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Abstract

When companies want to operate and produce petroleum on the Norwegian conti-
nental shelf (NCS) they are generally required to make an extensive plan prior to
the construction work. This is known as the plan for development and operation
(PDO). The PDO addresses a number of decision relevant topics, including the
estimated production rate on a year-by-year basis for the entire expected lifetime
of the field. These estimates are reported as P10-, mean-, and P90 values. As
will be demonstrated in this work, these estimates tend to be severely biased. The
extent of this bias and procedures to reduce it will be illustrated and discussed.

The source material for this thesis is a data set containing estimates for 51 fields
on the NCS. Analyzing the estimates, we find that the P10-P90 range, i.e., the
80 percent confidence intervals that the companies are requested to report in the
PDO, only capture 40 percent of the true production outcomes. Furthermore,
about 41 percent of these outcomes falls below the P10 values, on average. This
suggests that assessors are generally overly precise and optimistic in their forecasts.

In an attempt to alleviate the bias, a modified reference class forecasting model
has been applied to the data set. This methodology is a new adaptation of the
classical reference class forecasting model, introduced by Kahneman and Tversky
in the 1970s. The modified model calibrates the assessed P10-, mean- and P90
estimates, whilst the classical model uses solely the mean estimate and creates a
new distribution from this single value. Since the modified model utilizes more
information from the original forecast it was hypothesized that it would outperform
the classical model. However, even though both models significantly reduced the
bias in the estimates, the acquired results showed that the modified model is
performing worse than the classical model.
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Chapter 1

Introduction

1.1 Goal

The goal of this thesis is to analyse petroleum production estimates and develop
and implement methods for debiasing the forecasts. The idea is to apply an ex-
post calibration technique. This means that the estimates are calibrated without
tweaking the models that have been used to produce them. The method that will
be presented will focus on debiasing the assessors. This is possible by comparing
historical estimates and the associated actual production values.

Mohus applied the classical reference class forecasting method to debias production
estimates in his 2018 thesis work [32]. In this thesis, however, a modified reference
class forecasting method will be used. The hypothesis is that this new method can
improve on the already good results of the classical method.

1.2 Background

1.2.1 Kahneman and Tversky

If i had one wish, it is to see organizations dedicating some effort to
study their own decision processes and their own mistakes, and to

keep track so as to learn from those mistakes

The above quote [39] is an excerpt from an interview with Nobel Prize winner
Daniel Kahneman. Together with Amos Tversky he made many pioneering con-
tributions to the field of cognitive bias and judgement under uncertainty. In their
1977 paper ”Intuitive predictions: biases and corrective procedures” [20] they in-
troduced the concept of reference class forecasting (RCF). The methodology allows
for a higher degree of objectivity, which Kahneman and Tversky referred to as tak-

1



CHAPTER 1. INTRODUCTION 2

ing an outside view. This framework has since been used and further developed
in several scientific publications (Flyvbjerg, 2008 [11]; Mohus, 2018 [32]; Clemen
et al., 2020 [5]).

1.2.2 Mohus

Mohus delivered a Master’s thesis in Industrial Economics at the University of
Stavanger in 2018 [32]. His paper focused on several topics:

• Estimate the value lost as a direct consequence of biased estimates in the
PDO - including cost- and schedule overruns as well as overly optimistic
production forecasts
• Discussion of why the industry fail to meet their budgets and what factors

affect experts when they forecast future outcomes
• Implement a procedure - based on RCF - to debias the estimates

This thesis is in many ways a continuation of Mohus’ thesis in that it aims to
further improve debiasing of experts’ assessments. Moreover, the data set used
in his work is similar to the data set used in this paper, only this paper includes
two more years of data. This allows for a comparison between the two models.
Thus, it may be determined whether the new methodology is more accurate than
previous iterations.

1.2.3 Clemen

Clemen is a professor of Decision Sciences at Duke University [44]. Clemen has a
particular interest in the psychology of judgment and assessing expert probabilities.
He has been the author of several scientific papers concerning these topics. Clemen
and Lichtendahl [38] introduced models to debias experts using Bayesian methods
and past performance data. The paper focused on maximizing the likelihood of
the posterior distribution of the experts’ bias parameters. More recently, Clemen
has been the co-author of another paper which is now open for peer-review [5].
The new paper is based on the work by Clemen and Lichtendahl [38], but instead
focuses on expanding the assessed confidence intervals. The main advantage of the
new method is the ease of use. The methodology presented in this thesis is based
on the new paper by Clemen et al.

1.3 Structure

This paper is made up of seven chapters.

In Chapter 1, the goal of the research is introduced, as well as the background
material.

In Chapter 2, the procedures of petroleum exploration and production on Nor-
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wegian soil is explained. Furthermore, uncertainty and decision analysis will be
explained in this chapter.

In Chapter 3, the data, the method and the limitations of it will be briefly ex-
plained.

In Chapter 4, a closer examination of the data will be conducted.

In Chapter 5, the modified reference class forecasting methodology will be applied
to the data and compared to the classical methodology.

In Chapter 6, a discussion about the data and the results of the RCF procedures
is included.

In Chapter 7, the thesis is concluded.



Chapter 2

Theory

2.1 The Norwegian continental shelf

All coastal nations have right to the continental shelf 200 miles off the coast [37].
This can be considered the baseline juridical continental shelf. Norway also reigns
beyond this 200 mile area in the areas around Svalbard and Jan Mayen. In to-
tal, the Norwegian continental shelf (NCS) spans more than two million square
kilometers; almost six times the mainland area [24].

The NCS is illustrated in Figure 2.1. It spans three seas - the North Sea, the
Norwegian Sea and the Barents Sea. It is divided into quadrants, which are squares
of one longitudinal degree by one latitudinal degree. The quadrants are again
divided into 12 square blocks. This partitioning is an effective way of systemizing
the NCS. It is also important in the process of awarding licenses.

2.2 Chain of events

Developing an oil- and gas field is a long and demanding process. However, Norway
has more than 50 years of experience as a petroleum nation and has thus been able
to standardize a lot of procedures. The main phases of petroleum activities can
be summarized as follows:

1. Initiation
2. Licenses
3. Exploration
4. Project development
5. Production
6. Plug and abandonment

4
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Figure 2.1: 2019 edition of the map of the Norwegian continental shelf [24]
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2.2.1 Initiation

The first step in opening a new area for petroleum production is to evaluate the
impact such activities would have on the area [8]. In this evaluation, many aspects
should be considered, including environmental consequences, economic benefits
and social effects.

After an assessment has been prepared it is put before different organizations [8].
This democratization of the process enables both supporters and adversaries to
share their views on the issue.

2.2.2 Licenses

The NCS is by law the property of the Norwegian government. Before a company
can engage in any endeavours on the soil a license has to be awarded. Licenses are
awarded yearly, and any company that is pre-qualified to be a licensee may apply
[25]. A license may be awarded for a part of a block, a whole block, or several
blocks. The awarding process is administered by the Ministry of Petroleum and
Energy (MPE).

There are two different kinds of licenses - survey licenses and production licenses.
A survey license grants the right to explore for petroleum [8], whilst a production
license grants the right to produce the reserves of the area. The hydrocarbons
produced is the property of the licensees. The licensees need not be the operator
on the block it has been awarded. The operator is appointed or approved by the
MPE when the license is granted.

2.2.3 Exploration

In the exploration phase, the goal is to identify prospects, quantify the hydrocar-
bon volume and evaluate potential risk factors [35]. Typical exploration methods
include conducting and analysing gravimetric-, magnetometric-, and seismic sur-
veys. If the surveys give indications of a technically- and economically feasible
prospect, an exploration well will be drilled. This allows for physical confirmation
of petroleum accumulations as well as further analyses with, e.g., wireline tools
and core samples.

2.2.4 Project development

Depending on the results of the exploration, a decision must be made whether
production should be pursued in the area. Figure 2.2 outlines the entire develop-
ment process. The planning phase is typically finalized by a PDO submission to
the MPE.
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Figure 2.2: Roadmap of the necessary steps in the pre-operation phase [31]

A PDO - Plan for Development and Operation - is a formal document that should
include [8]:

• Economic
• Resource

• Technical
• Safety

• Commercial
• Environmental

MPE may also require additional information to be included in the PDO [8].

Upon receiving a PDO, the MPE forwards it for consideration to the Ministry
of Local Government and Regional Development, which addresses safety matters,
and the NPD, which addresses resource related aspects [34]. These institutions
will then submit the result of their consideration back to the MPE. Simultane-
ously, the MPE forwards the PDO to other parties entitled to voice their opinion,
including affected municipalities, organizations and interest groups. Projects with
an investment ceiling above five billion NOK need to have their PDO approved by
the Norwegian Parliament.

Unless otherwise authorized by the MPE, the PDO must be approved prior to the
development of a field. Construction and development usually commence shortly
after PDO approval, making the reported estimates on cost, schedule and produc-
tion highly important for the dimensioning of the field. Low production estimates
in the PDO will lead to a construction meant for smaller volumes. If the field turns
out to be large, it would entail a large loss in efficiency and profitability. Similar
is true for high estimates and low actual volumes.
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2.2.5 Production

During the production phase it is important to control production and the injection
of pressure stabilizing fluids, as well as monitor crucial data about the reservoir
and the stability of the well [36]. It is common to graph a time-series of production
volumes to get an overview of a well’s performance over time. This production
profile will generally follow a pattern, outlined in Figure 2.3. Production volumes
are ascending in the first phase of production. Production then increases until
a plateau is reached. The plateau production rate is maintained for as long as
possible. As fluids start to deplete and pressure is lowered, production decreases.
Finally, production will have become so low that it is no longer economically viable
to continue production.

Figure 2.3: A generalisation of production profiles [36]

2.2.6 Plug and abandonment

If a field is no longer profitable a decommissioning plan will have to be filed to Nor-
wegian authorities. This submission must include a disposal plan and an impact
assessment [8]. The disposal plan must include information about the field, the
production history, and possibilities for continued production. The latter is par-
ticularly important, as Norwegian authorities want to maximize the utility from
petroleum assets. In the impact assessment, commercial- and environmental im-
pact of cessation must be considered. The main goal of plugging a well before
abandonment is to ensure long-term well integrity and protect the environment
from the threat of pollution caused by petroleum activities.

2.3 Resources

All recoverable oil and gas are collectively coined resources. Resources are further
categorized into reserves, contingent resources and undiscovered resources [28].
Figure 2.4 gives an overview of these categories.
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Figure 2.4: Classification of resources [28]

2.3.1 Reserves

Reserves comprise the petroleum volumes which the licensees have decided to
produce [29].

Table 2.1: Original reserves on the NCS [MMSm3][30]

Table 2.1 illustrates the amount of original reserves, i.e., all the petroleum re-
sources which have been planned for production up until this date, including that
which have already been produced.

Remaining reserves is regarded as the difference between original reserves and
produced volumes [30]. Table 2.2 gives an overview of the remaining reserves on
the NCS as of December 31, 2019. Only counting oil, there is 1737 Sm3 remaining
- roughly 31 percent of the original reserves. By assuming an oil price of USD 49,
the remaining oil has a value of about USD 535 billion.1

1Simple moving average of Brent crude oil for 2020 as of May 21, 2020
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Table 2.2: Remaining reserves on the NCS [MMSm3][30]

2.3.2 Contingent resources

Contingent resources are proven, but there has not yet been made a decision
to produce [28]. This includes resources in improved oil recovery projects and
resources that are unlikely to be produced.

2.3.3 Undiscovered resources

Resources which have not yet been proven by drilling are called undiscovered
resources [28]. However, these resources are assumed to be there and have been
estimated by some means. Due to the limited amount of data behind the estimates,
they must be considered rough estimates.

2.4 Taxation and distribution of value

The previous section gave an indication of the value of the resources on the NCS. In
terms of added value, government revenues and investments it is Norway’s largest
industry [26]. A key principle, which has influenced the development of the finan-
cial and legal framework governing the sector, is that the wealth provided by the
industry should benefit the whole society. The goal of petroleum production on
the NCS has always been to maximize value creation for the good of the society.
Figure 2.5 illustrates the net government cash flow from petroleum activities be-
tween 1971 and 2020. A large portion of the revenue is attributed to the taxation
system.

Oil companies operating on the NCS are subject to Norway’s ordinary tax rate
of 22 percent. Additionally, they are subject to a special tax rate of 56 percent,
which gives a total tax rate of 78 percent [27]. The taxation system is intended to
be neutral, i.e., a profitable project before tax should also be profitable after the
tax burden. To ensure this, only net profit is taxable.

The taxation system ensures that the majority of the generated revenue from
petroleum activity on the NCS accrues to the Norwegian government. However,
it also ensures that the majority of the companies’ costs are tax deductible. The
Norwegian government (indirectly the Norwegian tax payers) pays for 89.2 percent
of all petroleum related costs [41].
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Figure 2.5: Net government cash flow from petroleum activities, 1971-2020 [26]

2.5 Uncertainty

Oil- and gas fields are very expensive projects. Many of which are considered
megaprojects [23], with a price tag of more than 10 billion NOK [10]. The enormous
size, combined with the complexity of subsea development, often causes a high
degree of uncertainty.

Galbraith defined uncertainty in his book ”The Age of Uncertainty” [17] as ”the
difference between the amount of information required to perform the task and
the amount of information already possessed by the organization”. This definition
has later been recognized by several independent papers (Daft and Lengel 1986
[7]; Brun 2011 [4]). Bratvold and Begg further elaborate that the uncertainty is a
subjective aspect of our knowledge. There is no single, correct uncertainty. The
uncertainty depends on the knowledge of the assessor.

Adapting the presented definition, petroleum reservoirs cannot be objectively un-
certain. The volumetric size is an inherent property of the reservoir. It is only in
our subjective reality that the values are uncertain.

2.5.1 Percentiles and forecasting

The use of percentiles is common practice in many industries. In particular, it is
common to analyse the results of college admission tests, such as the SAT, using
percentiles. It is also common for financial institutions to measure the resilience
of a portfolio (Value at Risk) using percentiles. The convention ensures both an
intuitive interpretation and statistical coherence.

If a weather forecast claimed that a hurricane would hit Houston (TX), but would
not reach Dallas (TX), a resident in Dallas would believe that she was safe from
the hurricane. The single-value forecast does not leave any room for uncertainty,
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which may be confusing and misleading. Assume that the probability distribution
that the forecast was based on indicated the following:

(i) P10 = 10 km/h wind speed (light wind)
(ii) P50 = 40 km/h wind speed (strong wind)
(iii) P90 = 140 km/h wind speed (hurricane)

where P10 is the low esimate, P50 the median of the distribution and P90 the
high estimate.2 The high estimate indicates that a hurricane will hit Dallas. This
information was not disclosed in the arguably misleading single-value forecast.

Most forecasts are based on computer-generated models. The models use a set
of inputs defined by an assessor to generate useful information related to the
possibilities of different outcomes. This information is processed by an assessor,
with a probability distribution and final forecast as a result. The forecasts are
typically represented by a P10-, P50- and P90 value. These are three numbers
meant to summarize the assessed distribution. The P10 value indicates that only
10 percent of the data points in the distribution falls below this value. Similar is
also true for P50 and P90.

Consider a hypothetical fair die with 10 possible outcomes; 1 through 10. Table
2.3 illustrates the generated probability distribution of this die. The PDF is the
probability density function, indicating the probability of getting exactly that out-
come. The CDF is the cumulative distribution function, indicating the probability
of getting exactly that outcome or lower. Since the die has 10 faces, the probability
of getting 10 is 10 percent, whilst the cumulative probability is 100 percent. If
the die is tossed a great number of times, the outcome is 10 about 10 percent of
the time. A perfectly calibrated judge, i.e., an assessor without bias, will correctly
assess the P10 as 2 and the P90 as 9. This ensures that the outcome of the die is
within the assessed P10-P90 range 80 percent of the time. The P50 of the distri-
bution is 5.5 - the mean of the middle values 5 and 6. Figure 2.6 illustrates how
the P10, P50 and P90 are distributed in a distribution.

In the guidelines for the PDO, the NPD requests that estimates must include a
P10-, mean- and P90 value [43]. It is important to stress that the NPD does
expect the companies to provide them with P50 estimates. There is a very clear
distinction between the two concepts which is of great significance when regarding
the data from a statistical point of view.

2.5.2 Median vs mean

The median and the mean are two different ways of averaging.

2The definition of P10 and P90 might differ from other papers, but this will be the definition
for the remainder of the thesis.
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Table 2.3: Probability distribution of the toss of a 10-faced die

Outcome PDF CDF

1 10% 10%
2 10% 20%
3 10% 30%
4 10% 40%
5 10% 50%
6 10% 60%
7 10% 70%
8 10% 80%
9 10% 90%
10 10% 100%

Figure 2.6: A skewed distribution with the associated P10-, P50- and P90 values

Figure 2.7: A typical normal distribution [22]
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Figure 2.7 illustrates a normal distribution. Here, the median and the mean are
the same value. This is due to the symmetry of the distribution. However, given a
skewed distribution, the median and mean are two different values. A distribution
is considered skewed when the majority of data points cluster on one side of the
distribution, leaving the other side with a long tail. Figure 2.6 illustrates a pos-
itively skewed distribution. This is a typical distribution of possible production
volumes in the petroleum industry. Production volumes are lower bound to 0, but
may yield large values, albeit with a low probability of occurrence. Given positive
skew, the mean will most often be larger than the median, while the opposite is
usually true with negative skew.

2.5.3 Uncertainty modelling

Modern commercialization of petroleum dates back more than 150 years [42]. For
the majority of this time, decision makers in the industry have spent less than
adequate time contemplating inherent uncertainties [2]. It is only in the last couple
of decades that effort has been made to increase the understanding of uncertainty.
The increase in the number of scientific publications, conferences and meetings in
the last years is a testament of this.

A decision can be defined as a conscious, irrevocable allocation of resources to
achieve desired objectives [2]. This implies deliberation and the awareness that
resources are lost in case of revocation. There are three fundamental elements of
every decision: objectives, alternatives and information.

Bratvold and Begg [2] give the following reasons, among others, why decision
analysis is important:

1. It is a process which allows for the identification of the most important
factors that could influence the decision

2. It helps uncovering unexpected scenarios
3. Professionals have an obligation to present not just answers, but also the

reasoning, limitations and assumptions that support the answers.
4. Careful consideration is necessary in cases where it is difficult to understand

what the experts are trying to communicate. Even more so when different
experts communicates different things

5. Consider historical data and experiences and learn from previous mistakes

Point five is especially important and requires the acknowledgement of the distinc-
tion between good decisions and good outcomes [2]. A good outcome is ”a future
state of the world that we prize relative to other possibilities” [2], while a good
decision is ”an action we take that is logically consistent with our objectives” [2].
People in general do not usually make this distinction. Bad outcomes are gener-
ally considered the result of bad decisions. This is a detrimental mindset which
prevents decision makers to learn from past experiences and mistakes.



Chapter 3

Data and method

This chapter contains a description of how data was gathered and the methods
that were used to systemize and analyze it. An overview of the limitations of this
approach is also presented.

3.1 Data

As discussed in Chapter 2.2.4, companies are required to provide the authorities
with estimates of future production rates prior to PDO approval. This is generally
company confidential information, but it has been disclosed for this thesis under
an NDA-agreement. Field- and company names will not be mentioned when pro-
duction estimates are discussed. The actual production data from Norwegian oil-
and gas fields are readily available online at the NPD website.

The data set is comprised of production estimates and the associated actual pro-
duction outcomes from 56 oil fields on the Norwegian Continental Shelf from 1997
to 2019. For each field, the P10-, mean-, P90- and actual production values are
provided for each year. Due to inconsistencies and irregularities in the data set,
some data have been left out of the analysis. This include forecasts where (i)
some, or all the estimates are 0, (ii) some, or all the estimates are equal, (iii) the
P10 value is greater than the mean, (iv) the P90 value is smaller than the mean
and (v) some data is missing. This is either caused by wrongful reporting or poor
assessments. For five of the fields there were no estimates without one or several
of these issues, excluding them from the analysis. This left 51 fields.

3.2 Method

Since both estimates and actual production outcomes are available it is possible
to evaluate how well the estimates align with the actual outcomes. Studying

15
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this comparison for several fields over several years will create a picture of the
average statistical quality of estimates. The historical data accumulated across
the NCS will be used as input to the approach described in this thesis, allowing
for the calibration and debiasing of future estimates. This method is based on
the invaluable contribution to the field of judgement and biases by Kahneman
and Tversky [19]. The approach, which has been coined the modified reference
class forecasting (MRCF), calibrates three assessed percentile values based on the
accuracy of similar previous assessments. This will be further explained in Chapter
5.

3.3 Limitations

Statistical analysis is meaningless if it is not based on statistically meaningful data.
To be able to draw any meaningful conclusion out of a statistical analysis both a
sufficient amount of data and reliability of said data is crucial.

The data in this analysis constitutes a large percentage of the total number of fields
on the NCS [9].1 Moreover, Flyvbjerg and COWI’s paper on RCF [12] included 172
road projects, 46 rail projects and 34 bridge- and tunnel projects. Thus, relative
to similar research, the amount of data should be sufficient.

There is also a question about the reliability of the data, and whether the forecasts
truly reflect the assessors’ assessments. The methodology in this thesis assumes
that P10-, P50- and P90 estimates, with foundation in a probability distribution,
is used as input. There are several challenges with this assumption:

1. The NPD request companies to provide P10, mean and P90 estimates
2. The data set that was provided by the NPD includes several data points that

are either wrongfully reported or poorly assessed
3. Different companies have different methods of forecasting and it is not known

whether the percentiles and mean are based on probability distributions. It
is not uncommon to put the majority of the forecasting effort to build a
”base case” [2]. The P10 and P90 are usually less prioritized

Furthermore, the results presented in this thesis are based on NCS fields and, thus,
all conclusions drawn from this study are limited to NCS forecasts. However, as
will be discussed later, optimism bias is not limited to NCS forecasts, nor to the
petroleum industry. It is a reasonable assumptions that both the causes and the
magnitude of the bias also applies to other geographical regions, affecting the
entire petroleum industry. Nonetheless, it would be both interesting and useful
to incorporate data from other parts of the world - either to expand the reference
class or to create several new reference classes. This would yield a more complete
debiasing model.

1As of July 2020, there are 88 producing fields on the NCS.



Chapter 4

Analysis

In this chapter, the data set, which forms the foundation of this thesis, is presented.
The accuracy of the assessors’ forecasts will also be evaluated.

4.1 Production estimates

Across the 51 fields included in the data set there are a total of 1320 forecasted
values, including P10-, mean- and P90 estimates. Figure 4.1 gives an overview of
the mean estimates. The y-axis represents the estimated production volumes in
millions of standard cubic meters, while the x-axis represents the production year
associated with the given estimates. All the mean estimates associated with a sin-
gle production year are summed to get the total annual mean. This is an allowable
operation for mean estimates. However, the same is not true for percentiles. The
average of percentiles is not a percentile. Although the average might represent
a value close to the true percentile value of a distribution, it is not statistically
consistent to make this assumption. Thus, the average of the percentiles will not
be presented and discussed.

17
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Figure 4.1: Sum of estimated means, year-by-year

All of the fields included in this analysis had their PDOs approved between 1995
and 2017. No estimates after 2019 are included, due to lack of actual production
data after 2019. As a result, many fields have a limited number of years of produc-
tion data. To illustrate, Figure 4.2 shows the number of fields that were producing
at any given year after production start on the left axis, and the estimated pro-
duction on the right axis. There is a greater number of fields for Year 1, 2, 3 and 4
than for Year 0 due to there being a great deal of data with poor quality for Year
0.

Figure 4.2: Estimated mean and number of fields in production, x years after production start

The declining production volumes, seen in Figure 4.2, is caused by both a de-
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creasing number of producing fields and by physical limitations. As explained in
Section 2.2.5, the production profile of a typical petroleum field is categorized by
an initial buildup in the first few years, followed by a plateau phase before even-
tually decreasing towards zero. The described pattern can be seen in Figure 4.3,
illustrating the average of the mean estimates. On average, the initial buildup
lasts for about one year and the plateau phase lasts for about five years.

Figure 4.3: Estimated mean divided by number of fields in production, x years after
production start

4.2 Actual production

Production estimates are estimated on a year-by-year basis from the year of es-
timated production start until the estimated cessation of the field. However, the
estimated production start might not coincide with the actual production start.
Out of the 51 fields that were included in the data set, 17 fields started producing
at least one year after it was estimated. This thesis is a study of bias in production
estimates and, thus, the delays should not complicate this analysis. To reduce the
effect of delays, the first year of production will be compared to the first estimate.
Although this reduces the effect of delays, it is not completely eliminated. It is
likely that there is a difference between the month in which the actual production
started and the month in which the production was estimated to start. Since the
Norwegian authorities do not request month-by-month data, this information is
not available. Therefore, delays have been removed to the extent possible given
the lack of time granularity in the data.

Figure 4.4 is an illustration of the differences between the estimated total annual
mean and total annual production outcomes. The Year 0-estimates are 64 per-
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Figure 4.4: Direct comparison between mean estimate and actual production

cent larger than the actual outcomes. For Year 1 and 2 this number is 39- and
16 percent, respectively. For each of the five first years, the total annual mean
estimates are higher than the total annual production. Figure 4.5 illustrates the
accumulated mean estimates and the accumulated production for each year af-
ter production start. The accumulated mean estimates are higher than the true
production outcomes for the first 16 years of production.

For an unbiased assessor, the P50 forecasts should be assessed such that the number
of actual production outcomes is equal above and below this value. This makes the
interpretation of P50 simple. In Section 2.5.2, the differences between the median
and the mean were discussed. Given skewed distributions, the two values will not
be the same. Nonetheless, to allow for an easier interpretation of the data, the
mean estimates will be assumed equal to the median. The ramifications of this
decision will be discussed in Appendix A. Hereinafter, the mean, median and P50
will be used interchangeably.

Some important terminology when discussing bias include overprecision and opti-
mism. The former is when assessors consistently produce forecasts with too narrow
intervals, i.e., the P10-P90 range captures less than 80 percent of the true produc-
tion values. The latter is when assessors produce forecasts where the true values,
for the majority of the time, falls below the assessed P50.
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Figure 4.5: Direct comparison between mean estimate and actual production, accumulated
production

Figure 4.6: Direct comparison between estimates and actual production for Field A

Figure 4.6 illustrates the P10-, P50- and P90 estimates, as well as the actual
production data for field A. 67 percent of the true production outcomes are lower
than the estimated P50. 19 percent of the true values are lower than the P10
values and 14 percent are higher than the P90 values.
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Figure 4.7: Direct comparison between estimates and actual production for Field B

Figure 4.7 illustrates the percentiles and actual production data for field B. 62
percent of the true production outcomes are lower than the estimated P50. 48
percent of the true values are lower than the P10 values and 29 percent are higher
than the P90 values.

Figure 4.8: Direct comparison between estimates and actual production for Field C

Figure 4.8 illustrates the percentiles and actual production data for field C. 90
percent of the true production outcomes are higher than the estimated P50. 0
percent of the true values are lower than the P10 values and 57 percent are higher
than the P90 values.
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Figure 4.6 and 4.7 both indicate overly precise and optimistic forecasts. Figure 4.6,
4.7 and 4.8 are all evidence of overprecision. However, these figures do not provide
substantial evidence that forecasts on the NCS are biased in general. Variations
are expected in probabilistic forecasting. However, when the majority of the data
indicates biased forecasts, it becomes a trend. This is further studied in Section
4.2.2.

4.2.1 Additional investments

As petroleum fields grow older, and production volumes diminish as a result
of depleting reservoir pressure, the potential benefits of enhanced oil recovery-
investments increase. Table 4.1 gives an overview of some of the additional invest-
ments on the NCS. This adds another level of complexity to the analysis. It is not
known whether these investments are accounted for in the PDOs and, thus, only
the first four years of production data will be discussed for the remainder of this
thesis.

4.2.2 Year-by-year

Figure 4.9 illustrates the estimated production versus actual production for the
first year of production for every field. The orange markers represent the mean
forecasts. The vertical lines intersecting the mean forecasts represent the assessed
80 percent confidence intervals. The blue, diagonal line is 45 degrees and indicates
where the estimated production equals the actual production. By definition, a
perfectly calibrated judge would see his 80 percent confidence intervals intersect the
blue line eight out of ten times. The dotted line is a linear regression of the input
data. For a perfectly calibrated judge, this line should align with the blue line.
The assessed 80 percent intervals rarely cross this line, indicating overprecision.
Furthermore, the regressed line indicates optimistic forecasts. Figure 4.10 shows
the same distribution, but with lower values on the axes, highlighting smaller fields.
There are no apparent differences between small and large fields for Year 0.
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Table 4.1: Overview of additional investments in fields that are already producing [32]
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Figure 4.9: Confidence intervals for estimates versus actual production, first year of
production, all fields

Figure 4.10: Confidence intervals for estimates versus actual production, first year of
production, smaller fields
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Figure 4.11: Confidence intervals for estimates versus actual production, second year of
production, all fields

Figure 4.12: Confidence intervals for estimates versus actual production, second year of
production, smaller fields

Figure 4.11 and 4.12 illustrates the same as Figure 4.9 and 4.10, but with data
from Year 1. Even more such examples are provided in Appendix B.

Table 4.2 summarizes and gives a complete oveview of the first four years of data.
It also illustrates the distribution that results from a perfectly calibrated judge. It
is evident that the assessors’ forecasts are not congruous with a perfectly calibrated
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judge. For example, the assessors’ 80 percent confidence intervals capture only 40
percent of the true values, indicating overly precise forecasts. 41 percent of the
true values falls below the assessed P10, indicating optimistic forecasts.

Table 4.2: Actual production values vs estimates, first four years

Inside interval Below P50 Above P50 Below P10 Above P90

Perfectly calibrated judge 80% 50% 50% 10% 10%
Assessors’ forecasts 39.29% 66.07% 33.93% 42.26% 18.45%

4.3 Are there signs of improvement?

The analyses in this chapter have investigated the overall quality and precision
of forecasts. However, there have been no analyses on whether the forecasts have
improved in the past two decades.

Figure 4.13: Estimates versus actual production outcomes, by the year in which the
estimates were made

Year 0

Figure 4.13 illustrates the first year of production for the entire set of data, with
the horizontal axis indicating the year in which the estimates were made, allowing
interpretation of the development of Year 0 estimates over time. Figure 4.14 and
4.15 extends the analysis to also show the results for Year 1 and Year 2. The
green line indicates the percentage difference between the mean estimates and the
associated true values. When the green line is above the grey line, the forecasts
are higher than the true production values. There are natural fluctuations from
year to year, but there are no indications of decreasing levels of bias.
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Figure 4.14: Estimates versus actual production outcomes, by the year in which the
estimates were made

Year 1

Figure 4.15: Estimates versus actual production outcomes, by the year in which the
estimates were made

Year 2



Chapter 5

Reference class forecasting

5.1 Introduction to the modified reference class

forecasting approach

In Chapter 4, forecasts from the NCS were compared to the historical produc-
tion outcomes in order to evaluate the quality of the assessments. The evidence
showed that the forecasts were biased, both in terms of being optimistic and overly
precise. The following chapter will introduce the modified reference class forecast-
ing (MRCF) approach and apply it to the data. This is done to see whether
the methodology can correct the assessments and reduce the bias. Moreover,
the MRCF approach will be compared to the classical reference class forecasting
(CRCF) approach. MRCF is a more complicated model, using more inputs than
the CRCF model. The hypothesis is that the modified model will perform better
at debiasing the estimates than the classical model.

In the MRCF method, there are two sets of data: the reference class and an
application class. These classes consists of data with common characteristics,
pre-determined by the person or organization performing the calibration. This
is the class characteristic. Examples include: similar geological structures, the
same assessor, the same company, the same production year or the same year after
production start. It is important that the expected amount of biases within and
between the classes are homogeneous. In the reference class, both the historical
true outcomes and the estimates must be known. In a realistic calibration scenario,
the application class would consist of forecasts made today, i.e., where the true
values are not yet known. However, for the purpose of this thesis, the application
class constitutes a small sample of the reference class, in order to allow for the
documentation of the effectiveness of the method. To ensure consistency, it has
been chosen to always have 10 forecasts in the application class.

29
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In this thesis, the class characteristic is ”data of the same year after production
start”. Since it has been chosen to study only the first four years of production (see
Section 4.2.1), the classes are: the ”Year 0”-class, the ”Year 1”-class, the ”Year
2”-class and the ”Year 3”-class.

In order to explain the calibration methodology of the MRCF method and the
results that are gathered, some background information is necessary. First, the
data is fitted to a Bi-Normal distribution. This is a flexible distribution capable
of fitting any three percentile values. Then, an evaluation of the forecasts in the
reference class is performed. By comparing these forecasts to the historical true
values the calibration coefficients can be measured. Afterwards, the coefficients
are applied to the application class and the results of the analysis is evaluated.
Following this methodology, an out-of-sample analysis is conducted. This is done to
measure the accuracy of the procedure over a large number of iterations, providing
more statistical evidence.

Table 5.1 gives an overview of the nomenclature that is used in this chapter.

Table 5.1: Nomenclature for Chapter 5

j ∈ JR the set of reference class values

j ∈ JA the set of application class values

xTj historical production outcomes

xB,0.1j assessed (biased) P10 values

xB,0.5j assessed (biased) P50 values

xB,0.9j assessed (biased) P90 values

xU,0.1j calibrated (unbiased) P10 values

xU,0.5j calibrated (unbiased) P50 values

xU,0.9j calibrated (unbiased) P90 values

5.2 Bi-Normal distribution

The Bi-Normal distribution is a distribution attributed to Clemen et al. [5]. As
the name implies, the distribution consists of half a normal distribution from two
different distribution. Mathematically, the probability density function (PDF) of
the concatenated function is described as follows:
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PDF =
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R

∗ exp(− (x−m)2

2∗σ2
R

); if x > m
(5.1)

where m is the median, σL is the standard deviation for the left side of the distri-
bution and σR for the right. An example the Bi-Normal distribution is illustrated
in Figure 5.1. It shows the left and right halves of two normal distributions. The
two distributions have the same median, but different standard deviations.

Figure 5.1: Example of a Bi-Normal distribution

The Bi-Normal distribution is used to fit a distribution to the assessed percentiles
xB,0.1j , xB,0.5j and xB,0.9j . The standard deviation for the left side of the distribution
is estimated using:

xB,0.5j − xB,0.1j

1.282
(5.2)

where 1.282 is the standard z-score for an 80 percent confidence level, whilst the
standard deviation for the right side of the distribution is estimated using:

xB,0.9j − xB,0.5j

1.282
(5.3)

The Bi-Normal fitting is repeated for every j ∈ JR.
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5.3 Assessing the quality of the forecasts

Prior to calibration, it is important to evaluate how the estimates in the reference
class compares to the historical true production outcomes. As discussed in Section
2.5.1, 10 percent of the historical true values should fall below the assessed P10
estimates. Similarly, 10 percent of them should fall above the P90s. The number
of true values should also be equal above and below the P50s. If the number of
true values included in the reference class is not divisible by 10, then the amount
of true values that should be below the P10- and above the P90 estimates is found
through plotting probabilities, as discussed below.

To evaluate how many true values should fall below particular percentiles, a hy-
pothetical perfectly calibrated judge is invented. The perfectly calibrated judge is
an assessor whose cumulative probabilities of the true values perfectly align with
a plotting position formula [6]:

pj =
(j − a)

1 + JR − 2a
(5.4)

where JR is the amount of true values in the reference class and a is a constant.
a can take values between 0 and 0.5. Cunnane suggested in his research [6] that
a = 0.4 would ensure minimum variance and, thus, this value has been chosen for
this thesis.

There are 32 fields with assessments made for Year 0. 22 of these forecasts consti-
tutes the reference class, whilst the remaining 10 constitutes the application class.
Since 22 is not divisible by 10, a plotting position formula is needed to figure out
how many data points should fall below P10 and P50 and below P90 and P50.

Table 5.2 illustrates how a perfectly calibrated judge would have assessed the
cumulative probabilities (shown in the plotting probability column). Since all his
forecasts are unbiased, his assessed percentiles are xU,0.1j , xU,0.5j and xU,0.9j . With
these three percentiles, an entire distribution can be fitted using the Bi-Normal
distribution.

To better illustrate how a perfectly calibrated judge makes his forecasts, two hy-
pothetical fields (field F and field G) are introduced.

Assume that the perfectly calibrated judge made an assessment for the Year 0
production for field F, illustrated in Table 5.3, and that the true production value
for this field is 3.1. This is below the P50, placing it in the left side of the
distribution. The cumulative distribution can now be calculated using the formula
presented in Equation 5.1 (where x < m) and integrating it from 0 to the true the
true value; 3.1. The result from this exercise is 0.117, which is found in Table 5.2.
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Table 5.2: Plotting positions and the associated plotting probabilities, following the plotting
position formula 5.4

Plotting position Plotting probability

1 0.027
2 0.072
3 0.117
4 0.162
5 0.207
6 0.252
7 0.297
8 0.342
9 0.387
10 0.432
11 0.477
12 0.522
13 0.568
14 0.613
15 0.658
16 0.703
17 0.748
18 0.793
19 0.839
20 0.883
21 0.928
22 0.973

Further assume that the perfectly calibrated judge makes a forecast for Year 0 for
field G, presented in Table 5.4, and that the true value for this field is 12.8. This
is above the P50, meaning the right-side distribution will be used. Calculating the
cumulative probability for this outcome yields 0.883 - equal to one of the other
numbers in the plotting probability. This applies for every estimate the perfectly
calibrated judge make, eventually matching all the values in Table 5.2.

For the perfectly calibrated judge, two data points falls below 0.1 (P10) and two
data points lie above 0.9 (P90), as seen in Table 5.2. Moreover, 11 data points
lies above 0.5 (P50) and 11 data points falls below. It is important to emphasize
that the perfectly calibrated judge does not perfectly forecast future estimate. He
is simply making forecasts without biases.

5.4 Estimating the calibration coefficients

In order to reduce forecasting biases, three calibration coefficients are calculated
- the β-coefficient to calibrate the median, the αL-coefficient to calibrate the P10



CHAPTER 5. REFERENCE CLASS FORECASTING 34

Table 5.3: Assessment of Year 0 for field F by a perfectly calibrated judge

Field F

Year P10 P50 P90

0 3 4 6

Table 5.4: Assessment of Year 0 for field G by a perfectly calibrated judge

Field G

Year P10 P50 P90

0 5 9 11

and the αR-coefficient to calibrate the P90.

22 out of the 32 available data points for Year 0 are chosen at random. The
estimates of the 22 fields are listed, and compared with the associated true values,
in Table 5.5:1

1. First, β is estimated:
Table 5.6 shows the distribution of true values above and below P50 from the
data presented in Table 5.5. Not surprisingly, a majority of the true values
are below the assessed P50.

All of the median estimates are now multiplied with β, which initially is set
to 1. β starts at 1 such that if the assessments are not biased, they are not
calibrated. If unbiased data is calibrated, the calibration itself will introduce
bias. β is then reduced in increments of 0.0001.2 The rationale behind using
this incrementation is that it emulates a continous distribution of β values.
The process is repeated until the condition of Equation 5.5 met. In this
particular case, the condition is met at β = 0.6887. The number of true
values below P50 now aligns with that of the perfectly calibrated judge - 11
values.

Median(βxB,0.5j − xTj ) = 0 (5.5)

2. After calibrating the P50 values, the next step is to estimate αL:
With this method, the P10 values will be affected by the change of the P50
values that resulted from the multiplication with β. The new P10 values
after the P50s are calculated using Equation 5.6.

xU,0.5j − (xB,0.5j − xB,0.1j ) (5.6)

1The fields are labelled from 1 to 56 due to there originally being 56 fields in the data set.
2In situations where there are less true values below P50 than that which the perfectly

calibrated judge indicates, β is increased.
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Table 5.5: Median estimates and the associated true values for 22 of the original 32 data
points in Year 0

Field P10 Median P90 True

1 0.179 0.257 0.332 0.259
4 0.042 0.046 0.050 0.049
5 0.153 0.183 0.200 0.008
6 0.234 0.347 0.389 0.131
15 0.116 0.166 0.216 0.241
17 0.512 0.513 0.514 2.968
19 0.830 1.428 1.560 0.069
20 0.270 0.420 0.450 0.038
23 0.255 0.426 0.596 0.219
26 1.518 1.566 1.806 1.070
29 0.079 0.085 0.126 0.050
30 0.427 0.558 0.645 0.407
31 0.510 0.520 0.560 0.367
32 3.710 4.510 5.310 0.415
33 2.543 3.207 3.965 1.432
34 0.400 0.500 0.590 0.911
37 0.202 0.283 0.300 0.216
38 0.042 0.108 0.179 0.516
52 1.924 2.375 2.645 0.628
54 2.895 3.049 3.084 1.770
55 0.080 0.091 0.114 0.117
56 2.072 3.116 4.073 3.901

Table 5.6: Distribution of true values above and below P50 for Year 0

Below P10 Above P50 Below P50 Above P90
13 8 14 5

There are then eight true values below the P10. Since the P10 values still
need to be calibrated, Equation 5.7 is used to estimate the αL calibration
coefficient:

xU,0.5j − αL(xB,0.5j − xB,0.1j ) (5.7)

Again, αL starts out at 1 and is increased by 0.0001 until the amount of true
values below P10 is aligned with the perfectly calibrated judge.3 Table 5.5
indicates that two values should be below P10 (two values below 0.1). The
value of αL is 2.2340 after the calibration procedure. After the calibration

3In situations where there are less true values below P10 than that which the perfectly
calibrated judge indicates, αR is decreased.
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of the P10 values, it is likely that some of the values are below 0. Since
a negative production volume is irrational, a lower bound of zero has been
imposed.4

3. Lastly, the same procedure used to calibrate αL is used to calibrate αR, where
Equation 5.8 indicates the new P90 values after P50 has been calibrated and
Equation 5.9 explains how αR is estimated.

xU,0.5j − (xB,0.5j − xB,0.9j ) (5.8)

xU,0.5j − αR(xB,0.5j − xB,0.9j ) (5.9)

After the calibration procedure, αR is 6.1795.

5.5 Applying the calibration coefficients

After the calibration procedure, the calibration coefficients are applied to the ap-
plication class. The uncalibrated data set is presented in Table 5.7.

Table 5.7: An overview of the application class estimates before calibration

Field P10 Median P90 True

2 0.028 0.058 0.061 0.038
12 0.313 0.415 0.460 0.126
14 0.875 1.031 1.040 0.748
21 0.500 0.756 0.850 0.361
36 0.172 0.194 0.305 0.036
41 0.307 0.481 0.609 0.642
45 1.217 1.353 1.515 1.596
46 0.414 0.744 1.087 0.191
49 2.240 2.308 2.330 0.010
51 1.568 1.764 1.766 0.519

Table 5.7 is summarized in Table 5.9. Seven data points fall below P10 and two
data points above P90. This means that the 80 percent confidence interval only
capture one of the data points in the set, indicating a high level of bias.

To apply the calibration coefficients, 0.6887 is first multiplied with the P50 val-
ues. Second, 2.2340 and 6.1795 are inserted for αL and αR in Equation 5.7, 5.9,
respectively. Table 5.8 shows the entire application class after calibration. The
distribution of true values compared to the assessments is seen in Table 5.9. It

4This truncation could have been avoided, as suggested by Clemen et al. [5], by log-
transforming the data prior to calibration.
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becomes evident that, although not perfectly matching the perfectly calibrated
judge, the calibrated data seems much less biased than the uncalibrated. For in-
stance, with the calibrated data set, 70 percent of the true values falls within the
80 percent confidence interval of the assessors. More results, and discussion around
the results of the debiasing technique will be presented later.

Table 5.8: An overview of the application class estimates before calibration

Field P10 Median P90 True

2 0 0.040 0.059 0.038
12 0.059 0.285 0.566 0.126
14 0.362 0.710 0.764 0.748
21 0 0.521 1.102 0.361
36 0.085 0.134 0.821 0.036
41 0 0.331 1.122 0.642
45 0.629 0.932 1.935 1.596
46 0 0.513 2.633 0.191
49 1.437 1.590 1.724 0.010
51 0.777 1.215 1.266 0.519

Table 5.9: Distribution of true values for the application class above P50 and P90 and below
P50 and P10 for Year 0

Below P10 Above P50 Below P50 Above P90
Uncalibrated 7 2 8 2
Calibrated 3 3 7 0
Perfectly calibrated judge 2 5 5 2

5.6 Out-of-sample analysis

The previous section showed that the calibration technique aided in debiasing the
assessors’ forecasts. The procedure split a data set into two parts - the reference
class and the application class. The reference class was the set where the cal-
ibration coefficients were established and the application class was where these
coefficients were applied. This emulates how the technique would be implemented
in a real-world scenario, where the application class constitutes the forecasts where
the true values are not yet known. This kind of analysis is called out-of-sample
analysis.

For this thesis, out-of-sample analysis is used in order to objectively measure the
debiasing effect of the presented methodology. However, instead of using just a
single set of random values in the reference- and application class, 1000 iterations of
randomly selected data sets in these classes are run through. This is done in order
to evaluate whether the debiasing approach is robust across a variety of different
data sets. The procedure presented earlier is used, randomly selecting new sets
of reference- and application classes for every iteration. By storing the results of
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every iteration, is is possible to average them at the end of the procedure. The
computer code is provided in Appendix D. Appendix C also includes illustrations
of the Excel worksheet that was used, in order to explain how the code and the
worksheet function together.

The reason why 1000 iterations is chosen is because any additional iterations would
provide an insignificant change in the results. This is evaluated by taking the
cumulative moving average (CMA) of the calibration coefficients and study when
it stabilizes. Figure 5.2 illustrates the results from the CMA exercise on data from
Year 0. It is evident that 1000 iterations is more than enough to stabilize the
calibration coefficients. Similar is also true for the other years (see Appendix B).

Figure 5.2: CMA of the calibration coefficients

5.7 Measuring the effects of debiasing

To analyse whether the modified reference class forecasting technique reduced bias
- and if so, to what extend - some pre-defined ways to measure it is necessary. All
the results will be presented either in terms of the average across 1000 iterations or
in terms of a single iteration. The distinction will be clarified to avoid ambiguity.

The first method to measure improvements is to take the average absolute devi-
ation between the assessments and the perfectly calibrated judge. This will give
an indication of the average amount of bias in the original assessments and how
effective the calibration technique is.

The second method is to plot the cumulative probabilities against the plotting
positions. Both the calibrated- and uncalibrated cumulative probabilities should
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be included in this plot, together with the plotting probabilities. Figure 5.3 illus-
trates how this would look for a single iteration. It is evident that there are many
instances where the cumulative probabilities are zero or close to zero. This applies
for 6 out of the 10 plotting positions in this example. As will be shown later, this
is not an uncommon characteristic of the uncalibrated data.

It is also possible to calculate the average cumulative probability for each of the
plotting positions for all the iterations. This provides an overview of the dif-
ferences between the calibrated- and uncalibrated assessments, and the plotting
probabilities.

Figure 5.3: Plotting probabilities - cumulative probabilities versus plotting positions

Another way of presenting the data in Figure 5.3 is to take the squared difference
between all the cumulative probabilities and the plotting probabilities. This yields
the root mean square error (RMSE), which is commonly used when analysing
forecasts. The formula for RMSE is presented in Equation 5.10.

RMSE =

√∑J
j=1(Cj − pj)2

J
(5.10)

where J is the total number of true values, Cj is the cumulative probability and
pj is the plotting probability for the jth plotting position. The probabilities must
be plotted in ascending order.
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Table 5.10: Absolute difference of true values above/below percentiles between the perfectly
calibrated judge and the assessments, Year 0

Percentile Uncalibrated Calibrated Improvement

Below P10 5.276 0.893 83%
Above P90 1.289 0.922 28%
Above/Below P50 1.942 1.588 18%

Table 5.11: Absolute difference of true values above/below percentiles between the perfectly
calibrated judge and the assessments, Year 1

Percentile Uncalibrated Calibrated Improvement

Below P10 3.683 0.827 78%
Above P90 1.094 0.808 26%
Above/Below P50 2.427 1.317 46%

Table 5.12: Absolute difference of true values above/below percentiles between the perfectly
calibrated judge and the assessments, Year 2

Percentile Uncalibrated Calibrated Improvement

Below P10 2.413 0.893 63%
Above P90 1.084 0.862 20%
Above/Below P50 1.436 1.348 6%

Table 5.13: Absolute difference of true values above/below percentiles between the perfectly
calibrated judge and the assessments, Year 3

Percentile Uncalibrated Calibrated Improvement

Below P10 2.205 0.845 62%
Above P90 0.736 0.834 -13%
Above/Below P50 1.432 1.403 2%
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5.8 Results

The absolute difference between the assessments and the perfectly calibrated judge
is illustrated in Table 5.10, 5.11, 5.12 and 5.13. The improvement from the uncal-
ibrated to the calibrated is seen in the rightmost column in the tables. The tables
indicates good results in terms of reducing the optimism and overconfidence. For
the first year of production, the P10 estimates were 83 percent more accurate
(according to this specific metric). For the most part, the calibration also aids in
reducing bias in the other percentiles, although to a lesser degree than for the P10.

Figure 5.4: Plotting probabilities - Year 0, four random iterations
Blue = Perfectly calibrated judge, Orange = Calibrated, Gray = Uncalibrated

Figure 5.4, which is a combination of four subfigures, illustrates the efficiency of the
calibration technique on an iteration-by-iteration basis for Year 0. RMSE reduc-
tions of more than 60 percent is seen for all these four iterations. The good results
illustrated in this figure are also evident when averaging across 1000 iterations,
seen in Figure 5.5.

The 1000 iteration-averages of Year 1, Year 2 and Year 3 is compiled in Figure
5.6. All the plots indicate that the calibration technique is useful in enabling
the inclusion of more true values in the assessed 80 percent confidence intervals -
mostly achieved through expanding the lower side of the interval.

Table 5.14 shows the RMSE values for both the calibrated- and uncalibrated data,
as well as the improvements brought on by the calibration technique. The table
shows the same trend as seen in the previous tables, with improvements in the
first couple of years and reduced improvements in the following years. However,
the RMSE improvements are significant for all the studied years.
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Figure 5.5: Plotting probabilities - Year 0, 1000 iterations

Figure 5.6: Plotting probabilities - Year 1, 2 and 3 - 1000 iterations
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Table 5.14: Average RMSE across 1000 iterations, Year 0 through 3

Year Uncalibrated Calibrated Improvement

0 0.32 0.14 55%
1 0.28 0.13 52%
2 0.20 0.13 34%
3 0.19 0.14 28%

A recurring theme in the graphs and tables in this section is that the calibration
increases the accuracy of the assessments and reduces the bias, particularly for the
first years. Figure 5.7 highlights the magnitude of the calibration coefficients for
each year. It is evident that they are approaching 1. This indicates that the PDO
assessments in this data set are less biased for later years, which is also evident
from the ”uncalibrated” column in, e.g., Table 5.14.

Figure 5.7: Calibration coefficients trend

5.9 Classical reference class forecasting

This section will present the results from applying the CRCF method to the same
data set. Section 6.4 will compare the MRCF method to the CRCF method.

5.9.1 The method

As with MRCF, CRCF uses two sets of data - a reference class and an application
class for each year, where the entire set of assessments is divided into one of these
categories at random. All the true values are then normalized with the mean
estimates and ordered in ascending order. Based on this list of ascending values,
a metalog distribution [21] is fitted. The calibration coefficients are the output



CHAPTER 5. REFERENCE CLASS FORECASTING 44

of the metalog distribution. These coefficients are then applied to the application
class, similar to the MRCF method.

5.9.2 Results
Table 5.15: Absolute difference of true values within percentiles between the perfectly

calibrated judge and the assessments, Year 0

Percentile Uncalibrated Calibrated Improvement

Below P10 5.249 0.724 86%
Above P90 1.283 0.785 39%
Above/Below P50 1.908 1.534 20%

Table 5.16: Absolute difference of true values within percentiles between the perfectly
calibrated judge and the assessments, Year 1

Percentile Uncalibrated Calibrated Improvement

Below P10 3.598 0.690 81%
Above P90 1.172 0.907 23%
Above/Below P50 2.311 1.405 39%

Table 5.17: Absolute difference of true values within percentiles between the perfectly
calibrated judge and the assessments, Year 2

Percentile Uncalibrated Calibrated Improvement

Below P10 2.420 0.617 75%
Above P90 1.103 0.896 19%
Above/Below P50 1.477 1.530 -4%

Table 5.18: Absolute difference of true values within percentiles between the perfectly
calibrated judge and the assessments, Year 3

Percentile Uncalibrated Calibrated Improvement

Below P10 2.183 0.774 65%
Above P90 0.758 0.822 -8%
Above/Below P50 1.416 1.317 7%

The absolute difference between the assessments and the perfectly calibrated judge
after the CRCF method has been applied is seen in Table 5.15, 5.16, 5.17 and
5.18. The tables shows improvements with the calibration technique for most of
the reviewed percentiles. The improvements are similar to that of the MRCF
method. Table 5.19 investigates the differences between the two methods. The
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values in the table express the percent change when going from the CRCF method
to the MRCF method. Positive numbers indicate that the MRCF method performs
better than the CRCF method and vice versa for negative numbers. By using
this measurement, the modified method does not bring any improvement over the
classical method and, in fact, it results in significantly worse results for the P10
calibrated assessments.

Table 5.19: Improvements seen when choosing MRCF instead of CRCF

Year 0 Year 1 Year 2 Year 3

Below P10 -23% -20% -43% -9%
Above P90 -17% 11% 4% -1%
Above/Below P50 -4% 6% 12% -7%

Figure 5.8: Plotting probabilities - Year 0, four random iterations
Blue = Perfectly calibrated judge, Orange = Calibrated, Gray = Uncalibrated

Figure 5.8 illustrates how the cumulative probabilities of the calibrated- and un-
calibrated assessments match up to the perfectly calibrated judge in four random
iterations of Year 0. There are some variations in the effectiveness of the calibra-
tion procedure, but it is always outperforming the uncalibrated data. It does not
seem to be noticeably different from the MRCF method, shown in Figure 5.4.

Figure 5.9 illustrates the average cumulative probabilities across 1000 iterations
for Year 0. This appears almost identical to that of the MRCF method, shown in
Figure 5.5. Moreover, Figure 5.10 illustrates the average cumulative probabilities
for Year 1, 2 and 3 as well. Compared to the MRCF method in Figure 5.6, the
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Figure 5.9: Plotting probabilities - Year 0, 1000 iterations

CRCF method is more accurately calibrating the P90 values. From the uncali-
brated data, it is evident that the assessors are fairly good at estimating the P90
values correctly, and the MRCF method subsequently fails by overextending this
measurement.

Figure 5.10: Plotting probabilities - Year 1, 2 and 3 - 1000 iterations

The average RMSE values and improvements is seen in Table 5.20. Table 5.21
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compares the RMSE values from the MRCF and the CRCF method. Evidently,
there are not much difference between the two. In fact, the CRCF method seems
to be slightly more efficient than the MRCF method, in particular for Year 3.

Table 5.20: Average RMSE across 1000 iterations, Year 0 through 3

Year Uncalibrated Calibrated Improvement

0 0.32 0.14 57%
1 0.27 0.12 54%
2 0.20 0.13 36%
3 0.19 0.12 35%

Table 5.21: Comparison of the RMSE improvements between MRCF and CRCF

Year MRCF CRCF

0 55% 57%
1 52% 54%
2 34% 36%
3 28% 35%



Chapter 6

Discussion

In the previous chapters, evidence of overprecision and optimism in production
estimates have been discussed. Moreover, debiasing techniques have been applied
to the data in order to evaluate whether it could improve the estimates. The
following chapter will include a discussion about biases and the reasons why they
are so evident in the data. There will also be a discussion about the debiasing
techniques and the differences between them.

6.1 Explaining forecasting errors

6.1.1 Overruns in other industries

First, it is important to note that biased forecasts, similar to that which have been
shown in this thesis, are not limited to forecasts on the NCS. Neither is it limited to
forecasts in the petroleum industry. Several papers have investigated overruns in a
multitude of industries, e.g. Flybjerg (2002) [16] and Flyvbjerg (2007) [14]. They
conclude that, as a general rule of thumb, projects will arrive late, over budget
and fail to meet expectations [13]. Overruns of more than 50 percent is common.
Overruns of more than 100 percent is not uncommon. Although historical data
and research suggests that overruns are common across a multitude of industries
it should not be used as an excuse to continue to provide biased forecasts in the
oil- and gas industry. In order to discontinue the trend and improve forecasts in
the future, a better understanding of the challenges we face is needed.

6.1.2 Root causes

There are many reasons why projects underperform compared to the initial esti-
mates. Scope changes, technological uncertainty and internal disagreements might
all have a negative impact on projects, which could ultimately cause overruns, de-
lays and reduced benefits [15]. These are typical reasons as to why projects do not

48
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meet expectations and can be categorized as ”causes”. However, Flyvbjerg et al.
[13] argues that these explanations are not the root causes. Rather, they focused
on three causes they assumed to be the true, underlying causes for the lack of
performance:

1. Bad luck
2. Delusion
3. Deception

6.1.3 Bad luck

In situations where project expectations misaligns with the outcome - either in
terms of schedule, cost or quality - it is easy to blame bad luck. It is not uncommon
that managers rationalize in this way. Why? Because it pushes the responsibility
away from managers over to an intangible scapegoat.

The theory around black swans was introduced by Nassim Taleb in his 2007 publi-
cation ”The Black Swan” [40]. A black swan is an event that is highly improbable
- either assessed with a minuscule probability or not considered whatsoever. The
financial crisis of 2007-2008 can be considered a black swan event because few, if
any, knew that such an event would occur.

It may be argued that people who lost their lifetime savings during this period
experienced a case of bad luck. However, bad luck should not be used to describe
a situation where a gambler loses all of his savings in a casino. In this scenario the
odds are stacked against him, and statistics will ensure that he will always lose
in the long run. The gambler would likely disagree, however, insisting on his bad
luck.

The aforementioned analogy was presented to showcase that bad luck could be a
valid explanation in, e.g., a black swan event, but should not be used to describe
all events ending with a negative outcome.

The problem with using bad luck as an explanation for all projects with poor
outcome is that it is not statistically coherent. The bad luck-term, i.e., the error
term, should have a mean in the vicinity of zero. If this assumption does not hold
true, the model is biased. Based on the production estimates investigated in this
thesis, it is clear that the data is biased and that bad luck or error cannot be the
only explanation.

Furthermore, if bad luck could explain the poor data, it should be expected that
with time, the estimates would improve and that the misalignment with real-
ity would become smaller [13]. This should be expected as the potential benefit
of improving predictions is usually vast. Improved models, more education and
knowledge, and an ever-increasing amount of historical data should all help with
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the reduction of forecasting errors. This can clearly be seen with the improve-
ments in hurricane forecasting, illustrated in Figure 6.1. The forecasting error in,
e.g., the 72 hours prediction has been improved from about 450 nautical miles to
below 100 - an improvement of around 80 percent. From the data in this thesis,
it was evident that there have been no signs of improvement across the sample
period (see Section 4.3). More importantly, the data shows consistently optimistic
forecasts, which disputes the argument that the poor data is a result of bad luck.

Figure 6.1: Improvements in hurricane forecasting [1]

6.1.4 Delusion

Bad luck is clearly a poor argument when trying to find the reasons why failing
to meet expectations is so common. Flyvbjerg et al. [13] therefore propose an-
other explanation: delusion. Too often, decision makers make decisions based on
delusional optimism [18] rather than carefully and rationally weighting risks, prob-
abilities, advantages and disadvantages. Benefits tend to be exaggerated, whilst
underestimating costs. This also applies when people have access to historical data
and are aware of the phenomenon. This behaviour is called the planning fallacy
[20]. Most people are optimistic most of the time. People are specifically prone to
overestimate their own abilities and their own ability to influence the outcome of
a project [18].

Figure 6.2 shows the extent of the planning fallacy. The data is gathered from
a study where forecasting teams were asked to assess the quality of their fore-
casts. The study shows no difference in accuracy between the teams who thought
their forecast were excellent/good and the teams who assessed their forecast as
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fair/poor.

People’s optimistic nature could be part of the explanation why we see so poor
assessments for the P10 values in particular. It could also help explaining why
there are generally more true production outcomes below the P50 assessment than
above.

Figure 6.2: Assessment of the quality of forecasts [33]

Kahneman and Tversky wrote a great deal about heuristics in their research on
cognitive biases [19]. A heuristic is a methodology applied by people in order to
make sense of questions or problems that are otherwise difficult to solve. Heuristics
are based on intuition and does not necessarily give an optimal, or even satisfactory
solution to the problem. An example of a heuristic is the rule of thumb, where a
generalized answer is applied to a specific question.

Frequently, people use the ease of which a specific event comes to mind in order to
decide on the probability of such an occurrence [19]. This is called the availability
heuristic. A good example is that the assessed probability of success for a given
project would likely be exaggerated if recent successes came easily to mind for the
assessors.

Another important heuristic is the tendency of anchoring and adjusting. This is
also a theory that was constructed by Kahneman and Tversky [20]. It explains
the human tendency of anchoring in on a base case-estimate - a value which is
considered the most likely - and then adjusting the lower- and upper bounds ac-
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cording to this value. The problem is that people generally put too much faith in
the original estimate such that the lower- and upper bounds become biased. The
following example will illustrate this phenomenon [19]:

Two groups of high school students were given the task to estimate, within a
timeframe of 5 seconds, the answer to an arithmetic expression. The groups were
given the same expression, mathematically speaking. However, the first group was
given the expression 1, and the second, expression 2:

8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 (1)

1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 6 ∗ 7 ∗ 8 (2)

Because of the limited timeframe that was given, the students were only able to
perform a few steps of the calculation and had to adjust from this value - the
anchor - to achieve their answer. The evidence were conclusive. For the first
group, the median of the students’ estimates was 2250, while for the second group
this value was 512.

Anchoring and adjusting is a particularly probable cause for some of the overpreci-
sion that is seen in the data in this thesis. It is not inconceivable that many of the
assessors put a great deal of effort into creating an anchoring base case estimate -
the ”mean” - and then adjusting slightly upwards and downwards of this to create
the P10 and P90.

Delusion stems from decision makers adopting an inside view [20]. The inside
view is the term used when too much emphasis is put on particular details of the
problem or project at hand. By ignoring the broader picture and falling into the
pitfalls of delusion described above, bias is introduced to forecasts. Therefore, it
is advantageous to adapt an outside view. By taking a step back and seeing the
similarities between the current project and the projects of the past, historical
data can be used to effectively reduce or eliminate a lot of the bias introduced as
a consequence of delusion. This is the theory behind RCF.

6.1.5 Deception

The final root cause for underperformance, Flyvbjerg et al. [13] argues, is decep-
tion. Organizational deception is mainly caused by the principal agent problem.

The principal-agent problem occurs when a principal engages an agent to act on
its behalf [13]. In general, such relationships exist between every two levels of an
organizational hierarchy, e.g. a manager who engages an employee to act on his or



CHAPTER 6. DISCUSSION 53

her behalf. The challenge that in every principal-agent relationship, the two parties
usually have misaligning interests. If agents lack proper incentives to do the ”right
thing” by the principal, or is not penalized for promoting their own self-interests
above the interests of the principal, it is likely that agents will misbehave. Typical
issues include different time horizons, different risk preferences, uneven distribution
of information between the principal and agent and diffuse accountability. These
are all sources of strategic deception [13].

In large projects, such as offshore petroleum development projects, there are many
principal-agent (P-A) relationships. This is known as a multi-tier P-A problem.
An illustration is provided in Figure 6.3. This example is a generalization of a
multi-tier (P-A) system and shows how principals and agents can be mapped.
There are a number of other such relationships in a large scale project.

Figure 6.3: Example of multi-tier P-A relationships [32]

Tier 1 represents the P-A relationship between the taxpayers (principal) and the
state government (agent). The Norwegian state government is elected by the tax-
payers in order to act on their behalf. As discussed in Section 2.4, 78 percent of the
revenue generated from petroleum activities accrues to the state government [27],
which ultimately benefits the taxpayers. However, the taxpayers pay for 89 per-
cent of the development costs [41]. Hence, taxpayers expect the state government
to approve the PDOs that maximize the benefits. In this Tier 1 P-A relationship,
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misalignments include different time horizons and different risk preferences. The
Norwegian state government consists of members that are elected for four years at
a time. Having to rely on a past accomplishments to remain relevant, politicians
are incentivized to take more risk than their principals (the taxpayers) would like
to. Moreover, as there are elections every fourth year, the state government has
a shorter time horizon than the taxpayers, whose time horizon is generally long-
term. These misalignments might not incentivize the state government to run
proper quality controls of the assessments in the PDOs.

Tier 3 involves analysts and planners who act on behalf of an operator. In this P-A
relationship, misalignments include different risk preferences, uneven distribution
of information and diffuse accountability. The operator’s primary objective is
to maximize value from their assets. Analysts and planner, however, does not
necessarily share this objective. They are the ones that sit on the majority of
the information, and the ones assigned to develop forecasts to be included in the
PDO. They are usually less concerned about risks due to diffuse accountability if
forecasts end up being wrong. They are also incentivized to present forecasts that
gives indications of a good field because it could ensure that they keep having a
job to go to.

6.1.6 Delusion and deception

Flyvbjerg et al. [13] further argues that while both delusion and deception are the
root causes of large-scale projects’ failure, they are two inseparable, complementary
concepts. However, in some occasions, the failure is easier explained by one, rather
than the other. Their paper gives a few examples of certain projects that are more
susceptible to either delusions or deceptions, shown in Figure 6.4.

It is evident that when learning is good (i.e., models are being continually updated
with new information based on historical data as well as a keen focus on continuous
education and development) and well aligned incentives and penalties are in place,
forecasts tend to be unbiased [13]. Flyvbjerg et al. uses weather forecasts as an
example where this applies. As shown earlier in Figure 6.1, it is a clear downward
trend in the errors of hurricane forecasts, which supports this. Flyvbjerg et al.
further points out the difference between rail- and road projects, which was studied
by Flyvbjerg, Holm and Buhl [16].

Figure 6.5 and 6.6 illustrates the assessors’ ability of forecasting costs related to
rail- and road projects. Undoubtedly, the overruns for rail projects are signifi-
cantly larger than for road projects. The reason for this is likely that rail projects
occur a lot less frequent than road projects, limiting the amount of experience and
improvement with such projects. Rail projects are also typically much larger than
road projects, increasing the likelihood of principal-agent problems.

When it comes to forecasting of future production, both delusion and deception



CHAPTER 6. DISCUSSION 55

Figure 6.4: Delusion and deception in projects [13]

are causing biases. The bias observed in Chapter 4 could have been detrimental
had it not been for the historically favorable prices for petroleum products. The
following section will investigate the loss of value caused by bias on the NCS.

6.2 Loss of value due to biases

Mohus [32] analysed cost- and time overruns, as well as production shortfalls in the
petroleum industry, with a specific emphasis on oil production fields. The paper
includes a segment about the loss of value due to biased production estimates in
the PDO. The present value (PV) is calculated using oil prices and exchange rates
at the time of production. A 10 percent WACC and an inflation adjustment set
to 1.24 is also factored in. The formula used was:

PVi =
Productioni ∗ conversionrate ∗ exhangeratei ∗ oilpricei

(1 + wacci)t
(6.1)

Mohus also provided an example of the calculation method for an arbitrary field
on the NCS. The method is shown in Table 6.1.
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Figure 6.5: Cost overruns in rail projects [16]

Figure 6.6: Cost overruns in road projects [16]

Table 6.1: Lost revenue for an arbitrary field on the NCS [32]
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When neglecting lost value due to delayed production start, the total accrued lost
value due to underproduction was estimated to almost 19 billion NOK, expressed
in 2017 PV. However, this calculation did not consider that many of the fields saw
further investments after production start; investments that was not factored in
at the time of the PDO. When correcting for these investments, Mohus ended up
with a total loss in PV of 200 billion NOK due to underproduction.

The expected NPV loss caused by overconfidence in the petroleum industry is
also documented in Welsh et al. [45], which is summarized in Figure 6.7. Given
no overconfidence, the expected NPV was USD 246 million. Given 5 percent
overconfidence, this number would have been reduced to USD 224 million - a loss
of nearly 10 percent. Furthermore, the decrease in NPV is accelerating for every
incremental increase in the overconfidence level. At 30 percent overconfidence, the
expected NPV would have decreased to USD -10 million.

Figure 6.7: NPV loss due to overconfidence [2] [45]

6.3 Does the industry want to improve?

The evidence provided in Nandurdikar and Wallace [33] indicate the petroleum
industry’s unwillingness to improve future forecasts. Their research showed no
improvements in forecasting between 1995 and 2011. This was further analysed
and supported in this thesis. This is alarming given all the technological advances,
as well as the increase in the number of publications (illustrated Figure 6.8) in the
same time span.
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Figure 6.8: Growth in the number of papers on probabilistic production forecasting [3]

Nandurdikar and Wallace point out that in only 30 percent of projects were there
conducted an analysis to figure out the reasons behind the errors in their forecasts.
This is startling given the improvements such analyses could induce.

Given how grave the economic consequenses of biased estimates can be, it is pe-
culiar that the industry is not more eager to improve their forecasts and reduce
the bias in their predictions. Nandurdikar and Wallace argues that the lack of
accountability makes it difficult to achieve any progress. Since no one really bears
the responsibility for the poor assessments, no one will be told that they will have
to sit down and evaluate their own mistakes in order to improve in the future.

Lastly, it is reasonable to ask whether the industry is really aware of the mag-
nitude of bias in their predictions and the impact it has on companies’ bottom
line. Bratvold and Begg [2] explain how companies in the oil- and gas indus-
try rarely distinguish between good decisions and good outcomes. Generally, if a
good outcome follows a decision, the decision is considered good and vice versa.
As explained in Section 2.5.3, this strictly contradicts the theory. A plausible ex-
planation for the inability to distinguish between outcomes and decisions is that
the outcomes in this industry are generally not bad. The companies make a great
deal of money because of the high oil prices, and are potentially not fully aware of
how much value that is vasted. However, the oil- and gas industry is not entitled
for future life, and the increased demand for more renewable energy will put the
petroleum industry to the test and might induce a reality check for many of the
companies in the market.
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6.4 Discussion on RCF

There seem to be no improvements from using the modified reference class fore-
casting rather than the classical. On the contrary, the classical method seems to be
better at calibrating the data in this thesis. This is a surprising outcome because
the modified reference class forecasting uses more of the the information provided
by the assessors. What this implies is that it is beneficial to abandon the fore-
casters’ P10- and P90 estimates entirely and rather just create new ones using the
reference class forecasting model. This could be explained if the amount of bias in
the P10- and P90 estimates was not homogeneous, which would violate one of the
general assumption for the procedure. Another explanation is that the modified
reference class forecasting method needs refinement in order to better calibrate the
estimates. Both of these suggestions will be discussed in the following.

6.4.1 Should the P10- and P90 estimates be abandoned?

There are several reasons why it might be better to abandon the P10- and P90
estimates altogether:

1. It was argued in Section 6.1.4 that most people are optimistic most of the
time. This implies that the assessors are likely to make wrongful forecasts
by assessing too high production volumes, which was also evident from the
data. The data set contained forecasts from several different companies, and
presumably from an even greater number of assessors. It must further be
assumed that these assessors have a varying degree of inherent optimism. It is
therefore conceivable that the MRCF method cannot appropriately calibrate
the data to account for this. Since the CRCF method discards the P10- and
P90 estimates entirely, this inconsistency is not an issue.

2. It was also argued that the anchoring and adjusting heuristic could impact
the quality of assessments. If it is assumed that it is common for companies
to develop a base case and then adjust the P10- and P90 values accordingly,
it would be difficult for the MRCF method to correct for this. The P10
and P90 would neither be random nor based on probabilistic forecasting.
Since every assessor in every company might adjust the P10s and P90s in a
varying degree, the general assumption that the bias in the reference class
and application class is equal might be violated.

3. Variation in optimism might also be seen even when the assessors remain
the same. For example, the availability heuristic makes it more likely for
assessors to be biased towards optimism and overconfidence if previous as-
sessments have been good. This further complicates the matter.
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6.4.2 Does the modified RCF method need refinement?

It became evident from the results acquired with the MRCF method that, on
average, it was highly efficient at calibrating the P10 estimates, but not as efficient
at calibrating the P90 estimates. The question becomes: does the method need
refinement in order to improve the calibration? There are many ways that the
method may be improved. Mostly, it comes down to the amount and quality of
the information used as input.

For the purpose of this thesis, the mean estimate has been assumed equal to the
P50. This is a simplification which generally does not hold true. In statistical
analysis, P50 is a much more useful measurement than the mean. A reccomen-
dation is therefore that the NPD in the future requests companies to report the
middle value in terms of P50, rather than the mean. With the MRCF method, the
middle value also has an impact on the P10- and P90 values during the calibration
procedure and, thus, a more precise middle value could prove valuable.

Since the P10- and P90 values are reliant on the middle value, the MRCF method
often exaggerate the adjustments to the P90 values - which were generally well
estimated by the assessors (see Figure 5.5 and 5.6 and Table 5.10 through 5.13).
Thus, it is possible that some alterations to the model might improve the P90
estimates. Suggestions include:

1. Using the metalog distribution in the MRCF method
2. Create a hybrid model between the CRCF method and the MRCF method

such that the P90 calibration can be improved
3. Only partly calibrate the P90 values, ending up with a value that is some-

where between the original estimate and the result of the calibration proce-
dure

Nonetheless, the fact that the classical reference class forecasting model outper-
forms the modified is a surprising outcome. Presumably, companies do put time
and money into forecasting P10 and P90 and, thus, it should have been improving
the accuracy of the calibration.

6.5 Further research

In this thesis, the modified reference class forecasting method has been imple-
mented to debias production forecasts of oil on the NCS. The data on which the
methodology is applied all stem from the NCS, which implies limited geological di-
versity and a assessments from a limited number of companies. Clearly, no general
conclusions can be drawn based on this NCS study. However, there is no reason to
believe that PDO based forecasts provided by operators on the NCS differ signifi-
cantly from forecasts provided in other regions for conventional field development
are any better. However, we hope that this study inspires similar studies outside
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the NCS.

Some examples for further research include:

1. Base the reference class on a single company or a few selected companies.
This could be helpful to more specifically address the bias within a company
and might yield even better results

2. Base the reference class on specific geological characteristics or other spe-
cific characteristics which could have an impact on the degree of bias in the
original model

3. In this thesis, RCF has been applied on the finalized forecast in the PDO
that the company provided the NPD with. It would be interesting to see
whether RCF could have a larger positive effect if applied earlier in the
forecasting process - either to debias the inputs that go into the models that
the companies use, or to debias the direct output of the models. A possibility
would also be to apply RCF in multiple steps

As discussed, adjustments might be made to the modified reference class forecast-
ing method in order to improve its efficiency.



Chapter 7

Conclusion

In this thesis, the modified reference class forecasting approach has been applied
to production data from the NCS. The goal was to reduce forecasting biases. In
previous research, the classical reference class model has been applied on similar
data with great success. The goal of this thesis was therefore to see whether the
modified model could improve on the already efficient classical model.

Production data from 1997-2019 were used for forecast validation and calibration.
Due to inconsistent probabilistic assessments, some of the data points could not
be used, leaving 51 fields and 1320 consistent forecasts. The data was evaluated
on a year-by-year basis. On average, the 80 percent interval that the assessors
had forecasted captured about 40 percent of the true values reported. Moreover,
41 percent of the true values fell below the assessed P10 estimates. These results
confirms overprecision and optimism in the forecasts.

The reason behind the bias is multifaceted. Although bad luck is often used as
an explanation for suboptimal forecasting performance, two alternative causes,
delusion and deception, have been introduced and discussed and deemed more
likely. A number of cognitive biases, including optimism, poor self-knowledge,
and the anchoring and adjusting heuristic all contribute to delusional forecasts.
The principal-agent problem causes deceptional forecasts. Previous studies have
suggested that better learning environments, and increased accountability and
transparency could help reducing these biases.

In this thesis, the fundamental research by Kahneman and Tversky on the outside
view and reference class forecasting was adapted in an attempt to debias the
production forecasts used for the development and operation decision (PDO). The
modified reference class forecasting approach resulted in RMSE reductions of 55-,
52-, 34- and 28 percent for Year 0, 1, 2 and 3, respectively. These are significant
improvements. However, the classical reference class forecasting approach, where

62
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the forecasted P10 and P90 are ignored, perform marginally better, with RMSE
improvements of 57-, 54-, 36- and 35 percent.

The fact that the CRCF approach perform better than the MRCF approach implies
that the P10- and P90 estimates should be ignored in favour of simply using the
forecasted middle value and create a complete forecasting distribution from this
single value. It is not unreasonable to assume that the companies put a great deal
of time, effort and money into forecasting P10 and P90 and, thus, the fact that
it does not improve the calibration procedure whatsoever should warrant serious
evaluation of how the operators generate their probabilistic forecasts.

The research provided in this thesis leaves room for further research. Rather
than request mean forecasts, the NPD should ask operators to provide median
values. This would significantly ease and improve both forecast verification and
calibration. With this information, the MRCF approach could be re-evaluated.
Moreover, it would be useful to attempt to apply the presented methodology in
other countries and environments to study the effect it might have on an expanded
set of data - or a different data set entirely.



Bibliography

[1] Richard B. Alley, Kerry A. Emmanuel, and Fuqing Zhang. “Advances in
weather prediction”. In: (2019): Science. doi: doi.org/10.1126/science.
aav7274.

[2] Reidar B. Bratvold and Steve Begg. Making Good Decisions. Society of
Petroleum Engineers, 2010.

[3] Reidar B. Bratvold et al. “Production Forecasting: Optimistic and Overcon-
fident - Over and Over Again”. In: (2020).

[4] Eric Brun. What is “Fuzziness” - or “the Unknown” -at the Front End of New
Product Development Projects? Working Paper. University of Stavanger,
2011.

[5] Robert T. Clemen et al. “Modeling and correction of over-precision bias
in subjective confidence intervals: The Bi-Normal and the Multi Parameter
Bi-Normal approaches”. In: Management Science (2020).

[6] C. Cunnane. “Unbiased plotting positions - A review”. In: Journal of Hydrol-
ogy 37(3) (1978). doi: https://doi.org/10.1016/0022-1694(78)90017-
3.

[7] Richard L. Daft and Robert H. Lengel. “Organizational Information Re-
quirements, Media Richness and Structural Design”. In: Management Sci-
ence (1986). doi: https://doi.org/10.1287/mnsc.32.5.554.

[8] Norwegian Petroleum Directorate. Act 29 November 1996 No. 72 relating to
petroleum activities. 2019. url: https://www.npd.no/en/regulations/
acts / act - 29 - november - 1996 - no2. - 72 - relating - to - petroleum -

activities/. (Accessed: March 2, 2020).

[9] Norwegian Petroleum Directorate. Faktasider. (Accessed: July 14, 2020).

[10] Norwegian Petroleum Directorate. Fields. url: https://www.norskpetroleum.
no/en/facts/field/. (Accessed: April 6, 2020).

[11] Bent Flybjerg. “Curbing Optimism Bias and Strategic Misrepresentation in
Planning: Reference Class Forecasting in Practice”. In: 16 (2007): European
Planning Studies.

[12] Bent Flybjerg and COWI. “Procedures for Dealing with Optimism Bias in
Transport Planning”. In: (2004).

64

https://doi.org/doi.org/10.1126/science.aav7274
https://doi.org/doi.org/10.1126/science.aav7274
https://doi.org/https://doi.org/10.1016/0022-1694(78)90017-3
https://doi.org/https://doi.org/10.1016/0022-1694(78)90017-3
https://doi.org/https://doi.org/10.1287/mnsc.32.5.554
https://www.npd.no/en/regulations/acts/act-29-november-1996-no2.-72-relating-to-petroleum-activities/
https://www.npd.no/en/regulations/acts/act-29-november-1996-no2.-72-relating-to-petroleum-activities/
https://www.npd.no/en/regulations/acts/act-29-november-1996-no2.-72-relating-to-petroleum-activities/
https://www.norskpetroleum.no/en/facts/field/
https://www.norskpetroleum.no/en/facts/field/


BIBLIOGRAPHY 65

[13] Bent Flybjerg, Massimo Garbuio, and Dan Lovallo. “Delusion and Deception
in Large Infrastructure Projects: Two Models for Explaining and Preventing
Executive Disaster”. In: 51 (2009): California Management Review.

[14] Bent Flyvbjerg. “Cost Overruns and Demand Shortfalls in Urban Rail and
Other Infrastructure”. In: 30 (2007): Transportation Planning and Technol-
ogy. doi: doi.org/10.1080/03081060701207938.

[15] Bent Flyvbjerg. “Over Budget, Over Time, Over and Over Again: Managing
Major Projects”. In: (2011): The Oxford Handbook of Project Management.

[16] Bent Flyvbjerg, Mette Skamris Holm, and Søren Buhl. In: 68 (2002): Journal
of the American Planning Association. doi: doi.org/10.1080/01944360208976273.

[17] John Kenneth Galbraith. The Age of Uncertainty. 1977.

[18] Daniel Kahneman and Dan Lovallo. “Delusions of Success: How Optimism
Undermines Executives’ Decisions”. In: (2003): Harward Business Review.

[19] Daniel Kahneman and Amos Tversky. Judgment under uncertainty: Heuris-
tics and biases. 1974. Accessed through the 1982 book publication under the
same name.

[20] Daniel Kahneman and Amos Tversky. Intuitive Predictions: Biases and Cor-
rective Procedures. 1977.

[21] Tom W. Keelin. “The Metalog Distributions”. In: Decision Analysis 13
(2016). doi: https://doi.org/10.1287/deca.2016.0338.

[22] MathIsFun. Normal Distribution. 2019. url: https://www.mathsisfun.
com/data/standard-normal-distribution.html. (Accessed: June 5, 2020.

[23] Ed Merrow. Industrial Megaprojects: Concepts, Strategies and Practices for
Success. 2019.

[24] Ministry of Petroleum and Energy and Norwegian Petroleum Directorate.
Activity per sea area. 2020. url: https://www.norskpetroleum.no/en/
developments-and-operations/activity-per-sea-area/. (Accessed:
February 28, 2020).

[25] Ministry of Petroleum and Energy and Norwegian Petroleum Directorate.
Licenses. 2020. url: https : / / www . norskpetroleum . no / en / facts /

licences/. (Accessed: February 28, 2020).

[26] Ministry of Petroleum and Energy and Norwegian Petroleum Directorate.
The Government’s Revenues. 2020. url: https://www.norskpetroleum.
no/en/economy/governments-revenues/. (Accessed: July 11, 2020).

[27] Ministry of Petroleum and Energy and Norwegian Petroleum Directorate.
The Government’s Revenues. 2020. url: https://www.norskpetroleum.
no/en/economy/petroleum-tax/. (Accessed: July 11, 2020).

[28] Ministry of Petroleum and Energy and Norwegian Petroleum Directorate.
Classification of petroleum resources. url: https://www.norskpetroleum.
no/en/petroleum- resources/resource- classification/. (Updated:
March 21, 2020).

https://doi.org/doi.org/10.1080/03081060701207938
https://doi.org/doi.org/10.1080/01944360208976273
https://doi.org/https://doi.org/10.1287/deca.2016.0338
https://www.mathsisfun.com/data/standard-normal-distribution.html
https://www.mathsisfun.com/data/standard-normal-distribution.html
https://www.norskpetroleum.no/en/developments-and-operations/activity-per-sea-area/
https://www.norskpetroleum.no/en/developments-and-operations/activity-per-sea-area/
https://www.norskpetroleum.no/en/facts/licences/
https://www.norskpetroleum.no/en/facts/licences/
https://www.norskpetroleum.no/en/economy/governments-revenues/
https://www.norskpetroleum.no/en/economy/governments-revenues/
https://www.norskpetroleum.no/en/economy/petroleum-tax/
https://www.norskpetroleum.no/en/economy/petroleum-tax/
https://www.norskpetroleum.no/en/petroleum-resources/resource-classification/
https://www.norskpetroleum.no/en/petroleum-resources/resource-classification/


BIBLIOGRAPHY 66

[29] Ministry of Petroleum and Energy and Norwegian Petroleum Directorate.
Original reserves. url: https://www.norskpetroleum.no/en/facts/

original-reserves/. Updated: January 29, 2020.

[30] Ministry of Petroleum and Energy and Norwegian Petroleum Directorate.
Remaining reserves. url: https://www.norskpetroleum.no/en/facts/
remaining-reserves/. (Updated: February 21, 2020).

[31] Ministry of Petroleum and Energy and Ministry of Labour and Social Affairs.
Guidelines for plan for development and operation of a petroleum deposit
(PDO) and plan for installation and operation of facilities for transport and
utilisation of petroleum (PIO). 2018.

[32] Erlend Mohus. “Over Budget, Over Time, and Reduced Revenue, Over and
Over Again – An Analysis of the Norwegian Petroleum Industry’s Inability
to Forecast Production”. In: (2018). Ed. by Reidar B. Bratvold.

[33] N. S. Nandurdikar and L. Wallace. Failure to Produce: An Investigation
of Deficiencies in Production Attainment. Society of Petroleum Engineers,
2011. doi: doi:10.2118/145437-MS.

[34] Norwegian Petroleum Directorate. Guidelines to plan for development and
operation of a petroleum deposit (PDO). 2000. doi: https://cutt.ly/

GpGXkCz.

[35] Oil and Gas Portal. Upstream — Petroleum Exploration. url: http://www.
oil-gasportal.com/upstream/petroleum-exploration/. (Accessed: July
7, 2020.

[36] Oil and Gas Portal. Upstream — Petroleum Production Phase. url: http:
//www.oil-gasportal.com/upstream/petroleum-production-phase/.
(Accessed: March 10, 2020).

[37] Regjeringen.no. Kontinentalsokkelen: Spørsm̊al og svar. 2014. url: https://
www.regjeringen.no/no/tema/utenrikssaker/folkerett/kontinentalsokkelen-

sporsmal-og-svar/id448309/. (Accessed: February 27, 2020).

[38] Kenneth C. Lichtendahl Jr. Robert T. Clemen. “Debiasing Expert Overcon-
fidence: A Bayesian Calibration Model”. In: Probabilistic Safety Assessment
and Management 6 (2002).

[39] Michael Schrage. “Daniel Kahneman: The Thought Leader Interview”. In:
(33 2003): strategy+business.

[40] Nassim N. Taleb. The Black Swan: The Impact of the Highly Improbable.
2007.

[41] Lars Taraldsen. Norske oljeprosjekter har sprukket med over 200 milliarder
p̊a 14 år. 2015. url: https://www.tu.no/artikler/norske-oljeprosjekter-
har-sprukket-med-over-200-milliarder-pa-14-ar/275922. (Accessed:
July 11, 2020).

[42] Offshore Technology. The history of the oil and gas industry from 347 AD to
today. url: https://www.offshore-technology.com/comment/history-
oil-gas/. (Accessed: April 7, 2020).

https://www.norskpetroleum.no/en/facts/original-reserves/
https://www.norskpetroleum.no/en/facts/original-reserves/
https://www.norskpetroleum.no/en/facts/remaining-reserves/
https://www.norskpetroleum.no/en/facts/remaining-reserves/
https://doi.org/doi:10.2118/145437-MS
https://doi.org/https://cutt.ly/GpGXkCz
https://doi.org/https://cutt.ly/GpGXkCz
http://www.oil-gasportal.com/upstream/petroleum-exploration/
http://www.oil-gasportal.com/upstream/petroleum-exploration/
http://www.oil-gasportal.com/upstream/petroleum-production-phase/
http://www.oil-gasportal.com/upstream/petroleum-production-phase/
https://www.regjeringen.no/no/tema/utenrikssaker/folkerett/kontinentalsokkelen-sporsmal-og-svar/id448309/
https://www.regjeringen.no/no/tema/utenrikssaker/folkerett/kontinentalsokkelen-sporsmal-og-svar/id448309/
https://www.regjeringen.no/no/tema/utenrikssaker/folkerett/kontinentalsokkelen-sporsmal-og-svar/id448309/
https://www.tu.no/artikler/norske-oljeprosjekter-har-sprukket-med-over-200-milliarder-pa-14-ar/275922
https://www.tu.no/artikler/norske-oljeprosjekter-har-sprukket-med-over-200-milliarder-pa-14-ar/275922
https://www.offshore-technology.com/comment/history-oil-gas/
https://www.offshore-technology.com/comment/history-oil-gas/


BIBLIOGRAPHY 67

[43] The Ministry of Petroleum and Energy and the Ministry of Labour and So-
cial Affairs. Guidelines for plan for development and operation of a petroleum
deposit (PDO) and plan for installation and operation of facilities for trans-
port and utilisation of petroleum (PIO). 2018. url: https://www.npd.no/
globalassets/1-npd/regelverk/forskrifter/en/pdo-and-pio.pdf.

[44] Duke University. url: https://www.fuqua.duke.edu/faculty/robert-
clemen. (Accessed: April 16, 2020).

[45] Matthew B. Welsh, Reidar B. Bratvold, and Steve H. Begg. “Modeling the
Economic Impact of Cognitive Biases on Oil and Gas Decisions”. In: (2007).

https://www.npd.no/globalassets/1-npd/regelverk/forskrifter/en/pdo-and-pio.pdf
https://www.npd.no/globalassets/1-npd/regelverk/forskrifter/en/pdo-and-pio.pdf
https://www.fuqua.duke.edu/faculty/robert-clemen
https://www.fuqua.duke.edu/faculty/robert-clemen


Appendix A

Assumption: median = mean

Since the underlying distributions of the forecasts are unknown, their skewness
cannot be evaluated directly. Therefore, to evaluate the decision to assume that
the median is equal to the mean, the metalog distribution is introduced. This is
a versatile distribution, proposed by Keelin [21], which can handle percentiles as
input. Based on these inputs, a complete distribution is generated.

Figure A.1 illustrates how data is used as input to the distribution. Since the
distribution uses percentiles as input, the mean estimate cannot be used as the
middle value. However, the metalog distribution also outputs the mean of the
generated distribution. The P50 value has therefore been found by changing the
input value until the mean of the distribution is equal to the forecasted mean.
In this example, the forecasted mean is 0.2572, whilst the calculated median is
0.2571. Thus, the distribution has close to zero skew. Although these results
cannot be guaranteed for every assessed distribution, it is a general assumption
for the MRCF approach presented in this thesis. If this assumption does not hold
true, it could cause suboptimal results.
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Figure A.1: Illustration of how the metalog distribution is used to fit the data



Appendix B

Figures

B.1 Confidence intervals

Figure B.1: Confidence intervals for estimates versus actual production, third year of
production, all fields
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Figure B.2: Confidence intervals for estimates versus actual production, third year of
production, smaller fields

Figure B.3: Confidence intervals for estimates versus actual production, fourth year of
production, all fields
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Figure B.4: Confidence intervals for estimates versus actual production, fourth year of
production, smaller fields

Figure B.5: Confidence intervals for estimates versus actual production, fourth year of
production, even smaller fields
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B.2 Stabilization of the CMA of the calibration

coefficients

Figure B.6: Stabilization of the CMA of the calibration coefficients, Year 1

Figure B.7: Stabilization of the CMA of the calibration coefficients, Year 2
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Figure B.8: Stabilization of the CMA of the calibration coefficients, Year 3



Appendix C

Excel worksheet

Figure C.1: Excel worksheet - Input
The data points are random, assigned only for the purpose of this example
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Figure C.2: Excel worksheet - Perfectly calibrated judge, in sample

Figure C.3: Excel worksheet - in sample data calibration

Figure C.4: Excel worksheet - out of sample data calibration
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Figure C.5: Excel worksheet - perfectly calibrated judge, out of sample



Appendix D

Excel VBA computer code

Sub out_of_sample ()

’ Timer

Dim StartTime As Double

Dim MinutesElapsed As String

’Remember time when macro starts

StartTime = Timer

’ Clear Contents in the necessary places

Range("K2:L500").ClearContents

Range("Q2:Y500").ClearContents

Range("AD2:AL500").ClearContents

Range("AS2:BA500").ClearContents

Range("BF2:BN500").ClearContents

Range("BS2:BT500").ClearContents

Range("CF2:CI2501").ClearContents

Range("G2:G500").ClearContents

Range("CL2:CQ2501").ClearContents

Range("CD3:CE2501").ClearContents

Range("CV2:AQQ100").ClearContents

Application.ScreenUpdating = False

Dim i As Integer

Dim j As Integer

Dim NoTrue As Integer

Dim randfun As Variant

Dim lastRow As Variant

’ Define the last row of data input; this is the amount of datapoints + 1!

lastRow = Range("A" & Rows.Count).End(xlUp).Row

Dim NoValues As Integer

Dim NoHalfValue As Integer

Dim nthSmall As Double

’ Count number of datapoints

Range("I10").Value = "=Count(R2C6:R" & lastRow & "C6)"
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NoValues = Range("I10").Value

’ This is half of the values (J/2 if even , (J-1)/2 if odd). This is the "False"

values

NoHalfValues = NoValues / 2

Dim sizeoos As Integer

sizeoos = NoValues * 0.2

’ Dim flags

Dim flg As Boolean

Dim flgl As Boolean

Dim flgr As Boolean

’ Final calculation assignment

Dim uLT As Double

Dim uUT As Double

Dim uAP50 As Double

Dim uBP50 As Double

Dim CLT As Double

Dim cUT As Double

Dim cAP50 As Double

Dim cBP50 As Double

Dim ppLT As Double

Dim ppUT As Double

Dim ppAP50 As Double

Dim ppBP50 As Double

Dim tempuLT As Double

Dim tempuUT As Double

Dim tempuAP50 As Double

Dim tempuBP50 As Double

Dim tempcLT As Double

Dim tempcUT As Double

Dim tempcAP50 As Double

Dim tempcBP50 As Double

Dim tempppLT As Double

Dim tempppUT As Double

Dim tempppAP50 As Double

Dim tempppBP50 As Double

Dim Count As Integer

Dim lastRowFalse As Integer

Dim tempbeta As Double

Dim tempalphaL As Double

Dim tempalphaR As Double

Dim beta As Double

Dim alphaL As Double

Dim alphaR As Double

Dim tempcLTabs As Double

Dim cLTabs As Double

Dim tempcUTabs As Double

Dim cUTabs As Double

Dim tempaP50abs As Double

Dim aP50abs As Double

Dim tempbP50abs As Double

Dim bP50abs As Double

Dim tempuLTabs As Double
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Dim uLTabs As Double

Dim tempuUTabs As Double

Dim uUTabs As Double

Dim tempuaP50abs As Double

Dim uaP50abs As Double

Dim tempubP50abs As Double

Dim ubP50abs As Double

’’’’’

’ SLETT ?!

’ Dim rmseu As Double

’ Dim temprmseu As Double

’ Dim rmsec As Double

’ Dim temprmsec As Double

’ Dim rmseu1 As Double

’ Dim temprmseu1 As Double

’ Dim rmsec1 As Double

’ Dim temprmsec1 As Double

’’’’’

’ Start iterations (100? 1000?)

Dim looping As Integer

For looping = 1 To 100

’ Reset calibration parameters

Range("AN4").Value = 1

Range("AN8").Value = 1

Range("AN12").Value = 1

’ Clear Contents in the necessary places

Range("K2:L500").ClearContents

Range("Q2:Y500").ClearContents

Range("AD2:AL500").ClearContents

Range("AS2:BA500").ClearContents

Range("BF2:BN500").ClearContents

Range("BS2:BT500").ClearContents

’ Use rand() function to generate a random number for each field

Range("G2").Formula = "=rand()"

Range("G2:G" & lastRow).FillDown

Range("G2:G" & lastRow).Value = Range("G2:G" & lastRow).Value

’ The n-th smallest value in the range. The 2nd argument decides how many

datapoints will generate the calibration parameters

nthSmall = Application.WorksheetFunction.Small(Range("G2:G" & lastRow & ""), 6)

i = 2

’ Set "True" or "False" for each of the random numbers

Do While Cells(i, 7) <> ""

If Cells(i, 7) <= nthSmall Then

Cells(i, 7).Value = "False"

Else

Cells(i, 7).Value = "True"

End If

i = i + 1

Loop
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’ Count TRUE

Range("I2").Formula = "=CountIf(R2C7:R" & lastRow & "C7, TRUE)"

NoTrue = Range("I2").Value

’ Count FALSE

Range("I6").Formula = "=CountIf(R2C7:R" & lastRow & "C7, FALSE)"

NoFalse = Range("I6").Value

i = 2

j = 1

’ Variable # (K:K)

Do While Cells(i, 7) <> ""

If Cells(i, 7) = "True" Then

Cells(j + 1, 11).Value = j

j = j + 1

End If

i = i + 1

Loop

’ Reset i

i = 2

’ Plotting Probability (L:L)

Do Until i = (j + 1)

Cells(i, 12).Value = (Cells(i, 11) - 0.4) / (1 + (j - 1) - 2 * 0.4)

i = i + 1

Loop

’ Data in tails (plotting probability) (N:N)

’ Count lower tail

Range("N4").Value = Application.CountIf(Range("L2:L" & (NoTrue + 1) & ""), " <0.1

")

’ Count upper tail

Range("N8").Value = Application.CountIf(Range("L2:L" & (NoTrue + 1) & ""), " >0.9

")

’ Count true values above P50

Range("N12").Value = Application.CountIf(Range("L2:L" & (NoTrue + 1) & ""), "

>0.5")

’ Count true values below P50

Range("N16").Value = Application.CountIf(Range("L2:L" & (NoTrue + 1) & ""), "

<0.5")

’ Reset i, j

i = 2
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j = 2

’ Input the datasets of the fields where the rand() function is TRUE in another

table (Q:V)

Do While Cells(i, 7) <> ""

If Cells(i, 7) = "True" Then

Cells(j, 17).Value = Cells(i, 1).Value

Cells(j, 18).Value = Cells(i, 2).Value

Cells(j, 19).Value = Cells(i, 3).Value

Cells(j, 20).Value = Cells(i, 4).Value

Cells(j, 21).Value = Cells(i, 5).Value

Cells(j, 22).Value = Cells(i, 6).Value

j = j + 1

End If

i = i + 1

Loop

’ Reset i, j

i = 2

j = 2

’ Calculate standard deviation and the cumulative probability (W:Y)

Do While Cells(i, 17) <> ""

Cells(i, 23).Value = (Cells(i, 20).Value - Cells(i, 19).Value) / 1.28

Cells(i, 24).Value = (Cells(i, 21).Value - Cells(i, 20).Value) / 1.28

If Cells(i, 22).Value < Cells(i, 20) Then

Cells(i, 25).Value = WorksheetFunction.Norm_Dist(Cells(i, 22).Value ,

Cells(i, 20).Value , Cells(i, 23).Value , True)

Else

Cells(i, 25).Value = WorksheetFunction.Norm_Dist(Cells(i, 20).Value ,

Cells(i, 20).Value , Cells(i, 23).Value , True) + _

WorksheetFunction.Norm_Dist(Cells(i, 22).Value ,

Cells(i, 20).Value , Cells(i, 24).Value , True) -

_

WorksheetFunction.Norm_Dist(Cells(i, 20).Value ,

Cells(i, 20).Value , Cells(i, 24).Value , True)

End If

i = i + 1

Loop

’ Data in tails (uncalibrated) (AA:AA)

’ Count lower tail

Range("AA4").Formula = "=sumproduct(--(R2C22:R" & (NoTrue + 1) & "C22 <R2C19:R" &

(NoTrue + 1) & "C19))"

’ Count upper tail

Range("AA8").Formula = "=sumproduct(--(R2C22:R" & (NoTrue + 1) & "C22 >R2C21:R" &

(NoTrue + 1) & "C21))"
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’ Count true values above P50

Range("AA12").Formula = "=sumproduct(--(R2C22:R" & (NoTrue + 1) & "C22 >R2C20:R"

& (NoTrue + 1) & "C20))"

’ Count true values below P50

Range("AA16").Formula = "=sumproduct(--(R2C22:R" & (NoTrue + 1) & "C22 <R2C20:R"

& (NoTrue + 1) & "C20))"

’ Reset i, j

i = 2

j = 2

’ Input the datasets of the fields where the rand() function is TRUE in another

table (AD:AL)

Do While Cells(i, 17) <> ""

Cells(i, 30).Value = Cells(i, 17).Value

Cells(i, 31).Value = Cells(i, 18).Value

Cells(i, 33).Formula = "=R" & i & "C20 * R4C40"

Cells(i, 32).Formula = "=IF(R[0]C[1] - R8C40 * (R" & i & "C20 - R" & i & "

C19) <0,0,R[0]C[1] - R8C40 * (R" & i & "C20 - R" & i & "C19))"

Cells(i, 34).Formula = "=R[0]C[-1] - R12C40 * (R" & i & "C20 - R" & i & "C21

)"

Cells(i, 35).Value = Cells(i, 22).Value

Cells(i, 36).Formula = "=(R" & i & "C33 - R" & i & "C32) / 1.28"

Cells(i, 37).Formula = "=(R" & i & "C34 - R" & i & "C33) / 1.28"

Cells(i, 38).Formula = "=IF(R[0]C[-3] < R[0]C[-5], Norm.Dist(R" & i & "C35 ,

R" & i & "C33 , R" & i & "C36 , True), Norm.Dist(R" & i & "C33 , R" & i & "

C33 , R" & i & "C36 , True) + Norm.Dist(R" & i & "C35 , R" & i & "C33 , R" &

i & "C37 , True) - Norm.Dist(R" & i & "C33 , R" & i & "C33 , R" & i & "C37

, True)) "

i = i + 1

Loop

’ Data in tails (calibrated) (AP:AP)

’ Minimize Median(Beta*Mean - Actual)

Range("AP20").FormulaArray = "=Median(R2C33:R" & (NoTrue + 1) & "C33 -R2C35:R" &

(NoTrue + 1) & "C35)"

’ Count lower tail

Range("AP4").Formula = "=sumproduct(--(R2C35:R" & (NoTrue + 1) & "C35 <R2C32:R" &

(NoTrue + 1) & "C32))"

’ Count upper tail

Range("AP8").Formula = "=sumproduct(--(R2C35:R" & (NoTrue + 1) & "C35 >R2C34:R" &

(NoTrue + 1) & "C34))"

’ Count true values above P50

Range("AP12").Formula = "=sumproduct(--(R2C35:R" & (NoTrue + 1) & "C35 >R2C33:R"

& (NoTrue + 1) & "C33))"

’ Count true values below P50

Range("AP16").Formula = "=sumproduct(--(R2C35:R" & (NoTrue + 1) & "C35 <R2C33:R"

& (NoTrue + 1) & "C33))"
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’Calibration Parameters Calculation

’ Beta

flg = False

If Range("AP12").Value > Range("N12").Value Then

Do While Range("AP20").Value > 0

Range("AN4").Value = Range("AN4").Value + 0.1

If Range("AP20").Value < 0 Then

Do While Range("AP20").Value < 0

Range("AN4").Value = Range("AN4").Value - 0.01

If Range("AP20").Value > 0 Then

Do While Range("AP20").Value > 0

Range("AN4").Value = Range("AN4").Value + 0.001

If Range("AP20").Value < 0 Then

Do While Range("AP20").Value < 0

Range("AN4").Value = Range("AN4").Value - 0.0001

If Range("AP20").Value > 0 Then

flg = True

Exit Do

End If

Loop

End If

If flg = True Then

Exit Do

End If

Loop

End If

If flg = True Then

Exit Do

End If

Loop

End If

If flg = True Then

Range("AN4").Value = Range("AN4").Value + 0.0001

Exit Do

End If

Loop
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ElseIf Range("AP12").Value < Range("N12").Value Then

Do While Range("AP20").Value > 0

Range("AN4").Value = Range("AN4").Value - 0.1

If Range("AP20").Value < 0 Then

Do While Range("AP20").Value < 0

Range("AN4").Value = Range("AN4").Value + 0.01

If Range("AP20").Value > 0 Then

Do While Range("AP20").Value > 0

Range("AN4").Value = Range("AN4").Value - 0.001

If Range("AP20").Value < 0 Then

Do While Range("AP20").Value < 0

Range("AN4").Value = Range("AN4").Value + 0.0001

If Range("AP20").Value > 0 Then

flg = True

Exit Do

End If

Loop

End If

If flg = True Then

Exit Do

End If

Loop

End If

If flg = True Then

Exit Do

End If

Loop

End If

If flg = True Then

Exit Do

End If

Loop

End If
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’ Alpha L

flgl = False

If Range("AP4").Value > Range("N4").Value Then

Do Until Range("AP4").Value = Range("N4").Value

Range("AN8").Value = Range("AN8").Value + 0.1

If Range("AP4").Value <= Range("N4").Value Then

Do While Range("AN4").Value <= Range("N4").Value

Range("AN8").Value = Range("AN8").Value - 0.01

If Range("AP4").Value > Range("N4").Value Then

Do Until Range("AP4").Value <= Range("N4").Value

Range("AN8").Value = Range("AN8").Value + 0.001

If Range("AP4").Value <= Range("N4").Value Then

Do While Range("AN4").Value <= Range("N4").Value

Range("AN8").Value = Range("AN8").Value - 0.0001

If Range("AP4").Value > Range("N4").Value Then

flgl = True

Exit Do

End If

Loop

End If

If flgl = True Then

Exit Do

End If

Loop

End If

If flgl = True Then

Exit Do

End If

Loop

End If

If flgl = True Then

Range("AN8").Value = Range("AN8").Value + 0.0001

Exit Do

End If

Loop
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ElseIf Range("AP4").Value < Range("N4").Value Then

Do Until Range("AP4").Value = Range("N4").Value

Range("AN8").Value = Range("AN8").Value - 0.1

If Range("AP4").Value >= Range("N4").Value Then

Do While Range("AP4").Value >= Range("N4").Value

Range("AN8").Value = Range("AN8").Value + 0.01

If Range("AP4").Value < Range("N4").Value Then

Do Until Range("AP4").Value >= Range("N4").Value

Range("AN8").Value = Range("AN8").Value - 0.001

If Range("AP4").Value >= Range("N4").Value Then

Do While Range("AP4").Value >= Range("N4").Value

Range("AN8").Value = Range("AN8").Value + 0.0001

If Range("AP4").Value < Range("N4").Value Then

flgl = True

Exit Do

End If

Loop

End If

If flgl = True Then

Exit Do

End If

Loop

End If

If flgl = True Then

Exit Do

End If

Loop

End If

If flgl = True Then

Range("AN8").Value = Range("AN8").Value - 0.0001

Exit Do

End If

Loop

End If
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’ Alpha R

flgr = False

If Range("AP8").Value > Range("N8").Value Then

Do Until Range("AP8").Value = Range("N8").Value

Range("AN12").Value = Range("AN12").Value + 0.1

If Range("AP8").Value <= Range("N8").Value Then

Do While Range("AP8").Value <= Range("N8").Value

Range("AN12").Value = Range("AN12").Value - 0.01

If Range("AP8").Value > Range("N8").Value Then

Do Until Range("AP8").Value <= Range("N8").Value

Range("AN12").Value = Range("AN12").Value + 0.001

If Range("AP8").Value <= Range("N8").Value Then

Do While Range("AP8").Value <= Range("N8").Value

Range("AN12").Value = Range("AN12").Value -

0.0001

If Range("AP8").Value > Range("N8").Value Then

flgr = True

Exit Do

End If

Loop

End If

If flgr = True Then

Exit Do

End If

Loop

End If

If flgr = True Then

Exit Do

End If

Loop

End If

If flgr = True Then

Range("AN12").Value = Range("AN12").Value + 0.0001

Exit Do

End If

Loop
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ElseIf Range("AP8").Value < Range("N8").Value Then

Do Until Range("AP8").Value = Range("N8").Value

Range("AN12").Value = Range("AN12").Value - 0.1

If Range("AP8").Value >= Range("N8").Value Then

Do While Range("AP8").Value >= Range("N8").Value

Range("AN12").Value = Range("AN12").Value + 0.01

If Range("AP8").Value < Range("N8").Value Then

Do Until Range("AP8").Value >= Range("N8").Value

Range("AN12").Value = Range("AN12").Value - 0.001

If Range("AP8").Value >= Range("N8").Value Then

Do While Range("AP8").Value >= Range("N8").Value

Range("AN12").Value = Range("AN12").Value +

0.0001

If Range("AP8").Value < Range("N8").Value Then

flgl = True

Exit Do

End If

Loop

End If

If flgl = True Then

Exit Do

End If

Loop

End If

If flgl = True Then

Exit Do

End If

Loop

End If

If flgl = True Then

Range("AN12").Value = Range("AN12").Value - 0.0001

Exit Do

End If

Loop

End If
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’ Reset i, j

i = 2

j = 2

’ Input the datasets of the fields where the rand() function is FALSE - without

calibration - in another table (AS:BA)

Do While Cells(i, 7) <> ""

If Cells(i, 7) = "False" Then

Cells(j, 45).Value = Cells(i, 1).Value

Cells(j, 46).Value = Cells(i, 2).Value

Cells(j, 48).Value = Cells(i, 4).Value

Cells(j, 47).Value = Cells(i, 3).Value

Cells(j, 49).Value = Cells(i, 5).Value

Cells(j, 50).Value = Cells(i, 6).Value

Cells(j, 51).Value = (Cells(j, 48).Value - Cells(j, 47).Value) / 1.28

Cells(j, 52).Value = (Cells(j, 49).Value - Cells(j, 48).Value) / 1.28

Cells(j, 53).Formula = "=IF(R[0]C[-3] < R[0]C[-5], Norm.Dist(R" & j & "

C50 , R" & j & "C48 , R" & j & "C51 , True), Norm.Dist(R" & j & "C48 , R

" & j & "C48 , R" & j & "C51 , True) + Norm.Dist(R" & j & "C50 , R" & j

& "C48 , R" & j & "C52 , True) - Norm.Dist(R" & j & "C48 , R" & j & "

C48 , R" & j & "C52 , True)) "

j = j + 1

End If

i = i + 1

Loop

’ Data in tails (out -of-sample uncalibrated) (BC:BC)

’ Count lower tail

Range("BC4").Formula = "=sumproduct(--(R2C50:R" & (NoTrue + 1) & "C50 <R2C47:R" &

(NoTrue + 1) & "C47))"

’ Count upper tail

Range("BC8").Formula = "=sumproduct(--(R2C50:R" & (NoTrue + 1) & "C50 >R2C49:R" &

(NoTrue + 1) & "C49))"

’ Count true values above P50

Range("BC12").Formula = "=sumproduct(--(R2C50:R" & (NoTrue + 1) & "C50 >R2C48:R"

& (NoTrue + 1) & "C48))"

’ Count true values below P50

Range("BC16").Formula = "=sumproduct(--(R2C50:R" & (NoTrue + 1) & "C50 <R2C48:R"

& (NoTrue + 1) & "C48))"

’ Reset i, j

i = 2

j = 2

’ Input the datasets of the fields where the rand() function is FALSE - with

calibration - in another table (BF:BN)

Do While Cells(i, 7) <> ""
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If Cells(i, 7) = "False" Then

Cells(j, 58).Value = Cells(i, 1).Value

Cells(j, 59).Value = Cells(i, 2).Value

Cells(j, 61).Value = Cells(i, 4).Value * Range("AN4")

Cells(j, 60).Value = Cells(j, 61).Value - Range("AN8") * (Cells(i, 4) -

Cells(i, 3).Value)

If Cells(j, 60).Value < 0 Then

Cells(j, 60).Value = 0

End If

Cells(j, 62).Value = Cells(j, 61).Value - Range("AN12") * (Cells(i, 4) -

Cells(i, 5).Value)

Cells(j, 63).Value = Cells(i, 6).Value

Cells(j, 64).Value = (Cells(j, 61).Value - Cells(j, 60).Value) / 1.28

Cells(j, 65).Value = (Cells(j, 62).Value - Cells(j, 60).Value) / 1.28

Cells(j, 66).Formula = "=IF(R[0]C[-3] < R[0]C[-5], Norm.Dist(R" & j & "

C63 , R" & j & "C61 , R" & j & "C64 , True), Norm.Dist(R" & j & "C61 , R

" & j & "C61 , R" & j & "C64 , True) + Norm.Dist(R" & j & "C63 , R" & j

& "C61 , R" & j & "C65 , True) - Norm.Dist(R" & j & "C61 , R" & j & "

C61 , R" & j & "C65 , True)) "

j = j + 1

End If

i = i + 1

Loop

’ Data in tails (out -of-sample calibrated) (BP:BP)

’ Count lower tail

Range("BP4").Formula = "=sumproduct(--(R2C63:R" & (NoTrue + 1) & "C63 <R2C60:R" &

(NoTrue + 1) & "C60))"

’ Count upper tail

Range("BP8").Formula = "=sumproduct(--(R2C63:R" & (NoTrue + 1) & "C63 >R2C62:R" &

(NoTrue + 1) & "C62))"

’ Count true values above P50

Range("BP12").Formula = "=sumproduct(--(R2C63:R" & (NoTrue + 1) & "C63 >R2C61:R"

& (NoTrue + 1) & "C61))"

’ Count true values below P50

Range("BP16").Formula = "=sumproduct(--(R2C63:R" & (NoTrue + 1) & "C63 <R2C61:R"

& (NoTrue + 1) & "C61))"

’ Plotting Probability for datasets where rand() is FALSE

’ Reset i, j

i = 2

j = 1

’ Variable # (BS:BS)

Do While Cells(i, 7) <> ""

If Cells(i, 7) = "False" Then

Cells(j + 1, 71).Value = j
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j = j + 1

End If

i = i + 1

Loop

’ Reset i

i = 2

’ Plotting Probability (BT:BT)

Do Until i = (j + 1)

Cells(i, 72).Value = (Cells(i, 71) - 0.4) / (1 + (j - 1) - 2 * 0.4)

i = i + 1

Loop

’ Data in tails (out -of-sample plotting probability) (BV:BV)

’ Count lower tail

Range("BV4").Formula = "=CountIf(R2C72:R" & (NoFalse + 1) & "C72 ,"" <0.1"")"

’ Count upper tail

Range("BV8").Formula = "=COUNTIF(R2C72:R" & (NoFalse + 1) & "C72 ,"" >0.9"")"

’ Count true values above P50

Range("BV12").Formula = "=COUNTIF(R2C72:R" & (NoFalse + 1) & "C72 ,"" >0.5"")"

’ Count true values below P50

Range("BV16").Formula = "=COUNTIF(R2C72:R" & (NoFalse + 1) & "C72 ,"" <0.5"")"

’ Calculate sum of out -of-sample uncalibrated data

tempuLT = Range("BC4").Value

uLT = uLT + tempuLT

tempuUT = Range("BC8").Value

uUT = uUT + tempuUT

tempuAP50 = Range("BC12").Value

uAP50 = uAP50 + tempuAP50

tempuBP50 = Range("BC16").Value

uBP50 = uBP50 + tempuBP50

’ Calculate sum of out -of-sample calibrated data

tempcLT = Range("BP4").Value

CLT = CLT + tempcLT

tempcUT = Range("BP8").Value

cUT = cUT + tempcUT

tempcAP50 = Range("BP12").Value

cAP50 = cAP50 + tempcAP50

tempcBP50 = Range("BP16").Value

cBP50 = cBP50 + tempcBP50
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’ Calculate sum of plotting probability applicable to the out -of -sample sample

size

tempppLT = Range("BV4").Value

ppLT = ppLT + tempppLT

tempppUT = Range("BV8").Value

ppUT = ppUT + tempppUT

tempppAP50 = Range("BV12").Value

ppAP50 = ppAP50 + tempppAP50

tempppBP50 = Range("BV16").Value

ppBP50 = ppBP50 + tempppBP50

’ Absolute difference from the PP (uncalibrated)

tempuLTabs = Abs(Range("BC4").Value - Range("BV4").Value)

uLTabs = tempuLTabs + uLTabs

tempuUTabs = Abs(Range("BC8").Value - Range("BV8").Value)

uUTabs = tempuUTabs + uUTabs

tempuaP50abs = Abs(Range("BC12").Value - Range("BV12").Value)

uaP50abs = tempuaP50abs + uaP50abs

tempubP50abs = Abs(Range("BC16").Value - Range("BV16").Value)

ubP50abs = tempubP50abs + ubP50abs

’ Absolute difference from the PP (calibrated)

tempcLTabs = Abs(Range("BP4").Value - Range("BV4").Value)

cLTabs = tempcLTabs + cLTabs

tempcUTabs = Abs(Range("BP8").Value - Range("BV8").Value)

cUTabs = tempcUTabs + cUTabs

tempaP50abs = Abs(Range("BP12").Value - Range("BV12").Value)

aP50abs = tempaP50abs + aP50abs

tempbP50abs = Abs(Range("BP16").Value - Range("BV16").Value)

bP50abs = tempbP50abs + bP50abs

’ Average of the calibration parameters for each iteration

tempbeta = Range("AN4").Value

tempalphaL = Range("AN8").Value

tempalphaR = Range("AN12").Value

beta = (tempbeta + beta)

alphaL = (tempalphaL + alphaL)

alphaR = (tempalphaR + alphaR)

Cells(looping + 1, 84).Value = looping

Cells(looping + 1, 85).Value = alphaL / looping

Cells(looping + 1, 86).Value = beta / looping

Cells(looping + 1, 87).Value = alphaR / looping

Cells(looping + 1, 90).Value = tempalphaL

Cells(looping + 1, 91).Value = tempbeta

Cells(looping + 1, 92).Value = tempalphaR



APPENDIX D. EXCEL VBA COMPUTER CODE 94

’ Reset i

’ i = 2

’ Count false cells

lastRowFalse = Range("BT" & Rows.Count).End(xlUp).Row

CountFalse = WorksheetFunction.Count(Range("BT2:BT" & lastRowFalse & ""))

’ Sum up RMSE values for ALL iterations

For i = 1 To CountFalse

temprmseu = (Application.WorksheetFunction.Small(Range("BA2:BA" &

lastRowFalse & ""), i) - Application.WorksheetFunction.Small(Range("BT2:

BT" & lastRowFalse & ""), i)) ^ 2

rmseu = rmseu + temprmseu

temprmsec = (Application.WorksheetFunction.Small(Range("BN2:BN" &

lastRowFalse & ""), i) - Application.WorksheetFunction.Small(Range("BT2:

BT" & lastRowFalse & ""), i)) ^ 2

rmsec = rmsec + temprmsec

Cells(i + 1, looping + 99) = Application.WorksheetFunction.Small(Range("BN2:

BN" & lastRowFalse & ""), i)

Cells(i + 29, looping + 99) = Application.WorksheetFunction.Small(Range("BA2

:BA" & lastRowFalse & ""), i)

Next

rmsec = Sqr(rmsec / CountFalse)

’totrmsec = totrmsec + rmsec

Cells(looping + 1, 95).Value = rmsec

’Cells(looping + 1, 86).Value = totrmsec / looping

rmsec = 0

’Cells(looping + 1, 85).Value = Sqr(rmseu / (looping * CountFalse))

’Cells(looping + 1, 86).Value = Sqr(rmsec / (looping * CountFalse))

’ RMSE for each iteration

’ This marks the end of the main framework (looping)

Next

’ Calculate the average of out -of-sample uncalibrated data

uLT = uLT / (looping - 1)

uUT = uUT / (looping - 1)

uAP50 = uAP50 / (looping - 1)

uBP50 = uBP50 / (looping - 1)

’ Calculate the average of out -of-sample calibrated data

CLT = CLT / (looping - 1)

cUT = cUT / (looping - 1)

cAP50 = cAP50 / (looping - 1)

cBP50 = cBP50 / (looping - 1)
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’ Calculate the average of plotting probability applicable to the out -of -sample

sample size

ppLT = ppLT / (looping - 1)

ppUT = ppUT / (looping - 1)

ppAP50 = ppAP50 / (looping - 1)

ppBP50 = ppBP50 / (looping - 1)

’ Calculate absolute difference

cLTabs = cLTabs / (looping - 1)

cUTabs = cUTabs / (looping - 1)

aP50abs = aP50abs / (looping - 1)

bP50abs = bP50abs / (looping - 1)

Range("CE3").Value = cLTabs

Range("CE4").Value = cUTabs

Range("CE5").Value = aP50abs

Range("CE6").Value = bP50abs

uLTabs = uLTabs / (looping - 1)

uUTabs = uUTabs / (looping - 1)

uaP50abs = uaP50abs / (looping - 1)

ubP50abs = ubP50abs / (looping - 1)

Range("CD3").Value = uLTabs

Range("CD4").Value = uUTabs

Range("CD5").Value = uaP50abs

Range("CD6").Value = ubP50abs

Application.ScreenUpdating = True

’ Print the average amount of data in the tails in the worksheet

Range("CA3").Value = uLT

Range("CA4").Value = uUT

Range("CA5").Value = uAP50

Range("CA6").Value = uBP50

Range("CB3").Value = CLT

Range("CB4").Value = cUT

Range("CB5").Value = cAP50

Range("CB6").Value = cBP50

Range("CC3").Value = ppLT

Range("CC4").Value = ppUT

Range("CC5").Value = ppAP50

Range("CC6").Value = ppBP50

’Range("CE5").Value = CountFalse

’Range("CD5").Formula = "=If(IsOdd(CE5), ""PS! Odd number of data"", """")"

’Range("CD5").Value = Range("CD5").Value

’Range("CE5").Value = ""

’Determine how many seconds code took to run

MinutesElapsed = Format ((Timer - StartTime) / 86400, "hh:mm:ss")

’Notify user in seconds

MsgBox "This code ran successfully in " & MinutesElapsed & " minutes",

vbInformation

End Sub
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