is a price premium related with better climate, e.g., milder winters and summers
(Rehdanz, 2006; Maddison & Bigano, 2003; Rehdanz & Maddison, 2009). Similar studies
conducted in the US found that people preferred to live in places with warm winters,
cooler summers and less rainfall (Rappaport, 2007; Englin, 1996). Cheshire & Magrini
(2006) investigated population growth and weather, and were able to show that weather
mattered solely within a country and not across country-borders in relocation decisions.

Literature shows that climate conditions are highly correlated to the decision-making
regarding where to live. We want to examine the impact of different weather variables

1Showed that the importance of weather on house prices has increased from 1970 to 1999.
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Chapter 1. Introduction 2

on house prices, using Norway as the geographical location. Such cases have rarely been
discussed with Norway as geographical location, and we are only able to find one Master’s
thesis studying something similar; Jacobsen & Røisehagen (2016) mainly investigated the
impact of the weather on the bidding day on house prices in one Norwegian city, Asker.
Norway is known to be a country with significant variations in regional climate. Not
only is northern Norway much colder than the southern Norway, but areas further from
the ocean have a significantly different climate compared to the coastal areas. Norway
also has the second longest coastline in the world2, and a lot of high mountains, making
it a suitable geographical region for the purpose of this research.

We use a large dataset containing transactions of dwellings in Norway, which contains
data for dwellings in all cities and further attach averaged weather variables for each
dwelling. Which allow us to create a hedonic model to analyse the impact of weather
variables on the price of a dwelling.

Our main findings share some similarities with other studies. Utilizing three different
measures of historical temperature data, we find that all three transformations are almost
equally good, with HDD being the slightly better transformation. We also find that
overall in Norway, temperature is an amenity, where higher winter temperatures are
slightly more appreciated compared to summer.

Part two of the thesis proceeds by Section 2 explaining the data utilized, Section 3
describes the method and the results, while Section 4 includes concluding remarks and
outline future work.

2Measured in a straight line, the coastline is 2500 km long. However, including all the fjords and
islands, the total length is approximately 100 915 km.
https://www.regjeringen.no/en/topics/climate-and-environment/biodiversity/
innsiktsartikler-naturmangfold/hav-og-kyst/id2076396/

https://www.regjeringen.no/en/topics/climate-and-environment/biodiversity/innsiktsartikler-naturmangfold/hav-og-kyst/id2076396/
https://www.regjeringen.no/en/topics/climate-and-environment/biodiversity/innsiktsartikler-naturmangfold/hav-og-kyst/id2076396/


Chapter 2

Data

The data used in this research was acquired by utilizing the Met Frost API, developed by
the Meteorological Institute of Norway. We use this API to fetch meteorological values
and variables to use in the analyses of their impact on house prices. To obtain datasets
about transactions and dwellings in Norway, we partnered up with Alva Technologies, who
gave us access to two large and well-detailed datasets about transactions and dwelling
characteristics in the time period 1991-2019. A short summary of the two datasets is
shown in Table 2.1.

Table 2.1: Overview of the Datasets

Dataset Type size(n) Source Time-span
Dwelling characteristics CSV 2 572 317 Alva Technologies
Transactions history CSV 2 792 731 Alva Technologies Jan 1991-Dec 2019

To use the data in the analysis and modelling, we first merge the dwelling and
transaction datasets, resulting in a total of approximately 2 793 731 transactions with
the respective dwelling characteristics. We apply a simple cleaning process to exclude
data containing ambiguous or missing values for critical dwelling characteristics, such as
size, construction year, and number of rooms, resulting in a modified dataset of 1 610
956 transactions between 1991-2019. In Table 2.2, we list the selected attributes to form
the base model with control variables for our analysis.

3
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Table 2.2: List of dwelling attributes selected as control variables.

Data Type Description

Official price Numerical The official sold price
Size Numerical The dwellings size in square meters
Age Numerical Age of the dwelling at sales date
Build year Numerical Building construction year
Building unit type Categorical Detached, semi-detached, apartments, serial-house
Location Categorical The municipality
Elevator Categorical Whether or not the building has an elevator

Furthermore, we fetch certain weather variables from the Met Frost API. The Met
frost API is built upon data from about 1300 sensor systems located in Norway. Each
sensor have different amount of information stored, and as a consequence, the variation
of number of sensors may vary amongst the different variables. Next, we attach the
meteorological data values using the closest sensor to each dwelling, and assign the
corresponding values. The values we use, are daily averages transformed into monthly
normal weather where the sensors are located. We set the time span as 1991-2019, the
same as for the transactions. The selected weather variables are shown in Table 2.3, with
a description and number of sensors used to obtain the data.

Table 2.3: Overview of the meteorological data we fetch from the Met Frost API, we
get the values in average sum of monthly values from the period 1991-2019, except for

the temperature, were we get the average of each month.

Variable Description Sensors Unit

Precipitation Amount of precipitation (cumulative) in a given time period. 622 mm

Precipitation Days Number of days with precipitation (> 1.0mm) in a given 619 days
time period.

Overcast Days Number of days with overcast weather defined as days with sum 95 days
of cloud cover values above a specific limit throughout the day.

Clear Days Number of days with clear weather defined as days with sum 95 days
of cloud cover values under a specific limit throughout the day.

Temperature The mean temperature throughout a day which is an 412 Celsius
arithmetic mean of 24 hour values.

Heating Degree Days A HDD value where the HDD is defined as the number 387 HDD
of degrees the daily average temperature is below a
threshold value of 17 ºC. If the daily average temperature
is equal to 17 ºC or higher, the HDD value is set to zero.

The weather variables are some of the most common weather variables used in
literature, and we use the specific variables for the purpose of being able to compare
our results to existing research. To further examine the weather variables and how the
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values varies, we list the descriptive statistics of each monthly normal weather between
1991-2019 with respect to the whole country in Table 2.4.

Table 2.4: Descriptive statistics from the weather data of monthly weather normals
throughout Norway in the form [min value - max a value] and the mean value is displayed

under the range for each month.

Variable Jan Feb Mar Apr May Jun

Precipitation (mm) [0 - 489] [0 - 336] [0 - 302] [0 - 294] [1 - 200] [25 - 289]
92 72 66 61 67 76

Precipitation Days [0 - 23] [0 - 18] [0 - 21] [0 - 20] [0 - 17] [3 - 22]
11 10 10 9 10 10

Overcast Days [7 - 21] [7 - 18] [8 - 21] [9 - 18] [2 - 20] [6 - 19]
15 13 13 12 10 11

Clear Days [0 - 7] [0 - 6] [0 - 5] [0 - 6] [0 - 10] [0 - 5]
3 3 3 2 3 2

Temperature [(-15) - 6] [(-14) - 3.4] [(-11) - 4] [(-17) - 8] [(-2) - 16] [1 - 19]
(-2) (-2) 1 5 11 14

Variable Jul Aug Sep Oct Nov Dec

Precipitation (mm) [16 - 201] [42 - 464] [0 - 428] [14 - 505] [0 - 410] [0 - 587]
80 121 118 118 115 104

Precipitation Days [0 - 23] [0 - 18] [0 - 21] [0 - 20] [0 - 17] [3 - 22]

Overcast Days [5 - 21] [6 - 22] [6 - 21] [9 - 20] [8 - 22] [7 - 21]
11 11 12 15 16 14

Clear Days [0 - 8] [0 - 4] [0 - 5] [0 - 6] [0 - 5] [0 - 6]
2 2 2 2 2 3

Temperature [5 - 23] [4 - 17] [1 - 15] [(-4) - 11] [(-8) - 9] [(-12) - 7]
17 15 12 7 3 (-1)
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We hypothesize that the temperature is the most important weather determinant,
and gives a clear separation between months and geography, as shown in Table 2.4.
Therefore, we differentiate the temperature measurement using the data gathered and
transform the temperature data into three new variables. Another explanation of doing
this is to have comparable measures to similar research, where some use the January
and July measures, while other use the summer/winter averages. In addition we add a
third temperature transformation HDD:

• Summer and Winter temperature: Defined by dividing the year into two
seasons, winter defined as the average temperature from October to March, while
summer is defined as the average temperature from April to September (Jacobsen
& Røisehagen, 2016).

• July and January average: Defined as the average temperature in January and
July to describe the most common "winter" month and "summer" month (Maddison
& Bigano, 2003).

• Heating Degree Days (HDD): HDD is a transformation of temperature to
capture the economical effect of temperature and weather on house prices(Eto,
1988). HDD is quantitative measurement for isolating the impact of weather on
energy usage in buildings, and especially correlated with the heating and electricity
(Do et al., 2016) need for a house. The variable is defined as the yearly sum of
HDD values.

Table 2.5 presents the correlation between the temperature variables, and as expected,
there is a high correlation between most of them. In addition, the January and winter
variables have the highest correlation with HDD.

Table 2.5: Correlation between the temperature variables. Summer is defined as the
average temperature in the warmer months of the year, April-October, and winter as

the average of the remaining six months.

HDD Summer Winter January July

HDD 1 -0.740 -0.871 -0.787 -0.498
Summer -0.740 1 0.382 0.283 0.937
Winter -0.871 0.382 1 0.965 0.081
January -0.787 0.283 0.965 1 -0.008
July -0.498 0.937 0.081 -0.008 1
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Methodology and Results

The hedonic approach is a widely recognized method for examining price determinants
in the real estate proportion of existing literature. The idea is to conceptually break
down a property into its various attributes, and estimate the contribution of each to the
property’s price (Mander et al., 2007). Using this method, we are able to isolate the
individual influence of the different weather conditions. The log-linear model is written:

ln(Pitm) = α+ λt + δm +
K∑

k=1
βkXik + εitm (3.1)

Where the dependent variable Pitm is the price of dwelling i, located in municipality m
and sold in the time period t. We apply the log-transformation in order to easily interpret
the coefficients in terms of average percentages. Furthermore, X is the set of explanatory
variables for dwelling i, β is the corresponding coefficients to be estimated and ε is the
error term. The explanatory variables include the weather condition variables, as well as
all dwelling characteristics listed in Table 2.2, because we see these as the most important
for our study.

To control for regional variations and price development over time, we specify both
quarterly time and municipality fixed effects. Accordingly, the terms λt and δm in
Equation 3.1 are the coefficients for sales period t and municipality m, associated with
dwelling i. Finally, standard errors are clustered at the municipality level to control for
spatial autocorrelation in prices within municipalities.

While some studies like Maddison & Bigano (2003) utilize wage data to control for
economic inequality, we believe the dummies for each municipality are able to capture
the effect of differences in wages and job opportunities.

3.1 Results Temperature Transformations

The different temperature transformations are added to the model with all the control
variables, and we design models with different combinations of the variables. Thereby, we

7
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are able to define which impact the different variables have on price, and which variable
to utilize when adding the other climatic variables. The results are shown in Table 3.1.

The results show that all the different temperature transformations are significant
when put alone in separate models, and that the magnitude of the coefficients varies. We
can see that the HDD in model (1) has the expected sign and that a high HDD value,
which implies cold temperatures and an increasing need for energy consumption, are
related to a decrease in house prices. While model (2) and (3) displays that a higher
temperature in both summer and winter periods are related to higher house price, where
the effect is higher for the winter period. In models (5) and (6), the variables representing
average temperature in January and July indicate that higher average temperature
results in higher price, and the effect is nearly of the same magnitude for both variables.
Moreover, in model (4) with the summer and winter temperature put together, both
variables seem to be insignificant, which may be due to the high correlation between the
variables shown in Table 2.5. While adding the July and January average together in
model (7), both are still significant and the impact seems to be quite similar; warmer
July and January temperatures indicate a higher house price.

The results show small differences between the temperature transformations, and
imply that the use of each variables is almost equally good. In addition, the results show
that temperature in the winter matters more, compared to the summer temperature,
and is further substantiated by the HDD.
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Table 3.1: Results of regression with control variables and three different temperature
transformation. Age is transformed in to 1/Age, which indicates that the age matter
less for really old houses. We control for different building types buy have a dummy for

each type, with the type Detached as the baseline

Dependent variable: log(price per square metre)

(1) (2) (3) (4) (5) (6) (7)
Age 0.181∗∗∗ 0.182∗∗∗ 0.182∗∗∗ 0.182∗∗∗ 0.184∗∗∗ 0.184∗∗∗ 0.185∗∗∗

(0.014) (0.014) (0.013) (0.013) (0.012) (0.012) (0.012)

Rooms 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.009∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Size per 100m2 −0.286∗∗∗ −0.287∗∗∗ −0.287∗∗∗ −0.287∗∗∗ −0.287∗∗∗ −0.287∗∗∗ −0.287∗∗∗

(0.022) (0.021) (0.021) (0.021) (0.021) (0.021) (0.021)

Elevator 0.079∗∗∗ 0.078∗∗∗ 0.077∗∗∗ 0.077∗∗∗ 0.077∗∗∗ 0.078∗∗∗ 0.076∗∗∗

(0.014) (0.014) (0.016) (0.015) (0.015) (0.015) (0.015)

Apartment 0.048∗∗∗ 0.045∗∗∗ 0.046∗∗∗ 0.045∗∗∗ 0.044∗∗∗ 0.046∗∗∗ 0.044∗∗∗

(0.012) (0.013) (0.014) (0.013) (0.014) (0.013) (0.014)

Semi-detatched −0.006 −0.007 −0.006 −0.006 −0.007 −0.007 −0.007
(0.012) (0.013) (0.013) (0.013) (0.012) (0.012) (0.013)

Serial-house −0.017 −0.017 −0.016 −0.016 −0.017 −0.016 −0.016
(0.013) (0.013) (0.014) (0.014) (0.014) (0.013) (0.014)

HDD −0.058∗∗∗

(0.016)

Average summer temp. 0.044∗∗∗ 0.005
(0.010) (0.034)

Average winter temp. 0.064∗∗ 0.060
(0.026) (0.053)

Average July temp. 0.048∗∗∗ 0.030∗∗

(0.015) (0.012)

Average January temp. 0.051∗∗∗ 0.032∗∗∗

(0.014) (0.011)

Quarterly fixed effects Y es Y es Y es Y es Y es Y es Y es
Municipality fixed effectsY es Y es Y es Y es Y es Y es Y es
Observations 1,610,956 1,610,956 1,610,956 1,610,956 1,610,956 1,610,956 1,610,956
R2 0.788 0.789 0.790 0.790 0.790 0.790 0.790
Adjusted R2 0.788 0.789 0.790 0.790 0.790 0.790 0.790

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.2 Building Type Specific Results

Considering the characteristic differences among building types, which is also reflected
in the coefficients from previous model, we investigate the impact of temperature on
price for each dwelling type individually. We further adapt the model presented in
Equation 3.1. First, we transform the variable age to age group dummies, as we are not
able to capture the variations with a continuous variable for some of the dwelling types.
Second, we proceed with only the average temperatures for the months January and July.
These two variables are, compared to the summer and winter variables, significantly less
correlated as shown in Table 2.5, and the estimated coefficients from previous model are
more intuitive and significant.

Regression results for each building type are presented in Table 3.2. All of the
coefficients for dwelling characteristics appear with expected signs and are significant
at one of the three levels, except the age group dummy 10-20 for detached houses.
The coefficient for this variable shows a negligible discount compared to the base age
group 0-10, indicating that the two groups have similar average effects on dwelling prices.
Moreover, the discounts associated with age 40-50 are greater than for 50+ for all building
types, which is not hard to believe considering that the older a dwelling is beyond this
point, the higher possibility that the dwelling has undergone significant renovation, or
has additional value due to age.

More interestingly, temperature is a significant price determinant for both dwelling
types, however, the impact is slightly greater for apartments. The latter is counter
intuitive, as houses will likely have a greater energy usage compared to apartments in a
colder climate. Hence, we expected HDD to play a more significant role for houses, but
as it seems, people use the temperature not only as a determinant for economical gain,
but in a combination with the preference of living in warmer places.

Finally, although the HDD varies in magnitude between the building types, it is the
temperature transformation which has the greater impact for both types.
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Table 3.2: Results of regression with control variables and average temperatures in
January and July as indicators for winter and summer.

Dependent variable: log(price per square metre)

Apartments Houses
(1) (2) (3) (4) (5) (6) (7) (8)

Age (10-20) −0.135∗∗∗ −0.137∗∗∗ −0.135∗∗∗ −0.136∗∗∗ −0.052∗∗∗ −0.052∗∗∗ −0.052∗∗∗ −0.052∗∗∗

(0.023) (0.021) (0.021) (0.021) (0.006) (0.006) (0.006) (0.006)

Age (20-30) −0.200∗∗∗ −0.199∗∗∗ −0.197∗∗∗ −0.196∗∗∗ −0.150∗∗∗ −0.150∗∗∗ −0.151∗∗∗ −0.150∗∗∗

(0.019) (0.019) (0.019) (0.019) (0.009) (0.009) (0.009) (0.008)

Age (30-40) −0.244∗∗∗ −0.241∗∗∗ −0.243∗∗∗ −0.240∗∗∗ −0.204∗∗∗ −0.204∗∗∗ −0.205∗∗∗ −0.204∗∗∗

(0.018) (0.018) (0.019) (0.019) (0.010) (0.010) (0.010) (0.010)

Age (40-50) −0.222∗∗∗ −0.220∗∗∗ −0.220∗∗∗ −0.219∗∗∗ −0.228∗∗∗ −0.228∗∗∗ −0.229∗∗∗ −0.228∗∗∗

(0.014) (0.014) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

Age (50+) −0.062∗∗∗ −0.076∗∗∗ −0.077∗∗∗ −0.080∗∗∗ −0.194∗∗∗ −0.196∗∗∗ −0.197∗∗∗ −0.197∗∗∗

(0.022) (0.018) (0.020) (0.019) (0.031) (0.031) (0.030) (0.030)

Rooms −0.017∗∗∗ −0.015∗∗∗ −0.016∗∗∗ −0.016∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.005) (0.005) (0.004) (0.004) (0.001) (0.001) (0.001) (0.001)

Size per 100m2 −0.192∗∗∗ −0.192∗∗∗ −0.192∗∗∗ −0.191∗∗∗ −0.282∗∗∗ −0.283∗∗∗ −0.283∗∗∗ −0.283∗∗∗

(0.033) (0.034) (0.032) (0.033) (0.016) (0.015) (0.016) (0.015)

Elevator 0.081∗∗∗ 0.077∗∗∗ 0.076∗∗∗ 0.075∗∗∗ 0.200∗∗∗ 0.196∗∗∗ 0.198∗∗∗ 0.196∗∗∗

(0.007) (0.009) (0.009) (0.009) (0.030) (0.028) (0.029) (0.029)

HDD −0.067∗∗∗ −0.051∗∗∗

(0.018) (0.019)

Average January temp. 0.052∗∗∗ 0.021∗∗ 0.043∗∗∗ 0.032∗∗

(0.010) (0.009) (0.016) (0.015)

Average July temp. 0.059∗∗∗ 0.045∗∗ 0.034∗∗ 0.021∗

(0.017) (0.019) (0.014) (0.012)

Quarterly fixed effects Y es Y es Y es Y es Y es Y es Y es Y es
Municipality fixed effectsY es Y es Y es Y es Y es Y es Y es Y es
Observations 810,465 810,465 810,465 810,465 800,491 800,491 800,491 800,491
R2 0.713 0.715 0.717 0.717 0.766 0.767 0.767 0.767
Adjusted R2 0.712 0.715 0.716 0.717 0.766 0.767 0.767 0.767

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Conclusion

Even though there are multiple intricate aspects to determining a dwelling’s price, there
is substantial evidence of weather being a contributing factor. To determine the implicit
price of climate, in our case the temperature, we utilize the hedonic price model. Our
results show that in Norway, people pay a price premium for higher temperature in
the summer, and even more for higher temperatures in the winter. We analyse the
temperature effects even further, and investigate how the impact varies among the
building types. The results show differences among building types, where apartments
have the highest positive impact from high temperatures. Furthermore, we find that all
three temperature transformations are good measures. However, the estimated coefficients
for HDD are consistently (and slightly) stronger, meaning it allows us to capture more
climatic variations compared to the other temperature measures.

Compared to other research, our findings are similar to what Cragg & Kahn (1999)
found, with migration towards warm summers and winters. While others (Rappaport,
2007) found evidence of preference for mild summers, which most likely is due to in
some places in the US, the summers are much warmer compared to Norway, but as the
global temperature increase, there are possibilities of increased summer temperatures in
Norway.

Literature using Norway as the geographical location is lacking, and the master’s
thesis by Jacobsen & Røisehagen (2016) mainly focused on the weather on the bidding
day in one city, Asker. In comparison, we focus on the long term weather effects using
weather normals, but we can still draw similar conclusion that warmer weather impacts
the short term and long term decision-making.

In this study, we present several different weather variables, but decide to focus
on the temperature explicitly. However, given the increased focus on climate change,
additional research should include models with additional climatic variables regarding
snow, as some regions in Norway has extreme winters. Besides, an important factor to
bear in mind when investigating the value of an amenity, is the economic inequality among

12
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consumers. We attempt to account for wage differences by controlling for municipalities
(Section 3), although there are huge variations even within municipalities, and especially
in larger cities. Ideally, controlling for subdivisions of municipalities, or alternatively, zip
codes, would perhaps produce more accurate estimates.

Not only can such models presented in this research show the current impact of
climate on house prices, but it can be used in forecasting how the house prices will change
with respect to increase in global temperature and other climatic conditions in the future.
Like Costa & Kahn (2003) showed, the value of weather has increased with time. We
may see further increase in the future to come, with increasing extreme weather and
temperature all around the world.
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