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Abstract. The paper presents a novel process for probability-informed inspection planning based 
on the following principles. 1) A description of the strength of knowledge about a problem shall 
be included and be accounted for in the decision making, 2) Probabilistic methods should be 
used to predict quantities expressing the physical reality of nature (observable quantities) and 
their uncertainty, and 3) Any update of the probabilistic model should be limited to the actually 
observed quantities. The process for updating the probability of failure after inspection is 
programmed in accordance with these principles based on Monte-Carlo simulations and 
Bayesian parameter updating. The application of these principles and the proposed process is 
illustrated by an example calculation resulting in an example of inspection intervals for a jacket 
structure.  

1.  Introduction 
Planning the extent and frequency of inspections is a key topic in in-service integrity management for 
offshore structures. In many cases this is being performed in accordance with prescriptive standards 
typically requiring first a base-line inspection during the first year of operation and then periodic 
inspections at fixed time intervals for specified structural details. In addition, an operator is typically 
required by such standards to do special inspections to monitor the development of known defects and 
anomalies and to perform un-scheduled inspection after special events such as major storms or 
collisions. This prescriptive time-based scheme for inspection planning has been in use for many years 
in the offshore industry. In addition, it has been the fundament for the in-service inspection program 
(IIP) provided by class societies for mobile offshore units (MOUs) and in the shipping industry. 

A prescriptive time-based inspection programme is claimed to require a quite extensive inspection 
scope. Operators of offshore jacket structures seldom find signs of deterioration and damages 
corresponding with such an extensive inspection scope in the primary structure. As a result, a condition-
based inspection programme (CBI) has been implemented by many operators to reduce the extent of the 
inspection scope if earlier inspections have found that the condition is good.  

The inspection-intervals may be determined by previous experience, but probabilistic methods 
rapidly proved to be a more rational approach for determining the inspection intervals, especially for 
fatigue cracks. The general idea for determining the inspection intervals by probabilistic methods is that 
all uncertain parameters are modelled by a representative probability distribution. These parameters may 
include: 
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- The cyclic stress distribution  
- The initial crack size in the welds 
- The crack growth parameters in the Paris crack growth law 
- Detection accuracy of the inspection method 

Model uncertainties are normally included into the probabilistic model to account for the uncertainty 
in the various models used for calculating the fatigue crack growth, such as determining the long-term 
cyclic stress distribution and determining the uncertainty in the Paris crack growth model.  

The probability distribution of the crack growth of various details can then be predicted by various 
probabilistic methods such as Monte Carlo simulation, first-order and second-order reliability methods 
(FORM and SORM). In a Monte Carlo simulation this can be performed by randomly selecting values 
for each uncertain variable from their probability distribution and calculate the crack growth based on 
each set of variables. The probabilistic methods can then produce a probability distribution of the 
expected crack size with time as indicated in Figure 1. The probability of failure can be defined as the 
probability of the crack exceeding a certain value (e.g. the thickness of the specimen as shown in Figure 
1).  

The next step is to implement an updating of the distribution of the crack size after an inspection has 
been performed. If the inspection has not revealed any indications of fatigue cracks, the expected crack 
size can be assumed to be lower than the crack size that can be determined by this inspection method. 
However, the crack size that is detectable by an inspection method is also an uncertain parameter and 
this is normally illustrated by a probability-of-detection (POD) distribution rather than a fixed number. 
In a Monte Carlo simulation, the updating of the crack-size distribution can be performed by filtering 
the possible expected crack size after the inspection.  

As an example: Assume a case where one simulation is performed resulting in a crack of 3 mm in 
depth at the time of inspection. Further, let’s assume that the POD curve gives a 90 percent probability 
of detecting a crack of this size, then there will be a 90 percent chance that this will be discovered. If we 
assume that the actual inspection did not find any crack, this simulation must be rejected. In the 
simulation this is included by a so-called Bayesian updating. The Bayesian updating in this context is 
performed by requiring a new crack size after inspection that is taken from the distribution of the cracks 
that was not detected in the inspection. The updated distribution of cracks can be illustrated as shown in 
Figure 2. 

 

 
Figure 1. Illustration of development of crack 
depth distribution over time in service from an 
assumed initial crack depth distribution to the 

expected distribution of crack depths at time of 
inspection. 

 
Figure 2. Updated distribution of crack depth 
after inspection taking into account the new 
information gained by the inspection result. 

An example of the results of an analysis using such updating is shown in Figure 3. In this example 
inspection has been determined to be needed after approximately 18 years. After the inspection, 
assuming no cracks found, the probability is updated, and the next inspection is then needed after an 
additional 12 years. The inspection intervals indicated in this example, assuming no cracks found in any 
of these inspections, can then be found to be 18, 12, 20 and 25 years respectively (see Figure 3). 
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Figure 3. Updated probability of fatigue crack in structure (www.dnvgl.com). 

The industry approach to structural design may introduce a bias on the load response. This is 
important in the design of new structures in order to provide sufficiently safe structures. However, a bias 
larger than unity may contribute to unrealistic strong effects in a general updating process.  

Although the example in Figure 3 is purely an illustration it indicates the trend that is often the result 
of probability-based inspection planning, namely that the inspection intervals for ageing structures 
seems to increase with age rather than to decrease as one would intuitively expect. Hence, an alternative 
method of updating the failure probability is presented in this paper to investigate a different method for 
establishing inspection intervals. This method updates the probability distribution functions for the 
parameters where new information is available [1, 2] rather than performing a general updating [3].  

In addition, the probability-informed inspection planning presented herein is a suggestion for a 
method that is believed to be in line with PSA’s Risk and Risk management Memorandums [4, 5]. 

2.  Proposed principles and method for probability and risk-informed analysis 
Risk and probabilistic methods for decision making is a way to account for the inherent uncertainties in 
a problem. Such uncertainties can be in the physical parameters like the loads from waves and the 
material parameters that describes the fatigue crack growth. These uncertainties will also be in the model 
we use to determine the crack growth based on the Paris’ equation. In addition, the presence of gross 
errors (design errors and fabrication defects) are uncertain. Some of these uncertainties can be included 
in the probabilistic analysis based on available knowledge. This knowledge is however often taken from 
other structures and from laboratory experiments not necessarily representing the structure being 
analysed. 

The uncertainty can be illustrated as shown in Figure 4 where the inner green circle is the 
uncertainties that is included in the analysis based on good and relevant data (wave data for the specific 
field may fall into this category if measured properly for a significant long period). The next circle (in 
orange) illustrates other uncertainties that is included in the analysis but based on more uncertain data 
(the assumed uncertainty in the wave loading and crack growth model may fall into this category). The 
next circle (in blue) illustrates known uncertainties that are not included in the analysis (e.g. uncertainties 
related to gross errors). The area outside this circle illustrates the unknown uncertainties which for 
obvious reasons are not included in the analysis, but it may be relevant for the safety of the structure. 
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Figure 4. Uncertainty related to a decision-making problem [5]. 

If one accepts the illustration in Figure 4 and the fact that there are uncertainties that are not included 
in the probability- and risk-informed analysis it is rational to conclude that the probabilities and 
consequences that we describe will have limitations. Because of these limitations, the principles 
presented in this paper is suggested to be used for probability- and risk-informed analysis for inspection 
planning of structures.  

The strength of knowledge behind a calculated probability and the consequences of an event are 
limited by the modelling of uncertainties mentioned above. Hence, assigned probabilities and 
consequences are not sufficient to make decisions alone, e.g. by comparing the calculated probability 
with an acceptance criterion and making the decision solely by this comparison without evaluations of 
sensitivity and strength of knowledge behind the calculated results. Uncertainties by means of the 
strength of knowledge behind the physical problem need to be investigated and accounted for. This leads 
to:  

Principle 1: A description of the strength of knowledge about a problem shall be included and be 
accounted for in the decision making.  

Taking principle 1 into account it is rational to argue that the probabilistic analysis should focus on 
determining observable quantities1 (such as crack sizes and wave heights) rather than probabilistic 
values (𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). This is because the decision maker is better fit to evaluate such observable quantities, 
but also that data about future events can be used to validate these observable quantities (while 
experience indicate that a 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 seldom can be validated). This leads to: 

Principle 2: Probabilistic methods should be used to predict quantities expressing the physical reality 
of nature (observable quantities) and their uncertainty.  

This principle’s focus on observable quantities rather than abstract probabilistic values for a crack 
growth and inspection planning analysis is an attempt to highlight uncertainty about e.g. the crack size, 
the inspection intervals and the load model rather than a discussion about the calculated probabilities. 
Modelling can then be used to get insight into factors influencing the safety of the structure, identify 
                                                      
1 Observable quantities are values that are unknown at the time of the analysis but may become known at a later 
stage (Aven 2012). These observable quantities can be predicted by the probabilistic analysis and uncertainties 
related to these observable quantities can be described. 
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major contributors to the safety of the structure and see the effect of changes by use of sensitivity 
analysis. 

The 3rd principle is an extension of principle 2 and is requiring that also Bayesian updating based on 
e.g. performed inspections is focusing on the parameter that is being observed (e.g. the crack size), while 
traditional updating methods (general updating) in probability analysis may be used to update several 
parameters (including parameter that is not actually observed). This leads to: 

Principle 3: Any update of the probabilistic model should be limited to the actually observed 
quantities.  

For structures, example of such possible observable parameters includes e.g. wave heights, measured 
strains, measured number of load cycles and crack sizes. In this paper the primary observable quantity 
used is the crack size found during inspections. Also, the suggested inspection intervals can be observed 
to detect if insufficient or excessive inspections is proposed. 

Based on these three principles it is proposed to perform the probability-informed inspection 
planning analysis as follows: 

- Inspection intervals should not be determined directly from the acceptance criteria. The 
uncertainty in the estimated inspection intervals should be evaluated and experience from 
integrity management of real structures should be taken into account in the evaluation.  

- The strength of knowledge about the problem should be described and accounted for in 
determining the inspection intervals. 

- The analysis should be performed to illustrate the uncertainty in the observable quantities 
(crack size and necessary inspection intervals).  

- The updating procedure should exclusively update the observed quantities (e.g. crack size). 

3.  Proposed method for inspection planning 
A process for probability-informed inspection planning following the principles presented in section 2 
for inspection planning of an offshore jacket structure is illustrated in Figure 5.  

 
 
 

 
Figure 5. A proposed process for probability-based inspection planning based on the three principles 

proposed. Principle 2 and 3 are accounted for by the focus on the observable parameter crack size. 

In this process the crack growth is simulated until inspection. The inspection is simulated by 
calculating the probability of detecting (𝑃𝑃𝐷𝐷) the simulated crack size based on the PoD-curve. Then, by 
drawing a random number �̂�𝑟 between 0 and 1 we can simulate the event. If �̂�𝑟 > 𝑃𝑃𝐷𝐷 the simulated 

Principle 1 is used to evaluate parameters and models used in the analysis 
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inspection is classified as a NO-FIND event and, if �̂�𝑟 ≤ 𝑃𝑃𝐷𝐷 the simulated inspection is classified as a 
FIND event.  

If the simulations indicate that a crack is detected the crack size is updated by setting the crack size 
to the largest of 1) the crack size of a random one of the undetected and 2) a random value of the initial 
distribution of cracks. The undetected cracks are retained as they are. Both detected and undetected 
cracks are then simulated further until the maximum simulation time is achieved.  

The proposed method for updating will differ from the general updating approach [3]. In a general 
updating also the stress distribution, stress concentration factors etc. will be updated as part of the 
process. This will in the traditional approach in the case of no-finding lead to increased inspection 
intervals and in the case of findings lead to decreased inspection intervals. In the proposed method in 
this paper this increase and decrease of inspection intervals will not occur as the stress distribution, stress 
concentration factors and all other not-observed parameters are left as is in the updating. 

4.  Proposed method for evaluating strength of knowledge 
Several models for the description of strength of knowledge exists. In general, the following reasoning 
may be implemented [6]: 

- If risk is found negligible according to probability, and the strength of knowledge is strong, the 
risk is judged as negligible. 

- If risk is found in negligible region according to probability with large margins, the risk is 
judged as negligible unless the strength of knowledge is weak. 

- If risk is found negligible according to probability with moderate or small margins, and the 
strength of knowledge is not strong, the risk is judged as not being in the negligible region. 

- If risk is not found to be negligible according to probability, the risk is judged as not being in 
the negligible region. 

In the context of this paper this may be understood as: 
- If strength of knowledge behind the parameters and models are strong the results of the 

probabilistic analysis can be regarded as trustworthy and the calculated failure probability can 
be used to compare with reasonable target failure probabilities.  

- If strength of knowledge behind the parameters and models are fair the results of the 
probabilistic analysis should be used with care and the calculated failure probability should be 
compared with reasonable target failure probabilities with large margins. 

- If strength of knowledge behind the parameters and models are poor probabilistic analysis 
should be avoided.  

In addition to the strength of knowledge, also the influence of the parameter and model on result of 
the probabilistic analysis and the final decision is of importance, as also indicated in Selvik et al [7]. 
Hence, in this paper it is proposed to include an evaluation of the influence of the parameter and models 
and classify these as Minor, Medium or Large. Further, a simplified approach is used to describe the 
strength of knowledge regarding parameters (e.g. initial crack size, material parameters etc.) and models 
(e.g. wave to stress model, crack growth model etc.).  

The strength of knowledge is classified as Good, Fair and Poor. Good strength of knowledge 
indicates that a large database is available and that frequentist-probability can be established. Parameters 
based on good knowledge may be used directly into the analysis without additional evaluations. Poor 
strength of knowledge indicates mostly guestimates by the analyst or by the engineering community. 
Parameters based on poor knowledge should not be used in probabilistic analysis and decisions on 
inspection intervals should rather be based on trustworthy experience and deterministic models. Fair 
knowledge is used to illustrate situations in between poor and good. Parameters based on fair knowledge 
may require additional parameter sensitivity evaluations. 

To combine the strength of knowledge and the influence of the parameter and models, action 
categories as indicated in Table 1 may be used.  

In category 1 (green) the strength of knowledge is good in combination with minor or medium 
influence or, the strength of knowledge is fair in combination with minor influence. Parameters or 
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models in this category could in most cases be used as they are, but the evaluation of the strength of 
knowledge and the assumptions herein should be clearly stated.  

For categories 2-3 a further evaluation is needed. If possible, more data should be collected to 
improve the strength of knowledge. Limitations in the strength of knowledge should be clearly stated. 
The results of the probabilistic analysis should be used with care and the calculated failure probability 
should be compared with reasonable target failure probabilities with reasonable margins. 

For category 4, probabilistic analysis should not be used unless significantly more data is available 
for probability- and risk-informed evaluations. 

Table 1. Categories based on strength of knowledge and influence on result of evaluations. 

 Influence on result of decision making 
Strength of knowledge Minor Medium Large 

 Good 1 1 2 
Fair 1 2 3 

Poor 3 4 4 
 

Model uncertainty are often used in probability-informed methods to account for formulation 
inexactness (e.g. in the Paris crack growth formula), measurement errors and insufficient data. Model 
uncertainty is typically included by a parameter with a mean value of 1.0 (or a bias value if relevant) 
and a coefficient of variation (CoV). Sensitivity evaluations of parameters are often similarly used to 
evaluate the effect of changes in a parameter on the result of the probabilistic analysis. The use of such 
model uncertainty and sensitivity analysis is a common method to include uncertainties.  

After inspections it may be argued that the strength of knowledge has improved as more information 
about the actual crack size has been gathered. This increased knowledge is however included in further 
analysis by the updating process. 

5.  Illustration of the proposed model by an example 
An example of probability-informed inspection planning for a node on an offshore jacket structure is 
used to illustrate the proposed method. The example is based on the master thesis by Neeraas [8]. A 
short overview is given in section 5.1. 

5.1.  Example of probabilistic crack growth analysis 
Monte Carlo simulations of crack growth and results of inspections are programmed in MathLab and 
used to evaluate the need for inspections. The input parameters to the analysis is given in Table 2. 

Based on the wave height and period the width of the stress intensity, ∆K, can be defined by the 
equivalent stress range ∆𝜎𝜎𝑓𝑓𝑒𝑒, e.g. as described in Ersdal [9] for a tubular node in a jacket structure. 

∆𝜎𝜎𝑓𝑓𝑒𝑒 =
𝐶𝐶1

1.702− 0.138 ⋅ 𝑚𝑚𝑓𝑓
⋅ (𝐻𝐻𝑠𝑠)𝐶𝐶2−0.03 (1) 

where 𝐶𝐶1 and 𝐶𝐶2 are coefficients, 𝐻𝐻𝑠𝑠 is the significant wave height and 𝑚𝑚𝑓𝑓 is the slope of the crack-
growth curve in the Paris equation.  

Crack-growth is modelled by the Paris equation: 
𝑑𝑑𝑓𝑓
𝑑𝑑𝑑𝑑

= 𝐴𝐴 ⋅ ∆𝐾𝐾𝑚𝑚𝑎𝑎  (2) 

where 𝐴𝐴 and 𝑚𝑚𝑓𝑓 is material parameters and:  
Δ𝐾𝐾 = ∆𝜎𝜎 ⋅ 𝐹𝐹(𝑎𝑎, 𝑡𝑡) ⋅ √𝜋𝜋 ⋅ 𝑎𝑎  (3) 

where ∆𝐾𝐾 is the stress intensity range, ∆𝜎𝜎 is the stress range of each cycle, 𝐹𝐹(𝑎𝑎, 𝑡𝑡) is the geometric 
stress function for the detail and 𝑎𝑎 is the present crack depth. As an example, for a tubular member node 
the geometric stress function may be set to [10]: 

𝐹𝐹(𝑎𝑎, 𝑡𝑡) = �1.08− 0.7 ⋅
𝑎𝑎
𝑡𝑡
� ⋅ �1.0 + 1.24 ⋅ 𝑒𝑒−22.1𝑓𝑓𝑡𝑡 + 3.17 ⋅ 𝑒𝑒−357

𝑓𝑓
𝑡𝑡� (4) 
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where 𝑎𝑎 is the present crack depth and 𝑡𝑡 is the thickness of the material. For each sea-state the crack 
growth can be calculated as [10]: 

𝑑𝑑𝑎𝑎𝑓𝑓 = 𝐴𝐴 ⋅ �∆𝜎𝜎𝑓𝑓𝑒𝑒 ⋅ 𝐹𝐹(𝑎𝑎𝑓𝑓−1, 𝑡𝑡) ⋅ �𝜋𝜋 ⋅ 𝑎𝑎𝑓𝑓−1 �
𝑚𝑚
⋅ 𝑁𝑁𝑤𝑤 (5) 

where 𝑁𝑁𝑤𝑤 is the number of cycles in the sea-state. 

Table 2. Input parameters for the Monte Carlo simulation. 

Input parameters Comment Distribution 
Initial crack size Exponential distribution with an 

average initial crack size of 𝜇𝜇𝑓𝑓0 =
0.11𝑚𝑚𝑚𝑚 (DNV 1992) 

𝑓𝑓(𝑥𝑥) = 𝜆𝜆 ⋅ 𝑒𝑒−𝜆𝜆⋅𝑥𝑥  
𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝜆𝜆⋅𝑥𝑥  

where 𝜆𝜆 = 1
𝜇𝜇𝑎𝑎0

 
Material parameters 
in Paris equation 

Normally determined by calibration 
to SN-curve 

𝑚𝑚 is fixed to of 3.0, i.e. one-slope curve 
is used. Mean ln(A) = 29.1 with a 
standard deviation of 0.64. 

Long-term 
distribution of 
significant wave 
heights 

Given by the Weibull distribution 
where 𝐻𝐻𝐶𝐶 , 𝐻𝐻0 and 𝛾𝛾 are statistical 
values in the Weibull distribution 
and should be taken from proper 
metocean specifications. 

 
𝐹𝐹𝐻𝐻𝑠𝑠(ℎ) = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒 �− � ℎ−𝐻𝐻0

𝐻𝐻𝐶𝐶−𝐻𝐻0
�
𝛾𝛾
�  

Mean zero up-
crossing period of 
the sea-state 

Given as a function of the significant 
wave height. 

𝑇𝑇𝑍𝑍 = 3.3 ⋅ �𝐻𝐻𝑠𝑠  
with a minimum value of 𝑇𝑇𝑍𝑍 = 5.72 s 

 
 As sea-states are simulated the crack growth is calculated and the crack increases. At the end of each 

year the number of cracks larger than the thickness (i.e. through-thickness cracks) is counted and if the 
number of through thickness cracks divided by the total number of simulations exceeds the acceptance 
requirements (0.01 and 0.001) an inspection is performed. 

An inspection will always have a certain probability of detecting a crack, and the probability of 
detection (PoD) is normally expressed by curves e.g. given by DNVGL-RP-C210 [11]. 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎) = 1 − 1

1+� 𝑎𝑎𝑥𝑥0
�
𝑏𝑏  (6) 

where 𝑎𝑎 is the depth of the crack and 𝑋𝑋0 and 𝑏𝑏 is parameters depending on the individual inspection 
methods. For close visual inspection the PoD curve is given by the crack length. The ratio between crack 
depth and crack length 𝑓𝑓

𝑐𝑐
 may be assumed to be 0.15 [10]. 

Figure 6 shows the crack growth of 20 random simulations of a detail in an analysis. The updates 
after inspection can normally be seen as a sudden drop in the crack size. However, some examples of 
the opposite can be seen, as the updated crack size (selected as a random value of the undetected cracks) 
may be larger than the detected crack.  

Figure 7 shows an example of the distribution of crack sizes before and after updating due to 
inspection at the second inspection [8]. The distribution of cracks prior to updating is shown in red, and 
the distribution of cracks after updating is shown in blue (note that blue over red becomes purple in 
these figures). It can easily be seen that the number of large cracks is reduced, and it is also possible to 
see that the number of small cracks is increased after the updating.  
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Figure 6. Crack growth using the proposed 
method for updating after inspections [8]. 

Figure 7. Examples of distribution of crack sizes 
before and after updating due to inspection for 

second inspection [8]. 

Essentially, the distributions of crack sizes before and after inspection turns out to be very similar at 
all inspections by using the proposed method for updating, as shown in Figure 7. This is the underlying 
reason for the time history of probability of failure (through thickness crack) as shown in Figure 8. As 
indicated in Figure 8 this method seems to always provide constant inspection intervals after the first 
inspection. Hence, this process will produce one “mean” inspection interval in addition to the time to 
the first inspection. The time to the first inspection is relevant from a methodical point of view but in 
practise, inspections prior to the calculated first inspection will be needed (e.g. base line inspection) to 
determine gross errors, fabrication defects and other outliers. 

As an additional benefit the likelihood of a crack being detected during the inspection (in Figure 9 
called repair required) can be calculated using this simulation method. The trend indicated in Figure 9 
is quite similar in all cases simulated. For CVI the curve typically flattens out at a plateau of 0.4 and for 
MPI (also representative for Eddy Current inspections) at a plateau of 0.6-0.67 as shown in Figure 9.  

 

  
Figure 8. Probability of failure as a function of 

time with updates. 
Figure 9. “Likelihood of repair required” using 

MPI is illustrating the probability that an 
indication of a crack is detected during the 

inspection. 



COTech

IOP Conf. Series: Materials Science and Engineering 700 (2019) 012034

IOP Publishing

doi:10.1088/1757-899X/700/1/012034

10

 
 
 
 
 
 

The calculated likelihood of finding an indication of a crack (LoIC) as shown in Figure 9 can be used 
to verify the input parameters to the analysis and possibly the condition of the structure. For example, if 
the LoIC is calculated to be 0.5 for 20 “identical” details (identical with respect to geometry, stress level 
etc.) are inspected, we would expect to find 10 cracks. If more that 10 cracks are found it may be an 
indication of a problem that is not included in the analysis. If less that 10 cracks are found it may be an 
indication that the analysis is on the conservative side, the inspection quality is lower than predicted by 
the PoD curves, that the fabrication quality is better than assumed or that the weather that the structure 
has experienced has been less than predicted from the long-term distribution of sea-states used in the 
analysis. 

A parameter sensitivity study is performed including the model uncertainty (load and crack growth 
model and the initial crack size). The model uncertainty is included by stochastic variables with mean 
value of 1.0 and a coefficient of variation (CoV). The model uncertainty in the load model is modelled 
by a stochastic variable that is kept for the full life of the simulation (GCoV) and a stochastic variable 
that is changed every year (YCoV) as shown in Equation 7. Each of these are modelled with a CoV in 
the range of 0.0-0.3. The model uncertainty in the initial crack size is modelled by a stochastic variable 
with a CoV in the range of 0.0-0.2. 

 
𝑑𝑑𝑎𝑎
𝑑𝑑𝑁𝑁

= 𝐴𝐴 ∙ �𝛼𝛼𝐺𝐺 ∙ 𝛼𝛼𝑌𝑌 ∙ Δ𝜎𝜎𝑓𝑓𝑒𝑒 ∙ 𝐹𝐹 ∙ √𝜋𝜋 ∙ 𝑎𝑎�
𝑚𝑚𝑎𝑎 (7) 

In addition, the effect of two probability levels for when inspections should be performed is studied 
(𝑃𝑃𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑎𝑎𝑡𝑡𝑓𝑓𝑎𝑎𝑐𝑐𝑓𝑓 equal to 0.01 or 0.001). The 𝑃𝑃𝑓𝑓𝑐𝑐𝑐𝑐𝑓𝑓𝑎𝑎𝑡𝑡𝑓𝑓𝑎𝑎𝑐𝑐𝑓𝑓 values are based on normally used acceptance 
criteria for important and medium important structural nodes and members.  

In Table 3 the base case is given with a yearly load model uncertainty (CoV) of 0.15, a general load 
model uncertainty (CoV) of 0.15 and, a model uncertainty in the initial crack size (CoV) of 0.1. 

 
Table 3: Overview of results from Neeraas (2019) for inspection intervals for a jacket structure 

FL PACC YCOV GCOV A0COV CVI INT MPI INT A0COV CVI INT MPI INT 
23 0.01 0 0 0 7.4 11.17 0.1 8 11.33 
23 0.01 0.15 0 0 7.4 10.57 0.1 7.6 10.57 
23 0.01 0 0.15 0 6.67 10.71 0.1 6.67 10.86 
23 0.01 0.15 0.15 0 6.38 9.6 0.1 6.23 9.6 
23 0.01 0 0.3 0 5.18 7.9 0.1 5.8 7.9 
23 0.001 0 0 0 4.7 7.3    
23 0.001 0.15 0.15    0.1 3.6 6 
41 0.01 0 0 0 14.5 22 0.1 16 22 
41 0.01 0.15 0 0 14 19.7 0.1 13.5 20.7 
41 0.01 0 0.15 0 13.2 17.75 0.1 12.8 18.3 
41 0.01 0.15 0.15 0 11.33 18.3 0.1 12 17.8 
41 0.01 0 0.3 0 9.4 14.6 0.1 9.3 14 
41 0.001 0 0 0 8.75 13.4    
41 0.001 0.15 0.15    0.1 6.75 10.25 
60 0.01 0 0 0 22 35 0.1 24 34 
60 0.01 0,15 0 0 22.5 32 0.1 22 33 
60 0.01 0 0.15 0 20 31 0.1 20.5 32 
60 0.01 0.15 0.15 0 18.7 27.5 0.1 18 27.5 
60 0.01 0 0.3 0 14 21 0.1 15 21.3 
60 0.001 0 0 0 13.25 23    

5.2.  Evaluations of the results of the probability analysis 
The results presented in Table 3 gives the probability-based inspection intervals. In practise these are 
seldom used directly and, as indicated in the principles in section 2 the decision on the time between 
inspections should also include a discussion of the sensitivity to parameters and models used and the 
influence of the probability of acceptance. Such a discussion should include the CoV of the crack growth 
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model (YCoV and GCoV), the calculated fatigue life, the CoV of the initial crack size and the influence 
of the acceptable probability of “failure” (Pacceptable). Further, the strength of knowledge should be 
evaluated and taken into account in the decision making as proposed in Table 6.  

The load and crack growth model are in most probability-informed inspection planning analysis the 
primary uncertainty.  Other important uncertainties might be: 

- The presence of fabrication and design imperfections are not included in the analysis. The 
presence of gross imperfection is believed to have less impact on later inspection intervals 
as they most likely will materialize at an earlier stage. However, fabrication standards at 
different yards may have influence on later inspection intervals. 

- The cyclic stress distribution is a part of the uncertainty in the fatigue analysis modelled by 
the mentioned CoV’s. 

- The initial crack sizes in the welds is studied by Neeraas [8] and is shown to have minor 
impact on late inspection intervals.  

- The crack growth parameters in the Paris crack growth law is based on a calibration towards 
SN-fatigue curves. These SN-fatigue curves do also have significant uncertainty. However, 
it is believed that the SN-curves used are most likely to be conservative and it is believed 
that inspections results can be used to validate the crack growth and possibly the crack 
growth model parameters. 

- Detection accuracy of the inspection method is believed to be modelled reasonable with the 
probability of detection curves in DNVGL RP-C210. However, there exist experience 
indicating that these curves may be non-conservative. 

It is believed that the CoV’s described in DNVGL RP-C210 [11] is reasonable for this purpose. 
However, if the strength of knowledge is stronger than assumed in DNVGL RP-C210 it can be argued 
to decrease the respective CoV’s. The square root of sum of squares combination of GCoV and YCoV 
can be seen in the context of uncertainty as described by DNVGL [11] where the model uncertainties as 
shown in Table 4 are suggested depending on the quality of the analysis determining the long-term 
distribution of stress ranges.  

Table 4. Suggested model uncertainties [11]. 

Uncertainty of fatigue and hot spot stress 
calculation  

COV  Combinations of GCoV and YCoV  

High (simplified) 0.3 YCoV = 0.3, GCoV = 0.0 
YCoV = 0.0, GCoV = 0.3 

Medium (parametric) 0.2 ~YCoV = 0.15, GCoV = 0.15 
Low (finite element calculation) 0.15 YCoV = 0.15, GCoV = 0.0 

YCoV = 0.0, GCoV = 0.15 
 
In Figure 10 and Figure 11 the calculated inspection intervals for CVI and MPI respectively is 

presented by increasing CoV in accordance with DNVGL. In addition to the proposed CoV’s from 
DNVGL the base case with CoV = 0.0 is included primarily for comparison. As expected, the time 
between inspections decreases with increasing CoV and more frequent inspections are needed for lower 
values of Pacc.  

There is a slight tendency for longer inspection intervals as ratio of the calculated fatigue life (CFL) 
when the CFL is increasing. The minimum values indicated in Figure 10 and  Figure 11 are as a result 
of this representing the lowest calculated fatigue life. For longer calculated fatigue lives a slightly higher 
fraction of the calculated fatigue life is obtained (0.42, 0.44 and 0.46 times CFL for MPI and 0.28, 0.29 
and 0.31 times CFL for CVI representing 20, 40 and 60 years CFL respectively).  
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Figure 10. CVI inspection intervals for Pacc 

equal to 0.01 and 0.001. 

 
Figure 11. MPI inspection intervals for Pacc 

equal to 0.01 and 0.001. 

The different Pacceptable is normally linked to the importance of the structural member or node. In 
general, the importance is a measure of the consequence of the failure of the member or node. 
Traditionally a Pacceptable equal to 0.001 is used for high consequence of failure members and nodes and 
Pacceptable equal to 0.01 is used for medium consequence of failure members and nodes. For a jacket 
structure a suggested understanding of medium importance may be that failure of this member increases 
the utilization check (UC) less than 5% (in any member or node in the structure). Similarly, a failure of 
a high importance member and node increases the UC less than 25%.  

In some cases, reserve strength ratios (RSR) are used to determine the importance of members and 
nodes. If RSR values are used medium and high important members can be defined as medium important 
member: reduces the RSR value less than 5% if it fails and high importance member: reduces the RSR 
value less than 25% if it fails respectively. 

5.3.  Decision making based on the probability analysis 
The aim of this paper is to describe a method for the analysis of inspection intervals and to facilitate 
decisions-making taking into account the strength of knowledge, assumptions and the parameters 
importance on the result of the decision. The decision should therefore be based on evaluating 
observable quantities (inspection intervals), the probability-based analysis, the analysts experience and 
understanding of the problem, evaluation of strength of knowledge and assumptions. An example of 
such evaluation is given in Table 6 (based on the parameters and models described in Section 5.1). 

The evaluation of strength of knowledge in parameters and models as shown in Table 6 indicates that 
the calculated probabilities of through-thickness cracks must be seen as indicative and not as absolute 
values. Hence, the inspection intervals need to be carefully adjusted to experience and continuously 
monitored in order to within a reasonable level of confidence determine the existence, extent and 
consequence of damage, degradation and deterioration. For example, information and experience on 
imperfections from fabrication and design flaws from the relevant yard will be of importance for the 
final decision-making. 

In Table 3 it is shown that for a jacket structure with approximately 20 years fatigue life and design 
fatigue factor (DFF) of 1, an inspection interval of 3.6 years using CVI for high importance nodes and 
members is calculated. In practice, such inspection intervals will be rounded to match the inspection 
campaigns during the summer season. For high importance jacket structural members with a fatigue life 
of 20 years and DFF of 3 an inspection interval of 10 years for CVI and 16 years for MPI are suggested. 
Such intervals may be regarded as large; however, it must be admitted that few cracks have been detected 
in critical areas on jacket structures.  Hence, the inspection intervals found in the analysis is regarded as 
reasonable based on the authors’ experience. However, this evaluation does not take into account the 
fabrication performance of the specific yard. 
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Table 5: Evaluation of strength of knowledge in parameters and models, assumptions and the 
parameters and models influence on the result of the probability-informed inspection planning 

Parameter Description Strength Influence  Conclusion / comments 
𝐻𝐻𝑠𝑠 Long-term distribution of 

significant wave height.  
Good Large Based on some 50 years of hindcast 

and measurements. No further action 
required. 

𝑇𝑇𝑍𝑍  Zero-up crossing period in sea-
state. 

Fair Minor  Low influence in the uncertain range 

∆𝜎𝜎𝑓𝑓𝑒𝑒  Load model to transfer wave 
loading to stress in detail 

Fair Large Model uncertainty is included in the 
analysis.  

𝑎𝑎0  Initial crack size Fair Minor Based on laboratory tests of different 
welds but assumed to be relevant. 
However, model uncertainty is 
included. 

log(a) SN curve parameter Good Large Based on reasonable datasets although 
not same steel. No further action 
required 

𝑚𝑚𝑆𝑆𝑑𝑑 SN curve parameter Good Large 

ln(A) FM curve parameter calibrated 
from SN-fatigue calculation 

Fair Large No further action required. 
Uncertainty in FM curve parameters 
are included by modelling ln(A) as a 
normal distributed variable 

𝑚𝑚𝑓𝑓  FM material parameter Fair Large 

t Thickness of material Good Large No further action required 
PoD Probability of detection of 

defects for various NDT 
methods. 

Fair Large Based on inspection trials performed 
in several industry projects included 
in the proposed PoD curves in 
DNVGL [11]. Possibly optimistic, 
and this optimism should be taken 
into account in the decisions.  

It should also be noted that the present revision of NORSOK N-006 [12] requires that inspection 
intervals on high importance members and nodes in jacket structures should not exceed 5 years 
independent on inspection method used. Although there are limitations to the strength of knowledge in 
some parts of these analysis and evaluations, the resulting inspection intervals (the observable quantity) 
are reasonably in line with current practice and recommendations given in class rules and standards. The 
experience using such inspection intervals is also reasonably good. Hence, based on these evaluations 
taking into account the analysis, experience, strength of knowledge, and the understanding of the 
problem a set of inspection intervals can be developed as indicated in Table 6 for a detail in a jacket 
node with 20 years calculated fatigue life based on the illustrative and simplified simulations performed 
by Neeraas [8].  

It should be noted that the inspection intervals given in Table 6 is based on sea-states following the 
given long-term distribution. If several years of worse sea-states are experienced the inspections should 
be more frequent and special analysis may be required. 

Table 6. Proposed inspection intervals given the analysis in Neeraas [8], experience, strength of 
knowledge and understanding of the problem. 

 Importance 
Uncertainty of fatigue analysis Medium High 

 

High (simplified) 
CoV = 0.3 

4 years interval (CVI) 
7 years interval (MPI) 

2.5 years interval (CVI) 
4 years interval (MPI) 

Medium (parametric) 
CoV = 0.2 

5 years interval (CVI) 
8 years interval (MPI) 

3 years interval (CVI) 
5 years interval (MPI) 

Low (finite element calculation) 
CoV = 0.15 

6 years interval (CVI) 
9 years interval (MPI) 

4 years interval (CVI) 
6 years interval1 (MPI) 

1) Note that NORSOK N-006 recommends a maximum of 5 years intervals 
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6.  Conclusion and recommendation and further work 
The probability-informed results used in this paper is based on a probabilistic analysis performed as a 
part of a master thesis by Neeraas [8]. These analyses have limitations and cannot be construed to 
provide general inspection intervals for jacket structures. The suggested inspection intervals in this paper 
should be seen as examples and not as recommendations. However, the indications of constant 
inspection intervals are not affected by this limitation. The process used in the master thesis is based on 
the method suggested in this paper. 

The paper illustrates the importance of taking into account the strength of knowledge, assumptions 
and the parameters importance on the result of the decision when determining inspection intervals for 
structures. Further, the importance of basing the analysis and decision-making on evaluating observable 
quantities as an addition to traditional probability-based analysis is highlighted. Especially, it is 
highlighted that the analysts experience and understanding of the problem should be taken into account. 

The calibration of fracture mechanics parameters from the SN-curves needs further investigation. 
The calibration is performed with no model uncertainty (CoV = 0.0) for both the fracture mechanics 
crack growth model and the SN-fatigue model. This choice may not be correct and may be un-
conservative.  

The calculations performed in the master thesis by Neeraas [8] is based on a model using long-term 
distribution of sea-states and equivalent stresses. In most cases, probability-informed inspection 
planning analysis is rather based on a simplified long-term distribution of stress ranges. However, both 
methods have been shown to provide similar results [9]. A future work to implement the standard long-
term stress range distribution into this type of analysis is recommended. 
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