| FACULTY OF SCIENCE AND TECHNOLOGY |
| :--- | :--- |
| MASTER'S THESIS |
| Study programme/specialisation: |
| Industrial Economics |
| Stavanger |

University of Stavanger
Stavanger, Spring 2020

Universitetet
i Stavanger

Price transmission

Price transmission from Norwegian export to German and Spanish market for salmon products

Syed Mohsin Raza

Supervisor: Frank Asche

Master thesis, Industrial Economics
University of Stavanger

Acknowledgements

I would like to thank my supervisor Prof. Frank Asche for the generous advice and help during the defining process and the performing of this thesis. Learning about price transmission and the ways to analyse this has been challenging and fun to learn, but has been easier with the help of Frank. I would also like to thank Ruth Pincinato for helping me with the analyis in stata.

Thanks to Norwegian Seafood Council for making the data available for this analysis thesis. This helped making the thesis much easier and the analysis clear.

Finally I would like to thank friends and family for their love and support during the writing of the thesis. Without them this period would be a lot harder.

I sincerely appreciate everyone involved in this thesis directly as Frank Asche, Norwegian seafood council and Ruth Pincinato, and the indirect involvement of friends and family through support.

University of Stavanger
Stavanger, June 2020

Syed Mohsin Raza

Abstract

This thesis analyzes the price transmission from Norwegian export of salmon to retail products in Germany and Spain. The thesis shows the relationship between the export prices and the retail prices as well as the degree of the relationship. With export of salmon and the sale at retail level we are looking at the beginning and the end of the supply chain. In between these supply chain levels the price is transmitted and at some levels the transmission decreases. This means that for several reasons the price transmission not always is complete from export to retail. This thesis focuses on the relationship between the export and retail as well as testing for other factors that can help us understand the potential patterns and differences in different product categories. It is also studied for potential patterns and differences in prepacked and non-prepacked salmon products. The assumptions made before the analyses was that the price transmission would decrease as the processing increased.

The results from the analyses show that there is a relationship between the export and retail price for some of the product categories. While some had no relationship. This shows that the salmon markets in Germany and Spain are different for the product categories. The markets change over time and these results may be very different in a few years. However, for the time being there were not enough relationships for us to be able to uncover the potential patterns mentioned.

For the prepacked and non-prepacked salmon the results show that the price transmission is higher for the non-prepacked salmon compared to the prepacked salmon. This can be explained by the fact that the non-prepacked salmon product that is bought are packed at the retail level removing the packing step from the supply chain.

Keywords - Price transmission, Markets, Time series econometrics, cointegration analysis

Contents

1 Introduction 1
1.1 Problem definition 2
2 Theory 3
3 Data 7
3.1 German Data 7
3.1.1 Export to German Market 7
3.1.2 German Salmon Market 7
3.2 Spanish Data 9
3.2.1 Export to Spanish Market 9
3.2.2 Spanish Salmon Market 9
3.3 Comparison of German and Spanish market 11
4 Methodology 14
4.1 Time series econometrics 14
4.1.1 Regression 14
4.1.2 Stationarity 14
4.2 Cointegration 17
4.3 Vector Error Correction Model 19
5 Empirical Results 20
5.1 Empirical results for Germany 20
5.1.1 Descriptive statistics Germany 20
5.1.2 Price transmission Germany 24
5.2 Empirical results for Spain 27
5.2.1 Descriptive statistics Spain 27
5.2.2 Price transmission analysis Spain 29
6 Discussion 32
7 Conclusion 34
References 37
List of Figures
2.1 Demand for smoked salmon 4
2.2 Demand for fresh whole salmon 4
2.3 Supply of smoked salmon 4
2.4 Supply of fresh whole salmon 4
2.5 Graph of marketing margin 5
3.1 Volume pie chart Germany 8
3.2 Value pie chart Germany 8
3.3 Volume pie chart PP vs. NPP Germany 9
3.4 Value pie chart PP vs. NPP Germany 9
3.5 Volume pie chart Spain 10
3.6 Value pie chart Spain 10
3.7 Volume pie chart PP vs. NPP Spain 10
3.8 Value pie chart PP vs. NPP Spain 10
3.9 Volume exported to Germany and Spain 11
3.10 Export price in euro to Germany and Spain 11
3.11 Comparison of Germany and Spain 12
4.1 Graph of variable transformed 16
5.1 Graph of mean-reverting data 22
5.2 Graph of mean-reverting data 28
List of Tables
5.1 Descriptive statistics for Germany 21
5.2 ADF-test for Germany 23
5.3 Johansen test for Germany 25
5.4 VECM estimates for Germany 26
5.5 VECM cointegrating equations for Germany 26
5.6 Descriptive statistics for Germany 27
5.7 ADF-test for Spain 29
5.8 Johansen test for Spain 30
5.9 VECM estimates for Spain 31
5.10 VECM cointegrating equations for Spain 31

1 Introduction

The seafood export has seen an increase in the last 30-40 years. Decreasing costs on transportation and effectiveness in logistics have given the seafood industry more possibilities than before. With effective transportation, producers have the option to sell fresh seafood across the globe. All levels in the supply chain have seen this increase in effectiveness. Simultaneously supermarkets have replaced fish markets and fishmongers. The supply of seafood increased from 71.7 million metric tons in 1976 to 159.9 million metric tons in 2006, doubling the seafood supply. At the same time the share of aquaculture increased where wild fish was the main source of supply.(Anderson et al., 2010)

While efficiency in production has increased for many years it has stagnated, and the growth in demand has been just as important factor to the increase in export of salmon as the production efficiency. Growth in export and demand has lead to increase in prices as well. The increase in export prices leads to a question of price transmission. There has been conducted several studies such as (Asche et al. 2011, Asche et al. 1999, Asche et al. 2007, Thong et al. 2019, Tveterås \& Asche 2008, and Tveterås et al. 2017) about price transmission for seafood. There is, however, still several aspects of price transmission and several other markets to analyze. These studies have been used as inspiration for writing the thesis and the methodology.

For our analysis we are looking at the prices in Germany and Spain. Two countries with different cuisines. Both countries being among the top 20 seafood consuming countries in the world. With Spain being the $5^{\text {th }}$ highest and Germany the $19^{\text {th }}$ (Norwegian seafood council, 2020). Naturally when speaking of Norwegian export of seafood, salmon stands out as a popular food. As these countries have different cuisines the retail products containing salmon will also be very different. Because of the variety the price transmission will also vary between the countries and each product category.

Going forward with the assumption of there being price transmission between the export price and the retail prices is natural as the salmon exported is in most cases the main or the most important ingredient in the products. For raw salmon sold in the countries we expect high degree of price transmission. While we expect less for products with more steps before the final products. We can rate the expectancy from natural salmon
having the highest, then smoked salmon, and finally having the lowest expected price transmission, prepared salmon. We expect less price transmission from export to products with more steps involved as all the steps between the final consumer and the producer has a cost that affects the final price on the retail product. The steps mentioned can be preparation of product, storage, packaging, market position, etc.

1.1 Problem definition

Using data for export prices and retail prices for products in Germany and Spain i will study the price transmission between these levels in the supply chain. In this study i will use the framework that has been set by earlier mentioned studies dedicated to price transmission analysis. The study will be done using econometric analysis tools set for time series data. The main focus will be on the cointegration between the export and retail prices. Because of non-stationarity issues we cannot rely on OLS regression alone and will have to use cointegration analysis to be able to come to an appropriate conclusion. We will in addition to a cointegration analysis do several other analyses that can strengthen our conclusion in some cases.

For the cointegration we will take use of the Johansen cointegration test. further we will test for the law of one price using the Johansen framework. Further tests will include a test for exogeneity and an ols regression to determine the price tranmission elasticity, or in other words how much the price change in export changes the price for retail products. The models will be estimated once more using a vector error correction model and compared with previous model.

The problem definition is: Conducting a price transmission analysis for Norwegian export prices to retail prices in Germany and Spain using econometric analyses.

In the next section i will go through some relevant price theory that sets up for our price transmission analysis of export to retail prices in Germany and Spain.

2 Theory

For this thesis the focus is price transmission. Price transmission is how a change in price in one part of the supply chain is transferred to another part of the supply chain. E.g. How an increase in export price impacts the price of a product bound to the exported commodity. In our case the commodity is whole fresh salmon and at the retail level it is several different salmon product categories.

To understand how there might be price transmission from whole fresh salmon to other parts of the supply chain we need to have a look at price theory. It is safe to assume that there is some degree of price transmission from salmon export prices and prices for salmon products, but this is not always the case as there may not be complete price transmission because of changes or inputs in to the products.

A large part of the price for a product at retail level depends on value added to the product. In our case this can range from just packing and shipping to fully developed meals containing salmon. We assume that the products sold with little to no value added will have a higher degree of price transmission from the export price to retail price than the products that have been heavily altered or prepared.

A starting point for this subject is demand and supply. Price transmission can be explained by looking at derived demand (Tomek \& Kaiser, 2014). Derived demand is similarly to consumer demand a downward sloping curve which instead of describing demand for a product. It tells us the demand for a product that another product depends on. An example of this is can be demand of salmon increasing because demand of salmon fillets increasing. The change can be illustrated with a simple demand graph with the demand for a farm level product, e.g. fresh whole Norwegian salmon, and the demand for retail level product, e.g. smoked salmon. When the demand for smoked salmon increases the demand curve will shift to the right increasing the price of the smoked salmon, and since you cannot make smoked salmon without fresh whole salmon the demand for fresh whole salmon also shift to the right.

Figure 2.1: Demand for smoked salmon

Figure 2.2: Demand for fresh whole salmon

Similarly to changes in demand, changes in supply can also affect the price. In the case of supply the changes there are several reasons as to why the supply would change. In our instance the most relevant would be because of increased costs at the production level. Increased costs at farm level would make the producers less eager to sell at the current price level shifting the supply curve to the left. Which gives us a higher price and a lower supply. And subsequently the prices at retail level would react accordingly and also shift to the left.

Figure 2.3: Supply of smoked salmon

Figure 2.4: Supply of fresh whole salmon

We assume that a firm would aim to maximize their profits. By using the profit
maximization we can find the demand and derived demand quantities. This gives the producer a base for the quantity they should produce at retail level and the amount of the commodity they need to buy. The equation can be given as per Tomek Kaiser. (2014):

$$
\begin{equation*}
\pi=P_{r} q_{r}-P_{f} q_{f}-P_{m} q_{m} \tag{2.1}
\end{equation*}
$$

P_{r} is the price for the retail product P_{f} is the price for the commodity and P_{m} is the price for other inputs to the product. The q's are the respective quantities. q_{r} can be given as a function of q_{f} and q_{m}. Giving us an updated equation 2.2. By partially derivating the equation for the the firm can find the optimal quantities.

$$
\begin{equation*}
\pi=P_{r} f\left(q_{f}, q_{m}\right)-P_{f} q_{f}-P_{m} q_{m} \tag{2.2}
\end{equation*}
$$

The quantity for the other variables q_{m} is called the marketing margin. Marketing margin is the cost of turning a commodity to a retail product is the range between the commodity price and the retail product price. This is shown visually in figure 2.3 . The demand is more volatile for commodities than for retail products. This is shown in equation 2.3.

Figure 2.5: Graph of marketing margin

The elasticity at retail level, given that the marketing margin M is constant, can be given as:

$$
\begin{equation*}
E_{r}=E_{f} \frac{P_{f}}{P_{r}} \tag{2.3}
\end{equation*}
$$

Here E_{r} is the elasticity at retail level. E_{f} is the elasticity at farm level, while P_{f} and P_{r} are prices at farm and retail level. Since the price at farm level is lower than the price at retail level the ratio of prices will be lower than one giving us a higher elasticity at farm level than retail level.

This is a simplified way of seeing the price transmission. We also have to consider reasons such as labour costs and production costs. For our analysis it is natural to focus on the value added to the product. We are looking to see if there is price transmission from export to retail and therefore the value added is more relevant than other reasons for demand change.

To find how the prices react to changes relative to one another we will use price transmission analysis tools. We will go through all the analyses that are required to get a better understanding of price transmission occurrence. OLS regression, and cointegration tests along with earlier mentioned tests will be used to determine price transmission from commodity to retail product.

3 Data

In this chapter i will review the data set i will use to do the analysis.
To be able to analyze the price transmission from the different stages of the supply chain it is important to have sufficient data. In this thesis i will use both volume and price to get an understanding and overview of the market, and use price per kilo to do the analysis. The data is provided by the Norwegian Seafood Council.

The data set contains export of salmon from Norway to Spain and Germany. Price and volume exported was divided in to months from year 2000 to year 2019. Another set of data contained natural, smoked and prepared salmon. The data also specifies if the product is frozen or fresh. This has data from 2005 to 2019. The price per kilo for the salmon was calculated by dividing the value of the export by the amount exported. The export price is converted from NOK to EUR for the sake of the analysis. The exchange rate used to convert NOK to EUR was 1 NOK $=0.087$ EUR per 15. April. 2020.

3.1 German Data

3.1.1 Export to German Market

The Norwegian export to Germany has shown a gradual growth going from 18.9 thousand tons in year 2000 to 37.7 thousand tons in year 2019. The value of the export went from 631 million NOK to 2.3 billion NOK from year 2000 to year 2019. Whole salmon is exported from Norway and the processing takes place in the recipients country, in this case, Germany. This is more profitable for Norwegian export as well as German retail market, because of high costs related to preparing salmon in Norway.

3.1.2 German Salmon Market

Total sales of salmon products in the German market in year 2019 was approximately 58.85 thousand tons in terms of volume with a value of 1.11 billion euros. The German retail salmon market data we have a variety of products which we can divide them in to three main parts: Natural, prepared and smoked salmon. Out of the options prepared salmon is the least favorite option, where smoked salmon and natural salmon dominates
with 93% of the volume and 94% of the value. The prepared salmon contains all salmon products that are not smoked or natural. This involves ready-made meals.

The data ranges like the export price data, from 2009 to 2019 with a monthly increment. In a comparison between the volume exported and value exported we can see how value is added to the salmon when it is smoked. Even though smoked salmon is 44% of the total volume of salmon products, the value of smoked salmon is 51% of the total value. For natural salmon the volume and value behaves in the opposite manner, while prepared is very similar in volume and value.

Figure 3.1: Volume pie chart Germany
Figure 3.2: Value pie chart Germany

The three main options: Smoked, natural, and prepared are divided into additional two options, this is prepacked(PP) and not prepacked(NPP). The prepacked options are products that are prepacked by suppliers who supply these products to for example grocery stores and supermarkets. Not prepacked products refers to products that are not prepacked, but packed by the grocery store or supermarket them self. A large part of natural salmon sales comes from not prepacked salmon.

Figure 3.3: Volume pie chart PP vs. NPP Germany

3.2 Spanish Data

3.2.1 Export to Spanish Market

Unlike Germany the growth of Norwegian export of salmon to Spain has grown rapidly the last 19 years going from an export of 15.7 thousand tons to 67.2 thousand tons in 2019. The value went from 491 million NOK to 4 billion NOK. While the volume increased 4 times the volume from 2000, the value increased nearly 10 times. This gives us an implication of how the demand for salmon in Spain has increased over the last years. The salmon is exported whole from Norway and the processing is done in Spain.

3.2.2 Spanish Salmon Market

For Spain the total sales in 2019 were approximately 62.4 thousand tons with a value of 830 million euros. The products in the Spanish markets are divided similarly to the German market into three main options. The options are, natural, prepared and smoked. Most of the sales are of these options, either fresh or frozen. The prepared has an additional option of canned salmon. There is also salted and/or dried salmon in the Spanish market, but this is a small volume out of the total salmon sale. The most popular option is natural salmon with approximately 89% of the sales in volume in 2019. Smoked salmon is the second most popular with approximately 10% sales in volume. Prepared salmon has closer to 1% sales in volume, while salted and/or dried is the least favorite with 0.25%

Figure 3.5: Volume pie chart Spain

The data ranges from 2009 to 2019 with a monthly increment, similarly to the German data. However, because of missing data and gaps i have chosen to only use the last 5 years of data. So the data in the analysis ranges from 2014-2019. The comparison between volume and value for each option show the earlier mentioned value added in smoked salmon more dramatically in the Spanish market. The volume for smoked salmon was approximately 10% in 2019 , but the value of was 22% of the total value of the sales in 2019. This confirms the idea that by adding further steps or further process the salmon the price will increase accordingly.

The salmon is also divided into prepacked and not prepacked, like in the data for Germany. This does not apply to the salted and/or dried salmon, and prepared salmon.

Figure 3.7: Volume pie chart PP vs. NPP Spain

Figure 3.8: Value pie chart PP vs. NPP Spain

3.3 Comparison of German and Spanish market

Germany and Spain have had different rates of growth as mentioned previously in the earlier paragraphs. The data used to compare the export to the countries and the two market spans from 2000 to 2019. In 2000 the export to Germany was higher than in Spain, with 18.9 thousand tons vs 15.6 thousand tons. While in 2019 these numbers have grown for export to both countries, the export to Spain has grown the most. The export volume to Germany in 2019 was 37.7 thousand tons and 67.2 thousand tons in Spain. This is almost double from year 2000 for Germany and more than 4 times as high as year 2000 for Spain. Export to Germany was level from year 2000 until around year 2013 when it started to increase. We can also see some signs of seasonality. In Germany it is very clear with export volume increasing closer to the end of the year, while in Spain it is not necessarily the same. The volume increases during the year, but in many years decreases before the end of the year after hitting max volume somewhere between September and November.

Figure 3.10: Export price in euro to Germany and Spain

The export price per kilo had a similar trend to the volume increase. The price had a level trend until 2013. After 2013 the export price increased a fair amount. When comparing the prices we can see that the export prices are very similar throughout. This is expected, as there should not be any difference in the price for the two countries. The price for the different products in the two countries however, are not that similar. This can be because of different policies, different levels of value added to the products, and/or general differences in price levels in the countries. In addition to this material costs, marketing
costs and more.
Figure 3.11: Comparison of Germany and Spain

As seen on figure 3.1 we can see that both countries have very similar data on salmon products. This figure 3.1 compares prices for the products in the two countries. Natural and smoked salmon are naturally very similar. Both have prepared salmon products as well, but here it is difficult for us to decipher if the products in this category are similar or not. This does not make a difference in the analyses. We can start by looking at the figure 3.11 that there is a trend that natural salmon is more expensive in Germany and smoked Salmon is more expensive in Spain. Total salmon sales are more expensive in Germany than Spain, with 18.9 euro per kilo and 13.47 euro per kilo, respectively. Natural frozen salmon which can be seen as the product that is the least processed product are close in price with 15.72 euro per kilo in Germany and 17.17 euro per kilo in Spain. While natural fresh has a larger difference between the prices. The prices are 17.93 in Germany and 11.16 euro. Prepared frozen salmon prices are 13.61 euro in Germany and 12.45 euro in Spain. For prepared fresh salmon the prices are 19.98 and 32.77 for Germany and Spain
respectively. When it came to smoked salmon there was a large difference. The price for smoked frozen salmon for Germany was 57.5 euro and 19.46 euro in Spain. The difference in prices in this case are greater than any other product in the data set. For smoked fresh salmon the prices are 21.5 euro in Germany and 27.9 euro in Spain.

4 Methodology

In this chapter i will go through the main concept that are linked to time series econometrics and cointegration analysis. These approaches will be used to do an empirical analysis of the price transmission from export price to retail market price.

4.1 Time series econometrics

4.1.1 Regression

The price transmission analysis is based on time series regression. The standard procedure is used with the following equation (Asche et al. 2014).

$$
\begin{equation*}
\ln p_{t}^{\text {Retail }}=\alpha+\beta \ln p_{t}^{\text {Export }}+e_{t} \tag{4.1}
\end{equation*}
$$

Here $p_{t}{ }^{i}$ is the price in i - market and at time t. The α is the intercept and e_{t} is the error term, which in our case does not have a significance. The β is what tells us if there is price transmission and the degree of it. If $\beta=0$ then there is no price transmission between the prices, if $\beta=1$ then there is complete price transmission. If $\beta \neq 0$ and $\beta \neq 1$, then there is a relationship between the variables to a degree that varies.

Time series data, unlike, cross-sectional data which is gathered at one time, is gathered over different points in time. There is often a time trend on time series data, but can also be mean-reverting. This means that data gathers around a mean, and even with fluctuations go back to the mean. In our case there is a clear time trend on the data. With cross-sectional data there is an assumption that the data is independent of each other. This is not possible with time series. With time series data all the data is dependent of one another. We can see this as the price for one month often is based on the price for the earlier month and the price during the period in which the price is set.

4.1.2 Stationarity

With time series analysis we have to analyze if the data is stationary or non-stationary. A stationary time series will in simple terms not be affected by previous data. In other
words the future will be similar to the past and the mean, variance and covariance will stay the same over time. In the context of price there can be stationarity, in some cases, if the price is stable over time and only suffers from short spikes in the price. We can look at stationary process as a first order autoregressive model. An autoregressive model is a time series that is regressed on previous values in the same time series.

$$
\begin{equation*}
Y_{t}=\alpha+\beta_{1} Y_{t-1}+\varepsilon_{t} \tag{4.2}
\end{equation*}
$$

Here we see a standard regression where Y_{t} is regressed by $\mathrm{Y}_{\mathrm{t}-1}$. The error term ε_{t} is seen as white noise term that is iid, meaning that it is independent and identically distributed. The model is stationary when $\alpha=0$ and $\beta_{1}<1$.

In most cases, however, price is not a stationary process. A non-stationary process can be explained as a pure random walk:

$$
\begin{equation*}
Y_{t}=Y_{t-1}+\varepsilon_{t} \tag{4.3}
\end{equation*}
$$

This equation tells us that the value at time t will be equal to the previous period plus a stochastic white noise term that is iid, meaning that it is independent and identically distributed. This equation is the autoregressive equation in first order with a $\alpha=0$ and β_{1} $=1$, making it non-stationary. $\alpha \neq 0$ implies a random walk with drift. For us to analyze time series that are non-stationary we need to make the data stationary and a simple way of doing this is by differencing the model. Differencing is just subtracting $\mathrm{Y}_{\mathrm{t}-1}$ from Y_{t} $\left(\mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}-1}\right)$. By doing this the process loses one observation. This is visualized in figure 4.1 where we see the graph for smoked fresh salmon and smoked fresh salmon first differenced, where the data has gone from non-stationary to stationary when first differenced.

Figure 4.1: Graph of variable transformed

A commonly used tool to check for unit root is the augmented Dickey-Fuller(ADF) test(Dickey \& Fuller, 1979). The ADF test allows us to test for unit roots even if there is autocorrelation. The null hypothesis for the ADF-test is that there is a unit root, and the alternate hypothesis is that the time series is stationary. With the ADF-test we can include factors such as there being a constant, trend or constant and trend together.

$$
\begin{equation*}
\Delta Y_{t}=\alpha+\delta Y_{t-1}+\sum_{i=1}^{p} \beta_{i} \Delta Y_{t-i}+\gamma t+\varepsilon_{t} \tag{4.4}
\end{equation*}
$$

The ADF equation contains in this case a constant α and a trend γ. As mentioned earlier the null hypothesis is that there is a unit root. In other words the time series is non-stationary. For the equation to be non-stationary or have a unit root the β needs to be equal to 1 . We therefore test if $\delta=0$. Before doing the ADF-test we need to know the amount of periods that will be used in the test. The lag length can be found in several ways. One way is to do the ADF test with different lagged periods starting with a large number until the results are statistically significant. In our case we take use of the Akaike information criteria(AIC) (Akaike. H, 1973).

$$
\begin{equation*}
A I C=-2\left(\frac{L L}{T}\right)+\frac{2 t_{p}}{T} \tag{4.5}
\end{equation*}
$$

Where LL is the \log likelihood t_{p} is the total amount of parameters in the model and T is time. The AIC test calculates the optimal number of lags used in the ADF test.

4.2 Cointegration

Cointegration is in simple terms a long term relationship between two variables in time series data. For simplicity we can see this on a graph comparing two variables that are expected to have a long term relationship. In mathematical terms cointegration occurs when two variables X_{t} and Y_{t} are both integrated of order one $I(1)$ (non-stationary) and by multiplying one of the variables with a constant θ that makes it integrated of order $0 \mathrm{I}(0)$ (stationary): $\mathrm{Y}_{\mathrm{t}}-\theta \mathrm{X}_{\mathrm{t}}$ (Engle \& Granger, 1987). For this thesis we are using the Johansen test (Johansen, 1988, 1991). This test allows for multivariate systems with non-stationary variables. The Johansen test follows an unrestricted vector autoregression in the levels of variables

$$
\begin{equation*}
X_{t}=\Pi_{1} X_{t-1}+\ldots+\Pi_{k} X_{t-k}+\epsilon_{t} \tag{4.6}
\end{equation*}
$$

Here X_{t} is a nx 1 vector. The Π_{i} is a $\mathrm{n} \times \mathrm{n}$ matrix of parameters. μ is a constant and ϵ_{t} is the normally distributed errors that are serially uncorrelated and but has the contemporaneos covariance matrix Ω. The equation (0.6) rewritten in error correction form is given by:

$$
\begin{equation*}
\Delta X_{t}=\Gamma_{1} \Delta X_{t-1}+\ldots+\Gamma_{k-1} \Delta X k-1+\Pi \Delta X_{t-k}+\epsilon_{t} \tag{4.7}
\end{equation*}
$$

Where $\Gamma_{\mathrm{i}}=-\mathrm{I}+\Pi_{1}+\ldots+\Pi_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{k}-1$ and $\Pi=-\mathrm{I}+\Pi_{1}+\ldots+\Pi_{\mathrm{k}}$.
The rank of Π, r , tells us how many different linear combinations that exist for X_{t} that are stationary. If $\mathrm{r}=\mathrm{n}$, the variables are stationary, if $\mathrm{r}=0$, none of the variables are stationary. If $r<n$, there are r linear combinations of X_{t} that are stationary. When this is the case $\Pi=\alpha \beta^{\prime}$, where α and β are nx r matrices and β holds the cointegration
vectors and α is the adjustment parameters.
The Johansen test uses two different tests for cointegration vectors: the trace test, and the maximum eigenvalue test, where both tests are likelihood-ratio tests. The null hypothesis for the trace test is that there are r cointegrating vectors against the alternative hypothesis that there are n cointegrating vectors.

$$
\begin{equation*}
J_{\text {trace }}=-T \sum_{i=r+1}^{n} \ln \left(1-\hat{\lambda}_{i}\right) \tag{4.8}
\end{equation*}
$$

For the maximum eigenvalue test the null hypothesis of r cointegrating vectors against the alternative of $\mathrm{r}+1$ cointegrating vectors.

$$
\begin{equation*}
J_{\max }=-T \ln \left(1-\hat{\lambda}_{r+1}\right) \tag{4.9}
\end{equation*}
$$

For bivariate cointegration test it is preferred to use the trace test. The trace test also shows durability against skewness and excess kurtosis in the error (Cheung \& Lai, 1993). The Johansen test can also be used to find exogeneity or price leadership (Johansen, 1988). Exogeneity means that the X variables does not depend on the dependent variable Y (Engle, R.F., Hendry, D.F., and Richard, J.F., 1983). This is in simpler terms if changes in export price lead to changes in retail price, or if changes in retail price leads to changes in export price. It is safe to. To analyze for price leadership we use weak exogeneity test in a VAR framework.

By using the Johansen test we also get the option to test the "law of on price" (LOP). In a market integration context the LOP gives us indication of if the markets are perfectly integrated. In our case with price transmission analysis it tells us if the price transmission is complete or not. To test for LOP we have to add some restrictions to the variables.

$$
\left[\begin{array}{c}
\Delta p_{t}^{1} \tag{4.10}\\
\Delta p_{t}^{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{l}
p_{t-1}^{1} \\
p_{t-1}^{2}
\end{array}\right]
$$

Here we have a system of two variables p_{1} and p_{2}. We assume that the prices are nonstationary, cointegrated, one lag and no error term in the system. If $b_{1}=-b_{2}$ then the

LOP hold or in other words there is complete price transmission (Asche et al. 2014). Here b_{1} is set to be 1 and so b_{2} is set to be -1 and calculated with these restrictions.

4.3 Vector Error Correction Model

The vector error correction model gives us the opportunity to conduct the Johansen test for the error corrected model as well as gives us better estimates for the price transmission elasitcities β. The VECM is based on a VAR model with p lags, rewritten as:

$$
\begin{equation*}
\Delta Y_{t}=\alpha\left(\beta Y_{t-1}+\mu+\rho t\right)+\sum_{i=1}^{p-1} \Gamma_{i} \Delta Y_{t-1}+\gamma+\tau t+\varepsilon_{t} \tag{4.11}
\end{equation*}
$$

In equation 4.11 the option to have a time trend and a constant is available. In our case we estimate the VECM using a restricted time trend. This means that we assume the time trend to be linear and not quadratic. By adding this restriction we allow the equations to be trend stationary. For equation 4.11 to be assumed trend stationary, τ must be equal to 0 .

By using the VECM we are able to compare the β from normal regression vs. with VECM to see more accurate β for the variables. The results and comparison will be conducted in the next two sections.

5 Empirical Results

In this section i will go through the results from the analyses for Germany and Spain conducted on stata.

5.1 Empirical results for Germany

In this section I am going through the empirical results of the analyses that are done, for the price transmission from export price to retail prices in Germany. The analyses are done on Stata.

5.1.1 Descriptive statistics Germany

Table 5.1 contains all data provided for German retail market. I have included the descriptive statistics for all of the data because it gives us a better understanding of the market. I will, however, not use all of the data in the price transmission analyses. There are 132 periods observation for all of the variables. Included in the table is amount of observations, mean, standard deviation, minimum value, maximum value and coefficient of variation(CV). The CV gives us an indication of the volatility in the price.

Table 5.1: Descriptive statistics for Germany

Variable	n	Mean	Std.Dev	Min	Max	CV
Export:						
Germany Export	132	3.94	1.18	2.02	6.37	0.30
Retail:						
Natural fresh PP	132	12.95	2.39	7.37	18.82	0.18
Natural fresh NPP	132	18.64	3.08	13.24	24.52	0.17
Natural fresh	132	16.02	2.06	9.06	19.34	0.13
Natural frozen	132	12.44	1.74	9.67	17.11	0.14
Prepared fresh NPP	132	16.18	1.66	10.99	19.56	0.10
Prepared fresh PP	132	15.99	3.73	9.09	24.58	0.23
Prepared fresh	132	16.15	2.84	10.40	23.46	0.18
Prepared frozen	132	11.30	2.24	7.41	17.86	0.20
Smoked fresh NPP	132	16.72	1.46	11.73	20.82	0.09
Smoked fresh PP	132	18.24	2.92	13.83	23.99	0.16
Smoked fresh	132	18.11	2.70	14.01	23.58	0.15
Smoked frozen	132	41.87	17.61	0.00	78.75	0.42
Fresh total	132	18.19	2.75	14.01	23.91	0.15
Frozen total	132	17.39	2.18	14.03	22.27	0.13
Smoked total	132	12.37	1.84	9.39	17.22	0.15
Salmon total	132	15.70	2.15	12.15	20.07	0.14

From table 5.1 we can see the variations in price mean. There are large variations in the mean price of the different products. The lowest mean price for the retail market is prepared frozen salmon, while the highest is for smoked frozen salmon. The mean price is expected for smoked salmon, but it was expected that natural salmon would have the lowest mean price. This is because of earlier mentioned reason of value added to the products. Smoked frozen salmon data has very high price compared to other smoked salmon prices, because of the volume sold being much lower than the other products. The numbers for smoked frozen are generally not a good representation of how the price would act in an established market. This variable is therefore omitted in the price transmission analysis. There is some indication of a pattern in the PP vs. NPP. For natural salmon PP has a lower mean price than the NPP natural salmon. It is similar for prepared salmon, where PP has a lower mean price than NPP. However, for smoked salmon the PP smoked salmon has a higher price than NPP smoked salmon.

Figure 5.1: Graph of mean-reverting data

After going through the descriptive statistics, the next step is to carry out the ADF-test for all the variables. Before however we can see an indication of the output of the ADF-test by looking at figure 5.1. We see the values in table 5.2 that are mean-reverting. This is visible in prepared fresh NPP and smoked fresh NPP salmon. Prepared frozen salmon
also looks mean-reverting after 2011. The variables are all in natural logarithmic form. The ADF-test was done for data with only a constant, in levels and with first difference. In addition the ADF-test was done with constant and a trend, in levels and with first difference. The lag length is in the parentheses next to the values from the ADF-test. As expected most of the data is non-stationary except for earlier mentioned variables; smoked fresh NPP, prepared fresh NPP, and prepared frozen. All of the variables are stationary with a constant at first difference. The ADF-test with trend also yields similar result where majority of the data is non-stationary in levels and stationary with first difference. But some variables behave different with the trend. In addition to the earlier mentioned stationary variables prepared fresh, prepared fresh PP, and natural fresh PP are also stationary with significance at $1 \%, 1 \%$, and 5% respectively. This is also known as trend stationarity.The values that are non stationary are used in the price transmission analysis.

Table 5.2: ADF-test for Germany

Variable	Constant	Diff. Constant	Constant + Trend	Diff. Constant + Trend
Export:				
Germany Export	-1.535(2)	**-6.972(1)	-3.336(2)	**-6.938(1)
Retail:				
Smoked frozen	-1.383(3)	**-4.224(4)	-2.155(3)	*-4.067(4)
Smoked fresh PP	-0.959(2)	**-7.992(1)	-1.960(2)	**-7.963(1)
Smoked fresh NPP	**-6.415(1)	**-6.978(4)	**-6.414(1)	**-6.847(4)
Prepared frozen	*-3.485(2)	**-6.378(4)	**-5.137(2)	**-6.355(4)
Prepared fresh PP	-2.444(2)	**-7.612(2)	**-4.584(2)	**-7.583(2)
Prepared fresh NPP	**-4.351(3)	**-9.795(2)	**-4.359(3)	**-9.760(2)
Natural frozen	-2.072(3)	**-7.158(2)	1.957(3)	**-7.133(2)
Natural fresh PP	-1.734(4)	**-8.192(3)	*-3.638(4)	**-8.173(3)
Natural fresh NPP	-1.224(4)	**-6.401(4)	-2.722(4)	**-6.366(4)

5.1.2 Price transmission Germany

The price transmission analysis was conducted with the variables that were non-stationary without trend. Variables that were trend stationary are included in the analysis. The test is conducted with the retail prices being the dependent variable and the export price being the explanatory variable. The results for the Johansen test alongside LOP, weak exogeneity, and price transmission elasticities are reported in table 5.3.

The Johansen test results are all very similar to one another. All but three variables reject the null hypothesis of there being zero cointegrating vectors between the retail price and the export price. This indicates in our case in a bivariate cointegration test that there are no more than one cointegrating vectors between retail and export. The cointegration test has both trace and max test results. Both of the test yield similar results. From these test results we can say that there is a relationship between retail and export for all variables but the ones mentioned. There are no variables with more than one cointegrating vector. Further a likelihood ratio test for law of one price(LOP) was conducted. Table 5.3 shows that the hypothesis of LOP is rejected for 6 of the variables. Smoked fresh NPP, Prepared frozen, Prepared fresh NPP, natural fresh PP, and natural fresh NPP are all statistically significant. Therefore the price transmission is incomplete from export to these variables. The rest of the variables do not reject the hypothesis of LOP and the price transmission is complete for these variables. However, we cannot conclude this for the values that do not have any cointegrating vectors.

Table 5.3: Johansen test for Germany

Variable	Rank	Trace test	Max test	LOP	Weak Exogeneity	Price (β) Transmission
Smoked fresh PP	$\mathrm{P}=0$	32.14	26.57	1.016	$* * 17.30$	0.4345
	$\mathrm{P} \leq 1$	$\star 5.57$	5.57		${ }^{* * 6.81}$	(0.000)
Smoked fresh NPP	$\mathrm{P}=0$	70.36	63.47	${ }^{* *} 46.4$	${ }^{* *} 12.70$	0.0180
	$\mathrm{P} \leq 1$	$\star 6.89$	6.89		3.81	(0.482)
Prepared frozen	$\mathrm{P}=0$	36.97	28.21	$* * 15.89$	$* * 7.50$	0.2995
	$\mathrm{P} \leq 1$	$\star 8.76$	8.76		$* 3.95$	(0.000)
Prepared fresh PP	$\mathrm{P}=0$	27.40	17.51	3.211	3.56	0.4857
	$\mathrm{P} \leq 1$	$\star 9.89$	9.89		$* 8.95$	(0.000)
Prepared Fresh NPP	$\mathrm{P}=0$	75.80	68.21	$* * 42.39$	$* * 27.31$	-0.0040
	$\mathrm{P} \leq 1$	$\star 7.59$	7.59		1.81	(0.897)
Natural frozen	$\mathrm{P}=0$	$\star 18.51$	14.59	2.442	$* * 9.99$	0.2787
	$\mathrm{P} \leq 1$	3.91	3.91		3.60	(0.000)
Natural fresh PP	$\mathrm{P}=0$	27.92	16.90	$* 4.263$	2.47	0.4387
	$\mathrm{P} \leq 1$	$\star 11.01$	11.01		$* 8.51$	(0.000)
Natural fresh NPP	$\mathrm{P}=0$	80.55	72.26	$* * 50.74$	$* * 16.48$	0.4964
	$\mathrm{P} \leq 1$	$\star 8.29$	8.29		1.78	(0.000)

The next column in table 5.3 shows the results for the weak exogeneity test for the retail prices. The results show that more or less all variables are endogenous, except for prepared fresh NPP salmon. The price leader is not similar in every variable. For smoked salmon products except for the NPP products there is no clear price leader. there does not seem to be any clear direction of which price causes the other price to change. It seems that for NPP products and natural frozen salmon the price leader is the export price. While for the PP products there is no clear pattern as smoked fresh PP has no sign of a price leader while prepared fresh PP and natural fresh PP has the retail price as the price leader.

Finally we look at the price transmission elasticities given by β. These results tells us how large a change in the export price would reflect in the retail price. The elasticities are varied and span from $\beta=-0.004$ for prepared fresh NPP with the lowest reaction to $\beta=0.4964$ for natural fresh NPP with the highest reaction to export price changes. The β for natural frozen, which has no cointegrating vectors is 0.2787 . This β should not be seen as "correct".

Table 5.4: VECM estimates for Germany

Variable	β	t	P -value
Smoked fresh PP	-0.6730	-5.76	0.000
Smoked fresh NPP	-0.0138	-0.23	0.815
Prepared frozen	0.2357	2.10	0.036
Prepared fresh PP	-0.2032	-1.08	0.286
Prepared Fresh NPP	-0.0557	-0.82	0.413
Natural frozen	8.7321	3.84	0.000
Natural fresh PP	-0.0228	-0.20	0.844
Natural fresh NPP	-0.3397	-9.77	0.000

Table 5.4 has the beta estimates from the VECM along with the t -stat and the p -value of the t-stat. Four out of eight variables are statistically significant. There is however a $\beta=$ 8.73 which is very high. We use these to calculate for full price transmission between the retail variables and the export. Where the null is that there is full price transmission, with the alternative of there not being full price transmission. These can be seen in table 5.5.

Table 5.5: VECM cointegrating equations for Germany

Variable	test-statistic	P-value	Proportionality test
Smoked fresh PP	33.175	0.0000	$-4.26(0.0000)$
Smoked fresh NPP	0.0548	0.8148	$0.77(0.4427)$
Prepared frozen	4.4185	0.0356	$-1.1(0.2734)$
Prepared fresh PP	1.1570	0.2821	$-0.8(0.9364)$
Prepared Fresh NPP	0.6694	0.4133	$0.18(0.8574)$
Natural frozen	14.713	0.0001	$-2.84(0.0052)$
Natural fresh PP	0.0386	0.8442	$0.8(0.4252)$
Natural fresh NPP	95.396	0.0000	$-8.77(0.0000)$

In table 5.5 we have the results from performing a johansen test under a vector error correction model(VECM). Here the test results show us that there are 4 variables with one cointegrating equation. Smoked fresh PP, prepared frozen, natural frozen, and natural fresh NPP have all got one cointegrating equation while the rest does not. We will discuss the difference between the results from the VECM and the normal model in the next section. The proportionality test shows us which variables that have full price transmission. Our results show that four variables have full price transmission as the null hypothesis of there being full price transmission cannot be rejected.

5.2 Empirical results for Spain

In this section I am going through the empirical results of the analyses that are done, for the price transmission from export price to retail prices in Spain, similarly to the previous section.

5.2.1 Descriptive statistics Spain

Table 5.4 consists of the same statistics measured for Spain as there were for Germany in table 5.1. The largest difference is the number of observations being reduced from 132 to 60. This was necessary to be able to get proper results as there were multiple variables with little or no data for the earlier years. 60 observations is equivalent of 5 years of data.The mean price for export is 4.98 with a standard deviation of 0.81 . For retail the variable with the lowest mean price is natural fresh NPP salmon at 10.41, a standard deviation of 1.03 and a relatively low CV at 0.10 . On the other side prepared fresh has the highest mean price of 29.24 with a standard deviation 4.42 and a CV of 0.15 . These values seem to be stable for the time being, however, prepared salmon has had a large increase in price.

Table 5.6: Descriptive statistics for Germany

Variable	n	Mean	Std.Dev	Min	Max	CV
Export:						
Spain Export	60	4.98	0.81	3.23	6.30	0.16
Retail:						
Natural fresh NPP	60	10.41	1.03	8.17	12.08	0.10
Natural fresh PP	60	13.67	1.47	11.19	18.77	0.10
Natural fresh	60	11.00	1.03	8.77	12.98	0.09
Naturalfrozen	60	15.80	1.43	13.14	19.87	0.09
Prepared fresh	60	29.24	4.42	21.32	36.38	0.15
Prepared frozen	60	14.68	3.92	9.25	27.84	0.27
Prepared	60	23.47	4.06	15.54	30.31	0.17
Salted and/or Dried	60	14.87	5.12	2.12	31.76	0.34
Smoked fresh NPP	60	23.25	1.67	20.18	26.65	0.07
Smoked fresh PP	24	31.23	1.18	29.43	33.72	0.04
Smoked fresh	60	25.91	1.82	22.56	28.90	0.07
Smoked frozen	60	25.20	18.65	0	54.07	0.74
Smoked total	60	25.93	1.82	22.56	28.90	0.07
Frozen total	60	15.74	1.37	12.86	19.11	0.09
Fresh total	60	12.82	1.38	9.75	15.71	0.11

Most of the variables seem to be pretty stable and have expected and normal growth and price ranges. But two variables that stands out are smoked fresh NPP and Smoked frozen. These variables have extremely high CV at 0.95 for smoked fresh NPP and 0.74 for smoked frozen. The prices range from 0 to 33.72 and 0 to 54.07 giving them standard deviations fairly close to the mean prices. This is because of lack of data for earlier observations for these variables. For smoked fresh NPP i have decided to reduce amount of observations to 24 to calculate from the last 2 years of data. I have not done this for smoked frozen as the problem is gaps in the data unlike smokedfresh NPP.

Figure 5.2: Graph of mean-reverting data

The ADF-test results for Spain are uniform with our expectation of the behaviour. All but two variables are non-stationary with stationarity at first difference. The two variabels that are stationary are smoked frozen and salted and/or dried salmon. We can see the stationarity visually in figure 5.2. Here we can also see the gaps in the data for smoked frozen salmon. All of the data has identical results in test with and without trend. The lag value is reported in the parentheses next to the ADF-test values. The non-stationary variable are used in the price transmission analysis for Spain.

Table 5.7: ADF-test for Spain

Variable	Constant	Diff. Constant	Constant + Trend	Diff. Constant + Trend
Export:				
Spain Export	-2.205(2)	**-4.937(2)	-2.313(2)	**-4.996(2)
Retail:				
Smoked frozen	**-4.979(0)	**-5.957(2)	**-5.976(0)	**-5.736(2)
Smoked fresh PP	-1.928(2)	**-5.494(2)	-2.259(2)	**-5.421(2)
Smoked fresh NPP	-1.874(2)	**-4.484(4)	-2.675(2)	**-4.536(4)
Salted and/or dried	**-7.390(0)	**-5.651(4)	**-7.821(0)	**-5.592(4)
Prepared frozen	-1.738(4)	**-5.338(3)	-1.389(4)	**-5.502(3)
Prepared fresh	-1.170(1)	**-7.772(0)	-2.423(1)	**-7.693(0)
Natural frozen	-1.219(2)	**-4.348(4)	-3.331(2)	**-4.306(4)
Natural fresh PP	-1.355(4)	**-5.078(4)	-2.485(4)	**-5.067(4)
Natural fresh NPP	-2.217(2)	**-4.498(1)	-2.013(2)	**-4.570(1)

5.2.2 Price transmission analysis Spain

The price transmission analysis for Spain was done in the exact same way as it was for Spain. The analysis for Spain was done for 5 years while it was 11 years for Germany. The main difference was the variable for smoked fresh pp which was done over 2 years as opposed to 5 years for the rest of the analysis. The analysis are done with the retail variable as a dependent variable to the export price. In table 5.6 we have the results of the different analyses conducted.

The Johansen test results for Spain are as uniform as in the analysis for Germany, but there is a majority of variables with no cointegrating vectors. Smoked fresh NPP and Prepared fresh salmon both have 1 cointegrating vector. Both the trace- and max-test have the same concluding results for all the variables. From these results we can see that there is a relationship between smoked fresh NPP and export price, and prepared fresh and export price.

Next test was the likelihood ratio test for LOP. Four out of seven variables reject the hypothesis of LOP. Smoked fresh PP and natural frozen are statistically significant at the 5% level while smoked fresh NPP and natural fresh PP are statistically significant at the 1% level.

Table 5.8: Johansen test for Spain

Variable	Rank	Trace test	Max test	LOP	Weak Exogeneity	Price (β) transmission
Smoked fresh PP	$\mathrm{P}=0$	$\star 18.95$	11.94	$* 5.359$	0.62	0.0305
	$\mathrm{P} \leq 1$	7.01	7.01		$* * 11.16$	(0.123)
Smoked fresh NPP	$\mathrm{P}=0$	28.12	21.88	$* * 10.39$	1.59	0.2884
	$\mathrm{P} \leq 1$	$\star 6.24$	6.24		$* * 8.91$	(0.000)
Prepared frozen	$\mathrm{P}=0$	$\star 18.87$	11.82	0.2045	$* * 9.36$	0.6380
	$\mathrm{P} \leq 1$	7.04	7.04		1.86	(0.000)
Prepared fresh	$\mathrm{P}=0$	27.52	22.47	1.272	$* * 16.17$	0.5594
	$\mathrm{P} \leq 1$	$\star 5.05$	5.05		$* * 8.28$	(0.000)
Natural frozen	$\mathrm{P}=0$	$\star 21.20$	14.55	$* 5.218$	0.60	0.2345
	$\mathrm{P} \leq 1$	6.65	6.65		$* * 8.44$	(0.000)
Natural fresh PP	$\mathrm{P}=0$	$\star 21.66$	16.51	$* * 9.185$	2.32	0.2760
	$\mathrm{P} \leq 1$	5.14	5.14		$* 5.54$	(0.000)
Natural fresh NPP	$\mathrm{P}=0$	$\star 19.53$	12.34	2.493	1.25	0.5321
	$\mathrm{P} \leq 1$	7.19	7.19		3.44	(0.000)

Of the retail variables only two variables are endogenous. Prepared frozen and prepared fresh salmon are endogenous while the rest of the retail prices are exogenous. This gives us the implication that the retail price is the price leader for many of the variables. For prepared fresh salmon both retail and export price are endogenous, making it difficult to say for sure if there is a price leader in this instance. The same goes for natural fresh NPP salmon, but in this case both prices are exogenous with the same conclusion that we cannot see a clear price leader or a sign of it.

For the Spanish market the price transmission elasticites (β) range from 0.0305 at the lowest and 0.6380 at the highest, for smoked fresh PP and prepared frozen respectively. However, these values should not be taken as very accurate because the variables are not cointegrated with the export price. For the cointegrated variables the price transmission is a little more relevant. The β for smoked fresh NPP is 0.2884 and the β for prepared fresh is 0.5594 .

Table 5.9: VECM estimates for Spain

Variable	β	t	P-value
Smoked fresh PP	-0.1043	-1.41	0.160
Smoked fresh NPP	-0.2720	-5.25	0.000
Prepared frozen	-1.2861	-3.20	0.001
Prepared fresh	-0.6965	-4.92	0.000
Natural frozen	-0.1163	-1.45	0.148
Natural fresh PP	-0.0941	-1.27	0.206
Natural fresh NPP	-0.6897	-13.13	0.000

Table 5.9 similarly to table 5.5 shows the estimated betas along with t-stat and p-value for the variables in VECM. Out of seven variables four of them are statistically significant. One variable that stands out is the β for prepared frozen salmon with elasticity 1.286 . The elasticities from VECM will be compared to the other elasticities.

Table 5.10: VECM cointegrating equations for Spain

Variable	test-statistic	P-value	Proportionality test
Smoked fresh PP	1.9749	0.1599	$-0.41(0.6847)$
Smoked fresh NPP	27.560	0.0000	$-4.25(0.0000)$
Prepared frozen	10.236	0.0014	$-2.2(0.0318)$
Prepared fresh	24.241	0.0000	$-3.92(0.0002)$
Natural frozen	2.0904	0.1482	$-0.45(0.6544)$
Natural fresh PP	1.6028	0.2055	$-0.27(0.7881)$
Natural fresh NPP	172.29	0.0000	$-12.13(0.0000)$

In table 5.10 are the results from the cointegration test in the VECM. The results show four variables with a cointegrating equation. Smoked fresh NPP, prepared frozen, prepared fresh, and natural fresh NPP have all got cointegrating equations. The difference in results from the VECM. The proportionality test results gives us an indication of there being full price tranmission or not. For Spain there are three variables that can be considered to have full price transmission. These variables are smoked fresh PP, natural frozen, and natural fresh PP. The other variables fail to reject the null hypothesis of there being full price transmission. Cointegration test and the previous test will be discussed in the discussion section of the thesis.

6 Discussion

In this section i will discuss the empirical results from the analyses and tie them in to the economic theory.

From our results in the analyses for Germany we can see that there is a clear pattern in the price transmission elasticities. The elasticities for the frozen salmon is close to 0.3 with prepared frozen being 0.29 and natural frozen 0.27 . This is lower than the fresh salmon products which all are around $0.43-0.49$. A lower elasticity for the frozen products makes sense economically. In the price theory section of the thesis we went through the possibility of a product having several steps between the export and the retail products. This was factors such as preparation, packaging and storing. In this case we can see that the products which are easier to store over time are subject to a lower degree of price transmission from the export prices. When the export price changes, but already bought salmon is stored then the price change will not impact in the same way as if there was no extra steps between export and retail. In our case even though the results make sense from en economic perspective we cannot trust these numbers completely. If we look at the results we can see that the natural fresh salmon is not cointegrated with the export price, we can therefore not trust this result.

For the Spanish market the pattern is not as clear as in the German market. There is however also less variables that are cointegrated making some of the betas less reliable in the case of price transmission. We can only look at the two cointegrated variables as reliable results. Here smoked fresh NPP salmon has a beta of 0.29 and prepared fresh salmon has beta of 0.56 . This is in line with the theory. The product that is easier stored has the lower price transmission elasticity, similarly to the German market. If we disregard the results from the Johansen test and only look at the price transmission elasticities the results show that the price transmission is lowest for frozen products and at similar level for fresh products.

Between the PP and NPP products the elasticity is higher for NPP products. This can be seen for natural fresh salmon in the German and Spanish market. In our results there are some variables with insignificant betas making the results void.

The output from the VECM estimation gives us comparable results to that of the Johansen
test and the regression betas. Comparing the cointegration tests from the VECM and earlier model we get different results. For some of the variables the different models yield the same results for the cointegration test. There are however some variables that get different results. For the German market, smoked fresh NPP, prepared fresh PP, prepared fresh NPP, and natural fresh PP all go from having one cointegrating factor to none in VECM. Natural frozen acts in the opposite way going from not having any cointegrating vectors to having one in VECM. In the Spanish market the VECM has more variables with one cointegrating vector. Prepared frozen and natural frozen NPP both have one cointegrating vector in VECM compared to none before. The rest of the variables yield the same results for both markets.

The β from the VECM are also comparable with the regressed β, but with the results from the VECM giving more appropriate results. In the German market the results show no clear sign of the price tranmission being highest for natural products or lowest for the storable and prepared products. Looking at the statistically significant β for smoked fresh PP is 0.6730 vs. the previous $\beta=0.4345$. For preparedfrozen the VECM $\beta=0.2357$ vs. previous $\beta=0.2995$. Finally for natural fresh NPP the $\beta=0.3397$ vs. previous β $=0.4964$. For the Spanish market the results are similar with no clear sign of the price transmission decreasing with higher processing. Looking at the statistically significant β for the variables. For smoked fresh NPP the VECM $\beta=0.2720$ vs. previously $\beta=$ 0.2884 . Prepared fresh having VECM $\beta=0.6965$ vs. previously $\beta=0.5594$. Finally for natural fresh NPP the VECM $\beta=0.6897$ vs. previously $\beta=0.5321$. Both the German and Spanish results have some unrealistic results. For the German market the VECM statistically significant β for natural frozen salmon is 8.732 . In this case it is better to rely on the regression $\beta=0.278$. The odd result is not as unrealistic as the one for Germany. The VECM β is 1.286 for prepared frozen salmon while being 0.638 for the regression. For this result as for the one for Germany it is better to rely on the regression coefficient. From these values the β coefficients fail to show the expected decrease in price transmission with increase in processing of the product. This can be for reasons such as transport costs. For salmon products that are not processed and cannot be stored the transport cost may be the reason for the low price transmission elasticities. Being the major part of the marketing margin may explain the deviation from our expectations going in to the study. Other reasons can be exchange rates affecting the market prices by
changing the relative prices(Tveterås \& Asche, 2008).

7 Conclusion

In this thesis i have performed a price transmission analysis for the German and Spanish salmon market. The study was done with different product categories to get a better understanding of how the price reacts for the different parts of the salmon market. The analyses were done for monthly data for both countries markets. For Germany there was used 11 years of data for Spain there was used 5 years of data and less for one variable. This was to get most accurate results as there were variables with no data for much of the time. The analysis was done with a econometric framework. Tests such as augmented dickey fuller test, johansen test, and VECM estimation were used. Additionally the LOP, weak exogeneity and proportionality was tested for the variables. The combination of these tests showed us if there is price transmission and the extent.

The study shows that there is price transmission for some of the products studied. There is however, not any sign of there being increasing nor decreasing price transmission relative to the processing of the product. For the German market there is some indication of the frozen products having lower price transmission than the fresh. While there being no sign of it for the Spanish market. This is if we disregard the cointegration test. The price transmission differed for each product type. Our assumptions going in to the thesis was that there would be clear signs of high price transmission for products with little to no processing and low for products with more steps between consumer and export. The results as mentioned did not give us a clear sign of this.

The Exogeneity tests showed us the price leadership. This showed that there is variations in these subsections of the salmon market. This shows that the salmon market is very varied and to only look at salmon as a whole does not give a good indication of how the market acts. The weak exogeneity test shows us that NPP salmon is the price leader in relation to the export. This means that the export price reacts to the NPP price rather than the other way. For PP salmon products it is the opposite where the export price is the price leader and the PP price reacts to changes in export.

Testing the LOP and proportionality also showed a complete price transmission or not.

These are econometrically similar, but our focus was on the VECM. The proportionality test showed that the price transmission was complete for only one of the variables in the VECM. This shows us that a price increase only parts of the price increase goes to the consumer. Reasons for this can be change in the marketing margin e.g. smaller portions or added accessories.

Further studies should be conducted around this subject for these countries. For the Spanish market the data is inadequate for longer periods for many of the products. For the German market further studies can examine any changes in the markets and conduct further studies in the market.

References

Akaike, H. (1973). Information Theory and an Extension of the Maximum Likelihood Principle. Selected Papers of Hirotugu Akaike (pp. 199-213). Springer New York.

Anderson, J. L., Asche, F. and Tveterås, S. (2010) World Fish Markets. In Handbook of Marine Fisheries Conservation and Management (Eds, Grafton, R. Q., Hilborn, R., Squires, D., Tait, M. and Williams, M.) Oxford University Press, Oxford.

Asche, F., Dahl, R.E., Valderrama D. Zhang D. (2014). PRICE TRANSMISSION IN NEW SUPPLY CHAINS-THE CASE OF SALMON IN FRANCE, Aquaculture Economics Management, 18:2, 205-219, doi: 10.1080/13657305.2014.903309.

Asche, F., Jaffry, S. Hartmann, J. (2007) Price transmission and market integration: vertical and horizontal price linkages for salmon, Applied Economics, 39:19, 2535-2545, DOI: 10.1080/00036840500486524.

Asche, F., Bremnes, H., Wessells, C. R. (1999). Product Aggregation, Market Integration, and Relationships Between Prices: An Application to World Salmon Markets. American Journal of Agricultural Economics Vol. 83, No. 4 (Nov., 2001), pp. 1090-1092 (3 pages). Cheung, Y.-W., Lai, K. S. (1993). Finite-sample sizes of Johansen's likelihood ratio tests for cointegration. Oxford Bulletin of Economics and statistics, 55(3), 313-328.

Dickey, D. A., Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427-431. doi:10.2307/2286348.

Engle, R. F. and Granger, C. W. J. (1987). Co-Integration and Error Correction: Representation, Estimation, and Testing. Econometrica, Mar., 1987, Vol. 55, No. 2 (Mar., 1987), pp. 251-276.

Engle, R. F., Hendry, D. F., and Richard, J. F. (1983). Exogeneity. Econometrica, Vol. 51, No. 2 (Mar., 1983), pp. 277-304.

Johansen, S. (1988). Statistical Analysis of Cointegrating Vectors. Journal of Economic Dynamics and Control 12 (1988) 231-254. North-Holland.

Johansen, S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in

Gaussian Vector Autoregressive Models. Econometrica, Vol. 59, No. 6 (Nov., 1991), pp. 1551-1580.

Norwegian seafood council (2020). Retrieved 24. June 2020.
https://en.seafood.no/market-insight/fish-market2/changes-in-seafood-consumption/.
Thong, N. T., Ankamah-Yeboah, I., Bronnmann, J., Nielsen, M., Roth, E., amp; SchulzeEhlers, B. (2020). Price transmission in the pangasius value chain from Vietnam to Germany. Aquaculture Reports, 16, 100266. doi:10.1016/j.aqrep.2019.100266.

Tomek, W. and Kaiser, H., 2014. Agricultural Product Prices, Fifth Edition. Cornell University Press.

Tveterås, S. Asche, F. (2008) International fish trade and exchange rates: an application to the trade with salmon and fishmeal. Applied Economics, 40(13), 1745-1755.

Tveteraas, U.L., Asche, F., Gordon, D.V., Tveteraas, S.L. (2018) Farmed fish to supermarket: Testing for price leadership and price transmission in the salmon supply chain, Aquaculture Economics Management, 22:1, 131-149, DOI: 10.1080/13657305.2017.1284943.

Appendix

GERMANY

1 . varsoc lGermanyExport

Sam	$\mathrm{e}: \quad 2009 \mathrm{~m} 5$	$-2019 \mathrm{~m}$				Number of	obs	128
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	-27.8762				. 091934	. 45119	. 460244	. 473472
1	148.982	353.72*	1	0.000	. 00589	-2.2966	-2.27849	-2.25204*
2	150.815	3.6652	1	0.056	. 005814 *	-2.30961*	-2.28245*	-2.24277
3	150.911	. 19214	1	0.661	. 005897	-2.29549	-2.25927	-2.20636
4	151.526	1.2299	1	0.267	. 005933	-2.28947	-2.2442	-2.17806

Endogenous: lGermanyExport Exogenous: _cons

2 . varsoc lsmokedfrozen

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	46.4476				. 017426	-1. 21194	-1.1996	-1.18104
1	77.2496	61.604	1	0.000	. 007871	-2.00666	-1.98198	-1.94486
2	92.7665	31.034 *	1	0.000	. 005345	-2.39377	-2.35676*	-2.30107*
3	93.9886	2.4442	1	0.118	. 005314 *	-2.3997*	-2.35034	-2.2761
4	94.2293	. 48137	1	0.488	. 005423	-2.37945	-2.31776	-2.22495

Endogenous: lsmokedfrozen Exogenous: _cons

3 . varsoc lsmokedfreshpp

	$\begin{aligned} & \text { on-order } \\ & 2009 \mathrm{~m} 5 \end{aligned}$	$\begin{aligned} & \text { criterid } \\ & -\quad 2019 \mathrm{~m} \end{aligned}$				Number of	obs	128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	59.7058				. 023397	-. 917277	-. 908224	-. 894996
1	290.904	462.4	1	0.000	. 000641	-4.51412	-4.49601	-4.46956*
2	292.954	4.1008*	1	0.043	. $000631 *$	-4.53053*	-4.50337*	-4.46369
3	293.301	. 69455	1	0.405	. 000637	-4.52033	-4.48412	-4.43121
4	293.484	. 36512	1	0.546	. 000646	-4.50756	-4.46229	-4.39615

Endogenous: lsmokedfreshpp
Exogenous: _cons
4 . varsoc lsmokedfreshnpp
Selection-order criteria
Sample: 2009m5 - 2019m12

lag	LL	LR	df	p	FPE	Number of obs	AIC	HQIC	SBIC
0	128.234				.008019	-1.98804	-1.97898	-1.96576	
1	132.351	$8.2342 *$	1	0.004	$.007638 *$	$-2.03674 *$	$-2.01863 *$	$-1.99218 *$	
2	132.629	.55513	1	0.456	.007725	-2.02545	-1.99829	-1.95861	
3	133.092	.92533	1	0.336	.00779	-2.01706	-1.98084	-1.92793	
4	133.152	.12059	1	0.728	.007905	-2.00237	-1.95711	-1.89097	

[^0]5 . varsoc lpreparedfrozen

Sample:	2009m5 - 2019 m 12				Number of obs			128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	33.0462				. 035487	-. 500722	-. 491668	-. 47844
1	77.4498	88.807	1	0.000	. 018011	-1.1789	-1.1608	-1.13434*
2	79.5818	4.2641*	1	0.039	. $01769{ }^{*}$	-1.19659*	-1.16943*	-1.12975
3	79.6424	. 12106	1	0.728	. 017957	-1.18191	-1.1457	-1.09279
4	79.6513	. 01798	1	0.893	. 018238	-1.16643	-1.12116	-1.05502

Endogenous: lpreparedfrozen
Exogenous: _cons
6 . varsoc lpreparedfreshpp

Selection-order criteria						Number of obs		128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	5.82138				. 054301	-. 075334	-. 066281	-. 053053
1	72.1903	132.74	1	0.000	. 019554	-1.09672	-1.07862	-1.05216*
2	74.3084	4.2361*	1	0.040	. $019215 *$	-1.11419*	-1.08703*	-1.04735
3	74.6764	. 73614	1	0.391	. 019406	-1.10432	-1.06811	-1.01519
4	74.7799	. 20701	1	0.649	. 01968	-1.09031	-1.04505	-. 978904

Endogenous: lpreparedfreshpp Exogenous: _cons

7 . varsoc lpreparedfreshnpp
Selection-order criteria
Sample: 2009 m 5

| lag 2019 m 12 |
| :---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Endogenous: lpreparedfreshnpp
Exogenous: _cons
8 . varsoc lnaturalfrozen

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	79.8174				. 017088	-1. 23152	-1.22247	-1.20924
1	233.376	307.12	1	0.000	. 001576	-3.61525	-3.59714	-3.57068
2	236.841	6.9307	1	0.008	. 001516	-3.65377	-3.62661	-3.58692*
3	238.971	4.2597*	1	0.039	. 00149 *	-3.67142*	-3.63521*	-3.5823
4	239.435	. 92834	1	0.335	. 001502	-3.66305	-3.61778	-3.55164

[^1]9 . varsoc lnaturalfreshpp

Sample: 2009m5 - 2019m12						Number of	obs	128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	30.3146				. 037034	-. 458041	-. 448988	-. 435759
1	81.9276	103.23	1	0.000	. 016794	-1.24887	-1.23076	-1.20431
2	89.0014	14.148	1	0.000	. 015273	-1.34377	-1.31661	-1.27693
3	101.163	24.323*	1	0.000	. 012829	-1.51817	-1.48196*	-1.42905*
4	102.233	2.1399	1	0.144	.012815*	-1.51927*	-1.474	-1.40786

Endogenous: lnaturalfreshpp Exogenous: _cons

10 . varsoc lnaturalfreshnpp

Selection-order criteria Sample: 2009m5 - 2019m12						Number of obs		128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	52.2697				. 02628	-. 801089	-. 792036	-. 778807
1	167.033	229.53	1	0.000	. 004443	-2.57864	-2.56053	-2.53408
2	171.884	9.7023	1	0.002	. 004183	-2.63881	-2.61165	-2.57197*
3	174.098	4.4287*	1	0.035	. 004105	-2.65779	-2.62157	-2.56866
4	175.737	3.2775	1	0.070	. 004064 *	-2.66777*	-2.6225*	-2.55636

Endogenous: lnaturalfreshnpp Exogenous: _cons

1 . varsoc d.lGermanyExport

$\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$	$\begin{array}{r} \text { on-order } \\ 2009 \mathrm{~m} 6 \end{array}$	$\begin{aligned} & \text { criteri } \\ & -\quad 2019 n \end{aligned}$				Number of	obs	127
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	147.462				. 005832	-2.30649	-2.29739*	-2.28409*
1	148.898	2.8711	1	0.090	. $005792 *$	-2.31335*	-2.29515	-2.26856
2	148.917	. 03778	1	0.846	. 005883	-2.2979	-2.2706	-2.23071
3	149.686	1.5385	1	0.215	. 005904	-2. 29426	-2.25787	-2.20468
4	149.973	. 57349	1	0.449	. 005971	-2.28303	-2.23754	-2.17106

Endogenous: D.lGermanyExport
Exogenous: cons
2 . varsoc d.lsmokedfrozen

Selection-order		criteria				Number of	obs	69
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	63.0504				. 009692	-1.79856	-1.78572	-1.76618
1	83.1293	40.158	1	0.000	. 005575	-2.35157	-2.32588	-2.28682
2	84.4034	2.5482	1	0.110	. 005531	-2.35952	-2.32098	-2.26238
3	84.5079	. 20894	1	0.648	. 005677	-2.33356	-2.28218	-2.20405
4	93.2184	17.421*	1	0.000	. $004541 *$	-2.55706*	-2.49283*	-2.39516*

Endogenous: D.lsmokedfrozen
Exogenous: _cons
3 . d.varsoc lsmokedfreshpp
d.varsoc is not a valid command name
r(199);
4 . varsoc d.lsmokedfreshpp

Sample: 2009m6 - 2019m12						Number of	obs	127
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	287.506				. 000643	-4.51191	-4.50281	-4.48951*
1	289.615	4.218*	1	0.040	. 000632 *	-4.52937*	-4.51117*	-4.48458
2	289.924	. 6189	1	0.431	. 000639	-4.5185	-4.4912	-4.45131
3	290.078	. 30744	1	0.579	. 000647	-4.50517	-4.46877	-4.41559
4	290.149	. 14237	1	0.706	. 000657	-4.49054	-4.44505	-4.37857

Endogenous: D.lsmokedfreshpp Exogenous: _cons

5 . varsoc d.lsmokedfreshnpp

Sample:	2009m6 - 2019m12				Number of obs			127
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	100.852				. 012151	-1. 57247	-1.56337	-1.55007
1	112.861	24.018	1	0.000	. 010217	-1.74584	-1.72764	-1.70105
2	115.074	4.426	1	0.035	. 010024	-1.76494	-1.73764	-1.69775
3	117.716	5.2858	1	0.021	. 009768	-1.79081	-1.75442	-1.70123
4	122.827	10.22*	1	0.001	. 009156 *	-1.85554*	-1.81004*	-1.74356*

$\begin{aligned} \text { Endogenous: } & \text { D.lsmokedfreshnpp } \\ \text { Exogenous: } & \text { cons }\end{aligned}$

6 . varsoc d.lpreparedfrozen

Sample: 2009m6 - $2019 \mathrm{ml2}$						Number of	obs	127
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	66.3185				. 020931	-1.02864	-1.01954	-1.00624
1	72.3536	12.07	1	0.001	. 019336	-1.10793	-1.08973*	-1.06314*
2	73.3089	1.9107	1	0.167	. 019349	-1.10723	-1.07993	-1.04004
3	73.6113	. 60482	1	0.437	. 019563	-1.09624	-1.05985	-1.00666
4	75.5361	3.8495*	1	0.050	. $019281 *$	-1.1108*	-1.06531	-. 998828

Endogenous: D.lpreparedfrozen Exogenous: _cons

7 . varsoc d.lpreparedfreshpp

Selection-order criteria Sample: 2009m6 - 2019m12						Number of obs		127
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	66.2463				. 020955	-1.0275	-1.0184	-1.00511
1	71.1417	9.7908*	1	0.002	. 019708	-1.08885	-1.07065*	-1.04406*
2	72.4532	2.6229	1	0.105	. 019612 *	-1.09375*	-1.06645	-1.02657
3	72.4753	. 04424	1	0.833	. 019916	-1.07835	-1.04196	-. 988771
4	72.7177	. 48471	1	0.486	. 020156	-1.06642	-1.02093	-. 954444

Endogenous: D.lpreparedfreshpp Exogenous: _cons

8 . varsoc d.lpreparedfreshnpp

$\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$	$\begin{array}{r} \text { n-order } \\ 2009 \mathrm{~m} 6 \end{array}$	$\begin{aligned} & \text { criteri } \\ & -\quad 2019 \mathrm{~m} \end{aligned}$				Number of	obs	127
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	80.2165				. 016817	-1. 2475	-1.2384	-1.22511
1	91.3796	22.326	1	0.000	. 01433	-1.40755	-1.38936	-1.36276
2	101.29	19.82*	1	0.000	. 012454 *	-1.54787*	-1.52057*	-1.48068*
3	102.131	1.6834	1	0.194	. 012485	-1.54537	-1.50898	-1.45579
4	102.161	. 05969	1	0.807	. 012677	-1.5301	-1.4846	-1.41812

Endogenous: D.lpreparedfreshnpp Exogenous: _cons

9 . varsoc d.lnaturalfrozen

Sample: 2009m6-2019m12						Number of obs		127
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	229.723				. 001597	-3.60193	-3.59284	-3.57954
1	233.802	8.1586	1	0.004	. 001521	-3.65043	-3.63223	-3.60564*
2	236.208	4.8126*	1	0.028	.001488*	-3.67257*	-3.64528*	-3.60539
3	236.563	. 70977	1	0.400	. 001503	-3.66241	-3.62602	-3.57283
4	236.583	. 03957	1	0.842	. 001526	-3.64698	-3.60148	-3.535

[^2]1 Monday July 6 01:40:19 2020 Page 3
10
. varsoc d.lnaturalfreshpp

Sample:	2009m6 - $2019 \mathrm{ml2}$				Number of obs			127
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	71.7722				. 019209	-1.11452	-1.10542	-1.09213
1	83.6304	23.716	1	0.000	. 016189	-1.28552	-1.26732	-1.24073
2	97.8401	28.419*	1	0.000	. 013149	-1.49355	-1.46625*	-1.42636*
3	99.2488	2.8172	1	0.093	. $013065 *$	-1.49998*	-1.46358	-1.4104
4	99.663	. 82858	1	0.363	. 013186	-1.49076	-1.44526	-1.37878

Endogenous: D.lnaturalfreshpp Exogenous: _cons

11 . varsoc d.lnaturalfreshnpp

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	163.572				. 004525	-2.56019	-2.55109	-2. 5378
1	169.466	11.788	1	0.001	. 00419	-2.63726	-2.61907	-2.59247*
2	171.662	4.3911*	1	0.036	. 004112	-2.65609	-2.6288	-2.58891
3	173.565	3.8061	1	0.051	. 004054	-2.67031	-2.63392*	-2.58073
4	175.013	2.896	1	0.089	. 004025 *	-2.67737*	-2.63187	-2.56539

Endogenous: D.lnaturalfreshnpp Exogenous: _cons

1 . dfuller lGermanyExport, lags(2)
Augmented Dickey-Fuller test for unit root
Number of obs =
129

MacKinnon approximate p-value for $Z(t)=0.5162$
2 . dfuller lsmokedfrozen, lags (3)
Augmented Dickey-Fuller test for unit root Number of obs = 75

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-1.383	-3.545	-2.910	-2.590

MacKinnon approximate p-value for $Z(t)=0.5903$
3 . dfuller lsmokedfreshpp, lags(2)

Augmented Dickey-Fuller test for unit root 129

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-0.959	-3.500	-2.888	-2. 578

MacKinnon approximate p-value for $Z(t)=0.7678$
4 . dfuller lsmokedfreshnpp, lags(1)
Augmented Dickey-Fuller test for unit root of obs = 130

MacKinnon approximate p-value for $Z(t)=0.0000$
5 . dfuller lpreparedfrozen, lags(2)
Augmented Dickey-Fuller test for unit root of obs = 129

	Test Statistic	1\% Critical Value	lated Dicke 5\% Critical Value	10\% Critical Value
Z (t)	-3.485	-3. 500	-2.888	-2. 578

MacKinnon approximate p-value for $Z(t)=0.0084$
6 . dfuller lpreparedfreshpp, lags(2)
Augmented Dickey-Fuller test for unit root of obs = 129

	$\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$	Interpolated Dickey-Fuller		
		1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-2.444	-3.500	-2.888	-2. 578

```
7. dfuller lpreparedfreshnpp, lags(3)
```

 Augmented Dickey-Fuller test for unit root
 Number of obs =

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-4.351	-3. 501	-2.888	-2.578

MacKinnon approximate p-value for $Z(t)=0.0004$
8 . dfuller lnaturalfrozen, lags(3)
Augmented Dickey-Fuller test for unit root of obs = 128

	Test Statistic	1\% Critical Value	5\% Critical Value	$\begin{gathered} \text { 10\% Critical } \\ \text { Value } \end{gathered}$
Z (t)	-1.000	-3. 501	-2.888	-2.578

MacKinnon approximate p-value for $Z(t)=0.7534$
9. dfuller lnaturalfreshpp, lags(4)

Augmented Dickey-Fuller test for unit root 127

MacKinnon approximate p-value for $Z(t)=0.4135$
10 . dfuller lnaturalfreshnpp, lags(4)
Augmented Dickey-Fuller test for unit root 127

MacKinnon approximate p-value for $Z(t)=0.6634$

1 . dfuller lGermanyExport, trend lags(2)
Augmented Dickey-Fuller test for unit root \quad Number of obs $=129$

	$\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$	Interpolated Dickey-Fuller		
		1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-3.336	-4.030	-3.446	-3.14

MacKinnon approximate p-value for $Z(t)=0.0605$
2 . dfuller lsmokedfrozen, trend lags(3)
Augmented Dickey-Fuller test for unit root Number of obs = 75

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-2.155	-4.095	-3.475	-3.165

Mackinnon approximate p-value for $Z(t)=0.6231$
4 . dfuller lsmokedfreshnpp, trend lags(1)
Augmented Dickey-Fuller test for unit root of obs = $\mathbf{1 3 0}$

	$\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$	Interpolated Dickey-Fuller		
		1\% Critical Value	5\% Critical Value	$\begin{gathered} \text { 10\% Critical } \\ \text { Value } \end{gathered}$
Z (t)	-6.414	-4.030	-3.446	-3.146

MacKinnon approximate p-value for $Z(t)=0.0001$
6 . dfuller lpreparedfreshpp, trend lags(2)
Augmented Dickey-Fuller test for unit root \quad Number of obs 129

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-4.584	-4.030	-3.446	-3.146

MacKinnon approximate p-value for $Z(t)=0.0011$

1 Monday July 6 01:49:14 2020 Page 2
7 . dfuller lpreparedfreshnpp, trend lags(3)
Augmented Dickey-Fuller test for unit root
Number of obs =
128

	Test Statistic		ed Dic	er
		1\% Critical Value	```Critical Value```	$\begin{gathered} \text { Critical } \\ \text { Value } \end{gathered}$
Z (t)	-4.359	-4.031	-3.446	-3.146

Mackinnon approximate p-value for $Z(t)=0.0025$
8 . dfuller lnaturalfrozen, trend lags (3)
Augmented Dickey-Fuller test for unit root of obs =
128

MacKinnon approximate p-value for $Z(t)=0.6246$
9 . dfuller lnaturalfreshpp, trend lags(4)
Augmented Dickey-Fuller test for unit root of obs = 127

MacKinnon approximate p-value for $Z(t)=0.0268$
10 . dfuller lnaturalfreshnpp, trend lags(4)
Augmented Dickey-Fuller test for unit root

	Test Statistic	1\% Critical Value	5\% Critical Value	$\begin{gathered} 10 \% ~ C r i t i c a l \\ \text { Value } \end{gathered}$
Z (t)	-2.722	-4.031	-3.446	-3.146

MacKinnon approximate p-value for $Z(t)=0.2272$
1 . dfuller d.lGermanyExport, lags(1)

Augmented Dickey-Fuller test for unit root
Number of obs =

MacKinnon approximate p-value for $Z(t)=0.0006$
3 . dfuller d.lsmokedfreshpp, lags(1)
Augmented Dickey-Fuller test for unit root of obs = 129

Critical

	Test Statistic	1\% Critical Value	5\% Critical Value	10% Critical Value
$Z(t)$	-7.992	-3.500	$\mathbf{- 2 . 8 8 8}$	$\mathbf{- 2 . 5 7 8}$

MacKinnon approximate p-value for $Z(t)=0.0000$
4 . dfuller d.lsmokedfreshnpp, lags(4)
Augmented Dickey-Fuller test for unit root of obs = 126

MacKinnon approximate p-value for $Z(t)=0.0000$
5 . dfuller d.lpreparedfrozen, lags(4)
Augmented Dickey-Fuller test for unit root \quad Numer of obs $=126$

MacKinnon approximate p-value for $Z(t)=0.0000$
6 . dfuller d.lpreparedfreshpp, lags(2)
Augmented Dickey-Fuller test for unit root \quad Number of obs $=128$

[^3]1 Monday July 6 01:42:48 2020 Page 2
7 . dfuller d.lpreparedfreshnpp, lags(2)
Augmented Dickey-Fuller test for unit root of obs = 128

	Test Statistic	lated Dick			
		1\%	Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-9.795		-3. 501	-2.888	-2. 578

Mackinnon approximate p-value for $Z(t)=0.0000$
8 . dfuller d.lnaturalfrozen, lags(2)
Augmented Dickey-Fuller test for unit root \quad Numer of obs $=128$

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-7.158	-3.501	-2.888	-2.578

MacKinnon approximate p-value for $Z(t)=0.0000$
9 . dfuller d.lnaturalfreshpp, lags(4)
Augmented Dickey-Fuller test for unit root of obs = 126

	$\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$	1\% Critical Value	lated Dickey 5\% Critical Value	10\% Critical Value
Z (t)	-5.882	-3. 501	-2.888	-2.578

MacKinnon approximate p-value for $Z(t)=0.0000$
10 . dfuller d.lnaturalfreshnpp, lags(4)
Augmented Dickey-Fuller test for unit root $\quad 126$

	Test Statistic	Interpolated Dickey-Fuller			
		1\%	Critical Value	$\begin{gathered} \text { 5\% Critical } \\ \text { Value } \end{gathered}$	10\% Critical Value
Z (t)	-6.401		-3.501	-2.888	-2.578

MacKinnon approximate p-value for $Z(t)=0.0000$

MacKinnon approximate p-value for $Z(t)=0.0000$
6 . dfuller d.lpreparedfreshpp, trend lags(2) Augmented Dickey-Fuller test for unit root \quad of obs $=128$

MacKinnon approximate p-value for $Z(t)=0.0000$

1 Monday July 6 01:46:24 2020 Page 2
7 . dfuller d.lpreparedfreshnpp, trend lags (2)
Augmented Dickey-Fuller test for unit root
Number of obs =
128

	$\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$	1\% CriticalValue	lated	
			5\% Critical Value	10\% Critical Value
Z (t)	-9.760	-4.031	-3.446	-3.146

Mackinnon approximate p-value for $Z(t)=0.0000$
8 . dfuller d.lnaturalfrozen, trend lags(2)
Augmented Dickey-Fuller test for unit root of obs =
128

MacKinnon approximate p-value for $Z(t)=0.0000$

9 . dfuller d.lnaturalfreshpp, trend lags(3)
Augmented Dickey-Fuller test for unit root of obs = 127

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-8.173	-4.031	-3.446	-3.146

MacKinnon approximate p-value for $Z(t)=0.0000$
10 . dfuller d.lnaturalfreshnpp, trend lags(4)
Augmented Dickey-Fuller test for unit root 126

	Test Statistic	Interpolated Dickey-Fuller			
		1\%	Critical Value	$\begin{gathered} \text { 5\% Critical } \\ \text { Value } \end{gathered}$	```10% Critical Value```
Z (t)	-6. 366		-4.031	-3.447	-3.147

MacKinnon approximate p-value for $Z(t)=0.0000$

1 . reg lsmokedfreshpp lGermanyExport

Source	SS	$d f$	MS
Model	2.2889296	1	2.2889296
Residual	.899863392	130	.006922026
Total	3.18879299	131	.024341931

Number of obs	$=$	132
F (1, 130)	$=$	330.67
Prob $>\mathrm{F}$	$=$	0.0000
R-squared	$=$	0.7178
AdjR-squared	$=$	0.7156
Root MSE	$=$.0832

| lsmokedfreshpp | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lGermanyExport | .4345249 | .0238954 | 18.18 | 0.000 | .3872506 | .4817992 |
| _cons | 2.315611 | .0324845 | 71.28 | 0.000 | $\mathbf{2 . 2 5 1 3 4 4}$ | $\mathbf{2 . 3 7 9 8 7 7}$ |

2 . reg lsmokedfreshnpp lGermanyExport

Source	SS	df	MS	Number of obs$\mathrm{F}(1,130)$	$=$	132	
						0.50	
Model	. 003928628	1	. 003928628	Prob > F		0.4824	
Residual	1.02931075	130	. 007917775	R -squared	=	0.0038	
Total	1.03323937	131	. 007887323	Adj R-squared Root MSE	=	$\begin{array}{r} -0.0039 \\ 08898 \end{array}$	
lsmokedfre~npp	Coef.	Std. Err.	.	P>\|t	[95\%	Conf. Interval]	
lGermanyExport	. 0180019	. 0255564	0.70	$0.482-.0325584$. 0685622	
_cons	2.788622	. 0347425	80.27	$0.000 \quad 2.719888$		2.857356	

3 . reg lpreparedfrozen lGermanyExport

Source	SS	df	MS	Number of obs	=	132	
					=	36.78	
Model	1.08720759	1	1.08720759	Prob > F	=	0.0000	
Residual	3.84254132	130	. 02955801	R -squared	=	0.2205	
				Adj R-squared	=	0.2145	
Total	4.92974891	131	. 037631671	Root MSE	=	. 17192	
lpreparedfro~n	Coef.	Std. Err	. $\quad t$	P>\|t	[95\%	Conf	Interval]
lGermanyExport	. 2994709	. 0493783	6.06	0.000 .20178	819	. 39716	
_cons	2.00885	. 0671269	29.93	$0.000 \quad 1.876$	047	2.141652	

4. reg lpreparedfreshpp lGermanyExport

Source	SS	df	MS	Number of obs F(1, 130)	=	132	
					=	88.76	
Model	2.86047545	12	2.86047545	Prob > F	=	0.0000	
Residual	4.18945284	130	. 03222656	R -squared	=	0.4057	
				Adj R-squared		0.4012	
Total	7.04992829	131.	. 053816247	Root MSE	=	. 17952	
lpreparedf~hpp	Coef.	Std. Err.	. t	P>\|t	[95\%	Conf	Interval]
lGermanyExport	. 4857553	. 0515591	9.42	0.000 .383		. 5877588	
_cons	2.101781	. 0700916	29.99	$0.000 \quad 1.963$	113	2.240449	

5 . reg lpreparedfreshnpp lGermanyExport

Source	SS	$d f$	$M S$
Model	.000194676	1	.000194676
Residual	1.50081487	130	.01154473
Total	1.50100955	131	.011458088

Number of obs	$=$	132
F(1, 130)	$=$	0.02
Prob > F	$=$	0.8969
R-squared	$=$	0.0001
Adj R-squared	$=$	-0.0076
Root MSE	$=$.10745

| lpreparedf~npp | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | :---: | ---: | ---: | ---: |
| lGermanyExport | -.0040073 | .0308596 | -0.13 | 0.897 | -.0650594 | .0570447 |
| _Cons | $\mathbf{2 . 7 8 3 3 1 4}$ | .0419518 | 66.35 | 0.000 | $\mathbf{2 . 7 0 0 3 1 7}$ | $\mathbf{2 . 8 6 6 3 1}$ |

6 . reg lnaturalfrozen lGermanyExport

Source	SS	$d f$	MS
Model	.941917459	1	.941917459
Residual	1.36920677	130	.01053236
Total	2.31112423	131	.01764217

Number of obs	$=$	132
F(1, 130)	$=$	89.43
Prob $>\mathrm{F}$	$=$	0.0000
R-squared	$=$	0.4076
Adj R-squared	$=$	0.4030
Root MSE	$=$.10263

| Inaturalfrozen | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lGermanyExport | .2787436 | .0294755 | 9.46 | 0.000 | .2204298 | .3370573 |
| _cons | $\mathbf{2 . 1 4 2 3 4 6}$ | .0400702 | 53.46 | 0.000 | $\mathbf{2 . 0 6 3 0 7 2}$ | $\mathbf{2 . 2 2 1 6 2}$ |

7 . reg lnaturalfreshpp lGermanyExport

8 . reg lnaturalfreshnpp lGermanyExport

Source	SS	$d f$	$M S$
Model Residual	$\mathbf{2 . 9 8 7 0 2 9 2 6}$	$\mathbf{1}$	2.98702926
Total	$\mathbf{3 . 5 7 2 2 9 1 5 5}$	130	.004502018

Number of obs	$=$	132
F (1, 130)	$=$	663.49
Prob > F	$=$	0.0000
R-squared	$=$	0.8362
Adj R-squared	$=$	0.8349
Root MSE	$=$.0671

| lnaturalfr~npp | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lGermanyExport | .4963845 | .0192709 | 25.76 | 0.000 | .4582593 | .5345096 |
| _cons | $\mathbf{2 . 2 5 3 8 6 1}$ | .0261977 | 86.03 | 0.000 | $\mathbf{2 . 2 0 2 0 3 2}$ | $\mathbf{2 . 3 0 5 6 9}$ |

1 . varsoc lsmokedfreshpp lGermanyExport

Sam	$2009 \mathrm{~m} 5$	$-2019 \mathrm{~m}$				Number of	obs	128
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	110.211				. 000632	-1. 69079	-1. 67269	-1.64623
1	447.753	675.09	4	0.000	3.4e-06	-6.9024	-6.84808	-6.76871*
2	456.398	17.289*	4	0.002	3.2e-06*	-6.97497*	-6.88444*	-6.75216
3	457.537	2.2778	4	0.685	3.4e-06	-6.93027	-6.80352	-6.61833
4	458.78	2.4864	4	0.647	$3.5 e-06$	-6.88719	-6.72424	-6.48613

Endogenous: lsmokedfreshpp lGermanyExport Exogenous: _cons

2 . varsoc lsmokedfreshnpp lGermanyExport

Sample: 2009m5 - 2019 m 12						Number of obs		128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	100.854				. 000732	-1.54459	-1. 52648	-1.50003
1	281.952	362.2*	4	0.000	. 00004 6*	-4.31176*	-4.25744*	-4.17807*
2	284.25	4.5952	4	0.331	. 000047	-4.28516	-4.19463	-4.06234
3	285.594	2.6873	4	0.611	. 000049	-4.24365	-4.11691	-3.93171
4	288.042	4.8967	4	0.298	. 00005	-4.21941	-4.05645	-3.81834

Endogenous: lsmokedfreshnpp lGermanyExport Exogenous: _cons

3 . varsoc lpreparedfrozen lGermanyExport

$\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$	$\begin{aligned} & \text { on-order } \\ & 2009 \mathrm{~m} 5 \end{aligned}$	$\begin{aligned} & \text { criterid } \\ & -\quad 2019 \mathrm{~m} \end{aligned}$				Number of	obs	128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	18.6556				. 002643	-. 260244	-. 242138	-. 215681
1	230.218	423.12	4	0.000	. 000103	-3.5034	-3.44908*	-3.36971*
2	234.851	9.2657	4	0.055	. 000102	-3.51329	-3.42276	-3.29047
3	236.171	2.6419	4	0.619	. 000107	-3.47143	-3.34469	-3.15949
4	242.987	13.63*	4	0.009	. 000102 *	-3.51542*	-3.35246	-3.11435

Endogenous: lpreparedfrozen lGermanyExport Exogenous: _cons

4 . varsoc lpreparedfreshpp lGermanyExport

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	9.70605				. 003039	-. 120407	-. 102301	-. 075844
1	230.133	440.85	4	0.000	. 000103	-3.50208	-3.44776*	-3.36839*
2	235.747	11.228 *	4	0.024	. 000101	-3. 5273	-3.43677	-3.30448
3	239.945	8.3951	4	0.078	.0001*	-3.53038*	-3.40364	-3.21844
4	242.63	5.3717	4	0.251	. 000103	-3.50985	-3.3469	-3.10878

[^4]5 . varsoc lpreparedfreshnpp lGermanyExport

Sample:	2009m5 - 2019 m 12				Number of obs			128
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	76.8549				. 001064	-1.16961	-1.1515	-1.12504
1	264.635	375.56*	4	0.000	. $00006 *$	-4.04117*	-3.98685*	-3.90748*
2	266.985	4.7	4	0.319	. 000062	-4.01538	-3.92485	-3.79257
3	270.868	7.767	4	0.100	. 000062	-4.01356	-3.88682	-3.70162
4	273.046	4.3549	4	0.360	. 000064	-3.98509	-3.82213	-3.58402

Endogenous: lpreparedfreshnpp lGermanyExport Exogenous: _cons

6 . varsoc lnaturalfrozen lGermanyExport

Selection-order criteria						Number of obs		128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	82.7899				. 00097	-1.26234	-1.24424	-1.21778
1	387.573	609.57	4	0.000	8.8e-06	-5.96208	-5.90777	-5.82839*
2	393.968	12.79	4	0.012	8.5e-06	-5.99951	-5.90898	-5.77669
3	401.515	15.094*	4	0.005	8.0e-06*	-6.05493*	-5.92819*	-5.74299
4	405.427	7.8229	4	0.098	8.1e-06	-6.05355	-5.89059	-5.65248

Endogenous: lnaturalfrozen lGermanyExport Exogenous: _cons

7 . varsoc lnaturalfreshpp lGermanyExport

$\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$	$\begin{array}{r} \text { n-order } \\ 2009 \mathrm{~m} 5 \end{array}$	$\begin{aligned} & \text { criteri } \\ & -\quad 2019 \mathrm{~m} \end{aligned}$				Number of	obs	128
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	38.9				. 001926	-. 576562	-. 558456	-. 531999
1	239.342	400.88	4	0.000	. 000089	-3.64597	-3.59165	-3.51228
2	248.184	17.684	4	0.001	. 000083	-3.72162	-3.63109	-3.49881
3	259.102	21.836*	4	0.000	. 000074 *	-3.82971*	-3.70297*	-3.51777*
4	260.325	2.446	4	0.654	. 000078	-3.78632	-3.62336	-3.38525

Endogenous: lnaturalfreshpp lGermanyExport Exogenous: _cons

8 . varsoc lnaturalfreshnpp lGermanyExport

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	138.346				. 000407	-2.1304	-2.1123	-2.08584
1	342.888	409.08*	4	0.000	. $000018 *$	-5.26388*	-5.20956*	-5.13019*
2	346.807	7.8366	4	0.098	. 000018	-5.2626	-5.17207	-5.03979
3	350.154	6.6945	4	0.153	. 000018	-5.2524	-5.12566	-4.94046
4	353.585	6.8629	4	0.143	. 000018	-5.24352	-5.08056	-4.84245

[^5]

maximum rank	parms	LL	eigenvalue	SBIC		
0	14	233.52337		-3.118112	-3.303309	-3.430053
1	18	247.62992	0.19781	$-3.186901 *$	$-3.425012 *$	-3.587967
2	20	252.00916	0.06614	-3.179513	-3.444081	-3.625143

5 . vecrank lpreparedfreshnpp lGermanyExport, trend(rtrend) lags(1) ic max
Johansen tests for cointegration

Trend: rtrend					Number of obs $=$		1311
Sample:	2009 m 2	2019m12				Lags	
maximum				trace	$\begin{gathered} \text { 5\% } \\ \text { critical } \end{gathered}$		
rank	parms	LL	eigenvalue	statistic	value		
0	2	237.61201		75.8035	25.32		
1	6	271.71798	0.40590	$7.5916 *$	12.25		
2	8	275.51378	0.05630				
					5\%		
maximum				max	critical		
rank	parms	LL	eigenvalue	statistic	value		
0	2	237.61201		68.2119	18.96		
1	6	271.71798	0.40590	7.5916	12.52		
2	8	275.51378	0.05630				
maximum							
rank	parms	LL	eigenvalue	SBIC	HQIC	AIC	
0	2	237.61201		-3.553234	-3.579293	-3.59713	
1	6	271.71798	0.40590	-3.925075*	-4.003252*	-4.056763	
2	8	275.51378	0.05630	-3.908595	-4.012832	-4.08418	

1 Monday July 6 00:19:38 2020 Page 4

maximum rank	parms	LL	eigenvalue	SBIC	HQIC	A IC
0	2	323.9512		-4.871389	-4.897449	-4.915285
1	6	360.08513	0.42401	-5.274191*	-5.352369*	-5.40588
2	8	364.22874	0.06130	-5.263022	-5.367259	-5.438607

9.

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	0	.	

Identification: beta is overidentified

1 Monday July 6 01:36:14 2020 Page 2
(1) [_ce1]lsmokedfreshpp $=1$
(2) [_ce1]lGermanyExport = -1

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
Ismokedfreshpp	1	-	-	-	.	
lGermanyExport	-1		.			
_trend	. 0030829	. 0007421	4.15	0.000	. 0016284	. 0045375
_cons	-1.742696		.			

6 . test ([D_lsmokedfreshpp]: L._ce1)
(1) [D_lsmokedfreshpp]L._ce1 = 0

$$
\operatorname{chi2}(1)=17.30
$$

Prob > chi2 $=0.0000$

7 . test ([D_lGermanyExport]: L._ce1)
(1) [D_lGermanyExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =6.81 \\
\text { Prob }>\operatorname{chi} 2 & =0.0091
\end{aligned}
$$

8 . constraint 1 _b[lsmokedfreshnpp] = 1
9
10 . constraint 2 _b[lGermanyExport] = -1
11 .
12 . vec lsmokedfreshnpp lGermanyExport, trend(rtrend) rank(1) lags(1) bconstraint(1/2)

| Iteration 1: | log likelihood $=266.42841$ |
| :--- | :--- | :--- |
| Iteration 2: | log likelihood $=266.42889$ |
| Iteration 3: | log likelihood $=266.42889$ |
| Iteration 4: | log likelihood $=266.42889$ |

Vector error-correction model

Sample: 2009 m 2 - 2019 m 12				Number	obs	=	131
				AIC			-3.991281
Log likelihood =	266.4289			HQIC			-3.946688
Det(Sigma_ml) =	. 0000587			SBIC		-	-3.88154
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_lsmokedfresh~p	2	. 104494	0.0897	12.71039	0.0017		
D_lGermanyExport	2	. 07477	0.0357	4.773009	0.0920		

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
D_lsmokedfreshnpp						
_ce1						
L1.	-. 1746537	. 0490095	-3.56	0.000	-. 2707106	-. 0785968
_cons	. 0020538	. 0091683	0.22	0.823	-. 0159157	. 0200232
D_lGermanyExport						
_ce1	06844				- 0002932	1371731
L1.	. 06844	. 0350686	1.95	0.051	-. 0002932	. 1371731
_cons	. 005241	. 0065603	0.80	0.424	-. 007617	. 018099

[^6]1 Monday July 6 01:36:14 2020 Page 3
Equation Parms chi2 P>chi2
_ce1 $0 \quad$.

Identification: beta is overidentified
(1) [_ce1]lsmokedfreshnpp $=1$
(2) [_ce1]lGermanyExport = -1

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
Ismokedfreshnpp	1	.	-	.	-	.
lGermanyExport	-1	.	-		.	
_trend	. 0064998	. 0011625	5.59	0.000	. 0042213	. 0087783
_cons	-1.896293	.	.			.

13 . test ([D_lsmokedfreshnpp]: L._ce1)
(1) [D_lsmokedfreshnpp]L._ce1 = 0

$$
\operatorname{chi2}(1)=12.70
$$

$$
\text { Prob }>\text { chi2 }=0.0004
$$

14 . test ([D_lGermanyExport]: L._ce1)
(1) [D_lGermanyExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =3.81 \\
\text { Prob }>\text { chi2 } & =0.0510
\end{aligned}
$$

```
. constraint 1 _b[lpreparedfrozen] = 1
```

. constraint 2 _b[lGermanyExport] = -1
.
19 . vec lpreparedfrozen lGermanyExport, trend(rtrend) rank(1) lags(4) bconstraint(1/2)
Iteration 1: \quad log likelihood $=239.65982$
Iteration 2: $\quad \log$ likelihood $=239.68304$
Iteration 3: $\quad \log$ likelihood $=239.68304$
Iteration 4: $\quad \log$ likelihood $=239.68304$

Vector error-correction model

Sample: 2009m5 -	$2019 \mathrm{ml2}$			Number AIC		$=$ $=$	$\begin{array}{r} 128 \\ -3.479422 \end{array}$
Log likelihood	239.683			HQIC			-3.32552
Det(Sigma_ml) =	. 000081			SBIC			-3.100637
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D lpreparedfro~n	8	. 133324	0.1896	28.07466	0.0005		
D_lGermanyExport	8	. 072136	0.1611	23.04666	0.0033		

| | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| D_lpreparedfrozen | | | | | | |
| _ce1 | | | | | | |
| L1. | -.1558471 | .0569031 | -2.74 | 0.006 | -.2673752 | -.044319 |
| lpreparedfrozen | | | | | | |
| LD. | -.2638487 | .0920219 | -2.87 | 0.004 | -.4442083 | -.083489 |
| L2D. | -.0839892 | .0937402 | -0.90 | 0.370 | -.2677167 | .0997383 |
| L3D. | -.041955 | .0900397 | -0.47 | 0.641 | -.2184296 | .1345195 |
| lGermanyExport | | | | | | |
| LD. | -.2377531 | .1632483 | -1.46 | 0.145 | -.5577139 | .0822076 |

$\begin{aligned} & \text { L2D. } \\ & \text { L3D. } \end{aligned}$	$\begin{array}{r} -.0335187 \\ .1737997 \end{array}$	$\begin{aligned} & .1678626 \\ & .1672302 \end{aligned}$	$\begin{array}{r} -0.20 \\ 1.04 \end{array}$	$\begin{aligned} & 0.842 \\ & 0.299 \end{aligned}$	$\begin{aligned} & -.3625233 \\ & -.1539655 \end{aligned}$	$\begin{array}{r} .295486 \\ .5015649 \end{array}$
_cons	. 003057	. 0118884	0.26	0.797	-. 0202439	. 0263579
D_lGermanyExport_ce1						
L1.	. 0611855	. 030788	1.99	0.047	. 0008421	. 1215289
lpreparedfrozen						
LD.	-. 0621634	. 0497894	-1. 25	0.212	-. 1597487	. 035422
L2 D.	-. 1487177	. 0507191	-2.93	0.003	-. 2481252	-. 0493101
L3D.	-. 1678	. 0487169	-3.44	0.001	-. 2632833	-. 0723167
lGermanyExport						
LD.	. 1545361	. 0883271	1.75	0.080	-. 0185818	. 327654
L2 D.	. 103159	. 0908237	1.14	0.256	-. 0748523	. 2811702
L3D.	-. 067993	. 0904816	-0.75	0.452	-. 2453336	. 1093476
_cons	. 0077866	. 0064324	1.21	0.226	-. 0048206	. 0203937

Cointegrating equations

Equation	Parms	chi2	P>chi2
_ce1	0	.	

Identification: beta is overidentified
(1) [_ce1]lpreparedfrozen = 1
(2) [_ce1]lGermanyExport = -1

beta	Coef.	Std. Err	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
lpreparedfrozen	1	
lGermanyExport	-1	.			.	
_trend	. 0038329	. 0016123	2.38	0.017	. 0006728	. 0069931
_cons	-1.340685	.	.			

20 . test ([D_lpreparedfrozen]: L._ce1)
(1) [D_lpreparedfrozen]L._ce1 $=0$

$$
\begin{aligned}
& \text { chi2 }\left(\begin{array}{l}
1)
\end{array}=\mathbf{7 . 5 0}\right. \\
& \text { Prob }>\text { chi2 }=\mathbf{0 . 0 0 6 2}
\end{aligned}
$$

21 . test ([D_lGermanyExport]: L._ce1)
(1) [D_lGermanyExport]L._ce1 $=0$

$$
\begin{aligned}
\text { chi2 }(1) & =3.95 \\
\text { Prob }>\operatorname{chi} 2 & =0.0469
\end{aligned}
$$

22 . constraint 1 _b[lpreparedfreshpp] = 1
23
24 . constraint 2 _b[lGermanyExport] = -1

| Iteration 1: | log likelihood $=\mathbf{2 4 0 . 8 1 1 0 4}$ |
| :--- | :--- | :--- |
| Iteration 2: | log likelihood $=240.81896$ |
| Iteration 3: | log likelihood $=240.81896$ |
| Iteration 4: | log likelihood $=\mathbf{2 4 0 . 8 1 8 9 6}$ |

Vector error-correction model

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
D_lpreparedfreshpp _ce1						
L1.	-. 11636	. 0616887	-1.89	0.059	-. 2372677	. 0045477
lpreparedfreshpp						
LD.	-. 2491634	. 0981165	-2.54	0.011	-. 4414682	-. 0568586
L2D.	-. 0680174	. 0916248	-0.74	0.458	-. 2475988	. 111564
lGermanyExport						
LD.	-. 3578343	. 161738	-2.21	0.027	-. 674835	-. 0408337
L2D.	-. 346334	. 1670435	-2.07	0.038	-. 6737333	-. 0189347
_cons	. 0061769	. 0120574	0.51	0.608	-. 0174552	. 0298089
D_lGermanyExport						
L1.	. 0976114	. 0326316	2.99	0.003	. 0336545	. 1615682
lpreparedfreshpp						
LD.	. 0459586	. 0519009	0.89	0.376	-. 0557653	. 1476825
L2D.	. 0748142	. 048467	1.54	0.123	-. 0201793	. 1698078
lGermanyExport						
LD.	. 132711	. 0855549	1.55	0.121	-. 0349735	3003955
L2 D.	. 1134745	. 0883614	1.28	0.199	-. 0597106	. 2866596
_cons	. 0073633	. 006378	1.15	0.248	-. 0051374	. 019864

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	0	.	

Identification: beta is overidentified
(1) [_ce1]lpreparedfreshpp = 1
(2) [_ce1]lGermanyExport = -1

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
_ce1						
lpreparedfreshpp	1	-	-	-	.	
lGermanyExport	-1	-	-	-	. 00037.	
_trend	. 0022928	. 0013598	1.69	0.092	-. 0003724	. 004958
-_cons	-1.591998	.	.	.		

1 Monday July 6 01:36:15 2020 Page 6

```
. test ([D_lpreparedfreshpp]: L._ce1)
```

 (1) [D_lpreparedfreshpp]L._ce1 \(=0\)
 $$
\begin{aligned}
\text { chi2 }(1) & =3.56 \\
\text { Prob }>\operatorname{chi} 2 & =0.0593
\end{aligned}
$$

(1) [D_lGermanyExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }\left(\begin{array}{rl}
1
\end{array}\right) & =8.95 \\
\text { Prob }>\text { chi2 } & =0.0028
\end{aligned}
$$

29 . constraint 1 _b[lpreparedfreshnpp] = 1
30.

31 . constraint 2 _b[1GermanyExport] = -1
32
33 . vec lpreparedfreshnpp lGermanyExport, trend(rtrend) rank(1) lags(1) bconstraint(1/2)

| Iteration 1: | log likelihood $=250.52274$ |
| :--- | :--- | :--- |
| Iteration 2: | log likelihood $=250.52487$ |
| Iteration 3: | log likelihood $=250.52487$ |
| Iteration 4: | log likelihood $=250.52487$ |

Vector error-correction model

Sample: 2009 m 2 - $2019 \mathrm{ml2}$				Number of	obs		131
				AIC			-3.748471
Log likelihood =	250.5249			HQIC			-3.703879
Det(Sigma_ml) =	. 0000748			SBIC		=	-3.638731
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_lpreparedfre~p	2	. 117016	0.1747	27.30569	0.0000		
D_lGermanyExport	2	. 07534	0.0209	2.756056	0.2521		

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	0		.

Identification: beta is overidentified

1 Monday July 6 01:36:15 2020 Page 7
(1) [_ce1]lpreparedfreshnpp = 1
(2) [_ce1]lGermanyExport = -1

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
lpreparedfreshnpp	1	-	-	-	-	
lGermanyExport	-1	90097	- ${ }^{\text {a }}$	0.	.	
_trend	. 0065984	. 0009779	6.75	0.000	. 0046818	. 0085151
- cons	-1.881676	.	.	.		

(1) [D_lpreparedfreshnpp]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }\left(\begin{array}{l}
1)
\end{array}=\right. & \mathbf{2 7 . 3 1} \\
\text { Prob }>\text { chi2 } & =0.0000
\end{aligned}
$$

35 . test ([D_lGermanyExport]: L._ce1)
(1) [D_lGermanyExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =1.81 \\
\text { Prob }>\operatorname{chi} 2 & =0.1789
\end{aligned}
$$

36 . constraint 1 _b[lnaturalfrozen] = 1
37
38 . constraint 2 _b[lGermanyExport] $=-1$
39
40 . vec lnaturalfrozen lGermanyExport, trend(rtrend) rank(1) lags(3) bconstraint(1/2)
Iteration 1: $\quad \log$ likelihood $=406.67134$
Iteration 2: log likelihood $=406.80586$
Iteration 3: $\quad \log$ likelihood $=406.80589$
Iteration 4: log likelihood = 406.80589
Iteration 5: $\quad \log$ likelihood $=406.80589$
Vector error-correction model

Sample: 2009m4 - 2019m12				Number	obs	$=$	129
				AIC			-6.105518
Log likelihood =	406.8059			HQIC			-5.988417
Det(Sigma_ml) =	6.25e-06			SBIC		=	-5.817319
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_lnaturalfrozen	6	. 036219	0.1999	30.7297	0.0000		
D_lGermanyExport	6	. 073118	0.1180	16.44934	0.0115		

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
D_lnaturalfrozence1						
L1.	-. 0574627	. 0181772	-3.16	0.002	-. 0930894	-. 0218359
lnaturalfrozen						
LD.	-. 3148685	. 0853214	-3.69	0.000	-. 4820955	-. 1476415
L2D.	-. 2166682	. 0844337	-2.57	0.010	-. 3821552	-. 0511812
lGermanyExport						
LD.	. 0370349	. 0448107	0.83	0.409	-. 0507925	. 1248623
L2D.	. 0022023	. 046163	0.05	0.962	-. 0882755	. 0926802
_cons	. 0062592	. 0033049	1.89	0.058	-. 0002183	. 0127368
D_lGermanyExport ce1						
L1.	. 0695978	. 0366954	1.90	0.058	-. 002324	. 1415195

1 Monday July 6 01:36:16 2020 Page 8

lnaturalfrozen						
LD.	-.1377271	.1722432	-0.80	0.424	-.4753176	.1998634
L2D.	-.4530286	.1704511	-2.66	0.008	-.7871065	-.1189506
lGermanyExport						
LD.	.1857881	.0904619	2.05	0.040	.008486	.3630901
L2D.	.0687138	.0931919	0.74	0.461	-.1139389	.2513664
Cons	.0051679	.0066719	0.77	0.439	-.0079088	.0182445

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	0		

Identification: beta is overidentified
(1) [_ce1]lnaturalfrozen = 1
(2) [_ce1]lGermanyExport = -1

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
Inaturalfrozen	1	.	.	.		
lGermanyExport	-1	
_trend	. 0037267	. 0013527	2.76	0.006	. 0010755	. 0063779
_cons	-1.39715	.	.			

41 . test ([D_naturalfrozen]: L. ce1)
equation D_naturalfrozen not \bar{f} ound
r(303);
42 . test ([D_lnaturalfrozen]: L._ce1)
(1) [D_lnaturalfrozen]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =9.99 \\
\text { Prob }>\operatorname{chi} 2 & =0.0016
\end{aligned}
$$

43 . test ([D_lGermanyExport]: L._ce1)
(1) [D_lGermanyExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =3.60 \\
\text { Prob }>\text { chi2 } & =0.0579
\end{aligned}
$$

```
44 . constraint 1 _b[lnaturalfreshpp] = 1
```

45
46 . constraint 2 _b[lGermanyExport] $=-1$

47
48 . vec lnaturalfreshpp lGermanyExport, trend(rtrend) rank(1) lags(3) bconstraint(1/2)
Iteration 1: \quad log likelihood $=260.34828$
Iteration 2: $\quad \log$ likelihood $=260.38625$
Iteration 3: $\quad \log$ likelihood $=260.38626$
Iteration 4: log likelihood = 260.38626
Iteration 5: $\quad \log$ likelihood $=260.38626$
Vector error-correction model

Sample: 2009m4	2019 m 12	Number of obs	=	129
		AIC	=	-3.835446
Log likelihood	260.3863	HQIC	=	-3.718345
Det(Sigma_ml)	. 0000605	SBIC	=	-3.547248

1 Monday July 6 01:36:16 2020 Page 9

Equation	Parms	RMSE	R-sq	chi2	P>chi2
D_lnaturalfres~p	6	.111674	0.3629	$\mathbf{7 0 . 0 6 6 6 9}$	0.0000
D_lGermanyExport	6	.073913	0.0987	$\mathbf{1 3 . 4 6 6 3 5}$	$\mathbf{0 . 0 3 6 2}$

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
D_lnaturalfreshpp _ce1						
L1.	-. 0851751	. 0542354	-1. 57	0.116	-. 1914747	. 0211244
lnaturalfreshpp						
LD.	-. 537135	. 0860465	-6.24	0.000	-. 705783	-. 3684869
L2 D.	-. 4128211	. 0813206	-5.08	0.000	-. 5722065	-. 2534358
lGermanyExport						
LD.	-. 2045421	. 1346	-1. 52	0.129	-. 4683533	. 0592691
L2 D.	-. 1321855	. 1391767	-0.95	0.342	-. 4049669	. 1405958
cons	. 0080769	. 009906	0.82	0.415	-. 0113385	. 0274923
D_lGermanyExport						
$\begin{gathered} \text { ce1 } \\ \text { L1. } \end{gathered}$. 1047109	. 0358965	2.92	0.004	. 0343551	. 1750667
lnaturalfreshpp						
LD.	-. 100656	. 056951	-1.77	0.077	-. 212278	. 010966
L2 D.	-. 0296435	. 0538231	-0.55	0.582	-. 1351348	. 0758479
lGermanyExport						
LD.	. 1965398	. 0890868	2.21	0.027	. 0219328	. 3711467
L2 D.	. 0723442	. 092116	0.79	0.432	-. 1081998	. 2528881
_cons	. 00657	. 0065564	1.00	0.316	-. 0062803	. 0194204

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	0	.	

Identification: beta is overidentified
(1) [_ce1]lnaturalfreshpp = 1
(2) [_ce1]lGermanyExport $=-1$

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
ce1						
Inaturalfreshpp	1	.	.	-	-	
lGermanyExport	-1	- ${ }^{\text {b }}$	$\stackrel{\dot{\circ}}{ }$	-	-00327	
_trend	. 003012	. 0013695	2.20	0.028	. 0003279	. 0056961
_cons	-1.42305	

49 . test ([D_lnaturalfreshpp]: L._ce1)
(1) [D_lnaturalfreshpp]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }\left(\begin{array}{rl}
1
\end{array}\right) & =\mathbf{2 . 4 7} \\
\text { Prob }>\text { chi2 } & =0.1163
\end{aligned}
$$

1 Monday July 6 01:36:16 2020 Page 10

```
50 . test ([D_lGermanyExport]: L._ce1)
```

 (1) [D_lGermanyExport]L._ce1 = 0
 | chi2 (1) | $=8.51$ |
| ---: | :--- |
| Prob $>\operatorname{chi} 2$ | $=0.0035$ |

51 . constraint 1 _b[lnaturalfreshnpp] = 1
52.
53 . constraint 2 _b[lGermanyExport] $=-1$
54.
55 . vec lnaturalfreshnpp lGermanyExport, trend(rtrend) rank(1) lags(1) bconstraint(1/2)
Iteration 1: log likelihood = 334.70455
Iteration 2: $\quad \log$ likelihood $=334.71555$
Iteration 3: $\quad \log$ likelihood $=334.71555$
Iteration 4: $\quad \log$ likelihood $=334.71555$

Vector error-correction model

Sample: 2009m2 - 2019 m 12				Number of obs		=	131
				AIC			-5.033825
Log likelihood =	334.715			HQIC		$=$	-4.989233
Det(Sigma_ml) =	. 0000207			SBIC		=	-4.924085
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_lnaturalfres~p	2	. 063815	0.1163	16.9696	0.0002		
D_lGermanyExport	2	. 075348	0.0207	2.728034	0.2556		

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
D_lnaturalfreshnpp						
L1.	-. 1775706	. 0437472	-4.06	0.000	-. 2633135	-. 0918277
_cons	. 0026756	. 005584	0.48	0.632	-. 0082688	. 01362
D_lGermanyExport						
ce1						
L1.	. 0688853	. 0516532	1.33	0.182	-. 0323531	. 1701237
_cons	. 0068971	. 0065931	1.05	0.296	-. 0060252	. 0198194

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	0		

Identification: beta is overidentified
(1) [_ce1]lnaturalfreshnpp $=1$
(2) \quad [_ce1]lGermany Export $=-1$

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
_ce1						
Inaturalfreshnpp	1	.	.	-	.	
lGermanyExport	-1	-00702	-	${ }^{\circ}$.	
_trend	. 0029258	. 0007021	4.17	0.000	. 0015496	. 0043019
_cons	-1.785321		.	.	.	

LR test of identifying restrictions: chi2 (1) = 50.74 Prob > chi2 = 0.000

1 Monday July 6 01:36:16 2020 Page 11
56 . test ([D_lnaturalfreshnpp]: L._ce1)
(1) [D_lnaturalfreshnpp]L._ce1 = 0
chi2 (1$)=16.48$ Prob $>$ chi2 $=0.0000$

57 . test ([D_lGermanyExport]: L._ce1)
(1) [D_lGermanyExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =1.78 \\
\text { Prob }>\operatorname{chi2} & =0.1823
\end{aligned}
$$

58.

Cointegrating equations

Equation	Parms	chi2	P>chi2
_ce1	$\mathbf{1}$	$\mathbf{3 3 . 1 7 5 6 7}$	$\mathbf{0 . 0 0 0 0}$

Identification: beta is exactly identified
Johansen normalization restriction imposed

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
ce1						
Ismokedfreshpp	1		-	-	.	-
lGermanyExport	-. 673085	. 1168584	-5.76	0.000	-. 9021233	-. 4440467
_trend	. 0008606	. 0009245	0.93	0.352	-. 0009513	. 0026726
_cons	-2.041291		.	.		.

```
    1 Tuesday June 23 15:16:00 2020 Page 2
2 . vec lsmokedfreshnpp lGermanyExport, trend(rtrend) rank(1) lags(1)
    Vector error-correction model
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Sample: 2009m2 - \(2019 \mathrm{ml2}\)}} & Number & obs & \(=\) & 131 \\
\hline & & & & AIC & & & -4.33024 \\
\hline Log likelihood = & 289.6307 & & & HQIC & & & -4.276729 \\
\hline Det(Sigma_ml) = & . 0000412 & & & SBIC & & - & -4.198552 \\
\hline Equation & Parms & RMSE & R-sq & chi2 & P>chi2 & & \\
\hline D_lsmokedfresh~p & 2 & . 086076 & 0.3823 & 79.22144 & 0.0000 & & \\
\hline D_lGermanyExport & 2 & . 075707 & 0.0114 & 1.470498 & 0.4794 & & \\
\hline
\end{tabular}
```

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
D_lsmokedfreshnpp						
L1.	-. 75807	. 0851786	-8.90	0.000	-. 9250171	-. 591123
_cons	-. 0004672	. 00755	-0.06	0.951	-. 015265	. 0143306
D_lGermanyExport						
_ce1	-. 054913	. 0749176	-0.73	0.464	-. 2017488	. 0919227
_cons	. 0064492	. 0066405	0.97	0.331	-. 0065659	. 0194644

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	$\mathbf{1}$.0548801	$\mathbf{0 . 8 1 4 8}$

Identification: beta is exactly identified

Johansen normalization restriction imposed

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf.	Interval]
ce1						
Ismokedfreshnpp	1	
lGermanyExport	-. 013875	. 0592278	-0.23	0.815	-. 1299594	. 1022094
_trend	-. 0000706	. 0004721	-0.15	0.881	-. 0009959	. 0008547
-cons	-2.789062	

3. vec lpreparedfrozen lGermanyExport, trend(rtrend) rank(1) lags(4)

Vector error-correction model

Sample: 2009m5	2019 m 12			Number	obs	=	128
				AIC			-3.587967
Log likelihood =	247.6299			HQIC			-3.425012
Det(Sigma_ml) =	. 0000716			SBIC		=	-3.186901
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_lpreparedfro~n	8	. 123833	0.3009	51.21143	0.0000		
D_lGermanyExport	8	. 072916	0.1429	19.83702	0.0110		

1 Tuesday June 23 15:16:01 2020 Page 3

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
D_lpreparedfrozen ce1						
L1.	-. 6329572	. 120564	-5.25	0.000	-. 8692583	-. 3966562
lpreparedfrozen						
LD.	. 0833932	. 1152199	0.72	0.469	-. 1424337	. 3092202
L2 D.	. 1968275	. 1065744	1.85	0.065	-. 0120545	. 4057095
L3D.	. 1440125	. 0933455	1.54	0.123	-. 0389414	. 3269664
lGermanyExport						
LD.	-. 1800589	. 1493529	-1.21	0.228	-. 4727851	. 1126673
L2 D.	. 0023184	. 1515708	0.02	0.988	-. 2947549	. 2993917
L3D.	. 2627629	. 1496517	1.76	0.079	-. 030549	. 5560749
cons	-. 0008391	. 011124	-0.08	0.940	-. 0226418	. 0209636
D_lGermanyExport						
L1.	-. 0809979	. 070991	-1.14	0.254	-. 2201376	. 0581419
lpreparedfrozen						
LD.	. 0251264	. 0678443	0.37	0.711	-. 107846	. 1580987
L2 D.	-. 0853455	. 0627536	-1.36	0.174	-. 2083402	. 0376493
L3D.	-. 1236438	. 0549641	-2. 25	0.024	-. 2313714	-. 0159161
lGermanyExport						
LD.	. 1157394	. 0879425	1.32	0.188	-. 0566249	. 2881036
L2 D.	. 0423094	. 0892485	0.47	0.635	-. 1326145	. 2172333
L3D.	-. 1249374	. 0881185	-1.42	0.156	-. 2976465	. 0477717
_cons	. 006557	. 0065501	1.00	0.317	-. 0062809	. 019395

Cointegrating equations

4 . vec lpreparedfreshpp lGermanyExport, trend(rtrend) rank(1) lags(3)
Vector error-correction model

Sample: 2009 m 4	2019 ml 2			Number		=	129
				AIC		$=$	-3.541464
Log likelihood =	242.42			HQIC		$=$	-3.415355
Det(Sigma_ml)	. 00007			SBIC		=	-3. 231097
Equation	Parms	RMSE	R-sq	chi2	$\mathrm{P}>\mathrm{Ch}$		
D_lpreparedfre~p	6	. 129434	0.2343	37.3255	0.00		
D_lGermanyExport	6	. 073186	0.1163	16.0577	0.01		

1 Tuesday June 23 15:16:01 2020 Page 4

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
D_lpreparedfreshpp _ce1						
L1.	-. 340412	. 0913343	-3.73	0.000	-. 5194239	-. 1614001
lpreparedfreshpp						
LD.	-. 11224	. 1031772	-1.09	0.277	-. 3144636	. 0899836
L2D.	. 0128726	. 0913454	0.14	0.888	-. 166161	. 1919063
lGermanyExport						
LD.	-. 2667662	. 1571302	-1.70	0.090	-. 5747358	. 0412033
L2D.	-. 2662559	. 1604395	-1.66	0.097	-. 5807115	. 0481997
_cons	. 0013419	. 0117148	0.11	0.909	-. 0216188	. 0243025
D_lGermanyExport						
L1.	. 0729539	. 0516435	1.41	0.158	-. 0282656	. 1741734
lpreparedfreshpp						
LD.	. 0683803	. 0583399	1.17	0.241	-. 0459639	. 1827245
L2 D.	. 092624	. 0516498	1.79	0.073	-. 0086077	. 1938558
lGermanyExport						
LD.	. 1028368	. 0888468	1.16	0.247	-. 0712998	. 2769733
L2D.	. 0726829	. 090718	0.80	0.423	-. 1051211	. 2504869
_cons	. 0062613	. 006624	0.95	0.345	-. 0067214	. 0192441

Cointegrating equations

5 . vec lpreparedfreshnpp lGermanyExport, trend(rtrend) rank(1) lags(1)
Vector error-correction model

Sample: 2009m2 - $2019 \mathrm{ml2}$				Number	obs	=	131
				AIC			-4.056763
Log likelihood =	271.7			HQIC			-4.003252
Det(Sigma_ml) =	. 00005			SBIC			-3.925075
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_lpreparedfre~p	2	. 102449	0.3674	74.33646	0.0000		
D_lGermanyExport	2	. 075337	0.0210	2.745665	0.2534		

1 Tuesday June 23 15:16:01 2020 Page 5

	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf	Interval]
D_lpreparedfreshnpp						
_ce1						
L1.	-. 7253187	. 084126	-8.62	0.000	-. 8902027	-. 5604347
_cons	-. 0007218	. 0089866	-0.08	0.936	-. 0183352	. 0168917
D_lGermanyExport						
$\begin{gathered} \mathrm{ce1} \\ -\mathrm{L1} . \end{gathered}$	-. 0830728	. 0618632	-1. 34	0.179	-. 2043225	. 0381769
cons	. 0063019	. 0066084	0.95	0.340	-. 0066504	. 0192541

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	$\mathbf{1}$.669413	$\mathbf{0 . 4 1 3 3}$
Identification: beta is exactly identified			

Johansen normalization restriction imposed

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
lpreparedfreshnpp	1	-	.		.	
lGermanyExport	-. 0557847	. 0681817	-0.82	0.413	-. 1894183	. 077849
_trend	. 0004052	. 0005435	0.75	0.456	-. 00066	. 0014703
- cons	-2.731254

6 . vec lnaturalfrozen lGermanyExport, trend(rtrend) rank(1) lags (3)
Vector error-correction model

Sample: 2009 m 4 - $2019 \mathrm{ml2}$				Number of	obs	=	129
				AIC		=	-6.108943
Log likelihood =	408.0268			HQIC		=	-5.982834
Det(Sigma_ml) =	$6.13 \mathrm{e}-06$			SBIC		=	-5.798575
Equation	Parms	RMSE	R-sq	chi2	P>Chi2		
D_lnaturalfrozen	6	. 036437	0.1902	28.66293	0.0001		
D_lGermanyExport	6	. 071839	0.1486	21.28672	0.0016		

	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
D_lnaturalfrozen ce1						
L1.	. 0070169	. 0024297	2.89	0.004	. 0022548	. 011779
lnaturalfrozen						
LD.	-. 359611	. 0881187	-4.08	0.000	-. 5323205	-. 1869014
L2 D.	-. 2448519	. 0872729	-2.81	0.005	-. 4159037	-. 0738001
lGermanyExport						
LD.	. 0471656	. 0446617	1.06	0.291	-. 0403698	. 134701
L2D.	. 0114463	. 0460744	0.25	0.804	-. 0788578	1017504
_cons	. 0064239	. 0033631	1.91	0.056	-. 0001677	. 0130156
D_lGermanyExport						
L1.	-. 0136174	. 0047903	-2.84	0.004	-. 0230063	-. 0042286
lnaturalfrozen						
LD.	-. 0444007	. 1737327	-0.26	0.798	-. 3849106	. 2961092

```
1 Tuesday June 23 15:16:02 2020 Page 6
```

L2D.	-.3738234	.1720652	-2.17	0.030	-.711065	-.0365818
lGermanyExport						
LD.	.1937741	.088054	2.20	0.028	.0211914	.3663568
L2D.	.0815036	.0908391	0.90	0.370	-.0965378	.2595451
_cons	.0033102	.0066307	0.50	0.618	-.0096857	.016306

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	$\mathbf{1}$	$\mathbf{1 4 . 7 1 3 8 4}$	$\mathbf{0 . 0 0 0 1}$
Identification:	beta is exactly identified		

Johansen normalization restriction imposed

beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
Inaturalfrozen	1	.	.	-	-	
lGermanyExport	8.732156	2.276451	3.84	0.000	4.270393	13.19392
_trend	-. 0605607	. 0178304	-3.40	0.001	-. 0955077	-. 0256138
_cons	-10.45208		-	.		

. vec lnaturalfreshpp lGermanyExport, trend(rtrend) rank(1) lags(3)
Vector error-correction model

Sample: 2009 m 4 - $2019 \mathrm{ml2}$				Number of obs			129
				AIC			-3.852992
Log likelihood =	262.518			HQIC			-3.726883
Det(Sigma_ml) =	. 0000585			SBIC		-	-3. 542624
Equation	Parms	RMSE	$\mathrm{R}-\mathrm{sq}$	chi2	P>chi2		
D_lnaturalfres~p	6	. 105863	0.4275	91.09798	0.0000		
D_lGermanyExport	6	. 076406	0.0368	4.666843	0.5872		

	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Con	Interval]
D_Inaturalfreshpp _ce1						
L1.	-. 5010429	. 1234084	-4.06	0.000	-. 7429189	-. 2591669
lnaturalfreshpp						
LD.	-. 2703585	. 1089936	-2.48	0.013	-. 483982	-. 056735
L2 D.	-. 2697444	. 0864453	-3.12	0.002	-. 4391741	-. 1003146
lGermanyExport						
LD.	-. 1385566	. 1273043	-1.09	0.276	-. 3880684	. 1109551
L2 D.	-. 0793429	. 1287031	-0.62	0.538	-. 3315964	. 1729105
_cons	. 0002697	. 0096531	0.03	0.978	-. 0186501	. 0191895
D_lGermanyExport						
L1.	. 0227973	. 0890698	0.26	0.798	-. 1517762	. 1973709
lnaturalfreshpp						
LD.	-. 050598	. 0786659	-0.64	0.520	-. 2047803	. 1035844
L2 D.	. 0026537	. 0623917	0.04	0.966	-. 1196319	. 1249393
lGermanyExport						
LD.	. 1600467	. 0918816	1.74	0.082	-. 0200379	. 3401314
L2 D.	. 0086383	. 0928912	0.09	0.926	-. 1734251	. 1907018
_cons	. 0059278	. 0069671	0.85	0.395	-. 0077275	. 0195831

Cointegrating equations

Equation	Parms chi2 P>					
_ce1	1.0	1380.8				
Identification:	eta is exa	y identif	strict	impos		
beta	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
ce1						
Inaturalfreshpp	1	-	.	-	-	
lGermanyExport	-. 0228104	. 1160809	-0.20	0.844	-. 2503247	. 204704
_trend	-. 003907	. 0009212	-4.24	0.000	-. 0057124	-. 0021015
- _cons	-2.279859	

8 . vec lnaturalfreshnpp lGermanyExport, trend(rtrend) rank(1) lags(1)
Vector error-correction model

Sample: 2009m2	2019 ml 2			Number	obs	$=$	131
				AIC		$=$	-5.40588
Log likelihood =	360.0851			HQIC		=	-5.352369
Det(Sigma_ml) =	. 000014			SBIC		=	-5.274191
Equation	Parms	RMSE	R-sq	chi2	P>chi2		
D_lnaturalfres~p	2	. 051492	0.4246	94.45741	0.0000		
D_lGermanyExport	2	. 074636	0.0391	5.213085	0.0738		

	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
D_lnaturalfreshnpp						
	-. 7727991	. 0798337	-9.68	0.000	-. 9292702	-. 6163279
_cons	-. 0014673	. 0045506	-0.32	0.747	-. 0103863	. 0074517
D_lGermanyExport						
ce1						
L1.	-. 2386337	. 1157153	-2.06	0.039	-. 4654316	-. 0118359
_cons	. 0047517	. 0065959	0.72	0.471	-. 008176	. 0176794

Cointegrating equations

Equation	Parms	chi2	P>chi2
ce1	$\mathbf{1}$	$\mathbf{9 5 . 3 9 6 3 1}$	$\mathbf{0 . 0 0 0 0}$

Identification: beta is exactly identified
Johansen normalization restriction imposed

beta	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Con	Interval]
ce1						
Inaturalfreshnpp	1	-	-	.	-	
lGermanyExport	-. 3397914	. 0347894	-9.77	0.000	-. 4079774	-. 2716055
_trend	-. 0015525	. 0002773	-5.60	0.000	-. 002096	-. 001009
_cons	-2.366775

SPAIN

User: 1
1 . varsoc lSpainExport

Selection-order criteria Sample: 2015m5 - 2019m12						Number of obs		56
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	24.3638				. 025418	-. 83442	-. 820398	-. 798253
1	66.5013	84.275	1	0.000	. 005849	-2. 30362	-2.27558	-2.23129*
2	68.5114	4.0201*	1	0.045	. 005642 *	-2.33969*	-2.29763*	-2.23119
3	69.2786	1.5345	1	0.215	. 00569	-2. 33138	-2.27529	-2.18671
4	69.4773	. 39738	1	0.528	. 005857	-2. 30276	-2.23265	-2.12193

Endogenous: ISpainExport Exogenous: _cons

2 . varsoc lsmokedfrozen

Sample: 2015m5		- 2018m12, but with			gaps	Number of obs		19
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	-10.1669				.189699*	1.17546*	1.18388*	1.22517*
1	-10.1649	. 00405	1	0.949	. 210856	1. 28051	1.29734	1.37993
2	-10.0871	. 15562	1	0.693	. 232788	1. 37759	1.40282	1.52671
3	-9.22188	1.7304	1	0.188	. 236997	1. 39178	1.42543	1.59061
4	-8.8224	. 79895	1	0.371	. 254054	1.45499	1.49705	1.70353

Endogenous: lsmokedfrozen
Exogenous: _cons
3 . varsoc lsmokedfreshpp

Selection-order criteria Sample: 2017m9 - 2019m12						Number of obs		28
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	53.6424				. 001363	-3.76017	-3.74563	-3.71259
1	56.9943	6.7038	1	0.010	. 001153	-3.92816	-3.89907	-3.83301
2	59.2257	4.4629*	1	0.035	. $001056 *$	-4.01612*	-3.97249*	-3.87339*
3	59.8229	1.1943	1	0.274	. 001088	-3.98735	-3.92917	-3.79703
4	59.8428	. 03983	1	0.842	. 001169	-3.91734	-3.84462	-3.67945

Endogenous: lsmokedfreshpp
Exogenous: _cons
4 . varsoc lsmokedfreshnpp

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	69.3188				. 005103	-2.43996	-2.42593	-2.40379
1	95.3219	$52.006 *$	1	0.000	. 00209	-3.33293	-3.30488	-3.26059*
2	96.8185	2.9932	1	0.084	. 002053 *	-3.35066*	-3.3086*	-3.24216
3	97.2603	. 88365	1	0.347	. 002095	-3.33073	-3.27464	-3.18606
4	98.166	1.8112	1	0.178	. 002102	-3.32736	-3.25725	-3.14652

[^7]5 . varsoc lsalteddried

Sample: 2015m5 - 2019m12						Number of	obs	56
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	-31.002				.18361*	1.14293*	1.15695*	1.1791*
1	-30.9993	. 00548	1	0.941	. 190272	1. 17855	1. 20659	1.25088
2	-30.2105	1.5775	1	0.209	. 191727	1.18609	1.22816	1.29459
3	-29.8996	. 62188	1	0.430	. 196531	1.2107	1.26679	1.35537
4	-29.3507	1.0978	1	0.295	. 19977	1.22681	1.29692	1.40764

Endogenous: lsalteddried Exogenous: _cons

6 . varsoc lpreparedfrozen

2015m5 - 2019 m 12						Number of	obs	56
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	-. 180735				. 061072	. 042169	. 056191	. 078336
1	5.0486	10.459	1	0.001	. 052511	-. 108879	-. 080835	-. 036545
2	7.21607	4.3349*	1	0.037	. 050371	-. 150574	-. $108508 *$	-. $042073 *$
3	7.92512	1.4181	1	0.234	. 050904	-. 140183	-. 084095	. 004485
4	9.47612	3.102	1	0.078	. 049924 *	-. $159861 *$	-. 089752	. 020974

Endogenous: lpreparedfrozen Exogenous: _cons

7 . varsoc lpreparedfresh

$\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$	$\begin{array}{r} \text { n-order } \\ 2015 m 5 \end{array}$	$\begin{aligned} & \text { criteria } \\ & -2019 \mathrm{~m} \end{aligned}$				Number of	obs	56
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	24.261				. 025512	-. 830748	-. 816727	-. 794581
1	87.3009	126.08*	1	0.000	.002783*	-3.04646*	-3.01842*	-2.97413*
2	87.4369	. 27187	1	0.602	. 00287	-3.0156	-2.97354	-2.9071
3	87.7931	. 71251	1	0.399	. 002937	-2.99261	-2.93652	-2.84794
4	88.2153	. 84436	1	0.358	. 002999	-2.97198	-2.90187	-2.79114

Endogenous: lpreparedfresh Exogenous: _cons

8 . varsoc lnaturalfrozen

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	59.4967				. 007248	-2.08917	-2.07515	-2.053
1	78.0874	37.181	1	0.000	. 003867	-2.71741	-2.68936	-2.64507
2	82.4021	8.6294*	1	0.003	. $003436 *$	-2.83579*	-2.79373*	-2.72729*
3	82.6529	. 50157	1	0.479	. 003529	-2.80903	-2.75295	-2.66437
4	83.2864	1.2669	1	0.260	. 003577	-2.79594	-2.72583	-2.61511

[^8]9 . varsoc lnaturalfreshpp

Sample: 2015m5 - 2019m12						Number of obs		56
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	49.7807				. 010254	-1.74217	-1.72815	-1.706
1	64.8847	30.208	1	0.000	. 006197	-2.24588	-2.21784	-2.17355*
2	65.4159	1.0623	1	0.303	. 006302	-2.22914	-2.18707	-2.12064
3	67.4805	4.1292*	1	0.042	. 006068	-2.26716	-2.21107	-2.12249
4	69.1	3.239	1	0.072	. $005936 *$	-2.28929*	-2.21918*	-2.10845

Endogenous: lnaturalfreshpp Exogenous: _cons

10 . varsoc lnaturalfreshnpp

2015m5 - 2019 m 12						Number of	obs	56
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	51.209				. 009745	-1.79318	-1.77916	-1.75701
1	105.315	108.21	1	0.000	. 001462	-3.68981	-3.66176	-3.61747
2	108.223	5.8158*	1	0.016	. $001366 *$	-3.75795*	-3.71588*	-3.64945*
3	108.279	. 1123	1	0.738	. 001413	-3.72424	-3.66815	-3.57957
4	108.307	. 05643	1	0.812	. 001463	-3.68953	-3.61942	-3.5087

Endogenous: lnaturalfreshnpp Exogenous: _cons

1 . varsoc d.lSpainExport

Sam	$2015 \mathrm{~m} 6$	-2019				Number of	obs	55
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	62.1995				. 006325	-2. 22544	-2.21132*	-2.18894*
1	63.172	1.945	1	0.163	. 006331	-2. 22444	-2.19621	-2.15144
2	64.6931	3.0423	1	0.081	. $006213 *$	-2.24339*	-2.20105	-2.1339
3	65.2683	1.1504	1	0.283	. 00631	-2. 22794	-2.17148	-2.08195
4	65.7293	. 92188	1	0.337	. 006437	-2.20834	-2.13777	-2.02585

Endogenous: D.lSpainExport
Exogenous: _cons
2 . varsoc d.lsmokedfrozen

2016m12 - 2018m12, but with a gap						Number of	obs	16
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	-15.2893				. 448633	2.03616	2.03864	2.08445
1	-11.9576	6.6634*	1	0.010	. 335592	1.7447	1.74965	1.84128
2	-10.4866	2.942	1	0.086	. 31741 *	1.68583*	1.69324*	1.83069*
3	-9.52606	1.9211	1	0.166	. 321007	1.69076	1.70065	1.8839
4	-9.4707	. 11072	1	0.739	. 365163	1. 80884	1.8212	2.05027

Endogenous: D.lsmokedfrozen
Exogenous: cons
3 . varsoc d.lsmokedfreshpp

Samp	2017m10-2019m12				Number of obs			27
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	49.9229				. 001562	-3.62392	-3.60964	-3.57592
1	54.6936	9.5414*	1	0.002	. 001182	-3.90323	-3.87469	-3.80724*
2	55.9253	2.4634	1	0.117	. $001162 *$	-3.92039*	-3.87758*	-3.77641
3	55.9258	. 00107	1	0.974	. 001253	-3.84636	-3.78927	-3.65438
4	56.8703	1.8889	1	0.169	. 001261	-3.84224	-3.77089	-3.60227

Endogenous: D.lsmokedfreshpp
Exogenous: cons
4 . varsoc d.lsmokedfreshnpp

Selection-order criteria								
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	89.7239				. 002325	-3.22632	-3.21221	-3.18983
1	92.529	5.6102*	1	0.018	. 002177	-3.29196	-3.26374*	-3.21897*
2	93.4809	1.9039	1	0.168	. 002181	-3.29022	-3.24787	-3.18072
3	95.087	3.2122	1	0.073	. 002134	-3.31226	-3.2558	-3.16627
4	96.1068	2.0395	1	0.153	.002133*	-3.31297*	-3.24241	-3.13049

Endogenous: D.lsmokedfreshnpp
Exogenous: _cons

5 . varsoc d.lsalteddried

Sample: 2015m6 - 2019						Number of obs		55
lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	-49.6621				. 369496	1.84226	1.85637	1.87875
1	-44.5436	10.237	1	0.001	. 318113	1.6925	1.72072	1.76549
2	-37.2246	14.638	1	0.000	. 252826	1.46271	1.50505	1.5722
3	-33.6683	7.1127*	1	0.008	. 230417	1. 36976	1.42621*	1.51574*
4	-32.5584	2.2198	1	0.136	. $22955{ }^{*}$	1.36576*	1.43633	1.54825

Endogenous: D.lsalteddried Exogenous: _cons

6 . varsoc d.lpreparedfrozen
Selection-order criteria
Sample: $2015 \mathrm{~m} 6-2019 \mathrm{~m} 12$
Number of obs $\quad=\quad 55$

lag	LL	LR	$d f$	p	FPE	AIC	HQIC	SBIC
0	-5.17987				. 073303	. 224723	. 238836	. 26122
1	2.39813	15.156	1	0.000	. 05771	-. 014477	. 01375	. 058517
2	4.53514	4.274	1	0.039	. 055377	-. 055823	-. 013482	. 053667
3	7.15825	5.2462*	1	0.022	.052211*	-. $114846 *$	-. 058391 *	.031142*
4	7.22752	. 13854	1	0.710	. 054021	-. 081001	-. 010432	. 101484

Endogenous: D.lpreparedfrozen Exogenous: _cons

7 . varsoc d.lpreparedfresh

$\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$	$\begin{array}{r} \text { n-order } \\ 2015 m 6 \end{array}$	$\begin{aligned} & \text { criteri } \\ & -\quad 2019 n \end{aligned}$				Number of	obs	55
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	83.8822				. $002875 *$	-3.0139*	-2.99978*	-2.9774*
1	84.2373	. 71027	1	0.399	. 002943	-2.99045	-2.96222	-2.91745
2	84.9911	1.5077	1	0.219	. 00297	-2.9815	-2.93916	-2.87201
3	85.7901	1.5978	1	0.206	. 002992	-2.97418	-2.91773	-2.8282
4	86.2231	. 86613	1	0.352	. 003055	-2.95357	-2.883	-2.77108

Endogenous: D.lpreparedfresh Exogenous: _cons

8 . varsoc d.lnaturalfrozen

Selection-order criteria						Number of obs		55
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	72.1625				. 004402	-2.58773	-2.57361	-2.55123
1	78.9265	13.528	1	0.000	. 00357	-2.79733	-2.7691*	-2.72433*
2	79.6825	1.512	1	0.219	. 003602	-2.78845	-2.74611	-2.67896
3	80.6352	1.9055	1	0.167	. 003609	-2.78674	-2.73028	-2.64075
4	82.9108	4.5512*	1	0.033	. 00344 6*	-2.83312*	-2.76255	-2.65063

[^9]. varsoc d.lnaturalfreshpp

Endogenous: D.lnaturalfreshpp Exogenous: _cons

10 . varsoc d.lnaturalfreshnpp

Selection-order criteria Sample: 2015m6 - 2019m1						Number of obs		$=55$
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC
0	101.102				. 001537	-3.64007	-3.62595	-3.60357*
1	103.014	3.8236	1	0.051	. 001487 *	-3.67322*	-3.64499*	-3.60023
2	103.035	. 04316	1	0.835	. 001541	-3.63764	-3.5953	-3.52815
3	103.094	. 11794	1	0.731	. 001595	-3.60342	-3.54697	-3.45744
4	103.831	1.4732	1	0.225	. 00161	-3.59384	-3.52328	-3.41136

Endogenous: D.lnaturalfreshnpp Exogenous: _cons
1 . dfuller ISpainExport, lags(2)

Augmented Dickey-Fuller test for unit root \quad Number of obs $=57$ _ Interpolated Dickey-Fuller \qquad
1\% Critical 5\% Critical 10\% Critical Value Value Value

	Test Statistic	1\% Critical Value	5\%ritical Value	Value
$\mathrm{Z}(\mathrm{t})$	$\mathbf{- 2 . 2 0 5}$	$\mathbf{- 3 . 5 7 0}$	$\mathbf{- 2 . 9 2 4}$	$\mathbf{- 2 . 5 9 7}$

MacKinnon approximate p-value for $Z(t)=0.2046$
2 . dfuller lsmokedfrozen, lags(0)
Dickey-Fuller test for unit root Number of obs = 37

	Test Statistic	1\% Critical Value	5o 5\% Critical Value	ler 10\% Critical Value
Z (t)	-4.979	-3.668	-2.966	-2.616

MacKinnon approximate p-value for $Z(t)=0.0000$
3 . dfuller lsmokedfreshpp, lags(2)
Augmented Dickey-Fuller test for unit root of obs = 29

MacKinnon approximate p-value for $Z(t)=0.3189$
4 . dfuller lsmokedfreshnpp, lags(2)
Augmented Dickey-Fuller test for unit root of obs = 57

	Test Statistic	Interpolated Dickey-Fuller		
		1\% Critical Value	5\% Critical Value	$\begin{gathered} \text { 10\% Critical } \\ \text { Value } \end{gathered}$
Z (t)	-1.874	-3.570	-2.924	-2. 597

MacKinnon approximate p-value for $Z(t)=0.3443$
5 . dfuller lsalteddried, lags(0)
Dickey-Fuller test for unit root
Number of obs =

MacKinnon approximate p-value for $Z(t)=0.0000$
6 . dfuller lpreparedfrozen, lags(4)
Augmented Dickey-Fuller test for unit root of obs = 55

	Test Statistic	1\% Critical Value	5\% Critical Value	10\% Critical Value
Z (t)	-1.738	-3. 573	-2.926	-2.598

[^10]```
. dfuller lpreparedfresh, lags(1)
```

Augmented Dickey-Fuller test for unit root
Number of obs =

|  | Test <br> Statistic | 1\% Critical Value | ted Dicke | er |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 5\% Critical Value | 10\% Critical Value |
| Z ( t ) | -1.170 | -3. 569 | -2.924 | -2.597 |

Mackinnon approximate $p$-value for $Z(t)=0.6862$
8 . dfuller lnaturalfrozen, lags(2)
Augmented Dickey-Fuller test for unit root Number of obs = 57

|  | Test <br> Statistic | 1\% Critical Value | 5 <br> 5\% Critical Value |  |
| :---: | :---: | :---: | :---: | :---: |
| Z (t) | -1. 219 | -3.570 | -2.924 | -2.597 |

MacKinnon approximate $p$-value for $Z(t)=0.6655$
9 . dfuller lnaturalfreshpp, lags(4)
Augmented Dickey-Fuller test for unit root of obs = 55


MacKinnon approximate $p$-value for $Z(t)=0.6038$
10 . dfuller lnaturalfreshnpp, lags(2)
Augmented Dickey-Fuller test for unit root $\quad$ Number ofs 57


MacKinnon approximate $p$-value for $Z(t)=0.2001$
1 . dfuller ISpainExport, lags(2) trend

Augmented Dickey-Fuller test for unit root
Number of obs =
$\qquad$
1\% Critical

## 1

5\% Critical 10\% Critical Value Value Value

|  | Statistic | Value | Value | Value |
| ---: | ---: | ---: | ---: | ---: |
| $Z(t)$ | -2.313 | -4.135 | -3.493 | -3.176 |

Mackinnon approximate $p$-value for $Z(t)=0.4270$
2 . dfuller lsmokedfrozen, lags(0) trend
Dickey-Fuller test for unit root Number of obs = 37


MacKinnon approximate $p$-value for $Z(t)=0.0000$
3 . dfuller lsmokedfreshpp, lags(2) trend
Augmented Dickey-Fuller test for unit root
Number of obs =

|  | Test Statistic | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z (t) | -2. 259 | -4.343 | -3.584 | -3.230 |

MacKinnon approximate $p$-value for $Z(t)=0.4570$
4 . dfuller lsmokedfreshnpp, lags(2) trend
Augmented Dickey-Fuller test for unit root of obs = 57


Mackinnon approximate $p$-value for $Z(t)=0.2468$
5 . dfuller lsalteddried, lags(0) trend
Dickey-Fuller test for unit root Number of obs = 59

|  | Test <br> Statistic | 1\% Critical Value | Dickel Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z ( t ) | -7.821 | -4.130 | -3.491 | -3.175 |

MacKinnon approximate $p$-value for $Z(t)=0.0000$
6 . dfuller lpreparedfrozen, lags(4) trend
Augmented Dickey-Fuller test for unit root Number of obs = 55

|  | $\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$ | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z (t) | -1. 389 | -4.139 | -3.495 | -3.177 |

MacKinnon approximate $p$-value for $Z(t)=0.8640$

1 Monday July 6 01:10:27 2020 Page 2
. dfuller lpreparedfresh, lags(1) trend
Augmented Dickey-Fuller test for unit root of obs = 58


MacKinnon approximate $p$-value for $Z(t)=0.3677$
8 . dfuller lnaturalfrozen, lags(2) trend
Augmented Dickey-Fuller test for unit root $\quad$ Numer of obs $=57$

|  | Test <br> Statistic | 1\% Critical Value | lated Dickey 5\% Critical Value |  |
| :---: | :---: | :---: | :---: | :---: |
| Z (t) | -3.331 | -4.135 | -3.493 | -3.176 |

MacKinnon approximate $p$-value for $Z(t)=0.0613$
9 . dfuller lnaturalfreshpp, lags(4) trend
Augmented Dickey-Fuller test for unit root of obs = 55


MacKinnon approximate $p$-value for $Z(t)=0.3354$
10 . dfuller lnaturalfreshnpp, lags(2) trend
Augmented Dickey-Fuller test for unit root $\quad$ Number of obs 57

|  | Test Statistic | nterpolated Dickey-Fuller |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1\% | Critical Value | 5\% Critical Value | 10\% Critical Value |
| Z (t) | -2.013 |  | -4.135 | -3.493 | -3.176 |

MacKinnon approximate $p$-value for $Z(t)=0.5944$

1 . dfuller d.lSpainExport, lags(2)
Augmented Dickey-Fuller test for unit root
Number of obs =


MacKinnon approximate $p$-value for $Z(t)=0.0000$
2 . dfuller d.lsmokedfrozen, lags(2)
Augmented Dickey-Fuller test for unit root $\quad$ Number of obs $=19$

|  | ```Test Statistic``` | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z ( t ) | -5.957 | -3.750 | -3.000 | -2. 630 |

MacKinnon approximate $p$-value for $Z(t)=0.0000$
. dfuller d.lsmokedfreshpp, lags(2)
Augmented Dickey-Fuller test for unit root $\quad$ Numer of obs $=\mathbf{2 8}$


MacKinnon approximate $p$-value for $Z(t)=0.0000$
4 . dfuller d.lsmokedfreshnpp, lags(4)
Augmented Dickey-Fuller test for unit root of obs = 54

|  | Test <br> Statistic | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z ( t ) | -4.484 | -3. 574 | -2.927 | -2. 598 |

Mackinnon approximate $p$-value for $Z(t)=0.0002$
5 . dfuller d.lsalteddried, lags(4)
Augmented Dickey-Fuller test for unit root of obs = 54


MacKinnon approximate $p$-value for $Z(t)=0.0000$
6 . dfuller d.lpreparedfrozen, lags(3)
Augmented Dickey-Fuller test for unit root of obs = 55

|  | Test <br> Statistic | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z (t) | -5.338 | -3.573 | -2.926 | -2.598 |


|  | Test <br> Statistic |  | lated Dicke |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| Z ( t ) | -7.772 | -3.569 | -2.924 | -2. 597 |

MacKinnon approximate $p$-value for $Z(t)=0.0000$
8 . dfuller d.lnaturalfrozen, lags(4)
Augmented Dickey-Fuller test for unit root $\quad$ Numer of obs $=54$

|  | Test <br> Statistic | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z ( t ) | -4.348 | -3.574 | -2.927 | -2.598 |

MacKinnon approximate $p$-value for $Z(t)=0.0004$
9 . dfuller d.lnaturalfreshpp, lags(4)
Augmented Dickey-Fuller test for unit root of obs = 54


MacKinnon approximate $p$-value for $Z(t)=0.0000$
10 . dfuller d.lnaturalfreshnpp, lags(1)
Augmented Dickey-Fuller test for unit root $\quad$ Number of obs 57

|  | Test Statistic | nterpolated Dickey-Fuller |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1\% | Critical Value | 5\% Critical Value | 10\% Critical Value |
| Z (t) | -4.498 |  | -3.570 | -2.924 | -2. 597 |

MacKinnon approximate $p$-value for $Z(t)=0.0002$
1 . dfuller d.lSpainExport, lags(2) trend
Augmented Dickey-Fuller test for unit root Number of obs = 56

|  | $\begin{gathered} \text { Test } \\ \text { Statistic } \end{gathered}$ | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z (t) | -4.996 | -4.137 | -3.494 | -3.176 |

MacKinnon approximate $p$-value for $Z(t)=0.0002$
2 . dfuller d.lsmokedfrozen, lags (2) trend
Augmented Dickey-Fuller test for unit root of obs $=19$

|  | Test <br> Statistic | 1\% Critical Value | lated Dickey <br> 5\% Critical <br> Value |  |
| :---: | :---: | :---: | :---: | :---: |
| Z ( $t$ ) | -5.736 | -4.380 | -3. 600 | -3.240 |

MacKinnon approximate $p$-value for $Z(t)=0.0000$
3 . dfuller d.lsmokedfreshpp, lags(2) trend
Augmented Dickey-Fuller test for unit root of obs = 28


MacKinnon approximate $p$-value for $Z(t)=0.0000$
4 . dfuller d.lsmokedfreshnpp, lags(4) trend
Augmented Dickey-Fuller test for unit root of obs = 54


Mackinnon approximate $p$-value for $Z(t)=0.0013$
5 . dfuller d.lsalteddried, lags(4) trend
Augmented Dickey-Fuller test for unit root of obs = 54

|  | Test <br> Statistic | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z (t) | -5.592 | -4.141 | -3.496 | -3.178 |

MacKinnon approximate p-value for $Z(t)=0.0000$
6 . dfuller d.lpreparedfrozen, lags(3) trend Augmented Dickey-Fuller test for unit root of obs = 55

|  | Test <br> Statistic | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| :---: | :---: | :---: | :---: | :---: |
| Z ( t ) | -5.502 | -4.139 | -3.495 | -3.177 |

[^11]1 Monday July 6 01:08:52 2020 Page 2
7 . dfuller d.lpreparedfresh, lags(0) trend
Dickey-Fuller test for unit root Number of obs = 58


MacKinnon approximate $p$-value for $Z(t)=0.0000$
8 . dfuller d.lnaturalfrozen, lags(4) trend
Augmented Dickey-Fuller test for unit root $\quad$ Numer of obs $=54$

|  | Test <br> Statistic | Interpolated Dickey-Fuller |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1\% Critical Value | 5\% Critical Value | 10\% Critical Value |
| Z (t) | -4. 306 | -4.141 | -3.496 | -3.178 |

MacKinnon approximate $p$-value for $Z(t)=0.0031$
9 . dfuller d.lnaturalfreshpp, lags(4) trend
Augmented Dickey-Fuller test for unit root of obs = 54


MacKinnon approximate $p$-value for $Z(t)=0.0002$
10 . dfuller d.lnaturalfreshnpp, lags(1) trend
Augmented Dickey-Fuller test for unit root of obs = 57

|  | Test Statistic | nterpolated Dickey-Fuller |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1\% | Critical Value | 5\% Critical Value | 10\% Critical Value |
| Z (t) | -4.570 |  | -4.135 | -3.493 | -3.176 |

MacKinnon approximate $p$-value for $Z(t)=0.0012$

$\qquad$ R

Statistics/Data Analysis

User: 1
1 . reg lsmokedfreshpp lSpainExport

| Source | SS | df | MS |
| ---: | ---: | ---: | ---: |
| Model | .082477097 | 1 | .082477097 |
| Residual | .98314473 | 30 | .032771491 |
| Total | 1.06562183 | 31 | .034374898 |


| Number of obs | $=$ | 32 |
| :--- | :--- | ---: |
| $\mathrm{~F}(1,30)$ | $=$ | 2.52 |
| Prob $>$ | $=$ | 0.1231 |
| R-squared | $=$ | 0.0774 |
| AdjR-squared | $=$ | 0.0466 |
| Root MSE | $=$ | .18103 |


| lsmokedf~hpp | Coef. | Std. Err. | $t$ | P>\|t| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lSpainExport | -.5275263 | .3325259 | -1.59 | 0.123 | -1.206635 | .1515823 |
| _cons | $\mathbf{4 . 2 7 4 7 7 5}$ | .5512469 | $\mathbf{7 . 7 5}$ | 0.000 | 3.148979 | 5.400571 |

2 . reg lsmokedfreshnpp lSpainExport

| Source | SS | $d f$ | $M S$ |
| ---: | ---: | ---: | ---: |
| Model | .149113127 | 1 | .149113127 |
| Residual | .162146257 | 58 | .002795625 |
| Total | .311259383 | 59 | .005275583 |


| Number of obs | $=$ | 60 |
| :--- | :--- | ---: |
| F (1, 58) | $=$ | 53.34 |
| Prob $>$ F | $=$ | 0.0000 |
| R-squared | $=$ | 0.4791 |
| Adj R-squared | $=$ | 0.4701 |
| Root MSE | $=$ | .05287 |


| lsmokedf~npp | Coef. | Std. Err. | $t$ | P>\|t| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lSpainExport | .2884064 | .0394899 | $\mathbf{7 . 3 0}$ | 0.000 | $\mathbf{0} 2093587$ | . $\mathbf{3 6 7 4 5 4 1}$ |
| _cons | 2.68488 | .0632524 | $\mathbf{4 2 . 4 5}$ | $\mathbf{0 . 0 0 0}$ | $\mathbf{2 . 5 5 8 2 6 7}$ | $\mathbf{2 . 8 1 1 4 9 3}$ |

3 . reg lpreparedfrozen lSpainExport

| Source | SS | df | MS | Number of obs F (1, 58) |  | 60 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model | . 729918621 | 1 | . 729918621 |  | $\begin{aligned} & \text { B) } \\ & \text { F } \end{aligned}$ |  | 14.49 0.0003 |
| Residual | 2. 92119725 | 58 | . 05036547 |  | ed |  | 0.1999 |
| Total | 3.65111587 | 59 | . 06188332 |  | quared E | $=$ | $\begin{aligned} & 0.1861 \\ & .22442 \end{aligned}$ |
| lpreparedf $\sim$ n | Coef. | Std. Err. | t | $P>\|t\|$ | [95\% Con | f. | Interval] |
| ISpainExport | . 6380934 | . 1676152 | 3.81 | 0.000 | . 302575 |  | . 9736117 |
| _cons | 1.639251 | . 2684749 | 6.11 | 0.000 | 1.10184 |  | 2.176662 |

4 . reg lpreparedfresh lSpainExport


```
1 Monday July 6 01:29:55 2020 Page 2
```

5 . reg lnaturalfrozen lSpainExport


6 . reg lnaturalfreshpp ISpainExport


7 . reg lnaturalfreshnpp lSpainExport


1 . varsoc lsmokedfreshpp lSpainExport

| Sam | $2017 \mathrm{~m}$ | $-2019 \mathrm{~m}$ |  |  |  | Number of |  | 28 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lag | LL | LR | df | p | FPE | AIC | HQIC | SBIC |
| 0 | 80.847 |  |  |  | . 000012 | -5.63193 | -5.60284 | -5.53677 |
| 1 | 90.2236 | 18.753 | 4 | 0.001 | $8.4 e-06$ | -6.01597 | -5.9287 | -5.7305* |
| 2 | 95.0651 | 9.683* | 4 | 0.046 | 7.9e-06* | -6.07608* | -5.93063* | -5.60029 |
| 3 | 98.0466 | 5.9629 | 4 | 0.202 | 8.7e-06 | -6.00333 | -5.79969 | -5.33723 |
| 4 | 100.361 | 4.6296 | 4 | 0.327 | . 00001 | -5.88296 | -5.62114 | -5.02654 |

Endogenous: lsmokedfreshpp ISpainExport Exogenous: _cons

2 . varsoc lsmokedfreshnpp lSpainExport

| Selection-order criteria <br> Sample: 2015m5 - 2019 m 12 |  |  |  |  |  | Number of obs |  | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lag | LL | LR | df | p | FPE | AIC | HQIC | SBIC |
| 0 | 108.624 |  |  |  | . 000076 | -3.808 | -3.77996 | -3.73567 |
| 1 | 165.612 | 113.98 | 4 | 0.000 | . 000011 | -5.70044 | -5.61631* | -5.48344* |
| 2 | 170.386 | 9.5477* | 4 | 0.049 | . $000011 *$ | -5.72808* | -5.58786 | -5.36641 |
| 3 | 171.934 | 3.0957 | 4 | 0.542 | . 000012 | -5.6405 | -5.44419 | -5.13416 |
| 4 | 172.98 | 2.0918 | 4 | 0.719 | . 000014 | -5.53499 | -5.2826 | -4.88399 |

Endogenous: lsmokedfreshnpp lSpainExport
Exogenous: _cons
3 . varsoc lpreparedfrozen lSpainExport

| Sample: 2015m5 - 2019m12 |  |  |  |  |  | Number of obs |  | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lag | LL | LR | df | p | FPE | AIC | HQIC | SBIC |
| 0 | 28.1403 |  |  |  | . 001348 | -. 933583 | -. 905539 | -. 861249 |
| 1 | 74.0226 | 91.764 | 4 | 0.000 | . 000302 | -2.42938 | -2.34525* | -2.21238* |
| 2 | 79.484 | 10.923* | 4 | 0.027 | . $000287 *$ | -2.48157* | -2.34135 | -2.1199 |
| 3 | 81.814 | 4.6598 | 4 | 0.324 | . 000305 | -2.42193 | -2. 22562 | -1.91559 |
| 4 | 84.6853 | 5.7427 | 4 | 0.219 | . 000319 | -2.38162 | -2.12923 | -1.73061 |

Endogenous: lpreparedfrozen lSpainExport
Exogenous: _cons
4 . varsoc lpreparedfresh lSpainExport

| $\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$ | $\begin{aligned} & \text { on-order } \\ & 2015 m \end{aligned}$ | $\begin{aligned} & \text { criteri؛ } \\ & -\quad 2019 m \end{aligned}$ |  |  |  | Number of | obs | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lag | LL | LR | df | p | FPE | AIC | HQIC | SBIC |
| 0 | 59.4982 |  |  |  | . 00044 | -2.05351 | -2.02546 | -1.98117 |
| 1 | 157.917 | 196.84 | 4 | 0.000 | . 000015 | -5.4256 | -5.34147* | -5.2086* |
| 2 | 163.374 | 10.915* | 4 | 0.028 | . 000014 * | -5.47766* | -5.33744 | -5.11599 |
| 3 | 163.912 | 1.0755 | 4 | 0.898 | . 000016 | -5.354 | -5.1577 | -4.84767 |
| 4 | 166.674 | 5.5241 | 4 | 0.238 | . 000017 | -5.30979 | -5.0574 | -4.65878 |

[^12]5 . varsoc lnaturalfrozen lSpainExport

| Sample: 2015m5 - 2019m12 |  |  |  |  |  | Number of | obs | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lag | LL | LR | $d f$ | p | FPE | AIC | HQIC | SBIC |
| 0 | 87.0863 |  |  |  | . 000164 | -3.03879 | -3.01075 | -2.96646 |
| 1 | 145.719 | 117.27 | 4 | 0.000 | . 000023 | -4.98998 | -4.90585 | -4.77298 |
| 2 | 154.317 | 17.195* | 4 | 0.002 | .00002* | -5.15418* | -5.01396* | -4.79251* |
| 3 | 156.206 | 3.7774 | 4 | 0.437 | . 000021 | -5.07878 | -4.88247 | -4.57244 |
| 4 | 159.553 | 6.694 | 4 | 0.153 | . 000022 | -5.05546 | -4.80306 | -4.40445 |

Endogenous: lnaturalfrozen lSpainExport
Exogenous: _cons
6 . varsoc lnaturalfreshpp lSpainExport

| Sample: 2015m5 - 2019m12 |  |  |  |  |  | Number of obs |  | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lag | LL | LR | $d f$ | $p$ | FPE | AIC | HQIC | SBIC |
| 0 | 77.4211 |  |  |  | . 000232 | -2.69361 | -2.66557 | -2.62128 |
| 1 | 134.418 | 113.99 | 4 | 0.000 | . 000035 | -4.58637 | -4.50224* | -4.36937* |
| 2 | 137.439 | 6.0409 | 4 | 0.196 | . 000036 | -4.55138 | -4.41116 | -4.18971 |
| 3 | 143.873 | 12.868* | 4 | 0.012 | . $000033 *$ | -4.63831* | -4.44201 | -4.13197 |
| 4 | 145.816 | 3.8871 | 4 | 0.421 | . 000036 | -4.56487 | -4.31247 | -3.91386 |

Endogenous: lnaturalfreshpp lSpainExport Exogenous: _cons

7 . varsoc lnaturalfreshnpp lSpainExport

| $\begin{aligned} & \text { Sele } \\ & \text { Samp } \end{aligned}$ | $\begin{array}{r} \text { on-orde } \\ 2015 m ? \end{array}$ | $\begin{aligned} & \text { criteri } \\ & -\quad 2019 \mathrm{~m} \end{aligned}$ |  |  |  | Number of | obs | 56 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lag | LL | LR | df | p | FPE | AIC | HQIC | SBIC |
| 0 | 119.969 |  |  |  | . 000051 | -4.21316 | -4.18512 | -4.14083 |
| 1 | 193.254 | 146.57 | 4 | 0.000 | 4.3e-06 | -6.68763 | -6.6035 | -6.47062* |
| 2 | 199.556 | 12.605* | 4 | 0.013 | 3.9e-06 | -6.76986 | -6.62964* | -6.40819 |
| 3 | 203.972 | 8.832 | 4 | 0.065 | 3.9e-06* | -6.78472* | -6.58841 | -6.27838 |
| 4 | 207.625 | 7.3056 | 4 | 0.121 | 3.9e-06 | -6.77232 | -6.51992 | -6.12131 |

Endogenous: lnaturalfreshnpp lSpainExport
Exogenous: _cons


| maximum <br> rank | parms | LL | eigenvalue | SBIC | HQIC | AIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 6 | 74.09663 |  | $-2.13501 *$ | -2.265134 | -2.34816 |
| 1 | 10 | 80.008809 | 0.18443 | -2.058848 | $-2.27572 *$ | -2.414097 |
| 2 | 12 | 83.530633 | 0.11436 | -2.040275 | -2.300522 | -2.466574 |

4 . vecrank lpreparedfresh lSpainExport, trend(rtrend) lags(2) ic max
Johansen tests for cointegration


5 . vecrank lnaturalfrozen lSpainExport, trend(rtrend) lags(2) ic max
Johansen tests for cointegration




Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :--- | :---: | :---: | :---: |
| ce1 | 0 |  | . |

Identification: beta is overidentified
( 1$) \quad$ [_ce1]lsmokedfreshpp $=1$
( 2 ) $\quad[$ ce1]lSpainExport $=-1$

| beta | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| Ismokedfreshpp | 1 | - | - | - | - |  |
| lSpainExport | -1 |  | . | ${ }^{\circ}$ |  |  |
| _trend | -. 0011583 | . 0027179 | -0.43 | 0.670 | -. 0064854 | . 0041687 |
| _cons | -1.77114 |  | . | . |  |  |

6 . test ([D_lsmokedfreshpp]: L._ce1)
( 1) [D_lsmokedfreshpp]L._ce1 = 0

$$
\begin{aligned}
& \text { chi2 }\left(\begin{array}{l}
1)
\end{array}=0.62\right. \\
& \text { Prob }>\operatorname{chi} 2=0.4300
\end{aligned}
$$

7 . test ([D_lSpainExport]: L._ce1)
( 1) [D_lSpainExport]L._ce1 = 0

$$
\begin{array}{rlrl}
\text { chi2 }(1) & = & 11.16 \\
\text { Prob }>\text { chi2 } & =0.0008
\end{array}
$$

8 . constraint 1 _b[lsmokedfreshnpp] = 1

9
10 . constraint 2 _b[lSpainExport] $=-1$
11
12 . vec lsmokedfreshnpp lSpainExport, trend(rtrend) rank(1) lags(2) bconstraint(1/2)

| Iteration 1: | log likelihood $=172.39917$ |
| :--- | :--- | :--- |
| Iteration 2: | log likelihood $=172.40621$ |
| Iteration 3: | log likelihood $=172.40621$ |
| Iteration 4: | log likelihood $=172.40621$ |
| Iteration 5: | log likelihood $=172.40621$ |

Vector error-correction model

| Sample: $2015 \mathrm{~m} 3-2019 \mathrm{~m} 12$ |  |  |  | Number o | obs | $=$ | 58 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | AIC |  |  | -5.634697 |
| Log likelihood = | 172.4062 |  |  | HQIC |  | = | -5.510158 |
| Det(Sigma_ml) = | 8.98e-06 |  |  | SBIC |  | = | -5.314973 |
| Equation | Parms | RMSE | R-sq | chi2 | P>chi2 |  |  |
| D_lsmokedfresh~p | 4 | . 045063 | 0.1229 | 7.563895 | 0.1089 |  |  |
| D_lSpainExport | 4 | . 072172 | 0.1908 | 12.73621 | 0.0126 |  |  |



1 Monday July 6 01:28:28 2020 Page 3
$\left.\begin{array}{r|rrrrrr}\text { LD. } & .0305197 & .2063665 & 0.15 & 0.882 & -.3739512 & .4349906 \\ \text { ISpainExport } & & 0201457 & .1320379 & 2.42 & 0.015 & .0613561\end{array}\right] .5789353$

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :--- | :---: | :---: | :---: |
| ce1 | 0 |  |  |

Identification: beta is overidentified
( 1) [_ce1]lsmokedfreshnpp = 1
( 2) [_ce1]lSpainExport $=-1$

| beta | Coef. | Std. Err | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| Ismokedfreshnpp | 1 | - | . | - | . |  |
| lSpainExport | -1 | . |  |  | $\cdot$ |  |
| _trend | . 0020707 | . 0020955 | 0.99 | 0.323 | -. 0020364 | . 0061777 |
| _cons | -1.586629 | . | . |  |  |  |

13. test ([D_lsmokedfreshnpp]: L._ce1)
( 1) [D_lsmokedfreshnpp]L._ce1 $=0$

| chi2 $(1)$ | $=1.59$ |
| ---: | :--- |
| Prob $>$ chi2 | $=0.2068$ |

14 . test ([D_lSpainExport]: L._ce1)
( 1) [D_1SpainExport]L._ce1 $=0$

$$
\begin{aligned}
\text { chi2 }(1) & =8.91 \\
\text { Prob }>\operatorname{chi} 2 & =0.0028
\end{aligned}
$$

```
15 . constraint 1 _b[lpreparedfrozen] = 1
```

16. 

17 . constraint 2 b[lSpainExport] = -1
18 .
19 . vec lpreparedfrozen lSpainExport, trend(rtrend) rank(1) lags(2) bconstraint(1/2)

| Iteration 1: | log likelihood $=\mathbf{7 9 . 9 0 3 0 5 1}$ |
| :--- | :--- | :--- |
| Iteration 2: | log likelihood $=79.906533$ |
| Iteration 3: | log likelihood $=79.906538$ |
| Iteration 4: | log likelihood $=79.906538$ |
| Iteration 5: | log likelihood $=79.906538$ |

Vector error-correction model

| Sample: 2015m3 - 2019 m 12 |  |  |  | Number of obs |  |  | 58 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | AIC |  | $=$ | -2.445053 |
| Log likelihood = | 79.90654 |  |  | HQIC |  |  | -2.320514 |
| Det(Sigma_ml) = | . 000218 |  |  | SBIC |  | = | -2.125329 |
| Equation | Parms | RMSE | R-sq | chi2 | P>Chi2 |  |  |
| D_lpreparedfro~n | 4 | . 211902 | 0.3853 | 33.84147 | 0.0000 |  |  |
| D_lspainExport | 4 | . 075081 | 0.1243 | 7.665943 | 0.1046 |  |  |

1 Monday July 6 01:28:29 2020 Page 4

|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Conf. | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lpreparedfrozen <br> ce1 |  |  |  |  |  |  |
| L1. | -. 4657326 | . 1522315 | -3.06 | 0.002 | -. 7641009 | -. 1673643 |
| lpreparedfrozen LD. | -. 2814801 | . 1319173 | -2.13 | 0.033 | -. 5400333 | -. 0229269 |
| 1SpainExport LD. | . 3827856 | . 3871158 | 0.99 | 0.323 | -. 3759473 | 1.141519 |
| _cons | . 0010501 | . 0279189 | 0.04 | 0.970 | -. 05367 | . 0557701 |
| D_1SpainExport |  |  |  |  |  |  |
| $\begin{gathered} -\mathrm{ce1} \\ \mathrm{~L} 1 . \end{gathered}$ | . 0736279 | . 0539383 | 1.37 | 0.172 | -. 0320891 | . 179345 |
| lpreparedfrozen LD. | -. 0987333 | . 0467406 | -2.11 | 0.035 | -. 1903432 | -. 0071234 |
| ISpainExport LD. | . 2810534 | . 1371618 | 2.05 | 0.040 | . 0122212 | . 5498856 |
| _cons | . 0066422 | . 0098922 | 0.67 | 0.502 | -. 0127461 | . 0260304 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :--- | :---: | :---: | :---: |
| ce1 | 0 | . |  |

Identification: beta is overidentified
( 1) [_ce1]lpreparedfrozen = 1
( 2) [_ce1]lSpainExport = -1

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Conf. | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| lpreparedfrozen | 1 | - | . | . | . |  |
| lSpainExport | -1 | . | . |  | . |  |
| _trend | . 0033039 | . 0031712 | 1.04 | 0.297 | -. 0029115 | . 0095193 |
| _cons | -1.159859 | . | . | . | . |  |

20 . test ([D_lpreparedfrozen]: L._cel)
( 1) [D_lpreparedfrozen]L._ce1 $=0$
chi2( 1) = 9.36
Prob $>$ chi2 $=0.0022$
21 . test ([D_lSpainExport]: L._ce1)
( 1) [D_1SpainExport]L._ce1 $=0$
chi2 ( 1) = 1.86 Prob $>$ chi2 $=0.1722$

```
1 Monday July 6 01:28:29 2020 Page 5
```

22 . constraint 1 _b[lpreparedfresh] = 1
23.
24 . constraint 2 _b[lSpainExport] $=-1$
25.
26 . vec lpreparedfresh lSpainExport, trend(rtrend) rank(1) lags(2) bconstraint(1/2)
Iteration 1: $\quad$ log likelihood $=167.88471$
Iteration 2: $\quad \log$ likelihood $=167.8889$
Iteration 3: $\quad \log$ likelihood $=167.8889$
Iteration 4: $\quad \log$ likelihood $=167.8889$

Vector error-correction model

| Sample: 2015m3 | 2019 m 12 |  |  | $\begin{aligned} & \text { Number } \\ & \text { AIC } \end{aligned}$ | obs |  | $\begin{array}{r} 58 \\ -5.478928 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Log likelihood = | 167.888 |  |  | HQIC |  |  | -5.354389 |
| Det(Sigma_ml) = | . 00001 |  |  | SBIC |  |  | -5.159204 |
| Equation | Parms | RMSE | R-sq | chi2 | $\mathrm{P}>\mathrm{chi2}$ |  |  |
| D_lpreparedfresh | 4 | . 048289 | 0.2414 | 17.18636 | 0.0018 |  |  |
| D_lSpainExport | 4 | . 07207 | 0.1931 | 12.9258 | 0.0116 |  |  |


|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lpreparedfresh _ce1 <br> L1. | -. 1971163 | . 0490216 | -4.02 | 0.000 | -. 2931969 | -. 1010356 |
| lpreparedfresh LD. | -. 073127 | . 1218072 | -0.60 | 0.548 | -. 3118647 | . 1656107 |
| ISpainExport LD. | -. 1972141 | . 0926653 | -2.13 | 0.033 | -. 3788347 | -. 0155934 |
| _cons | . 0057461 | . 0063953 | 0.90 | 0.369 | -. 0067885 | . 0182806 |
| $\begin{array}{r} \text { D_lSpainExport } \\ -\quad-\mathrm{Le} 1 . \end{array}$ | . 2105197 | . 0731636 | 2.88 | 0.004 | . 0671217 | . 3539176 |
| lpreparedfresh LD. | . 214447 | . 1817942 | 1.18 | 0.238 | -. 1418632 | . 5707572 |
| 1spainExport LD. | . 3819037 | . 1383007 | 2.76 | 0.006 | . 1108393 | . 6529681 |
| _cons | . 0053802 | . 0095448 | 0.56 | 0.573 | -. 0133273 | . 0240877 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| ce1 | 0 |  | . |

[^13]( 1) [_ce1]lpreparedfresh = 1
( 2) [_ce1]lSpainExport $=-1$

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| Ipreparedfresh | 1 | - | - | - | - |  |
| lSpainExport | -1 | . | . | ${ }^{\circ}$ | . |  |
| _trend | -. 0028232 | . 0015904 | -1.78 | 0.076 | -. 0059402 | . 0002939 |
| _cons | -1.688777 | . | . |  |  |  |

27 . test ([D_lpreparedfresh]: L._ce1)
( 1) [D_lpreparedfresh]L._ce1 = 0
chi2 ( 1 ) = 16.17 Prob $>$ chi2 $=0.0001$

28 . test ([D_1SpainExport]: L._ce1)
( 1) [D_1SpainExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =8.28 \\
\text { Prob }>\operatorname{chi} 2 & =0.0040
\end{aligned}
$$

29 . constraint 1 _b[lnaturalfrozen] = 1
30
31 . constraint 2 _b[lSpainExport] = -1
32
33 . vec lnaturalfrozen lSpainExport, trend(rtrend) rank(1) lags(2) bconstraint(1/2)

Iteration 1: $\quad$ log likelihood $=158.52984$
Iteration 2: $\quad \log$ likelihood $=158.54919$
Iteration 3: $\quad$ log likelihood $=158.54919$
Iteration 4: log likelihood = 158.54919

Vector error-correction model

| Sample: 2015m3 - | 2019 m 12 |  |  | Number <br> AIC |  | $=$ $=$ | $\begin{array}{r} 58 \\ -5.156869 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Log likelihood = | 158.5492 |  |  | HQIC |  | $=$ | -5.03233 |
| Det(Sigma_ml) = | . 0000145 |  |  | SBIC |  | $=$ | -4.837145 |
| Equation | Parms | RMSE | R-sq | chi2 | P>Chi2 |  |  |
| D lnaturalfrozen | 4 | . 056645 | 0.2717 | 20.14884 | 0.0005 |  |  |
| D_lspainExport | 4 | . 072352 | 0.1868 | 12.40463 | 0.0146 |  |  |


|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lnaturalfrozen ce1 |  |  |  |  |  |  |
| L1. | -. 0394296 | . 0510951 | -0.77 | 0.440 | -. 1395741 | . 0607149 |
| lnaturalfrozen LD. | -. 4622585 | . 1225036 | -3.77 | 0.000 | -. 7023612 | -. 2221557 |
| ISpainExport |  |  |  |  |  |  |
| LD. | -. 1976852 | . 1014452 | -1.95 | 0.051 | -. 3965142 | . 0011439 |
| _cons | . 0097755 | . 0075909 | 1.29 | 0.198 | -. 0051024 | . 0246533 |
| D_lSpainExport |  |  |  |  |  |  |
| L1. | . 1895614 | . 0652628 | 2.90 | 0.004 | . 0616486 | . 3174742 |
| lnaturalfrozen |  |  |  |  |  |  |
| LD. | -. 0078317 | . 1564718 | -0.05 | 0.960 | -. 3145107 | . 2988474 |


| lSpainExport |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| LD. | .2908743 | .1295743 | 2.24 | 0.025 | .0369134 | .5448352 |
| _cons | .0020333 | .0096957 | 0.21 | 0.834 | -.0169699 | .0210366 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| _ce1 | 0 | . |  |

Identification: beta is overidentified
( 1) [_cel]lnaturalfrozen = 1
( 2) [_ce1]lSpainExport $=-1$

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| lnaturalfrozen | 1 | - | - | - | - |  |
| lSpainExport | -1 | - | ${ }^{\circ}$ |  | - |  |
| _trend | . 0008573 | . 0028445 | 0.30 | 0.763 | -. 0047177 | . 0064324 |
| _cons | -1.160868 |  | . |  |  |  |
| LR test of identifying restrictions: chi2 (1) = 5.218 Prob > chi2 = 0.022 |  |  |  |  |  |  |

( 1) [D_lnaturalfrozen]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =0.60 \\
\text { Prob }>\operatorname{chi} 2 & =0.4403
\end{aligned}
$$

35 . test ([D_lSpainExport]: L._ce1)
( 1) [D_lSpainExport]L._ce1 = 0

$$
\begin{aligned}
& \text { chi2 }\left(\begin{array}{l}
1)
\end{array}=\mathbf{8 . 4 4}\right. \\
& \text { Prob }>\operatorname{chi2}=0.0037
\end{aligned}
$$

```
36 . constraint 1 _b[lnaturalfreshpp] = 1
```

37
38 . constraint 2 _b[1SpainExport] $=-1$
39.
40 . vec lnaturalfreshpp lSpainExport, trend(rtrend) rank(1) lags(3) bconstraint(1/2)
Iteration 1: $\quad$ log likelihood $=143.93079$
Iteration 2: log likelihood = 144.08577
Iteration 3: $\quad \log$ likelihood $=144.08582$
Iteration 4: log likelihood = 144.08582
Iteration 5: $\quad \log$ likelihood $=144.08582$
Iteration 6: log likelihood = 144.08582

Vector error-correction model

| Sample: 2015m4-2019m12 |  |  | Number of obs |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Log likelihood $=$ | $\mathbf{1 4 4 . 0 8 5 8}$ |  | AIC |  |  |
| Det(Sigma_ml) $=$ | .0000218 |  | HQIC |  |  |
| Equation | Parms | RMSE | R-sq | chi2 | P>chi2 |
| D_lnaturalfres~p | 6 | .074786 | 0.2823 | 20.06196 | 0.0027 |
| D_lSpainExport | 6 | .070547 | 0.2694 | 18.80274 | 0.0045 |

1 Monday July 6 01:28:29 2020 Page 8

|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Conf | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lnaturalfreshpp _ce1 |  |  |  |  |  |  |
| L1. | -. 1114451 | . 0731884 | -1. 52 | 0.128 | -. 2548918 | . 0320016 |
| lnaturalfreshpp |  |  |  |  |  |  |
| LD. | -. 3527221 | . 1308887 | -2. 69 | 0.007 | -. 6092591 | -. 096185 |
| L2 D. | -. 314438 | . 1270165 | -2.48 | 0.013 | -. 5633858 | -. 0654902 |
| lSpainExport |  |  |  |  |  |  |
| LD. | -. 0540432 | . 1404357 | -0.38 | 0.700 | -. 3292921 | . 2212057 |
| L2 D. | . 1835198 | . 1471918 | 1.25 | 0.212 | -. 1049707 | . 4720104 |
| _cons | . 0101356 | . 010131 | 1.00 | 0.317 | -. 0097208 | . 0299921 |
| D_lSpainExport |  |  |  |  |  |  |
| $\begin{gathered} \text { - ce1 } \\ \mathrm{L} 1 . \end{gathered}$ | . 1625469 | . 0690403 | 2.35 | 0.019 | . 0272303 | . 2978635 |
| lnaturalfreshpp |  |  |  |  |  |  |
| LD. | -. 3046832 | . 1234703 | -2.47 | 0.014 | -. 5466805 | -. 0626859 |
| L2 D. | -. 2987802 | . 1198176 | -2.49 | 0.013 | -. 5336184 | -. 0639419 |
| lSpainExport |  |  |  |  |  |  |
| LD. | . 2498443 | . 1324762 | 1.89 | 0.059 | -. 0098044 | . 509493 |
| L2 D. | -. 07853 | . 1388494 | -0.57 | 0.572 | -. 3506698 | . 1936097 |
| _cons | . 0069492 | . 0095568 | 0.73 | 0.467 | -. 0117819 | . 0256802 |

Cointegrating equations
Equation Parms chi2 P>chi2
-ce1 $0 \quad$.

Identification: beta is overidentified
( 1) [_ce1]lnaturalfreshpp = 1
( 2) [_ce1]lSpainExport $=-1$

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| lnaturalfreshpp | 1 | . | - | . | . |  |
| lspainExport | -1 |  | . | . |  |  |
| _trend | -. 0007244 | . 0031534 | -0.23 | 0.818 | -. 0069049 | . 0054561 |
| _cons | -. 9733592 |  | . | . |  |  |

41 . test ([D_lnaturalfreshpp]: L._ce1)
( 1) [D_lnaturalfreshpp]L._ce1 $=0$

$$
\begin{aligned}
\text { chi2 }\left(\begin{array}{l}
1
\end{array}\right) & =2.32 \\
\text { Prob }>\text { chi2 } & =0.1278
\end{aligned}
$$

42 . test ([D_1SpainExport]: L._ce1)
( 1) [D_1SpainExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }\left(\begin{array}{rl}
1
\end{array}\right) & =5.54 \\
\text { Prob }>\text { chi2 } & =0.0186
\end{aligned}
$$

```
1 Monday July 6 01:28:30 2020 Page 9
```

43 . constraint 1 _b[lnaturalfreshnpp] = 1
44 .
45 . constraint 2 _b[lSpainExport] $=-1$
46.
47 . vec lnaturalfreshnpp lSpainExport, trend(rtrend) rank(1) lags(3) bconstraint(1/2)

| Iteration 1: | log likelihood $=206.4812$ |
| :--- | :--- | :--- |
| Iteration 2: | log likelihood $=206.5109$ |
| Iteration 3: | log likelihood $=206.51151$ |
| Iteration 4: | log likelihood $=206.51153$ |
| Iteration 5: | log likelihood $=206.51153$ |
| Iteration 6: | log likelihood $=206.51153$ |
| Iteration 7: | log likelihood $=206.51153$ |
| Iteration 8: | log likelihood $=206.51153$ |
| Iteration 9: | log likelihood $=206.51153$ |

Vector error-correction model

| Sample: 2015m4 - 2019m12 |  |  |  | Number | obs | $=$ | 57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | AIC |  |  | -6.789878 |
| Log likelihood = | 206.5115 |  |  | HQIC |  |  | -6.608791 |
| Det(Sigma_ml) = | 2.44e-06 |  |  | SBIC |  | = | -6. 323919 |
| Equation | Parms | RMSE | R-sq | chi2 | $\mathrm{P}>\mathrm{chi2}$ |  |  |
| D_lnaturalfres~p | 6 | . 028732 | 0.4870 | 48.41825 | 0.0000 |  |  |
| D_lSpainExport | 6 | . 071766 | 0.2439 | 16.45222 | 0.0115 |  |  |


|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lnaturalfreshnpp |  |  |  |  |  |  |
| _ce1 |  |  |  |  |  |  |
| L1. | -. 081982 | . 0732149 | -1. 12 | 0.263 | -. 2254805 | . 0615166 |
| lnaturalfreshnpp |  |  |  |  |  |  |
| LD. | -. 0358148 | . 1539143 | -0.23 | 0.816 | -. 3374812 | . 2658517 |
| L2D. | -. 1075521 | . 1188585 | -0.90 | 0.366 | -. 3405105 | . 1254064 |
| lspainExport |  |  |  |  |  |  |
| LD. | . 3089743 | . 0707703 | 4.37 | 0.000 | . 170267 | . 4476815 |
| L2D. | -. 0044182 | . 0802355 | -0.06 | 0.956 | -. 1616769 | . 1528404 |
| _cons | . 0015948 | . 004247 | 0.38 | 0.707 | -. 0067292 | . 0099188 |
| D_lSpainExport |  |  |  |  |  |  |
| _ce1 | . 3393483 | . 1828706 | 1.86 | 0.063 | -. 0190714 | 697768 |
| lnaturalfreshnpp |  |  |  |  |  |  |
| LD. | . 7999498 | . 3844353 | 2.08 | 0.037 | . 0464704 | 1. 553429 |
| L2D. | -. 0593767 | . 2968757 | -0.20 | 0.841 | -. 6412424 | . 5224891 |
| lSpainExport |  |  |  |  |  |  |
| LD. | . 3016945 | . 1767647 | 1.71 | 0.088 | -. 0447579 | . 6481469 |
| L2D. | -. 3441213 | . 2004061 | -1.72 | 0.086 | -. 73691 | . 0486674 |
| _cons | . 0003853 | . 0106079 | 0.04 | 0.971 | -. 0204058 | . 0211764 |

[^14]| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| _ce1 | 0 |  | . |

[^15]1 Monday July 6 01:28:30 2020 Page 10
( 1) [_ce1]lnaturalfreshnpp $=1$
( 2) [_ce1]lSpainExport $=\mathbf{- 1}$

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| Inaturalfreshnpp | 1 | - | . | . | . |  |
| ISpainExport | -1 | . | . | - | . |  |
| _trend | . 0037385 | . 0010533 | 3.55 | 0.000 | . 0016741 | . 0058028 |
| _cons | -. 8290415 | . | . | . |  |  |

48 . test ([D_lnaturalfreshnpp]: L._ce1)
( 1) [D_lnaturalfreshnpp]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =1.25 \\
\text { Prob }>\text { chi2 } & =0.2628
\end{aligned}
$$

49 . test ([D_1SpainExport]: L._ce1)
( 1) [D_lSpainExport]L._ce1 = 0

$$
\begin{aligned}
\text { chi2 }(1) & =\mathbf{3 . 4 4} \\
\text { Prob }>\operatorname{chi} 2 & =0.0635
\end{aligned}
$$



|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Conf. | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lsmokedfreshpp _ce1 |  |  |  |  |  |  |
| L1. | -. 9284357 | . 219651 | -4.23 | 0.000 | -1.358944 | -. 4979277 |
| lsmokedfreshpp |  |  |  |  |  |  |
| LD. | . 0081569 | . 0330793 | 0.25 | 0.805 | -. 0566774 | . 0729912 |
| lSpainExport |  |  |  |  |  |  |
| LD. | -. 0484342 | . 074972 | -0.65 | 0.518 | -. 1953767 | . 0985082 |
| _cons | . 0010196 | . 0060537 | 0.17 | 0.866 | -. 0108454 | . 0128846 |
| D_lSpainExport <br> ce1 |  |  |  |  |  |  |
| L1. | . 3610145 | . 5971898 | 0.60 | 0.545 | -. 8094561 | 1.531485 |
| lsmokedfreshpp |  |  |  |  |  |  |
| LD. | -. 0643293 | . 0899364 | -0.72 | 0.474 | -. 2406015 | . 1119429 |
| lspainExport <br> LD. | . 1656308 | . 2038349 | 0.81 | 0.416 | -. 2338781 | . 5651398 |
| _cons | . 0026221 | . 0164588 | 0.16 | 0.873 | -. 0296366 | . 0348808 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| ce1 | $\mathbf{1}$ | $\mathbf{1 . 9 7 4 9 6 4}$ | $\mathbf{0 . 1 5 9 9}$ |

Identification: beta is exactly identified
Johansen normalization restriction imposed

| beta | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Ce1 |  | 1 |  |  |  |  |
| Ismokedfreshpp | -.10439 | .0742813 | -1.41 | 0.160 | -.2499786 | .0411986 |
| lSpainExport | -.0026067 | .0007281 | -3.58 | 0.000 | -.0040337 | -.0011797 |
| _trend |  |  |  |  |  |  |
| _cons | -3.224232 | . | . | . | . | . |

```
 1 Wednesday June 24 17:29:47 2020 Page 2
2 . vec lsmokedfreshnpp lSpainExport, trend(rtrend) rank(1) lags(2)
 Vector error-correction model
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample: 2015m3 & 2019 m 12 & & & Number
AIC & obs & \(=\)
\(=\) & \[
\begin{array}{r}
58 \\
-5.779312
\end{array}
\] \\
\hline Log likelihood = & 177.6 & & & HQIC & & - & -5.640935 \\
\hline Det(Sigma_ml) = & 7.51e-06 & & & SBIC & & \(=\) & -5.424063 \\
\hline Equation & Parms & RMSE & R-sq & chi2 & P>chi2 & & \\
\hline D_lsmokedfresh~p & 4 & . 039952 & 0.3105 & 23.8694 & 0.0001 & & \\
\hline D_lspainExport & 4 & . 075521 & 0.1140 & 6.820615 & 0.1457 & & \\
\hline
\end{tabular}
```

|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lsmokedfreshnpp |  |  |  |  |  |  |
| L1. | -. 5969489 | . 1473388 | -4.05 | 0.000 | -. 8857276 | -. 3081702 |
| lsmokedfreshnpp LD. | -. 0152435 | . 1343858 | -0.11 | 0.910 | -. 2786347 | . 2481478 |
| lSpainExport |  |  |  |  |  |  |
| LD. | -. 0999976 | . 073528 | -1. 36 | 0.174 | -. 2441099 | . 0441147 |
| _cons | . 0048268 | . 00533 | 0.91 | 0.365 | -. 0056197 | . 0152733 |
| D_lSpainExport |  |  |  |  |  |  |
| $-\quad-\mathrm{ce1}$ | . 5127254 | . 278509 | 1.84 | 0.066 | -. 0331422 | 1.058593 |
| lsmokedfreshnpp |  |  |  |  |  |  |
| LD. | -. 1200388 | . 2540244 | -0.47 | 0.637 | -. 6179174 | . 3778398 |
| 1SpainExport LD. | . 2759241 | . 1389873 | 1.99 | 0.047 | . 003514 | . 5483342 |
| _cons | . 0056197 | . 010075 | 0.56 | 0.577 | -. 014127 | . 0253663 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| _ce1 | $\mathbf{1}$ | $\mathbf{2 7 . 5 6 0 5 2}$ | $\mathbf{0 . 0 0 0 0}$ |

Identification: beta is exactly identified
Johansen normalization restriction imposed

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| Ismokedfreshnpp | 1 | . |  | . | - |  |
| lSpainExport | -. 2720597 | . 0518228 | -5.25 | 0.000 | -. 3736304 | -. 170489 |
| _trend | -. 0016827 | . 0005215 | -3.23 | 0.001 | -. 0027048 | -. 0006606 |
| - cons | -2.659881 |  | . | . | . | . |

```
 1 Wednesday June 24 17:29:48 2020 Page 3
3. vec lpreparedfrozen lSpainExport, trend(rtrend) rank(1) lags(2)
 Vector error-correction model
```



|  | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lpreparedfrozen |  |  |  |  |  |  |
| $\begin{gathered} \text { ce1 } \\ \text { L1. } \end{gathered}$ | -. 3992169 | . 145407 | -2.75 | 0.006 | -. 6842093 | -. 1142245 |
| lpreparedfrozen |  |  |  |  |  |  |
| LD. | -. 3167052 | . 1316493 | -2.41 | 0.016 | -. 5747331 | -. 0586774 |
| lspainExport |  |  |  |  |  |  |
| LD. | . 3748863 | . 3996926 | 0.94 | 0.348 | -. 4084969 | 1.158269 |
| _cons | . 0014507 | . 0285726 | 0.05 | 0.960 | -. 0545505 | . 0574519 |
| D_lSpainExport |  |  |  |  |  |  |
| $\begin{gathered} \text { - ce1 } \\ \text { L1. } \end{gathered}$ | . 0916904 | . 0501448 | 1.83 | 0.067 | -. 0065916 | . 1899724 |
| lpreparedfrozen |  |  |  |  |  |  |
| LD. | -. 1072548 | . 0454004 | $-2.36$ | 0.018 | -. 1962378 | -. 0182717 |
| 1SpainExport |  |  |  |  |  |  |
| LD. | . 3062202 | . 1378374 | 2.22 | 0.026 | . 0360639 | . 5763764 |
| _cons | . 0063161 | . 0098535 | 0.64 | 0.522 | -. 0129964 | . 0256286 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| ce1 | $\mathbf{1}$ | $\mathbf{1 0 . 2 3 6 1}$ | $\mathbf{0 . 0 0 1 4}$ |

Identification: beta is exactly identified
Johansen normalization restriction imposed

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| _ce1 |  |  |  |  |  |  |
| lpreparedfrozen | 1 | . | . | . | - |  |
| lSpainExport | -1. 286104 | . 4019842 | -3. 20 | 0.001 | -2.073979 | -. 4982297 |
| _trend | . 0046183 | . 0040528 | 1.14 | 0.254 | -. 0033251 | . 0125617 |
| _cons | -. 7399326 |  | . | . | . | . |

```
1 Wednesday June 24 17:29:48 2020 Page 4
```

4 . vec lpreparedfresh lSpainExport, trend(rtrend) rank(1) lags(2)

Vector error-correction model


|  | Coef. | Std. Err | z | $P>\|z\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lpreparedfresh ce1 |  |  |  |  |  |  |
| L1. | -. 2832685 | . 0631886 | -4.48 | 0.000 | -. 4071159 | -. 1594212 |
| lpreparedfresh |  |  |  |  |  |  |
| lspainExport |  |  |  |  |  |  |
| LD. | -. 212561 | . 0909751 | -2.34 | 0.019 | -. 3908688 | -. 0342531 |
| _cons | . 0051292 | . 0062629 | 0.82 | 0.413 | -. 0071459 | . 0174043 |
| D_lSpainExport |  |  |  |  |  |  |
| L1. | . 2388823 | . 0990477 | 2.41 | 0.016 | . 0447524 | . 4330122 |
| lpreparedfresh |  |  |  |  |  |  |
| ISpainExport |  |  |  |  |  |  |
| LD. | . 3627107 | . 1426029 | 2.54 | 0.011 | . 0832142 | . 6422072 |
| _cons | . 0060822 | . 0098171 | 0.62 | 0.536 | -. 013159 | . 0253234 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| _ce1 | $\mathbf{1}$ | $\mathbf{2 4 . 2 4 1 7 2}$ | $\mathbf{0 . 0 0 0 0}$ |

Identification: beta is exactly identified

| beta | Coef. | Std. Err. | z | $P>\|z\|$ | [95\% Conf | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ce1 |  |  |  |  |  |  |
| Ipreparedfresh | 1 | . | - | - | - |  |
| ISpainExport | -. 6965068 | . 1414632 | -4.92 | 0.000 | -. 9737697 | -. 4192439 |
| _trend | -. 0043239 | . 0014049 | -3.08 | 0.002 | -. 0070774 | -. 0015704 |
| _cons | -2.131514 |  | . | . |  |  |

```
 1 Wednesday June 24 17:29:48 2020 Page 5
5 . vec lnaturalfrozen lSpainExport, trend(rtrend) rank(1) lags(2)
Vector error-correction model
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Sample: 2015m3 - 2019 m 12}} & Number & obs & = & 58 \\
\hline & & & & AIC & & & -5.212359 \\
\hline Log likelihood = & 161.1584 & & & HQIC & & - & -5.073982 \\
\hline Det(Sigma_ml) = & . 0000132 & & & SBIC & & = & -4.85711 \\
\hline Equation & Parms & RMSE & R-sq & chi2 & P>Chi2 & & \\
\hline D lnaturalfrozen & 4 & . 0521 & 0.3839 & 33.02926 & 0.0000 & & \\
\hline D_lspainExport & 4 & . 075729 & 0.1091 & 6.492191 & 0.1653 & & \\
\hline
\end{tabular}
```

|  | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Con | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lnaturalfrozen _ce1 |  |  |  |  |  |  |
| L1. | -. 5051555 | . 157073 | -3.22 | 0.001 | -. 813013 | -. 197298 |
| lnaturalfrozen |  |  |  |  |  |  |
| ISpainExport |  |  |  |  |  |  |
| LD. | -. 1734953 | . 0922247 | -1.88 | 0.060 | -. 3542523 | . 0072617 |
| _cons | . 0065588 | . 0069833 | 0.94 | 0.348 | -. 0071282 | . 0202457 |
| D_lSpainExport |  |  |  |  |  |  |
| L1. | . 3912887 | . 228312 | 1.71 | 0.087 | -. 0561946 | . 838772 |
| Inaturalfrozen |  |  |  |  |  |  |
| LD. | -. 0896199 | . 198257 | -0.45 | 0.651 | -. 4781964 | . 2989567 |
| lspainExport |  |  |  |  |  |  |
| LD. | . 2075638 | . 1340523 | 1.55 | 0.122 | -. 0551738 | . 4703014 |
| _cons | . 0084674 | . 0101504 | 0.83 | 0.404 | -. 0114271 | . 0283619 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :--- | :---: | :--- | :--- |
| _ce1 | $\mathbf{1}$ | $\mathbf{2 . 0 9 0 4}$ | $\mathbf{0 . 1 4 8 2}$ |

Identification: beta is exactly identified
Johansen normalization restriction imposed

| beta | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Cel |  |  |  |  |  |  |
| Inaturalfrozen | 1 |  |  |  |  |  |
| lSpainExport | -.1163323 | .080461 | -1.45 | 0.148 | -.2740329 | .0413684 |
| _trend | -.003431 | .0008084 | -4.24 | 0.000 | -.0050155 | -.0018465 |
| _cons | -2.474421 | . | . | . | . | . |



Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| ce1 | $\mathbf{1}$ | $\mathbf{1 . 6 0 2 8 3 5}$ | $\mathbf{0 . 2 0 5 5}$ |

Identification: beta is exactly identified
Johansen normalization restriction imposed

| beta | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ce1 |  |  |  |  |  |  |
| lnaturalfreshpp |  |  |  |  |  |  |
| lSpainExport | -.0941758 | .0743866 | -1.27 | 0.206 | -.2399709 | .0516193 |
| _trend | -.0041577 | .000735 | -5.66 | 0.000 | -.0055982 | -.0027171 |
| _cons | -2.348149 | . | . | . | . |  |

```
 1 Wednesday June 24 17:29:49 2020 Page 7
7. vec lnaturalfreshnpp lSpainExport, trend(rtrend) rank(1) lags(3)
Vector error-correction model
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sample: 2015m4 - 2019m12}} & & & Number o & obs & = & 57 \\
\hline & & & & AIC & & & -6.798529 \\
\hline Log likelihood = & 207.7581 & & & HQIC & & & -6.603511 \\
\hline Det(Sigma_ml) = & 2.34e-06 & & & SBIC & & = & -6.296726 \\
\hline Equation & Parms & RMSE & R-sq & chi2 & P>chi2 & & \\
\hline D_lnaturalfres~p & 6 & . 026949 & 0.5487 & 60.79627 & 0.0000 & & \\
\hline D_lSpainExport & 6 & . 074121 & 0.1935 & 11.99397 & 0.0621 & & \\
\hline
\end{tabular}
```

|  | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. | Interval] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_lnaturalfreshnpp _ce1 |  |  |  |  |  |  |
| - L1. | -. 4581724 | . 1596694 | -2.87 | 0.004 | -. 7711186 | -. 1452261 |
| lnaturalfreshnpp 0000080 |  |  |  |  |  |  |
| LD. | . 1600631 | . 1632244 | 0.98 | 0.327 | -. 1598509 | . 479977 |
| L2D. | -. 0784518 | . 1078195 | -0.73 | 0.467 | -. 2897741 | . 1328706 |
| lSpainExport |  |  |  |  |  |  |
| LD. | . 1251486 | . 0968651 | 1.29 | 0.196 | -. 0647036 | . 3150008 |
| L2D. | -. 1068769 | . 0853502 | -1.25 | 0.210 | -. 2741604 | . 0604065 |
| _cons | . 0015981 | . 0036939 | 0.43 | 0.665 | -. 0056417 | . 008838 |
| D_lSpainExport |  |  |  |  |  |  |
| $-\quad \mathrm{ce1} .$ | . 0855446 | . 4391561 | 0.19 | 0.846 | -. 7751856 | . 9462747 |
| lnaturalfreshnpp 0 |  |  |  |  |  |  |
| LD. | . 8444154 | . 4489338 | 1.88 | 0.060 | -. 0354788 | 1.72431 |
| L2D. | -. 2170948 | . 2965478 | -0.73 | 0.464 | -. 7983178 | . 3641282 |
| ISpainExport |  |  |  |  |  |  |
| LD. | . 1498576 | . 2664188 | 0.56 | 0.574 | -. 3723136 | . 6720288 |
| L2D. | -. 4346287 | . 2347481 | -1.85 | 0.064 | -. 8947265 | . 0254691 |
| _cons | . 0085596 | . 0101597 | 0.84 | 0.400 | -. 0113531 | . 0284722 |

Cointegrating equations

| Equation | Parms | chi2 | P>chi2 |
| :---: | :---: | :---: | :---: |
| _ce1 | $\mathbf{1}$ | $\mathbf{1 7 2 . 2 9 2 5}$ | $\mathbf{0 . 0 0 0 0}$ |

Identification: beta is exactly identified
Johansen normalization restriction imposed

| beta | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Inaturalfreshnpp |  | 1 |  |  |  |  |
| lSpainExport | -.689749 | .0525482 | -13.13 | 0.000 | -.7927416 | -.5867564 |
| _trend | .0015769 | .0005195 | 3.04 | 0.002 | .0005588 | .0025951 |
| _cons | -1.284254 | . | . | . | . | . |


[^0]:    Endogenous: lsmokedfreshnpp
    Exogenous: _cons

[^1]:    Endogenous: lnaturalfrozen
    Exogenous: _cons

[^2]:    Endogenous: D.lnaturalfrozen
    Exogenous: _cons

[^3]:    MacKinnon approximate $p$-value for $Z(t)=0.0000$

[^4]:    Endogenous: lpreparedfreshpp lGermanyExport
    Exogenous: _cons

[^5]:    Endogenous: lnaturalfreshnpp lGermanyExport Exogenous: _cons

[^6]:    Cointegrating equations

[^7]:    Endogenous: lsmokedfreshnpp
    Exogenous: _cons

[^8]:    Endogenous: lnaturalfrozen
    Exogenous: cons

[^9]:    Endogenous: D.lnaturalfrozen
    Exogenous: _cons

[^10]:    MacKinnon approximate $p$-value for $Z(t)=0.4117$

[^11]:    MacKinnon approximate $p$-value for $Z(t)=0.0000$

[^12]:    Endogenous: lpreparedfresh lSpainExport
    Exogenous: _cons

[^13]:    Identification: beta is overidentified

[^14]:    Cointegrating equations

[^15]:    Identification: beta is overidentified

