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Abstract

A Recommendation System is an intelligent machine learning system that seeks to predict
a customer ranked set of personalized products from a dynamic pool of diverse choices.
We can define the main objective of such systems as ranking edges in an undirected
unweighted graph consisting of user and item nodes.

Deep Graph embeddings have recently attracted the interests of both academia and
industry, mainly because of its simplicity and effectiveness in a variety of applications.
This thesis’s primary purpose is to perform research on the existing graph embeddings
methods for recommendation algorithms. We aim to transform undirected unweighted
graphs into vectors, also known as graph embeddings, to make a representation that would
be suitable for different machine learning algorithms. At first, we introduce the reader to
some existing and conventional approaches that allow us to create such embeddings. We
then present several modifications and improvements to the existing methods. Finally,
we use several evaluation metrics to showcase the performance evaluations of such
modifications.
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Chapter 1

Introduction

1.1 Recommender Systems for the world

World’s leading companies like Amazon, Netflix, Google, and many other such services
offer a wide variety of products to their end-users. With the help of search engines,
costumers can easily navigate through these products. However, despite the apparent
advantages that a search engine provides, its ability is strictly limited. The search engine
can only help users query products that they are already aware of. Recommender systems
have erased this limitation allowing users to discover products that they may like but
are unfamiliar with, based on previous records.

Generally, recommender systems are complex algorithms that are focused on suggesting
relevant items to the end-user. These items can be books, movie products, and anything
else depending on industries.

Recommender system’s machine learning algorithms are generally divided into two
main categories - collaborative filtering and content-based methods, although modern
approaches use a combination of both methods. Collaborative filtering methods are
based on the similarity from interactions, whereas content based on the similarity of
item attributes. Collaborative methods use a rating matrix that stores explicit ratings
given by users to items. The rating matrix is then used as input to the machine-leaning
algorithm, which learns a function that predicts the utility of items to each other [1].

Products recommendation helps companies leverage huge incomes. Netflix estimates
that its recommendation engine helps them save $1 billion a year [2]. Amazon’s recom-
mendations account for 35 percent of its sales [3]. Youtube’s video recommender system
accounts for 60 % of user views [4].

1
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1.2 Graph Perspective of Recommender Systems

Throughout the years, graphs have evolved into a universal data structure that can be
used in a variety of applications from pathfinding to social network analysis. Graphs
are known for their excellent ability to express relationships between objects and are
considered to be among the most convenient means of representing and storing structured
knowledge.

Several techniques are used to represent such data structure, such as edge lists, adjacency
lists, and adjacency matrices. The suitability of a certain method for a specific task
is mostly defined by three main criteria. One is how much space we would require for
each representation. Since modern days datasets have substantially grown in size in the
latest years, this criteria remains to be crucial. One is the time duration that it takes to
determine whether a particular edge is a member of a graph. The other is how long it
takes to find the neighbors of a specific node.

Although these methods are sufficient for most of the graph-processing algorithms, they
cannot be used as input to train machine learning models. This is because none of the
methods described above are suitable for similarity detection within the graph structure.
Since, an adjacency matrix is a representation of all nodes in a |V|-dimensional vector
space, two linked vertices in the graph may have orthogonal representations. List of edges
and Adjacency lists, due to their varying sizes, cannot be applied to any of the existing
machine learning algorithms. Finally, conventional representations can significantly
impact the time and memory consumption due to their overwhelmingly large size.

Throughout the years, several methods were introduced to address this issue. The most
common solution was to express data structure within a continuous multi-dimensional
vector space, where the nodes of a graph are represented with vectors of real numbers,
also known as graph embeddings. This method achieves a significantly smaller dimension
of the target space compared to the total number of vertices in the graph. Finally, these
vectors are used to detect similarities between nodes.

Deep embeddings have proved to be successfully in several applications such as Computer
Vision [5] [6] [7] , Natural Language Processing [8] [9], Speech Processing [10]. Deep
Graph embeddings as an extension for graph structured data has also achieved significant
successes in such applications as semantic segmentation [11], robot design [12], medical
diagnosis [13], object annotation [14] and others.
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Figure 1.1: Rating matrix as a Bipartite Graph

1.3 Capturing the Graph Structure

Recommender systems can be expressed as a bipartite graph of users and items. The
edge weights represent the similarity score between items and users. A bipartite graph is
preferred since the systems are generally focused on the connections between item-user
pairs.

In Figure 1.1, we represent a recommender system that contains five users and five items
as a bipartite graph. The solid edges of the graph show a historical interconnection
between the item and the user, such as a purchase, whereas the dashed edges are the
probable connections that have to be predicted. The task is to rank these dashed edges
so that they result in a higher score and then recommend the highest-scoring edges for
each user node. This approach allows specialists to create graph-based algorithms for
recommendation systems.

1.4 Problem Definition

For this study, we primarily consider undirected graphs. Let G be the network, and V
be the set of all nodes within that network.

Given a social network G = (V,E) with vertices V = {v1, v2, ..., vn} and edges E where
the vertices of the network represent the members and the edges represent the connections
between them, we want to implement an approach for learning latent representations
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of vertices in that network. These latent representations represent vectors that encode
the social relations of vertices in a continuous vector space, which is easily exploited
by statistical models. The idea is to classify members of a social network into different
categories. We propose an unsupervised method that learns features that capture the
graph structure independent of the labels’ distribution.

1.5 Challenges

Representing each node of a network as a vector can impose multiple challenges which
have been driving research in this area:

(i) Choice of property: It is important for a vector representation model to retain
the structure of the graph and the relations between the nodes. The first challenge is to
determine the property of the graph that should be preserved in vector representation.

(ii) Scalability: Most networks are extensive, and for a method to process such networks,
great scalability is required. This cannot be easy, given the importance of preserving the
global properties of the graph.

(iii) Dimensionality of the embedding: It is challenging to obtain optimal dimensions
of the representation. For instance, a high degree of dimensions can result in an increase
in reconstruction precision while preserving a high space and time complexity. However,
a lower degree of dimensions may boost the accuracy of link prediction if the chosen
model only considers local relations between nodes.

1.6 Contributions

The main goal of this thesis is to analyze and mutually compare a selected set of methods
for learning latent representations of vertices in a network, characterize their features,
and point out their advantages and disadvantages. In this study, we will mainly focus on
how to improve already existing techniques that learn latent representations of graphs
such as Asymmetric Proximity Preserving (APP) and DeepWalk. DeepWalk uses local
information obtained from truncated random walks to learn latent representations by
treating walks as the equivalent of sentences. We plan to improve the performance of
this technique by implementing a unique approach of random walks sampling in which
we are achieving the effect of multiple random walks in a single one with the help of
Breadth-First Search algorithm and simultaneously capture the context of the nodes.
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This thesis focuses on Deep Graph Embeddings for recommendation systems as they
offer promising new models that have not yet been well studied in the recommendation
space.

1.7 Outline

This thesis consists of several chapters.

In Chapter 1, we describe the recommendation problem, cover the graph perspective of
recommender systems, and introduce modern techniques of capturing the graph structure.

In Chapter 2, we provide a background for this thesis. We cover the foundation,
definitions, and notation used within this thesis. We describe the basics of graphs, graph
representation methods, related terms, and proceed towards machine learning and neural
networks. We present the evaluating metrics used to measure the performance of our
experiments. And then introduce modern techniques for creating graph embeddings and
their appliance in the recommend systems. We additionally emphasize the underlying
architecture of these methods and their fundamental basics.

In Chapter 3, we describe our contribution within this thesis work and provide a detailed
interpretation of the implemented solution.

In Chapter 4, we analyze the properties of recommender system datasets, as well as
cover the recommender datasets used within this thesis and point out the challenges
associated with them. We provide experimental results of the model in the form of a
table and discuss achieved improvements. We then describe the technical details and
useful guidelines necessary for the installation process.

In Chapter 5, we present a short conclusion of this thesis and our accomplishments and
mention improvements for future work.





Chapter 2

Background

This section describes the background of this study. It provides the reader with all
the necessary context to the information discussed throughout this study. We at least
expect the reader to be familiar with basic mathematical concepts and terms like vectors
and matrices. However, it is not mandatory to have any prior knowledge of Artificial
Intelligence since we will cover that in detail throughout this chapter. Furthermore,
we will provide useful references to certain conventions, notation, and definitions. We
also recommend these books [15] [16] to the reader as a reliable and verified source of
information related to this thesis work.

2.1 Definitions and Preliminaries

We will consider graphs and their representations as to the primary data structure within
this thesis. Below we will provide the necessary preliminaries on this data structure its
representations and critical notations.

2.1.1 Graph properties

A Graph G = (V,E) is a set of vertices V = {v1, v2, ..., vn} and edges E = {eij}ni,j=1,
each connecting two different vertices. The edges and vertices of a graph can posses a
wide variety of different properties, where some of them are more common than others.
In particular, two edge properties stand out. These properties are edge directionality
and edge weight.

7
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• Directed: A graph is considered to be directed if all of its edges represent a
one-way relationship. In directed graph an edge uv ∈ E has start point u and
endpoint v.

• Undirected: A graph is considered to be undirected if all edges are bidirectional.
In a simple undirected graph uv = vu and uu /∈ E.

A weight property of an edge is defined by a numerical value associated with an individual
edge [17].

• Weighted: A graph is considered as weighted graph when all of its edges E =
{e1, e2, ..., en} ∈ G are assigned a positive number w(e), called the weight of e.

• Unweighted: An unweighted graph is a graph with no edge value. We can consider
an unweighted graph to be weighted in which all edges e are assigned a weight
w(e) = 1.

Adding weights to a graph allows us to represent complex objects like road networks and
probabilistic models. In this thesis, we will only consider simple undirected, unweighted
graphs.

2.1.2 Graph Representations

A graph can be represented in several ways. Each method has its advantages and
disadvantages. Hence a method should be chosen based on the algorithm we want to run
with graphs as input. Three main criteria define the performance of a method:

• Required memory for each representation

• Time for querying all neighbours of a node

• Time for querying a given edge

Here we will present three methods for representing graphs.

• Edge lists A graph is represented as a nested list or an array of E = {e1, e2, ..., en}
edges. An edge is represented with an array of two vector numbers, where each
number refers to a vertex. The total space complexity of this method would be
Θ(E) since each edge would contain a defined amount of numbers. However, if we
want to search for a given edge in an unsorted edge list, it would take linear time
to search through |E| edges.
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• Adjacency matrix. For a graph with |V | vertices, an adjacency matrix is a
|V |× |V | matrix consisting of 0s and 1s, where the entry is 1 in i row and j column
only if the edge (i, j) exists in the graph. For instance the adjacency matrix of
graph Figure 2.1 can be represented with the following matrix (2.1). This method
has an advantage in edge lookup. We can check whether an edge is present in
a graph in constant time by looking at G[i][j], where G is the graph, and (i, j)
represents an edge. However, this method has two disadvantages. First, it would
take Θ(V 2) space. Second, search for neighbors of a given vertex i requires to look
up the entire row of |V | entries in row i.

A =



0 1 0 0 0
1 0 1 1 1
0 1 0 0 1
0 1 0 0 1
0 1 1 1 0


(2.1)

• Adjacency list. The graph is represented by a vertex i and a list of vertexes that
are adjacent to it. The adjacency list L1 for a vertex v1 is a composition of all
vertexes that are target of all the edges, which start at v1. Consequently, there will
be |V | amount of adjacency lists, one for each vertex. For instance, the adjacency
list of the same graph in Figure 2.1 could be represented as sown in (2.2). The
clear advantage of this method is finding the neighbors of a node, since it will
take constant time O(1) to get to each vertex’s adjacency list [18]. A disadvantage
is that to find out whether an edge (i, j) is present in the graph, we would have
to extract i’s adjacency list and then search for j in i’s adjacency list. The time
complexity of this operation would be O(D), where D is the degree of vertex i.

{LA = [B], LB = [A,C,D,E], LC = [B,E], LD = [B,E], LE = [B,C,D]} (2.2)

2.1.3 Proximities

In a real-world network, the similarity between nodes is defined by first order proximity.
For instance, friends in a social network usually share common interests. In order to
capture these relationships, many existing graph embeddings methods tend to preserve
first-order proximity. However, not always fundamentally similar nodes on the network
have a direct connecting link, therefore to preserve the network structure, alternative
methods are required.
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Figure 2.1: Unweighted undirected graph

It is generally accepted that similar nodes on the network tend to share common neighbors.
For instance, words that always appear in the same context of words tend to have a similar
meaning. Hence, we define the second-order proximity, which captures the similarity of
the nodes’ neighborhood structure [19].

Definition 2.1. First-Order Proximity [20] The first-order proximity in a network
is the local pairwise proximity between two vertices. For each pair of vertices linked by
an edge (u, v), the weight on that edge, wuv, indicates the first-order proximity between
u and v. If no edge is observed between u and v, their first-order proximity is equal to 0.

Definition 2.2. Second-Order Proximity [20] The second-order proximity between
a pair of vertices (u, v) in a network is the similarity between their neighborhood network
structures. Mathematically, let pu = (wu,1, ..., wu,|V |) denote the first-order proximity
of u with all the other vertices, then the second-order proximity between u and v is
determined by the similarity between pu and pv. If no vertex is linked from/to both u
and v, the second-order proximity between u and v is 0.

2.1.4 Graph Embedding

Given a graph G = (V,E) a graph embedding is a mapping f : vi → yi ∈ Rd ∀ ∈ [n] such
that d� |V | and function f preserves proximity structure of graph G. Consequently, the
goal of an embedding is to capture the network structure by learning a low-dimensional
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vector representation of each node. The majority of existing methods train node em-
beddings to differentiate the positive edges in E from some randomly sampled node
pairs (negative edges). Essentially, the edges are used as training data. An embedding
preserving the first-order proximity can be acquired by minimizing:

∑
i,j

Si,j ||yiyiyi − yjyjyj ||22 (2.3)

2.2 Machine Learning Fundamentals

This section provides a detailed elaboration on relevant machine learning terms and
definitions closely associated with this thesis. We provide a description of Machine
Learning in general, followed by a definition of Data Mining and relevant algorithms.

2.2.1 Data Mining

Data mining defines a process of applying analysis algorithms on a dataset to discover
hidden patterns within the data as well as classify the data into distinct classes. Data
Mining tasks are classified into Supervised and Unsupervised depending on the information
the algorithm has about the available labels in the dataset.

• Supervised Learning1 models are trained on data containing both input and
output values. Input values are essentially the attribute values and metadata,
whereas output values represent the labels of a class attribute. This model aims to
predict the correct class of the new data based on previous records.

• Unsupervised Learning2 models, on the contrary, have no access to output
values. Therefore they attempt to discover patterns within the data by creating
their own classes.

• Semi-supervised Learning3 model represent a combination of both Supervised
and Unsupervised learning models and usually work on partially-labeled data.

Moreover, data mining has two principal objectives, verification and discovery, where
verification attempts to justify user’s conjecture and discovery is further divided into
description and prediction, where description is a method that discovers structures for

1Supervised Learning: https://en.wikipedia.org/wiki/Supervised_learning
2Unsupervised Learning: https://en.wikipedia.org/wiki/Unsupervised_learning
3Semi-supervised Learning: https://en.wikipedia.org/wiki/Semi-supervised_learning

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Semi-supervised_learning
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Figure 2.2: Data mining taxonomy

the purpose of representing the data in a clear layout and prediction attempts to predict
the future labels of records based on known patterns.

Furthermore, data mining can be differentiated into two main objectives: verification and
discovery. While verification tries to prove the user’s hypothesis, discovery looks for yet
unknown patterns within the data. The discovery step splits up into description, where
the system finds patterns in order to present the data in an understandable format and
prediction, where the system tries to predict the future outcomes of data from patterns.

The sub-task Prediction is consequently divided into classification and regression tasks,
where classification tasks have categorical labels, whereas regression tasks have numerical,
continuous labels.

This work focuses on algorithms that attempt to learn latent representations of vertices
in a network. Therefore, the problem consists of multi-label network classification tasks
and belongs to the discovery-prediction sector of data mining. In Figure 2.2, we represent
the general overview of data mining taxonomy.

2.2.2 Machine Learning

AMachine Learning model can be defined as a computer program that is able to learn from
provided data and consequently make predictions/decisions on unseen data. Conventional
machine learning models learn a mapping taken a feature vector as input, which represents
an object with the means of categorical and numerical characteristics. The main objective
is to generate an output of the desired form, which can be categorized into class labels,
regression score, an unsupervised cluster-id, or a latent vector (embedding).
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Figure 2.3: One-Hot representation. Image source: https://subscription.
packtpub.com/book/web_development/9781786465825/3/ch03lvl1sec32/

encoding-and-embedding

In this study, we will mainly focus on data in the form of a graph consisting of entities
(nodes) and edges (relationships between nodes) with the purpose of clustering based on
node connectivity.

Machine learning models can be classified into parametric4 and non-parametric5

depending on their inner structure. Parametric models employ a finite set of parameters
θ to retain the required structure of the given data, whereas in non-parametric models,
the numbers are not predefined.

Data Representation

Data-sets with categorical variables usually require conversion into numerical form in order
to be fed as input to Machine learning models. One method to represent such categorical
data is One-Hot6 encoding. Such encoding method represents categorical attributes
with binary vectors. First, it maps categorical attributes into integer values. Then, it
represents every integer value in the form of a binary vector, where the index of the integer
is equal to one, and the rest are zeros. In Figure 2.3, we represent one-hot encoding for
word Queen given the vocabulary V = {King,Queen,Man,Woman,Child}.

2.2.3 Artificial Neural Networks

Since neural networks are related to this thesis work, we consider that it is necessary to
familiarize the reader with important terms and notations from this area. For a broad
overview of the neural network concept we recommend the book written by Deng et
al. [21].

4Parametric statistics: https://en.wikipedia.org/wiki/Parametric_statistics
5Non-parametric statistics: https://en.wikipedia.org/wiki/Nonparametric_statistics
6One-hot: https://en.wikipedia.org/wiki/One-hot

https://subscription.packtpub.com/book/web_development/9781786465825/3/ch03lvl1sec32/encoding-and-embedding
https://subscription.packtpub.com/book/web_development/9781786465825/3/ch03lvl1sec32/encoding-and-embedding
https://subscription.packtpub.com/book/web_development/9781786465825/3/ch03lvl1sec32/encoding-and-embedding
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/One-hot
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In comparison to conventional algorithms, neural networks attempt to address rather
complex problems with a significantly easier approach in regard to algorithm complexity.
Consequently, Artificial Neural Networks are mainly employed due to their straightforward
structure and self-organizing nature, which allows them to deal with a wide variety of
issues without additional intervention by the programmer.

An Artificial Neural Network contains nodes (neurons), weighted connections between
these nodes, adjustable in the course of the learning procedure of the network, and an
activation function that defines the output of every node given an input of a set of inputs.
A Neural Network consists of multiple different layers. The input layer collects the data,
such as attribute values of particular data entry, the output layer generates the output,
and the hidden layers represent the connections between the input and output layers.
Furthermore, Neural networks are classified into two main types.

• Feedforward Networks are networks that do not collect feedback from the
network itself, which means that the data flows in one direction, from the input to
the output layers, without further readjustments of the system.

• Recurrent Networks, in contrast, has a feedback option and is capable of reusing
data from later stages for the earlier stages in the learning procedure.

The output value is generated wit the means of an activation function. The most
frequently used function is the Sigmoid function7, defined in the following manner:

σ(x) = 1
1 + e−x

(2.4)

In Figure 2.4, we present a Feedforward Neural Network with four input nodes in the
input layer, two hidden layers, and two output nodes.

A neural network is able to evaluate various functions by readjusting the parameters of
the model. Further, we will briefly describe the main phases of the training process of a
neural network:

• Forwardpropagation. Describes a process of passing the training data over the
network, where every neuron applies modifications to the received data from the
previous layer and sends it to the next layer. Hence, when the data has passed
through all the layers and all the computations are made by its neurons, the final
layer outputs the class predictions for the given input data.

7Sigmoid function: https://en.wikipedia.org/wiki/Sigmoid_function

https://en.wikipedia.org/wiki/Sigmoid_function
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Figure 2.4: Example of an Artificial Neural Network

• Loss Function. The training process is generally formulated as an optimization
problem. Hence it is subject to a minimization of the loss function L, which tends
to estimate the prediction quality. More precisely, the loss function is required to
estimate how close a specific neural network is to an optimal weight during the
training procedure. All available types of loss functions are listed on the Keras
manual page8.

• Backpropagation9. Artificial Neural Networks are often trained with a back-
propagation algorithm, where the weights of the neural network connections are
adjusted based upon the local error rates. Consequently, this method calculates
the gradients δL

δwi
for all weights w ∈ Θ in a progressive manner.

• Optimization algorithms make use of the gradients obtained from the backprop-
agation algorithm to adjust the weights of the interconnections, aiming to lower
the loss function. Most frequently used techniques are:

– Gradient Descent10 and its variants such as Stochastic Gradient De-
scend11 and SGD with momentum12.

– Adaptive gradient descent algorithms such as Adagrad13 or Adam14.

In Figure 2.5 we visually summarize the training process described above.
8Keras loss functions: https://keras.io/api/losses/
9Backpropagation: https://en.wikipedia.org/wiki/Backpropagation

10Gradient Descent: https://en.wikipedia.org/wiki/Gradient_descent
11Stochastic Gradient Descend: https://en.wikipedia.org/wiki/Stochastic_gradient_descent
12Momentum: https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum
13Adagrad: https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
14Adam: https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam

https://keras.io/api/losses/
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#AdaGrad
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam
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Figure 2.5: Training scheme of a Neural Network.

2.2.4 Performance Evaluation

Another crucial step in building a machine learning model is performance evaluation.
The model should be able to estimate the target variable with a small error margin, which
can be calculated with different metrics. The most important factors for performance
evaluation of a machine learning model are the following:

• Mean Squared Error

• Misclassification rate estimates the relative amount of misclassified data in a
given dataset. A formula for calculation misclassification rate is defined as follows:

miscn = 1
n
∗
∑
i

(yi 6= ŷi) (2.5)

where yi is the real label and ŷi defines the prediction for the data point i. However,
misclassification heavily depends on class label distribution in the dataset.

• F1-Measure15 denotes a Harmonic Mean16 between precision and recall values
and estimates the precision and robustness of a classifier. It can be mathematically
expressed as follows:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2.6)

– Precision value17 is defined as the relative amount of instances classified as
true among all instances classified as true.

Precision = TruePositives

TruePositives+ FalsePositives
(2.7)

15F1-Measure: https://en.wikipedia.org/wiki/F1_score
16Harmonic Mean: https://en.wikipedia.org/wiki/Harmonic_mean
17Precision value: https://en.wikipedia.org/wiki/Precision_and_recall#Precision

https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Harmonic_mean
https://en.wikipedia.org/wiki/Precision_and_recall#Precision
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Figure 2.6: Confusion Matrix

– Recall value18 is defined as the relative amount of instances classified as
true among all true instances.

Recall = TruePositives

TruePositives+ FalseNegative
(2.8)

• Confusion matrix is considered to be one of the best methods to illustrate
the performance of a machine learning model, which differentiates between true-
negative, false-negative, true-positive, and false-positive predictions. A confusion
matrix is depicted in Figure 2.6.

2.3 Graph Embedding Methods

The use of neural networks in different applications has increased substantially. It has
successfully proved its efficiency in such applications as image segmentation, natural
language processing, time-series forecasting, and embedding. The application we are
most interested in throughout this thesis is embedding, where embedding is a method
used to represent discrete variables as continuous vectors.

The term embedding is closely related to the Natural Language Processing domain, where
Tomas Mikolov [22] introduced a method for learning high-quality distributed vector
representations that capture a large number of precise syntactic and semantic word
relationships. However, these models were unsuitable for sparse graphs and alternative
methods we required. Consequently, researchers have shifted their focus towards the
development of scalable graph embedding algorithms that would address the issue of

18Recall value: https://en.wikipedia.org/wiki/Precision_and_recall#Recall

https://en.wikipedia.org/wiki/Precision_and_recall#Recall
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graph sparsity. In this section, we will briefly describe modern approaches used for
generating graph embeddings.

A desirable embedding method should meet several requirements. One is that it must be
scalable for very large graphs with millions of nodes and edges. Second, it should desirably
preserve both first-order proximity and second-order proximity. Finally, it should be able
to process any type of edges: directed/undirected and weighted/unweighted.

Due to the extreme sparsity of the real-world networks, such as Youtube and Facebook,
many embedding approaches perform random walks on the original network to capture
its connectivity. In other words, they connect nodes within the distance of an arbitrary
walk length, known as network augmenting.

Furthermore, based on the samples from the augmented network, we train the node
embeddings. Essentially, embeddings consist of two sets, vertex and context embedding
matrices. A positive edge is then predicted with the dot product of vertex [v] and context
[v] where (u, v) is an edge sample. This results in similar embeddings for neighboring
nodes and disparate embeddings for remote nodes.

Overall, node embeddings are produced by two sequential methods: network augmentation
and embedding training. Usually, both methods can be parallelized by multiple CPU
threads to improve running time. We will use the taxonomy of approaches to graph
embeddings proposed by Goyal and Ferrara [23] to cover the most popular, currently
used methods for creating embeddings. We will describe three different graph embedding
approaches with several representative algorithms for each approach. For each algorithm,
we will provide performance evaluation, analyze preserved properties, and accuracy.

2.3.1 Factorisation based Approaches

Factorization based methods represent the relations between vertexes as a matrix and use
factorization methods to create embeddings. The node connectivity can be represented
with an adjacency matrix, Laplacian Matrix, Katz similarity matrix, etc. The choice of
a factorization method depends on the matrix properties.

Locally Linear Embedding

One simple approach to reduce the adjacency matrix sparsity is to use Locally Linear
Embedding method, which relies on the assumption that every node represents a linear
composition of its direct neighbor nodes. It signifies that the embedding Ei can be
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formulated according to Equation (2.9) , where Ni is a collection of i neighbours and Ei
is a vector with the following dimensions d� n.

Ei =
∑
j∈Ni

Wi,j × Ej (2.9)

φ(E) =
∑
i

(Ei −
∑
j∈Ni

Wi,j × Ej)2 (2.10)

The embedding is produced by minimizing the equation (2.10). This approach allows for
retaining the structure of the graph.

Laplacian Eigenmaps

Laplacian Eigenmaps [24] algorithm emerged in 2002 and was one of the first algorithms
for creating graph embeddings. Laplacian Eigenmaps method is used to create a low-
dimensional image of the graph while preserving the local geometric characteristics of the
embedding manifold. Laplacian Eigenmaps approximates the geodesic distances between
nodes with the help of the neighborhood graph.

The objective function to obtain the embeddings is subject to a minimalization problem
of seeking vectors yyy ∈ R|V |×d and utilize them for embedding creation:

min
y

=
∑

(vi,vj)∈E
wi,j(yi − yj)2 (2.11)

where wi is the weight of edge (vi, vj) and yyy = (y1, . . . , y|V |)T .

2.3.2 Random Walk based Approaches

Random walks have a broad appliance in many different areas, such as community
detection [25] and content recommendation [26]. A random walk is a stochastic process
with random variables that can be considered as W 1

vi
,W 2

vi
, . . . ,W k

vi
such that W k

vi
+ 1 is

a randomly chosen node from vk neighbors, where Wvi indicates the root node vi of a
random walk. A set of random walks with dedicated length allows us to capture the
local structure of the graph. The main advantage of this method is its parallelizability.
It is relatively easy to explore the graph with an arbitrary set of random walks running
simultaneously in different threads. Moreover, it allows adapting small changes to the
graph structure without the need for recalculation.
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Figure 2.7: CBOW and Skip-Gram

Many different types of a random walk are of interest, which varies in several ways. Below
we will describe the best currently used methods. We will first introduce the reader to
the NLP word2vec models and then describe two graph-based models DeepWalk and
node2vec.

Word2Vec

In 2013, Tomas Mikolov [27] introduced an approach to capture the linguistic context
of the words. Given a large corpus of words, it produces a multidimensional vector
space model that typically consists of several hundred dimensions. Each vector becomes
associated with a corresponding word from the given corpus. The vectors are arranged
in a way that words with a similar context in the corpus are consequently placed in close
range to each other in the vector space model.

Word2Vec is highly computationally efficient and comes in two algorithmically similar
models: Skip-Gram and Continuous Bag-of-Words (CBOW). Given a vocabulary V ,
the concept of the two methods is to map the input sentence into a one-hot-encoded
vector representation, that is a vector of size V , where each word is represented as a
V -dimensional vector with |V | − 1 zeroes and one 1.

CBOW model shown in Figure 2.8 attempts to predict a word from the context of a
word, given as input. The word embeddings are formed from the hidden layer of the
network with a significantly lower dimension compared to one-hot encodings, however
still able to hold all the necessary information for fitting word detection.

Skip-Gram model does the opposite as it tries to predict surrounding context words from
the target words. According to Mikolov [27] both methods have their advantages as well
as disadvantages. Skip-Gram tends to perform better with a smaller amount of data and
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Figure 2.8: CBOW architecture proposed by Mikolov et al. [27]

can represent rare words well, whereas CBOW has a better performance and is better at
representing more common words.

The architecture of Skip-Gram shown in Figure 2.9 is comparable to the auto-encoders
one. Skip-Gram compresses the input vector to reduced density vector and outputs the
probability distribution of target words. Skip-Gram uses a neural network for training,
and the architecture can be represented in 3 layers:

• Input layer. The input layer contains a corresponding amount of neurons to the
words in the vocabulary.

• Hidden layer. A standard fully connected layer with word embeddings as weights.

• Output layer. Contains the output probabilities for the target words from the
vocabulary.

According to Mikolov [27], the Skip-Gram model defines the probability function as:

p(wc,j = wO,c|wI) = exp(uc,j)∑V
j′=1 exp(uj′)

(2.12)

where wc,j denotes the j-th word predicted on the c-th panel of the output layer; wO
represents the actual c-th word present on the c-th context position; wi denotes the input
word;uc,j denotes the input of the j-th value on the c-th context position.
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Figure 2.9: Skip-Gram architecture

The training algorithm of Word2Vec includes Hierarchical Softmax and/or Negative
Sampling, however in most cases just Negative Sampling is used. We will briefly describe
the main principles of these methods based on the detailed derivations and explanations
proposed by Rong [28].

• Hierarchical Softmax. Hierarchical softmax is an improved method for comput-
ing the softmax function defined in Equation (2.12). This method represents the
words of the vocabulary as a binary tree. See Figure 2.10 for an example tree.

Hierarchical Softmax does not have vector representations of words, instead for
every inner unit n(w, j) there is an output vector representation vvv

′

n(w,j). It is
subject to the probability function of a word being the output word defined as:

p(w = wO) =
L(w)−1∏
j=1

= σ

(
[[n(w, j + 1) = ch(n(w, j))]] · vvv′

n(w,j)
T
hhh

)
(2.13)

where ch represents the left child of unit n; h is the output value of the hidden
layer; [[x]] as a special function defined as:

[[x]] =

1 if x is true;

−1 otherwise.
(2.14)
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Figure 2.10: A binary tree for the hierarchical softmax. An example path from the
root node to the word w2 is highlighted, where the white dots on the path represent

words, and the gray dots are the inner units.

• Negative Sampling. Negative sampling is used to differentiate between fake
and real signal by means of logistic regression. The motivation behind negative
sampling is to randomly sample k negative samples from a noise distribution PN
and compute the probabilities instead of summing over the entire vocabulary.

Negative sampling objective for a single observation is calculated as follows :

log p(w|wI) = log σ(v′
w · T v) +

K∑
i=k

Ewi∼Pn(w)[log σ(−v′
w · T vwI )] (2.15)

In order to distinguish fake data from real, the noise distribution function is used.
Noise distribution is defined as:

P (Wi) = f(wi)3/4∑n
j=0(f(wj)3/4)

(2.16)

where fw denotes the frequency of the word appearing in the corpus; 3/4 is a value
obtained from carrying out experiments.

DeepWalk

DeepWalk proposed by Perozzi et al. [29] appeared as the first algorithm to learn latent
representations of the graph in an unsupervised manner. The idea behind DeepWalk is to
use some of the advantages of language modeling to perform graph modeling. DeepWalk
uses short random walks to learn a latent representation of the network, which encodes
community structure and makes it applicable for basic classification models. After
exploring attainable datasets, the author concludes that the distribution of a word in a
corpus and node in a graph follows a power-law distribution19 as shown in Figure 2.11.

19Power law distribution: https://en.wikipedia.org/wiki/Power_law

https://en.wikipedia.org/wiki/Power_law
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Figure 2.11: The power-law distribution of modes in truncated random walks compared
to the distribution of words in natural languages proposed by Perozzi et al. [29]

DeepWalk is based on Skip-Gram architecture. Hence it tends to predict the neighbors
of a given node. The algorithm consists of two main stages: a random walk generator
and an update procedure. A random walk generator traverses the network to derive
local structure based on the neighboring connections. An update procedure involves the
Skip-Gram model that learns the generated embeddings. The algorithm is defined as
follows:

• Local structure discovery. The random walk generator streams random trun-
cated walks Wvi of length l from a randomly chosen source node vi to generate
random embeddings. For every step in the sequence of a random walk, the next
node is uniformly sampled from the neighbors of the previous node.

• Skip-Gram. Skip-gram attempts to maximize the similarity of embeddings of
nodes that appear in the same walks.

First, random vectors of dimension d are generated. In consequence, the node
embeddings are updated by gradient descent throughout the collection of random
walks in order to maximize the probability of the neighboring nodes. This is obtained
with the softmax function defined in Equation (2.12). Finally, optimization can be
applied with additional passes over the same walk path.

node2vec

Similar to the DeepWalk algorithm, node2vec [30] tends to maintain higher-order proximity
between vertices in the graph, obtained through maximizing the probability of appearance
of consequent nodes in a truncated random walk. The main difference between these
two methods is that node2vec attempts to control the path sampling process, instead
of sampling the paths randomly. The proposed algorithm employs the right balance



Abbreviations 25

Figure 2.12: Depth-first and Breadth-first graph traversing algorithms.

between two graph search methods such as breadth-first search (BFS) and depth-first
search (DFS), which results in a higher quality embeddings than produced byDeepWalk.

BFS and DFS graph search methods shown in Figure 2.12 can be described as follows:

• Breadth-first search is an graph traversal algorithm that traverses the network
layer-wise. Given a network G and a starting node v the algorithm first traverses
nodes adjacent to v at the present depth level, before moving to the next depth
level.

• Depth-first search is another graph traversal algorithm that traverses a tree
depth-wise. Given a network G and a starting node v, the algorithm traverses to
the maximum depth of the tree before backtracking.

Node2vec aims to solve one of the biggest problems in network analysis: create embeddings
for edges and vertices in a task-independent way. In order to accomplish that goal, the
algorithm can be defined with three main stages:

1. Calculation of transition probabilities for every edge in the network.
The edge weights are calculated to produce a biased random walk of length l.
Assuming that ci represents the ith vertex in the walk path, then vertices are chosen
according to the following distribution:

P (ci = x|ci−1 = v) =


αpq ·wvx

Z if (v, x) ∈ E;

0 otherwise.
(2.17)

The search bias is defined as α and relies upon parameters p and q.
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Figure 2.13: 2nd order random walk with parameters p and q. Figure 2 of Grover and
Leskovec [30] : node2vec: Scalable Feature Learning for Networks.

αpq(t, x) =


1
p if dtx = 0;

1 if dtx = 1.
1
q if dtx = 2.

(2.18)

where dtx is the shortest path between nodes t and x. Parameters, p, and q

describe the speed of walk exploration. The variation of these parameters allows
this method to differentiate between two opposite graph search strategies BFS and
DFS. Specifically, the parameter p denotes a return parameter that controls the
probability of revisiting a vertex during the walk, whereas q stands for the in-out
parameter that enables interpolation between outward and inward vertexes. The
parameter tuning of parameters p and q allows performing the sampling of the
neighborhood in a very flexible way. The illustration of a random walk procedure
is shown in Figure 2.13.

2. Biased random walks execution. For every vertex v, a set of context nodes is
sampled from the nodes extracted during the walk in the previous step. Random
walks need to be re-executed several times for every vertex, in order to balance the
bias.

3. Optimization problem for node embedding computation. Vector represen-
tations are obtained by maximizing the log probability of observing a network
context Ns(v) for vertex v, that results in the following feature representation:

max
f

∑
v∈V

log(P (Ns(v)|f(v))) (2.19)
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Considering that the probability of observing a neighboring vertex is independent
of observing another neighboring vertex given the embeddings of the source vertex,
where the source vertex and the neighboring vertex have a proportional effect over
each other in the feature space, the optimization problem can be formulated as
follows:

max
f

∑
v∈V

log[− logZv +
∑

ni∈NS(v)
f(ni) · f(v)] (2.20)

assuming a per node partitioning function defined as follows:

Zv =
∑
u∈V

exp(f(v) · f(u)) (2.21)

which is approximated using negative sampling technique. Finally, to define the
features f , the equation is optimized with a Stochastic Gradient Ascent (SGA)
method over the model’s characteristics. The final created feature vector f(v) for
every node v in the network, can be utilized as input to any Machine Learning
models.

Asymmetric Embedding Approach

Even though such graph embedding methods like Deepwalk [29] and Node2Vec [31]
employ random walk sampling procedure, neither of these methods is able to capture
the asymmetric proximities in both directed and undirected graphs that could be vital
in several tasks such as link prediction in social networks and recommendation systems.
Furthermore, we will briefly introduce an asymmetric proximity preserving (APP) graph
embedding method proposed by Zhou et al. [32] that effectively resolves this issue. This
method is based on random walks with restart, that allows stochastic gradient updates
only along the forward direction of the walk.

In order to capture the asymmetric proximity each node should serve both as a source
node ~sv and a target node ~tv. A softmax function that consequently defines the probability
of the source node u predicting the target node v can be formulated as follows:

p(v|u) = exp( ~su, ~tv)∑
n∈V exp( ~su, ~tn)

(2.22)

where V is the set of nodes present in the graph. In addition, the author highlights
the need for adopting the Skip-Gram model with Negative Sampling(SGNS) [27] for
performance improvements. The objective function is then defined as follows:
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log σ( ~su · ~tv) + k · Etn∼PD
[log σ(− ~su · ~tn)] (2.23)

where k denotes randomly sampled negative pairs in accordance to a vertex distribution
PD(N). Finally, the global objective function is shown as follows:

l =
∑
u

∑
v

#Sampledu(v) · (log σ( ~su · ~tv) + k · Etn∼PD
[log σ(− ~su · ~tn)]) (2.24)

where #Sampled is the number of sampled pair (u, v) and σ(x) = 1
(1+exp(−x)) is the

sigmoid function.

Algorithm 2.1 PPREMBEDDING (G,α)
Input: G(V,E,W ), Jumping Factor α, Learning rate η
Output: Embedded Vector of ~sv, ~tv for each v ∈ V

1: Initialize: ~sv, ~tv,∀v ∈ V
2: for each v ∈ V do
3: for i = 0; i < #Sample; i+ + do
4: u = SampleEndPoint(v)
5: StochasticGradientDescent(v, u, 1)
6: for j = 0; i < k; j + + do
7: p = RandomUniform(V )
8: StochasticGradientDescent(v, p, 0)
9: end for

10: end for
11: end for

Algorithm 2.2 STOCHASTICGRADIENTDESCENT (v, u, label)
1: ~sv = ~sv − η(σ(~sv, ~tu)− label) · ~tu
2: ~tu = ~tu − η(σ(~sv, ~tu)− label) · ~sv

The author describes the sampling and the asymmetric learning strategy in Algorithm 2.1
SampleEndPoint samples a walk path p starting from node v and ending at node u
assuming a stopping probability α. Proximity of a vertex pair (u, v) can be represented
with the inner product of ~su, ~tv as soon as we get a source and target vector of each node.

2.3.3 Deep Learning based Approaches

Despite all the success of Neural networks in machine learning, the original models
appeared to be computationally inefficient due to the complexity of training and severe
computational requirements. However, it was until recently when Hinton et al. [33]
proposed a back-propagation greedy learning algorithm, able to train deeper neural
networks that are capable of capturing comprehensive data with highly non-linear
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structures. This led to a successful appliance of Deep Learning in a variety of tasks such
as image recognition, language processing, and speech recognition.

Furthermore, we will describe a method called Structural Deep Network Embedding
(SDNE), that tends to capture proximities within the source graph by introducing
supervised methods coupled with unsupervised deep auto-encoders.

SDNE

In 2016 Wang et al. [34] introduced Structural Deep Network Embedding (SDNE), a
semi-supervised deep model to perform node embeddings able to capture both local
and global network structure as well as cope with sparse networks. Notably, the author
proposes a model with a multi-layer architecture that is composed of several non-linear
functions. The author highlights the non-linearity in the underlying structure of the
real-world graph networks, which rules out the possibility to be captured by shallow
models. However, the proposed model can preserve the high non-linearity in the graph
structure, with a multiple layer composition of non-linear functions capable of mapping
the data into a highly non-linear latent space.

The deep architecture of the proposed model consists of:

• Unsupervised Component preserves the second-order proximity with an ex-
tended version of a traditional deep auto-encoder by capturing the neighborhood
structure of each vertex.

• Supervised Component exploits the first-order proximity as the supervised
information to refine the representation of the latent space.

An auto-encoder is a neural network that attempts to train the representation of a
given dataset in an unsupervised manner. At first, the input vector x is mapped to a
hidden representation z = f(x), and then function f is parametrized by the encoder with
one or several layers of non-linearity. Hidden representation z is consequently mapped
the output x̂ = g(z) with the means of decoder network that parametrizes the decoder
function g. Similar to the encoder network, a decoder network may be composed of
several layers of non-linearity. The parameters are subject to a minimization function:

L = (x, g(f(x))) = ||x̂− x||22 (2.25)

Primarily a deep auto-encoder can be thought of as a multi-layer neural network. In
Figure 2.14, we present the architecture of a deep auto-encoder with multiple layers of
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Figure 2.14: An example of an auto-encoder with multiple hidden layers.

non-linearity. The encoder attempts to compress the input data into a feature vector. In
contrast, a decoder does the opposite and tries to reconstruct the original data from the
given compressed representation with minimal loss.

Finally, the author claims that although minimizing the reconstruction loss does not
explicitly preserve the similarity between samples, the reconstruction criterion can
smoothly capture the data manifolds and thus preserve the similarity between samples.

Moreover, because real-world networks often contain a vast amount of unobserved edges,
an auto-encoder may not create appropriate embeddings, unless modifications are applied.
The goal is to archive minimal loss by prioritizing the existing links. Consequently, the
author proposes to impose an additional penalty cost to the reconstruction error of the
non-zero elements than that of zero elements. The resulting objective function is shown
as follows:

L2nd =
N∑
i=1
||(x̂i − xi)� bi||22 = ||(X̂ −X)�B||2F (2.26)

where L defines the loss of the auto-encoder, which tends to predict x̂i with edge weights
from node i from the weight matrixW as xi; � stands for Hadamard product for matrices,
and b is defined as follows:

bi =

1 if wij = 0;

β if wij > 0.
(2.27)
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Considering the modifications made to the proposed unsupervised component, it is
now able to capture the global network structure by reconstructing the second-order
proximity between nodes. However, it is insufficient to capture the global network
structure alone, so, the author proposes a supervised component to capture the local
structure of the network additionally. The loss function of the supervised component
is defined as follows:

L1st =
n∑

i,j=1
si,j ||(y(K)

i − (y(K)
j )||22 =

n∑
i,j=1

si,j ||(yi − yj)||22 (2.28)

To define the objective function in Equation (2.28), the author borrows an idea from
Laplacian Eigenmaps [24], which applies a penalty to similar nodes that appear to be far
off in the embedding space. Finally, the first-order proximity is preserved by incorporating
the idea in the deep model.

The semi-supervised deep model architecture shown in Figure 2.15 eventually represents
a combination of supervised and unsupervised models and is defined by the following
loss function:

Lmix = L2nd + αL1st + vLreg

= ||(X̂ −X)�B||2F + α
n∑

i,j=1
si,j ||(yi − yj)||22 + vLreg

(2.29)

where Lreg represents an L2−norm regularizer that prevent over fitting which is defined
below:

Lreg = 1
2

K∑
k=1

(||W (k)||2F + ||Ŵ (k)||2F ) (2.30)

where K is the amount of network layers of the encoder or decoder andW (k),Ŵ (k) are the
parameters of the network in the kth layer. Recall, that ||A||F is the Frobenius norm20.

Furthermore, the author claims that the model suffers from local optima in the parameter
space due to the high non-linearity of the model. And in order to address this issue, the
author resorts to utilize Deep Belief Network proposed by Hinton et al. [33] to initially
pretrain the parameters. Finally, the algorithm of the semi-supervised model can be
described as follows:

20Frobenius Norm: https://www.sciencedirect.com/topics/engineering/frobenius-norm

https://www.sciencedirect.com/topics/engineering/frobenius-norm
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Figure 2.15: The architecture of the semi-supervised model of SDNE – Figure 2 of
Hinton et al. [33]

Algorithm 2.3 Training Algorithm for the semi-supervised deep model of SDNE
Input: the network G = (V,E) with adjacency matrix S,

the parameters α and v
Output: Network representations Y and updated Parameters: θ

1: Pretrain the model through deep belief network to obtain
the initialized parameters θ = {θ(1), ..., θ(K)}

2: X = S.
3: repeat
4: Based on parameters X and θ, obtain X̂ and Y = Y K .
5: Compute the loss function: Lmix = L2nd + αL1st + vLreg.
6: Back-propagate through the entire network to get updated parameters θ.
7: until Convergence
8: Obtain the network representations Y = Y (K)

2.3.4 Other approaches

Furthermore, we will highlight an additional approach that doesn’t fall into any class of
the taxonomy but is still suitable for our purposes.

2.3.5 Conclusion

Throughout this chapter, we have described common graph embedding approaches with
several representative algorithms for each approach. We can conclude that each model is
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unique and attempts to improve the process of creating graph embeddings in different
aspects.

First, we presented two factorization-based approaches, namely Locally Linear Embedding
and Laplacian Eigenmaps, where both methods attempt to employ numerical methods
of adjacency matrix decomposition. Secondly, we described random walk based methods,
namely node2vec, APP and DeepWalk, which heavily rely on the NLP Skip-Gram model.
Finally, we introduced a deep learning based approach SDNE, which incorporates a deep
auto-encoder in its architecture.





Chapter 3

Implementation

In this chapter, we introduce unsupervised random walk methods based on the unifying
framework described in Khosla et al. [35]. We will analyze currently available approaches
and propose improvements in accordance with recent studies in the field of deep learning.
Finally, we will describe our approach of creating latent representations for unweighted
graphs and dive deeper into the implementation part describing the algorithms. In an
attempt to clearly present the implementation details for both APP and DeepWalk
models, we will describe each of them in a separate section of this chapter.

3.1 Method modifications

In this section, we will describe how we intend to reduce the time complexity of such graph
embedding methods as APP and DeepWalk. We will present our suggested modifications
for these methods as well as reason about our hypothesis.

3.1.1 APP

The simulation of a random walk, or more generally a Markov chain, is a fundamental
algorithmic paradigm in generating training data for many proposed graph representation
learning approaches Tang et al. [20], Perozzi et al. [29], Tsitsulin et al. [36], Zhou et
al. [37], Grover and Leskovec [31]. Random walks sample vertices from a given vertex
neighborhood, local and global, to collect training data for downstream training of
node embeddings. A standard procedure is to initiate multiple random walks from each
neighborhood to explore their neighborhoods. Consequently, vertices are sampled from
each random walk as context vertices. Most of the unsupervised approaches then use the
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source-context vertex pairs as training data for learning source vertex representation or
embedding, including APP.

Given a graph G = (V,E), we are interested in learning low dimensional representations
of each node v ∈ V such that similar nodes in V are embedded closer. We call C as the
context graph and for each edge (u, v) ∈ E′, v is called the context of node u. Let C
denote the corresponding adjacency matrix of C with ci,j denoting (i, j)th element in C.
For an edge (u, v) ∈ E′, we call u as the source node and v its context.

As each node can be a source or a context of some other node, we denote the source and
context representations of nodes in C by Φ ∈ R|v| × Rd and θ ∈ R|v| × Rd respectively.
For any node vi, Φi and θi represent respectively its d-dimensional source and context
vectors (representations). We are then interested in learning Φ and θ while minimizing
the following loss function:

J = −
∑
i,j

ci,j · f(Φi, θj) (3.1)

where, f is monotonically increasing in Φi, θj .

We recall that by our construction, for any two dissimilar nodes, i, j, ci,j = −1. This
imposes an additional constraint on the embedding vectors such that embedding vectors’
corresponding dot product is minimized for dissimilar nodes. Note that by minimizing
the loss function in Equation 3.1, a vertex (in its source representation) will be embedded
closer to its context (in its context representation); and, therefore, two vertices sharing
the same context will be embedded closer (in their source representations) by transitivity.

Generally, we implement a novel approach to random walk sampling. We are achieving
the effect of multiple random walks in a single one with the help of the Breadth-First
Search algorithm, that simultaneously generates context pairs while traversing the graph.

Furthermore, we will present the algorithm in the form of a pseudo-code to clearly convey
our hypothesis.

Given a network G(V,E), budget γ and termination factor ε as input to the modified
APP Algorithm 3.1 we initially perform a uniform permutation of the vertices V and
initiate a queue Q with the a single vertex v1, where v1 ∈ O. Consequently, the algorithm
performs a RandomWalk sampling for every vs ∈ V , where vs denotes the source node of
a random walk procedure.

In Algorithm 3.2 a random walk sampling procedure starts with retrieving the first
element v0 of the queue Q and proceeds to obtain its neighbors Nvi . In line 4 the
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Algorithm 3.1 Modified-APP(G, ε, γ)
Input: Network Graph: G(V,E)

Budget: γ
Termination Factor: ε

Output: Context Graph → C
1: O = Shuffle(V )
2: Q = Queue(Ov)
3: for vs ∈ O do
4: Cvs = RandomWalk(G, ε, γ)
5: end for

Algorithm 3.2 RandomWalk(G, ε, γ)
1: while Q 6= ∅ do
2: v0 = Pop(Q)
3: Nvi = GetNeighbors(v0)
4: γn =

⌊
γ
Nv0

⌋
5: for ni ∈ Nv0 do
6: γt→ni = γn + Select( γ−γn

|N−(t)|)
7: Pni = bε · γt→nic
8: Pairs(ni)← (vs, ni, Pni)
9: if rand < ε then

10: Q = Queue(ni)
11: end if
12: end for
13: end while

algorithm computes the budget γn that is to be shared between neighboring nodes of
node v0. In line 7 the algorithm estimates the probability Pni that the random walk
would be terminated at node ni. Consequently, for every neighbor ni in the set of
neighbors Nv0 we compute context pairs Pairs(ni) given a start node vs and a target
node ni. Finally, node vi is appended to the queue Q if the termination factor ε is grater
than a uniformly sampled value rand. The procedure then repeats itself while Q 6= ∅.

3.1.2 DeepWalk

Deep Walk [29] uses local information obtained from truncated random walks to learn
latent representations by treating walks as the equivalent of sentences. Deep Walk
consists of three sequential stages that are performed to build latent representations of a
graph.

• Random walk generation. Given a graph G, the random walk generator samples
uniformly a random vertex vi as the start node of the random walk Wvi and then
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uniformly traverses the graph through neighboring nodes until a predefined length
is reached.

• Skip-Gram Slides a window of length 2w + 1 over the random walk Wvi mapping
the central vertex v1 to its representation Φ(v1).

• Hierarchical Softmax. Applies Hierarchical Softmax as the output activation
function.

In this thesis work, we focused on devising an algorithm that would synchronize ran-
dom walk generation and skip-gram operation into one unit, potentially improving the
algorithm’s time complexity.

Furthermore, we will present the main components of our approach in the form of
pseudo-code. We will additionally show several variants of our approach and describe
their advantages.

Algorithm 3.3 Modified-DeepWalk(G,w, γ, t)
Input: Network Graph: G(V,E)

Budget: γ
Walk Length: t
Window Size: w

Output: Context Graph → C
1: O = Shuffle(V )
2: Q = Queue(v1)
3: for vs ∈ O do
4: Cvs = RandomWalk(G, γ, t, w)
5: end for

Algorithm 3.4 RandomWalk(G, γ, t, w)
1: while Q 6= ∅ do
2: v0 = Pop(Q)
3: Nvi = GetNeighbors(v0)
4: γn =

⌊
γ

Nv0−(t)

⌋
5: for ni ∈ Nv do
6: Wni = Window(vs, ni, w, γn)
7: Cni = UpdateContextGraph(Wni)
8: Q = Queue(ni)
9: end for

10: end while

In Algorithm 3.3 we represent a process of building a context graph with the means
of short truncated random walks, namely called random walk generator. In lines 1-5,
we show the main part of the algorithm. First, we create a randomly permuted set of
nodes O and a queue Q needed for the BFS graph traversal technique. The loop runs a
RandomWalk for each node in the set given the parameters γ, t, w as input.
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In Algorithm 3.4, we showcase the core part of the random walk procedure. While the
queue Q is not empty, we pop the first node, query its neighbors and compute the budget
bn that is to be shared between them. Furthermore, for every neighbor ni we construct
a window Wni with the given parameters of window size w, neighbor itself ni and the
budget for this neighbor bn. The method UpdateContextGraph generates the context
pairs in a similar way to Skip-Gram 3.1.2 given the source node vs, a target node ni,
window size w and the budget γn. Finally, according to BFS, the neighbor node ni is
appended to the end of the queue Q, assuming that the walk length t is not reached and
the random walk traversal repeats itself while Q 6= ∅.

3.1.3 Approximated DeepWalk

In Algorithm 3.5, we describe our approach to approximate the algorithm for the purpose
of performance improvements. The algorithm for the approximated version remains to
be as we described in Algorithms 3.3 3.4 except for the added sampling functionality.

The main idea of is that every edge in the network maintains a local network of its
neighborhood, obtained either from a truncated random walk or being sampled from other
nodes. We intend to bypass a random walk assuming that there is a possibility to sample
the context pairs for node ni from local storage of another node Svi encountered while
traversing the network. While this approach does not guarantee a better classification
accuracy, it significantly improves the running time of the algorithm.

Algorithm 3.5 Sample(Svi , vi)
Input: Local Storage: Svi , Vertex vi
Output: Context Pairs: Cvi

1: if vi ∈ S then
2: Cvi ← Uniformly sample context pairs from: Svi

3: Svi ← UpdateLocalStorage(Cvi)
4: end if

3.1.4 Parallelized DeepWalk

In an attempt to explore potential performance improvements, we incorporate paral-
lelization into our algorithm. The algorithm for the parallelized version remains to be as
we described in Algorithms 3.3 3.4 except for the added parallelization functionality.

Since every node v ∈ G requires a separate random walk to be performed, the graph
exploration part can be relatively easily implemented with a synchronous version using
multi-threading. In Algorithm 3.6 we initially specify the amount of threads we intend
to use. Then given a the network G to the starmap function of the multiprocessing
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library the algorithm executes the DeepWalk function for each node v ∈ G in a iterable.
The item is sent to the function as a parameter. Finally, the starmap function maps the
generated output Cv of each thread and combines it together into a Context Graph C .

Algorithm 3.6 Parallelize(T,G,w, γ, t)
Input: Number of threads: T

Network Graph: G(V,E)
Budget: γ
Walk Length: t
Window Size: w

Output: Context Graph → C
1: p = Pool(T )
2: C = p.starmap(DeepWalk,G)



Chapter 4

Evaluation and Experimental Setup

In the following chapter we will experimentally evaluate the performance of the proposed
adjusted models to prove the effectiveness of our modifications. We will first present
the running times of our algorithms and then evaluate their performance for the Node
recommendation and Multi-label classification tasks on several open-source datasets that
contain millions of nodes. Moreover, we will provide the potential users of our algorithms
with a detailed technical documentation that contains the necessary installation and
setup manuals for different supported environments.

4.1 Data-sets

In this section, we will give a brief overview of the datasets used within our project.
Since we mainly focus on representing unweighted graphs, all of the evaluated data
sets are undirected, unweighted graphs. We will demonstrate the performance of our
algorithms on several multi-label network classification tasks of such social networks as
Flickr, Youtube, and BlogCatalog.

Name BlogCatalog Flickr YouTube
|V| 10,312 80,513 1,138,499
|E| 333,983 5,899,882 2,990,443
|y| 39 195 47

Labels Interests Groups Groups

Table 4.1: Graphs used within our experiments

An overview of the graphs we consider in our experiments is given in Table 4.1.
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• Arxiv [38] represents a collaboration network generated from the w-print arXiv,
where the nodes are the authors of the papers and the edges represent cooperations
between different authors.

• Amazon [38] dataset represents products and co-purchasing relation between
products. The original Amazon graph to an undirected graph to represent the
co-purchasing relation in a symmetric manner.

• BlogCatalog [38] dataset represents a social relationships network presented by
blogger authors. The labels represent the topic categories given by the authors.

• Flickr [39] dataset represents a network of contacts between users of the photo-
sharing platform. Labels are represented as different interest groups.

• Youtube [40] dataset represents a social network users of the popular online
video-sharing platform. The labels represent groups of users that are interested in
similar video genres (e.g., soccer, video games).

4.2 Performance Evaluation

We run our experiments on a distributed system cluster1. A distributed systems cluster
is a group of machines that are virtually or geographically separated, and that work
together to provide the same service or application to clients. The hardware is managed
by the Linux operating system and consists of multiple processors(80) with a 2.5 GHz
frequency that can operate independently on shared memory.

4.2.1 Embedding generation

In order to estimate the influence of our modifications on the APP and DeepWalk
algorithms, we will attempt to reconstruct the graphs with both algorithms, original
and modified. Since we perform multiple simultaneous random walks that continuously
generates context pairs, the modified versions should have a running time advantage.

In order to certify our hypothesis, we have conducted the multiple experiments with
equivalent learning parameters, such as budget, walk length, and alpha parameter, to
produce latent representations of three different social network datasets.

In Tables (4.2) (4.3) (4.4) (4.5) we present the modified and original algorithms’ running
time measurements in the following format HH:MM:SS.SSS, with different dimensions to

1Distributed system cluster: https://en.wikipedia.org/wiki/Computer_cluster

https://en.wikipedia.org/wiki/Computer_cluster
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highlight the performance improvements. We have repeated the experiments ten times
with various random number generator seeds and averaged the running time for each
method variation. The presented result validates the effectiveness and efficiency of the
proposed modifications to the APP algorithm. We can state that the modified APP
indeed has a better time complexity.

Dataset Dimensions Algorithm Random Walk Training Total Duration
BlogCatalog 64 Original 00:00:19.22 00:00:00.36 00:00:19.58

Modified 00:00:00.88 00:00:00.33 00:00:01.21
128 Original 00:00:20.22 00:00:00.44 00:00:20.66

Modified 00:00:01.11 00:00:00.43 00:00:01.54
Flickr 64 Original 00:02:23 00:00:02 00:02:26

Modified 00:00:22 00:00:01.64 00:00:24.61
128 Original 00:03:09 00:00:04 00:03:13

Modified 00:00:24 00:00:03 00:00:28
Youtube 64 Original 00:48:37 00:02:04 00:50:41

Modified 00:25:53 00:02:18 00:28:11
128 Original 00:53:38 00:03:18 00:56:56

Modified 00:28:35 00:03:16 00:31:51

Table 4.2: Running time measurements of the APP algorithm in embedding generation
task, Undirected graphs

Dataset Dimensions Algorithm Total Duration
BlogCatalog 64 Original 00:25:31

Modified 00:28:41
Flickr 64 Original 05:52:22

Modified 06:33:51
Youtube 64 Original 51:03:14

Modified 49:13:44

Table 4.3: Running time measurements of the DeepWalk algorithm in embedding
generation task, Undirected graphs

Dataset Dimensions Algorithm Total Duration
BlogCatalog 64 Original 00:25:31

Modified 00:20:21
Flickr 64 Original 05:52:22

Modified 03:14:51
Youtube 64 Original 51:03:14

Modified 34:13:44

Table 4.4: Running time measurements of the approximated DeepWalk algorithm in
embedding generation task, Undirected graphs
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Dataset Dimensions Algorithm Total Duration
BlogCatalog 64 Original 00:25:31

Modified 00:18:41
Flickr 64 Original 05:52:22

Modified 03:31:55
Youtube 64 Original 51:03:14

Modified 29:51:01

Table 4.5: Running time measurements of the parallelized DeepWalk algorithm in
embedding generation task

4.2.2 Node recommendation with APP

APP tends to outperform traditional methods such as Deepwalk, Line and Node2Vec in
node recommendation task, which demonstrated the advantage of preserving asymmetric
and higher order proximity. In order to create personalized service like product recom-
mendation it is necessary to calculate the top-k feasible candidates for every individual
user. Hence, we evaluate the performance of the APP in node recommendation task and
present the results in Table (4.6). For experimentation purposes we separate a small
fraction of the dataset to create a test set, and use the rest as a training corpus. We
evaluate the methods for recommendation tasks with Precision@k and Recall@k metrics.

Dataset Algorithm P@10 R@10 P@20 R@20 P@50 R@50
Amazon Original 0.091 0.655 0.057 0.82 0.026 0.922

Modified 0.098 0.649 0.061 0.809 0.028 0.91
Arxiv Original 0.124 0.701 0.069 0.831 0.034 0.969

Modified 0.128 0.69 0.07 0.829 0.036 0.955

Table 4.6: Precision and Recall for top-k Node Recommendation with APP, Undirected
Graphs

4.2.3 Multi-label node classification with Deepwalk

Multi-label node classification is considered to be an essential task to estimate the
effectiveness of a graph embedding. For the evaluation purpose we randomly select 10%
to 90% of the nodes as training data and use the remaining part for tests. To verify that
we did not significantly decrease the models accuracy we run the evaluation for ten times
and provide the results in Tables (4.7) (4.8) (4.9). We also perform the evaluations on
the embeddings created with the original algorithm and combine them with our results to
facilitate comparison. The measured F1 scores are indeed close to the original algorithm
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which proves that our modifications retain initial classification accuracy and improves
the time complexity.

Dataset Metric Algorithm 10% 30% 50% 70% 90%
BlogCatalog Micro-F1 (%) Original 36.00 39.60 41.00 41.50 42.00

Modified 35.91 39.64 41.21 41.43 41.89
Macro-F1 (%) Original 21.30 25.30 27.30 27.90 28.90

Modified 21.29 25.33 27.41 27.99 28.91
Flickr Micro-F1 (%) Original 32.4 35.9 37.2 38.1 38.5

Modified 32.44 35.88 37.33 38.08 38.6
Macro-F1 (%) Original 14.0 19.6 22.1 23.6 24.6

Modified 14.7 19.5 21.91 23.55 25.01
Youtube Micro-F1 (%) Original 37.95 40.08 41.32 42.12 42.78

Modified 37.88 40.11 41.3 42.21 42.88
Macro-F1 (%) Original 29.22 33.06 34.35 34.96 35.42

Modified 29.31 33.11 34.3 34.91 35.58

Table 4.7: Evaluation of the learned embeddings with DeepWalk on a multi-label node
classification task.

Dataset Metric Algorithm 10% 30% 50% 70% 90%
BlogCatalog Micro-F1 (%) Original 36.00 39.60 41.00 41.50 42.00

Modified 35.11 37.88 39.21 39.41 40.07
Macro-F1 (%) Original 21.30 25.30 27.30 27.90 28.90

Modified 19.82 23.91 26.1 25.72 26.53
Flickr Micro-F1 (%) Original 32.4 35.9 37.2 38.1 38.5

Modified 30.11 33.8 36.09 36.51 36.98
Macro-F1 (%) Original 14.0 19.6 22.1 23.6 24.6

Modified 12.4 17.81 20.94 22.05 22.87
Youtube Micro-F1 (%) Original 37.95 40.08 41.32 42.12 42.78

Modified 35.65 37.84 38.6 39.41 40.1
Macro-F1 (%) Original 29.22 33.06 34.35 34.96 35.42

Modified 28.12 31.8 32.44 32.89 33.6

Table 4.8: Evaluation of the learned embeddings with approximated Deepwalk on a
multi-label node classification task

4.2.4 Discussion

In this section, we will discuss the presented evaluation results and reason about the
effectiveness of our modifications.

First, we can state that our modified APP algorithm indeed has a significantly lower
running time in embedding generation task compared to the original algorithm (4.2). We
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Dataset Metric Algorithm 10% 30% 50% 70% 90%
BlogCatalog Micro-F1 (%) Original 36.00 39.60 41.00 41.50 42.00

Modified 35.78 39.41 41.1 41.53 42.31
Macro-F1 (%) Original 21.3 25.30 27.3 27.9 28.9

Modified 21.4 25.41 27.22 27.97 29.02
Flickr Micro-F1 (%) Original 32.4 35.9 37.2 38.1 38.5

Modified 32.46 36.07 37.2 38.14 38.39
Macro-F1 (%) Original 14.0 19.6 22.1 23.6 24.6

Modified 14.1 19.22 21.87 23.45 24.57
Youtube Micro-F1 (%) Original 37.95 40.08 41.32 42.12 42.78

Modified 38.4 40.46 41.5 42.6 42.97
Macro-F1 (%) Original 29.22 33.06 34.35 34.96 35.42

Modified 30.07 33.1 34.87 35.21 35.72

Table 4.9: Evaluation of the learned embeddings with paralellized Deepwalk on a
multi-label node classification task. Four threads

conclude that these modifications did not considerably affect the precision of the node
recommendation task (4.6).

Furthermore, the evaluations of the modified DeepWalk (4.3) algorithm indicate that our
modifications slightly increased the running time for BlogCatalog and Flickr datasets.
However, we notice that for larger graphs like Youtube the modifications tend to have
a positive effect. While there may be several possible explanations for this result, one
possible reason is that numpy library widely used within our script generally performs
better on large data quantities than the built-in Python’s list constructor. Despite the
running time differences, we conclude that the multi-label classification accuracy (4.7)
remains generally close to each other.

Additionally, our attempt to approximate the random walk procedure of DeepWalk’s
algorithm shows a decent improvement in running time (4.4), however, this comes with a
price of a slight decrease in precision values Micro-F1 and Macro-F1 (4.8) for multi-label
node classification task.

Finally, we state that the parallelization of our approach to random walk sampling
procedure resulted in an improved overall running time of the algorithm (4.5) and
maintains the initial DeepWalk’s precision values (4.9).

4.3 Technical Documentation

In order to dive deeper into the implementation details, we first describe the libraries
and frameworks used within this project. Secondly, we describe the modules of the
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application and its functionality. Finally, we present our implementation.

4.3.1 Programming Languages and Libraries

The primary programming language used throughout this project is Python (v3.6.7).
However, we additionally attempt to implement our application in a low-level language
such as C++ for performance purposes.

• Gensim2 Gensim is a NLP package for topic modelling, document indexing and
similarity retrieval.

• NumPy3 In order to work with homogeneous arrays we have incorporated a widely
used python library Numpy 2 (v 1.16.3). Numpy is written in C, which is a low-level
language that makes it very fast for mathematical operations.

• Networkx4 is a package for performing a variety of operations on complex networks,
including loading the networks, storing edge weights, studying their structure,
dynamics, and functions.

• Matplotlib5 an extensive library for creating statically animated and interactive
visualizations in Python, used to create all charts within this project.

• Multiprocessing6 a library that provides both local and remote concurrency,
avoiding the Global Interpreter Lock with the means of sub-processes. It is used
within this thesis to run the application in multiple threads, consequently improving
the running time of the application.

4.3.2 Functional Interface

In this section, we will present the functional interface that our models have in com-
mon. Hence we will briefly describe the individual functions of the models and their
functionality.

• Edge List Parser. This function loads the edge list dataset represented as source
node id, target node id, and transforms it into a suitable format for embedding
generation.

2Gensim: https://radimrehurek.com/gensim/
3NumPy: https://numpy.org/
4Networkx: https://networkx.github.io/
5Matplotlib: https://matplotlib.org/
6Multiprocessing: https://docs.python.org/2/library/multiprocessing.html

https://radimrehurek.com/gensim/
https://numpy.org/
https://networkx.github.io/
https://matplotlib.org/
https://docs.python.org/2/library/multiprocessing.html
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• Random Walk. This function provides the random walk functionality. Given a
start node s as input along with restart parameter ε and the walk length l, the
algorithm proceeds to traverse the graph in a BFS fashion simultaneously producing
the context pairs.

• Approximation. This function provides the approximation ability to the algo-
rithm by enabling the sampling procedure.

• Miscellaneous. Contains all sorts of small helper functions required for the
algorithm execution.

– Store context pair. Provides the functionality to store the generated context
pairs into a dictionary format.

– Display measurements. Provides measurements necessary to estimate the
performance of a specific execution.

– Write to file. This function writes the generated context pairs into an txt file
format suitable for machine learning algorithms that create graph embeddings.

4.3.3 Dependencies

The required dependencies for this project are handled with pip (v20.1.1) dependencies.txt
file, which is located at the root of the project. We will provide a full description on how
to handle the dependencies and run the models later in this chapter.

4.3.4 Installation

All provided commands should be launched from Linux BASH, GIT BASH or Win-
dows Subsystem for Linux. All scripts should be executed from the project root.
The scripts can be found on the project’s github page7.

1. Install requirements:

• python v3.6 with pip

• pipenv

• g++

2. Install dependencies:

$ pipenv install --dependencies
7Scaling Network Embeddings: https://github.com/vladmaksyk/Scaling-Network-Embeddings

https://www.python.org/downloads/
https://pypi.org/project/pipenv/
https://osdn.net/projects/mingw/releases/
https://github.com/vladmaksyk/Scaling-Network-Embeddings
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4.3.5 Running the models

Modified APP

In order to launch the APP model we first need to generate the executable files. This is
done with the following command:

$ cd APP-Modified

$ make

Command line interface

The parameters of the script can be displayed by directly calling the execution file.
Notice that not specifying some of the parameters will result in default values for the
corresponding parameter.

$ ./cli/app

Some of the most important arguments of the script are shown below:

• -train<string> Train the Network data;

• -save<string> Save the Embedding;

• -dimensions<int> Dimension of vertex representation; default equals to 64;

• -undirected<int> Specify whether the graph is directed;

• -window_size<int> Size of skip-gram window;

• -walk_times<int> Amount of walks from the start vertex;

• -walk_steps<int> Train the Network data;

• -threads <int> Number of training threads;

• -alpha<int> Learning rate;

An example of the script usage:

$ cd APP-Modified

$ ./cli/app -train example.txt -save embeddings.txt

-undirected 1 -dimensions 64 -walk_times 10 -walk_steps 40

-window_size 10 -alpha 0.025 -threads 1
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Modified DeepWalk

For simplicity, we have combined all three variations of our modified DeepWalk algorithms
into one script.

• Exact

• Approximate

• Parallelized

The user can switch between the version with the use of command line arguments
described below.

Command line interface

Some of the most important arguments of the script are shown below:

• -type<string> Variation of DeepWalk

– exact

– approximate

– parallelized

• -format<string> Format of the network dataset;

– mat

– edgelist

• -input<string> Input dataset;

• -number_walks<int> Amount of walks from the start vertex;

• -representation-size<int> Dimension of vertex representation;

• -walk-length<int> Length of a walk in nodes;

• -window_size<int> Size of skip-gram window;

• -workers <int> Number of training threads;

• -output<string> Save generated embeddings;

An example of the script usage:
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$ cd DeepWalk-Modified

$ ./src/deepwalk --type approximate --format edgelist

--input example.txt --number-walks 80

--representation-size 64 --walk-length 40 --window-size 10

--workers 1 --output example.embeddings
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Conclusion and Future Work

5.1 Conclusion

Throughout this thesis work, we have performed research on the currently available
approaches to creating latent representations of undirected unweighted graphs. In
accordance with the recent progress in the field of deep learning, we successfully attempted
to improve the time complexity of such methods as APP and Deepwalk while retaining
their initial accuracy for advanced analytical tasks such as node recommendation and
multi-label node classification.

Firstly, we introduced the reader to the conventional methods of graph representation,
such as adjacency matrices, adjacency lists, and lists of edges. Consequently, we described
the main principle behind the concept of creating graph embeddings, that intend to
obtain the graph structure by creating a graph vector Φ(v) ∈ Rd for every node v in the
graph G, such that d << |V |, and thus generate appropriate input that can be used for
further processing by different machine learning models.

Later, we concentrated on the real-world networks that tend to have missing links. This
problem prompted our focus on capturing both local and global roles of a specific node
in the graph, with the means of first and second-order proximities.

Furthermore, we provided a detailed description of currently available methods for graph
embeddings generation. First, we introduced the reader to the factorization based
approach Laplacian Eigenmaps. Secondly, we described random walk based methods
DeepWalk, Node2Vec, and APP, and, finally, we presented a deep-learning-based approach
SDNE. We analyzed the underlying structure for each of the described approached and
presented a detailed description of the graph embeddings learning process.
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Subsequently, we described our contribution within this thesis work. Particularly, we
describe the improvements made to the APP and DeepWalk algorithms. By introducing
a novel approach of random walk sampling we archived as decent enhancement in the
running times of the algorithms.

We then perform an extensive evaluation of both the original and modified algorithms
on various social network datasets. First, we estimated the embedding generation
running times of each algorithm an presented the results in a convenient for comparison
format. Secondly, we evaluated the performance of the modified APP algorithm on the
node recommendation task with appropriate metrics such as Precision@k and Recall@k.
Thirdly, we conducted multiple experiments with various DeepWalk modification on the
multi-label node classification task and measured the accuracy with F1 score. Finally,
we provided the potential users of our software with useful technical documentation that
contains detailed setup manual.

5.2 Future Work

Nevertheless, since most of the conventional methods focus on creating embeddings
with undirected graphs, we thus have not attempted to create latent representations
for directed graphs. Consequently, we consider adding this capability to our methods
as potential future work. Another possible modification is to add distributed message-
passing functionality to our algorithms. This functionality enables parallelization between
different machines as a sequence improving the scalability of the algorithms.
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