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Abstract 

 

A study of Machine Learning application on net-to-gross prediction using seismic 
horizons. Case Study: The Brent Group - Statfjord Field 

 

Khoirrashif Pratikna, The University of Stavanger 

Supervisor: Arild Buland 

 

As petroleum geosciences enter the era of big data, this field of study encompass 
difficult optimization and decision-making in real-world problems. The increasing number, 
difficulty, and scale of such specific problems has become too complicated for geoscientists to 
rely on a single discipline for effective solution. Machine Learning (ML) provides extensive 
capability to be the solution in this area.  

This thesis, as a part of ongoing research, focuses on the application of various ML 
algorithms in predicting the net to gross value of the Brent Group reservoir zone in the Statfjord 
Field. For this purpose, several objectives were defined. As the first fundamental step, features 
were generated directly from the TWT and amplitudes of the respective seismic horizons. 
Secondly, predictive models were built from both training and testing phase using the features. 
The final task was estimating and mapping the value of net to gross property of the pre-defined 
reservoir zone. Furthermore, classification task and sand thickness prediction were also 
included as additional comparisons to the main task. 

The results indicate outstanding performance demonstrated by Decision Tree and 
Random Forest algorithms despite the limitation on the dataset. Insufficient amount of data as 
well as data cleaning problems have been the main constraints in this study. This unarguably 
led to high variance in the data which yielded less accurate and less reliable prediction models.  

The ML clearly have potential to accomplish the defined task better once the obstacles 
are handled properly in the future studies. Some improvements such as better data cleaning 
process, more involvement of well logs data, AVO inversion analysis, and utilization of more 
advance algorithms are strongly suggested in order to boost the models’ performance. 
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1 Introduction 

Petroleum Geosciences, as well as many other fields, is a domain which encompasses difficult 
optimization and decision-making in real-world problems. As a result, integration, big-data 
handling, uncertainty, and risk management are considered as fundamental issues in petroleum 
geosciences. The increasing number, difficulty, and scale of such specific problems has become 
too complicated for geoscientists to rely on a single discipline for effective solution. 
Consequently, establishing new concepts intended to decent integration of disciplines (e.g., 
petroleum engineering, geology, and geophysics), fusing data, reducing risk, and handling 
uncertainty have become top priority tasks in this field of study (Cranganu et al., 2015). 

As petroleum geosciences enters the era of big data, machine learning (ML) provides extensive 
capability to be the solution in this area. Machine learning approaches are a set of algorithms 
which is possible to convert data to actionable intelligence. These techniques belong to a class 
of methods in which the solutions are principally derived from data instead of physics-based 
models (Nwachukwu, 2018).  

Recent works show how ML approaches have been employed as problem-solving tool in oil 
and gas industry. Among various ML algorithms, artificial neural network (ANN) and support 
vector machine (SVM) are the most preferred when dealing with geoscience problems (Lary 
et al., 2016). An example of implementation of ANN was to evaluate bottom hole pressure 
(BHP) in multi-phase annular flow while under balanced drilling (UBD) operations (Ashena et 
al., 2010). ANN was also used in drilling hydraulics simulations to predict hydraulic pressure 
losses (Fruhwirth et al., 2006), as well as in drilling optimization in terms of investigating the 
effects of vibration parameters on rate of penetration (ROP) (Elahifar et al., 2012), and also for 
permeability prediction (Naeeni et al., 2010).  

The SVM technique has also been considered as effective and accurate method with powerful 
prediction capability. This is confirmed by its potential to successfully estimate the lithofacies, 
and petrophysical properties such as porosity and permeability (Al-Anazi and Gates, 
2010a,b,c,d) 

1.1 Aim of the Study 
As a part of ongoing research, the aim of the study is to obtain a better understanding of how 
machine learning perform prediction on net-to-gross value of the oil-bearing reservoirs in the 
Brent Group based on the structure and amplitude derived from seismic horizons. 

1.2 Objectives 
The Objectives of the study are defined as follows: 

 Generating features from the respective horizons (TWT and amplitudes) 
 Building training and testing predictive models by applying a number of machine 

learning algorithms (e.g. SVM, Decision Tree, Random Forest, and etc.) 
 Estimation of net to gross property of the defined reservoir zone for the whole study 

area 
 Determining which features have the most significant impact as well as the best 

machine learning algorithm for this study case 
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2 The Statfjord Field 

Statfjord field is a producing oil field situated on the southwestern part of the Tampen Spur 
within the East Shetland Basin which is located in the 33/9 and 33/12 Norwegian sector (Fig. 
2.1). The field was discovered in 1974 and started producing in 1979. The Statfjord field is 
considered as the largest oil field in the Northern North field due to its hydrocarbon content 
area which extends for 24 km by 4 km (Roberts et al., 1987). 

The current owners of Statfjord field are Equinor Energy AS (44.37%, operator), Var Energi 
AS (21.37%), Spirit Energy Norway AS (19.77%), Spirit Energy Resources Limited (14.53%) 
(Norwegian Petroleum Directorate (NPD), 2020).   

 

Figure 2.1: Location of the Statfjord Field (modified from www.npd.no). 

http://www.npd.no/
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2.1 Structural settings 
The Statfjord field (Kirk, 1980) is located on the west border of the North Sea rift system in 
one part of a platform inside the East Shetland Basin (Gabrielsen, 1986; Gabrielsen et al., 1990) 
and approximately 220 kilometres northwest of Bergen (Fig. 2.2b). The East Shetland Basin is 
surrounded by several parts of the North Sea rift system such as The East Shetland Platform 
(south and west), the More Basin (north) and Tampen Spur (northeast) and the North Viking 
Graben (east) (Fig. 2.2a). The Statfjord is gently sloped toward the northwest (Fig. 2.3) and 
extends along the ridge of a trending fault block in NE-SW direction (Gibbons et al., 2003). 

 

Figure 2.2: (a) Regional profile across northern North Sea and the Statfjord Field based on 
the work by Odinsen et al., in press (b), (b) fault map of the North Sea rift system around the 
Statfjord Field and (c) schematic cross-section of the Statfjord Field. (modified from Fossen 

et al., 1998; Hesthammer et al., 1999; and Gibbons et al., 2003) 

There were at least two major rift events which occurred in the Statfjord field area after the 
Devonian thinning and regional stretching of the Caledonian crust (Hesthammer & Fossen, 
1999). The Permo-Triassic rift, the first phase, formed the Viking Graben (Badley et al., 1984, 
1988; Beach et al., 1987; Roberts et al., 1995). The second main rift phase (Brown, 1984; 
Thorne & Watts, 1989), which occurred in the latest middle Jurassic to earlier Cretaceous, 
developed a general extension in NW-SE direction (Roberts et al., 1990a,b). The Triassic and 
Jurassic reservoirs were deposited in a gradual rate as a result of relative sea level rise 
succeeding the second rift phase (Gibbons et al., 2003).     

The structure of the Statfjord field dominantly consists of two sections (Fig. 2.2c). First, a 
relatively undistorted main field with dipping strata towards W-NW direction, and the second 
one, a highly distorted east flank area which underwent multiple phases of gravitational 
collapse towards east direction. The Cretaceous base is generally outweighed by multiple cross 
faults which dipping steeply in NW-SE direction over the main field area. The strike-slip 
deformation structures, which were formed in Tertiary, are then recognizable not only in the 
northern and central part of the field, but also in the hanging wall to the primary boundary fault 
(Gibbons et al., 2003). 
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The rotational block slides penetrate the reservoir layers and dominate the east flank area. 
Multiple phases of gravity block sliding occurred were found to be correlated with the middle 
to late Jurassic rift. These occurrences were linked to the tectonic activity on regional scale 
(Gibbons et al., 2003). 

The rotated fault blocks along both margins of the Viking Graben, which formed during the 
rifting in Late Jurassic, are the most common trap for hydrocarbon in the Statfjord field area 
(Faleide et al., 2010). 

2.2 Stratigraphy of the Statfjord field reservoir 
The Brent group (Middle Jurassic) and the Statfjord formation (Upper Triassic-Lower Jurassic) 
(Fig. 2.3) are the fundamental reservoir formations in the Statfjord field with good to excellent 
reservoir properties (porosities range between 20-30%, and permeabilities in darcies) (Gibbons 
et al., 2003; Kirk, 1980). Hydrocarbon is also produced from the Cook formation from the 
Dunlin group (NPD, 2020). These reservoirs in general are found at a ranging depth from 2,500 
to 3,000 meters and lie not only within an extensive fault blocks dipped westward, but also in 
some of the smaller blocks in the eastern flank area (NPD, 2020).  

A general overview about the reservoir formations of the Statfjord field will be discussed in 
the section below. 

 

Figure 2.3: Stratigraphic column of the Statfjord Field (modified from Deegan & Scull, 
1977; Vollset & Dore, 1984; and Hesthammer et al.,1999). The main reservoirs are 

highlighted (red). 
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2.2.1 Hegre group 
The Hegre group was deposited during the Triassic and is confirmed to be the oldest strata 
drilled in the Statfjord field area at depth around 4,572 m (Kirk, 1980). The lithology of the 
group is characterized by interbedded intervals of sandstone, claystone, and shale correlated 
with primarily continental sandstone or shale/claystone sequences (Hesthammer et al., 1999). 
The calcaerous cement and clay matrix within the lithology lead to the generally poor reservoir 
quality of this group (Kirk, 1980). 

2.2.2 Statfjord formation 
The Statfjord formation was deposited from the upper Triassic (Rhaetian) to the lower Jurassic 
(Sinemurian) and appears to unconformably overlie the Triassic Hegre group on the regional 
scale (Kirk, 1980). The transition from the Hegre group and to the Statfjord formation is unclear 
and difficult to be interpreted (Kirk, 1980; Gibbons et al., 2003). This is caused by two aspects 
(Kirk, 1980). First, the insufficient occurrence of flora and fauna, and second, the poor log 
correlation due to indistinguishable changes in lithology. 

The Statfjord formation contains interlayered sandstone/siltstone and shale, and has thickness 
range between 150 to 300 meters in the Statfjord field. Based on the depositional environment 
the formation is differentiated into three members, namely the Raude and Eirikkson member 
which represent the fluvial deposits, and the Nansen member which is interpreted as a 
transgressive marine sheet sand overlaying the alluvial flood basin (Hesthammer et al., 1999) 

2.2.3 Dunlin group 
The Dunlin group, which was deposited during the Lower Jurassic (late Sinemurian) to the 
Upper Jurassic (Bajocian), contains four formations. The Amundsen (oldest) and the Burton 
formation are characterized by shallow marine shale, claystone and siltstone. The Cook 
formation consists of silt and tidal-influenced shallow marine sandstones. The Drake formation 
(youngest) comprises shallow marine shale and siltstone. The thickness of the Dunlin group 
varies from 230 to 260 meters (Hesthammer et al., 1999). 

2.2.4 Brent group 
The Brent group has thickness between 180-250 meters. The formation was deposited during 
the Middle Jurassic (early Bajocian-mid-Bathonian), and is divided into five formations, 
namely the Broom, Rannoch, Etive, Ness, and Tarbert formations. The lithology of the group 
are mainly sandstone, siltstone, shale, and coal deposits from a prograding delta system toward 
the north direction. The Broom formation, the oldest unit, is characterized by storm deposits 
and small distal bar build-ups overlaying a shallow marine platform. The Rannoch formation 
is dominantly composed by sandstone deposits from pro-delta, delta front, and ebb-tidal 
environments. The Etive formation has coarser and cleaner sandstone. This is due to its 
depositional environment were in tidal inlet, upper shoreface foreshore, and lagoon barrier 
settings. The Ness formation was deposited in a delta plain setting. Consequently, this unit 
contains sandy channel deposits, shale, and coal. The Tarbert formation, the youngest unit in 
the Brent group, comprises shallow marine sands (Hesthammer et al., 1999). 
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3 Machine Learning 

The terminology “machine learning” refers to the study that involves statistical approaches to 

give computer systems the ability to learn from data without being explicitly programmed. In 
another explanation, machine learning can also be defined as the study of software artifacts 
which utilizes past experience in order to generate future decisions. The main purpose of 
machine learning is to automate decision making processes by generalizing the prior 
experiences. Machine learning needs a collection of data, which often called ”training set”, to 

be trained into the algorithms in order to obtain experience. The performance of the “trained” 

algorithms are then evaluated using a set of data called “test set”. One basic example of 

machine learning application is spam filtering. The spam filters learn to differentiate and 
classify new messages by recognizing thousands of emails that have been previously marked 
as either spam or ham. 

 

Figure 3.1: Machine learning types and algorithms (modified from www.mathworks.com) 

 

According to the types of problems encountered, there are at least two types of learning are 
identified (Fig.3.1.):  

Supervised Learning 

In supervised learning problems, the user provides pairs of inputs as well as the desired outputs 
(labels) to an algorithm, and let the algorithm finds a way to generate the desired output given 
an example. There are two main tasks in supervised learning, namely classification and 
regression. 
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In classification problems the algorithms are required to predict discrete values for the outputs 
from one or more predictors. The algorithms must then classify the new inputs or observations 
into the most probable label or category. As for regression tasks, the algorithms are required to 
predict the value of a continuous output. 

Examples of supervised learning algorithms are including: 

1. Support Vector Machine (SVM) 
2. Naïve Bayes 
3. Nearest Neighbour 
4. Decision Tree (DT) 
5. Ensemble Methods 
6. Neural Networks 
7. Random Forest 

Unsupervised Learning 

In unsupervised learning, an algorithm does not learn from labelled data. In this setting, only 
the input data is known while there is no defined output. The unsupervised learning algorithms 
will attempt to infer patterns within the data.  

The most common task for unsupervised learning algorithms is to discover groups within the 
training set based on their similarities among each other, or often called clustering. 

Several algorithms in unsupervised learning: 

1. K-means 
2. Hierarchical Clustering 
3. Fuzzy c-means 
4. Self-organizing Maps (SOM)  

 

3.1 Support Vector Machine/Regressor (SVM/SVR) 
The Support Vector Machine (SVM) (Fig.3.2.) is an algorithm which originally was built to 
solve classification problem, while the counterpart, SVR, is basically a modified version of 
SVM that capable to predict continuous value for regression problem by using kernel functions 
(Vapnik, 1995). SVM classifies data maximizing the distance between the separating hyperlane 
(decision boundary), or so-called margin, and the training samples that are closest to this 
hyperlane or support vectors.   
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Figure 3.2: Support vector machine (SVM) classifier 

Maximizing the margin in the decision boundaries will make the generalization error lower, 
however, models with small margins are more likely to overfitting. The following section 
explains about margin maximization process. 

First, the positive and negative hyperlanes that are parallel to the decision boundary will be 
expressed as follows: 

 𝑤0 + 𝒘𝑇𝒙𝑝𝑜𝑠 = 1 (1) 
 

 𝑤0 + 𝒘𝑇𝒙𝑛𝑒𝑔 = −1 (2) 
From the equations above 𝑤 represents a set of weights, 𝑥 are the input values, while 𝒘 and 𝒙 
represent the dot products of 𝑤 and 𝑥. If the linear equations (1) and (2) are subtracted from 
each other, we will obtain: 

 𝒘𝑇(𝒙𝑝𝑜𝑠 − 𝒙𝑛𝑒𝑔) = 2 (3) 
The equation (3) is the normalized by the length of the vector 𝑤, which is defined as: 

 

||𝒘|| = √∑ 𝑤𝑗
2

𝑚

𝑗=1

  (4) 

In the end, we end up with the following equation: 

 𝒘𝑇(𝒙𝑝𝑜𝑠 − 𝒙𝑛𝑒𝑔)

||𝒘||
=

2

||𝒘||
 (5) 

The left side of the equation (4) represents the distance between the positive and negative 
hyperplane or the margin we want to maximize. By maximizing  2

||𝒘||
 , the objective function 

of the SVM now becomes the maximization of this margin if the samples are classified 
correctly under these conditions: 

 𝑤0 + 𝒘𝑇𝒙(𝒊) ≥ 1 𝑖𝑓 𝑦(𝑖) = 1 (6) 
 𝑤0 + 𝒘𝑇𝒙(𝒊) < −1 𝑖𝑓 𝑦(𝑖) = −1  
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The 𝑥(𝑖) from the equations are the training samples, while 𝑦(𝑖) are the predicted class labels. 
These constraints basically mean that all negative samples should be positioned on one side of 
the negative hyperplanes, while all positives samples should be positioned behind the positive 
hyperlane. The equations above can also simply be written as: 

 𝑦(𝑖)(𝑤0 + 𝒘𝑇𝒙(𝒊)) ≥ 1∀𝑖  (7) 
 

The SVM algorithm works best if the data is linearly separable. However, when dealing with 
nonlinearly separable case a parameter called the slack variable (𝜀) (Vapnik, 1995) needs to be 
included in the algorithm and which then leads to what it is called soft-margin classification. 
The argument for presenting the slack variable is because the linear constraints need to be 
adjusted for nonlinearly separable data to allow convergence of the optimization when the 
missclassifications are present. Consequently, the linear constraints will be conditioned as 
follows: 

 𝒘𝑇𝒙(𝒊) ≥ 1 𝑖𝑓 𝑦(𝑖) = 1- 𝜀(𝑖) (8) 
 𝒘𝑇𝒙(𝒊) < −1 𝑖𝑓 𝑦(𝑖) = 1+ 𝜀(𝑖)  

As a result, the new objective to be minimized (subject to the prior constraints) is: 

 1

2
 ||𝒘||2 + 𝐶 (∑ 𝜀(𝑖)

𝑖

) (9) 

By using the variable C, the penalty for misclassification can now be controlled. The larger the 
values of C, the larger the error penalties will be, and so is the opposite. The parameter C is 
then used to control the width of the margin (Fig.3.3). The increasing values of C correspond 
to the increasing bias and decrease the variance of the model. 

 

Figure 3.3: The influence of parameter C on SVM 

 

3.2 Decision Tree 
The Decision Tree (DT) belongs to the category of supervised learning algorithm which works 
for both continuous as well as categorical output variables. This algorithm is capable of 
handling classification and regression tasks. The DT builds classification and regression 
models in the structure of a tree (Fig.3.4) in order to either categorize (for classification) or to 
predict (for regression) data to produce meaningful outcome.  
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Figure 3.4: The Generic structure of DT 

These are some basic terminology used in DT to be familiarized with: 

 Root Node: A node which represents the total population or sample and later on will 
be divided into two or more homogeneous sets 

 Splitting: A process of dividing a node into two or more sub-nodes 
 Decision Node: A node which decides if a sub-node splits into further sub-nodes  
 Leaf/Terminal Node: Nodes which do not split  
 Pruning: A process of removing sub-nodes of a decision node, or often considered as 

the opposite process of splitting 
 Branch/Sub-Tree: A sub section of the entire tree 
 Parent and Child Node: Parent node is a node which is divided into sub-nodes whereas 

sub-nodes are the child of parent node 

A decision tree generates estimation by basically asking a series of questions to the data which 
all are in a True/False form. Each True/False answer ends with separate branches and it will 
eventually lead to a prediction or leaf node no matter the answers to the questions.  

In a simple manner, the steps to solve a problem using DT are mentioned as follows: 

i. Put the best attribute of the dataset at the root node 
ii. Split the dataset into subsets such that each subset contains the homogenous data, or in 

other words it contains having same value for an attribute 
iii. Repeat step i and ii on each subset until leaf nodes are found in all the branches of the 

tree 

In a regression problem, DT normally use mean squared error (MSE) to decide to split a node 
in two or more sub-nodes. To make it easier to understand, consider building a binary tree 
decision by: 

i. Pick a variable and its value to split on such that two groups are as different from each 
other as possible 

ii. For each group, the MSE will be calculated separately 
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iii. Calculate the average of the MSE between the two groups 
iv. Repeat step i to iii for other variables 
v. Compare the average MSE among the variables to determine the best split. The best 

split should be the one with the smallest MSE 

Finally, the DT produces predictions by obtaining the average of the value of the dependant 
variable in the terminal or leaf node. This is done after running the dataset through the entire 
tree assessing all the questions until it reaches the leaf node. One thing to be noted is that the 
DT is unable to make accurate predictions if the ‘test data’ are unrelated with the trained data. 

Or in other word, it is unable to extrapolate to any kind of data it has not seen before. 

Some advantages of DT are: 

 Works well for non-linear dataset 
 Easy to understand and interpret 
 Less data preparation required 

 

While some drawbacks are: 

 Prone to overfit 
 Cannot extrapolate 
 Can be unstable when the data variance is big 

3.3 Random Forests 
The Random Forests (RF) algorithm is considered as one of ensemble learning methods and is 
confirmed to be effective for both classification and regression especially when dealing with 
large datasets. This algorithm utilizes decision trees (DT) as the building block. The rationale 
behind RF is because DT tends to overfit the training data.  

 

Figure 3.5: Illustration of RF algorithm structure 

 

RF, which essentially consist of many trees (Fig. 3.5.), will overfit in many different ways on 
each tree. In order to solve this problem, RF reduce the amount of overfitting by making 
average of their results. To apply this procedure, each tree in RF should be able to make 
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predictions decently and also not similar to other trees. The RF algorithm is simply comprised 
as follows: 

i. Provide a random bootstrap sample of n size which should be selected randomly from 
the training set (with replacement) 

ii. Generate a decision tree out of the bootstrap sample, and each node should: 
a. Select d number of features (without replacement) 
b. Separate the node based on the feature that has the best objective function (e.g.  

by maximizing the information gain) 
iii. Do iterations for procedure i and ii for k times 
iv. Aggregate the prediction by each tree to assign the class label by majority vote 

The idea behind this algorithm as well as other ensemble methods is to merge weak predictors 
or learners to build a more robust model, a strong predictor or learner. The strong predictor will 
have a better generalization error and have lower tendency to overfit. 

3.4 Previous work on Machine Learning application in Petroleum Geosciences 
Both SVM and ANN are the two commonly used algorithms to solve geoscience problems. 
Some examples of their implementation are given below: 

Naeeni et al. (2010) utilized the Feed-forward artificial neural networks (FF-ANN) with 
backpropagation to predict the permeability of reservoirs. The parameters that were used in 
this study comprised of depth, true conductivity (CT), sonic travel time (DT), neutron porosity 
(NPHI), bulk density (RHOB), spectral gamma ray (SGR), northing of well, easting of well, 
water saturation, and flow zone index (FZI). There were three hidden layers with 13, 10, and 1 
neurons included in the networks. In this algorithm, the well log data and another parameter 
called rock quality index (RQI) were set as the input, while the permeability as the output. Prior 
to this procedure, different hydraulic flow units (HFU) were determined in order to determine 
the FZI values and, later on, permeability of various rock types. The final results showed the 
FF-ANN algorithm presented convincing performance in predicting permeability values of 
uncored wells. This was supported by the Pearson’s correlation coefficient of 0.85 (from range 
between -1 to 1) in the validation phase. 

Al-Anazi and Gates (2010a,b,c,d) applied SVM and compared its potential with back 
propagation neural network (BPPN) to predict the Poisson’s Ratio and Young’s Modulus of 

reservoir rock. In general, even though the neural network algorithms are capable of resolving 
nonlinear problem well, however, they need extensive training to enhance the network 
structure. One more issue when conducting the neural network algorithms is that the regression 
model results may overfit the unseen data. On the other hand, SVM successfully generalize 
and converge a global optimal solution. These studies included various parameters such as 
core-derived porosity, minimum horizontal stress, pore pressure, overburden stress, bulk 
density, compressional wave velocity (Vp), and shear wave velocity (Vs). To prevent 
overfitting, cross-validation was done ten times to obtain the optimal parameter to manage the 
trade-off between the model bias and variance. Eventually, the results demonstrated that SVM 
was better both in learning and prediction capabilities compared to BPPN. SVM produced a 
superior Poisson’s ratio prediction, and also showed a faster decrease of error prediction as the 

training data developed.  



 

22 
 

4 Data 

For this study, the data is mainly focused on multiple 3D seismic cubes and 172 wells which 
is provided by Equinor ASA. The details will be presented briefly below. 

4.1 Seismic 
The seismic data used in this study, which is named ST9703RZ16, was acquired in 1997 by 
WesternGeco and reprocessed in 2016-2017. This data covers the Statfjord main field and the 
North flank and contains multiple partial stacks (near, mid, and far stacks). The seismic survey 
adopted SEG reverse polarity, which means an increase in acoustic impedance corresponds to 
a negative amplitude (red-trough, whilst blue-peak indicates positive amplitude). The summary 
of the seismic data will be provided in Table 1 and Table 2 below. 

Table 1. Provided seismic data summary 

 

Table 2. Partial stacks of the seismic data 

 

 

4.2 Well 
Initially, there are hundreds of wells were provided, however only 172 wells are eligible to be 
used in this study due to several conditions which will be explained in Section 5.1. Wireline 
logs such as gamma ray (GR), spontaneous potential (SP), density (RHOB), neutron (NEU), 
resistivity, and sonic logs are also included. 

4.3 Horizon 
In addition to the seismic and well data, some of the key interpreted horizons are also provided 
at the reservoir interval in the study area such as: 

 STATOIL+ST03M01_ffobc+Balder_Top+Time+2007+ob_despike_int_xyt.dat - Top 
Balder Fm. horizon 

 evde_BCU_AMAP2018_time_structure_xyt.dat - BCU horizon 

 

  

Seismic Survey 2D/3D Acquisition Year Coordinate Reference System Latest processing Other Notes

WG_ST9703 3D 1997 ST_ED50_UTM31N_P23031_T1133 2016

Single-component deghosthing, 

PSTM, PSDM, 

partial stacks, pre-stacks gathers
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5 Thesis Workflow 

 

Figure 5.1: General workflow for this study 

Several methods were carried out in this study. Figure 5.1 shows a generic workflow which 
contains an overview of the methods that were implemented in this study. The initial procedure 
was sorting out the horizons and wells to make them eligible for further steps in the study. 
Features were then extracted from the sorted data and later on followed by assigning label or 
target to be predicted. The results of the previous steps provided the optimal input for the next 
step, which was generating and training the Machine Learning models. Thereafter, the models 
were used to predict the assigned label or target, and finally the performance evaluation was 
measured. 

5.1 Data Sorting 
Data sorting is a fundamental step prior to performing ML algorithms. This procedure was 
meant to specify the scope of the study and to make the data fit for the features extraction. 

 

Figure 5.2: Key surface picks divided the three zones 
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Initially, in this study, the Statfjord field seismic data was divided into three zones (Fig.5.2) 
and only one selected zone that will continue to the next processes. The three zones were 
defined as follows: 

 Zone 1: the area between the BCU and the Top Cook Fm. 
 Zone 2: the area between the Top Cook Fm. and the Top Statfjord Fm. 
 Zone 3: the area between the Top Statfjord Fm. and the end of the wells 

Considering the amount of data needed for the next procedures, the selected zone should have 
the most penetrated wells among the others. Therefore, Zone 1 was chosen since it has 172 
wells penetrated both the BCU and the Top Cook Fm.  

5.2  Label Selection 
In ML perspective, labels are simply defined as the variables that one is trying to predict or 
forecast. In this study, net-to-gross was selected as the label.  

The net-to-gross has been a key factor when calculating original oil in place (OOIP) 
volumetrics. In other words, the net-to-gross indicates the producible hydrocarbon zones within 
the reservoir for further exploitation. The net-to-gross is simply explained as the total amount 
of sand divided by the total thickness of the reservoir interval. The outcome of the net-to-gross 
calculation is a fraction ranges from 0 to 1, which 0 represents non-producible reservoir and 1 
represents potentially whole producible reservoir intervals. In this study, the practical steps of 
calculating the net-to-gross is shown in Figure 5.3. The whole processes of the net-to-gross 
calculation were computed in Python using several libraries such as Pandas (dataframe 
manipulation), NumPy (numerical operation), Glob (file and folder reader), and Lasio (well 
files reader). 

 

 

Figure 5.3: Net-to-gross calculation steps 

The first step in calculating net-to-gross was defining the reservoir zone. In this case, the 
selected zone was Zone 1 which is the area between the BCU and the Top Cook Fm. The zone 
boundaries were defined by the surface picks obtained from Petrel. However, due to the 
unavailability of the Top Cook Fm surface picks in the data, the Top Rannoch was chosen 
instead.  
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The next following step was determining the ‘sand’ and ‘shale’ based on the Gamma Ray (GR) 

level. In this case, the sand was defined by lower GR level (GR<70) while shale was defined 
by higher GR level (GR>= 70). Then, the thickness of sand within the reservoir zone was 
calculated according to the prior definition. This was done for all wells. 

Subsequently, the sand thickness was then divided by the total thickness of the reservoir zone 
to obtain the net-to-gross value. And this was also done for all the wells. This process yielded 
one single net-to-gross value for each well, and as a consequence, there were 172 net-to-gross 
values acquired for all the wells.  

5.3 Features Extraction 
In ML terminology, features are defined as measurable properties or variables of one object. 
Features are fundamental building blocks of the datasets which later on will be used as input 
in the system. Selecting and understanding the features are very important since they have a 
major impact on the quality of the insights one will gain when employing ML.   

After the data sorting and the label selection, features extraction was performed to obtain the 
appropriate variables which contain useful information and also represent the condition of the 
real data. The overall workflow of this procedure is shown in Fig.5.4.  

 

Figure 5.4: Workflow for features extraction 

There were four main features included for the initial round. These features are quantitative 
data which initially were extracted from Petrel and then were processed in Python using Pandas 
and NumPy libraries. The features which shown in Figure 5.5 are: 

 Top Balder TWT (two-way time) 
 BCU TWT (two-way time) 
 BCU RMS near amplitude 
 BCU RMS far amplitude  

The seismic TWT for BCU and Top Balder Fm. were included in the features since they 
correspond to both the depth and velocity of the two formations. The root mean square (RMS) 
amplitude was also used due to its capability to produce hydrocarbon indicators by directly 
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measure the reflectivity in zone of interest. Therefore, utilizing these variables as features will 
hopefully be a good combination when predicting the defined label. 

 

Figure 5.5: Maps of TWT and RMS amplitudes of the study area 

As for the second round, there are four more features were added. These additional features 
were derived from the RMS amplitudes from the initial features using basic computation in 
Python. In ML, this process is called feature engineering. Feature engineering is a process of 
generating new features from the existing ones. The purpose feature engineering is mainly to 
improve the performance of ML models as well as to increase the predictive power of ML 
algorithms. The additional features are: 

 Gradient: RMS far amplitude - RMS near amplitude 
 AVO Product: RMS near amplitude * Gradient 
 AVO Summation: RMS near amplitude + Gradient 
 AVO Difference: RMS neat amplitude - Gradient 

The AVO attributes of the study area are depicted in Figure 5.6. The uses of seismic amplitude 
variation with offset (AVO) attributes are widely spread among geoscientists. The AVO was 
included in the features since it has shown its capabilities in predicting and mapping 
hydrocarbons (Fatti et al., 1994; Ostrander, 1984). A detailed explanation about AVO will not 
be covered in this study. 
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Figure 5.6: Maps of AVO attributes in the study area 

The final step in features extraction was combining all data needed including wells name, wells 
coordinates (Easting and Northing) and all features in one data table which was accomplished 
in Python (Fig.5.7). This table would then be the input for generating the ML models. 

 

Figure 5.7: Table containing all data for generating the ML models 
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5.4 ML Models Generation and Training 
Defining the type of task is important since this will determine which algorithms to use for 
generating the models as well as their performance evaluation techniques. As mentioned in 
Chapter 1, the objective of this study is to predict the determined label, which is the net-to-
gross for the whole study area. Therefore, the approach of this task from ML perspective should 
be regression problem since the expected results are the predicted continuous net-to-gross 
values for the whole area. The whole process in this procedure was done in Python using scikit-
learn library. 

The general workflow of how the ML models were generated and trained are shown in Figure 
5.8 below: 

 

 

Figure 5.8: ML models generation and training processes 

In this study, the whole dataset consists of 172 data points generated from the horizons and 
wells. The initial step in this procedure was to split the entire available dataset into two groups 
namely the training set and test set. 

The next step was to develop ML models from the training set using various basic regression 
algorithms such as: 

 Support Vector Regressor (SVR) 
 Decision Tree Regressor (DTR) 
 Random Forest Regressor (RFR) 

And also some additional regressor such as:  

 Linear Support Vector Regressor (Linear SVR) 
 Gaussian Process Regressor (GPR) 
 K-Nearest Neighbor Regressor (KNN) 
 Stochastic Gradient Descent Regressor (SGDR) 
 Gradient Boosting Regressor (GBR) 

AutoML was also involved when developing the ML models. AutoML is basically an 
automatic process of applying ML to the dataset. The purpose of deploying AutoML is to allow 
non-experts to produce simpler and faster solutions and models. AutoML can automate several 
processes in ML including: 

 Data preparation 
 Feature selection 
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 Model selection 
 Parameter optimization 

In this study, this was done by using TPOT library which is built on top of scikit-learn library 
in Python. TPOT uses genetic programming in order to optimize ML pipelines by exploring 
thousands of possibilities to bring out the best one for the dataset. Figure 5.9 below illustrates 
how TPOT automates typical processes in ML. 

 

Figure 5.9: Automated stages in typical ML processes by TPOT 

In order to evaluate the performance, the output models from each of the algorithms were then 
be validated with the test set by calculating the Cross Validation (CV). Basically, the purpose 
of CV is to evaluate the ability of the models to estimate new dataset in order to avoid 
overfitting or selection bias. Also, CV is expected to give an overview on how the models will 
generalize the unknown dataset, for instance from a real problem.  

A basic CV technique that is commonly used is the k-fold CV (Fig 5.10) which was calculated 
with procedures defined as follows: 

i. Split the training set into k smaller sets 
ii. For each k folds, train the models using k-1 of the folds as training data and validate the 

resulting models on the remaining part of the data by calculating the performance 
measure (such as R2 for regression) 

iii. Compute the average of the performance measure from all the k-folds as the final result 
of the CV 

 

 

Figure 5.10: Illustration of k-fold cross validation (modified from scikit-learn.org) 
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5.5 Label Prediction 
This procedure contains the execution of the net-to-gross prediction for the whole area by using 
the resulting models after they were both trained and evaluated. This step was done using scikit-
learn library in Python. 

5.6 Performance Evaluation 
It is important to evaluate the performance of the ML models in order to know how close the 
prediction to the real values. In this study, the model performance is measured by correlation 
of determination or often denoted as R2, and statistical errors such as root mean squared error 
(RMSE) and mean absolute error (MAE).  

1. R2 – A direct indicator of correlation between predictions and true values. For the R2, 
the best possible value is 1.0 and it can also be negative if the model is arbitrarily worse. 
In general, the higher value of R2 indicates the better the model fits the real data. It can 
be computed by: 

   
  

𝑅2 = 1 − 
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 −  𝑦�̅�)2𝑛

𝑖=1

 (14) 
 

 

   
Where �̂�𝑖 is the predicted value of the i-th sample, 𝑦𝑖 is the true value, and n is total 
number of samples 
 

2. RMSE – It indicates on how much each predicted values deviate from its true value. 
The best value of RMSE is 0 which means a perfect estimation. It is expressed by: 

 
𝑅𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − �̂�𝑖 )2

𝑛

𝑖=1

 (15) 

 

3. MAE – It presents a risk metric which corresponds to the predicted value of the absolute 
error loss. The best value of MAE is 0 which indicates a perfect prediction result. The 
MAE is defined as: 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (16) 
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6 Results and Discussion 

There are eight ML algorithms were deployed and compared in order to predict the NtG values 
for this study. They are Linear Support Vector Regressor (Linear SVR), Gaussian Process 
Regressor (GPR), Support Vector Regressor (SVR), K-Nearest Neighbor Regressor (KNN), 
Decision Trees Regressor (DTR), Random Forest Regressor (RFR), Stochastic Gradient 
Descent Regressor (SGDR), and Gradient Boosting Regressor (GBR). Also, there is one 
additional result which was generated from AutoML. The predicted net-to-gross values were 
then compared with the true net-to-gross which consist of 172 data points and were obtained 
from wells. The mean and the standard deviation of the true net-to-gross value is around 0.49 
and 0.22 respectively with value distribution as depicted in Figure 6.1. In addition, in order to 
acquire more insight on how the ML approach performs in this study, the net-to-gross 
classification task and prediction of the sand thickness are also provided in this chapter to be 
compared with the main task (net-to-gross prediction). One important thing to note is that these 
two additional tasks were performed using eight features and the AutoML was not involved. 

 

Figure 6.1: The distribution of the true value of net-to-gross from wells 

6.1 Net-to-gross Prediction  
6.1.1 Training and test set performance 
Prior to applying the ML models into the real data (whole study area), the models were tested. 
The training set comprises 90% while the test set is 10% from the initial dataset (172 data 
points). Then k-fold cross validation (CV) was calculated to evaluate the performance of the 
models. Table 3 and Table 4 show the CV results when four and eight features were included 
in the models based on their R2 score. 

Table 3. K-fold CV results of the models when using 4 features   

 

 

Table 4. K-fold CV results of the models when using 8 features   

 

 

Linear SVR GPR SVR KNN DTR RFR SGDR GBR

R2 0.15 0.07 0.28 0.12 0.88 0.88 0.14 0.12
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In general, the CV results show very low R2 scores for most algorithms which range around 
0.06-0.15 when four features were included, and the number added features does not have 
significant impact to the performance apparently. The SVR algorithm initially shows a 
moderately low index 0.34, however, the score decreases to 0.28 as more features were added. 
Among these algorithms, only DTR and RFR show an opposite trend. The performance indices 
of both algorithms are much higher compared to the rest, and these trends are improved when 
eight features were involved. In the end of the training and test stage, the R2 score of both 
algorithms reach 0.88. 

6.1.2 Prediction results using four features 
This section examines the results when applying four features namely Top Balder TWT, BCU 
TWT, BCU RMS near, and BCU RMS far into the algorithms. Figure 6.2 below presents the 
maps of predicted net-to-gross values for the whole area of study plotted by their respective 
coordinates (Eastings and Northings). Also Figure 6.3 depicts the distribution of predicted net-
to-gross values in histograms for each algorithms. 

 

 

Figure 6.2: Maps of the predicted net-to-gross values for the whole study area for each ML 
algorithms using 4 features. Wells location are represented by dots 
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Figure 6.3: The distribution of the predicted net-to-gross values for each algorithm using 4 
features 

As shown in both figures above, the ML algorithms produced considerably different results of 
predicted net-to-gross among each other. In addition, Table 5 shows how the mean and the 
standard deviation of the prediction results differ for each algorithm. Most algorithms have the 
predicted net-to-gross mean around 0.4, however algorithms such as Linear SVR, and GPR 
have mean around 0.2. The SGDR algorithm has even lower predicted net-to-gross mean. The 
AutoML unexpectedly only yielded two values of the predicted net-to-gross. Another 
important thing to highlight is that apparently some algorithms such as Linear SVR, GPR, 
SVR, and SGDR have negative values on the predicted net-to-gross, which is impossible in 
geological manner (Fig.6.2 and Fig. 6.3). 

Table 5. Mean and standard deviation of the predicted NtG using 4 features 

 

6.1.3 Prediction results using eight features 
This section presents the predicted net-to-gross results when four additional features were 
added into the algorithms. The additional four features are AVO gradient, AVO product 
(intercept * gradient), AVO summation (intercept + gradient), and AVO difference (intercept-
gradient). Both Figure 6.4 and Figure 6.5 display the maps of the predicted net-to-gross values 
in the whole area and the distribution of the predicted net-to-gross values respectively. 

Linear SVR GPR SVR KNN DTR RFR SGDR GBR AutoML

Mean 0.22 0.26 0.44 0.46 0.45 0.49 0.14 0.56 0.41

St.Dev 0.29 0.23 0.19 0.07 0.23 0.18 0.26 0.18 0.05
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Figure 6.4: Maps of the predicted net-to-gross values for the whole study area for each ML 
algorithms using 8 features. Wells location are represented by dots 

 

Figure 6.5: The distribution of the predicted net-to-gross values for each algorithm using 8 
features 
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As seen in both Figure 6.4 and Figure 6.5 that the obtained results are almost identical with the 
previous section. The mean and the standard deviation shown in Table 6 are also quite similar 
with Table 5. The mean of the predicted net-to-gross is around 0.4 for the KNN, DTR, RFR, 
and AutoML. The Linear SVR, GPR, SVR, and SGDR are still having negative values on the 
prediction. However, there is one difference to note is that after including the additional 
features, the predicted values generated from AutoML have a better distribution. 

Table 6. Mean and standard deviation of the predicted NtG using 8 features 

 

6.1.4 Performance evaluation 
These performance indices were basically calculated by the difference between the true net-to-
gross values or the label and the predicted net-to-gross which were obtained from the ML 
models. Both Table 7 and Table 8 below present the performance indices for the prediction 
when using four and eight features respectively. 

Table 7. Performance index of prediction when using 4 features 

 

Table 8. Performance index of prediction when using 8 features 

 

According to both tables above, it can be seen that the values of MAE are relatively similar for 
most of the algorithms when using either four or eight features. The value of MAE ranges 
between 0.12-0.19 in most models. The RMSE also does not show significant changes for 
almost all models when the number of features were increased. However, the DTR and the 
RFR algorithms have different trends. Both algorithms have significantly lower MAE and 
RMSE errors among the others. And the errors are decreasing as the additional features were 
included.  

Models generated by Linear SVR, GPR, KNN, SGDR and AutoML have considerably low R2 
values either when four or eight features were involved. The models produced by SVR and 
GBR also have moderately low value of R2, and this does not change when more features were 
added. In contrast, the DTR and RFR models have particularly higher value of R2 among the 
others. And these numbers increase quite significantly as more features were included in the 
models. The R2 value of the DTR model rises from 0.59 to 0.85, while the R2 value of the 
RFR model increases from 0.61 to 0.86. 

6.1.5 Features evaluation 
The features need to be evaluated in order to find out which features are the most relevant to 
our models. One important thing to note is that irrelevant features can negatively impact the 
performance of the model. One way to do this is by showing the correlation matrix. The 
correlation matrix is based on Pearson’s correlation coefficient. The values ranges between -1 
to, where 1 is positive linear correlation, 0 is no linear correlation, and -1 is total negative linear 

Linear SVR GPR SVR KNN DTR RFR SGDR GBR AutoML

Mean 0.21 0.24 0.56 0.44 0.47 0.49 0.13 0.56 0.47

St.Dev 0.29 0.24 0.26 0.07 0.25 0.19 0.26 0.16 0.03

Linear SVR GPR SVR KNN DTR RFR SGDR GBR AutoML

MAE 0.18 0.18 0.15 0.17 0.06 0.06 0.19 0.13 0.17

RMSE 0.22 0.21 0.18 0.19 0.14 0.14 0.22 0.16 0.21

R2 0.06 0.08 0.33 0.14 0.59 0.61 -0.004 0.47 0.12

Linear SVR GPR SVR KNN DTR RFR SGDR GBR AutoML

MAE 0.18 0.18 0.16 0.17 0.03 0.03 0.19 0.12 0.18

RMSE 0.22 0.21 0.19 0.19 0.09 0.08 0.22 0.16 0.21

R2 0.07 0.08 0.26 0.14 0.85 0.86 -0.015 0.49 0.08
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correlation. Figure 6.5 shows how each features and label (net-to-gross) are correlated among 
each other. According to the correlation matrix map, it can be seen that most of the features 
have no linear correlation with the label which is the net-to-gross. This is shown by the 
correlation values are close to zero for most features. However, both the BCU TWT and the 
Top Balder TWT show a little negative correlation to the net-to-gross with -0.26 and -0.15 
respectively.   

 

Figure 6.6: Features correlation matrix 

Linear regression was also used to confirm the relation between the features and the label. This 
also gives a rough idea on how well the label when predicted with a simple regression line. 
Figure 6.7 presents the applied linear regression baseline on each AVO attributes – net-to-gross 
scatter plots. As shown in the picture above, the AVO attributes and the net-to-gross scatter 
plots have random values and so many outliers which cannot be fitted with a simple linear line. 
The regression index in Table 9 shows constant errors and significantly low values of R2 for 
all AVO attributes.  
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Figure 6.7: Linear regression line (red line) between AVO attributes and true net-to-gross 

 

Table 9. Linear regression index of predicted net-to-gross using AVO attributes  

 

 

6.2 Net-to-gross Classification 
The classification task was performed using the same dataset, also with similar training/test set 
fraction (90% for training set, 10% for test set). In a simple manner, this task was carried out 
by following these steps: 

i. Conditioning the label to a binary class of 1 and 0 according the net-to-gross value (i.e. 
NtG >= 0.5 is set as 1 (high net-to-gross); while NtG<0.5 is set as 0 (low net-to-gross)) 

ii. Applying the ML models to the training/test phase 
iii. Applying the ML models to predict the whole study area 

Basically, the models work in a similar way as in prediction, however the difference is instead 
of estimating continuous net-to-gross value as in the predicting task, the classification tries to 
classify the whole area into the two defined classes based on their features.  

Intercept Gradient AVO product AVO summation AVO difference

MAE 0.19 0.19 0.19 0.19 0.19

RMSE 0.22 0.22 0.22 0.22 0.22

R2 0.003 0.003 0.006 0.004 0.009
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Classification has different algorithms and performance evaluation techniques compared to the 
prediction. Some of the classification algorithms were used in this study are: 

 Logistic Regression (LR) 
 Linear Discriminant Analysis (LDA) 
 K-Nearest Neighbour Classifier (KNN) 
 Decision Trees Classifier (DT/CART) 
 Naive-Bayes Classifier (NB) 
 Support Vector Machine (SVM) 
 Random Forest Classifier (RF) 

In addition, some of the classification performance index are: 

 Accuracy: An index shows how the predicted value exactly match the true value 
 Precision: The ratio of TP / (TP+FP), where TP is number of true positive values; FP 

is number of false positive values 
 Recall:  The ratio of TP / (TP+FN), where TP is number of true positive values; FN is 

number of false negative values 
 F1: The weighted average of the precision and recall, or simply formulated as 

2*(Precision * Recall) / (Precision * Recall) 

The best value for all performance index mentioned above is 1, while the worst possible value 
is 0. The performance index in the training/test phase is provided in Table 10 below. 

Table 10. Classification performance index in training/test phase 

 

In terms of accuracy, all algorithms show moderately low index which is around 0.5. The 
precision also follows a relatively similar pattern with index range form 0.54-0.65. The highest 
recall value belongs to SVM, while the lowest belongs to DT and is followed by RF with 0.52 
and 0.58 respectively. Most of the algorithms have quite similar precision score which range 
from 0.69-0.77. There are not much of differences in the F1 score where the index of all 
algorithms is around 0.6. 

The results of the classification models and their performance index for the whole area is 
depicted in Figure 6.8 and Table 11 respectively.  

Table 11. Classification performance index of the predicted results 
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Figure 6.8: Maps of the predicted net-to-gross based on classification using ML algorithms. 
Wells location are represented by dots 

The predicted maps generated from LR, LDA, NB, and SVM have pretty much similar pattern 
where the distribution of ‘high’ and ‘low’ net-to-gross were shown. However, the distribution 
is much more different in KNN, DT, and RF models. According to the performance evaluation 
index, the DT and RF models perform almost perfectly with both accuracy and F1 scores are 
very close to 1. Models from the other algorithms have shown moderately low performance 
which range from 0.58-0.73 for the accuracy, and 0.66-0.76 for the F1 score. 

6.3 Sand Thickness Prediction 
In this section, the thickness of sand (hSand) was defined as the label and was performed using 
the same dataset with the net-to-gross prediction task. The sand thickness was calculated by 
summing all lithology which has GR value less than 70 (GR<70) within the reservoir interval 
of each well and was then considered as ‘true’ sand thickness. So in total, there were 172 true 
sand thickness data points generated. The true sand thickness has distribution as shown in 
Figure 6.9 and has the average of 64.18 m.  

 

Figure 6.9: The distribution of true sand thickness value from wells 
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This prediction task deployed similar algorithms as in the net-to-gross prediction except 
without involving the AutoML. The training set comprised 90% of the whole data set while the 
test set was 10%. The k-fold CV results of the training/test phase are delivered in Table 12. 

Table 12. K-fold CV results of the models in training/test phase 

 

The performance of the models in training/test phase are extremely low for most algorithms. 
Although it still considered as moderately low, the GBR model shows a better performance 
index with R2 score of 0.3. On the other hand, the RFR and DTR present impressive 
performance in training/test stage. This is indicated by the R2 score of 0.9 for the RFR and a 
perfect 1.0 for DTR.  

Figure 6.10 below shows how the predictive models perform when applied to the whole area, 
while the distribution, the mean and standard deviation of the predicted sand thickness are also 
delivered in Figure 6.11 and Table 13 respectively. 

 

Figure 6.10: Maps of the predicted sand thickness for the whole area for each ML 
algorithms. Wells location are represented by dots 
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As occurred in the net-to-gross predictions, the ML models also yielded considerably different 
results of predicted sand thickness among each other. In addition, the sand thickness 
distribution has a wide range of values for each algorithm.  

 

Figure 6.11: The distribution of the predicted sand thickness for each algorithm 

Some models such as Linear SVR and SGDR even obtain negative values (Fig.6.10) and 
underestimate the predictions significantly (Table 13) compared to the true sand thickness 
mean. In contrast, the DTR and RFR models seem to overestimate the values around two times 
the true sand thickness average. The mean of predicted sand thickness of both models exceeds 
120 meters. 

Table 13. Mean and standard deviation of the predicted sand thickness 

 

The predicted results were then plotted against the true values in a scatter plot, and a linear 
regression was fitted between them. The purpose of fitting a linear line is to get an idea on how 
the predicted sand thickness match the true values. As shown in Figure 6.12, most of the 
predicted models do not match with the true sand thickness. There are a lot of values which 
located outside the regression line (outliers). Only results from DTR, RFR, and GBR models 
which fit the regression line quite well even though the outliers are still found.  

The trends in the scatter plots are supported by the performance index shown in Table 14. In 
general, the MAE and the RMSE of the predicted results are in range of 40-47 meters and 52-
60 meters respectively for most algorithms. However, the DTR and RFR models produce the 
lowest MAE and RMSE among the rest which is around 12 meters for both indices. The GBR 
has moderately low error values for both the MAE (~26 m) and RMSE (~39 m) compared to 
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the others. In terms of the R2 score, the pattern is quite similar. The R2 score of the Linear 
SVR, GPR, SVR, KNN, and SGDR models are extremely low, while the DTR, RFR, GBR 
models bear the highest R2 score (0.64 and 0.54 respectively).  

 

Figure 6.12: Linear regression between the predicted sand thickness vs the true sand 
thickness 

 

Table 14. Performance index of the predicted sand thickness 

 

 

6.4 Discussion 
6.4.1 ML simulation results 
According to the feature correlation matrix from previous section, it can be inferred that the 
overall features used in this study almost do not have any correlation with the defined label, 
which is the net-to-gross. Even the additional features, the AVO attributes, do not directly 
correlate with the net-to-gross according to the baseline linear regression. This will directly 
correspond with the ML models performance, the R2. Most of the ML models have 
significantly low R2 values or even close to zero which basically mean that the dependent 
variable changes without any correlation to the independent variable. 

One way to explain this is by first taking a look into the true net-to-gross values. As depicted 
in Figure 6.1, the mean and the standard deviation of the true net-to-gross are 0.49 and 0.22 
respectively. Remember that the net-to-gross values are expressed in fraction. So, when the 
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true net-to-gross has standard deviation of 0.22, it basically means that each point in the dataset 
deviates by 0.22 point from its mean, 0.49, on average scale. The standard deviation is almost 
half of the mean itself. This is a big difference. A high standard deviation indicates that the 
data points are spread out over a large range of values. Or in other words, the true net-to-gross 
values in this study are nearly random, hence have high bias. This explains why the RMSE and 
the MAE are significantly high for almost all ML models. 

However, not all ML models performed poorly. The DTR and RFR algorithms are able to 
predict the net-to-gross values quite well. This is shown by significantly higher R2 values and 
lower errors. And those indices are improved as more features were added into the models. The 
final R2 value for the DTR is 0.85, while the RFR is 0.86 when all eight features were used. 
These values suggest that around 85% of the predicted models successfully fit the true value. 
The results obtained from DTR and RFR confirm that both algorithms can considerably handle 
non-linear data. The reason why these two algorithms work well is because the nodes/trees in 
both algorithms protect each other from their individual error by merging the predictors and 
generalize the errors. In this way, the groups of trees/nodes in both algorithms produce 
ensemble predictions which more accurate than any other individual predictions. 

These trends are also appeared when predicting the sand thickness where most algorithms 
performed poorly but the DTR and RFR produced much better results. However, one important 
thing to note is that the R2 score of these two algorithms in the prediction are considerably 
lower than in the training/test phase. This may indicate overfitting where the trained model 
fails to generalize the unseen data. In this case, the overfitting was presumably caused due to 
the noise and inaccurate data entries in the dataset. 

The negative values from some algorithms in both net-to-gross and sand thickness predictions 
were presumably caused by the outliers in the dataset. For instances, Figure 6.7 shows how the 
negative gradient and AVO product values affected the regression line in the scatter plot. 
Another example is shown in Figure 6.9 where the negative values of sand thickness have high 
frequency in the dataset. This could ruin the implicit pattern from the data which the algorithms 
tried to discover. These type of data should be removed in the data cleaning stage prior to 
generating the ML models. 

The net-to-gross classification yielded different results compared to the predictions. In general, 
the performance index of the results is much higher than the predictions’ in most algorithms. 

In addition, the accuracy and F1 score of classification results from DT and RF are around 0.9 
or almost perfect. This suggests that the classification may be an easier task for the algorithms 
in this study since it was only ‘asked’ to predict binary class (1 and 0) instead of continuous 
number in predictions. However, what makes these results are still arguable is even though the 
performance indices of the DT and RF are remarkably high, the performance indices of the 
trained data are moderately low (~0.6). This makes the classification results are less reliable. 

6.4.2 Seismic amplitudes 
According to the literatures, seismic amplitude is considered as primary variable when 
generating the net-to-gross value from the seismic data. However, this could not be confirmed 
in this study since the correlation coefficients between the seismic amplitudes from the 
horizons and the obtained net-to-gross were very low.  
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The studies of the net-to-gross estimation from seismic data has been carried out by many 
(Brown et al., 1984, 1986; Connolly, 2007; Inichinbia et al., 2014; and Simm, 2009). Brown et 
al. (1984, 1986) proposed a technique using scaled seismic amplitude to remove the tuning 
effect when estimating the net-to-gross. Connolly (2005, 2007) introduced a technique to 
estimate the net pay using band limited impedance obtained from coloured inversion. 
According to these studies, the process of calculating the net-to-gross involved several scaling 
and calibrations of the amplitudes such as correcting seismic amplitude maps with the apparent 
thickness model, generating band-limited relative impedance using coloured inversion, and etc. 

The AVO attributes are also commonly used when determining the net-to-gross. A study 
carried out by Simm (2009) highlighted the use of the AVO intercept and gradient cross plot 
to generate fluid factor in order to maximize the fluid content reflectivity and optimize the net 
pay estimation.   

The studies mentioned above show how the seismic amplitude actually has significant impact 
in when determining the net-to-gross. However, the net-to-gross in this study case are roughly 
derived only from TWT of both top and bottom reservoir (BCU and Top Rannoch) as the zone 
boundaries, and the value of GR from wells as indicator of sand and shale. There are many 
processes were bypassed compared to the conventional procedures. This may explain why the 
true net-to-gross values are randomized which causes the extremely low correlation between 
the net-to-gross and the amplitudes, and hence, produces highly deviated prediction results. 

6.4.3 Net-to-gross of the Brent Group 
According to the reservoir studies of the Brent Group (Giles et al., 1992; Helland-Hansen et 
al., 1992; and Knag et al., 1995), the overall net-to-gross of this group ranges from 0.4-0.8. 
Meanwhile, the most promising prediction results (the ones with the lowest error and highest 
R2) from the DTR and RFR models show the average net-to-gross values around 0.45-0.49. 
Even though the predicted values are very close and limited to the minimum value from the 
literature, those values are still within the range. In addition, the predicted average net-to-gross 
from the DTR and RFR models are almost similar with the one obtained from the wells. This 
actually indicates that these algorithms perform quite well regardless the limited amount of 
data as well as its non-linearity.  

6.4.4 Discussion remarks 
Several constraints which affected the results of this study are defined as follows: 

 Limited amount of data. As a reminder, only 172 data points utilized in training/test 
phase to predict around 2 million data points in the whole study area. This number 
obviously cannot be a good representation of the whole area. This also may be the 
cause of overfitting in the prediction model. 

 Poor data cleaning. The dataset contains many outliers which will be the noise for the 
algorithms. This definitely will cause the algorithms to build less accurate models 
driven by noise.  

 High variance in the data. This is actually a consequence of the previous constraint. 
High variance data generally will increase the complexity for the algorithms to 
generate proper models. 

 Oversimplified label determination. As mentioned in the previous section, the net-
to-gross were simply derived according to the GR level in the reservoir interval. As 
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consequence, this led to an inaccurate net-to-gross results and poor correlation between 
label and features.   

In general, this study needs a lot of improvements, especially when defining both the features 
and the label. Ensuring good correlation between features and label is essential prior to 
applying ML models. In addition, establishing an appropriate label can also be challenging if 
the defined label is dependant variable. Therefore, ensuring the label is derived properly 
through decent procedures should be prioritized.  
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7 Conclusion 

The main purpose of this study was to obtain a better understanding of how machine learning 
models perform prediction on net-to-gross value of the Brent Group in Statfjord field using 
parameters derived mainly from seismic horizons of the reservoir zone.  

Several ML algorithms was implemented to reach this goal. In general, most of the prediction 
results exhibit high errors and low performance index. This is also confirmed by the 
performance index of the classification and sand thickness prediction tasks which were 
included as additional comparison for this study. However, not all models perform poorly. The 
Decision Tree and Random Forest seem to outperform other algorithms when completing the 
defined tasks. This is shown by the noticeably higher performance index and remarkably lower 
errors these two algorithms possess.  

Despite the limitations and constraints in the dataset as described in the discussion, the ML 
models have potential to do this task. The fact that the net-to-gross prediction results are still 
within the range according to the literatures strengthens this claim. It is also supported by 
previous studies on the same domain which showed how ML successfully estimated 
petrophysical properties (Al-Anazi and Gates, 2010a,b,c,d ), hydraulic pressure losses 
(Fruhwirth et al., 2006), and evaluated bottom hole pressure (Ashena et al., 2010) in drilling 
engineering. In order to enhance the models’ performance, several improvements such as 
proper data cleaning, adding more relevant features, and establishing a solid label through 
appropriate procedures should be implemented in the subsequent studies. Keep in mind that 
the ultimate purpose of utilizing ML algorithms in this domain is to ensure the daily tasks in 
oil and gas industry to be accomplished more effectively compared to the conventional 
procedures.  
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8 Future Work Recommendations 

There are some important aspects related to this study which were not included due to the 
restricted time and availability of the data. Hence, some recommendations to be considered in 
further study are:  

 Increasing the number of data used in the training/test phase in order to build a more 
solid and representative model 

 Adding more valuable information from the well logs (e.g. resistivity log, density log, 
etc.) and other horizons into the models 

 A better data cleaning process such as filtering unwanted outliers, removing unwanted 
observation, and etc. 

 Involving proper geophysical procedures, such as Coloured Inversion and AVO 
analysis, to define the net-to-gross before setting it as a label  

 Utilization of more relevant features as well as ensuring the appropriate correlation 
between the label and features 

 Utilization of more advanced algorithms such as Artificial Neural Networks (ANN), 
Ensemble methods, Dimensionality Reduction algorithms, and even Deep Learning 
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Appendix 1: Statistical details of each features 
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Appendix 2: Net-to-gross calculation for all wells input code in 
Python 
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Appendix 3: Net-to-gross prediction input code in Python 

 



 

54 
 

 

 

 

 



 

55 
 

 

 

 

 



 

56 
 

 

 

 

 

 

 



 

57 
 

 

 

 

 

 

 



 

58 
 

 

 

 

 

 

 



 

59 
 

Appendix 4: Net-to-gross prediction validation input code in 
Python 
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Appendix 5: Net-to-gross classification input code in Python 
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Appendix 6: Net-to-gross classification validation input code in 
Python 
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