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Abstract

A study of Machine Learning application on net-to-gross prediction using seismic
horizons. Case Study: The Brent Group - Statfjord Field

Khoirrashif Pratikna, The University of Stavanger

Supervisor: Arild Buland

As petroleum geosciences enter the era of big data, this field of study encompass
difficult optimization and decision-making in real-world problems. The increasing number,
difficulty, and scale of such specific problems has become too complicated for geoscientists to
rely on a single discipline for effective solution. Machine Learning (ML) provides extensive
capability to be the solution in this area.

This thesis, as a part of ongoing research, focuses on the application of various ML
algorithms in predicting the net to gross value of the Brent Group reservoir zone in the Statfjord
Field. For this purpose, several objectives were defined. As the first fundamental step, features
were generated directly from the TWT and amplitudes of the respective seismic horizons.
Secondly, predictive models were built from both training and testing phase using the features.
The final task was estimating and mapping the value of net to gross property of the pre-defined
reservoir zone. Furthermore, classification task and sand thickness prediction were also
included as additional comparisons to the main task.

The results indicate outstanding performance demonstrated by Decision Tree and
Random Forest algorithms despite the limitation on the dataset. Insufficient amount of data as
well as data cleaning problems have been the main constraints in this study. This unarguably
led to high variance in the data which yielded less accurate and less reliable prediction models.

The ML clearly have potential to accomplish the defined task better once the obstacles
are handled properly in the future studies. Some improvements such as better data cleaning
process, more involvement of well logs data, AVO inversion analysis, and utilization of more
advance algorithms are strongly suggested in order to boost the models’ performance.



Contents

DA N 1 T0h (e e 11 1S 1 N iv
DN 1] 1 o T PPNt \%
| 5 C 1) 8 1 1) (P PPPPPPPPPRPRRN viii
LiSt Of fIGUIES coeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniininiininieieiieeneinneeeneeeeeeneeseeeeseesesssssssssssssssens ix
O 119 00 11 et # 11 N 10
L1 AIM Ofthe StUAY...oooiiiiiiiiee e e e 10

| O 13 15107 5 A1 U U PPPPPPPRRRINS 10

2 The Statfjord Field........cccoovviiiiiiiiiiiiisiiiiiississssssssssssssssssssssssssssssssssssssssnns 11
2.1 Structural SETHINGS ....eeeeieeeeiiiiiiiiiieeeeeeeeeciie et e e e e e e e eeeeeeeeeesnaabraeeeeeeeennnnnnns 12

2.2 Stratigraphy of the Statfjord field reservoir ...........cccccvviviiiieiiiiiiiieeeee e 13

B T 5 (< (T (010 o SRR PUPRRRN 14

2.2.2 Statfjord fOrmatioN...........eceiiiiieeiiiiiie e ettt ettt e e e st e e e eivree e eseraeeeesnebeeeeenes 14

2.2.3 DUNIN GEOUP..etiiiiiiiiiiiiiiiiee ettt e e e e ee e et eeeeeeseetrrareeeeeesesssssssseeaeessessnsnes 14

2.2.4 BIENE GIOUP ...uiiiiieieeiiitiiiiiieeeeeesiittteeeeeeeeessetrrreeeeeeeasssssssraseeesesssssssssseeeeessssnnnes 14

3 Machine Learning....ccccceeeeieiiiiinnnnnnnnnnnnnnnnnennnnnnesnessssssessssssssssssssssssssssssses 15
3.1 Support Vector Machine/Regressor (SVM/SVR) ....ooovviiiiiiiiiiiiiiiiieeeeeeeee, 16

3.2 DECISION TTE....ueeieeiiiiiiee ettt ettt et e ettt e e ettt e e e et e e e eieeeas 18

3.3 RaNdOM FOTESES ...coiiiiiiiiiiiiiii e 20

3.4 Previous work on Machine Learning application in Petroleum Geosciences ...... 21

72 S ) F: 1 - 22
O BN e 1) 4} (U PPUPRRRRR 22

4.2 WL e ettt e e aee e e 22

4.3 HOTIZOMN oottt et e et e e et e e e e tbeeeeeae 22

5  Thesis WOrKFIOW ....cccceveriiiiiiiisssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 23
5.1 Data SOTINZ ..ccouvieiiiieeiiiee ettt ettt ettt e s e e 23

5.2 Label SeIeCtiOn ....ccccieiiiiiiiiieee e e e 24

5.3 Features EXtraction .......cc..uviiiiieiiiiiiiiiiiiiee e ettt e e e et e e e e e e e e eeeenaeeeeas 25

5.4 ML Models Generation and Training ..........ccccceeeeirnieiiniiiieniiieeniieeeiieeeeee e 28

5.5  Label PrediCtion.......cccceuiiiiiiiie ettt e e e e 30

5.6 Performance Evaluation ............cccccooiiiiiiiiiiiiiiiieice e 30

6  Results and DiSCUSSION ....cccuueeeiiiiisneeicisssnneeicssssnneeccssssseeescsssssseesessssnses 31
6.1  Net-to-gross PrediCtion ..........coeoiiiiiiiiiiiiiie e 31

6.1.1 Training and test Set PErfOrmanCe. ...........eeeevruiireeriiiieee e e eeiieeeeeiieee e eieeee e 31

6.1.2 Prediction results using four featUres...........occcveveeriiiieeiiiiiie e 32

6.1.3 Prediction results using eight features............cccevevriiiieiiiiiie e 33

6.1.4 Performance evaluation............ccceovuiiiiiieiiiieiiie et 35

6.1.5 Features evaluation .........ccooueiiiiiiiiiiiiiie ittt 35

6.2 Net-to-gross ClassifiCatioN .........ccveeiiiriiiiieiiiiiee et e 37

Vi



6.3 Sand ThiCKNesS PrediCtION «..couuueeeeeeee et e e eeeeeeeeaaeeaeen 39

0.4 DISCUSSION ..etieeiiiieiiiiieiiiee et ee et ee ettt ettt e ettt e st e e et e e sttt e snbteesabteeenseesnneeenane 42

6.4.1 ML simulation TESUILS ........c..eeriiiiiiiiiiiiie e 42

6.4.2 SeiSMIC AMPIIEUACS ....vvviieeriiiieeeiiiee ettt ertee e et e e e e e e s streeeesstaeeessnesaeesenes 43

6.4.3 Net-t0-gross of the Brent Group ...........ccveeeivciieeeriiiieeiiiiireerveeeesreeeessennneeeenes 44

6.4.4 DiSCUSSION T@MATKS ....eouiiiiiiieetiieiiee ettt ettt e et e st eeeneeas 44

A ©71) 1 10 11 £ U1 | PP PUPPPRRRNt 46
8 Future Work Recommendations ..........eeeeeeeeeecciiisinnnnneeneeeeccccssssnnnnnenes 47
RETEIENCES ..ccuuunnnnnnnnniiiiiiiiiiiinnnnntttiiiiicciisnnnnettteeisssssssssssssssseessssssssssssssssnns 48
Appendix 1: Statistical details of each features.......ccccceeeveeeerieeeieeninnnnnnnenennns 51
Appendix 2: Net-to-gross calculation for all wells input code in Python ....52
Appendix 3: Net-to-gross prediction input code in Python .......ccccceeeeeeeeenens 53
Appendix 4: Net-to-gross prediction validation input code in Python........ 59
Appendix 5: Net-to-gross classification input code in Python...................... 62
Appendix 6: Net-to-gross classification validation input code in Python ...66

vii



List of tables

Table 1. Provided seismic data SUMMATY .........cc.ceeeereiiiieeiniiiieeeeiiiieeeeiieeeeeieeeeeesereeeeenes 22
Table 2. Partial stacks of the seismic data ...........ccoocveeiiiiiiiiiiiie e 22
Table 3. K-fold CV results of the models when using 4 features ............ccccceeevveeeeenivierennns 31
Table 4. K-fold CV results of the models when using 8 features ...........ccccceeevevviieeenciiirenns 31
Table 5. Mean and standard deviation of the predicted NtG using 4 features....................... 33
Table 6. Mean and standard deviation of the predicted NtG using 8 features....................... 35
Table 7. Performance index of prediction when using 4 features...........cccceeeeevveeeeerinieeennns 35
Table 8. Performance index of prediction when using 8 features...........cccccvveeeeeeeennicnnnnnnnn. 35
Table 9. Linear regression index of predicted net-to-gross using AVO attributes ................ 37
Table 10. Classification performance index in training/test phase ..........ccccceeeeeeeeeereinnnnnnnn. 38
Table 11. Classification performance index of the predicted results ..........ccooceeiiiiiinnis 38
Table 12. K-fold CV results of the models in training/test phase...........ccccvvvveeeeeeereccnnnnnnnn. 40
Table 13. Mean and standard deviation of the predicted sand thickness .............cccccuvvneeeee. 41
Table 14. Performance index of the predicted sand thickness...........cccceccvvvvviiieeeiennicinnnnen. 42

viii



List of figures

Figure 2.1: Location of the Statfjord Field (modified from www.npd.no). ............ccccveeeenne. 11
Figure 2.2: (a) Regional profile across northern North Sea and the Statfjord Field based on the
work by Odinsen et al., in press (b), (b) fault map of the North Sea rift system around the
Statfjord Field and (c) schematic cross-section of the Statfjord Field. (modified from Fossen et
al., 1998; Hesthammer et al., 1999; and Gibbons et al., 2003) .........cccooeviiieeeiiiiieeeiieeeees 12
Figure 2.3: Stratigraphic column of the Statfjord Field (modified from Deegan & Scull, 1977;
Vollset & Dore, 1984; and Hesthammer et al.,1999). The main reservoirs are highlighted (red).

........................................................................................................................................... 13
Figure 3.1: Machine learning types and algorithms (modified from www.mathworks.com) 15
Figure 3.2: Support vector machine (SVM) classifier .........ccccvvveeieeeieiiiciiiiiiieee e, 17
Figure 3.3: The influence of parameter C on SVM .......ccooiiiiiiiiiiiiiiiee e, 18
Figure 3.4: The Generic structure of DT ..o, 19
Figure 3.5: Illustration of RF algorithm structure............ccoociviiiiiiiiiiiiieeeeee, 20
Figure 5.1: General workflow for this study ..........c.ceeviieiiiiiiiiiiie e, 23
Figure 5.2: Key surface picks divided the three zones .............ccccceeveeiiciiiiiiiiiec e, 23
Figure 5.3: Net-to-gross calculation StePS........cccuvvviiiiieeeieiiiiiiiiieee e e 24
Figure 5.4: Workflow for features eXtraction............ccceeeeeiiciiiiieiiee e, 25
Figure 5.5: Maps of TWT and RMS amplitudes of the study area...........cccccceeeeeeeeeennnnnnnnnn. 26
Figure 5.6: Maps of AVO attributes in the study area...........ccccceeeveeeeeiiiiiiiiiiieee e, 27
Figure 5.7: Table containing all data for generating the ML models ............cccccceevennnnnnnnn. 27
Figure 5.8: ML models generation and training ProCeSSES ..........eeeeeeeeerervrrreeeeeeeeesssnnveeenens 28
Figure 5.9: Automated stages in typical ML processes by TPOT ..........cccvvvvvveeeieiiiiinnnnen. 29
Figure 5.10: Illustration of k-fold cross validation (modified from scikit-learn.org)............ 29
Figure 6.1: The distribution of the true value of net-to-gross from wells.............cccccuvvnneeee. 31
Figure 6.2: Maps of the predicted net-to-gross values for the whole study area for each ML
algorithms using 4 features. Wells location are represented by dots.........cceeevveeeiieecininnnnnnn. 32
Figure 6.3: The distribution of the predicted net-to-gross values for each algorithm using 4
LS 1L SRR UPPRUPPPRPRNt 33
Figure 6.4: Maps of the predicted net-to-gross values for the whole study area for each ML
algorithms using 8 features. Wells location are represented by dots..........cceeevveeeeeeiinnnnnnnnnn. 34
Figure 6.5: The distribution of the predicted net-to-gross values for each algorithm using 8
LS 1 (< SRR PPPRUPPPRPNt 34
Figure 6.6: Features correlation mMatriX ..........ooocueeeeeiriiiiieiiiiiiee et e et ee e e e e eieeee e 36

Figure 6.7: Linear regression line (red line) between AVO attributes and true net-to-gross. 37
Figure 6.8: Maps of the predicted net-to-gross based on classification using ML algorithms.

Wells location are represented by dOtS.........coeeiiiiiiiiiiiiiiieiie e 39
Figure 6.9: The distribution of true sand thickness value from wells..........ccccceovieenninnnnn 39
Figure 6.10: Maps of the predicted sand thickness for the whole area for each ML algorithms.
Wells location are represented by dOtS.........ooeeiiiiiiiiiiiiiiieie e 40
Figure 6.11: The distribution of the predicted sand thickness for each algorithm ................ 41
Figure 6.12: Linear regression between the predicted sand thickness vs the true sand thickness

........................................................................................................................................... 42

X



1 Introduction

Petroleum Geosciences, as well as many other fields, is a domain which encompasses difficult
optimization and decision-making in real-world problems. As a result, integration, big-data
handling, uncertainty, and risk management are considered as fundamental issues in petroleum
geosciences. The increasing number, difficulty, and scale of such specific problems has become
too complicated for geoscientists to rely on a single discipline for effective solution.
Consequently, establishing new concepts intended to decent integration of disciplines (e.g.,
petroleum engineering, geology, and geophysics), fusing data, reducing risk, and handling
uncertainty have become top priority tasks in this field of study (Cranganu et al., 2015).

As petroleum geosciences enters the era of big data, machine learning (ML) provides extensive
capability to be the solution in this area. Machine learning approaches are a set of algorithms
which is possible to convert data to actionable intelligence. These techniques belong to a class
of methods in which the solutions are principally derived from data instead of physics-based
models (Nwachukwu, 2018).

Recent works show how ML approaches have been employed as problem-solving tool in oil
and gas industry. Among various ML algorithms, artificial neural network (ANN) and support
vector machine (SVM) are the most preferred when dealing with geoscience problems (Lary
et al.,, 2016). An example of implementation of ANN was to evaluate bottom hole pressure
(BHP) in multi-phase annular flow while under balanced drilling (UBD) operations (Ashena et
al., 2010). ANN was also used in drilling hydraulics simulations to predict hydraulic pressure
losses (Fruhwirth et al., 2006), as well as in drilling optimization in terms of investigating the
effects of vibration parameters on rate of penetration (ROP) (Elahifar et al., 2012), and also for
permeability prediction (Naeeni et al., 2010).

The SVM technique has also been considered as effective and accurate method with powerful
prediction capability. This is confirmed by its potential to successfully estimate the lithofacies,
and petrophysical properties such as porosity and permeability (Al-Anazi and Gates,
2010a,b,c,d)

1.1 Aim of the Study

As a part of ongoing research, the aim of the study is to obtain a better understanding of how
machine learning perform prediction on net-to-gross value of the oil-bearing reservoirs in the
Brent Group based on the structure and amplitude derived from seismic horizons.

1.2 Objectives
The Objectives of the study are defined as follows:

e Generating features from the respective horizons (TWT and amplitudes)

¢ Building training and testing predictive models by applying a number of machine
learning algorithms (e.g. SVM, Decision Tree, Random Forest, and etc.)

e Estimation of net to gross property of the defined reservoir zone for the whole study
area

e Determining which features have the most significant impact as well as the best
machine learning algorithm for this study case

10



2 The Statfjord Field

Statfjord field is a producing oil field situated on the southwestern part of the Tampen Spur
within the East Shetland Basin which is located in the 33/9 and 33/12 Norwegian sector (Fig.
2.1). The field was discovered in 1974 and started producing in 1979. The Statfjord field is
considered as the largest oil field in the Northern North field due to its hydrocarbon content
area which extends for 24 km by 4 km (Roberts et al., 1987).

The current owners of Statfjord field are Equinor Energy AS (44.37%, operator), Var Energi
AS (21.37%), Spirit Energy Norway AS (19.77%), Spirit Energy Resources Limited (14.53%)
(Norwegian Petroleum Directorate (NPD), 2020).
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Figure 2.1: Location of the Statfjord Field (modified from www.npd.no).
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2.1 Structural settings

The Statfjord field (Kirk, 1980) is located on the west border of the North Sea rift system in
one part of a platform inside the East Shetland Basin (Gabrielsen, 1986; Gabrielsen et al., 1990)
and approximately 220 kilometres northwest of Bergen (Fig. 2.2b). The East Shetland Basin is
surrounded by several parts of the North Sea rift system such as The East Shetland Platform
(south and west), the More Basin (north) and Tampen Spur (northeast) and the North Viking
Graben (east) (Fig. 2.2a). The Statfjord is gently sloped toward the northwest (Fig. 2.3) and
extends along the ridge of a trending fault block in NE-SW direction (Gibbons et al., 2003).

Permo- Tniassic
rift axis
(a) MAGNUS SHETLAND STAT- GULL- VIKING ‘
BASIN PLATFORM FJORD FAKS GRABEN

HORDA PLATFORM

Upper Cretaceous
2| Lower Cretaceous - — =
Jurassic & “jm =T - == 9

w- | Carboniferous-Triassic =
Basement (Devonian o S
and older) = I=20Lm—

40=-

NHW Schematic geological profie across the Stztjord Field SSE
3!

4 DD = . -
(c) 8T verticaity exaggerates) |08 . B ot Fati [

Figure 2.2: (a) Regional profile across northern North Sea and the Statfjord Field based on

the work by Odinsen et al., in press (b), (b) fault map of the North Sea rift system around the

Statfjord Field and (c) schematic cross-section of the Statfjord Field. (modified from Fossen
et al., 1998; Hesthammer et al., 1999; and Gibbons et al., 2003)

There were at least two major rift events which occurred in the Statfjord field area after the
Devonian thinning and regional stretching of the Caledonian crust (Hesthammer & Fossen,
1999). The Permo-Triassic rift, the first phase, formed the Viking Graben (Badley et al., 1984,
1988; Beach et al., 1987; Roberts et al., 1995). The second main rift phase (Brown, 1984;
Thorne & Watts, 1989), which occurred in the latest middle Jurassic to earlier Cretaceous,
developed a general extension in NW-SE direction (Roberts et al., 1990a,b). The Triassic and
Jurassic reservoirs were deposited in a gradual rate as a result of relative sea level rise
succeeding the second rift phase (Gibbons et al., 2003).

The structure of the Statfjord field dominantly consists of two sections (Fig. 2.2¢). First, a
relatively undistorted main field with dipping strata towards W-NW direction, and the second
one, a highly distorted east flank area which underwent multiple phases of gravitational
collapse towards east direction. The Cretaceous base is generally outweighed by multiple cross
faults which dipping steeply in NW-SE direction over the main field area. The strike-slip
deformation structures, which were formed in Tertiary, are then recognizable not only in the
northern and central part of the field, but also in the hanging wall to the primary boundary fault
(Gibbons et al., 2003).

12



The rotational block slides penetrate the reservoir layers and dominate the east flank area.
Multiple phases of gravity block sliding occurred were found to be correlated with the middle
to late Jurassic rift. These occurrences were linked to the tectonic activity on regional scale
(Gibbons et al., 2003).

The rotated fault blocks along both margins of the Viking Graben, which formed during the
rifting in Late Jurassic, are the most common trap for hydrocarbon in the Statfjord field area
(Faleide et al., 2010).

2.2 Stratigraphy of the Statfjord field reservoir

The Brent group (Middle Jurassic) and the Statfjord formation (Upper Triassic-Lower Jurassic)
(Fig. 2.3) are the fundamental reservoir formations in the Statfjord field with good to excellent
reservoir properties (porosities range between 20-30%, and permeabilities in darcies) (Gibbons
et al., 2003; Kirk, 1980). Hydrocarbon is also produced from the Cook formation from the
Dunlin group (NPD, 2020). These reservoirs in general are found at a ranging depth from 2,500
to 3,000 meters and lie not only within an extensive fault blocks dipped westward, but also in
some of the smaller blocks in the eastern flank area (NPD, 2020).

A general overview about the reservoir formations of the Statfjord field will be discussed in
the section below.
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Figure 2.3: Stratigraphic column of the Statfjord Field (modified from Deegan & Scull,
1977; Vollset & Dore, 1984; and Hesthammer et al.,1999). The main reservoirs are
highlighted (red).
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2.2.1 Hegre group

The Hegre group was deposited during the Triassic and is confirmed to be the oldest strata
drilled in the Statfjord field area at depth around 4,572 m (Kirk, 1980). The lithology of the
group is characterized by interbedded intervals of sandstone, claystone, and shale correlated
with primarily continental sandstone or shale/claystone sequences (Hesthammer et al., 1999).
The calcaerous cement and clay matrix within the lithology lead to the generally poor reservoir
quality of this group (Kirk, 1980).

2.2.2 Statfjord formation

The Statfjord formation was deposited from the upper Triassic (Rhaetian) to the lower Jurassic
(Sinemurian) and appears to unconformably overlie the Triassic Hegre group on the regional
scale (Kirk, 1980). The transition from the Hegre group and to the Statfjord formation is unclear
and difficult to be interpreted (Kirk, 1980; Gibbons et al., 2003). This is caused by two aspects
(Kirk, 1980). First, the insufficient occurrence of flora and fauna, and second, the poor log
correlation due to indistinguishable changes in lithology.

The Statfjord formation contains interlayered sandstone/siltstone and shale, and has thickness
range between 150 to 300 meters in the Statfjord field. Based on the depositional environment
the formation is differentiated into three members, namely the Raude and Eirikkson member
which represent the fluvial deposits, and the Nansen member which is interpreted as a
transgressive marine sheet sand overlaying the alluvial flood basin (Hesthammer et al., 1999)

2.2.3 Dunlin group

The Dunlin group, which was deposited during the Lower Jurassic (late Sinemurian) to the
Upper Jurassic (Bajocian), contains four formations. The Amundsen (oldest) and the Burton
formation are characterized by shallow marine shale, claystone and siltstone. The Cook
formation consists of silt and tidal-influenced shallow marine sandstones. The Drake formation
(youngest) comprises shallow marine shale and siltstone. The thickness of the Dunlin group
varies from 230 to 260 meters (Hesthammer et al., 1999).

2.2.4 Brent group

The Brent group has thickness between 180-250 meters. The formation was deposited during
the Middle Jurassic (early Bajocian-mid-Bathonian), and is divided into five formations,
namely the Broom, Rannoch, Etive, Ness, and Tarbert formations. The lithology of the group
are mainly sandstone, siltstone, shale, and coal deposits from a prograding delta system toward
the north direction. The Broom formation, the oldest unit, is characterized by storm deposits
and small distal bar build-ups overlaying a shallow marine platform. The Rannoch formation
is dominantly composed by sandstone deposits from pro-delta, delta front, and ebb-tidal
environments. The Etive formation has coarser and cleaner sandstone. This is due to its
depositional environment were in tidal inlet, upper shoreface foreshore, and lagoon barrier
settings. The Ness formation was deposited in a delta plain setting. Consequently, this unit
contains sandy channel deposits, shale, and coal. The Tarbert formation, the youngest unit in
the Brent group, comprises shallow marine sands (Hesthammer et al., 1999).

14



3 Machine Learning

The terminology “machine learning” refers to the study that involves statistical approaches to
give computer systems the ability to learn from data without being explicitly programmed. In
another explanation, machine learning can also be defined as the study of software artifacts
which utilizes past experience in order to generate future decisions. The main purpose of
machine learning is to automate decision making processes by generalizing the prior
experiences. Machine learning needs a collection of data, which often called "training set”, to
be trained into the algorithms in order to obtain experience. The performance of the “trained”
algorithms are then evaluated using a set of data called “test set”. One basic example of
machine learning application is spam filtering. The spam filters learn to differentiate and
classify new messages by recognizing thousands of emails that have been previously marked
as either spam or ham.
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Figure 3.1: Machine learning types and algorithms (modified from www.mathworks.com)
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According to the types of problems encountered, there are at least two types of learning are
identified (Fig.3.1.):

Supervised Learning

In supervised learning problems, the user provides pairs of inputs as well as the desired outputs
(labels) to an algorithm, and let the algorithm finds a way to generate the desired output given
an example. There are two main tasks in supervised learning, namely classification and
regression.
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In classification problems the algorithms are required to predict discrete values for the outputs
from one or more predictors. The algorithms must then classify the new inputs or observations
into the most probable label or category. As for regression tasks, the algorithms are required to
predict the value of a continuous output.

Examples of supervised learning algorithms are including:

1. Support Vector Machine (SVM)
2. Naive Bayes

3. Nearest Neighbour

4. Decision Tree (DT)

5. Ensemble Methods

6. Neural Networks

7.

Random Forest

Unsupervised Learning

In unsupervised learning, an algorithm does not learn from labelled data. In this setting, only
the input data is known while there is no defined output. The unsupervised learning algorithms
will attempt to infer patterns within the data.

The most common task for unsupervised learning algorithms is to discover groups within the
training set based on their similarities among each other, or often called clustering.

Several algorithms in unsupervised learning:

K-means

Hierarchical Clustering
Fuzzy c-means
Self-organizing Maps (SOM)

=

3.1 Support Vector Machine/Regressor (SVM/SVR)

The Support Vector Machine (SVM) (Fig.3.2.) is an algorithm which originally was built to
solve classification problem, while the counterpart, SVR, is basically a modified version of
SVM that capable to predict continuous value for regression problem by using kernel functions
(Vapnik, 1995). SVM classifies data maximizing the distance between the separating hyperlane
(decision boundary), or so-called margin, and the training samples that are closest to this
hyperlane or support vectors.
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Figure 3.2: Support vector machine (SVM) classifier

Maximizing the margin in the decision boundaries will make the generalization error lower,
however, models with small margins are more likely to overfitting. The following section
explains about margin maximization process.

First, the positive and negative hyperlanes that are parallel to the decision boundary will be
expressed as follows:

(1)

Wo + W xpps =1

Wo + W xpe, = —1 (2)
From the equations above w represents a set of weights, x are the input values, while w and x
represent the dot products of w and x. If the linear equations (1) and (2) are subtracted from

each other, we will obtain:

w’ (xpos - xneg) =2 (3)
The equation (3) is the normalized by the length of the vector w, which is defined as:
4
In the end, we end up with the following equation:
w’ (xpos - xneg) 2
= (5
[lwl| [lwl|

The left side of the equation (4) represents the distance between the positive and negative
hyperplane or the margin we want to maximize. By maximizing ||27|| , the objective function
of the SVM now becomes the maximization of this margin if the samples are classified
correctly under these conditions:

wo +wix® > 1if y® =1
wo +wix® < —1if y® = —1

(6)
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The x® from the equations are the training samples, while y(® are the predicted class labels.
These constraints basically mean that all negative samples should be positioned on one side of
the negative hyperplanes, while all positives samples should be positioned behind the positive
hyperlane. The equations above can also simply be written as:

yO(wo + wx®) > 1v, (7)

The SVM algorithm works best if the data is linearly separable. However, when dealing with
nonlinearly separable case a parameter called the slack variable (&) (Vapnik, 1995) needs to be
included in the algorithm and which then leads to what it is called soft-margin classification.
The argument for presenting the slack variable is because the linear constraints need to be
adjusted for nonlinearly separable data to allow convergence of the optimization when the
missclassifications are present. Consequently, the linear constraints will be conditioned as
follows:

wix® > 1if y® =1-£0 (8)
wix® < —1if y® =1+ O
As a result, the new objective to be minimized (subject to the prior constraints) is:

2 lwll + C(Z”’) ©)

l
By using the variable C, the penalty for misclassification can now be controlled. The larger the

values of C, the larger the error penalties will be, and so is the opposite. The parameter C is
then used to control the width of the margin (Fig.3.3). The increasing values of C correspond
to the increasing bias and decrease the variance of the model.

X24 . Xz 4 : |
\\ + b +
o N\ + ++ & | F ++
° % o I+
a \\ . $ o : 1 +
0o oy, ¢! o
X1 X1
Large value for Small value for
parameter C parameter C

Figure 3.3: The influence of parameter C on SVM

3.2 Decision Tree

The Decision Tree (DT) belongs to the category of supervised learning algorithm which works
for both continuous as well as categorical output variables. This algorithm is capable of
handling classification and regression tasks. The DT builds classification and regression
models in the structure of a tree (Fig.3.4) in order to either categorize (for classification) or to
predict (for regression) data to produce meaningful outcome.
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Figure 3.4: The Generic structure of DT
These are some basic terminology used in DT to be familiarized with:

e Root Node: A node which represents the total population or sample and later on will
be divided into two or more homogeneous sets

e Splitting: A process of dividing a node into two or more sub-nodes

e Decision Node: A node which decides if a sub-node splits into further sub-nodes

e Leaf/Terminal Node: Nodes which do not split

e Pruning: A process of removing sub-nodes of a decision node, or often considered as
the opposite process of splitting

e Branch/Sub-Tree: A sub section of the entire tree

e Parent and Child Node: Parent node is a node which is divided into sub-nodes whereas
sub-nodes are the child of parent node

A decision tree generates estimation by basically asking a series of questions to the data which
all are in a True/False form. Each True/False answer ends with separate branches and it will
eventually lead to a prediction or leaf node no matter the answers to the questions.

In a simple manner, the steps to solve a problem using DT are mentioned as follows:

i.  Put the best attribute of the dataset at the root node
ii.  Split the dataset into subsets such that each subset contains the homogenous data, or in
other words it contains having same value for an attribute
iii.  Repeat step 1 and ii on each subset until leaf nodes are found in all the branches of the
tree

In a regression problem, DT normally use mean squared error (MSE) to decide to split a node
in two or more sub-nodes. To make it easier to understand, consider building a binary tree
decision by:

i.  Pick a variable and its value to split on such that two groups are as different from each
other as possible
ii.  For each group, the MSE will be calculated separately
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iii.  Calculate the average of the MSE between the two groups

iv.  Repeat step i to iii for other variables

v.  Compare the average MSE among the variables to determine the best split. The best
split should be the one with the smallest MSE

Finally, the DT produces predictions by obtaining the average of the value of the dependant
variable in the terminal or leaf node. This is done after running the dataset through the entire
tree assessing all the questions until it reaches the leaf node. One thing to be noted is that the
DT is unable to make accurate predictions if the ‘test data’ are unrelated with the trained data.
Or in other word, it is unable to extrapolate to any kind of data it has not seen before.

Some advantages of DT are:

e  Works well for non-linear dataset
e [Easy to understand and interpret
e Less data preparation required

While some drawbacks are:

e Prone to overfit
e (Cannot extrapolate
e (Can be unstable when the data variance is big

3.3 Random Forests

The Random Forests (RF) algorithm is considered as one of ensemble learning methods and is
confirmed to be effective for both classification and regression especially when dealing with
large datasets. This algorithm utilizes decision trees (DT) as the building block. The rationale
behind RF is because DT tends to overfit the training data.

X dataset
N, features N, features N, features N, features
%o & o M ST o o e
TREE #1 TREE #2 TREE #3 TREE #4
CLASS C CLASSD CLASS B CLASS C
I l I |

Figure 3.5: Illustration of RF algorithm structure

RF, which essentially consist of many trees (Fig. 3.5.), will overfit in many different ways on
each tree. In order to solve this problem, RF reduce the amount of overfitting by making
average of their results. To apply this procedure, each tree in RF should be able to make
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predictions decently and also not similar to other trees. The RF algorithm is simply comprised
as follows:

i.  Provide a random bootstrap sample of n size which should be selected randomly from
the training set (with replacement)

ii.  Generate a decision tree out of the bootstrap sample, and each node should:
a. Select d number of features (without replacement)
b. Separate the node based on the feature that has the best objective function (e.g.

by maximizing the information gain)
iii. Do iterations for procedure i and ii for k times
iv.  Aggregate the prediction by each tree to assign the class label by majority vote

The idea behind this algorithm as well as other ensemble methods is to merge weak predictors
or learners to build a more robust model, a strong predictor or learner. The strong predictor will
have a better generalization error and have lower tendency to overfit.

3.4 Previous work on Machine Learning application in Petroleum Geosciences

Both SVM and ANN are the two commonly used algorithms to solve geoscience problems.
Some examples of their implementation are given below:

Naeeni et al. (2010) utilized the Feed-forward artificial neural networks (FF-ANN) with
backpropagation to predict the permeability of reservoirs. The parameters that were used in
this study comprised of depth, true conductivity (CT), sonic travel time (DT), neutron porosity
(NPHI), bulk density (RHOB), spectral gamma ray (SGR), northing of well, easting of well,
water saturation, and flow zone index (FZI). There were three hidden layers with 13, 10, and 1
neurons included in the networks. In this algorithm, the well log data and another parameter
called rock quality index (RQI) were set as the input, while the permeability as the output. Prior
to this procedure, different hydraulic flow units (HFU) were determined in order to determine
the FZI values and, later on, permeability of various rock types. The final results showed the
FF-ANN algorithm presented convincing performance in predicting permeability values of
uncored wells. This was supported by the Pearson’s correlation coefficient of 0.85 (from range
between -1 to 1) in the validation phase.

Al-Anazi and Gates (2010a,b,c,d) applied SVM and compared its potential with back
propagation neural network (BPPN) to predict the Poisson’s Ratio and Young’s Modulus of
reservoir rock. In general, even though the neural network algorithms are capable of resolving
nonlinear problem well, however, they need extensive training to enhance the network
structure. One more issue when conducting the neural network algorithms is that the regression
model results may overfit the unseen data. On the other hand, SVM successfully generalize
and converge a global optimal solution. These studies included various parameters such as
core-derived porosity, minimum horizontal stress, pore pressure, overburden stress, bulk
density, compressional wave velocity (Vp), and shear wave velocity (Vs). To prevent
overfitting, cross-validation was done ten times to obtain the optimal parameter to manage the
trade-off between the model bias and variance. Eventually, the results demonstrated that SVM
was better both in learning and prediction capabilities compared to BPPN. SVM produced a
superior Poisson’s ratio prediction, and also showed a faster decrease of error prediction as the
training data developed.
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4 Data

For this study, the data is mainly focused on multiple 3D seismic cubes and 172 wells which
is provided by Equinor ASA. The details will be presented briefly below.

4.1 Seismic

The seismic data used in this study, which is named ST9703RZ16, was acquired in 1997 by
WesternGeco and reprocessed in 2016-2017. This data covers the Statfjord main field and the
North flank and contains multiple partial stacks (near, mid, and far stacks). The seismic survey
adopted SEG reverse polarity, which means an increase in acoustic impedance corresponds to
a negative amplitude (red-trough, whilst blue-peak indicates positive amplitude). The summary
of the seismic data will be provided in Table 1 and Table 2 below.

Table 1. Provided seismic data summary

Seismic Survey | 2D/3D | Acquisition Year Coordinate Reference System Latest processing Other Notes
Single-component deghosthing,

WG_ST9703 3D 1997 ST_ED50_UTM31N_P23031_T1133 2016 PSTM, PSDM,
partial stacks, pre-stacks gathers

Table 2. Partial stacks of the seismic data

Seismic Polarity Stack Angle (°) ‘
Near 13.5
) Mid 22.5
SEG-Reverse Polarity
Far 315
Ultra Far 40.5

4.2 Well

Initially, there are hundreds of wells were provided, however only 172 wells are eligible to be
used in this study due to several conditions which will be explained in Section 5.1. Wireline
logs such as gamma ray (GR), spontaneous potential (SP), density (RHOB), neutron (NEU),
resistivity, and sonic logs are also included.

4.3 Horizon

In addition to the seismic and well data, some of the key interpreted horizons are also provided
at the reservoir interval in the study area such as:

e STATOIL+ST03MO1 ffobct+Balder Top+Time+2007+ob despike int xyt.dat - Top
Balder Fm. horizon
e evde BCU AMAP2018 time structure xyt.dat - BCU horizon
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5 Thesis Workflow

Figure 5.1: General workflow for this study

Several methods were carried out in this study. Figure 5.1 shows a generic workflow which
contains an overview of the methods that were implemented in this study. The initial procedure
was sorting out the horizons and wells to make them eligible for further steps in the study.
Features were then extracted from the sorted data and later on followed by assigning label or
target to be predicted. The results of the previous steps provided the optimal input for the next
step, which was generating and training the Machine Learning models. Thereafter, the models
were used to predict the assigned label or target, and finally the performance evaluation was
measured.

5.1 Data Sorting

Data sorting is a fundamental step prior to performing ML algorithms. This procedure was
meant to specify the scope of the study and to make the data fit for the features extraction.

Welll Well 2

150018

Top Balder

BCU-2500
Top Cook
Top Statfjord

-3000

Figure 5.2: Key surface picks divided the three zones
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Initially, in this study, the Statfjord field seismic data was divided into three zones (Fig.5.2)
and only one selected zone that will continue to the next processes. The three zones were
defined as follows:

e Zone l: the area between the BCU and the Top Cook Fm.
e Zone 2: the area between the Top Cook Fm. and the Top Statfjord Fm.
e Zone 3: the area between the Top Statfjord Fm. and the end of the wells

Considering the amount of data needed for the next procedures, the selected zone should have
the most penetrated wells among the others. Therefore, Zone 1 was chosen since it has 172
wells penetrated both the BCU and the Top Cook Fm.

5.2 Label Selection

In ML perspective, labels are simply defined as the variables that one is trying to predict or
forecast. In this study, net-to-gross was selected as the label.

The net-to-gross has been a key factor when calculating original oil in place (OOIP)
volumetrics. In other words, the net-to-gross indicates the producible hydrocarbon zones within
the reservoir for further exploitation. The net-to-gross is simply explained as the total amount
of sand divided by the total thickness of the reservoir interval. The outcome of the net-to-gross
calculation is a fraction ranges from 0 to 1, which 0 represents non-producible reservoir and 1
represents potentially whole producible reservoir intervals. In this study, the practical steps of
calculating the net-to-gross is shown in Figure 5.3. The whole processes of the net-to-gross
calculation were computed in Python using several libraries such as Pandas (dataframe
manipulation), NumPy (numerical operation), Glob (file and folder reader), and Lasio (well
files reader).

Defining reservoir zone (BCU Determining sand

as the upper boundary, and .
Top Rannoch as the lower and shale accordlng

A A

boundary) to Gamma Ray
lati Dividing sand
Calcu .atmg sand thickness with total
thickness reservoir thickness

v

Net-to-Gross

Figure 5.3: Net-to-gross calculation steps

The first step in calculating net-to-gross was defining the reservoir zone. In this case, the
selected zone was Zone 1 which is the area between the BCU and the Top Cook Fm. The zone
boundaries were defined by the surface picks obtained from Petrel. However, due to the
unavailability of the Top Cook Fm surface picks in the data, the Top Rannoch was chosen
instead.

24



The next following step was determining the ‘sand’ and ‘shale’ based on the Gamma Ray (GR)
level. In this case, the sand was defined by lower GR level (GR<70) while shale was defined
by higher GR level (GR>= 70). Then, the thickness of sand within the reservoir zone was
calculated according to the prior definition. This was done for all wells.

Subsequently, the sand thickness was then divided by the total thickness of the reservoir zone
to obtain the net-to-gross value. And this was also done for all the wells. This process yielded
one single net-to-gross value for each well, and as a consequence, there were 172 net-to-gross
values acquired for all the wells.

5.3 Features Extraction

In ML terminology, features are defined as measurable properties or variables of one object.
Features are fundamental building blocks of the datasets which later on will be used as input
in the system. Selecting and understanding the features are very important since they have a
major impact on the quality of the insights one will gain when employing ML.

After the data sorting and the label selection, features extraction was performed to obtain the
appropriate variables which contain useful information and also represent the condition of the
real data. The overall workflow of this procedure is shown in Fig.5.4.

BCU TWT, Top Balder TWT,
and RMS amplitudes
extraction (Petrel)

.

Deriving additional
features (Python)

Generating feature
tables (Python)

Combining all data
in one table
(Python)

A 4

Features

Figure 5.4: Workflow for features extraction

There were four main features included for the initial round. These features are quantitative
data which initially were extracted from Petrel and then were processed in Python using Pandas
and NumPy libraries. The features which shown in Figure 5.5 are:

e Top Balder TWT (two-way time)
e BCU TWT (two-way time)

e BCU RMS near amplitude

e BCU RMS far amplitude

The seismic TWT for BCU and Top Balder Fm. were included in the features since they
correspond to both the depth and velocity of the two formations. The root mean square (RMS)
amplitude was also used due to its capability to produce hydrocarbon indicators by directly
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measure the reflectivity in zone of interest. Therefore, utilizing these variables as features will
hopefully be a good combination when predicting the defined label.
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Figure 5.5: Maps of TWT and RMS amplitudes of the study area

As for the second round, there are four more features were added. These additional features
were derived from the RMS amplitudes from the initial features using basic computation in
Python. In ML, this process is called feature engineering. Feature engineering is a process of
generating new features from the existing ones. The purpose feature engineering is mainly to
improve the performance of ML models as well as to increase the predictive power of ML
algorithms. The additional features are:

e Gradient: RMS far amplitude - RMS near amplitude
e AVO Product: RMS near amplitude * Gradient

e AVO Summation: RMS near amplitude + Gradient
e AVO Difference: RMS neat amplitude - Gradient

The AVO attributes of the study area are depicted in Figure 5.6. The uses of seismic amplitude
variation with offset (AVO) attributes are widely spread among geoscientists. The AVO was
included in the features since it has shown its capabilities in predicting and mapping
hydrocarbons (Fatti et al., 1994; Ostrander, 1984). A detailed explanation about AVO will not
be covered in this study.
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Figure 5.6: Maps of AVO attributes in the study area

The final step in features extraction was combining all data needed including wells name, wells
coordinates (Easting and Northing) and all features in one data table which was accomplished
in Python (Fig.5.7). This table would then be the input for generating the ML models.

Well Easting Northing Top_Balder_TWT BCU_TWT RMS_BCU_near RMS_BCU_far NtG Gradient AVO_sum AVO_diff AVO_prod

0 211/24-4 434113.24 ©6783495.48 1660.124815 2344.146120 2.957468 2434968 0.305144 -0.522500 2.434968 3.479968 -1.545277

1 33/12-1 437055.69 6786258.21 1636.961950 2283.454430 1.212534 1418373 0987179 0.205839 1.418373 1.006695  0.249587

2 33M12-B-1A 438313.74 6786227.39 1652.419343 2361.018068 2.214515 1.867557 0.127886 -0.346958 1.867557 2.561473 -0.768344

3 33/12-B-1B 438193.83 6786921.91 1663.011293 2310.467530 1.684443 1.898300 0.243066 0.213857 1.898300 1.470586  0.360230

4 33/12-B-1C 438063.61 6786344.34 1654.795532 2328.535352 1.755582 1.238507 0.166065 -0.517075 1.238507 2.272657 -0.907768
167 33/9-C-6 442053.25 6798749.69 1676.983885 2403.847108 1.655461 1.522337 0.750849 -0.133124 1.522337 1.788585 -0.220382
168 33/9-C-7 441698.39 6797738.47 1667.437660 2367.370687 0.229123 0482087 0677724 0.252964 0.482087 -0.023841  0.057960
169 33/9-C-8 442034.68 6796195.14 1671.039310 2344.972898 1.025667 2223881 0592816 1.198214 2.223881 -0.172547  1.228969
170 33/9-C-8 A 440572.73 6796359.68 1656.938193 2329.879883 0.955554 0.928878 0.348550 -0.026676 0.928878 0.982230 -0.025490
171 33/9-C-8 AT2 440572.83 6796359.85 1656.938193 2329.879883 0.955554 0.928878 0.349802 -0.026676 0.928878 0.982230 -0.025490

172 rows x 12 columns

Figure 5.7: Table containing all data for generating the ML models
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5.4 ML Models Generation and Training

Defining the type of task is important since this will determine which algorithms to use for
generating the models as well as their performance evaluation techniques. As mentioned in
Chapter 1, the objective of this study is to predict the determined label, which is the net-to-
gross for the whole study area. Therefore, the approach of'this task from ML perspective should
be regression problem since the expected results are the predicted continuous net-to-gross
values for the whole area. The whole process in this procedure was done in Python using scikit-
learn library.

The general workflow of how the ML models were generated and trained are shown in Figure
5.8 below:

Splitting the whole
dataset into Training set
and Test set

s

Generating predictions
from the models

| Developing ML models
| from the Training set

Evaluating the models
performance by calculating
the Cross Validation

v

Figure 5.8: ML models generation and training processes

In this study, the whole dataset consists of 172 data points generated from the horizons and
wells. The initial step in this procedure was to split the entire available dataset into two groups
namely the training set and test set.

The next step was to develop ML models from the training set using various basic regression
algorithms such as:

e Support Vector Regressor (SVR)
e Decision Tree Regressor (DTR)
e Random Forest Regressor (RFR)

And also some additional regressor such as:

e Linear Support Vector Regressor (Linear SVR)
e Gaussian Process Regressor (GPR)

e K-Nearest Neighbor Regressor (KNN)

e Stochastic Gradient Descent Regressor (SGDR)
e Gradient Boosting Regressor (GBR)

AutoML was also involved when developing the ML models. AutoML is basically an
automatic process of applying ML to the dataset. The purpose of deploying AutoML is to allow
non-experts to produce simpler and faster solutions and models. AutoML can automate several
processes in ML including:

e Data preparation
e Feature selection

28



e Model selection
e Parameter optimization

In this study, this was done by using TPOT library which is built on top of scikit-learn library
in Python. TPOT uses genetic programming in order to optimize ML pipelines by exploring
thousands of possibilities to bring out the best one for the dataset. Figure 5.9 below illustrates
how TPOT automates typical processes in ML.

Automated by TPOT

Feature

Selection
" I Feature Model
Raw Data .Dm Glsaning I Preprocessing I.thclln
Feature

Construction

Parameter
Ontimiyats

Figure 5.9: Automated stages in typical ML processes by TPOT

In order to evaluate the performance, the output models from each of the algorithms were then
be validated with the test set by calculating the Cross Validation (CV). Basically, the purpose
of CV is to evaluate the ability of the models to estimate new dataset in order to avoid
overfitting or selection bias. Also, CV is expected to give an overview on how the models will
generalize the unknown dataset, for instance from a real problem.

A basic CV technique that is commonly used is the k-fold CV (Fig 5.10) which was calculated
with procedures defined as follows:

i.  Split the training set into & smaller sets
ii.  For each £ folds, train the models using k-1 of the folds as training data and validate the
resulting models on the remaining part of the data by calculating the performance
measure (such as R2 for regression)
ii.  Compute the average of the performance measure from all the k-folds as the final result
of the CV

All Data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

splits | Fold1 || Fold2 || Fold3a | Fold4 | Folds
spit2 | Fold1 || Fold2 || Fold3 | Fold4 | Folds
Finding Parameters
spit3 | Fokd1 || Fold2 | Fold3 | Fold4 | Fold5
Spit4 | Fold1 || Fold2 | Fold3 | Fold4 | Fold5

SplitS | Fold1 | Fold2 | Fold3 | Fold4 | Fold5

Final evaluation { Test data

Figure 5.10: Illustration of k-fold cross validation (modified from scikit-learn.org)
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5.5 Label Prediction

This procedure contains the execution of the net-to-gross prediction for the whole area by using
the resulting models after they were both trained and evaluated. This step was done using scikit-
learn library in Python.

5.6 Performance Evaluation

It is important to evaluate the performance of the ML models in order to know how close the
prediction to the real values. In this study, the model performance is measured by correlation
of determination or often denoted as R2, and statistical errors such as root mean squared error
(RMSE) and mean absolute error (MAE).

1.

R2 — A direct indicator of correlation between predictions and true values. For the R2,
the best possible value is 1.0 and it can also be negative if the model is arbitrarily worse.
In general, the higher value of R2 indicates the better the model fits the real data. It can
be computed by:

> =97

R? =1- =4
zizl(:)/i - 371)2

(14)

Where y; is the predicted value of the i-th sample, y; is the true value, and  is total
number of samples

RMSE - It indicates on how much each predicted values deviate from its true value.
The best value of RMSE is 0 which means a perfect estimation. It is expressed by:

n
1
RMSE = (3, = 9,)’ (15)
i=1

MAE — It presents a risk metric which corresponds to the predicted value of the absolute
error loss. The best value of MAE is 0 which indicates a perfect prediction result. The
MAE is defined as:

n
1
MAE = |y, - 3| (16)
i=1
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6 Results and Discussion

There are eight ML algorithms were deployed and compared in order to predict the NtG values
for this study. They are Linear Support Vector Regressor (Linear SVR), Gaussian Process
Regressor (GPR), Support Vector Regressor (SVR), K-Nearest Neighbor Regressor (KNN),
Decision Trees Regressor (DTR), Random Forest Regressor (RFR), Stochastic Gradient
Descent Regressor (SGDR), and Gradient Boosting Regressor (GBR). Also, there is one
additional result which was generated from AutoML. The predicted net-to-gross values were
then compared with the true net-to-gross which consist of 172 data points and were obtained
from wells. The mean and the standard deviation of the true net-to-gross value is around 0.49
and 0.22 respectively with value distribution as depicted in Figure 6.1. In addition, in order to
acquire more insight on how the ML approach performs in this study, the net-to-gross
classification task and prediction of the sand thickness are also provided in this chapter to be
compared with the main task (net-to-gross prediction). One important thing to note is that these
two additional tasks were performed using eight features and the AutoML was not involved.

True NtG

0.0 02 0.4 0.6 0.8 10
NEG

Figure 6.1: The distribution of the true value of net-to-gross from wells

6.1 Net-to-gross Prediction

6.1.1 Training and test set performance

Prior to applying the ML models into the real data (whole study area), the models were tested.
The training set comprises 90% while the test set is 10% from the initial dataset (172 data
points). Then k-fold cross validation (CV) was calculated to evaluate the performance of the
models. Table 3 and Table 4 show the CV results when four and eight features were included
in the models based on their R2 score.

Table 3. K-fold CV results of the models when using 4 features
LinearSVR | GPR SVR KNN DTR RFR SGDR GBR
R2__ | o014 0.06 0.34 0.09 0.70 0.69 0.12 0.13

Table 4. K-fold CV results of the models when using 8 features
LinearSVR |  GPR SVR KNN DTR RFR SGDR GBR
R | o015 0.07 0.28 0.12 0.88 0.88 0.14 0.12

31



In general, the CV results show very low R2 scores for most algorithms which range around
0.06-0.15 when four features were included, and the number added features does not have
significant impact to the performance apparently. The SVR algorithm initially shows a
moderately low index 0.34, however, the score decreases to 0.28 as more features were added.
Among these algorithms, only DTR and RFR show an opposite trend. The performance indices
of both algorithms are much higher compared to the rest, and these trends are improved when
eight features were involved. In the end of the training and test stage, the R2 score of both
algorithms reach 0.88.

6.1.2 Prediction results using four features

This section examines the results when applying four features namely Top Balder TWT, BCU
TWT, BCU RMS near, and BCU RMS far into the algorithms. Figure 6.2 below presents the
maps of predicted net-to-gross values for the whole area of study plotted by their respective
coordinates (Eastings and Northings). Also Figure 6.3 depicts the distribution of predicted net-
to-gross values in histograms for each algorithms.
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Figure 6.2: Maps of the predicted net-to-gross values for the whole study area for each ML
algorithms using 4 features. Wells location are represented by dots
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Figure 6.3: The distribution of the predicted net-to-gross values for each algorithm using 4
features

As shown in both figures above, the ML algorithms produced considerably different results of
predicted net-to-gross among each other. In addition, Table 5 shows how the mean and the
standard deviation of the prediction results differ for each algorithm. Most algorithms have the
predicted net-to-gross mean around 0.4, however algorithms such as Linear SVR, and GPR
have mean around 0.2. The SGDR algorithm has even lower predicted net-to-gross mean. The
AutoML unexpectedly only yielded two values of the predicted net-to-gross. Another
important thing to highlight is that apparently some algorithms such as Linear SVR, GPR,
SVR, and SGDR have negative values on the predicted net-to-gross, which is impossible in
geological manner (Fig.6.2 and Fig. 6.3).

Table 5. Mean and standard deviation of the predicted NtG using 4 features

Linear SVR GPR SVR KNN DTR RFR SGDR GBR AutoML
Mean 0.22 0.26 0.44 0.46 0.45 0.49 0.14 0.56 0.41
St.Dev 0.29 0.23 0.19 0.07 0.23 0.18 0.26 0.18 0.05

6.1.3 Prediction results using eight features

This section presents the predicted net-to-gross results when four additional features were
added into the algorithms. The additional four features are AVO gradient, AVO product
(intercept * gradient), AVO summation (intercept + gradient), and AVO difference (intercept-
gradient). Both Figure 6.4 and Figure 6.5 display the maps of the predicted net-to-gross values
in the whole area and the distribution of the predicted net-to-gross values respectively.
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Figure 6.4: Maps of the predicted net-to-gross values for the whole study area for each ML
algorithms using 8 features. Wells location are represented by dots
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As seen in both Figure 6.4 and Figure 6.5 that the obtained results are almost identical with the
previous section. The mean and the standard deviation shown in Table 6 are also quite similar
with Table 5. The mean of the predicted net-to-gross is around 0.4 for the KNN, DTR, RFR,
and AutoML. The Linear SVR, GPR, SVR, and SGDR are still having negative values on the
prediction. However, there is one difference to note is that after including the additional
features, the predicted values generated from AutoML have a better distribution.

Table 6. Mean and standard deviation of the predicted NtG using 8 features

Linear SVR GPR SVR KNN DTR RFR SGDR GBR | AutoML
Mean 0.21 0.24 0.56 0.44 0.47 0.49 0.13 0.56 0.47
St.Dev 0.29 0.24 0.26 0.07 0.25 0.19 0.26 0.16 0.03

6.1.4 Performance evaluation

These performance indices were basically calculated by the difference between the true net-to-
gross values or the label and the predicted net-to-gross which were obtained from the ML
models. Both Table 7 and Table 8 below present the performance indices for the prediction
when using four and eight features respectively.

Table 7. Performance index of prediction when using 4 features

Linear SVR GPR SVR KNN DTR RFR SGDR GBR AutoML
MAE 0.18 0.18 0.15 0.17 0.06 0.06 0.19 0.13 0.17
RMSE 0.22 0.21 0.18 0.19 0.14 0.14 0.22 0.16 0.21
R2 0.06 0.08 0.33 0.14 0.59 0.61 -0.004 0.47 0.12
Table 8. Performance index of prediction when using 8 features
LinearSVR_| GPR SVR KNN DTR RFR SGDR_| GBR | AutoML
MAE 0.18 0.18 0.16 0.17 0.03 0.03 0.19 012 | 018
RMSE 0.22 0.21 0.19 0.19 0.09 0.08 0.22 0.16 0.21
R2 0.07 0.08 0.26 0.14 0.85 08 | -0015 | 049 | 008

According to both tables above, it can be seen that the values of MAE are relatively similar for
most of the algorithms when using either four or eight features. The value of MAE ranges
between 0.12-0.19 in most models. The RMSE also does not show significant changes for
almost all models when the number of features were increased. However, the DTR and the
RFR algorithms have different trends. Both algorithms have significantly lower MAE and
RMSE errors among the others. And the errors are decreasing as the additional features were
included.

Models generated by Linear SVR, GPR, KNN, SGDR and AutoML have considerably low R2
values either when four or eight features were involved. The models produced by SVR and
GBR also have moderately low value of R2, and this does not change when more features were
added. In contrast, the DTR and RFR models have particularly higher value of R2 among the
others. And these numbers increase quite significantly as more features were included in the
models. The R2 value of the DTR model rises from 0.59 to 0.85, while the R2 value of the
RFR model increases from 0.61 to 0.86.

6.1.5 Features evaluation

The features need to be evaluated in order to find out which features are the most relevant to
our models. One important thing to note is that irrelevant features can negatively impact the
performance of the model. One way to do this is by showing the correlation matrix. The
correlation matrix is based on Pearson’s correlation coefficient. The values ranges between -1
to, where 1 is positive linear correlation, 0 is no linear correlation, and -1 is total negative linear
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correlation. Figure 6.5 shows how each features and label (net-to-gross) are correlated among
each other. According to the correlation matrix map, it can be seen that most of the features
have no linear correlation with the label which is the net-to-gross. This is shown by the
correlation values are close to zero for most features. However, both the BCU TWT and the
Top Balder TWT show a little negative correlation to the net-to-gross with -0.26 and -0.15
respectively.
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RMS_BCU far
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A0 _sum
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ENO_prod -

| ST
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Figure 6.6: Features correlation matrix

Linear regression was also used to confirm the relation between the features and the label. This
also gives a rough idea on how well the label when predicted with a simple regression line.
Figure 6.7 presents the applied linear regression baseline on each AVO attributes — net-to-gross
scatter plots. As shown in the picture above, the AVO attributes and the net-to-gross scatter
plots have random values and so many outliers which cannot be fitted with a simple linear line.
The regression index in Table 9 shows constant errors and significantly low values of R2 for
all AVO attributes.
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Intercept — NtG plot

Gradient — NtG plot

AVO product — NtG plot

AVO Summation — NtG plot

AVO Difference — NtG plot

Figure 6.7: Linear regression line (red line) between AVO attributes and true net-to-gross

Table 9. Linear regression index of predicted net-to-gross using AVO attributes

Intercept Gradient AVO product AVO summation AVO difference
MAE 0.19 0.19 0.19 0.19 0.19
RMSE 0.22 0.22 0.22 0.22 0.22
R2 0.003 0.003 0.006 0.004 0.009

6.2 Net-to-gross Classification

The classification task was performed using the same dataset, also with similar training/test set
fraction (90% for training set, 10% for test set). In a simple manner, this task was carried out
by following these steps:

i.  Conditioning the label to a binary class of 1 and 0 according the net-to-gross value (i.e.
NtG >=0.5 is set as 1 (high net-to-gross); while NtG<0.5 is set as 0 (low net-to-gross))

ii.  Applying the ML models to the training/test phase
iii.  Applying the ML models to predict the whole study area

Basically, the models work in a similar way as in prediction, however the difference is instead
of estimating continuous net-to-gross value as in the predicting task, the classification tries to
classify the whole area into the two defined classes based on their features.
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Classification has different algorithms and performance evaluation techniques compared to the
prediction. Some of the classification algorithms were used in this study are:

e Logistic Regression (LR)

e Linear Discriminant Analysis (LDA)

e K-Nearest Neighbour Classifier (KNN)
e Decision Trees Classifier (DT/CART)
e Naive-Bayes Classifier (NB)

e Support Vector Machine (SVM)

¢ Random Forest Classifier (RF)

In addition, some of the classification performance index are:

e Accuracy: An index shows how the predicted value exactly match the true value

e Precision: The ratio of TP / (TP+FP), where TP is number of true positive values; FP
is number of false positive values

e Recall: The ratio of TP / (TP+FN), where TP is number of true positive values; FN is
number of false negative values

e F1: The weighted average of the precision and recall, or simply formulated as
2*(Precision * Recall) / (Precision * Recall)

The best value for all performance index mentioned above is 1, while the worst possible value
is 0. The performance index in the training/test phase is provided in Table 10 below.

Table 10. Classification performance index in training/test phase

LR LDA KNN CART NB SVM RF
Accuracy 0.54 0.53 0.59 0.59 0.58 0.59 0.57
Precision 0.55 0.54 0.60 0.65 0.58 0.58 0.60
Recall 0.77 0.69 0.70 0.52 0.76 0.88 0.58
F1 0.63 0.60 0.65 0.55 0.65 0.69 0.58

In terms of accuracy, all algorithms show moderately low index which is around 0.5. The
precision also follows a relatively similar pattern with index range form 0.54-0.65. The highest
recall value belongs to SVM, while the lowest belongs to DT and is followed by RF with 0.52
and 0.58 respectively. Most of the algorithms have quite similar precision score which range
from 0.69-0.77. There are not much of differences in the F1 score where the index of all
algorithms is around 0.6.

The results of the classification models and their performance index for the whole area is
depicted in Figure 6.8 and Table 11 respectively.

Table 11. Classification performance index of the predicted results

LR LDA KNN CART NB SVM RF

Accuracy 0.58 0.59 0.73 0.95 0.59 0.61 0.98
Precision 0.59 0.59 0.73 0.97 0.59 0.59 0.98
Recall 0.76 0.73 0.79 0.95 0.79 0.89 0.97
F1 0.66 0.66 0.76 0.96 0.68 0.71 0.98
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Figure 6.8: Maps of the predicted net-to-gross based on classification using ML algorithms.
Wells location are represented by dots

The predicted maps generated from LR, LDA, NB, and SVM have pretty much similar pattern
where the distribution of ‘high’ and ‘low’ net-to-gross were shown. However, the distribution
is much more different in KNN, DT, and RF models. According to the performance evaluation
index, the DT and RF models perform almost perfectly with both accuracy and F1 scores are
very close to 1. Models from the other algorithms have shown moderately low performance
which range from 0.58-0.73 for the accuracy, and 0.66-0.76 for the F1 score.

6.3 Sand Thickness Prediction

In this section, the thickness of sand (hSand) was defined as the label and was performed using
the same dataset with the net-to-gross prediction task. The sand thickness was calculated by
summing all lithology which has GR value less than 70 (GR<70) within the reservoir interval
of each well and was then considered as ‘true’ sand thickness. So in total, there were 172 true
sand thickness data points generated. The true sand thickness has distribution as shown in
Figure 6.9 and has the average of 64.18 m.
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Figure 6.9: The distribution of true sand thickness value from wells
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This prediction task deployed similar algorithms as in the net-to-gross prediction except
without involving the AutoML. The training set comprised 90% of the whole data set while the
test set was 10%. The k-fold CV results of the training/test phase are delivered in Table 12.

Table 12. K-fold CV results of the models in training/test phase

Linear SVR GPR SVR KNN DTR RFR SGDR GBR
R2 | 0.09 0.06 0.07 0.05 1.0 0.9 0.05 0.3

The performance of the models in training/test phase are extremely low for most algorithms.
Although it still considered as moderately low, the GBR model shows a better performance
index with R2 score of 0.3. On the other hand, the RFR and DTR present impressive
performance in training/test stage. This is indicated by the R2 score of 0.9 for the RFR and a
perfect 1.0 for DTR.

Figure 6.10 below shows how the predictive models perform when applied to the whole area,
while the distribution, the mean and standard deviation of the predicted sand thickness are also
delivered in Figure 6.11 and Table 13 respectively.
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Figure 6.10: Maps of the predicted sand thickness for the whole area for each ML
algorithms. Wells location are represented by dots
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As occurred in the net-to-gross predictions, the ML models also yielded considerably different
results of predicted sand thickness among each other. In addition, the sand thickness
distribution has a wide range of values for each algorithm.
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Figure 6.11: The distribution of the predicted sand thickness for each algorithm

Some models such as Linear SVR and SGDR even obtain negative values (Fig.6.10) and
underestimate the predictions significantly (Table 13) compared to the true sand thickness
mean. In contrast, the DTR and RFR models seem to overestimate the values around two times
the true sand thickness average. The mean of predicted sand thickness of both models exceeds
120 meters.

Table 13. Mean and standard deviation of the predicted sand thickness

Linear SVM GPR SVR KNN DTR RFR SGDR GBR
Mean 5.28 62.99 35.69 55.56 129.23 136.79 16.04 122.54
St.Dev 37.28 0.83 " 1090 18.16 87.61 91.74 38.29 76.56

The predicted results were then plotted against the true values in a scatter plot, and a linear
regression was fitted between them. The purpose of fitting a linear line is to get an idea on how
the predicted sand thickness match the true values. As shown in Figure 6.12, most of the
predicted models do not match with the true sand thickness. There are a lot of values which
located outside the regression line (outliers). Only results from DTR, RFR, and GBR models
which fit the regression line quite well even though the outliers are still found.

The trends in the scatter plots are supported by the performance index shown in Table 14. In
general, the MAE and the RMSE of the predicted results are in range of 40-47 meters and 52-
60 meters respectively for most algorithms. However, the DTR and RFR models produce the
lowest MAE and RMSE among the rest which is around 12 meters for both indices. The GBR
has moderately low error values for both the MAE (~26 m) and RMSE (~39 m) compared to
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the others. In terms of the R2 score, the pattern is quite similar. The R2 score of the Linear
SVR, GPR, SVR, KNN, and SGDR models are extremely low,
models bear the highest R2 score (0.64 and 0.54 respectively).

while the DTR, RFR, GBR
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Figure 6.12: Linear regression between the predicted sand thickness vs the true sand

thickness

Table 14. Performance index of the predicted sand thickness

Linear SVR GPR SVR KNN DTR RFR SGDR GBR

MAE 42.66 47.31 40.86 41.22 12.37 12.29 44.78 26.33
RMSE 59.75 57.94 58.21 52.95 34.65 34.32 56.49 39.15
R2 0.061 0.002 0.007 0.16 0.64 0.64 0.051 0.54

6.4 Discussion

6.4.1 ML simulation results

According to the feature correlation matrix from previous section, it can be inferred that the
overall features used in this study almost do not have any correlation with the defined label,
which is the net-to-gross. Even the additional features, the AVO attributes, do not directly
correlate with the net-to-gross according to the baseline linear regression. This will directly
correspond with the ML models performance, the R2. Most of the ML models have
significantly low R2 values or even close to zero which basically mean that the dependent
variable changes without any correlation to the independent variable.

One way to explain this is by first taking a look into the true net-to-gross values. As depicted
in Figure 6.1, the mean and the standard deviation of the true net-to-gross are 0.49 and 0.22
respectively. Remember that the net-to-gross values are expressed in fraction. So, when the
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true net-to-gross has standard deviation of 0.22, it basically means that each point in the dataset
deviates by 0.22 point from its mean, 0.49, on average scale. The standard deviation is almost
half of the mean itself. This is a big difference. A high standard deviation indicates that the
data points are spread out over a large range of values. Or in other words, the true net-to-gross
values in this study are nearly random, hence have high bias. This explains why the RMSE and
the MAE are significantly high for almost all ML models.

However, not all ML models performed poorly. The DTR and RFR algorithms are able to
predict the net-to-gross values quite well. This is shown by significantly higher R2 values and
lower errors. And those indices are improved as more features were added into the models. The
final R2 value for the DTR is 0.85, while the RFR is 0.86 when all eight features were used.
These values suggest that around 85% of the predicted models successfully fit the true value.
The results obtained from DTR and RFR confirm that both algorithms can considerably handle
non-linear data. The reason why these two algorithms work well is because the nodes/trees in
both algorithms protect each other from their individual error by merging the predictors and
generalize the errors. In this way, the groups of trees/nodes in both algorithms produce
ensemble predictions which more accurate than any other individual predictions.

These trends are also appeared when predicting the sand thickness where most algorithms
performed poorly but the DTR and RFR produced much better results. However, one important
thing to note is that the R2 score of these two algorithms in the prediction are considerably
lower than in the training/test phase. This may indicate overfitting where the trained model
fails to generalize the unseen data. In this case, the overfitting was presumably caused due to
the noise and inaccurate data entries in the dataset.

The negative values from some algorithms in both net-to-gross and sand thickness predictions
were presumably caused by the outliers in the dataset. For instances, Figure 6.7 shows how the
negative gradient and AVO product values affected the regression line in the scatter plot.
Another example is shown in Figure 6.9 where the negative values of sand thickness have high
frequency in the dataset. This could ruin the implicit pattern from the data which the algorithms
tried to discover. These type of data should be removed in the data cleaning stage prior to
generating the ML models.

The net-to-gross classification yielded different results compared to the predictions. In general,
the performance index of the results is much higher than the predictions’ in most algorithms.
In addition, the accuracy and F1 score of classification results from DT and RF are around 0.9
or almost perfect. This suggests that the classification may be an easier task for the algorithms
in this study since it was only ‘asked’ to predict binary class (1 and 0) instead of continuous
number in predictions. However, what makes these results are still arguable is even though the
performance indices of the DT and RF are remarkably high, the performance indices of the
trained data are moderately low (~0.6). This makes the classification results are less reliable.

6.4.2 Seismic amplitudes

According to the literatures, seismic amplitude is considered as primary variable when
generating the net-to-gross value from the seismic data. However, this could not be confirmed
in this study since the correlation coefficients between the seismic amplitudes from the
horizons and the obtained net-to-gross were very low.
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The studies of the net-to-gross estimation from seismic data has been carried out by many
(Brown et al., 1984, 1986; Connolly, 2007; Inichinbia et al., 2014; and Simm, 2009). Brown et
al. (1984, 1986) proposed a technique using scaled seismic amplitude to remove the tuning
effect when estimating the net-to-gross. Connolly (2005, 2007) introduced a technique to
estimate the net pay using band limited impedance obtained from coloured inversion.
According to these studies, the process of calculating the net-to-gross involved several scaling
and calibrations of the amplitudes such as correcting seismic amplitude maps with the apparent
thickness model, generating band-limited relative impedance using coloured inversion, and etc.

The AVO attributes are also commonly used when determining the net-to-gross. A study
carried out by Simm (2009) highlighted the use of the AVO intercept and gradient cross plot
to generate fluid factor in order to maximize the fluid content reflectivity and optimize the net
pay estimation.

The studies mentioned above show how the seismic amplitude actually has significant impact
in when determining the net-to-gross. However, the net-to-gross in this study case are roughly
derived only from TWT of both top and bottom reservoir (BCU and Top Rannoch) as the zone
boundaries, and the value of GR from wells as indicator of sand and shale. There are many
processes were bypassed compared to the conventional procedures. This may explain why the
true net-to-gross values are randomized which causes the extremely low correlation between
the net-to-gross and the amplitudes, and hence, produces highly deviated prediction results.

6.4.3 Net-to-gross of the Brent Group

According to the reservoir studies of the Brent Group (Giles et al., 1992; Helland-Hansen et
al., 1992; and Knag et al., 1995), the overall net-to-gross of this group ranges from 0.4-0.8.
Meanwhile, the most promising prediction results (the ones with the lowest error and highest
R2) from the DTR and RFR models show the average net-to-gross values around 0.45-0.49.
Even though the predicted values are very close and limited to the minimum value from the
literature, those values are still within the range. In addition, the predicted average net-to-gross
from the DTR and RFR models are almost similar with the one obtained from the wells. This
actually indicates that these algorithms perform quite well regardless the limited amount of
data as well as its non-linearity.

6.4.4 Discussion remarks
Several constraints which affected the results of this study are defined as follows:

¢ Limited amount of data. As a reminder, only 172 data points utilized in training/test
phase to predict around 2 million data points in the whole study area. This number
obviously cannot be a good representation of the whole area. This also may be the
cause of overfitting in the prediction model.

e Poor data cleaning. The dataset contains many outliers which will be the noise for the
algorithms. This definitely will cause the algorithms to build less accurate models
driven by noise.

e High variance in the data. This is actually a consequence of the previous constraint.
High variance data generally will increase the complexity for the algorithms to
generate proper models.

e Oversimplified label determination. As mentioned in the previous section, the net-
to-gross were simply derived according to the GR level in the reservoir interval. As
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consequence, this led to an inaccurate net-to-gross results and poor correlation between
label and features.

In general, this study needs a lot of improvements, especially when defining both the features
and the label. Ensuring good correlation between features and label is essential prior to
applying ML models. In addition, establishing an appropriate label can also be challenging if
the defined label is dependant variable. Therefore, ensuring the label is derived properly
through decent procedures should be prioritized.
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7 Conclusion

The main purpose of this study was to obtain a better understanding of how machine learning
models perform prediction on net-to-gross value of the Brent Group in Statfjord field using
parameters derived mainly from seismic horizons of the reservoir zone.

Several ML algorithms was implemented to reach this goal. In general, most of the prediction
results exhibit high errors and low performance index. This is also confirmed by the
performance index of the classification and sand thickness prediction tasks which were
included as additional comparison for this study. However, not all models perform poorly. The
Decision Tree and Random Forest seem to outperform other algorithms when completing the
defined tasks. This is shown by the noticeably higher performance index and remarkably lower
errors these two algorithms possess.

Despite the limitations and constraints in the dataset as described in the discussion, the ML
models have potential to do this task. The fact that the net-to-gross prediction results are still
within the range according to the literatures strengthens this claim. It is also supported by
previous studies on the same domain which showed how ML successfully estimated
petrophysical properties (Al-Anazi and Gates, 2010a,b,c,d ), hydraulic pressure losses
(Fruhwirth et al., 2006), and evaluated bottom hole pressure (Ashena et al., 2010) in drilling
engineering. In order to enhance the models’ performance, several improvements such as
proper data cleaning, adding more relevant features, and establishing a solid label through
appropriate procedures should be implemented in the subsequent studies. Keep in mind that
the ultimate purpose of utilizing ML algorithms in this domain is to ensure the daily tasks in
oil and gas industry to be accomplished more effectively compared to the conventional
procedures.
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8 Future Work Recommendations

There are some important aspects related to this study which were not included due to the
restricted time and availability of the data. Hence, some recommendations to be considered in
further study are:

e Increasing the number of data used in the training/test phase in order to build a more
solid and representative model

e Adding more valuable information from the well logs (e.g. resistivity log, density log,
etc.) and other horizons into the models

e A better data cleaning process such as filtering unwanted outliers, removing unwanted
observation, and etc.

e Involving proper geophysical procedures, such as Coloured Inversion and AVO
analysis, to define the net-to-gross before setting it as a label

e Utilization of more relevant features as well as ensuring the appropriate correlation
between the label and features

e Utilization of more advanced algorithms such as Artificial Neural Networks (ANN),
Ensemble methods, Dimensionality Reduction algorithms, and even Deep Learning
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Appendix 1: Statistical details of each features
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Appendix 2: Net-to-gross calculation for all wells input code in
Python

“~ Jupyter Label1.NtG Last Checkpoint: 02.06.2020 (autosaved) A | Logout
File Edit  View Insert Cell Kemel Widgets  Help Trusted | Python 3 ©
+ % @ B 4 ¥ HRin B C W Code ~

In [2]: import numpy as np
import pandas as pd
import lasio
import glob

In [7]: BCU_TVDSS = pd.read_csv(r'G:\Sub_Appl Data\Petrel\ST_S62\North_Sea\regional\wrk\proj\KHOIR\Excel files\TVDSS-BCU.dat",sep="\t*',n

c:\Appl\Anaconda3\1ib\site-packages\ipykernel launcher.py:1: ParserWarning: Falling back to the ‘python' engine because the ‘c
engine does not support regex separators (separators > 1 char and different from *\s+' are interpreted as regex); you can avoid
this warning by specifying engine="pythen’.
"Entry point for launching an IPython kernel.
C:\Appl\Anaconda3\lib\site-packages\pandas\io\parsers.py:2455: FutureWarning: split() requires a non-empty pattern match.

yield pat.split(line.strip())
C:\Appl\Anaconda3\1ib\site-packages\pandas\io\parsers.py:2458: FutureWarning: split() requires a non-empty pattern match.

vield pat.split(line.strip())

In [8]: TC_TVDSS = pd.read_csv(r'G:\Sub_Appl Data\Petrel\ST_S62\North_Sea\regional\wrk\proj\KHOIR\Excel files\Top-Cook-FM.dat"',sep="\t*",

C:\Appl\Anaconda3\1ib\site-packages\ipykernel launcher.py:1: ParserWarning: Falling back to the 'python' engine because the 'c
engine does not support regex separators (separators > 1 char and different from *\s+' are interpreted as regex); you can avoid
this warning by specifying engine="pythen’.
"Entry point for launching an IPython kernel.
C:\Appl\Anaconda3\1lib\site-packages\pandas\io\parsers.py:2455: FutureWarning: split() requires a non-empty pattern match.

yield pat.split(line.strip())
C:\Appl\Anaconda3\1lib\site-packages\pandas\io\parsers.py:2458: FutureWarning: split() requires a non-empty pattern match.

yield pat.split(line.strip())

In [13]: | #FOR MULTIPLE WELLS
In [10]: well list = glob.glob(r'C:\Users\KHPR\Desktop\Rannoch1\*.las")

In [34]: wells M2G={}

for well in well list:
well name = well.split('\\")[-1].split(".las')[@]
well name = well name.replace(’ ",'/')
print(well name)
las = lasio.read(well)
temp = pd.DataFrame({'TVDSS BCU':las[ 'TvDSS'], 'GR':las[ 'GR']})
GR = temp.GR[np.logical_and(temp.TVDSS BCU>=BCU_TVDSS.TVDSS.loc[well name],temp.TVDSS_BCU<=TC_TVDSS.TVDSS.loc[well name])].va
TVDSS = temp.TVDSS_BCU[np.logical and(temp.TVvDSS_BCU>=BCU_TVDSS.TVDSS.loc[well name],temp.TVDSS BCU<=TC_TVDSS.TVDSS.loc[well
dTvDsS = np.diff(TvDss)
GR = GR[1:]
net = np.sum(dTVDSS[GR<78])
shale = np.sum(dTVDSS[GR>=78])
ntg = net/(net+shale)
vells _N2G[well_name] = ntg

NtG = pd.DataFrame(list(wells N2G.items()),columns=[ ‘Well", 'NtG"])

33/9-A-10
33/9-A-11
33/9-A-11 AT2
33/9-A-11 AY1

> >
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Appendix 3: Net-to-gross prediction input code in Python

: Ju pyter Statfjord_ML_N2Gprediction_8features(+AVO_attributes) Last Checkpoint: forrige onsdag ki. 18:39 (autosaved)

File Edit

B+ 3= &0 + ¥

In [218]:

In [2]:

out[2]:

In [3]:

P Logout

r'd ‘ Python 3 O

View Insert Cell Kemnel Widgets Help Trusted
MRun H C M Code ~
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
np.set_printoptions(suppress=True)
from sklearn.model_selection import train_test split
from sklearn.model_selection import cross_val score, cross_val predict
from sklearn.model selection import stratifiedkrold
from sklearn.model selection import KFold
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import Kneighborsclassifier
from sklearn.discriminant_analysis import LinearDiscriminantanalysis
from sklearn.naive bayes import GaussianNB
from sklearn.svm import SvC
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, Whitekernel
from sklearn.svm import LinearSVR
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import Ridge
from sklearn import linear_model
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared error
sd = pd.read_csv(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\statfjord features.txt')
sd
Easting_x Northing_x RMS_BCU_far Easting_round Northing_round Easting_y Northing_y RMS_BCU_near Easting_x.1 Northing_x."
0 441617.912566 6.779397e+06 0.0 441600 6779400 441617.912566 6.779397e+06 0.0 441603.79528 6.779389e+0¢
1 4416817.912568 6.779397e+08 0.0 441800 6779400 441617912566 6.779397e+06 0.0 44158297001 B.779395e+0t
2 441617.912566 6.779397e+06 0.0 441600 6779400 441617912566 6.779397e+06 0.0 441610.04528 6.779400e+0t
3 4416817.912568 6.779397e+08 0.0 441800 6779400 441617912566 6.779397e+06 0.0 441589.22001 B.779408e+0t
4 441617.912566 6.779397e+06 0.0 441600 6779400 441617912566 6.779397e+06 0.0 44158839474 6.779412e+0t
2378841 440117.912568 6.806697e+068 0.0 440100 6806700 440117912566 6.806697e+06 0.0 440106.77132 B6.806696e+0t
2378842 440117.912566 6.806697e+06 0.0 440100 6806700 440117.912566 6.806697e+06 0.0 440106.77132 6.806696e+0¢
2378843 440117.912568 6.806697e+068 0.0 440100 6806700 440117912566 6.806697e+06 0.0 440085.94605 B6.806702e+0t
2378844 440117.912566 6.806697e+06 0.0 440100 6806700 440117912566 6.806697e+06 0.0 44009594605 6.806702e+0t
2378845 440117.912568 6.806697e+06 0.0 440100 6806700 440117912566 6.806697e+06 0.0 44009594605 6.806702e+0t

2378846 rows x 14 columns

sd[ "Gradient
sd['AVO_Sum®

sd[ Avo_diff®
sd[ "Avo_prod®

= (sd.iloc[:,2].values - sd.iloc[:,7].values) #Far-Near
= (sd.iloc[:,7].values + sd['Gradient'].values) #Int+Gra
] = (sd.iloc[:,7].values - sd['Gradient'].values) #Int-Gr
] = (sd.iloc[:,7].values * sd['Gradient'].values) #Int*Gr
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In[ ]:

In [63]: wells = pd.read_csv (r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\stat_features_labell_selectedWells.txt")
wells
out[63]:
Well Easting Northing Top_Balder_TWT BCU_TWT RMS_BCU_near RMS_BCU_far NtG
o 211/24-4 43411324 678349548 1660.124815 2344 146120 2957468 2434968 0.305144
1 33/12-1 43705569 678625821 1636.961950 2283 454430 1212534 1.418373 0.987179
2 33/12-B1A 43831374 6786227.39 1652.419343 2361.018068 2214515 1.867557 0.127886
3 33/12-B-1B 438193.83 678692191 1663.011283 2310467530 1.684443 1.898300 0.243066
4 33/12-B-1C 438063.61 6786344.34 1654.795532 2328.535352 1.755582 1.238507 0.166065
167 33/9-C-6 44205325 679874969 1676.983885 2403 847108 1.655461 1.5622337 0.750849
168 33/9-C-7 44169839 679773847 1667.437660 2367 370687 0.229123 0.482087 0677724
169 33/9-C-8 44203468 6796195.14 1671.039310 2344.972898 1.025667 2223881 0592816
170 33/9-C-8A 44057273 B796359 68 1656.938193 2329 879883 0.955554 0.928878 0.348550
171 33/9-C-8AT2 440572.83 6796359 85 1656.938193 2329 879883 0.955554 0.928878 0.349802
172 rows x 8 columns
In [64]: wells['Gradient’] = (wells.iloc[:,6] - wells.iloc[:,5])
wells['AVO_sum'] = (wells.iloc[:,5] + wells['Gradient'])
wells[ 'AVO_diff'] = (wells.iloc[:,5] - wells['Gradient'])
wells['AvO prod’] = (wells.iloc[:,5] * wells['Gradient'])
wells
out[64]:
Well Easting Northing Top_Balder_TWT BCU_TWT RMS_BCU_near RMS_BCU_far NtG Gradient AVO_sum AVO_diff AVO_prod
0 211/24-4 43411324 678349548 1660.124815 2344 1468120 2957468 2434968 0305144 -0522500 2434968 3479968 -1545277
1 33/12-1 43705569 678625821 1636.961950 2283 454430 1.212534 1.418373 0987179 0.205839 1.418373 1.006895 0249587
2 33/12-B-1A 438313.74 B786227.39 1652.419343 2361.018068 2214515 1.867557 0.127886 -0.346958 1.867557 2561473 -0.768344
3 33/12-B-1B 438193.83 6786921.91 1663.011293 2310.467530 1.684442 1.898300 0.243066 0.213857 1.898300 1.470586  0.360230
4 33112B-1C 43806361 678634434 1654 795532 2328 535352 1.755582 1.238507 0.166065 -0.517075 1.238507 2272857 -0.907768
167 33/9-C-6 44205325 679874969 1676.983885 2403 847108 1.656461 1.5622337 0.750849 -0.133124 1522337 1788585 -0.220382
168 33/9-C-7 44169839 679773847 1667.437660 2367 370687 0.229123 0482087 0677724 0252964 0482087 -0.023841 0057960
169 33/9-C-8 44203468 6796195.14 1671.039310 2344.972898 1.025667 2223881 0592816 1.198214 2223881 -0.172547  1.228969
170 33/9-C-8A 44057273 6796359.68 1656.938193 2329.879883 0.955554 0.928878 0.348550 -0.026676 0.928878 0.982230 -0.025490
171 33/9-C-8AT2 440572.83 B796359 85 1656.938193 2329 879883 0.955554 0.928878 0349802 -0.0268676 0928878 0982230 -0.025490
172 rows x 12 columns
In [7]: X = wells.iloc[:,[3,4,5,6,8,9,10,11]].values
X[e,:]
X
In [8]: y = wells.iloc[:,7].values
y
In [9]: X_sd = sd.iloc[:,[13,18,7,2,14,15,16,17]].values
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In [10]: | # let us try a little standardizing
from sklearn.preprocessing import Standardscaler

# let us actually fit to the entire area of interest and not just the places with wells!
scalar = StandardScaler().fit(X_sd)

X_transformed = scalar.transform(X)

X_sd_transformed = scalar.transform(X_sd)

In [246]: # Spot Check Algorithms
models = []

models.append(('RFR', RandomForestRegressor(n_estimators=5@, random state=42, bootstrap=False)))
models.append((‘LinearsvR’, LinearSVR(max_iter=5e00)))

models.append(('GPR', GaussianProcessRegressor(kernel = DotProduct() + WhiteKernel())))
models.append(('SVR', SVR(C=10, epsilon=0.1)))

models.append(("KNN', KNeighborsRegressor(n_neighbors=1@)))

models.append(('CART', DecisionTreeRegressor(random_state=42)))

models.append(("SGDR', linear model.SGDRegressor()))

models.append(('GBR', GradientBoostingRegressor(loss="huber', n_estimators=5@)))

# evaluate each model in turn
results = []
names = []
for name, model in models:
#kfold = StratifiedkFold(n_splits=1@, random state=42)
kfold = KFold(n_splits=1@, random_state=42, shuffle=True)
cv_results = cross_val score(model, X transformed, y, cv=kfold, scoring="r2")
results.append(cv_results)
names . append(name)
print('%s: %f (%f)" % (name, abs(cv_results.mean()), cv_results.std()))

RFR: ©.877452 (0.640102)
LinearSVR: 0.151046 (@.201697)
GPR: ©.872982 (0.156716)
SVR: ©.278009 (0.268332)
KNN: ©.128249 (9.212094)
CART: ©.883515 (0.716798)
SGDR: ©.141696 (©.298149)
GBR: ©.124958 (0.192895)

In [13]: | ##
model_LinearSVR = LinearsvR(max_iter=506@)
model_LinearSVR.fit(X_transformed, y)
LinearsvR_prediction = model LinearsvR.predict(X sd_transformed)
LinearSvR_prediction

Out[13]: array([-@.0994826 , -0.10855925, -0.09827005, ..., -0.23043981,
-0.22484084, -0.22601215])

In [203]: plt.hist(LinearsvR _prediction, bins = 2@)
plt.title('LinearSvR")
plt.xlabel('NtG prediction’)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\sfeatures\linearsvRtable.jpg")
print('mMean: ", np.mean(LinearsvR_prediction))
print(’'st.Dbev:’, np.std(LinearSVR_prediction))
plt.show()

In [204]: plt.scatter(sd.Easting round, sd.Northing round, cmap='Spectral’, s=1, c=LinearSVR_prediction, vmin=6, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction’, rotation=276, labelpad=15)
clb.ax.invert yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title('nNtG prediction - LinearSvRRegressor')
plt.gca().set_aspect('equal’)
plt.gcf().set_size inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\gfeatures\LinearSvr.jpg")

In [54]: ###
model_GPR = GaussianProcessRegressor(kernel = DotProduct() + WhiteKernel())
model GPR.fit(X_ transformed, y)
GPR_prediction = model_GPR.predict(X_sd_transformed)
GPR_prediction

out[54]: array([ ©.82564194, 0.02483444, 0.02655136, ..., -0.05267248,
-0.04887911, -@.04967268])

In [17]: np.mean(GPR_prediction)

out[17]: @.2413478540699206

In [184]: plt.hist(GPR_prediction, bins = 2@)
plt.title('Gaussian Process Regressor')
plt.xlabel('NtG prediction)
plt.savefig(r'cC:\Users\KHPR\OneDrive - Equinor\Qutput files from python\8features\GPRtable.jpg"')
print('Mean: ", np.mean(GPR_prediction))
print('st.Dev:", np.std(GPR_prediction))
plt.show()
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In [185]: plt.scatter(sd.Easting_round, sd.Northing_round, cmap='Spectral®’, s=1, c=GPR_prediction, vmin=0, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction', rotation=270e, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title( 'NtG prediction - GPRRegressor')
plt.gca().set_aspect('equal')
plt.gcf().set_size inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\GPR.jpg")

In [145]: ###
model SVR = SVR(C=10, epsilon=0.1)
model SVR.fit(X transformed, y)
SVR_prediction = model svR.predict(X_ sd_transformed)
SVR_prediction

out[145]: array([6.42836543, ©.428255 , ©.42849028, ..., 0.089693634, 0.10993901,
0.10723125])

In [146]: np.mean(SVR_prediction)

out[146]: @.5585675287632528

In [201]: plt.hist(SVR_prediction, bins = 20)
plt.title( ' Support Vector Regressor')
plt.xlabel( 'NtG prediction’)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\output files from python\sfeatures\svrRtable.jpg')
print('Mean: ', np.mean(SVR_prediction))
print('st.pev:’, np.std(SVR_prediction))
plt.show()

In [202]: plt.scatter(sd.Easting_round, sd.Northing_round, cmap='Spectral’, s=1, c=SVR_prediction, vmin=@, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction', rotation=276, labelpad=15)
clb.ax.invert yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title('NtG prediction - SVRRegressor')
plt.gca().set_aspect('equal’)
plt.gcf().set_size inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\SvR.jpg')

In [25]: ###
model_KNN = KNeighborsRegressor(n_neighbors=10)
model KNN.fit(X_transformed, y)
KNN_prediction = model KNN.predict(X_ sd_transformed)
KNN_prediction

Out[25]: array([e.36103366, ©.36103366, ©.36103366, ..., 0.40574605, ©.40574605,
0.40574605])

In [26]: np.mean(KNN_prediction)

out[26]: ©.43610725015039165

In [186]: plt.hist(KNN_prediction, bins = 20)
plt.title( 'k-Nearest Neighbor Regressor')
plt.xlabel( 'NtG prediction')
plt.savefig(r'c:\Users\KHPR\OneDrive - Equinor\output files from python\sfeatures\Knntable.jpg")
print('Mean: ', np.mean(KNN_prediction))
print('st.pev:’, np.std(KNN_prediction))
plt.show()

In [161]: plt.scatter(sd.Easting_round, sd.Morthing_round, cmap='Spectral’, s=1, c=KNN_prediction)
clb = plt.colorbar()
clb.set_label('NtG Prediction®’, rotation=27@, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='sSpectral’, c=wells.NtG)
plt.title( 'NtG prediction - KNNRegressor')
plt.gca().set_aspect(’'equal’)
plt.gcf().set_size inches(12, 8)

In [30]: ###
model_CART = DecisionTreeRegressor(random_state=42)
model _CART.fit(X_transformed, y)
CART_prediction = model CART.predict(X_sd_transformed)
CART_prediction

out[30]: array([e., @., 8., ..., ., 8., 0.])

In [31]: np.mean(CART prediction)

Out[31]: 0.4660546146263803

In [188]: plt.hist(CART_prediction, bins = 20)
plt.title('Decision Trees Regressor')
plt.xlabel('NtG prediction’)
plt.savefig(r'c:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\DTRtable.jpg"')
print(’'Mean: ', np.mean(CART prediction))
print(’'st.Dev:’, np.std(CART prediction))
plt.show()
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In [189]: plt.scatter(sd.Easting round, sd.Morthing round, cmap='Spectral’, s=1, c=CART prediction, vmin=@, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction’, rotation=270, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='sSpectral’, c=wells.ntG)
plt.title('NtG prediction - DecisionTreeRegressor')
plt.gca().set_aspect('equal’)
plt.gcf().set_size inches(12, 8)
plt.savefig(r'cC:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\DTR.jpg")

In [34]: ###sn
model_RFR = RandomForestRegressor(n_estimators=56, random_state=42, bootstrap=False)
model RFR.fit(X transformed, y)
RFR_prediction = model RFR.predict(X_sd_transformed)
RFR_prediction

Out[34]: array([@.34143453, 0.34143453, ©0.34143453, ..., ©.34143453, ©.34143453,
0.34143453])

In [35]: np.mean(RFR_prediction)

out[35]: ©.4860298235343122

In [190]: plt.hist(RFR _prediction, bins = 2@)
plt.title('Random Forest Regressor')
plt.xlabel( 'nNtG prediction’)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\g8features\RFRtable.jpg')
print(’'Mean: ", np.mean(RFR_prediction))
print('st.pev: ", np.std(RFR_prediction))
plt.show()

In [191]: plt.scatter(sd.Easting_round, sd.Northing round, cmap='spectral’, s=1, c=RFR_prediction, vmin=e, vmax=1)
clb = plt.colorbar()
clb.set_label('ntG Prediction', rotation=27e, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title( 'ntG prediction - RandomForestRegressor')
plt.gca().set_aspect('equal’)
plt.gcf().set_size inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\RFR.jpg')

In [38]: model SGDR = linear_model.SGDRegressor()
model_SGDR.fTit(X_transformed, y)
SGDR_prediction = model SGDR.predict(X_sd_transformed)
SGDR_prediction

out[38]: array([-0.11061243, -0.1109848 , -0.110193@6, ..., 0.14322476,
0.13986127, ©.13993228])

In [39]: np.mean(SGDR_prediction)

out[39]: ©.1303577195815378

In [192]: plt.hist(SGDR prediction, bins = 2@)
plt.title( 'Stochastic Gradient Descent Regressor')
plt.xlabel( 'NtG prediction')
plt.savefig(r'c:\Users\KHPR\OneDrive - Equinor\Qutput files from python\8features\sGDRtable.jpg")
print(’'Mean: ", np.mean(SGDR_prediction))
print('st.pev:', np.std(SGDR_prediction))
plt.show()

In [194]: plt.scatter(sd.Easting round, sd.Northing round, cmap='Spectral®, s=1, c¢=SGDR prediction, vmin=0, vmax=1)
clb = plt.colorbar()
clb.set label('NtG Prediction’, rotation=27e, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title( 'ntG prediction - SGDRegressor')
plt.gca().set_aspect(’'equal’)
plt.gcf().set_size_inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\SGDR.]pg"')

In [42]: model GBR = GradientBoostingRegressor(loss="huber’, n_estimators=50)
model_GBR.fit(X_transformed, y)
GBR_prediction = model GBR.predict(x_sd_transformed)
GBR_prediction

out[42]: array([@.41772345, ©.41772345, 0.41772345, ..., 0.41772345, 0.41772345,
0.41772345])

In [43]: np.mean(GBR_prediction)

out[43]: @.5568627223767593

In [195]: plt.hist(GBR prediction, bins = 20)
plt.title('Gradient Boosting Regressor')
plt.xlabel('NtG prediction')
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\output files from python\8features\GBRtable.jpg")
print(‘Mean: ', np.mean(GBR_prediction))
print('st.Dev:', np.std(GBR_prediction))
plt.show()

57



In [196]:

plt.scatter(sd.Easting round, sd.northing round, cmap='Spectral’, s=1, c¢=GBR prediction, vmin=8, vmax=1)
clb = plt.colorbar()

clb.set_label('NtG Prediction’, rotation=270, labelpad=15)

clb.ax.invert yaxis()

plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)

plt.title('NtG prediction - GradientBoostingRegressor')

plt.gca().set_aspect('equal’)

plt.gcf().set_size inches(12, 8)

plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Qutput files from python\8features\GBR.jpg')

In[ ]:
In [46]: import tpot
C:\Appl\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:143: Futurewarning: The sklearn.metrics.scorer module is depr
ecated in version ©.22 and will be removed in version @.24. The corresponding classes / functions should instead be imported fr
om sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API.
warnings.warn(message, FutureWarning)
C:\Appl\Anaconda3\lib\site-packages\sklearn\utils\deprecation.py:143: FutureWarning: The sklearn.feature_selection.base module
is deprecated in version ©.22 and will be removed in version @.24. The corresponding classes / functions should instead be imp
orted from sklearn.feature selection. Anything that cannot be imported from sklearn.feature selection is now part of the privat
e API.
warnings.warn(message, FutureWarning)
In [47]: pipeline_optimizer = tpot.TPOTRegressor()
pipeline_optimizer = tpot.TPOTRegressor(n_jobs=7, generations=100, population_size=1ee, cv=10,
random_state=42, verbosity=2)
In [48]: pipeline_optimizer.fit(X_transformed, y)
In [49]: tpot_prediction ee1 = pipeline optimizer.predict(X_sd_transformed)
tpot_prediction_eeil
Out[49]: array([e.47142139, ©.47142139, ©.46156933, ..., ©.4960154 , 0.4960154 ,
0.4960154 1)
In [197]: plt.hist(tpot prediction_ee1, bins = 20)
plt.title( AutoML-result')
plt.xlabel( 'NtG prediction’)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\output files from python\g8features\AutoMLtable.jpg')
print('Mean: ', np.mean(tpot_prediction_ee1))
print('st.pev:", np.std(tpot_prediction_0@1))
plt.show()
In [198]: plt.scatter(sd.Easting_round, sd.nNorthing round, cmap='sSpectral’, s=1, c=tpot prediction_ee1)

clb = plt.colorbar()

clb.set_label('NTG prediction’, rotation=27@, labelpad=15)

clb.ax.invert_yaxis()

plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG,vmin=0,vmax=1)
plt.title( 'ntg prediction -AutoML result')

plt.gca().set_aspect('equal’)

plt.gcf().set_size inches(12, 8)

plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\sfeatures\AutoML.jpg")
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Appendix 4: Net-to-gross prediction validation input code in
Python

In [125]: yl=pd.DataFrame({ NtG':y.iloc[:,@]})
y1

x2 = pd.DataFrame({ Top_Balder TWT':x.iloc[:,e], "BCU_TWT':x.iloc[:,1], 'RMS_BCU near':x.iloc[:,2], RMs_Bcu far':x.iloc[:,3], ‘G
'AVO_sum':x.iloc[:,5], 'Avo_diff':x.iloc[:,6], 'AVO_prod':x.iloc[:,7], 'NtG':y.iloc[:,8]})

In [126]: x2

OUt“ZS] ‘ Top_Balder_TWT BCU_TWT RMS_BCU_near RMS_BCU_far Gradient AVO_sum AVO_diff AVO_pred NtG
0 -1.143857  -1.170185 0.672983 0.895346 0.005351 0.895346 0.454932 0.060733 0.305144

1 -1.739242  -1.660343 -0.835448 -0.268215 1.042058 -0.268215 -0.997391 0.864485 0.987179

2 -1.341920 -1.033924 0.030728 0245906 0255215 0.245906 -0.084414 0408649 0.127886

3 -1.069662 -1.442180 -0.427500 0281094 1.053471 0281094 -0.724991 0914032 0.243066

4 -1.280842 -1.296260 -0.366003 -0.474084 0013073 -0474084 -0.254009 0346214 0.166065
167 -0.710506  -0.688028 -0.452554 -0.149221 0559583 -0.149221 -0.538260 0.654030 0.750849
168 -0.955885 -0.982619 -1.685570 -1.339858 1.109135 -1.339858 -1.602529 0.778674 0.677724
169 -0.863307 -1.183508 -0.996988 0853743 2454590 0653743 -1.689850 1.303059 0.592816
170 -1.225766  -1.285402 -1.057598 -0.828475 0.711099 -0.828475 -1.011757 0.741304 0.348550
171 -1.225766  -1.285402 -1.057598 -0.828475 0.711089 -0.828475 -1.011757 0.741304 0.349802

172 rows x 9 columns

In [274]: from PIL import Image
import PIL

In [286]: #Using Pearson Correlation
plt.figure(figsize=(12,10))
cor = x2.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.savefig(r'c:\Users\KHPR\OneDrive - Equinor\Output files from python\corr.png")
plt.show()

In[ ]:

In [246]: pred = pd.read_csv (r'c:\Users\KHPR\OneDrive - Equinor\Output files from python\ml _ntg predicted.txt")
pred

P

In [ 1:  ###### Performance test for 8Features

In [247]:  #LinearSVR performance
rms = sqrt(mean_squared_error(pred[ 'NtG'], pred['nNtG_predLinearsvr']))
print('MAE: ', mean_absolute error(pred[ ‘NtG'], pred[’'NtG_predLinearSVR']))#Mean absolute error
print('RMSE: ", rms)#Root mean squared error
print('R2 score:', r2_score(pred['NtG'], pred['NtG_predLinearSVR']))#Coefficient of determination

MAE: ©.17895791484639573
RMSE: 0.2151882020250029
R2 score: ©.06874371711929039

In [316]: linear_regressor = LinearRegression()
X=pred[ "NtG'].values.reshape(-1, 1)
Y=pred[ 'NtG_predLinearsvR’].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
plt.scatter(pred[ 'NtG'], pred['NtG_predLinearsvR'])
plt.plot(pred['NtG'], Y _pred, color="red")
plt.title( Linear SVR')
plt.xlabel( 'NtG_pred")
plt.ylabel( 'NtG_true')
plt.savefig(r'cC:\Users\KHPR\OneDrive - Equinor\Output files from python\LinearSVRresult8Features.jpg')
plt.show()
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In [248]: | #GPR performance
rms = sqrt(mean_squared_error(pred[ 'NtG'], pred[ 'nNtG_predGPR']))
print('MAE:', mean_absolute_error(pred['NtG'], pred[’NtG_predGPR']))#Mean absolute error
print('RMSE:", rms)#Root mean squared error
print('R2 score:', r2_score(pred['NtG'], pred['NtG_predGPR']))#Coefficient of determination

MAE: ©.18017519637173207
RMSE: 0.21401431660879258
R2 score: ©.07887630247897248

In [317]: linear_regressor = LinearRegression()
X=pred[ ‘NtG'].values.reshape(-1, 1)
Y=pred[ ‘NtG_predGPR'].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear regressor.predict(X)
plt.scatter(pred[ ‘'NtG'], pred['NtG_predGPR'])
plt.plot(pred['NtG'], Y _pred, color="red")
plt.title( 'Gaussian Process Regressor')
plt.xlabel('NtG_pred")
plt.ylabel( 'NtG_true')
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\GPRresult8Features.jpg")
plt.show()

In [249]: | #SVR performance
rms = sqrt(mean_squared_error(pred[ 'NtG'], pred['NtG_predSVvR']))
print('MAE: ', mean_absolute error(pred[ 'NtG'], pred['NtG_predSvR']))#Mean absolute error
print('RMSE: ", rms)#Root mean squared error
print('R2 score:', r2_score(pred['NtG"'], pred[ 'NtG_predsvR']))#Coefficient of determination

MAE: ©.1578972828928246
RMSE: ©.19179614816467616
R2 score: ©.26020385479147434

In [318]: linear_regressor = LinearRegression()
X=pred[ "NtG'].values.reshape(-1, 1)
Y=pred[ ‘NtG_predSVR'].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
plt.scatter(pred[ ‘nNtG'], pred['ntG_predsvkR'])
plt.plot(pred[ 'NtG"], Y_pred, color="red")
plt.title( 'Support vector Regressor')
plt.xlabel( 'NtG_pred’)
plt.ylabel( 'nNtG_true’)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Qutput files from python\SVRresult8Features.jpg")
plt.show()

In [25@]: #KNN performance
rms = sqrt(mean_squared_error(pred[ 'NtG"], pred['NtG_predknn']))
print('MAE: ', mean_absolute error(pred[ ‘NtG'], pred['NtG_predKNN']))#Mean absolute error
print('RMSE:", rms)#Root mean squared error
print('R2 score:', r2_score(pred[ 'NtG'], pred['NtG_predKNN']))#Coefficient of determination

MAE: ©.16970770311971917
RMSE: 0.20638889425136958
R2 score: ©.14334697934054685

In [315]: linear_regressor = LinearRegression()
X=pred[ 'NtG'].values.reshape(-1, 1)
Y=pred[ 'NtG_predkNN'].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
plt.scatter(pred[ ‘'NtG'], pred[ 'NtG_predknn'])
plt.plot(pred['NtG'], Y_pred, color="red')
plt.title( 'K-Nearest Neighbour')
plt.xlabel('NtG_pred")
plt.ylabel('NtG_true’)
plt.savefig(r'c:\Users\KHPR\OneDrive - Equinor\output files from python\KnNresult8Features.jpg')
plt.show()

In [251]: #DTR performance
rms = sqrt(mean_squared_error(pred[ 'NtG'], pred['NtG_predDTR']))
print('MAE: ', mean_absolute_error(pred['NtG'], pred['NtG_predDTR']))#Mean absolute error
print("RMSE: ", rms)#Root mean squared error
print(°'R2 score:', r2_score(pred['NtG'], pred['NtG_predDTR']))#Coefficient of determination

MAE: ©0.02920276920238602
RMSE: ©.088537643635986635
R2 score: ©.853408648601155

In [319]: linear_regressor = LinearRegression()
X=pred[ 'NtG'].values.reshape(-1, 1)
Y=pred[ ‘NtG_predDTR'].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y _pred = linear regressor.predict(X)
plt.scatter(pred[ 'NtG'], pred['NtG_predDTR'])
plt.plot(pred[ 'NtG"], Y_pred, color="red")
plt.title('Decision Trees Regressor')
plt.xlabel('NtG_pred")
plt.ylabel('NtG_true")
plt.savefig(r'c:\Users\KHPR\OneDrive - Equinor\output files from python\DTRresult8Features.jpg’)
plt.show()
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In [252]:  #RFR performance
rms = sqrt(mean_squared_error(pred[ 'NtG'], pred['NtG_predRFR']))
print('MAE: ', mean_absolute_error(pred[ 'nNtG'], pred['NtG_predRFR']))#Mean absolute error
print("RMSE: ", rms)#Root mean squared error
print('R2 score:', r2_score(pred['NtG'], pred['ntG_predRFR']))#Coefficient of determination

MAE: ©.02932807305032732
RMSE: ©.88101402573611907
R2 score: ©.8680064439932874

In [320]: linear regressor = LinearRegression()
X=pred[ "‘NtG'].values.reshape(-1, 1)
Y=pred[ "NtG_predRFR’].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
plt.scatter(pred[ 'ntG'], pred['NtG_predRFR'])
plt.plot(pred[ 'NtG"], Y_pred, color="red")
plt.title('Random Forest Regressor')
plt.xlabel( 'NtG_pred")
plt.ylabel( 'NtG_true’)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\RFRresult8Features.jpg')
plt.show()

In [253]:  #SGDR performance
rms = sqrt(mean_squared_error(pred[ 'NtG'], pred[ 'NtG_predSGDR']))
print('MAE: ", mean_absolute error(pred['NtG'], pred['NtG_predSGDR']))#Mean absolute error
print('RMSE: ", rms)#Root mean squared error
print('R2 score:', r2_score(pred['NtG'], pred['NtG_predSGDR']))#Coefficient of determination

MAE: ©.1868782498489886
RMSE: 0.22466792002255365
R2 score: -0.0151130974776863

In [321]: linear_regressor = LinearRegression()
X=pred[ 'NtG'].values.reshape(-1, 1)
Y=pred[ 'NtG_predSGDR"].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
plt.scatter(pred[ "NtG'], pred['NtG_predSGDR'])
plt.plot(pred[ ‘'ntGc"'], Y_pred, color="red')
plt.title('Stochastic Gradient Descent Regressor')
plt.xlabel( 'NtG_pred")
plt.ylabel( NtG true')
plt.savefig(r'cC:\Users\KHPR\OneDrive - Equinor\output files from python\SGDRresult8Features.jpg")
plt.show()

In [254]:  #GBR performance
rms = sqrt(mean_squared error(pred[ ‘NtG'], pred['NtG_predGBR']))
print('MAE: ', mean_absolute error(pred[ 'NtG'], pred['NtG_predGBR']))#"ean absolute error
print("RMSE:", rms)#Root mean squared error
print(’'R2 score:', r2_score(pred['NtG'], pred['NtG_predGBR']))#Coefficient of determination

MAE: ©.12340088061246313
RMSE: 0.1569951453873776
R2 score: ©.5043161734646342

In [322]: linear_regressor = LinearRegression()
X=pred[ ‘nNtG"].values.reshape(-1, 1)
Y=pred[ 'NtG_predGBR'].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
plt.scatter(pred[ 'NtG'], pred['NtG_predGBR’])
plt.plot(pred[ 'NtG'], Y_pred, color="red')
plt.title( Gradient Boosting Regressor')
plt.xlabel( 'NtG_pred')
plt.ylabel('NtG_true')
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\GBRresult8Features.jpg")
plt.show()

In [255]:  #AutoML performance
rms = sqrt(mean_squared_error(pred[ 'NtG'], pred['NtG_predAutoML']))
print('MAE: ', mean_absolute error(pred['NtG'], pred['NtG_predAutoML']))#Mean absolute error
print('RMSE: ", rms)#Root mean squared error
print('R2 score:', r2_score(pred['NtG'], pred['NtG_predAutoML’]))#Coefficient of determination

MAE: ©.1801065162988866
RMSE: ©.2137888748122647
R2 score: ©.08081589615200091

In [323]: linear_regressor = LinearRegression()
X=pred[ "'nNtG"].values.reshape(-1, 1)
Y=pred[ "‘NtG_predAutoML'].values.reshape(-1, 1)
linear_regressor.fit(X, Y)
Y_pred = linear_regressor.predict(X)
plt.scatter(pred[ ‘'nNtG'], pred[’'ntG_predAutomML'])
plt.plot(pred['NtG'], Y_pred, color="red')
plt.title( AutoML")
plt.xlabel('NtG_pred’)
plt.ylabel('NtG_true')
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Qutput files from python\AutoMLresult8Features.jpg")
plt.show()
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Appendix 5: Net-to-gross classification input code in Python

: Jupyter Statfjord_ML_Classification Last Checkpoint: 08.07.2020 (autosaved)

File Edit View Insert Cell Kemel Widgets Help

+ << A3 B A ¥ MWRin B C W Code v =

In [16]: dimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
np.set_printoptions(suppress=True)
from sklearn.model_selection import train_test split
from sklearn.model selection import cross_val_score, cross_val predict
from sklearn.model_selection import StratifiedkFold
from sklearn.model_selection import KFold
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import Kneighborsclassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianhB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, Whitekernel
from sklearn.svm import LinearSvR
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import Ridge
from sklearn import linear_model
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error

In [2]: sd = pd.read_csv(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\Statfjord_features.txt")

sd

T E

In [3]: sd['Gradient'] = (sd.iloc[:,2].values - sd.iloc[:,7].values) #Far-Near
sd[ 'avo_sum'] = (sd.iloc[:,7].values + sd['Gradient'].values) #Int+Grad
sd[ 'Av0_diff'] = (sd.iloc[:,7].values - sd['Gradient’].values) #Int-Grad
sd[ 'avo_prod’] = (sd.iloc[:,7].values * sd['Gradient’].values) #Int*Grad

In [5]: wells = pd.read_csv (r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\Stat_features_labell selectedWells.txt"')

wells

In [80]: wells['Gradient'] = (wells.iloc[:,6] - wells.iloc[:,5])
wells['av0 sum’] = (wells.iloc[:,5] + wells['Gradient’])
wells['avo_diff'] = (wells.iloc[:,5] - wells['Gradient'])
wells['avo prod’] = (wells.iloc[:,5] * wells['Gradient’])
wells[ 'NtG class'] = y

In [7]: X = wells.iloc[:,[3,4,5,6,8,9,10,11]].values
X[e,:]
X
In [32]: y1 = wells.iloc[:,7].values
y = np.round(y)
Y
out[32]: array([e., 1., @., ., 0., 1., 1., 1., 0., 0., 8., 1., 1., 1., 0., 0.,
1., 1., e., @., @., @., ., 0., 1., 1., 0., 1., 0., 1., 0., 1.,
1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 8., 0., 0., 0., 1.,
i.,1.,1.,1.,1.,1., 1., ., e., 1., @., 0., @., 0., 1., 1.,
e., 1., o., 1., 1., ., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0.,
0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 0., 1., 1., 1., 8., 0.,
1., 1., 1., @., @., @., 1., 1., 1., 1., @., @., 1., 8., @., 1.,
0., 1., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0., 1., 0., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 0., ., 1., 1., 1., 0., 1., 1.,
1., 1., 1., 1., 1., @., 1., @., 8., 1., 1., 1., 0., 0., 1., 1.,
0., 8.])

In [33]: X_sd = sd.iloc[:,[13,10,7,2,14,15,16,17]].values
d
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In [34]: # let us try a little standardizing
from sklearn.preprocessing import Standardscaler

# let us actually fit to the entire area of interest and not just the places with wells!
scalar = standardscaler().fit(X_sd)

X_transformed = scalar.transform(X)

X_sd_transformed = scalar.transform(x_sd)

In [127]: | # Spot Check Algorithms
models = []
models.append(('LR", LogisticRegression(solver="liblinear', multi_class="ovr')))
models.append(("LDA', LinearDiscriminantanalysis()))
models.append(("KNN', KNeighborscClassifier()))
models.append(("CART', DecisionTreeClassifier()))
models.append(("NB", GaussiannB()))
models.append(('SvM', SVC(gamma='auto')))
models.append(('RF", RandomForestClassifier(n_estimators=50, random_ state=42, bootstrap=False)))

# evaluate each model in turn
results = []
names = []
for name, model in models:
kfold = stratifiedkFold(n_splits=1@, random state=42, shuffle=True)
#kfold = KFold(n_splits=16, random_state=42, shuffle=True)
cv_results = cross_val score(model, X transformed, y, cv=kfold, scoring="f1")
results.append(cv_results)
names.append(name)
print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))

LR: ©.631987 (0.095872)
LDA: ©.604312 (©.116585)
KNN: ©.649276 (0.125928)
CART: 0.545980 (0.136421)
NB: ©.657547 (©.093438)
SVM: 0.694414 (8.083307)
RF: ©.582250 (©.131070)

In [43]: #wan
model_LogisticRegression = LogisticRegression(max_iter=5600)
model_LogisticRegression.fit(X transformed, y)
LogisticRegression_prediction = model_LogisticRegression.predict(X_sd_transformed)
LogisticRegression_prediction

out[43]: array([e., @., 8., ..., 0., 0., 0.])

In [44]: plt.hist(LogisticRegression prediction, bins = 20)
plt.title('Logistic Regression')
plt.xlabel('NtG prediction")
#plt.savefig(r C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\linearsvRtable.jpg')
print('Mean: ', np.mean(LogisticRegression_prediction))
print(’'st.pev:’, np.std(LogisticRegression prediction))
plt.show()

In [99]: plt.scatter(sd.Easting_round, sd.Northing_round, cmap='Spectral’, s=1, c=LogisticRegression prediction, wvmin=8, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction’, rotation=27@, labelpad=15)
clb.ax.invert yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title('NtG prediction - LogisticRegression')
plt.gca().set_aspect('equal')
plt.gcf().set_size inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\ntg class trial\LR.jpg')

In [46]: ##wss
model_LinearDiscriminantAnalysis = LinearDiscriminantAnalysis()
model_LinearDiscriminantanalysis.fit(X_transformed, y)
LinearDiscriminantAnalysis_prediction = model_LinearDiscriminantAnalysis.predict(X_sd_transformed)
LinearDiscriminantAnalysis_prediction

out[46]: array([e., @., 0., ..., 0., 0., 8.])

In [47]: plt.hist(LinearDiscriminantAnalysis_prediction, bins = 28)
plt.title('Linear Discriminant Analysis')
plt.xlabel( 'NtG prediction')
#plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\linearSVRtable.jpg")
print('mMean: ', np.mean(LinearDiscriminantAnalysis_prediction))
print(’'st.pev:’, np.std(LinearDiscriminantAnalysis_prediction))
plt.show()

In [1ee]: plt.scatter(sd.Easting round, sd.northing_round, cmap='Spectral’, s=1, c=LinearDiscriminantAnalysis prediction, vmin=e, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction’, rotation=27e, labelpad=15)
clb.ax.invert yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap="spectral’, c=wells.NtG)
plt.title('NtG prediction - LinearDiscriminantAnalysis’)
plt.gca().set_aspect('equal')
plt.gcf().set_size inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\ntg class trial\LDA.jpg")
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In [49]:  #####
model_Kneighborsclassifier = Kneighborsclassifier()
model_KNeighborsClassifier.fit(X_transformed, y)

KNeighborsClassifier prediction = model KMeighborsClassifier.predict(X_sd_transformed)
KNeighborscClassifier prediction

out[49]: array([@., ©., 8., ..., 8., 0., 0.])

In [50]: plt.hist(KNeighborsClassifier_prediction, bins = 28)
plt.title( Kneighborsclassifier”)
plt.xlabel('NtG prediction')
#plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\linearSVRtable.jpg")
print('Mean: ", np.mean(kKNeighborsClassifier prediction))
print(’'st.pev:’, np.std(kNeighborsclassifier prediction))
plt.show()

In [101]: plt.scatter(sd.Easting_round, sd.Northing round, cmap='spectral’, s=1, c=KNeighborsclassifier_prediction, vmin=e, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction’, rotation=270, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title( 'NtG prediction - KNeighborsClassifier')
plt.gca().set_aspect('equal’)
plt.gcf().set_size inches(12, 8)
plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\ntg class trial\KnN.jpg")

In [52]: | ##EHE
model_DecisionTreeClassifier = DecisionTreeClassifier()
model_DecisionTreeClassifier.fit(X_transformed, y)
DecisionTreeClassifier_prediction = model DecisionTreeClassifier.predict(X_sd_transformed)
DecisionTreeClassifier_prediction

out[52]: array([@., @., €., ..., 8., 0., 8.])

In [53]: plt.hist(DecisionTreeClassifier_prediction, bins = 20)
plt.title('DecisionTreeClassifier")
plt.xlabel('NtG prediction')
#plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\linearSvRtable.jpg")
print(’'Mean: ', np.mean(DecisionTreeClassifier_prediction))
print(’'st.pev:’, np.std(DecisionTreeClassifier_prediction))
plt.show()

In [108]: plt.scatter(sd.Easting_round, sd.Northing_round, cmap='Spectral’, s=1, c=DecisionTreeClassifier_prediction.round(), vmin=0, vmax=
clb = plt.colorbar()
clb.set_label('ntG Prediction', rotation=27e, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title( 'NtG prediction - DecisionTreeClassifier')
plt.gca().set_aspect('equal’)
plt.gcf().set_size inches(12, 8)
plt.savefig(r'cC:\Users\KHPR\OneDrive - Equinor\Output files from python\ntg class trial\DTR.jpg")

In [55]: | #sis
model_GaussianNB = GaussiannB()
model_GaussianNB.fit(X_transformed, y)
GaussiannB_prediction = model_GaussiannB.predict(x_sd_transformed)
GaussianNB_prediction

out[55]: array([e., @., @., ..., 0., 0., 0.])

In [56]: plt.hist(GaussianNB prediction, bins = 2@)
plt.title('Naive-Bayes Classifier')
plt.xlabel( 'NtG prediction’)
#plt.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\linearSVRtable.jpg")
print('Mean: ", np.mean(GaussiannB_prediction))
print('st.pev: ', np.std(GaussianNB_prediction))
plt.show()

In [103]: plt.scatter(sd.Easting_round, sd.Northing_round, cmap='Spectral’, s=1, c=GaussianhNB_prediction, vmin=8, vmax=1)
clb = plt.colorbar()
clb.set_label('NtG Prediction', rotation=27@, labelpad=15)
clb.ax.invert_yaxis()
plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)
plt.title('NtG prediction - Naive-Bayes Classifier')
plt.gca().set_aspect('equal’)
plt.gcf().set_size inches(12, 8)
plt.savefig(r'cC:\Users\KHPR\OneDrive - Equinor\output files from python\ntg class trial\nB.jpg’)
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In [58]:

out[58]:

In [59]:

In [104]:

In [62]:

out[e62]:

In [63]:

In [124]:

mELER

model SVC = SvC(gamma="auto')

model_svc.fit(X transformed, y)

SVC_prediction = model_SVC.predict(X_sd_transformed)
SVC_prediction

array([e., @., 0., ..., 0., 0., 0.])

plt
plt
plt

.hist(svC prediction, bins = 20)
.title('Support Vector Machine Classifier")
.xlabel('NtG prediction')

#plt.savefig(r c:\Users\KHPR\OneDrive - Equinor\output files from python\8features\LlinearsvRtable.jpg")
print(‘Mean: ', np.mean(SVC_prediction))
print('st.pev:’, np.std(svC_prediction))

plt

plt.

clb

clb.
clb.
plt.
plt.
plt.
plt.
plt.

.show()

scatter(sd.Easting_round, sd.Morthing round, cmap="spectral’, s=1, ¢=SVC_prediction, wmin=e, vmax=1)
= plt.colorbar()

set_label('NtG Prediction’, rotation=27@, labelpad=15)

ax.invert_yaxis()

scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)

title('NtG prediction - Support Vector Machine Classifier')

gea().set_aspect('equal’)

gcf().set_size inches(12, 8)

savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\ntg class trial\svM.jpg")

IR

model_RandomForestClassifier = RandomForestClassifier(n_estimators=5@, random_state=42, bootstrap=False)
model RandomForestClassifier.fit(X transformed, y)

RandomForestClassifier prediction = model RandomForestClassifier.predict(X sd_transformed)
RandomForestclassifier prediction

array([0., 8., 0., ..., 9., 0., 0.])

plt.hist(RandomForestClassifier prediction, bins = 2@)
plt.title('RandomForest Classifier')
plt.xlabel( 'NtG prediction')

#plt

.savefig(r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\8features\linearsvRtable.jpg")

print('Mean: ', np.mean{RandomForestClassifier_prediction))
print('St.Dev:’, np.std(RandomForestClassifier prediction))

plt.show()

plt.scatter(sd.Easting_round, sd.Northing round, cmap='Spectral’, s=1, c=RandomForestClassifier prediction.round(),
clb = plt.colorbar()

clb.set_label('ntc prediction', rotation=270, labelpad=15)

clb.ax.invert yaxis()

plt.scatter(wells.Easting,wells.Northing, s=15, cmap='Spectral’, c=wells.NtG)

plt.title('ntG prediction - RandomForest Classifier')

plt.gca().set_aspect(’'equal’)

plt.gcf().set_size inches(12, 8)

plt.savefig(r'cC:\Users\KHPR\OneDrive - Equinor\Output files from python\ntg class trial\RFR.jpg')

<
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Appendix 6: Net-to-gross classification validation input code in
Python

: Jupyter Statfjord_ML_Class_validation Last Checkpoint: forrige torsdag kl. 10:26 (autosaved) f, Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 O
+ < & B 4 ¥ MR B C W Code v

In [26]: dimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
np.set_printoptions(suppress=True)
from sklearn.model selection import train test split
from sklearn.model_selection import cross_val_score
from sklearn.model selection import StratifiedkFold
from sklearn.model selection import KFold
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantaAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SvC
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR
from sklearn.gaussian_process impert GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
from sklearn.svm import LinearsvR
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import Ridge
from sklearn import linear model
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
import seaborn as sns
from sklearn.metrics import mean_squared error
from math import sqrt
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import f1_score, accuracy score, precision score, recall score

In [27]: x = pd.read_csv (r'C:\Users\KHPR\OneDrive - Equinor\Output files from python\ml_ntg_predicted_classification.txt")
X
out[27]:
Well Easting Northing Top_Balder_TWT BCU_TWT RMS_BCU_near RMS_BCU_far NtG Gradient AVO_sum AVO_diff AVO_prod NtG_c
0 211/24; 43411324 6783495 48 1660.124815 2344 146120 2957488 2434968 0305144 0522500 2434968 3479968 -1545277
1 30 21_ 437055.69 6786258.21 1636.961950 2283.454430 1.212534 1418373 0987179 0205838 1.418373 1.006695  0.249587
2 3‘?1?; 438313.74 6786227.39 1652.419343 2361.018068 2214515 1.867557 0.127886 -0.346958 1.867557 2561473 -0.768344
3 QBSf;IZE; 43819383 678692191 1663.011292 2310 467530 1.684443 1898300 0243066 0213857 1898300 1470588 0360230
4 2831?2(; 438068361 6786344 34 1654795532 2328 535352 1.755582 1238507 01680685 -0517075 1238507 2272857 -0.907768
167 a:ggé 442053.25 6798749.69 1676.983885 2403.847107 1.655461 1522337 0.750849 -0.133124 1.522337 1788585 -0.220382
168 3%?% 44169839 6797738 47 1667437660 2367 370687 0229123 0482087 0677724 0252964 0482087 -0023841  0.057960
169 Bil’::li; 44203468 6796195 14 1671.039310 2344 972898 1.025667 2223881 0592816 1198214 2223881 -0.172547 1228969
170 ggéﬂi 440572.73 6796359.68 1656.938193 2329.679883 0.955554 0.928878 0.348550 -0.026676 0.928678 0.982230 -0.025490
33/9-
171 E{g 44057283 679635985 1656.938193 2328 879883 0955554 0928878 0349802 -0026676 0928878 0982230 -0.025490

172 rows x 20 columns

In [28]: x['NtG_class']

5} 9.0
1 1.0
2 8.0
3 2.0
a 8.0
167 1.0
168 1.0
169 1.0
176 8.0
171 2.0
Name: NtG_class, Length: 172, dtype: float64
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In [29]:

In [30]:

In [31]:

In [32]:

In [33]:

In [34]:

In [35]:

In [36]:

#LR

print('Accuracy:’, accuracy_score(x[ 'NtG_class'].round(), x['NtG_predLR'].round()))
print('Precision:’, precision_score(x['NtG_class'].round(), x['NtG_predLR'].round()))
print('Recall:’, recall score(x[ 'NtG_class'].round(), x['NtG_predLR'].round()))
print('F1:', f1 score(x['NtG class'].round(), x['NtG_predLR'].round()))

Accuracy: ©.5813953488372093
Precision: ©.5867768595041323
Recall: ©.7634408602150538
F1: 0.6635514018691588

#LDA

print('Accuracy:’, accuracy_score(x[ 'NtG_class'].round(), x['NtG_predLDA'].round()))
print('Precision:", precision_score(x['NtG_class'].round(), x['NtG_predLDA'].round()))
print('Recall:’, recall score(x[ 'NtG_class'].round(), x['NtG_predLDA"].round()))
print('F1:', f1 score(x['NtG_class'].round(), x['NtG_predLDA"].round()))

Accuracy: ©.5872093023255814
Precision: @.5964912280701754
Recall: ©.7311827956989247
F1: 0.6570048309178744

#KNN

print(‘Accuracy:’, accuracy_score(x[ 'NtG_class'].round(), x['NtG_predknN'].round()))
print('Precision:", precision_score(x['NtG_class'].round(), x['NtG_predknN'].round()))
print('Recall:", recall score(x['NtG_class'].round(), x['NtG_predkNN'].round()))
print('F1:', f1_score(x[ 'NtG_class'].round(), x['NtG_predknN'].round()))

Accuracy: @.7325581395348837
Precision: ©.7326732673267327
Recall: @.7956989247311828
F1l: 0.7628865979381444

#DTC

print(‘Accuracy:’, accuracy score(x[ 'NtG_class'].round(), x['NtG_predDTC'].round()))
print('Precision:", precision_score(x['NtG_class'].round(), x['NtG_predDTC'].round()))
print('Recall:’, recall score(x[ 'NtG_class'].round(), x['NtG_predDTC'].round()))
print('F1:', f1_score(x['NtG_class'].round(), x['NtG_predDTC"].round()))

Accuracy: ©.95348837209302332
Precision: ©.967032967032967
Recall: ©.946236559139785
Fl: ©.9565217391304348

#NB

print('Accuracy: "', accuracy_score(x['NtG_class’].round(), x['NtG_prednB'].round()))
print('Precision:’, precision score(x['NtG_class'].round(), x['NtG_prednB'].round()))
print('Recall: ", recall score(x[ 'NtG_class'].round(), x['NtG_predNB'].round()))
print('F1:', f1_score(x['NtG_class’].round(), x[ 'NtG_predns’].round()))

Accuracy: ©.5988372093023255
Precision: ©.5967741935483871
Recall: ©.7956989247311828
Fl: 0.6820276497695852

#SVM

print('Accuracy: ", accuracy_score(x['NtG_class'].round(), x['NtG_predsvc'].round()))
print('Precision:’, precision_score(x['NtG_class'].round(), x['NtG_predSvC'].round()))
print('Recall:", recall score(x[ 'NtG_class'].round(), x['ntG_predsvC'].round()))
print('F1:', f1_score(x['NtG_class'].round(), x['NtG_predSvC'].round()))

Accuracy: 0.6104651162790697
Precision: @.5928571428571429
Recall: ©.8924731182795699
F1: ©.7124463519313304

#RF

print('Accuracy: ", accuracy_score(x['NtG_class'].round(), x['NtG_predRF'].round()))
print('Precision:’, precision_score(x['NtG_class'].round(), x['NtG_predRF'].round()))
print('Recall:", recall_score(x['NtG_class'].round(), x['NtG_predRF'].round()))
print('F1:', f1_score(x['NtG class'].round(), x['NtG_predRF'].round()))

Accuracy: 0.9825581395348837
Precision: ©.9891304347826086
Recall: 8.978494623655914

Fl: 0.9837837837837837
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