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Abstract

This thesis aims to test and compare some of the most frequently applied models in

the forecasting literature, for their ability to produce accurate ex-post (pseudo) out-

of-sample forecasts of the crude oil price. These models range vastly in complexity,

ranging from the most parsimonious idea of price-today-is-price-tomorrow approach

to more sophisticated and stochastic models. All models will be assessed with the

commonly used proxy for the oil price, namely the West Texas Intermediate (WTI)

benchmark price, sampled in both daily and monthly frequencies. A model’s forecast

accuracy will be evaluated employing a set of various loss functions that differ in their

way of penalizing the forecast errors. Additionally, the models’ forecasts will be tested

for being directionally accurate in predicting the actual price changes. Finally, model

selection and estimation will be analysed across different lengths of historical price

data, to examine what effect the choice of sample period has on the forecast results.

The empirical results of this analysis show that neither the deterministic or stochastic

models evaluated are able to forecast the price of crude oil with an adequately desired

accuracy. It was also found that forecast results are highly sensitive to the choice

of sample period for historical prices used as input for model estimation, and that

certain models perform better when only recent market data is used as input.
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1 Introduction

1 Introduction

Crude oil is arguably one of the most important commodities in the world, accounting

for one-third of global energy consumption. In addition to being a starting material for

most of the products we use in everyday life, it has also emerged as being a highly im-

portant strategic commodity in terms of a nation’s economical- and political strength.

Abrupt movements in crude oil prices have been proven to affect the level of eco-

nomic activity and consumer sentiment (Hamilton, 2009). Despite the paramount

importance of fluctuations in crude oil prices for economic activity, forecasting and

developing a better understanding of the price of oil continues to be a daunting task.

Reliable forecasts of crude oil prices are of special interest for a wide range of appli-

cations. Central banks and international organizations view the price of oil as one of

the critical variables in generating macroeconomic projections and for assessing and

managing macroeconomic risks as well as to improve policy responses.

The price of oil is basically determined by its supply and demand. Although there is

a common consensus of it being even more influenced by exogenous and irregular

past, present and future events like weather, gross domestic product growth, stock lev-

els, political aspects, quota decisions set by the largest producing capacity cartel: the

Organization of the Petroleum Exporting Countries (OPEC), turmoil in oil-exporting

and -importing countries and so on. In the research, there has been numerous at-

tempts and suggested model specifications for forecasting oil prices. Regardless of

these studies, a better understanding of crude oil prices and their formations are still

highly sought after knowledge, which at the current state is not adequately sufficient

in terms of accurately forecasting the price fluctuations. Accurate predictions of oil

prices are highly required, for example, to guide natural resource development and in-

vestments in infrastructure. They also play an integral part in generating projections

of energy use, predicting carbon emissions and climate change, and in particular to

companies dependent on energy prices for optimal investment decisions, allocation

of capital and risk management. Hence, identifying the stochastic processes govern-

ing the price of oil is essential for both policymakers and private energy actors.

This thesis aims to evaluate the ex-post (pseudo) out-of-sample forecast accuracy

of some of the proposed models in the literature in terms of the crude oil price. As

noted by Hansen and Timmermann (2012) the choice of sample period and sample

split point considering forecasting analysis is not irrelevant. For this reason, different
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1 Introduction

lengths of historical oil prices were applied to the models considered, with the logical

supporting idea being that using more recent information of the oil market dynam-

ics may improve upon a model’s ability to forecast the future. Whereas by including

information about past dynamics not representative for the current and future state

of the market, may jeopardize a model’s forecasting ability. This logic is supported

by academics and practitioners who argue that crude oil markets have undergone

structural transformations which have changed the impact of underlying factors and

alternated the path of oil prices. Hence, the hypothesis that by using more recent oil

price data performs better than including past and not relevant data when conducting

a forecast will be evaluated.

For any forecast, there is a requirement for some loss or cost function to evaluate its

performance when compared to the true observed values. In the forecasting literature,

this has usually been done in terms of calculating the forecast’s Root Mean Square

Error (RMSE), Mean Absolute Percentage Error (MAPE) or similar widely adopted loss

functions. As different loss functions penalize under- and overprediction errors in

different ways, a model’s out-of-sample forecasting accuracy is thus dependent upon

the choice of loss function. Hence, in this thesis a model’s forecasting accuracy will be

evaluated against various loss functions, to see what effects the choice of loss function

has on the model’s ranking and performance. Although a model may provide worse

forecast results compared to another model in terms of any loss function metric, it

might be able to capture other important aspects of the price path. This may, for

example, be the direction of price changes, which is pivotal to firms and investors in

the financial oil market. Thus a model’s ability to predict the direction of future price

changes will also be evaluated by computing the model’s Success Rate (SR). To check

whether the SR can be interpreted as evidence of directional accuracy or pure luck, a

suitable significance test of the score will be reported.

The ultimate objective for economist and science in general is to make reliable and

consistent forecasts in order to grant better decision-making e.g. for firms and stake-

holders. Despite the frequent prevalence and academic interest in forecasting the

crude oil price, the literature has proven itself to be lacking a common consensus

regarding what model produces the most accurate forecasts. There have been numer-

ous proposed models in the literature, with their complexity varying greatly. Ranging

from the most parsimonious idea of price-today-is-price-tomorrow approach to ex-

tremely sophisticated deep learning machine models. This raises the question of

2



1 Introduction

whether more complex models perform better than the less computational expensive

models? And does the benefits of more complex models outweigh the extra cost of

applying them? Therefore in this thesis, some of the most widely applied models in

the forecasting research, with varying complexity, will be evaluated and tested with

various sample lengths and forecast horizons. Finally, analysts in the literature have

usually aimed attention to one price sample frequency when conducting the fore-

casts. As daily crude oil prices have significantly more noise in the data compared to

monthly, quarterly and annual prices, the models will be evaluated using both daily

and monthly prices. This is done to be able to spot any differences in forecasting

performance when the amount of noise in the data is reduced, and examine whether

models performing well with one sample frequency also is consistent when another

sampling frequency is utilized.

The remainder of this thesis is structured as follows: Chapter 2 gives a brief introduc-

tion to grasp the concept of the oil price and its history. Chapter 3 gives an overview

of the existing forecasting techniques in the literature, as well as presents the selected

models to be employed throughout the thesis. Chapter 4 includes a description of

the price data sets to be studied, and discusses essential aspects of the forecasting

procedure and its evaluation. Chapter 5 presents and examines the empirical results

of the selected models from Chapter 3. Finally, Chapter 6 concludes on the obtained

results.

3



2 The Oil Price

2 The Oil Price

As this thesis scrutinizes modelling the dynamics of the oil price, this chapter will

give a brief introduction to what we mean by the oil price, its history, and its deter-

mining factors. When referring to the oil price one generally means the spot price

of one barrel1 of crude oil. Crude oil is an unrefined naturally occurring petroleum

product accumulated and buried in reservoirs underneath the surface. This product

is composed of hydrocarbons and other organic material, which serves as the world’s

most dominant source of primary energy. Oil is the most consumed primary energy

source worldwide, and in 2018 oil accounted for approximately 31%2 of the world’s

total primary energy demand.

This chapter provides a brief theoretical framework relevant to grasp the oil price. In

Section 2.1, a historical view of some of the major events that have led to oil price

fluctuations, are given attention. Whereas Section 2.2 describes some of the most

commonly utilized benchmarks to price one barrel of crude oil in the international

market.

2.1 Oil Price History

Fluctuations in the price of a barrel crude oil are influenced by the three primary

factors: demand, supply and oil inventories. However, over the last two decades, the

behaviour of oil prices have become increasingly more complex with many driving fac-

tors, such as politics, government regulations, interest rates, technological advances,

environmental concerns, natural disasters, population- and economic growth, etc.,

influencing its behaviour. Oil prices are highly volatile compared to other commodi-

ties as a result of the fact that oil demand and supply have low price elasticities. Supply

is almost inelastic in the short-run and can only be increased up to its full capacity.

Equivalently, oil demand is also rather inelastic as it has limited substitution potential

in the short-run in response to an oil price increase. Depending on the most impor-

tant underlying driving factors, oil prices can behave very differently over time. A

historical view of the spot prices for the two most common benchmarks West Texas

Intermediate (WTI) and Brent Crude can be seen in Figure 2.1. From which the evo-

lution of the oil price over time has been varying between being stable, collapsing

abruptly and trending upwards.

11 barrel ≈ 159 litres.
2According to IEA’s World Energy Outlook 2019 (IEA, 2019).
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2 The Oil Price

Figure 2.1: Historical daily WTI and Brent Crude spot prices (1986-2020). Data retrieved

from the U.S. Energy Information Administration’s website.

Major global events are strongly related to the observed fluctuations in the oil price.

Where some are more predictable and understood, whereas others are utterly ran-

dom and unpredictable, these latter events are often referred to as "black swans"3.

One great example of such an event was the terrorist attacks by the Islamic group

Al-Qaeda against the United States on the morning of September 11, 2001. After the

hit, oil prices shot upward due to fears that oil imports from the Middle East would be

curtailed. This event underlined the connection between the oil market and political

instability. In August 1990, during the Iraqi invasion of Kuwait, the United Nations put

a total embargo on oil-exporting from Iraq and Kuwait. In addition, with the outbreak

of the Persian Gulf War, it resulted in a daily oil supply reduction of 4.7 million barrels

in the international market, which accounted for 7% of the global aggregate demand.

Referring to Figure 2.1, the oil price rose from 14 dollars to 40 dollars per barrel in as

little time as three months. However, the oil price was quickly pulled back, due to an

increased production in OPEC countries supplementing the supply shortage. After

3The term, black swan, was first introduced by Nassib Talib through his book, The Black Swan, in 2007

(Taleb, 2007). In this book, a black swan is understood as a surprising extreme event relative to one’s

knowledge or beliefs following three attributes. Firstly, it is an outlier, as it lies outside the realm of

regular expectations because nothing in the past can convincingly point to its possibility. Secondly,

it carries an extreme impact. Thirdly, in spite of its outlier status, human nature makes us concoct

explanations for its occurrence after the fact, making it explainable and predictable.
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2 The Oil Price

1996, with gradually increasing oil production and exporting in Iraq plus the impact

of the Asian financial crisis on the world economy and oil demand, the oil price con-

tinuously declined to a historically low level of 10 dollars per barrel in 1998. Once

again OPEC adjusted its production levels, and after a period of underproduction oil

price rebounded back up at the start of the 21th century. At the same time, the black

swan event of 9/11 occurred which triggered a new round of increasingly oil prices.

From 2002 onward, strong growth in the global economic activity driven by developing

market economies, particularly in China, resulted in a prolonged period of increasing

oil prices. This economic resurgence led to an accelerated increase in crude oil de-

mand, which put upward pressure on the oil price, and in the middle of 2008, the price

had risen to a record high price of nearly 150 dollars per barrel. However, this price

level did not last long, by the end of 2008 due to the outbreak of a global financial crisis,

the oil price plummeted to near 30 dollars per barrel, an over 100 dollars decline in

just five months. At the beginning of 2009, after the initial shock of the financial crisis

and the financial market had retained some stability again, the oil price picked up and

rose to about 70 dollars per barrel in a short time. The oil price became broadly stable

for the next four years owing to the rise in shale oil production in North America and

a diminishing oil demand growth, only counteracted by supply-side concerns related

to geopolitical tensions in the Middle East and Russia. Simultaneously, gains in en-

ergy efficiency and improved development in other substitutional energy resources

contributed to restricting oil demand growth. The oil price fluctuated greatly around

the 100 dollars mark these years until the steep fall in the middle of 2014. This was a

result of oversupply of oil in the market due to booming shale oil production levels in

North America together with stagnant oil demand growth, especially in China.

Regardless of the oversupply and a low oil price, OPEC decided to not reduce its pro-

duction levels at its meeting in November 2014. The found member of OPEC, Saudi

Arabia, has historically operated as a "swing producer" in the oil market. Where it has

stabilised the oil price by reducing or increasing its production levels to respectively,

either rise the oil price in case of oversupply or lower the oil price in case of short-

ages. By February 2016, the oil price had dropped to below 30 dollars per barrel as

oil-producing countries had since the middle of 2014 produced 1-2 million barrels of

crude oil daily exceeding demand, as well as China’s economy hit its lowest growth in

a generation. Finally, after a long period of hibernation, OPEC and other non-OPEC

members, including Russia, tried to agree on a coordinated production freeze to re-

6



2 The Oil Price

balance the oil market. By the end of November 2016, an upswing came as OPEC

members agreed to cut their production levels by 1.2 million barrels per day. Follow-

ing OPEC’s restriction on the supply, the global oil inventories declined along with

robust demand, the market tightened significantly and the oil price reached levels

ranging between 50 to 75 dollars. Most recently, in March 2020 (not included in Figure

2.1), the price went through a massive plunge of 34% in just one day. Induced by the

potential fears of a three-way oil price war between OPEC, Russia and the U.S., with

the additional effect from the outbreak of the global coronavirus disease (COVID-19),

reducing the global demand. This latter proves just how prone the oil price move-

ments are to the current state or even expected future state of the world, which more

often than not, are consequences of unforeseen events or news. For any academics

or practitioners attempting to predict future oil price movements, this serves as an

unfavourable feature making it an undeniable very difficult task to do.

2.2 Crude Oil Characteristics

Crude oil is indisputably one of the world’s most important commodities. Although

the resource often is referred to as "black gold", it has ranging viscosity and can vary in

colour from black to yellow depending on its hydrocarbon composition. Many types

of crude oil are produced globally and the market value per barrel heavily depends

upon the quality and grade of the crude oil. Because some crude oil types are more

preferable than others for refiners to distillate and convert into petroleum products,

there exist price differentials among different qualities of crude oil. The two most im-

portant characteristics of crude oil are its density and sulfur content. Density ranges

from light to heavy, whereas sulfur content is characterised as sweet or sour. Crude

oils with low sulfur content and low density are defined as light sweet crude oils and

are usually priced higher than heavy sour crude oils. Sulfur is considered an impurity

and for sour crude oils containing more than 0,5% sulfur, this impurity needs to be re-

moved before the crude oil can be refined into petrol, and thus the cost of processing

is increased compared to processing a sweet crude oil.

For convenient trade and use of crude oil around the world different benchmarks

are defined to clarify a crude oil’s quality and grade. The three most important and

actively traded are the WTI, Brent Crude and Dubai Crude. WTI refers to light sweet

crude oil extracted from wells in the U.S. and thereafter sent via pipelines to Cushing,

Oklahoma. It is the most actively traded futures contract and serves as the main

benchmark in North America. The quality of Brent Crude is very similar to that of the

7



2 The Oil Price

WTI, however, it is not as light or as sweet as the WTI. Roughly two-thirds of all crude

oils around the world are priced using Brent Crude as the benchmark price. Brent

Crude refers to crude oil extracted from fields in the North Sea between the Shetlands

Islands and Norway. An advantageous feature of the Brent Crude is its waterborne

supply, making it easier to transport to distant locations, while the supply of WTI is

land-locked and thus transportation costs are generally more onerous. Dubai Crude

refers to Middle Eastern heavy and medium sour crude oil with lower quality than

WTI and Brent. The benchmark is typically used to price Persian Gulf crude oil exports

to Asia. In addition to these primary crude benchmarks, there exist more than 100

crude oil benchmarks. The prices of other crudes are set at a differential to the most

utilized benchmarks, where the differentials are adjusted according to changes in

supply and demand, transportation costs, as well as quality premiums or discounts.

Some of the others most commons are; OPEC Reference Basket (ORB) used by OPEC

to standardize crude oil prices among its member countries, Tapis Crude which is

traded in Singapore, Bonny Light used in Nigeria, and Urals oil used in Russia.

8



3 Forecasting Techniques and Selected Models

3 Forecasting Techniques and Selected Models

Over the past recent years, there has been an increasing interest from academics and

practitioners on how to understand and accurately forecast the development of oil

prices. This interest is subject to the increasing fluctuations observed in the oil prices

lately, which makes accurate forecasting more difficult. A vast amount of method-

ologies exist in the literature on how to forecast oil prices, with no widely accepted

consensus on which performs best. These methodology’s complexities differ greatly,

ranging from the most basic idea stating that current prices are the best predictor of

tomorrow’s prices, to more extensive models requiring powerful data analytical tools.

In addition, some models perform well in the short-term horizon but not in the long-

term horizon, and others vice versa. A common approach for companies has been

to use models relying on spot and futures prices to make short- and medium-term

predictions on the oil market. With the underlying concept that the relationship be-

tween futures price fluctuations and spot price fluctuations will point towards future

period’s oil prices.

This part of the thesis aims to give an overview of the existing crude oil price fore-

casting techniques and introduce the most widely adopted models in the literature.

In Section 3.1 the various techniques applied when forecasting crude oil prices are

presented. Selected deterministic and stochastic models used to forecast crude oil

prices are described in Sections 3.2 and 3.3, respectively.

3.1 Crude Oil Price Forecasting Techniques

Crude oil is one of the strategic commodities and its use and availability have an

impact on the world’s macroeconomic factors such as interest rates, inflation, gross

domestic product, exchange rates, industrial production, etc. Due to this importance,

the determinants of oil price fluctuations have received substantial attention from

energy researchers and economists in the literature. As a result, numerous techniques

and models have been proposed in the pursuit of a reliable and consistent approach

to forecast the fluctuations, volatility and movements of crude oil prices. In the exist-

ing literature, we distinguish between two main categories of forecasting techniques:

qualitative and quantitative techniques. Quantitative techniques are divided into two

categories: econometric models and non-standard methods. These techniques deal

with numerical and quantitative factors influencing oil prices. The econometric mod-

els are further subdivided into three types: time series models, financial models and

9



3 Forecasting Techniques and Selected Models

structural models. The characteristics of the three types of econometric models to

forecast oil prices can be described as follows:

a) time series models exploiting the statistical properties of the data, namely auto-

correlation and non-stationarity;

b) financial models based on the relationship between spot and futures prices; and

c) structural models describing how specific economic factors and the behaviour

of economic agents affect the future values of oil prices (Frey et al., 2009).

For the non-standard or computational methods, which have recently received a lot

of attention regarding forecasting, the most frequently utilised methods are artificial

neural networks (ANN) and support vector machines (SVM). On the other hand, qual-

itative techniques deal with erratic factors’ influence on oil prices such as political

events, speculations and wars. This is a knowledge-based approach to model the oil

price and incorporate infrequent and erratic events which might influence the future

oil market. As proposed by Bashiri Behmiri and Pires Manso (2013), all forecasting

strategies adopted in the literature can be classified according to the following list of

techniques:

1. Quantitative techniques:

1.1. Econometric models:

1.1.1. Time series models

1.1.2. Financial models

1.1.3. Structural models

1.2. Non-standard methods: Artificial Neural Networks, Support Vector Ma-

chines.

2. Qualitative techniques: Fuzzy Logic and Expert Systems, Delphi method, Web

Text Mining method, Belief Networks.

Selection of forecasting technique depends greatly on which aspect of the crude oil

market one sets out to forecast. In the literature, there is a clear distinction between

models used to forecast the volatility of crude oil prices and those used to forecast the

actual crude oil prices or associated change in crude oil prices (i.e. logarithmic- or

arithmetic returns). For the remaining part of this thesis, the main focus will be on

deterministic and stochastic quantitative techniques that forecast the actual crude

oil prices or associated returns.

10



3 Forecasting Techniques and Selected Models

3.2 Selected Deterministic Forecasting Models

This section aims to give a brief theoretical introduction to some of the deterministic

models widely applied when forecasting crude oil prices, or even commodities in gen-

eral and stock prices. A deterministic model is one where the value of the dependent

variable of interest is completely determined by the parameters of the model, hence

for the same parameter values, the outcome will be the same every time calculated.

Quantitative techniques apply mathematical models in an attempt to exploit rele-

vant characteristics of historical data to make short- and medium-term predictions.

Among the existing literature on forecasting crude oil prices, econometric models

serve as the most frequently used technique and will be the main focus area of this

study. Due to the increasing complexity of the oil price dynamics described in the

last chapter, there have been numerous attempts in the literature to fit different mod-

els and incorporate these factors, but few of these have provided adequately strong

forecast results.

3.2.1 Benchmark Model: Random Walk

A random walk without drift forecast, also referred to as the No-Change forecast, has

been utilized as the conventional benchmark in the literature on forecasting asset

prices (Alquist and Kilian, 2010). Complex and computationally expensive models

have typically been compared to this benchmark, to examine whether the introduc-

tion of more complexity indeed is justified by an increased forecasting performance

relative to the benchmark’s performance. According to findings in Alquist and Kil-

ian (2010), the No-Change forecast outperformed other econometric models and was

much more accurate than professional survey forecasts of the crude oil price across

horizons from 1 month to 12 months. The model forecasts the expected spot price

h-period in the future, St+h , conditional on all available information at present time

t , as equal to the last observed spot price, St . Hence, the concept is that changes in

the spot price are unpredictable, and thus the best available h-period forecast of the

oil price is the currently observed oil price, which can be written as:

Ŝt+h |t = St (3.1)

Equation 3.1 simply states that the change in the actual oil price at time t and the

predicted oil price h-period ahead is zero, and if extrapolated into the distant future

it follows a horizontal line equal to the last observed value at present time t . When

this concept is fitted to a known time series of oil prices, the model predicts the next

11



3 Forecasting Techniques and Selected Models

oil prices as equal to the previous step’s actual price, hence it "shadows" the actual

oil price, lagging one time-step behind. Thus, a very obvious problem with this naïve

model is when the oil price constantly moves up and down between each period, then

the model will predict the opposite movements for each respective period.

An extension of this model is the random walk with drift model, which can be applied if

the time series either has an observed increasing or decreasing trend. Throughout the

thesis, this model will be referred to as the RW with Drift model. The model expresses

the expected h-period ahead oil price by:

Ŝt+h |t = St +hα (3.2)

In equation 3.2, α is the estimated drift or the average change from one period to

the next of the historical data, which is multiplied by the number of periods ahead,

h , one is set out to forecast. Hence, an h-period forecast is modelled as a trend line

with slope α anchored at the last observed price, St . The random walk application in

finance is related to the "efficient market hypothesis", often credited to Fama (1965),

stating that in an efficient market with complete information, actual prices reflect all

available relevant information and expectations about the future.

3.2.2 Futures Prices as Predictors of Future Spot Prices

A widely applied approach when forecasting the crude oil price is to relate expected

future spot prices to futures contract’s prices of crude oil. A futures contract is a stan-

dardized legally binding agreement to buy or sell a particular commodity, asset, or

security at a predetermined price at a specified time in the future. They are traded

at futures exchanges, such as the New York Mercantile Exchange (NYMEX) for WTI

contracts and the Intercontinental Exchange (ICE) for Brent Crude contracts, which

allow traders to transact anonymously. The NYMEX exchange WTI Light Sweet Crude

Oil Futures is the world’s most liquid and actively traded crude oil contract. Each day

approximately 1.2 million contracts are traded (as of 2020), where each contract com-

prises 1,000 barrels, although only a small fraction of the traded volumes are physically

settled. Central banks and international institutions, such as the International Mone-

tary Fund (IMF), commonly use futures as a proxy for the market’s expectation about

the expected future spot price of crude oil. In addition, futures-based forecasts of the

oil price play an integral part in policy discussions at the Federal Reserve Board. De-

spite the widely adopted approach of using futures-based forecasts, this is not to say

12
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that forecasters do not recognize the potential limitations of such an approach. How-

ever, the consensus among policymakers, macroeconomists and financial analysts

is that oil futures, as imperfect as they might be, are still the best available forecasts

of the expected future spot price of oil. This perception has persisted regardless of

recent empirical evidence to the contrary and the advancement of theoretical models

designed at explaining the inadequacy of the predictive power of oil futures prices.

Utilizing futures as a proxy for future spot prices have the great advantage that it

is relatively easy to generate and communicate to the public. An h-period forecast

of the nominal price of crude oil can be generated by using the price of a futures

contract with maturity h , F h
t . Under the assumption that futures oil prices represent

an unbiased and efficient predictor of expected future spot oil prices, implies the

forecasting model, and will be referred to as the Futures model:

Ŝt+h |t = F h
t , h = 1, 2, 3, . . . n (3.3)

However, there are several different approaches suggested in the literature on how to

utilize futures prices to portray expected future spot prices.4 Following the suggested

approach of Alquist et al. (2011), the forecasted oil price can be based on the spread

between the spot price and futures price which act as an indicator of whether the oil

price is likely to move up or down. If the futures price equals the expected future spot

price, the spread should indicate the expected changes in spot prices. The suggested

model to explore the forecasting accuracy can be expressed as:

Ŝt+h |t = St

�

1+ ln
�F h

t

St

��

, h = 1, 2, 3, . . . n (3.4)

Where St is the current spot price of oil, F h
t is the current oil futures price with matu-

rity h . The logarithmic term of ( F
h
t

St
) represents the spread and is commonly assumed

by practitioners to equal the expected change in the nominal price of oil over the next

h period. This model will be referred to as the Spread model.

The common view that futures prices contain information about future spot prices

implicitly relies on the hypothesis that oil futures contracts are actively traded at the

4See for example Baumeister et al. (2013) and Alquist and Kilian (2010) who outlines different futures

models modifications.
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given horizon. This is an important condition as one would not expect F h
t to have suf-

ficiently strong predictive power for future spot prices if the market is lacking liquidity

at the relevant horizon. Typically the liquidity and trading activity for futures con-

tracts declines as their maturities increases. In 1989, the NYMEX introduced futures

contracts extending beyond 12 months, and later on in 1999, contracts with matu-

rities of 7-years were first introduced. Even though these long-maturities contracts

are available, the futures market for contracts extending 12 months is not particularly

liquid. This observation is essential in the way that one should not expect futures

with maturities over one year to provide consistently accurate forecasts, due to the

low amount of such contracts being traded. In the empirical literature there exist evi-

dence that futures prices, in fact, does not serve as any particularly accurate predictor

to forecast the future spot oil price. For example, Alquist and Kilian (2010), Alquist et al.

(2011) and Baumeister and Kilian (2012, 2014) concludes that futures-based forecasts

does not significantly improve upon the accuracy achieved by a monthly No-Change

forecast up to a 12 month horizon. However, some improvements were observed at

certain horizons in the statistical loss metric utilized (Mean Square Percentage Er-

ror), but generally, none of these reductions turned out to be statistically significant.

Whereas, in a study by Reeve and Vigfusson (2011), futures-based oil price forecasts

seemed to outperform the No-Change benchmark prior to the early 2000s with re-

spect to the statistical loss metric Mean Square Error (MSE), although in the latter first

decade of the 2000s the No-Change forecast seemed to be the superior forecasting

method. Regardless of these empirical research results exposing the weaknesses of

the futures price forecasting approach, central banks and international organizations

persist to employ this method as their baseline forecast.

3.2.3 ARIMA Model

The AutoRegressive Integrated Moving Average (ARIMA) model is a class of statisti-

cal models which are widely applied in statistics, econometrics, and in particular for

univariate time series analysis and forecasts. This method is often referred to as the

Box-Jenkins approach, credited to Box and Jenkins (1976). ARIMA models are simple

linear time series models that have extensively been utilized to predict crude oil prices

(Alquist et al. (2011); Baumeister and Kilian (2012); Akpanta and Okorie (2014); Dbouk

and Jamali (2018)), interest rates changes (Gospodinov and Jamali (2011); Dbouk et al.

(2016)) and other financial asset returns. An ARIMA model applies a forecasting algo-

rithm based on the conception that information from previous values in a time series

can alone be used to predict future values. This information is retrieved from the time

series’ own lagged values and the lagged forecast errors. Any specific ARIMA(p ,d ,q )
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model is characterised by its order of the parameters p , d , and q , which respectively

describes the AutoRegressive (AR), Integrated (I), and Moving Average (MA) parts of

the specific model. Hence, one of the great features of the ARIMA model is the ability

to transform it into various other models by carefully setting the parameters to specific

orders. The AR part indicates that it is a linear regression model where the evolving

variable of interest is regressed on its own lagged values. Hence, a linear relationship

to forecast the variable is made from using its past values as predictors. For a linear

regression model to have any statistical power in its estimates, the regressors should

neither be correlated nor dependent on each other.

When fitting an ARIMA model to any time series, the first step is to determine how

to make the time series stationary. A stationary time series is one whose properties

do not depend on the time at which they were observed, e.g. a white noise process is

stationary. Hence, for a stationary time series we would expect statistical attributes

such as the mean, variance, autocorrelation, etc., to remain approximately constant

over time (i.e. low heteroscedasticity). There are several techniques to transform a

non-stationary time series into a stationary one. Logarithmic transformations aid

to stabilise the variance of a time series, whereas differencing is an effective way of

stabilising the mean by removing changes in the level of a time series and thereby

reducing any trend or seasonality observed. The integrated part of the ARIMA model

represents the order of differencing required to make a non-stationary time series,

stationary. Usually, a first-order differencing is enough to induce stationarity, this

would be the case of setting d equal to 1, while higher orders of differencing are rarely

necessary. Considering the spot price of crude oil, a first-order differencing would

imply the following relationship:

S ′t = St − St−1

As the crude oil prices previously observed in Figure 2.1 clearly exhibit periodically

trends and a strongly varying variance over time, a first-order difference seems suit-

able to induce stationarity of the time series. When treating the first-order differenced

crude oil prices as the independent variable of interest, a pure autoregressive model

of order p (AR(p )) can be modelled as:

S ′t = α + φ1S ′t−1 + φ2S ′t−2 + .... + φp S ′t−p + εt

Or equivalently:
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S ′t = α +
p
∑

i=1

φi S ′t−i + εt (3.5)

The parameter p implies that the variable of interest (S ′t ), is estimated from its previ-

ous p -lagged values acting as explanatory variables. The coefficients φi represents

the weights associated with each lagged variable S ′t−i , α is an optional intercept term,

and εt is a white noise process with zero mean and zero correlation across time.

Finally, a pure moving average model of order q (MA(q )) can be modelled as:

S ′t = µ +
q
∑

i=1

θiεt−i + εt (3.6)

In an MA(q ) model, instead of regressing the variable of interest on its past values, it

uses past forecast errors, εt−i , as explanatory variables. It follows the intuition that

each value of S ′t can be modelled as a weighted average of the past q forecast errors.

In equation 3.6, the coefficients θi represents the weights of each lagged forecast error,

µ is the expectation for S ′t , and finally, εt is again white noise.

An ARIMA model incorporates all the features of an AR(p ) and a MA(q ) model by the

appropriate order of differencing of the time series in question. By introducing a new

constant term c , being the sum of α and µ, and using the expected value for the white

noise term; E [εt ] = 0, the final outcome is an ARIMA(p , d , q ) model, which in our case

becomes:

S ′t = c +
p
∑

i=1

φi S ′t−i +
q
∑

i=1

θiεt−i (3.7)

This model is defined as a non-seasonal ARIMA model where the predictors on the

right-hand side include both lagged values and lagged errors of the variable of interest,

and the intercept term c can either be included or not. As mentioned earlier, by

carefully setting the order of the model, various other models are constructed. For

example, an ARIMA(0,1,0) without the intercept term is equivalent of a random walk

or as previously denoted the no-change model, whereas including the intercept term

yields the random walk with drift model.
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3.3 Selected Stochastic Forecasting Models

This section lays the fundamentals behind the selected stochastic forecasting models

used to obtain the results in the forthcoming chapters. From a financial point of view,

such models try to describe the price behaviour and uncertainty of the underlying

commodity. A stochastic model is used to forecast the probability of various outcomes

under different scenarios, by using random variables. The random variables are built

into the model, which produces many outcomes to see their different effect on the

solution, then this is repeated numerous times under different scenarios. These mod-

els differ from the previous section’s selected deterministic models which gives the

exact same outcomes for a set of inputs, no matter how many times the model is re-

calculated. The models described in this section includes the Geometric Brownian

Motion model and the Mean Reverting Vašíček model.

3.3.1 Brownian Motion

The phenomenon Brownian motion is such a fundamental characteristic observed

in financial modelling that it needs some further explanation. It was the Scottish

botanist Robert Brown, who first discovered the phenomenon in 1827. He observed

the random motion of a pollen particle immersed in water on a microscopic scale.

The motion was caused due to the collision between the pollen particle and the fast-

moving water molecules. From a mathematical perspective, Brownian motion can be

described as a limiting case of some random walk as its time increments approach

zero, i.e. the number of steps becomes infinitely large. In the last decades, there have

been various models that incorporate this phenomenon, especially in reference to

stock and commodity price modelling.

A standard Brownian motion5 represents a stochastic process (also referred to as a

Wiener process), Wt , that can be defined in mathematical terms by three main prop-

erties:

1. Wt has a continuous path in t , and W0 = 0.

2. The increment of the Brownian motion in the time interval of dt between the

two points t and t +dt , where dt ≥ 0, is Wt+dt −Wt . This increment follows a

normal distribution with mean zero and variance equal to the time interval dt .

5A standard Brownian motion is the case whenσ2 = 1, as the increments of a Brownian motion follows

a normal distribution N (0,σ2dt ). (Throughout the thesis, when we say Brownian motion we are

considering a standard Brownian motion.)
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Mathematically expressed as; Wt+dt −Wt ∼N (0, dt ).

3. The Markov property: Wt has independent increments, for every t ≥ 0, the

future increments Wt+dt −Wt , where dt ≥ 0, are independent of the past values

Ws , for s ≤ t .

3.3.2 Geometric Brownian Motion Model

Ever since discovering the process of Brownian motion it has been extensively applied

in multiple fields, including finance, to model behaviour of stock prices, commodity

prices, macroeconomic factors, etc. The Geometric Brownian Motion (GBM) model,

as the name suggests, incorporates the principle of Brownian motion to describe the

behaviour of a continuous-time stochastic process. The model implies that returns

of a variable of interest follow a lognormal distribution, and thus meaning that the

logarithmic returns, which are continuously compounded returns, follow a normal

distribution. Consistent with reality, the model restricts prices from falling below zero

due to the nature of a lognormal distribution (i.e. maximum negative return is 100%).

It models the asset price as a sum of a positive deterministic function of time and a

stochastic Brownian motion term. A stochastic process, such as the asset’s spot price

St , is said to follow the GBM model if it satisfies the stochastic differential equation

(SDE) given by equation (3.8), or modelled as the instantaneous rate of return on St

given by equation (3.9):

d St = µSt d t + σSt d Wt (3.8)

or

d St

St
= µd t + σd Wt (3.9)

In the same way as Brownian motion was observed for the pollen particle, an asset’s

price deviates from a steady-state as a result of being altered by trades in financial

markets. Considering an asset with spot price St at time t , a mean percentage drift of

µ and a mean expected volatility ofσ. Then the relative change in its price during the

next period of time dt can be decomposed into a deterministic and a stochastic part.

The deterministic and predictable part is the expected price change during a time

period of dt . Hence, the change in price is equal toµSt dt . Whereas the stochastic and

unpredictable part mirrors the random changes in the asset’s price during the time

interval of dt . These random changes may have various underlying reasons, such as

changed demand and supply for the asset, speculations and unexpected news about
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the asset, etc. The asset’s mean volatility is represented by σ, and Wt is a standard

Brownian motion process as described in the previous subsection. This Brownian

motion process (Wt ), is the sum of all preceding Brownian increments, (Wi ). Each

Brownian increment is computed by drawing a standard random variable, (zi ), from

a normal distribution with mean zero and standard deviation one, i.e. zi ∼ N (0,1),

and multiplied with the square root of the incremental time period dt .

Wi = zi

p

dt

The Brownian discretized path now becomes the cumulative sum of each single Brow-

nian increments, which defines Wt as:

Wt =
n
∑

i=1

Wi

Generally, the deterministic part is called the drift term, while the stochastic part

is called the diffusion term and gives the model features simulating a random walk

process. A visual presentation of these two terms’ effect on the model can be seen in

Figure 3.1. The GBM model also possesses the Markov property, meaning that "the

future, given the present state, is independent of the past" (Sigman, 2006). In this

case, this transforms to; given the present value of St , the values of ST , where T > t ,

are independent of the values of Su , where u < t .

Figure 3.1: Characteristics of a generalized Geometric Brownian Motion model, where

the blue line displays the combined effect from a positive drift and a random walk

process.
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The solution to the GBM model is found by applying the itô’s lemma identity. For a

function f (St ), where St satisfies the SDE of (3.8), then by use of Itô’s lemma identity,

the equation can be written as:

d f (St ) =
∂ f

∂ St
d St +

1

2

∂ 2 f

∂ S 2
t

d S 2
t

With dS 2
t = S 2

t σ
2dt , it becomes6:

d f (St ) =
∂ f

∂ St
d St +

1

2

∂ 2 f

∂ S 2
t

S 2
t σ

2d t

By substituting f (St ) to ln(St ), where:

∂ ln(St )
∂ St

=
1

St
, and

∂ 2 ln(St )
∂ S 2

t

= −
1

S 2
t

.

Then by inserting equation (3.8) for dSt this yields:

d ln(St ) =
1

St

�

µSt d t + σSt d Wt

�

+
1

2

�

−
1

S 2
t

�

St
2σ2d t

= µd t +σd Wt −
σ2

2
d t

=

�

µ−
σ2

2

�

d t + σd Wt

Considering the time interval dt , starting from t = 0 to a future point t = t . Then

d ln(St ) can be written as ln
�

Ŝt

�

− ln(S0) = ln
�

Ŝt
S0

�

, which yields: (Remark from last

subsection W0 = 0.)

ln

�

Ŝt

S0

�

=

�

µ−
σ2

2

�

t + σWt

Which after applying the exponential rule to both sides gives the final solution to

equations (3.8) and (3.9) as:

Ŝt = S0 exp

��

µ−
σ2

2

�

t + σWt

�

(3.10)

6As dS 2
t = S 2

t (µ
2dt 2 + 2µσdt dWt +σ2dW 2

t ), for the limit dt → 0, the terms dt 2 and dt dWt tend to zero

quicker than dW 2
t . Hence, substituting dt for dW 2

t (due to the second property of quadratic variance

for a Wiener process in Section 3.3.1), and setting dt 2 and dt dWt to zero, yields this relationship.
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A simpler form of equation (3.10) can be written as:

Ŝt = S0e X t with, X t =

�

µ−
σ2

2

�

t + σWt (3.11)

Where X t simply is a Brownian motion with a drift term ofµ− σ
2

2 , and a diffusion term

of σWt , where σ is interpreted as a scaling parameter for the random walk process

Wt . It is worth mentioning that if we neglect the diffusion term in our model (since

µ andσ are constants based on historical data) the future price will move smoothly

up or down depending on whether the drift is positive or negative, respectively. By in-

cluding the diffusion term or random shock component, it allows for different future

price scenarios, and thus gives the possibility for simulation. This diffusion term is

also what makes the model a stochastic process, due to the incorporation of Brown-

ian motion. The discrete-time GBM process Ŝt , makes predictions for the asset price,

t periods ahead, using only the current price, expected percentage drift and the ex-

pected volatility. The expected volatility can either be estimated from historical data

(historical volatility) or by the volatility implied by the option market prices (implied

volatility). However, the ideal volatility to use for forecasting purposes would be the

future volatility, which would not be possible to know without knowing the future

state of the market. Hence, the volatility used as input parameter should be the best

estimate of future volatility and reflect future market expectations and belief for the

time period of consideration. Furthermore, the estimated volatility is assumed to be

constant, which as any trader knows does not reflect the reality observed in a market

due to features such as volatility clustering7. Other more complex models include

time-varying volatility and Risk Management models, which assumes that volatility

fluctuates in a similar way as the actual prices do. The great features of the GBM

model concerning financial asset or commodity price modelling, is the fact that the

exponential function always yields positive integers, and only depends on the input

parameters µ andσ to be estimated.

3.3.3 Mean Reverting Model

For commodities and interest rates modelling a Mean Reverting (MR) model has more

economic logic than the GBM model presented before. Economic theory states that

when the price of a good goes up, the demand will shrink and more supply will enter

the market, such that there will be an oversupplied market. Conversely, as the price

declines, the demand increases and there will be a tight market regarding supply. In

7Volatility clustering refers to the phenomenon observed in financial data where large changes tend to

be followed by large changes in either direction, and similarly for small changes.
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commodity markets, this works as a balancing mechanism. On the one hand, if the

price increases to an abnormally high price, the market is expected to eventually re-

vert to a lower price due to the resulting oversupplied market. On the other hand, if

the price drops too low, the demand for the commodity will be high whereas the sup-

ply will shrink, and eventually the market is expected to revert to a higher price due to

shortage in the supply. These price-reverting cycles are often observed in historical

prices for commodities, however, they generally have varying magnitudes and does

not occur in fixed time intervals. An MR model aims to capture this market balancing

mechanism and various model specifications have been proposed in the literature for

different mean reverting processes.

In financial mathematics, a model for describing the evolution of interest rates was

proposed by Vašíček (1977), which has been labelled the Vašíček model. This is a mean

reverting Ornstein-Uhlenbeck stochastic process where an additional drift parameter

is included to represent the long-term equilibrium price level, θ . The Vašíček model

is defined by the following continuous-time SDE:

dX t = κ(θ −X t )dt + σdWt (3.12)

A generalized mean reverting process with paths for various initial values of X0 is

illustrated in Figure 3.2. For initial values above or below the long term mean, θ , the

process shows either a decreasing or increasing trend, respectively. Whereas for an

initial value equal to the long-term mean, the process fluctuates around this value as

a result of the stochastic behaviour from the diffusion term.

Figure 3.2: Characteristics of a generalized Mean Reverting process, where κ= 2, θ = 1,

σ = 0.15 and ∆t = 0.01. Initial values of 2, 1 and 0 for the blue, green and red lines,

respectively.

22



3 Forecasting Techniques and Selected Models

For the purpose of modelling crude oil prices, Schwartz (1997) applied the Vašíček

model to model logarithmic crude oil prices. This corresponds to interpreting X t as

ln(St ) in equation (3.12), where St represents the crude oil price at time t , and the

time increment dt is infinitely approaching zero. The magnitude of the speed of

adjustment κ (> 0)measures the rate of mean reversion to the long-term mean log-

arithmic crude oil price, θ . In the second term, σ is the volatility of logarithmic oil

prices, and dWt ∼ N (0, dt ) being an increment to standard Brownian motion. The

first term corresponds to the drift term, while the second term is the diffusion term

which induces stochastic behaviour. The parameters; κ, θ and σ, are considered to

be constants in this specification, although other specifications of this model have

incorporated a time-varying volatility (e.g. by modelling the volatility process with

one of the GARCH8-class models proposed in the literature).

Transformation of a theoretical continuous-time model into a relevant discrete-time

interval, will allow the usage of historical crude oil price data for parameter estima-

tion. For sufficiently small enough time intervals, the process can be considered as

the continuous-time approximation of a discrete-time AR(1) process. Which by ex-

panding and rearranging terms in equation (3.12) yields:

X t+∆t = κθ∆t + X t (1−k∆t ) + σ(Wt+∆t −Wt ) (3.13)

Considering equation (3.13), the following empirical representation can be estimated

by an ordinary least squares method (OLS):

X t+∆t = a + X t b + εr e g (3.14)

Where X t+∆t represents the logarithmic oil price∆t time forward, with e.g. monthly

frequency of discrete historical data,∆t = 1
12 . The direct linkage between equations

(3.13) and (3.14) suggest the following relationships; an intercept of a = κθ∆t , a coeffi-

cient of b = (1−k∆t ) and distribution of the regression residual as εr e g ∼N (0,σ2∆t ).

As the residual incorporates a Brownian motion increment and a constant volatility

parameter, by knowing the theoretical distribution properties of the residual where

V ar [εr e g ] =σ2∆t , it becomes possible to estimate the volatility. From these relation-

ships, the constant parameters of the MR model can be estimated as follows:

8Short for Generalized Autoregressive Conditional Heteroskedasticity
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k =
1− b

∆t
, θ =

a

κ∆t
, and σ=

√

√V ar [εr e g ]

∆t
. (3.15)

By setting the variable X t = ln(St ) and applying Itô’s lemma, the stochastic differenti-

ated process of equation (3.12) can be discretized and approximated by9:

ln
�

Ŝt+∆t

�

= θ (1− e −κ∆t ) + e −κ∆t ln(St ) + σ

√

√1− e −2κ∆t

2κ
N [0,1], (3.16)

where ln(St ) denotes the natural logarithm of the crude oil price at time t , and N [0,1]

is an independent identically distributed standard normal variable (or similar to the

increments of a Brownian motion process) with zero mean and unit variance. Having

estimated the parameters’ values; κ, θ andσ by OLS, it becomes possible to simulate

logarithmic oil prices having an initial price. This closed-form solution prevents the

values from going negative, as a logarithmic oil price of below zero still would corre-

spond to an oil price above zero after exponentiation. In contrary to the GBM model,

the MR model assumes that price changes are not completely independent of one

another, but rather are related and the evolution of price and its volatility is bounded.

9See for example; Pereboichuk (2014) p.44 and Bahar et al. (2017) p.423.
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4 Data Description and Forecasting Procedure

A model’s forecasting performance is normally conducted by splitting the relevant

data set into an in-sample set used for initial parameter estimation and model selec-

tion, and an out-of-sample set used to evaluate and analyse the forecast performance.

Commonly the in-sample set is denoted as the training set, whereas the out-of-sample

set is denoted as the test or evaluation set. Empirical evidence of out-of-sample fore-

cast performance is considered more reliable than evidence based on in-sample fore-

cast performance which can be more sensitive to outliers and data mining. Out-of-

sample forecasts also reflect a more realistic scenario of the information available to

the forecaster in "real-time" when attempting to forecast a variable of interest. Hence,

this has led the majority of researchers to regard out-of-sample forecast performance

as the "ultimate test" for a proposed model (Hansen and Timmermann, 2012). For

an out-of-sample forecast to be unbiased and valid there should be no information

leakage from data in the out-of-sample period considered. Therefore, only informa-

tion from the training set is used for model specification, while the test set is used for

model validation only. A true out-of-sample forecast, also referred to as ex-ante fore-

cast, implies the use of data all the way up to the present time at when the forecast is to

be done. This approach involves a cumbersome procedure to accumulate sufficient

amounts of data points in order to examine models’ forecasting abilities. In response

to this, the pseudo out-of-sample, or also referred to as ex-post, forecasting procedure

was developed. A pseudo out-of-sample procedure implies the use of a splitting point,

at which the data on the one side represents the in-sample data, whereas the data on

the other side represents the "unknown", out-of-sample data to be forecasted and

evaluated against.

This chapter is structured as follows: Section 4.1 introduces the monthly and daily

sampled crude oil price data sets utilised for forecasting together with the previous

chapter’s selected models. Different sample sets defined as training and test sets are

presented in Section 4.2. Finally, in Section 4.3, various evaluation criteria used to

measure forecast accuracy are defined and described.

4.1 Data

As discussed in Section 2.2, there exists no uniform crude oil price due to quality

differentials. However, the most popular crude benchmarks serve as good proxies to

model the crude oil price as a unique variable. For the remaining part of this study, the
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benchmark WTI crude oil will be used as this proxy. The price data for WTI crude oil

was retrieved from EIA’s website10 in both daily and monthly frequencies between the

start of January 1986 till the end of January 2020 (daily frequented prices can be seen

in Figure 2.1). Monthly sampled prices were mainly collected to be able to compare

the futures-based models, as these models are based around the contract’s monthly

maturities. In Table 4.1 descriptive statistics are printed for the data set used for the

different frequencies. The daily and monthly price histories show observations of

8609 and 409, respectively. Crude oil prices during the sample period have a mean of

$44 and ranges from as low as $10 to over $145 per barrel.

Table 4.1: Descriptive statistics for daily and monthly crude oil prices (January 1986-

January 2020)

Crude Oil Prices

Observations Mean Std.Dev Min Max

Daily 8609 $44.2 $29.2 $10.3 $145.3

Monthly 409 $44.2 $29.1 $11.4 $133.9

When modelling crude oil prices the daily or monthly price fluctuations are an im-

portant aspect. The daily and monthly logarithmic price returns give an indication

of how prone the prices are to fluctuations. Large relative changes often observed

in such data is what causes the main problem for any forecasting model as the un-

derlying effects of the price change often are unexpected and unforeseen. In Table

4.2 descriptive statistics of crude oil price fluctuations, calculated as the logarithmic

returns, are presented. The absolute mean is the mean of all absolute price returns,

which shows that on average the crude oil changes by 1.71% and 6.46% in either di-

rection for the daily and monthly sampled data sets, respectively. Large fluctuations

in oil prices are confirmed by the minimum and maximum price returns seen. Daily

and monthly standard deviation in price returns characterise volatility of oil prices,

and for the sample period, these are 2.49% and 8.65%, respectively. Inspection of the

skewness statistic reveals that the price fluctuations are negatively skewed compared

to a symmetrical bell curve, or normal distribution. Meaning that the left tail of the

density plot centred at the mean is longer or fatter relative to the right tail. For compu-

tation of the kurtosis, the Fisher’s kurtosis formula was used, which defines a normal

distribution to have a kurtosis of zero. Thus, the kurtosis observed is equivalent of

the excess kurtosis, which indicates a heavy-tailed distribution compared to a normal

distribution. The excess kurtosis for the daily frequented data indicates as expected

10Data sourced from: https://www.eia.gov/dnav/pet/hist/RWTCD.htm
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more extreme outliers compared to the monthly averaged data. As both the daily and

monthly price fluctuations have positive excess kurtosis, their distributions are said

to be leptokurtic, which from a financial perspective indicates large risk for extreme

price fluctuations on either side. These descriptive statistics of the return’s distribu-

tions are consistent with stylized features of financial returns as noted in Dbouk and

Jamali (2018).

Table 4.2: Descriptive statistics for daily and monthly logarithmic crude oil price returns

(January 1986-January 2020)

Logarithmic Crude Oil Price Returns

Observations Absolute Mean Std.Dev Min Max Skewness Kurtosis

Daily 8608 0.0171 0.0249 -0.406 0.192 -0.630 13.6

Monthly 408 0.0646 0.0865 -0.394 0.392 -0.447 2.67

4.2 Sample Horizons

Splitting the data set into a training and testing set is a choice variable which there

is no broadly accepted guideline for how it should be done. Welch and Goyal (2008,

p. 1464) state that "It is not clear how to choose the periods over which a regression

model is estimated and subsequently evaluated", whereas Stock and Watson (2015,

p. 613) recommend “Pick a date near the end of the sample, estimate your forecasting

model using data up to that date, then use that estimated model to make a forecast”.

Researchers have adopted several different approaches to measure pseudo out-of-

sample forecast accuracy. One common approach is to choose an initial training

sample set for estimation and use the remaining data with various lengths as forecast

evaluation samples. Another approach is based on the belief that more recent data

better reflect the current state of the variable of interest. This approach suggests the

choice of training data to be selected at points as near the present time as possible

where noticeable structural breaks are observed in the data set, while still remaining

a sufficiently large enough data set for model estimation. Consider the case, where

a new improved technology enters the market for exploration and production of oil

and impose a pivotal change in the market (e.g. how fracking improvements changed

the U.S., from heavily depending on imported foreign oil to producing enough for

its own domestic consumption and international exports in less than two decades).

Such a development could potentially change the current market in a substantial way,

and the inclusion of market data before this point in the training set could potentially

jeopardize model selection and parameter estimations. This brings into question how
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important and significant the sample split point is to the model selection and fore-

casting performance. According to Hansen and Timmermann (2012), the split point

is not irrelevant and generate a potential for data mining, implying that not even the

aforementioned "ultimate test" for forecasting is immune to data mining.

I will now proceed to present how the train and test sample horizons were constructed.

Consider the whole data set to be of length T , then, for a selected forecast horizon of

length h , the train sample size will be from the start date specified up to and including

date T −h . Whereas the out-of-sample or test sample will be from dates greater than

T − h till the end date of the data T . A visual representation of the estimation and

forecast windows can be seen in Figure 4.1.

Figure 4.1: Timeline of estimation window and forecast window.

Different start dates used to construct the train samples for daily and monthly prices

are presented in Table 4.3. As daily prices are not available for all weekdays during

a year, the first available price at the start of the month will be used. Four different

train sample lengths will be evaluated. With the Long sample length starting at the

beginning of the time series. The Medium sample length start date was set to capture

the strong growth in global economic activity driven by developing market economics

in 2002, which caused a prolonged period of increasing crude oil prices. The idea

behind the Short sample length was to exclude the global financial crisis of 2008,

where the crude oil price dropped over $100 in just five months. Finally, the Recent

sample length was constructed in a way to exclude the steep fall observed in crude oil

prices as a result of great oversupply in 2014. The various train sample lengths will be

denoted by L, M, S and R throughout the thesis.

Table 4.3: Specification of train sample’s start dates used for model fitting.

Train Sample

Sample Length Start

Long (L) 01/01/1986

Medium (M) 01/01/2002

Short (S) 01/01/2009

Recent (R) 01/01/2016
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In Table 4.4, different start dates used for the desired forecast horizons are specified.

The table contains both dates for the monthly and daily frequented price series and

represents the start date of the test sample. For the monthly sampled prices, the

forecast horizon ranges from 1 to 24 months. Whereas for the daily sampled prices,

the forecast horizon ranges from 1 to 256 days.

Table 4.4: Specification of test sample’s start dates used for forecasting.

Test Sample

Monthly Daily

Forecasted

Months Start

Forecasted Days

(Months) Start

1 01/01/2020 1 31/01/2020

3 01/11/2019 5 27/01/2020

6 01/08/2019 22 (1) 01/01/2020

9 01/05/2019 64 (3) 01/11/2019

12 01/02/2019 130 (6) 01/08/2019

24 01/02/2018 256 (12) 01/02/2019

Referring to Figure 4.1, as an example of how an arbitrary train and test sample set

were constructed, let us consider monthly frequented data with Medium train sample

length and the desired forecast horizon of 6 months. This would suggest an estima-

tion window lasting from 01/01/2002 up to and including 01/07/2019, and a forecast

window lasting from 01/08/2019 up to and including 01/01/2020 (i.e. end of data

set). The specified train and test start dates, gives a total of 48 different train and test

samples to be evaluated for monthly and daily frequented prices.

4.3 Forecast Evaluation

The main focus of this thesis is to generate forecasts of the crude oil price with dif-

ferent models proposed in the literature and to evaluate their out-of-sample forecast

accuracy. Hence, there is a need for some evaluation criteria to rank and quantify a

model’s forecast performance. This is typically accomplished by using loss (or cost)

functions. In the literature, there exists a vast amount of proposed loss functions for

evaluating a model’s prediction performance. However, the choice of loss functions to

be utilized introduces a level of arbitrariness to model ranking, as different loss func-

tions penalize forecast errors differently. For this reason, several loss functions will be

evaluated in order to establish to what extent the choice of loss functions impacts the
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ranking of models’ forecast performance.

When a forecast ft ,h , of a true variable St+h , is made at time t for h periods ahead,

the loss will emerge if the forecast turns out to be different from the actual value

observed. The forecast error or bias is defined as et+h = St+h − ft ,h , and the loss func-

tion L is derived from the argument e , which is dependent upon St+h and ft ,h , i.e.

L (e ) = L (St+h , ft ,h ). For a true out-of-sample forecast (i.e. ex-ante forecast), the value

of St+h will not be known until time t +h has passed by. While the main advantage of

a pseudo out-of-sample forecast (i.e. ex-post forecast) is that this value will be known

to the analyst at time t , and thus allows for a derivation of an incurred loss function

to be assessed. According to the discussion of Granger (1999), loss functions must

possess several different properties. First, if the forecasted value is exactly equal to

the true observed value, then e = 0 and there will be no loss (i.e. L (0) = 0). Second,

mine L (e ) = 0, so that L (e )≥ 0, meaning that the loss function is defined as a numeric

value taking on any value greater than or equal to zero, i.e. L ∈ [0,→∞〉. Finally, L (e )

must be continuous and monotonically non-decreasing as e moves away from zero.

This implies that L (e2) > L (e1) if and only if e2 > e1, and indicates that the forecast

producing e2 is statistically worse than the forecast producing e1.

End user’s intended usage of the forecasted values differs greatly, and optimal model

selection heavily depends upon their individual utility functions, which for this thesis

remains unknown. For this reason, a model’s forecast accuracy performance may

differ among various end user’s who employs different loss functions tailored to their

preferences. These loss functions are defined as economic loss functions and will not

be feasible to adopt within this thesis. In response to this, statistical loss functions

which are aimed at evaluating average forecast errors serve as convenient measures

and emerges as the dominant practice in the literature. However, among the statis-

tical loss functions proposed there exists a variety of differences. The most essential

differences are whether a loss function is asymmetric or symmetric with respect to

under- and overpredictions given equally-sized absolute errors, and whether the func-

tion is linear or non-linear. Certain end users may have strong preferences to whether

an underprediction is more or less preferred than an overprediction, and may thus,

employ an asymmetric loss function. While if under- and overpredictions is weighted

equally bad, a symmetric loss function is appropriate to apply. The other aspect of a

loss function is whether the absolute value of forecast errors should be penalized lin-

early or non-linearly. A linear loss function will use a linearly proportional weighting
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scheme to penalize growing errors, whereas a non-linear loss function will typically

use some different non-linear weighting scheme to penalize the errors.

To properly evaluate any forecast model we will employ a set of loss functions with dif-

ferent characteristics. One of the simplest loss metrics is the Mean Error (ME), which

is the average error or bias representing the systematic error of a forecast model to

under- or overpredict the target values. This metric penalizes over- and underpredic-

tions equally and applies a linear weighting scheme. A disadvantage when analysing

this metric is situations where positive and negative errors simply cancel out by sum-

ming to zero, which may be misinterpreted as similar to a perfect forecast where St = ft .

Perhaps the most commonly adopted loss function, the RMSE, which represents the

standard deviation of the forecast errors. This loss function gives more weight to ex-

treme outliers and penalizes under- and overpredictions equally. RMSE is computed

by taking the square root of the underlying MSE function, which then yields a loss

metric in the same units as the quantity measured. In addition to the fundamental

ME and RMSE loss functions, we will employ three loss functions derived from follow-

ing the proposed family of loss functions by Patton (2011). Patton developed a family

of parametric loss functions nested from two of the most widely used loss functions

in the literature, namely the MSE and QLIKE loss functions. The proposed class of

loss functions depends on a shape parameter, b , that allows for asymmetric penalties

to be applied for underpredictions (b < 0) and overpredictions (b > 0), as well as a

symmetric penalty (b = 0). Where the latter case turns out to be equivalent to the MSE

loss function. To evaluate our models’ forecast performances, variations of Patton’s

suggested subset of loss functions will be used, and is given by the formula:

L (St , ft ; b ) =















1
(b+1)(b+2) (S

b+2
t − f b+2

t ) − 1
b+1 f b+1

t (St − ft ), ∀ b /∈ {−1,−2}

ft − St + St log St
ft

, for b =−1

St
ft
− log St

ft
− 1, for b =−2

Following the proposed family of loss functions formula, we will employ the QLIKE

loss function, in addition to two extra loss functions. One with a penalizing effect on

underpredictions (b =−1), and one on overpredictions (b = 1), which will be denoted

as L4 and L5, respectively. All five loss functions to be considered throughout the

thesis are presented in Table 4.5. Whereas in Figure 4.2 their underlying functions’

shapes are plotted for imaginary data points with respect to their absolute loss.
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Table 4.5: Loss functions employed to evaluate forecast performance. This table presents

the loss function’s abbreviated name, Patton’s shape parameter (b ), loss function for-

mula and a short description of the function’s behaviour. Table inspired by work from

Lorentzen and Sharma (2015).

Loss Function Name Parameter Formula Description

L1 ME NA E [St − ft ] Symmetric and linear

L2 RMSE 0 E
�

p

(St − ft )2
�

Symmetric and non-linear

L3 QLIKE -2 E
�

St
ft
− log St

ft
−1

�

Asymmetric and non-linear

L4 NA 1 E
�

1
6 (S

3
t − f 3

t )−
1
2 f 2

t (St − ft )
�

Asymmetric and non-linear

L5 NA -1 E
�

ft −St +St log St
ft

�

Asymmetric and non-linear

Figure 4.2: Visualization of utilized loss functions characteristics with respect to their

absolute loss, against predicted values ranging from 0 to 4 versus a true value of 2. For

the RMSE loss function, the underlying MSE function is plotted.

Finally, in addition to the aforementioned loss functions, an SR metric will also be

used. That is, to what degree are the forecasts able to predict the true price change’s

directions. This is not technically a loss function, but rather a descriptive statistic.

The SR for the forecast window is computed from the following relationship:
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si =







1, if (St+i −St )( ft+i − ft ) ≥ 0

0, if (St+i −St )( ft+i − ft ) < 0

Then by taking the sum of si for all steps i , and dividing by the number of price changes

during the forecast window (h), the SR becomes:

SR =

h
∑

i=1
si

h

As stated by Baumeister and Kilian (2012) "Under the null hypothesis of no directional

accuracy, the success rate of the model at predicting the direction of change in the

price of oil should be no better than tossing a fair coin with success probability 0.5".

Hence, for a model to have any statistically significant evidence of directional accuracy,

we should expect an SR above 0.5. The significance is also determined by the test

sample length, as for relatively short forecast windows a high SR is in general not

indicative of true directional accuracy. The SR will be further evaluated based on the

test statistic developed by Pesaran and Timmermann (1992). This test, which from

now on is referred to as the PT-test, is formally defined under the null hypothesis that

a given candidate forecasting model is equally directional accurate as the No-Change

benchmark model or equivalent to tossing a coin to predict the sign of actual price

change. The null is tested against the alternative hypothesis that the candidate model

is more directionally accurate than the benchmark model. For all forecast windows

considered, suitably constructed p-values will be reported based on the rejection of

the aforementioned null hypothesis.

4.3.1 Diebold-Mariano Test

Testing various models’ forecasting performances requires some evaluation test of

whether the observed improvements are significantly or not compared to the bench-

mark model. Consider two models’ forecasts to be f1, . . . , fh and g1, . . . , gh , with the

former being that of the benchmark model and the latter of any competing model.

The obvious approach is to select the forecast model that produces the smallest er-

ror measurements based on the considered loss functions. This approach does not

contemplate whether this difference in predictive accuracy is significant, or simply

due to the specific choice of data sample values and pure chance. To eliminate this

confusion a test statistic proposed by Diebold and Mariano (1995) will be applied to

the forecasted results. The test will be referred to as the DM-test, and its procedure to
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evaluate the significance level of predictive accuracy between the benchmark model

and all competing models will now be outlined.

Let εt and rt denote the residuals of each model compared to the actual observed

prices (St ) in the out-of-sample data set, i.e.

εt = St − ft rt = St − g t

and let the difference between those residuals, dt , be defined as:

dt = ε
2
t − r 2

t

The time series of dt is called the loss-differential, and the formula is clearly related

to the MSE loss function, although other loss functions could be employed as well.

Further, let the average of the loss-differentials equal:

d =
1

h

h
∑

t=1

dt

Under the null hypothesis, this test measures the significance of E [dt ] being equal

to zero for all t , which would imply equal predictive accuracy of the two forecasting

models in consideration. Usually, multi-step forecast errors exhibit some degree of

autocorrelation, and where an efficient s -step forecast will have forecast errors fol-

lowing an MA(s − 1) process. To incorporate this into the test, the autocorrelation

function γk , being the estimated autocovariance at lag k is defined as:

γk =
1

h

h
∑

t=k+1

(dt − d )(dt−k − d )

Finally, the DM-test statistic is computed as:

D M ∗ =
d

Ç

�

γ0+2
∑s−1

k=1γk

�

/ h
(4.1)

Under the assumption of the null hypothesis that E [dt ] = 0, the DM statistic follows

an asymptotic normal standard distribution i.e. D M ∗ ∼N (0, 1). Hence, the two com-

peting forecasts have different predictive accuracy if |D M ∗|> zc r i t , where zc r i t is the
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two-tailed critical value of a standard normal distribution.

The originally proposed test of Diebold and Mariano actually tends to reject the null

hypothesis too often for small samples. Therefore, Harvey et al. (1997) proposed a

modified test where improved small-sample size properties can be achieved by; (i)

making a bias correction to the test statistic and (ii) comparing the corrected statistic

with a Student-t distribution with (n-1)11 degrees of freedom instead of the standard

normal distribution. Their improved and modified test statistic is computed as:

D M =

√

√h +1−2s + s (s −1)/h
h

D M ∗

Where D M ∗ is the original test statistic from equation 4.1. For the forecast results

later on reported, p-values constructed from this modified test statistic are reported

as DM-test p-values. Any p-values less than a reasonable significance level implies

the rejection of the null hypothesis of equal predictive accuracy. In order to choose

the model with significantly better performance, the model with best scores among

the loss functions employed is chosen.

11With n being the number of forecasted values.
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5 Forecast Results

For the imminent chapter forecast results of the models in Sections 3.2 Selected De-

terministic Forecasting Models and 3.3 Selected Stochastic Forecasting Models will be

evaluated. As all models were tested with both daily and monthly price frequencies

and 48 combinations of train and test sample lengths, forecast results will be reported

in Appendix A Forecast Results Tables. All selected models will be compared against

the parsimonious No-Change model. In the research, this model is typically used as a

benchmark and more often than not performs better than most complex models and

professional survey forecasts for short forecast horizons.

5.1 Benchmark Model: Random Walk

The No-Change model has proven to serve as a superior forecast compared to the

competing models for very short horizons of typically one to a few steps into the fu-

ture. However, as this is a static forecast, and oil prices are prone to fluctuate vastly

over relatively short time spans, this model becomes less and less accurate as the fore-

cast horizon is extended. Also, if future oil price levels undergo major changes due to

market events, this model may become impractical to use for any forecast horizons.

In Tables 5.1 and 5.2 the actual values for respectively daily and monthly forecast re-

sults are reported for all horizons and loss functions. It becomes clear from the ME

loss function, that this model’s accuracy oscillates between under- and overpredicting

future prices at the considered forecast horizons.

For daily prices and the L train sample length, the No-Change model serves as most

appropriate at forecast horizons of 5 and 22 days. Whereas for the M train sample, it

additionally outperforms all other models at a forecast horizon of 130 days. Finally, for

the S train sample, it performs best at horizons of 22 and 130 days, whereas using the

R train sample, only at a horizon of 1 day. However, using L and S train sample lengths

the other models only appear to have significantly worse performance compared to

the benchmark model at the forecast horizon of 22 days. While using the M train

sample, there is a significantly worse performance at a forecast horizon of 130 days.

Whereas for monthly prices and the L, M and S train sample lengths, none of the

tested models beats the benchmark model at forecast horizons of 1 and 6 months,

considering any loss function. Although the benchmark model seems to be superior

at forecast horizons of 1 and 6 months into the future, there is not enough data points

to determine whether the other models’ performances are actually significantly worse

or due to pure chance.

36



5 Forecast Results

Table 5.1: Forecast results of the No-Change model for daily frequented prices for all

train sample lengths.

Daily Prices: No-Change

Forecast Loss Function

Horizon ME RMSE QLIKE L4 L5

Train Samples: L, M, S and R

1 -0.610 0.610 0.00007 9.7 0.004

5 -1.394 1.557 0.00043 64.8 0.023

22 -3.456 4.901 0.00349 705.4 0.205

64 4.213 4.950 0.00390 687.3 0.218

130 -1.855 3.327 0.00169 317.0 0.097

256 3.676 4.990 0.00393 702.0 0.221

Table 5.2: Forecast results of the No-Change model for monthly frequented prices for

all train sample lengths.

Monthly Prices: No-Change

Forecast Loss Function

Horizon ME RMSE QLIKE L4 L5

Train Samples: L, M, S and R

1 -2.200 2.200 0.00069 143.1 0.041

3 4.237 4.409 0.00315 540.4 0.175

6 -0.632 2.030 0.00064 117.0 0.036

9 -6.843 7.184 0.00692 1578.8 0.422

12 6.129 6.729 0.00774 1228.0 0.418

24 -2.990 7.016 0.00657 1512.7 0.402

To evaluate the forecast results and significance of the RW with Drift model, the reader

is referred to Tables A.1 and A.6. From which it is seen that the model outperforms

the No-Change model at forecast horizons of 64 and 256 days for all train sample

lengths and daily prices. Whereas for monthly prices it outperforms the benchmark

at 3 and 6 months horizons. For both price frequencies, there is statistical evidence

that the model is more accurate than the benchmark at the aforementioned horizons.

Although, as the model predicts prices with an upward sloping trend, the success

rate of this model is typically fixed at near 0.5, which is equivalent to the accuracy of

predicting a random coin toss. Hence, for all horizons and both price frequencies,

there is never seen any statistical significance in the directional accuracy.
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5.2 Futures Models

Ever since the 1970s energy crisis which led to the introduction of derivatives contracts

for petroleum-related products, speculators and hedgers have increasingly traded ac-

tively through this financial layer. With speculators attempting to ’bet against’ the

market’s perception of future price changes in order to pursue economical profits.

Whereas hedgers attempt to reduce the amount of risk associated with price changes

of the underlying commodity. This is achieved by the hedger from taking offsetting po-

sitions contrary to what they already have, and thus balances out any gains and losses

of the underlying. Crude oil derivatives markets induce market transparency and

liquidity in trading. With the effect of leverage and low trading costs, these markets

attract speculators looking for any potential of arbitrage deals, and as their activity

increases, so does the information impounded into the derivative’s market price. The

combined effects from derivatives markets ultimately impact the commodity price

through arbitrage activity, leading to a more extensively based market in which current

price corresponds more to its true value. Because this price influences production,

consumption and storage decisions, derivatives markets contribute to an efficient

allocation of resources in the economy (Fleming and Ostdiek, 1999). The evolution of

crude oil derivatives markets has transformed the pricing of oil as a physical commod-

ity more towards that of an investable asset. Resulting in its pricing becoming more

intertwined with financial market dynamics and phenomena unrelated to supply and

demand.

Historical prices of futures contracts with varying lengths of maturity were extracted

from Refinitiv Eikon’s financial database. For all forecast horizons, a continuous

monthly time series of futures prices were obtained. Both the Futures and Spread

models provide statistically more accurate forecasts than the No-Change model at

forecast horizons of 3, 9, 12 and 24 months. Their directional accuracy is generally

worse than that of a random coin toss, and thus neither significant. Both models’ fore-

casts results are presented in Tables A.7 and A.8. The two models produce very similar

results, although the Spread model is slightly more accurate. Especially if attention is

drawn to the RMSE loss function, i.e. if there is no asymmetric loss weighting towards

under- and overprediction.

5.3 ARIMA Model

In order to apply the ARIMA model to crude oil prices, the time series needs to be

transformed into a stationary one. This was done by performing a first-order differ-
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encing to the price series. As seen in Figures 5.1a and 5.1b, the daily and monthly

differenced prices exhibits traits as expected for a stationary time series for the ma-

jority of the duration. However, during periods with extreme volatilities in the market

such as during the financial crisis of 2008/2009, the rolling mean and rolling standard

deviation fluctuates greatly. It is not possible to fully uncover whether the price se-

ries are stationary solely based on these plots. Hence, an Augmented-Dickey-Fuller

test was performed, which states that under the null hypothesis a time series has a

unit-root, and is thus non-stationary. The alternative hypothesis states that there is

no unit-root, and the time series has no time-dependent structure and is therefore

stationary. The test statistics of both first-order differenced daily and monthly fre-

quented prices suggest there is no unit root, and the null hypothesis is rejected at less

than a 0.1% significance level.

Because the ARIMA model is dependent upon the specified order of (p , d , q ), there is

potential to test various model specifications, and which yields best out-of-sample

forecast accuracy is not clear. A common approach to identify the optimal order is

based on performing a grid search over a range of parameters and their combined

orders. To determine which order best fits the data, a score based on the Akaike Infor-

mation Criteria (AIC) was used. This score is a widely used measure as it quantifies

not just the model’s goodness of fit, but also the parsimony of the model, into a single

statistic. Hence, there is a penalty for adding more complexity to the model. Due to

limiting computing software, the AIC score was calculated for all parameter combina-

tions of p and q in the range of [0, 5], and the model order with lowest AIC score was

chosen. The Model selected from this approach is referred to as the ARIMA model.

(a) Daily Prices
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(b) Monthly Prices

Figure 5.1: Visualization of differenced daily and monthly WTI price series, with rolling

mean and rolling standard deviation. For both series a rolling window of one year was

used, hence a window of 25212and 12 was used for daily and monthly prices, respectively.

The optimal specified ARIMA model is well capable of fitting the time series in-sample,

but using the same order for out-of-sample forecasting does not produce huge im-

provements compared to the benchmark model. All forecast results and significance

of the ARIMA model is presented in Tables A.2 and A.9. Considering daily prices, the

model shows significant improvements mainly at forecast horizons of 64 and 256 days.

Although, using L and S train samples, resulted in improvements at horizons of 130

days and 1 day, respectively. While for monthly prices the results were significantly

better but for less of the horizons considered. For all train sample lengths, a signifi-

cant improvement at the horizon of 12 months was obtained. By using L and M train

samples, there was in addition improvement at the 24 months horizon, and for the

R train sample improvement at the 3 months horizon. Using either daily or monthly

frequented prices resulted in the same way as the RW with Drift model rarely success

rates above 0.5, and based on the PT-test statistics these were neither significant.

Out-of-sample forecasting accuracy of a specific ARIMA model is not comparable

to the in-sample fit. Hence, the optimal specified model based on the AIC, may not

yield satisfying forecast results. For this reason and based on the autocorrelation and

partial autocorrelation plots of the stationary differenced price series, an AR(3) model

12There are on average 252 tradings days in a year, thus this was used as an approximation.
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was also tested for its forecasting ability. Forecast results are reported in Tables A.3

and A.10. For daily prices, there were little improvements from this model compared

to the ARIMA model, except for the M train sample and a forecast horizon of 22 days.

Otherwise, it produced, similar to the ARIMA model, improvements at horizons of 64

and 256 days for all train samples. While for monthly prices, all train samples resulted

in improvement at the horizon of 12 months, with the addition of the 3 months for

the R train sample. Nonetheless, this model showed larger reductions in most loss

functions at the horizons it improved upon the benchmark model’s scores. There was

also no significant evidence of this model being directional accurate.

5.4 Geometric Brownian Motion Model

Despite econometric theory suggesting a rather simple relationship between the price

of a product and its supply and demand. The price of a commodity like crude oil is

influenced by multiple irregular factors and shows strong evidence of randomness

and stochastic behaviour. With that said, if crude oil prices follow the same path as a

stochastic process, there would be no way to accurately predict its future price using a

stochastic model, and if so, it would at least partially be a result of pure luck. Because

the GBM model includes a diffusion term, each time the model is estimated with all

parameters equal, different results would be produced. For this reason, it is very hard

to conclude on a stochastic model’s forecasting performance. However, an approxi-

mation of its predictive power can be deducted by performing multiple simulations

and interpreting the mean of all simulations as the expected ’on average’ forecast

performance. One clear drawback by averaging the simulations is that the diffusion

termσWt in equation 3.10 to a large degree vanishes due to the Brownian increments

being centred around a zero mean. This results in shocks of the predicted crude oil

prices that are not as significant in size as one would expect for the commodity.

Daily and monthly ’on average’ forecast results achieved by the GBM model are re-

ported in Tables A.4 and A.11, respectively. The GBM model shows significantly better

performance than the No-Change model when using daily prices for all train samples

at a forecast horizon of 64 days. Using the L, M and S train samples, the model is also

outperforming the benchmark model at a forecast horizon of 256 days. For the L and

S train samples, improvement is also seen at the 1 day horizon. Whereas by using

monthly sampled data, the GBM model shows significant improvements forecasting

at the 3 and 12 months forecast horizons. Neither using daily nor monthly sampled

prices resulted in higher success rates out-of-sample than what would be required to
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deem the model as significantly directional accurate.

As noted previously, averaging multiple simulations of this model reduces the stochas-

tic behaviour of the predicted price path. If we were to choose the simulation with

best out-of-sample accuracy the model follows the behaviour seen in crude oil prices

quite well. However, this would not be the case of any true forecast, as the prices

out-of-sample would have had to be known to the model. To show the potential of

the model if the correct simulation was chosen, and the approach of averaging multi-

ple simulations would not be required, the model shows some promising trends and

shocks. Just for visual ratification of model behaviour, the best simulated price path is

seen in Figure 5.2 for a forecast horizon of 256 days. In addition, if the result from the

best simulation was to be used, it only shows a reduction in the RMSE loss function of

22.8% compared to the No-Change model at the selected forecast horizon. Consider-

ing that the prices of the forecast horizon would have had to be known for the model

to yield this good simulation results, it is not a justified large reduction. Especially

as the true forecast of the mean simulated path also yields a reduction of 17.5% com-

pared to the benchmark model at this horizon. The major difference between the best

simulation and the ’on average’ simulation is how well the best simulation follows the

general trend of actual prices in the forecast horizon. This is often considered as more

crucial to an organization for planning and strategic reasons than an overall smaller

loss metric score.

Figure 5.2: Best simulated price path of the Geometric Brownian Motion model with

daily frequented prices, the Long train sample and for a forecast horizon of 256 days.
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5.5 Mean Reverting Model

The theoretical assumptions underlying the MR model are sound from an economi-

cal perspective. Looking at historical crude oil prices, one may argue that the main

feature of an MR process is observed; that prices tend to revert to a long-term equi-

librium price level. This mean reversion feature is supported by e.g. Pindyck and

Rubinfeld (1991) and Routledge et al. (2000). Pindyck and Rubinfeld examined over

100 years of oil price data and found a slow mean reversion, and a Dickey-Fuller unit

root test was used to reject the hypothesis of being a simple random walk process.

The MR model also describes the attraction to revert back as increasingly strong as

current price levels move further away from the long-term level. Being a stochastic

model with a diffusion term also incorporates the randomness expected from price

shocks over time. However, in the same manner as the GBM model, this complicates

the evaluation of its performance and makes it far less consistent in terms of fore-

casting. The GBM model has often been useful when making predictions about stock

price fluctuations, while the MR model has been the natural choice for modelling

commodity markets which have a strong reversion mechanism due to business cycles

and seasonal effects influencing the demand and supply sides. Basic microeconomic

theory states that, in the long-run, the price of a commodity is bounded to its long-

run marginal production cost or "in case of a cartelized commodity like crude oil,

the long-run profit-maximization price sought by cartel managers" (Laughton and

Jacoby, 1995, p. 188).

Parameters of the MR model are estimated on the basis of historical oil prices, hence

the different train samples yield great variations among the parameters and thus, also

the forecasted prices. This is one of the reasons why practitioners and academics

often rely on the most recent data to make model calibrations for forecasting. This

becomes evident from the forecasts results in Tables A.5 and A.12, which is for daily

and monthly oil prices, respectively. Also, the long-term equilibrium price depends

greatly on which historical oil prices are included. For example, employing the L train

sample returns a long-term price of $39.88, whereas the S train sample yields a price

of $70.76. Using the R train sample and daily prices, the MR model outperforms the

benchmark model for all forecast horizons, except for the 1 day horizon. For the L and

M train samples, the model is significantly better than the benchmark at horizons of

64 and 256 days. While using the S train sample, the model is only significantly better

at the 64 days forecast horizon. When using monthly prices and the three longest train

samples, the model is generally outperforming the benchmark model at horizons of
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3 and 12 months. Whereas using the R train sample, this model is superior to the

benchmark model at all forecast horizons. In similar ways as the other models did

not show particularly evidence of being directional accurate, the MR model is neither

very directional accurate. However, at certain forecast horizons and train samples,

the model has on average slightly better success rates.

Forecasting with the MR model yield different results for each simulation, for the same

reasons as the GBM model does. Hence, the forecast results are obtained by multiple

simulations and then using the ’on average’ forecast performance as the representa-

tive for the model. This eliminates much of the random price shock’s magnitudes.

Although looking at the best simulated out-of-sample price path in Figure 5.3, the

model shows both the effect of mean reversion and that it has large price fluctuations.

This result should not be deemed as very representative of the model’s performance in

general, as this is just the best (out of thousand simulations) price path. The best sim-

ulation is only presented to show the model’s stochastic behaviour when simulated

once.

Figure 5.3: Best simulated price path of the Mean Reverting model with daily frequented

prices, the Long train sample and for a forecast horizon of 256 days.
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6 Conclusion

Despite the vast number of papers dealing with the task of forecasting crude oil prices,

it is problematic to reconcile the seemingly conflicting results in the literature. The

problem is not only due to the definition of the oil price variable, but whether the

oil price is expressed in nominal or real terms, what horizons are chosen for model

estimation and evaluation, whether the analysis is conducted in-sample or out-of-

sample, how forecast accuracy is evaluated, whether tests of statistical significance is

included or not, whether the methods are parametric or nonparametric. The most

prevalent problem in the literature is that forecast results are sensitive to the choice of

sample period and the sample split point. The price of oil has been proven to be pre-

dictable in population, which is consistent with economic theory. However, this does

not need to translate into out-of-sample forecast accuracy which has been claimed

to be inherently unpredictable in the literature (Alquist et al., 2011).

In Tables 6.1 and 6.2 the forecast results provided in Appendix A are summarized for

daily and monthly sampled prices, respectively. For each table the best forecasting

model is listed for all the considered forecast horizons, train sample lengths and var-

ious loss functions employed. The results show the pivotal effect the train sample

length has on the forecast outcome. For daily prices and the L train sample, the GBM

and No-Change models appears as the dominant forecasting models across the dif-

ferent horizons. However, when utilizing more recent price data in the R train sample,

the MR model appear as the most superior model. The forecast performance of the

most parsimonious No-Change model typically dominates in two out of the six fore-

cast horizons for both daily and monthly prices. This indicates that, although other

models such as the GBM and MR models are more complex in terms of economical

underlying reasoning than the No-Change model, they do not generally outperform

the forecast accuracy of this model. Considering all train samples the RW with Drift,

ARIMA and AR(3) models does not seem to perform consistently well across the dif-

ferent forecast horizons. Notwithstanding, the results show that there is no unifying

conclusion on which model provides the best forecasts, but rather results implying

that the choice of train sample and forecast horizon has the greatest effect on the pre-

ferred model. Whereas for monthly prices, the No-Change model is typically superior

at short forecast horizons, while both futures-based models show best performances

at the longest horizon. In a similar manner as for daily prices, the GBM and MR mod-

els appear to perform better than the competing models when only recent market

information is utilized. This may be due to better and less biased parameter estimates

of the models that better reflect the current state of the crude oil market.
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Table 6.1: Daily Forecast Results

This table reports the models providing best forecast results using daily sampled oil

prices across the various train samples, forecast horizons and loss functions employed.

In situations where two models obtain equal results, both models are listed.

Forecast Loss Function

Horizon ME RMSE QLIKE L4 L5

Train Sample: L

1 GBM GBM GBM GBM GBM

5 MR No-Change No-Change No-Change No-Change

22 No-Change No-Change No-Change No-Change No-Change

64 GBM GBM GBM GBM GBM

130 No-Change ARIMA ARIMA ARIMA ARIMA

256 GBM GBM GBM GBM GBM

Train Sample: M

1 MR MR MR/No-Change MR MR

5 MR No-Change No-Change No-Change MR/No-Change

22 AR(3) AR(3) AR(3) AR(3) AR(3)

64 MR MR MR MR MR

130 No-Change No-Change No-Change No-Change No-Change

256 GBM AR(3) MR AR(3) GBM/AR(3)

Train Sample: S

1 ARIMA ARIMA ARIMA/GBM ARIMA ARIMA/GBM

5 MR MR MR MR MR

22 No-Change No-Change No-Change No-Change No-Change

64 MR MR MR MR MR

130 No-Change No-Change No-Change No-Change No-Change

256 GBM GBM GBM GBM GBM

Train Sample: R

1 No-Change No-Change No-Change No-Change No-Change

5 MR MR MR MR MR

22 MR MR MR MR MR

64 GBM GBM GBM GBM GBM

130 MR MR MR MR MR

256
RW Drift/ RW Drift/ RW Drift/ RW Drift/ RW Drift/

ARIMA ARIMA ARIMA ARIMA ARIMA
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Table 6.2: Monthly Forecast Results

This table reports the models providing best forecast results using monthly sampled oil

prices across the various train samples, forecast horizons and loss functions employed.

In situations where two models obtain equal results, both models are listed.

Forecast Loss Function

Horizon ME RMSE QLIKE L4 L5

Train Sample: L

1 No-Change No-Change No-Change No-Change No-Change

3 GBM GBM GBM GBM GBM

6 No-Change No-Change No-Change No-Change No-Change

9 Spread Futures Futures/Spread Spread Spread

12 ARIMA MR MR MR MR

24 ARIMA Spread Spread Spread Futures/Spread

Train Sample: M

1 No-Change No-Change No-Change No-Change No-Change

3 MR MR MR MR MR

6 No-Change No-Change No-Change No-Change No-Change

9 Spread Spread Futures/Spread Spread Spread

12 ARIMA AR(3) AR(3) AR(3) AR(3)

24 Futures Spread Spread Spread Futures/Spread

Train Sample: S

1 No-Change No-Change No-Change No-Change No-Change

3 MR MR MR MR MR

6 No-Change No-Change No-Change No-Change No-Change

9 Spread Spread Futures/Spread Spread Spread

12 MR Futures Futures Futures Futures

24 Futures Spread Spread Spread Futures/Spread

Train Sample: R

1 MR MR MR MR MR

3 GBM GBM GBM GBM GBM

6 No-Change MR MR MR MR

9 MR MR MR MR MR

12 GBM AR(3) AR(3) AR(3) AR(3)

24 Futures Spread Spread Spread Futures/Spread
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Comparing forecast results of equivalent forecast horizons (e.g. the 22 days and 1

month horizons), shows that the best model in most cases is equal for the two fre-

quented price data sets. This is particularly true for the three longest train samples,

but for the most recent train sample, there is no linkage between the best selected

models for the daily and monthly forecasts. Using monthly sampled prices implies

a limited set of price observations compared to more frequently measured prices.

Which in turn may induce bias and weak estimation of the models, and hence not

comparable to the forecast results of the daily sampled price forecasts. An interesting

point on the loss function’s impact on the forecast results is that generally the best

forecasting model using one loss function is also the best when another loss func-

tion is used. Although, the magnitude of the improvements among the various loss

functions compared to the benchmark depends considerably on which one is utilized.

But for the ME loss function, the superior model varies more, as this loss metric only

measures the bias in the forecast and the positive and negative errors may cancel

each other out, and thus results in contradicting and misleading conclusions. Among

the models evaluated, none possess any significant evidence of being directionally

accurate, with success rates rarely exceeding 0.5, and if so, they are rarely significant

in terms of the PT-test statistic. Hence, adopting the considered deterministic and

stochastic models to forecast the eccentric processes governing crude oil prices, gen-

erally does not produce adequately accurate forecasts, and suggest the use of more

advanced and sophisticated models.

6.1 Future Research

Despite the broad interest forecasting the price of crude oil has received, there is still

room for future improved understanding of this topic, and in the field of forecasting

in general. With forecasting techniques continuously developing and becoming more

complex, and better computational tools simultaneously allow for exploiting these

techniques’ potential to forecast the price of crude oil. Even the most complex models

are very simplified versions of reality and do not truly reflect nor capture all influenc-

ing factors to the price formation of crude oil.

The application of deep learning machine models is a growing field that spans across

numerous cases. These models provide powerful computational tools and algorithms

that can learn from and make predictions on data, and may with future development

serve as potentially strong models to forecast crude oil prices with acceptable ac-

curacy. These models have the main advantage of being able to capture changing
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patterns of oil prices as the model continuously updates when new price data is avail-

able. Gao and Lei (2017) proposed a model based on ideas and tools from stream

learning, a machine learning paradigm for analysis and inference of continuous flow

of non-stationary data, to predict oil prices. The experimental results showed that the

model outperformed three other popular oil price forecast models, both in terms of

higher predictive accuracy and directional accuracy over a variety of forecast horizons.

Other deep learning machine techniques include; Multilayer Perceptrons (MLP), Con-

volutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Deep Belief

Networks (DBN) and Long Short Term Memory (LSTM) Networks to name a few in the

literature. An interesting future work would be to compare the deep learning machine

techniques that are used in various fields on the specific task of forecasting crude oil

prices.

This thesis focuses on univariate oil price forecasting, hence another interesting re-

search would be to perform a similar analysis while also considering other factors

such as financial market indexes, economic growth, dollar exchange rate, demand

and supply, global oil inventories, consumer price index, industrial production index,

etc. The inclusion of such factors into deep learning machines techniques may also

serve as a potentially interesting future research proposal.
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Appendix

A Forecast Results Tables

This appendix displays the forecast results of all selected models for the different train

sample lengths Long, Medium, Short and Recent, which are denoted by L, M, S and

R, respectively. Forecast results reported in tables of Sections A.1 Daily Frequented

Oil Prices and A.2 Monthly Frequented Oil Prices are obtained by using, respectively,

daily and monthly frequented crude oil prices. In all tables, a model’s loss function’s

statistics are reported as ratios relative to the No-Change benchmark model, where its

results are previously presented in Tables 5.1 and 5.2. This implies that, for ratios less

than 1.0, the specific model performs better than the benchmark model, while for ra-

tios larger than 1.0, the benchmark model is the superior one. For the ME loss function,

which may produce both positive and negative values, ratios between −1.0 and 1.0

are indicative of less bias in favour of the competing model. Negative ratios represent

opposite bias with respect to over- and underpredictions than the benchmark model,

whereas positive ratios represent bias in the same direction as the benchmark model.

The Success Rate (SR) of the models is included, which describes to what degree a

model is able to predict the direction of the actual price change. As for the bench-

mark model, the SR is not possible to determine as there is no directional change in

the predicted prices. The loss functions’ ratios in the proceeding tables are bold for

values improving the accuracy of the benchmark model. In addition, p-values for

the Diebold-Mariano (DM) and Pesaran-Timmermann (PT) tests are included, where

bold values are used for p-values < 0.05 and italic for p-values < 0.1.
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A.1 Daily Frequented Oil Prices

Table A.1: RW with Drift and Daily Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.005 1.005 1.000 1.010 1.000 0.000 NA NA

5 1.007 1.007 1.000 1.014 1.000 0.200 0.087 0.201

22 1.014 1.011 1.020 1.022 1.020 0.364 0.001 0.769

64 0.974 0.981 0.962 0.964 0.963 0.562 0.000 0.269

130 1.137 1.029 1.053 1.061 1.052 0.485 0.000 0.308

256 0.882 0.943 0.880 0.894 0.887 0.531 0.000 0.290

Train Sample: M

1 1.011 1.011 1.000 1.021 1.000 0.000 NA NA

5 1.016 1.015 1.023 1.031 1.000 0.200 0.087 0.201

22 1.030 1.022 1.043 1.047 1.044 0.364 0.001 0.769

64 0.944 0.960 0.915 0.924 0.922 0.562 0.000 0.269

130 1.298 1.071 1.142 1.152 1.144 0.485 0.000 0.308

256 0.734 0.884 0.766 0.789 0.774 0.531 0.000 0.290

Train Sample: S

1 1.003 1.003 1.000 1.000 1.000 0.000 NA NA

5 1.006 1.006 1.000 1.011 1.000 0.200 0.087 0.201

22 1.018 1.014 1.026 1.028 1.024 0.364 0.001 0.769

64 0.978 0.984 0.967 0.969 0.968 0.562 0.000 0.269

130 1.163 1.035 1.065 1.074 1.062 0.485 0.000 0.308

256 0.895 0.949 0.893 0.905 0.896 0.531 0.000 0.290

Train Sample: R

1 1.025 1.025 1.000 1.041 1.000 0.000 NA NA

5 1.035 1.035 1.047 1.069 1.043 0.200 0.086 0.201

22 1.079 1.060 1.115 1.130 1.117 0.364 0.000 0.769

64 0.865 0.906 0.810 0.827 0.817 0.562 0.000 0.269

130 1.837 1.265 1.550 1.626 1.567 0.485 0.000 0.308

256 0.248 0.803 0.623 0.657 0.633 0.531 0.000 0.290
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Table A.2: ARIMA and Daily Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.041 1.041 1.000 1.082 1.000 0.000 NA NA

5 1.143 1.092 1.163 1.194 1.174 0.600 0.259 0.698

22 1.028 1.025 1.049 1.052 1.049 0.318 0.002 0.126

64 0.941 0.960 0.915 0.925 0.922 0.516 0.000 0.801

130 1.044 0.998 0.994 0.997 0.990 0.477 0.801 0.602

256 0.903 0.954 0.903 0.914 0.905 0.504 0.000 0.927

Train Sample: M

1 1.102 1.102 1.143 1.216 1.000 0.000 NA NA

5 1.069 1.109 1.209 1.231 1.217 0.400 0.423 0.365

22 1.013 1.013 1.026 1.028 1.024 0.591 0.008 0.583

64 0.947 0.962 0.921 0.928 0.927 0.469 0.000 0.529

130 1.281 1.047 1.083 1.103 1.082 0.483 0.000 0.153

256 0.726 0.880 0.758 0.783 0.769 0.531 0.000 0.498

Train Sample: S

1 0.916 0.916 0.857 0.835 0.750 1.000 NA NA

5 1.108 1.094 1.186 1.199 1.174 0.200 0.035 0.171

22 1.042 1.024 1.046 1.051 1.044 0.500 0.005 0.804

64 0.961 0.972 0.941 0.948 0.945 0.469 0.000 0.564

130 1.118 1.021 1.041 1.044 1.041 0.469 0.001 0.490

256 0.882 0.943 0.880 0.894 0.887 0.500 0.000 0.967

Train Sample: R

1 1.141 1.141 1.286 1.299 1.250 0.000 NA NA

5 1.132 1.105 1.209 1.222 1.217 0.600 0.012 0.698

22 1.103 1.072 1.138 1.157 1.141 0.500 0.000 0.902

64 0.918 0.945 0.887 0.896 0.890 0.500 0.000 0.981

130 1.837 1.265 1.550 1.626 1.567 0.485 0.000 0.308

256 0.248 0.803 0.623 0.657 0.633 0.531 0.000 0.290
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Table A.3: AR(3) and Daily Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.095 1.095 1.143 1.196 1.000 0.000 NA NA

5 1.075 1.061 1.116 1.127 1.130 0.400 0.018 0.698

22 1.024 1.016 1.029 1.032 1.029 0.318 0.000 0.236

64 0.961 0.972 0.941 0.947 0.945 0.547 0.000 0.892

130 1.121 1.023 1.047 1.049 1.041 0.492 0.000 1.000

256 0.876 0.940 0.875 0.889 0.882 0.535 0.000 0.134

Train Sample: M

1 1.116 1.116 1.286 1.247 1.000 0.000 NA NA

5 1.053 1.043 1.070 1.088 1.087 0.400 0.017 0.698

22 0.157 0.728 0.553 0.518 0.541 0.364 0.034 0.482

64 0.935 0.953 0.903 0.912 0.908 0.547 0.000 0.892

130 1.302 1.073 1.142 1.155 1.144 0.492 0.000 1.000

256 0.719 0.877 0.753 0.777 0.760 0.535 0.000 0.134

Train Sample: S

1 1.064 1.064 1.143 1.134 1.000 0.000 NA NA

5 1.065 1.055 1.093 1.113 1.087 0.200 0.026 0.201

22 1.025 1.017 1.034 1.036 1.034 0.364 0.000 0.769

64 0.968 0.977 0.951 0.956 0.954 0.562 0.000 0.269

130 1.154 1.032 1.065 1.068 1.062 0.492 0.000 1.000

256 0.894 0.949 0.893 0.904 0.896 0.535 0.000 0.134

Train Sample: R

1 1.084 1.084 1.143 1.175 1.000 0.000 NA NA

5 1.225 1.195 1.395 1.432 1.391 0.200 0.032 0.201

22 1.098 1.070 1.135 1.152 1.137 0.364 0.000 0.769

64 0.834 0.885 0.769 0.790 0.780 0.562 0.000 0.269

130 1.801 1.249 1.515 1.584 1.536 0.485 0.000 0.308

256 0.261 0.806 0.628 0.661 0.638 0.531 0.000 0.290
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Table A.4: GBM and Daily Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 0.907 0.907 0.857 0.825 0.750 1.000 NA NA

5 1.036 1.043 1.070 1.088 1.087 0.400 0.168 0.698

22 1.126 1.097 1.186 1.214 1.195 0.409 0.001 0.906

64 0.794 0.851 0.708 0.732 0.720 0.562 0.000 0.435

130 1.679 1.201 1.408 1.460 1.423 0.492 0.000 0.897

256 0.153 0.825 0.654 0.694 0.670 0.477 0.000 0.240

Train Sample: M

1 1.051 1.051 1.143 1.103 1.000 0.000 NA NA

5 1.034 1.039 1.070 1.079 1.043 0.000 0.203 0.668

22 1.058 1.049 1.092 1.104 1.093 0.455 0.001 0.965

64 0.832 0.888 0.777 0.795 0.784 0.562 0.000 0.498

130 2.434 1.546 2.237 2.472 2.299 0.446 0.000 0.156

256 -0.039 0.883 0.743 0.798 0.760 0.547 0.001 0.219

Train Sample: S

1 0.962 0.962 0.857 0.928 0.750 1.000 NA NA

5 1.098 1.092 1.163 1.194 1.174 0.000 0.068 0.668

22 1.056 1.032 1.063 1.069 1.063 0.409 0.000 0.440

64 0.861 0.906 0.810 0.828 0.817 0.547 0.000 0.585

130 1.615 1.182 1.373 1.411 1.381 0.454 0.000 0.291

256 0.227 0.813 0.639 0.672 0.652 0.500 0.000 0.779

Train Sample: R

1 1.056 1.056 1.143 1.113 1.000 0.000 NA NA

5 1.034 1.030 1.047 1.062 1.043 0.600 0.054 0.698

22 1.157 1.134 1.261 1.300 1.268 0.318 0.001 0.232

64 0.746 0.840 0.690 0.714 0.697 0.500 0.000 0.475

130 2.481 1.571 2.308 2.558 2.381 0.469 0.000 0.435

256 -0.440 1.028 0.964 1.108 1.009 0.543 0.540 0.288
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Table A.5: MR and Daily Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.072 1.072 1.143 1.144 1.000 0.000 NA NA

5 0.996 1.002 1.000 1.003 1.000 0.600 0.841 0.365

22 1.001 1.004 1.009 1.008 1.005 0.500 0.020 0.902

64 0.975 0.985 0.969 0.972 0.972 0.484 0.000 0.819

130 1.264 1.078 1.154 1.167 1.155 0.554 0.000 0.218

256 0.916 0.973 0.941 0.948 0.946 0.535 0.000 0.280

Train Sample: M

1 0.972 0.972 1.000 0.938 0.750 1.000 NA NA

5 0.999 1.014 1.023 1.028 1.000 0.200 0.490 0.201

22 1.092 1.069 1.132 1.149 1.137 0.364 0.001 0.363

64 0.704 0.819 0.654 0.680 0.665 0.484 0.000 0.290

130 1.847 1.287 1.604 1.683 1.629 0.492 0.000 0.903

256 -0.270 0.888 0.738 0.815 0.765 0.488 0.008 0.367

Train Sample: S

1 1.015 1.015 1.000 1.031 1.000 0.000 NA NA

5 0.774 0.859 0.744 0.735 0.739 0.200 0.137 0.201

22 1.161 1.114 1.221 1.253 1.229 0.273 0.000 0.083

64 0.544 0.712 0.487 0.518 0.500 0.562 0.000 0.505

130 2.261 1.455 2.006 2.176 2.052 0.508 0.000 0.743

256 -0.549 1.033 0.967 1.120 1.014 0.516 0.516 0.937

Train Sample: R

1 1.090 1.090 1.143 1.186 1.000 0.000 NA NA

5 0.707 0.794 0.628 0.627 0.609 0.200 0.137 0.201

22 0.917 0.943 0.897 0.884 0.893 0.591 0.001 0.663

64 0.868 0.902 0.803 0.820 0.812 0.500 0.000 0.825

130 0.937 0.980 0.959 0.959 0.959 0.577 0.000 0.082

256 0.590 0.830 0.669 0.700 0.679 0.531 0.000 0.375

58



A Forecast Results Tables

A.2 Monthly Frequented Oil Prices

Table A.6: RW with Drift and Monthly Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.041 1.041 1.087 1.086 1.073 0.000 NA NA

3 0.964 0.966 0.927 0.935 0.931 0.667 0.091 0.400

6 1.473 1.014 1.031 1.028 1.028 0.500 0.826 0.435

9 1.075 1.069 1.129 1.149 1.135 0.444 0.001 0.344

12 0.924 0.940 0.872 0.889 0.878 0.583 0.000 0.299

24 1.442 1.149 1.286 1.337 1.301 0.583 0.001 0.425

Train Sample: M

1 1.085 1.085 1.174 1.180 1.171 0.000 NA NA

3 0.924 0.929 0.854 0.866 0.857 0.667 0.090 0.400

6 1.992 1.058 1.109 1.122 1.139 0.500 0.641 0.435

9 1.156 1.144 1.277 1.326 1.294 0.444 0.001 0.344

12 0.835 0.875 0.745 0.775 0.756 0.583 0.000 0.299

24 1.958 1.344 1.694 1.868 1.749 0.583 0.000 0.425

Train Sample: S

1 1.063 1.063 1.130 1.132 1.122 0.000 NA NA

3 0.955 0.958 0.911 0.920 0.914 0.667 0.091 0.400

6 1.687 1.029 1.063 1.059 1.056 0.500 0.749 0.435

9 1.132 1.121 1.231 1.271 1.244 0.444 0.001 0.344

12 0.915 0.933 0.858 0.877 0.866 0.583 0.000 0.299

24 1.851 1.302 1.604 1.746 1.647 0.583 0.000 0.425

Train Sample: R

1 1.273 1.273 1.609 1.631 1.610 0.000 NA NA

3 0.766 0.785 0.600 0.624 0.606 0.667 0.090 0.400

6 4.384 1.543 2.281 2.435 2.361 0.500 0.126 0.435

9 1.603 1.583 2.263 2.644 2.382 0.444 0.001 0.344

12 0.420 0.654 0.401 0.442 0.414 0.583 0.001 0.299

24 6.578 3.438 7.688 14.895 9.473 0.583 0.000 0.425
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Table A.7: Futures and Monthly Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Samples: L, M, S and R

1 1.536 1.536 2.304 2.393 2.317 0.000 NA NA

3 0.944 0.946 0.889 0.898 0.891 1.000 0.091 0.168

6 2.745 1.325 1.719 1.774 1.750 0.500 0.197 0.435

9 0.937 0.953 0.913 0.904 0.912 0.333 0.056 0.244

12 0.458 0.602 0.329 0.379 0.347 0.500 0.000 1.000

24 -0.174 0.729 0.537 0.529 0.532 0.375 0.005 1.000

Table A.8: Spread and Monthly Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Samples: L, M, S and R

1 1.531 1.531 2.290 2.376 2.317 0.000 NA NA

3 0.944 0.946 0.889 0.898 0.891 1.000 0.091 0.168

6 2.728 1.321 1.703 1.762 1.750 0.500 0.199 0.435

9 0.936 0.952 0.913 0.903 0.910 0.333 0.056 0.243

12 0.475 0.612 0.341 0.391 0.356 0.500 0.000 1.000

24 -0.230 0.728 0.536 0.528 0.532 0.375 0.006 1.000
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Table A.9: ARIMA and Monthly Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.705 1.705 2.812 2.959 2.854 0.000 NA NA

3 1.101 1.099 1.222 1.201 1.217 0.000 0.130 0.168

6 3.008 1.175 1.359 1.391 1.389 0.833 0.511 0.150

9 1.621 1.601 2.324 2.695 2.441 0.444 0.000 0.759

12 -0.005 0.591 0.309 0.371 0.328 0.583 0.008 0.501

24 0.139 0.813 0.670 0.657 0.664 0.458 0.055 0.829

Train Sample: M

1 1.774 1.774 3.043 3.210 3.073 0.000 NA NA

3 1.053 1.055 1.121 1.110 1.114 0.000 0.276 0.168

6 4.676 1.629 2.531 2.721 2.611 0.500 0.113 0.435

9 1.656 1.624 2.387 2.779 2.509 0.333 0.000 0.344

12 -0.025 0.638 0.362 0.431 0.383 0.583 0.015 0.299

24 0.852 0.936 0.881 0.873 0.878 0.542 0.150 0.829

Train Sample: S

1 1.331 1.331 1.754 1.788 1.756 0.000 NA NA

3 1.146 1.137 1.314 1.282 1.303 0.000 0.047 0.168

6 2.810 1.235 1.500 1.538 1.528 0.500 0.288 0.435

9 1.375 1.349 1.718 1.875 1.768 0.444 0.000 0.344

12 0.834 0.868 0.731 0.764 0.742 0.583 0.000 0.299

24 2.441 1.473 1.985 2.274 2.072 0.583 0.000 0.427

Train Sample: R

1 1.273 1.273 1.609 1.631 1.610 0.000 NA NA

3 0.766 0.785 0.600 0.624 0.606 0.667 0.090 0.400

6 4.384 1.543 2.281 2.435 2.361 0.500 0.126 0.435

9 3.187 3.134 7.149 11.624 8.360 0.444 0.000 0.759

12 0.420 0.654 0.401 0.442 0.414 0.583 0.001 0.299

24 3.783 2.247 3.960 5.746 4.455 0.583 0.000 0.872
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Table A.10: AR(3) and Monthly Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.729 1.729 2.899 3.043 2.927 0.000 NA NA

3 1.239 1.234 1.565 1.502 1.543 0.000 0.099 0.168

6 4.267 1.571 2.375 2.516 2.444 0.500 0.142 0.435

9 1.443 1.414 1.868 2.069 1.934 0.444 0.000 0.628

12 0.466 0.591 0.318 0.366 0.333 0.583 0.000 0.299

24 2.250 1.360 1.729 1.913 1.786 0.625 0.001 0.700

Train Sample: M

1 1.808 1.808 3.159 3.336 3.195 0.000 NA NA

3 1.198 1.197 1.467 1.416 1.446 0.000 0.116 0.168

6 4.861 1.708 2.781 2.991 2.861 0.500 0.103 0.435

9 1.542 1.508 2.092 2.371 2.182 0.444 0.000 0.344

12 0.323 0.523 0.244 0.289 0.258 0.583 0.001 0.299

24 2.833 1.607 2.301 2.742 2.435 0.583 0.000 0.427

Train Sample: S

1 1.425 1.425 2.000 2.053 2.000 0.000 NA NA

3 1.109 1.106 1.238 1.216 1.229 0.000 0.104 0.168

6 3.709 1.448 2.031 2.129 2.083 0.500 0.165 0.435

9 1.236 1.215 1.423 1.503 1.450 0.333 0.000 0.167

12 0.624 0.703 0.463 0.511 0.478 0.583 0.000 0.299

24 2.098 1.364 1.737 1.926 1.796 0.542 0.000 0.255

Train Sample: R

1 1.592 1.592 2.464 2.573 2.488 0.000 NA NA

3 0.748 0.784 0.600 0.622 0.606 0.667 0.066 0.400

6 6.698 2.211 4.500 5.095 4.722 0.500 0.029 0.435

9 1.566 1.541 2.162 2.494 2.265 0.444 0.001 0.344

12 0.281 0.593 0.323 0.367 0.337 0.583 0.001 0.299

24 6.453 3.391 7.527 14.444 9.241 0.583 0.000 0.427

62



A Forecast Results Tables

Table A.11: GBM and Monthly Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.172 1.172 1.362 1.379 1.366 0.000 NA NA

3 0.851 0.861 0.730 0.747 0.737 0.667 0.116 0.400

6 3.128 1.232 1.484 1.529 1.528 0.500 0.314 0.435

9 1.268 1.251 1.497 1.602 1.533 0.444 0.001 0.344

12 0.677 0.765 0.558 0.599 0.572 0.583 0.000 0.299

24 2.945 1.780 2.723 3.427 2.930 0.583 0.000 0.427

Train Sample: M

1 1.215 1.215 1.464 1.484 1.463 0.000 NA NA

3 0.715 0.738 0.530 0.553 0.537 0.667 0.063 0.113

6 3.998 1.454 2.047 2.152 2.083 0.500 0.155 0.435

9 1.510 1.490 2.038 2.321 2.128 0.444 0.001 0.344

12 0.472 0.670 0.421 0.463 0.435 0.583 0.001 0.299

24 3.965 2.233 3.938 5.647 4.415 0.583 0.000 0.425

Train Sample: S

1 1.121 1.121 1.246 1.261 1.244 0.000 NA NA

3 0.825 0.832 0.679 0.700 0.686 1.000 0.085 0.168

6 2.957 1.200 1.422 1.451 1.444 0.500 0.354 0.435

9 1.341 1.322 1.653 1.798 1.699 0.444 0.000 0.344

12 0.744 0.815 0.641 0.677 0.653 0.583 0.000 0.299

24 3.187 1.856 2.921 3.755 3.164 0.583 0.000 0.425

Train Sample: R

1 1.435 1.435 2.014 2.082 2.024 0.000 NA NA

3 0.679 0.702 0.476 0.502 0.486 0.667 0.098 0.400

6 6.967 2.317 4.844 5.656 5.139 0.500 0.041 0.435

9 2.011 2.011 3.386 4.444 3.697 0.444 0.002 0.344

12 -0.006 0.688 0.417 0.503 0.445 0.583 0.012 0.299

24 12.880 6.693 18.977 72.704 28.582 0.583 0.000 0.427
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Table A.12: MR and Monthly Prices

Forecast Loss Function DM-Test PT-Test

Horizon ME RMSE QLIKE L4 L5 SR p-value p-value

Train Sample: L

1 1.033 1.033 1.072 1.068 1.073 0.000 NA NA

3 0.933 0.940 0.876 0.887 0.880 0.667 0.048 0.400

6 1.989 1.068 1.141 1.144 1.139 0.500 0.571 0.435

9 1.071 1.068 1.127 1.147 1.135 0.333 0.006 0.759

12 0.289 0.501 0.222 0.266 0.237 0.583 0.027 0.616

24 0.888 1.010 1.020 1.021 1.020 0.750 0.024 0.034

Train Sample: M

1 1.251 1.251 1.551 1.576 1.561 0.000 NA NA

3 0.701 0.734 0.521 0.546 0.531 0.667 0.095 0.400

6 4.600 1.608 2.469 2.652 2.556 0.500 0.114 0.435

9 1.282 1.262 1.522 1.630 1.557 0.444 0.000 0.344

12 0.305 0.614 0.349 0.392 0.364 0.583 0.001 0.299

24 2.515 1.538 2.135 2.493 2.244 0.667 0.000 0.266

Train Sample: S

1 1.279 1.279 1.623 1.648 1.610 0.000 NA NA

3 0.645 0.675 0.438 0.464 0.446 0.667 0.097 0.400

6 5.261 1.793 3.031 3.312 3.139 0.500 0.069 0.435

9 1.402 1.386 1.795 1.987 1.858 0.444 0.001 0.344

12 0.202 0.610 0.340 0.389 0.356 0.583 0.002 0.299

24 3.197 1.813 2.814 3.561 3.035 0.583 0.000 0.872

Train Sample: R

1 0.951 0.951 0.913 0.903 0.902 1.000 NA NA

3 0.737 0.765 0.568 0.594 0.577 0.667 0.071 0.400

6 1.263 0.943 0.891 0.890 0.889 0.333 0.209 0.237

9 0.684 0.725 0.551 0.513 0.538 0.556 0.000 0.344

12 0.474 0.640 0.380 0.426 0.395 0.583 0.000 0.501

24 -1.252 0.965 0.953 0.922 0.940 0.458 0.842 0.569
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