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Abstract

This thesis investigates how trajectory optimisation and position uncertainty calcu-
lations can be performed on a laboratory drilling rig.

The improvements made are to be used on the drilling rig designed and manufactured
by UiS Drillbotics team, for the international Drillbotics competition. This year’s
competition presented a new set of challenges, including a pre-planned trajectory,
hitting target points before exiting the well and an integrated error model. The
requirements are presented in detail in the guidelines provided by Drilling Systems
Automation Technical Section (DSATS) committee.

The models presented in this thesis are intended to advance the current system,
where automated optimisation of trajectories and position uncertainty calculations
can easily be performed and visualised. Using Bézier curves for trajectory optimisa-
tion and the ISCWSA error model, these calculations are presented and tested for
both field cases, and generated trajectories with the dimensions of the laboratory
drilling rig.

The solutions presented offers a possibility to intuitively visualise the results to the
driller and observers. The trajectory optimisation is a process conducted before any
drilling is initiated, and imported to the main GUI for comparison between planned
trajectory and drilled trajectory. The position uncertainty calculations are flexible,
and can be specifically configured for different sensor packages and confidence lev-
els. The uncertainty calculations are plotted together with the trajectory, which
enables the driller and system to identify deviations and reconsider the trajectory if
necessary.
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6.1 Third order Bézier curves with varying CS and fixed CE. Attractor
CS4 is not shown for B4 [34]. . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 3D-trajectory with ds and de as 201 and 251. . . . . . . . . . . . . . . 55
6.3 Cross sections of the same trajectory. . . . . . . . . . . . . . . . . . . 56
6.4 Table with data from the survey stations. . . . . . . . . . . . . . . . . 56
6.6 Trajectory (c) from a different viewpoint. . . . . . . . . . . . . . . . 57
6.5 Trajectories with the same initial and finale conditions as previously

defined, this time with varying dS and dE. . . . . . . . . . . . . . . . 58
6.7 Trajectory (d) from a different viewpoint. . . . . . . . . . . . . . . . 59
6.8 Same trajectory as in fig 6.5, but with dS and dE lower than calculated

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 Well profile using 7◦ whipstock in cement [29]. . . . . . . . . . . . . . 63
7.2 A simple representation of a well after kick-off point with fixed angle. 64
7.3 The simplest form of trajectory, with no change in azimuth and a

small displacement along the east-axis. . . . . . . . . . . . . . . . . . 66
7.4 dS = dE = 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.5 Same as figure 7.4, but with axes limits equal to that of the compe-

tition rock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.6 V/E and V/N plotted with survey points, dS = dE = 120. . . . . . . 68
7.7 dS = dE = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.8 Survey measurements for trajectory 7.7. . . . . . . . . . . . . . . . . 69

vii



7.9 Scoring system used for the 2018-2019 competition [12]. . . . . . . . . 70
7.10 Unoptimised complex trajectory with two target points. . . . . . . . 71
7.11 Visualisation used for designing complex trajectories . . . . . . . . . 72
7.12 Complete trajectory, axes limits scaled up to that of the competition

rock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.13 Trajectory 7.12 from V/E and V/N perspective. . . . . . . . . . . . . 74
7.14 Trajectory 7.12 in sections. . . . . . . . . . . . . . . . . . . . . . . . 75
7.15 Improved (T3-E): dS = dE = 121 . . . . . . . . . . . . . . . . . . . . 76
7.16 Trajectory 7.12 from V/E and V/N perspective with new T3-E section. 77
7.17 How a GUI for trajectory optimization can be presented, this example

is for the simple case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.18 The Digital Well Environment-GUI that is currently used on the rig

[29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.19 Flowchart for trajectory optimisation implementation. . . . . . . . . . 80
7.20 Trajectory which position uncertainty calculations will be done for. . 85
7.21 Ellipsoids of uncertainty, k = 2.7954. . . . . . . . . . . . . . . . . . . 86
7.22 Covariance matrix 3x3 elements, k = 2.7954 . . . . . . . . . . . . . . 86
7.23 Semi-major and semi-minor axes, k = 2.7954 from 3x3 covariance

matrix (NEV). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.24 Based on 2x2 covariance matrix, k = 2.4477. . . . . . . . . . . . . . . 88
7.25 Semi-major and semi-minor axes, k = 2.4477 from 2x2 covariance

matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.26 Semi-major and semi-minor axes, k = 2.4477 from 2x2 covariance

matrix in centimeters. . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.27 Pre-planned trajectory in blue, drilled trajectory and ellipsoids of

uncertainty in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



List of Tables

1.1 Rock strength data provided by the committee. 3 samples each in
vertical and horizontal section of the rock [11]. . . . . . . . . . . . . . 3

4.1 Propagation modes [41]. . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Number of standard deviations. Confidence level is implicit [9]. . . . . 32
4.3 Confidence level at specified number of dimensions. Number of stan-

dard deviations are implicit [9]. . . . . . . . . . . . . . . . . . . . . . 32

7.1 Length of MD shown in figure 7.2, with varying β. Total MD is
including the vertical section. . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Target points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 dS and dE values for the different intervals . . . . . . . . . . . . . . . 73
7.4 Targets point with new E-point. . . . . . . . . . . . . . . . . . . . . . 76
7.5 Accelerometer specifications for the ICM-20948 sensor, with focus on

bias error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



List of Symbols and Abbreviations

A Azimuth.

Bx Magnetometer measurements in x-axis.

By Magnetometer measurements in y-axis.

Bz Magnetometer measurements in z-axis.

CE Attractor point at E.

CS Attractor point at S.

F Ratio factor.

Gx Accelerometer measurements in x-axis.

Gy Accelerometer measurements in y-axis.

Gz Accelerometer measurements in z-axis.

I Inclination.

Ri Length of semi-axes of an ellipsoid along principal axes.

[C]hla Error covariance matrix in HLA-axes.

[C]nev Error covariance matrix in NEV-axes.

[T ]nevhla Direction cosine matrix to transform NEV matrix to HLA..

∆E Easting.

∆N Northing.

∆V Vertical Depth.

β Angle at kick-off point.

∆r Borehole displacement between successive survey stations.

x



ei,l,k The error due to the irth error source at the kth survey station at the lth
survey leg.

δp
εi

Weighting function - effect of the ith error source on the survey measurement.

dr
dp

The effect on the borehole position due to changes in survey measurement vector.

λ Eigenvalue of a given covariance matrix.

φ Dogleg.

ρi Propagation coefficients.

σ Magnitude of the weighting function.

σ2
E Variance in E-measurements.

σ2
N Variance in N-measurements.

σ2
V Variance in V-measurements.

θ Magnetic dip angle.

εbias Bias error term.

εscalefactor Scale factor error term.

dE Parameter to determine position of attractor point CE.

dS Parameter to determine position of attractor point CS.

k Confidence level constant.

tE Tangnet vector at E.

tS Tangnet vector at S.

BHA Bottom Hole Assembly.

DAQ Data Acquisition.

DL Dogleg.

DLS Dogleg Severity.

DSATS Drilling Systems Automation Technical Section.

EMI Electromagnetic Interference.

EOR Enhanced Oil Recovery.

xi



EOU Ellipsoid of Uncertainty.

GUI Graphic User Interface.

HSE Health, Safety and Environment.

I2C Inter-Integrated Circuit.

ID Inner Diameter.

IMU Inertial Measurement Unit.

ISCWSA Industry Steering Committee for Wellbore Survey Accuracy.

KOP Kick off point.

LC Load Cell.

LPM Liters Per Minute.

LSB Least Significant Bit.

MD Measured depth.

MWD Measurement While Drilling.

OD Outer Diameter.

PCB Printed Circuit Board.

PDC bit Polycrystalline Diamond Compact bit.

PLC Programmable Logic Controller.

PUM Position Uncertainty Model.

RKB Rotary Kelly Bushing.

ROP Rate Of Penetration.

RPM Rotations Per Minute.

SPE Society of Petroleum Engineers.

SPI Serial Peripheral Interface.

xii



TVD True Vertical Depth.

WOB Weight On Bit.

xiii



Chapter 1

Background

1.1 UiS Drillbotics

UiS Drillbotics is a non-profit multidisciplinary student organization at the Uni-
versity Of Stavanger. Our organization competes in the international Drillbotics
competition, where universities design and build a laboratory scale drilling rig. Us-
ing sensors and control algorithms to autonomously drill a rock sample provided
by SPE’s Drilling System Automation Technical Section (DSATS). The objective
of the competition is described on Drillbotics web-page as: ”Design a drilling rig
and related equipment to autonomously drill a vertical well as quickly as possible
while maintaining borehole quality and integrity of the drilling rig and drillstring.”
[11]. A more general description of the competition is as follows: ”Drillbotics is an
international competition for universities to design and build a small drilling rig that
uses sensors and control algorithms to autonomously drill a rock sample provided
by SPE’s Drilling Systems Automation Technical Section (DSATS)” [11].

For the 2019-2020 competition, UiS Drillbotics representing the University of Sta-
vanger will compete with twenty-eight (28) universities world wide. This years team
consists of seven (7) students, including both Bachelor of Science and Master of
Science students from the Institute of Energy and Petroleum (IEP), the Institute of
Computer Science and Electrical Engineering (IDE) and the Institute of Mechanical
and Structural Engineering and Materials Science (IMBM). This years competition
will be a continuation of the progress made in the last three years. We will continue
to improve our existing rig, adding new systems and methodologies for the new
challenges that will be part of the 2019-2020 competition. A brief introduction and
description of the current rig will be presented in this thesis.

Being an international competition, there are certain rules, guidelines and limita-
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tions to abide by. These are presented yearly, and define the outline of the compe-
tition. This includes factors such as design, components, budget, organisation and
how the competition will be arranged.

1.2 Guidelines

This will be a high level description, highlighting what is determined to be impor-
tant. For further reading please see [13].

The 2020 competition introduces a major change in how it is organised. Students
are given the opportunity to compete in two groups, A and B.

• Group A: Design and build a miniature drilling rig and autonomously drill a
directional well through a homogeneous rock sample to a given plan.

• Group B: Design, model, and simulate controls for a miniature directional
drilling rig and demonstrate on a virtual drilling system.

This year, the UiS Drillbotics team will be divided into two teams. One team for
each part of the competition. Team A will focus on the physical rig, and team B
will mainly work with developing models for simulations. Continuing this section,
we will focus on the rules that mainly considers team A. For team A, these are the
main points that will be essential for succeeding with the competition.

• A closed loop control system for the downhole data is mandatory, participants
that fail to meet this criteria will get a failing grade.

• Design a rig and related equipment to autonomously drill a well, using down-
hole sensors, that is able to hit multiple directional targets at [X,Y,Z] as quickly
as possible, while maintaining borehole quality, and ensuring the integrity of
the drilling rig and drillstring.

• Navigation shall be done autonomously, using both surface and downhole mea-
surements to control the drilling process in real-time.

• The test will continue until the drill bit exits the rock sample, or the time runs
out (three hours).

1.2.1 Competition Rock

On the competition day DSATS will present the competition rock. This will be a
homogeneous sandstone with dimensions of 12”W x 24”L x 24” H ( 30 x 60 x 60
cm). The team will not have access to the rock, until the day of competition. Rock
compressive strength values are provided by the committee and given in table 1.1.

2



The well center for the pilot hole, which is set to 1” (0.0254 m) will be marked by
the committee. For the competition, the rock sample will be oriented so that it rests
on a 30 cm x 60 cm face, resulting in drilling depth of 60 cm [13].

Test # Compressive Strength (psi) Young’s Modulus (psi) Poisson’s Ratio
1 2298 1.70E+6 0.13
2 3095 1.52E+6 0.26
3 1845 1.31E+6 0.26
4 6230 1.72E+6 0.20
5 4553 1.27E+6 0.14
6 5305 1.50E+6 0.21

Table 1.1: Rock strength data provided by the committee. 3 samples each in vertical
and horizontal section of the rock [11].

1.2.2 Bit

DSATS will send a bit by Baker Hughes to all finalists. The provided bit will be a
PDC bit bit with diameter of 1.5” (38.1 mm) and 2.0” (5.08 mm) in total length,
with 4 nozzles for fluid to exit. The bit is characterised by the short length and high
bit anisotropy. The axial and side aggressiveness of the bit can be changed, using
the tungsten carbine elements on the gage pads and the bit face. See figure 1.1 for
the bit.

Figure 1.1: The provided Baker Hughes bit [21].

In addition, the team has decided to design a bit in collaboration with Lyng Drilling.
Information about the self designed and manufactured bit is presented in section 2.
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1.2.3 Drill pipe

In previous competitions the drill pipe has been an aluminum tube of 6061-T6 alloy.
With length of 914.4mm, OD of 9.53mm and wall thickness 1.2446 mm. This year,
use of stainless steel tubing is permitted and will be used by the UiS Drillbotics
team. Details about the drill string are provided in section 2.1.

1.2.4 Automated Drilling

For the 2020 competition, directional drilling and well trajectory calculations will
be an essential part. The team must design a system that is capable of drilling a
directional well, following the planned trajectory presented to us at the day of the
competition. The team will be scored on how accurately the target points are hit
and how these intersect with the calculated well trajectory. The guidelines specify
multiple requirements that must be part of the system, these include, providing
a definitive directional surveys (TXT, LAS or CSV format) where a error model
is associated with the well trajectory (ISCWSA error model or a self developed
model). All teams are required to provide the pre-planned trajectory and an as-
drilled trajectory, these shall be plotted on the same TVD vs. Vertical Section plot.
In addition the two trajectories must be visualised on a X/Y plot, including grid
north reference to block north and a [0,0] well center reference.

The team is free to use existing well trajectory models, or develop new models. It
is required to include an appropriate survey station interval to accurately repre-
sent the drilled wellbore position [13]. All drilling control operations must operate
autonomously, including directional drilling control. Directional surveys acquired
while drilling, and data from the downhole sensors must be used as feedback for
the steering control. This also includes set-points commands for parameters such as
WOB, RPM and ROP. The drilling parameters must be optimized for the current
drilling situation, and have integrated dynamic controls to mitigate or avoid drilling
incidents.

1.2.5 Data Visualization

The guidelines states that intuitive and creative solutions for data visualization will
give contestants a higher score. Standard drilling parameters ought to be presented
in a format which is easy to read and understand. An appealing and easy to use
Graphic User Interface (GUI) must be developed. Depths should adhere to industry
standards for datum RKB which is equivalent of the rig’s drill floor.
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The aim of this chapter was to give the reader an idea of the project, background and
motivation. For the detailed guidelines document see [13], and for more information
about the competition and UiS Drillbotics please see references [29, 20, 18].

5



Chapter 2

Laboratory Scale Drilling Rig

This chapter will present the drilling rig built by the UiS Drillbotics team. The
reader will be presented with a short description of the different systems. As the
rig has received yearly upgrades, including both hardware and software. For an
extensive description of the rig, see [18, 25, 20, 29].

2.1 Rotational System

The rotational system consists of two motors. A conventional top drive that is for
vertical drilling and a downhole pneumatic motor installed last year for directional
drilling. The top drive is a hollow-shaft brushless motor used to rotate the assembly,
which provides 2.86 Nm and a maximum instantaneous torque of 8.59 Nm [29]. The
hollow-shaft allows for circulation of drilling fluid, all the way from the pumps,
through the top drive and out through the bit. The top drive can provide a RPM
up to 3500 RPM, where the system limit is set to 1500 RPM. The top drive is part
of the rotational system which is controlled using a programmable logic controller
(PLC). By transmitting signals from the PLC it is possible to control the RPM
and torque output of the top drive. The drill pipe is a 91.6 cm long stainless steal
tube, type 316. With OD 10 mm, ID 7mm and wall thickness 1.5 mm. Destructive
testing of the stainless pipe was performed and showed yield strength of 310 MPa,
ultimate tenstile strength of 363 MPa. Compression tests shows that buckling occurs
at approximately at 100 MPa. Torsional tests resulted in yield strength of 32 Nm
and shear at 88 Nm. For a detailed description of the tests performed and data for
the steel pipe please refer to [8, 25].

The downhole motor is a pneumatic motor installed for vertical and directional
drilling, by only rotating the bit. A crossover was designed and manufactured to
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connect the bit to the pneumatic motor. Initially two models of the same motor
were bought, type 302916D and 302916F with nominal torque ratings of 2.1 and
4.9 Nm, with 750 and 330 RPM [10]. Through experiments it was shown that the
higher RPM model yielded better results, thus is the preferred model [29]. The
speed and power output form the downhole motor is regulated by varying the flow
rate or pressure of the system. The pneumatic system on the rig is designed with
a compressor that delivers 345 LPM, a hydraulic maintenance unit which separates
water from the compressed air, lubricates the motor and choke the inlet pressure to
the pneumatic motor. Other components that are part of the pneumatic system are
shown on figure 2.1.

Figure 2.1: Pneumatic system overview [29].

2.2 Hoisting System

The rig is equipped with a hoisting system consisting of three actuators. For each
of the actuators, a stepper motor is installed with a brake to reduce the holding
torque when the system is not running. The actuators raise and lower the top plate
where the top drive is installed. The top plate is connected to three brackets, each
with a dedicated tri-axial load cells that measures the free hanging weight and hook
load of the top plate [29]. The actuators are used to apply WOB by lowering the
top plate against the formation. The actuators are controlled by the stepper motor,
where the step-angle is 1.8◦, for every 1.8◦ a total of 10 micro-steps are transmitted.
The stepper motor is connected to a lead screw, where one revolution of the screw
results in 8 mm of travel length of the top plate, this results in a resolution 4 µm
[29]. With this configuration one has precise control of MD and WOB control. The
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WOB is measured using load cells from HBM of model U9C, which measures both
tensile and compressive force. These are the latest addition to the rig, and were
installed February, 2020. Each of the three load cells have a capacity of 200N [19].

2.3 Circulation System

The rig was previously installed with two Xylem Flojet diaphragm electrically op-
erated positive displacement pumps, that were used to circulate fresh water as mud
[18]. These are now uninstalled as they were not used after the pneumatic motor
was added to the system. Cuttings transportation is now done by redirecting the
air exiting the exhausts on the pneumatic motor [37, 29].

2.4 Bottom Hole Assembly

The concept is based on having a mechanical section in the BHA that allows the
assembly to bend and build an angle. Whereas previous year, a knuckle-joint with
a whipstock to initiate the build section was used. The new BHA has an integrated
bent section, that is fixed at 8◦ when no force is applied. It is designed to straighten
when force is applied, for more details see [8, 25].

Figure 2.2: 3D render of the new BHA (J.E Karlsen 2020).

The top section (far right) covering the pneumatic motor, bent section with interior
consisting of the bend configuration and axles connecting the pneumatic motor and
bit for rotation. The bottom section is a stabilizers that connects to the thrust
bearings and bit. The bit on figure 2.2 is a generic bit used to showcase the BHA. A
custom bit is designed for the competition together with Lyng Drilling. The bit is
a PDC bit bit with twelve cutters and four gauge insert. For extensive description
of the custom bit, see [25].
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Figure 2.3: Top section, covering the pneumatic motor (J.E Karlsen 2020).

Figure 2.4: Bend section, which will cover the mechanical joint of the BHA (J.E
Karlsen 2020).

Figure 2.5: Bottom section, a stabilizer positioned below the bend (J.E Karlsen
2020).

The full assembly, including a thrust bearing and bit measures 290.65 mm. This will
vary based on what bit is used and type of thrust bearing. All drawings of the BHA
are designed and generated by UiS Drillbotics Team A member Jon E. Karlsen.
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Figure 2.6: Full assembly with and without the exterior.

The exterior of the BHA is in figure 2.5 printed in carbon, while the finale product
will be printed using 17-4 PH stainless steel. The bushing, the silver part with
a black center on figure 2.5. Is installed to reduce friction between two surfaces.
Left for the bushing, in silver is the thrust roller bearing. With purpose of guiding
rotating axles and to transfer load. The bearing depicted here accommodates axial
loads only [25].

2.5 Rig Sensors

The rig is equipped with a multitude of different sensor for different tasks. Sensors
that are essential and prioritized are connected to a high frequency data acquisition
module (DAQ) from HBM. Remaining sensors such as the downhole sensors are
connected directly to the PC. This is accomplished using I2C protocol from sensor
to the micro-controller which then transmits the signal via USB to PC. A complete
overview of all sensors installed for the 2018-2019 competition are given on figure
2.7.
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Figure 2.7: Rig sensors [29].

The directional drilling control measurements all rely on sensor data for inclina-
tion and azimuth. Previously a 9-DOG sensor, model LSM9DS0 was used for this
purpose. From E. A. Løken and J. Løkkevik, 2019 [29]: ”The downhole sensors are
configured with sampling rate of 60 Hz using the Adafruit Trinket M0 and the pulse-
algorithm implemented to request and receive measurements synced across all sensor
sources (downhole sensor package and surface sensors).” The magnetometer mea-
sure in all three directions Bx, By and Bz and are mounted orthogonally to decide
which way the magnetic North is. The same principle applies to the accelerometer
displaying the data as following parameters, Gx, Gy and Gz.

A new upgraded sensor is being installed for the 2020 competition. The sensor
is an Inertial Measurement Unit (IMU) from TDK InvenSense. The decision was
made to change the old sensor, due to differences in dimensions. The new sensor
being considerable smaller than the old one, with dimensions of 3 mm x 3 mm x 1
mm. In addition the new sensor has a higher sampling rate, which utilizes the same
I2C protocol as the old sensor, with a high speed SPI at 7 MHz or 400 kHz fast
mode I2C [23]. It comes with a 3-axis gyroscope, accelerometer and compass. The
goal is to have a sensor which is more reliable and with less drift. Drift being the
accumulation of errors in the sensor data, that increases with time and use. For the
2018-2019 competition, a set of algorithms to calculate the inclination and azimuth
was implemented by the team. For further reading see [29], and for conversion of
sensor data to Cartesian coordinates using the new sensor, see [25].

11



For directional drilling the sensor utilises the accelerometer and magnetometer to
calculate inclination and azimuth. It will be be mounted on the BHA on a cus-
tom designed printed circuit board, which is flexible [25]. Following formulas are
implemented [29],

I =
180

π
· cos−1

(
Gz√

G2
x +G2

y +G2
z

)
(2.1)

A =
180

π
· tan−1

(
By

Bx

)
(2.2)

Using these formulas both inclination and azimuth can be plotted in degrees. Initial
tests where the sensor is mounted on a plate, and rotated 360◦ by hand have yielded
promising results. These calculations are done using the raw data with no post-
processing and calibration.

Figure 2.8: Inclination and azimuth given in degrees.
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Chapter 3

Directional Drilling

This chapter will present the theoretical background for directional drilling and well
trajectory calculations. The following literature presented will include terminol-
ogy specifically used for directional drilling and survey calculations. The following
definitions are from F. O. Farah, 2013 [16].

• Azimuth: The angle (◦) between the north direction and the plane containing
the vertical line through the wellhead and the vertical line through the target.

• Build-up rate: The build-up rate (◦/30m or 100ft) is the rate at which the
angle is built.

• Drop-off point: The depth where the inclination starts to drops off (i.e. the
well profile tending to vertical)

• Displacement: The horizontal distance between the vertical lines passing
through wellhead and the target.

• Inclination: Angle (◦) made by the tangential section of the hole with the
vertical.

• Kick-off point (KOP): The depth at which the well is first deviated from
the vertical and build section is initiated.

• Measured depth (MD): Actual depth (length) of the well along the well
path.

• True-vertical depth (TVD): Vertical distance between the top of the well
and bottom of well.

• Tangent section or Hold section: Section of the well where the well path
is maintained at a certain inclination.
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3.1 Application of Directional Drilling

Directional drilling is an essential part of modern drilling operations. It can be
defined as the practice of drilling non-vertical wells, or the practice of controlling
the direction and deviation of the well to a predetermined underground target.
Major applications of directional drilling include:

• Sidetracking

• Geology/Salt Domes

• Relief Well

• Horizontal Drilling

• Multilateral

Sidetracking may be required if a fishing operation is unsuccessful, due to a collapsed
well or to avoid certain geological features. A cement plug is placed on top of the
section and is allowed to set firmly. This provides the well with a foundation from
which the new section of the hole can be kicked off. Often using a whipstock or
downhole motor together with a bent sub. Whereas sidetracking is often due to
failed drilling operations, directional drilling is also used for avoiding geological
problems. As hydrocarbon reservoirs are sometimes associated or in close proximity
to salt dome structures. Rather than drilling through a salt dome, which may lead
to drilling incidents such as washouts, lost circulation and corrosion. It is preferred
to avoid the salt formation by drilling a deviated well. Furthermore, conventional
vertical drilling through a steeply dipping plane, may lead to movement or slippage
along that plane. This can be avoided using directional drilling [22]. Directional
drilling can be used for tertiary well control, by drilling relief wells. These are
drilled adjacent to an existing well where the primary and secondary well barrier
have failed. The goal being to divert the pressurized hydrocarbons up a new wellbore
in a controlled manner, like killing a well that has taken a kick [3].

Majority of wells are drilled to an inclination of approximately 60◦, inclination be-
yond this increases the exposure to drilling incident and the cost of the well. Yet,
there are benefits to horizontal wells. Such as increasing the drainage area of the
reservoir, prevention of water and gas coning, enhanced oil recovery (EOR) and
increased penetration of reservoir [22]. The cost of drilling a horizontal well, must
be justified by increasing the productivity and production of the well. Horizontal
wells can be combined with multilateral wells. Where a multilateral well, is a well
with two or multiple laterals. These can be horizontal vertical or deviated. Multi-
lateral wells are used in fields with complex geological features, and contribute to
exposing more of the reservoir and increasing production from a single platform slot
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[2]. Multilateral wells can be drilled as opposed dual laterals, stacked dual laterals,
multilaterals and branched as seen of figure 3.1.

Figure 3.1: Different configurations of multilateral wells [2].

3.2 Types of Well Trajectories

Wells can be drilled using a multitude of different well profiles. The most common
well trajectories are vertical, J-shape, S-shape and horizontal.

3.2.1 Vertical

Vertical wells are simply vertical wells with no inclination, in reality minimal changes
in inclination do occur in vertical wells..

3.2.2 J-shape

J-type wells are widely used and characterized by a straight vertical section, a kick-
off point KOP with build section and a hold section.

3.2.3 S-shape

S-shape wells are more complicated than J-shaped wells. First section is a vertical
section, followed by a kick-off point and a build section. When desired angle is
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reached the angle is held until desired target is reached. The last part of the S-
shaped well consists of a drop section. Where inclination of the well is dropped
until the well is vertical. Then vertical drilling can proceed. S-shaped wells can be
used for avoiding salt domes, hitting multiple targets or to avoid faults.

3.2.4 Horizontal Wells

Horizontal wells consist of a vertical section with a KOP. At the KOP the well starts
the build section until the well turn horizontal. At 90◦ there is no drop section,
but small variations may occur in the inclination. Horizontal wells are used for
production in thin lateral reservoirs, avoiding gas and water coning and increasing
production in reservoir with low permeability [22].

Figure 3.2: Types of Well Trajectories [15].

3.3 Survey Calculations

This section will present multiple methods used for survey calculations. Highlighting
the advantages and disadvantages of the five most commonly used methods. For
this section, inclination will be given as I and azimuth by A. Subscripts will be given
by 1 and 2, denoting upper and lower survey stations. ∆MD is the length between
two stations, this is the measured depth. ∆V , ∆N and ∆E are the incremental
distance between stations along the three axes (vertical, east and north) [22].

3.3.1 Tangential Method

The tangential method assumes that the wellpath can be described as a straight line
using inclination and azimuth from the lower survey station. Due to not including

16



data from upper survey station, this method yields significant errors in wells with
substantial changes in short intervals, as in deviated wells. Thus, this method should
not be used, unless the course lengths are shorter than the length of the survey tool
[16].

∆V = ∆MD · cos(I2) (3.1)

∆N = ∆MD · sin(I2) · cos(A2) (3.2)

∆E = ∆MD · sin(I2) · sin(A2) (3.3)

3.3.2 Average Angle Method

Like the tangential method, average angle method also assumes a straight line. The
straight line intersects both the upper and lower survey station. It is calculated
using the average inclination and azimuth from both survey stations.

∆V = ∆MD · cos(I1 + I2

2
) (3.4)

∆N = ∆MD · sin(
I1 + I2

2
) · cos(A1 + A2

2
) (3.5)

∆E = ∆MD · sin(
I1 + I2

2
) · sin(

A1 + A2

2
) (3.6)

Figure 3.3 shows the difference between the two methods. The figure denotes incli-
nation as Ii, azimuth as Azi, ∆TV D as our ∆V and measured depth as ∆MD. The
dashed lines illustrates calculated wellbore, and the solid line represents the actual
wellbore.
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Figure 3.3: Left: Average angle method, Right: Tangential angle method [16].

3.3.3 Balanced Tangential Method

A method that is considerably more accurate than the tangential method, is the
balanced tangential method. It takes both survey stations into account, and assumes
that the actual wellpath can be approximately calculated using two straight lines of
equal length [22].

∆V =
1

2
·∆MD · (cos(I1) + cos(I2)) (3.7)

∆N =
1

2
·∆MD · (sin(I1)cos(A1) + sin(I2)cos(A2)) (3.8)

∆E =
1

2
·∆MD · (sin(I1)sin(A1) + sin(I2)sin(A2)) (3.9)

3.3.4 Radius of Curvature Method

Contradictory to the previously mentioned methods, the radius of curvature method
states that the wellpath can not be calculated using straight lines, but assumes the
wellpath to be a circular arc. This method assumes that the wellpath lies on a
cylinder with a vertical axis, and with a radius equal to that of the curvature in the
horizontal plane [16]. The finale equations are presented below, but are calculated by
separately calculating two sets of different equations for the horizontal and vertical
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plane. For further reading on calculations for horizontal and vertical plane, please
see [22].

∆V =
∆MD · (sin(I2 − I1))

I2 − I1

· (180

π
) (3.10)

∆N =
∆MD · (cos(I1)− cos(I2)) · (sin(A2)− sin(A1))

(I2 − I1) · (A2 − A1)
· (180

π
)2 (3.11)

∆E =
∆MD · (cos(I1)− cos(I2)) · (cos(A1)− cos(A2))

(I2 − I1) · (A2 − A1)
· (180

π
)2 (3.12)

Radius of curvature method provides a more accurate method to approximate the
actual wellpath, compared to the average angle method. However the method as-
sumes the radius stays constant throughout the whole arc, which might not be
accurate for wells with long build section [22].

Figure 3.4: Radius of curvature method [16].

3.3.5 Minimum Curvature Method

Minimum curvature method builds on the principles from the balanced tangential
method. Rather than strictly assuming the wellpath can be approximated by two
straight lines, the wellpath is calculated using a circular arc. This is done by applying
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a ratio factor F, that is based on the bending between the two stations (dog-leg
angle). Where the formula for dogleg is given as

φ = cos−1[cos(I1)cos(I2) + sin(I1)sin(I2)cos(A2 − A1)] (3.13)

The ratio factor F, can be calculated using figure 3.5. Where F can be expressed as

F =
2

φ
· (180

π
) · tan(

φ

2
) (3.14)

Figure 3.5: Minimum curvature method [16].

The ratio factor is then applied to the equations for ∆V , ∆N and ∆E given by the
balanced tangential method, resulting in following equations [22]

∆V = F · ∆MD

2
· (cos(I1) + cos(I2)) (3.15)

∆N = F · ∆MD

2
· (sin(I1)cos(A1) + sin(I2)cos(A2)) (3.16)
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∆E = F · ∆MD

2
· (sin(I1)sin(A1) + sin(I2)sin(A2)) (3.17)

Minimum curvature method is regarded as one of the most accurate methods by the
industry, and is thus commonly used [6]. As seen on figure 3.6 for a specific well,
the minimum curvature method provided the most accurate results with no error.

Figure 3.6: Comparing the accuracy of the different methods presented [7].

Using this method one is able to obtain the 3D-coordinates of a well using only
measured depth, inclination and azimuth between two survey stations as input. The
output is ∆V / ∆TV D, ∆N , ∆E, DL, DLS. Despite the accuracy of the minimum
curvature method, it is decided that for the laboratory drilling rig the balanced
tangential method will be used. This is due to the uncertainty calculations which
are presented in chapter 4 are based on the balanced tangential method. Using
this method one can visualise the wellpath in real time, using data as inclination,
azimuth and measured depth from our sensors.
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Chapter 4

Error Models and Uncertainties

As mentioned in 1.2.4 the competition requires the directional drilling calculations
to be associated with an error model. In this thesis the Industry Steering Committee
for Wellbore Survey Accuracy model, also known as the SPE Wellbore Positioning
Technical Section will be presented [41]. The ISCWSA produces, maintains and
publishes standards and the mathematical framework for survey error models. This
section will describe the overall error model that can be used for survey errors, and
present the theoretical approach for uncertainties regarding the downhole measure-
ments.

4.1 Sensor Errors

Prior to presenting the ISCWSA model, some sensor errors are presented. These
are some of the errors that are included in the error model presented later in this
chapter. A short introduction to terms such as bias and scale factor-error is given.
The error sources will be affected by the equipment used for data collection. For
the UiS Drillbotics rig, the IMU sensor-package that will located downhole acting as
the survey tool. The sensor-package includes an accelerometer, magnetometer and
a gyroscope. These have error sources which contributes to errors in the surveys.
This section will present the the two main sensor errors that are considered in this
thesis.

An example of how data is recorded by a sensor for a z-accelerometer from [41].

Gz = (1 + εscalefactorGz
)Gtrue

z + εbiasGz
(4.1)
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Where Gz is the value that the user read from the sensor, Gtrue
z is the true value

and εscalefactorGz
and εbiasGz

represents the residual errors of the sensor after calibration.

4.1.1 Bias Error

A bias error for a gyroscope and accelerometer would be the finite measured output,
even when no rotation or acceleration is applied to the sensor. For a magnetometer
this would be the output even in zero-field conditions [38]. This is a systematic error
that is regarded as an residual error that will be present after calibration. The bias
error is visualised on figure 4.1 with the scale factor error. If measured value from
a sensor is y, and the real value that is to be measured is x. The bias error can be
expressed as y = x + 2. Where 2 is the value of the bias error.

4.1.2 Scale Factor-Error

The scale factor-error can be represented as a constant multiplier which scales the
real measurement. Again, if y is measured value by the sensor, and x is the real
value. Ideally y = x. In reality a scale factor-error is present, which can be expressed
as y = 1.05x, where 0.05 is the scale factor term. This is what is shown in equation
4.1 as εscalefactorGz

.

Figure 4.1: Bias- and scalar factor error visualised [40].

23



4.2 ISCWSA Model

The purpose of an error model is to evaluate and consider the effect of various
factors that could lead to errors in the survey measurement, and hence to quantify
the uncertainty. For a given survey tool, the downhole sensor in our case, multiple
factors may lead to errors. These are to be evaluated at the particular survey station
and used to determine position uncertainties. Errors from the survey stations will
accumulate along the wellpath as MD increases, and the contribution of all the
individual errors are summed to determine the total uncertainty for the wellbore
position [41]. With the ISCWSA model, these uncertainties are expressed as a co-
variance matrix which describes the error along each of the coordinate axes. This
matrix can be used to determine the uncertainty ellipsoid with a given confidence
level. A specific survey tool, or sensors will exhibit a bias error, even when calibrated.
This offset or bias error can be determined from data sets or from data-sheets, by
first determining the typical range of bias then quantifying it as a standard deviation
[41].

The term ”accumulated uncertainties” along the well, are accumulations on a statis-
tical basis. If the x-accelerometer bias error is expected to have the same value point
to point, the uncertainties are added arithmetically. If the error is un-correlated
and randomise from point to point. In this case, the uncertainties are root summed
squared together [41]. The combination of all contributions due to individual error
sources, an assumption is made for the model, that all of the isolated error sources
are independent from each other. Meaning an error in x-accelerometer is indepen-
dent from y-accelerometer and vice versa. From here on, Position Uncertainty Model
will be referred to as PUM.

To calculate the PUM, following terms must be defined.

• For a specific survey tool/sensor there are a number of error sources which
effect the data. These can be identified and will lead to a set error in model.
An example is the residual sensor error after calibration of the sensor.

• Error magnitude which is the standard deviation of that error, determined
from test data.

• Weighting functions which are a set of mathematical equations used to
define the impact of a given error source, and its impact on measured depth,
inclination and azimuth.

• Each error should be assigned a propagation mode which defines how an
error changes from survey station to survey station, this is used to calculate
the total accumulation of errors.
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4.2.1 Assumptions and Limitations of the Model

The documentation published by ISCWSA states that their model is designed to be
a practical method that can be relatively easily implemented in existing software, to
be used by well planners and directional drillers. It is intended to be viable for a wide
range of tools, and is not developed with specific tools in mind. The model is only
applicable for survey runs under normal industry best-practise procedures. These
includes: sensors that have been regularly and thoroughly calibrated, sufficiently
short survey intervals, field quality control checks, such as total magnetic field, gyro
drifts,magnetic dip and the use of non-magnetic spacing for surveys. The model
assumes that the wellpath can be described by a arc between the survey stations,
and as a rule of thumb that the survey interval is 100 ft [41]. Given these assumptions
and limitations, being industry standards and practices.

4.2.2 Details of the Mathematical Framework

In the ISCWSA model following axes sets are used, see figure 4.2 [4].

Figure 4.2: Definition of axes and toolface angle [4].

The axes sets are divided into three groups, to differentiate between the reference
used. In Definition of the ISCWSA Error Model, Revision 4.3 [41] these are defined
as:

• Body Reference Frame (tool axes) The z-axis is coincident with the along
the well axis of the survey tool and the x and y-axes are perpendicular to z
and to each other. This axes set is used to define orientation of the various
sensors.
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• Earth Centred Reference Frame (nev) The x-axis is in the horizontal
plane and points towards the true north, the y-axis is also in the horizontal
plane and points towards true east. The z-axis points downwards.

• Borehole Reference Frame (hla) The z-axis is aligned along the borehole
axis. The x-axis is perpendicular to z and points toward the high side. The
y-axis is perpendicular to both of these and hence is laterally aligned across
the borehole.

4.2.2.1 Notations Used

Following subscripts i,k and l will be used throughout the section for the mathemat-
ical framework. Where i is used to index different error sources from 1...I, k used
to index different survey stations in a survey leg from 1...K and l is used to index
different survey legs in a well from 1...L. In addition the terms below are used in the
error model as presented by ISCWSA [41].

• σi the magnitude of the ith error source.

• 3x1 vectors: bold typeface is used to identify vectors quantities.

ei,l,k the error due to the ith error source at the kth survey station at the lth
survey leg.

δp
εi

weighting function - effect of the ith error source on the survey measurement
vector

∆r borehole displacement between successive survey stations.

• 3x3 matrices:

dr
dp

the effect on the borehole position due to changes in the survey measure-
ment vector

[C]new error covariance matrix in NEV-axes

[T ]nevhla NEV to HLA transformation direction cosine matrix.

4.2.3 Evaluating Position Uncertainty

The core equation used for the error evaluation is,

ei = σi
dr

dp

δp

δεi
(4.2)
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Where ε represents the error source (magnetometer, accelerometer etc.), i the index
for the particular error source considered and σi is the magnitude of the uncertainty
for the ith error. For example σi for a magnetometer calibration error could be set
to 70nT [41]. The weighting function δp

δε
is a 3x1 vector that we express with respect

to the survey measurements for depth, inclination and azimuth.

δp

δεi
=

[
δD

δεi

δI

δεi

δA

δεi

]
(4.3)

The last part of equation 4.2 dr
dp

is the effect of the survey errors in measured depth,
inclination and azimuth on the wellbore position in NEV-axes. This is expressed as
an 3x3 matrix [4].

dr

dp
=


dN
dMd

dN
dInc

dN
dAz

dE
dMd

dE
dInc

dE
dAz

dV
dMd

dV
dInc

dV
dAz

 (4.4)

Next step is to calculate the matrix in equation 4.4. Wellbore positions can be
calculated using numerous methods, as presented in section 3.3, thus the dr

dp
matrix

will depend on the interval between two survey stations. Where dr can be expressed
as ∆rk for the displacement between survey station k-1 and k, and ∆rk+1 for the
displacement between stations k and k+1. Equation 4.2 can be written with respect
to ∆rk and ∆rk+1.

ei,l,k = σi,l

(
d∆rk
dpk

+
d∆rk+1

dpk

)
δpk
δεi

(4.5)

In the definition of the ISCWSA model [41], the balanced tangential method is used
to calculate the drk

dpk
due to its simplicity. It is also mentioned that doing this leads

to no significant loss of accuracy in the end results. The balanced tangential model
gives following equation for displacement between two survey stations j-1 and j in
the NEV-axes.

∆rj =

 ∆N
∆E
∆V

 =
Dj −Dj−1

2

 sin Ij−1 cosAj−1 + sin Ij cosAj
sin Ij−1 sinAj−1 + sin Ij sinAj

cos Ij−1 + cos Ij

 (4.6)
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The final 3x3 matrix equations of d∆rk
dpk

and
d∆rk+1

dpk
can be expressed be as (where

j=k):

d∆rk
dpk

= 1
2

 sin Ik−1 cosAk−1 + sin Ik cosAk (Dk −Dk−1) cos Ik cosAk − (Dk −Dk−1) sin Ik sinAk
sin Ik−1 sinAk−1 + sin Ik sinAk (Dk −Dk−1) cos Ik sinAk (Dk −Dk−1) sin Ik cosAk

cos Ik−1 + cos Ik − (Dk −Dk−1) sin Ik 0

 (4.7)

d∆rk+1

dpk
= 1

2

 − sin Ik cosAk − sin Ik+1 cosAk+1 (Dk+1 −Dk) cos Ik cosAk − (Dk+1 −Dk) sin Ik sinAk
− sin Ik sinAk − sin Ik+1 sinAk+1 (Dk+1 −Dk) cos Ik sinAk (Dk+1 −Dk) sin Ik cosAk

− cos Ik − cos Ik+1 − (Dk+1 −Dk) sin Ik 0

 (4.8)

The detailed derivation of equations 4.7 and 4.8, including all steps can be found in
[41].

4.3 Weighting Functions

Each error source has a three weighting functions which are used to define how a spe-
cific error source affects the measured depth, inclination and azimuth measurements
[4].

4.3.1 Weighting Functions for Sensor

Case 1: For depth sensor error:

The weighting functions is

δp

δεi
=

[
δD

δεi

δI

δεi

δA

δεi

]
=
[
1 0 0

] (4.9)

The corresponding σ is the magnitude of the depth error source.

Case 2: For accelerometer and magnetometer error source:

The inclination can be calculated using following formula,

I = cos−1

(
Gz√

G2
x +G2

y +G2
z

)
(4.10)
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Similarly the equation for azimuth,

A = tan−1

(
(GxBy −GyBx)

√
G2
x +G2

y +G2
z

Bz

(
G2
x +G2

y

)
−Gz(GxBx +GyBy)

)
(4.11)

where Gz, Gy and Gz are measurements from the accelerometer and Bx, By and Bz

are the measurements from the magnetometers. Their inverse relations are

Gx = −Gsin(I)sin(α) (4.12)

Gy = −Gsin(I)cos(α) (4.13)

Gz = Gcos(I) (4.14)

Where G is the gravity field strength, and α is toolface angle [4].

Bx = B cos(θ) cos(I) cos(A) sin(α)−B sin(θ) sin(I) sin(α) +B cos(θ) sin(A) cos(α) (4.15)

By = B cos(θ) cos(I) cos(A) cos(α)−B sin(θ) sin(I) cos(α)−B cos(θ) sin(A) sin(α) (4.16)

Bz = Bcos(θ)sin(I)cos(A) +Bsin(θ)cos(I) (4.17)

B is the magnetic field strength and θ is magnetic dip angle. Considering Gz (ABZ)
from the accelerometer as an example, Gz appears in both 4.10 and 4.11. The
accelerometer readings do not have an effect on depth readings, thus the weighting
functions for depth is equal to zero for this set of equations. Weighting functions
for I and A is determined by taking the partial derivatives of 4.10 and 4.11 with
respect to Gz [41]. Resulting in equation

δp

δεi
= ABZ =

1

G

 0
−sin(I)

tan(θ)sin(I)sin(A)

 (4.18)

The associated σ is the magnitude of Z-accelerometer error source [4].
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4.4 Summation of Uncertainty Terms and Prop-

agation Modes

The finale step is the summation of all error sources. In addition, consider how the
different errors relate to each other and how they accumulate along the wellpath.
The equation is formulated as:

[Ck]nev =
∑
errorsi

∑
k1≤K

∑
k2≤K

ρ (εi,l1,k1,εi2l2,k2) ei,l1,k1 · eTi,l2,k2 (4.19)

Where ρ(εi,l1,k1) is the coefficient for the correlation for the error source between
k1,k2 and l1 and l2. This summation will give a 3x3 covariance matrix with each
axis down the diagonal and the correlations between these values. The correlation
coefficient is set to either 0 for uncorrelated, or 1 for correlated error terms between
survey stations. For case 1. where ρ = 1 it is assumed that the same error value is
present for each station, this could for example be a bias error or a residual sensor
error which stays constant. In this case, the uncertainty contributions is summed
using addition.

etotal = e1 + e2 (4.20)

If the error are not correlated, ρ = 0. This can results in both causing a positive error
or that one of them causes a negative error. For this case the error contributions
must be root sum squared together [41].

etotal =
√
e2

1 + e2
2 (4.21)

An error source may be independent at all survey stations, or correlated between
survey all survey station on a survey leg, or within the whole well. This can be
expressed as four propagation modes.

Propagation Mode Identifier ρ1 ρ2 ρ3

Random R 0 0 0 always independent
Systematic S 1 0 0 correlated from survey station to survey station
Well by Well W 1 1 0 correlated from leg to leg
Global G 1 1 1 correlated over all wells

Table 4.1: Propagation modes [41].

Where the propagation coefficients are defines as:
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ρ1 correlation between survey stations within the same survey leg

ρ2 correlation between survey stations in different legs in the same well

ρ3 correlation between survey stations within different wells in the same field

Equation 4.19 can be transformed into a 3x3 covariance matrix, which describes the
error ellipsoid at a particular station. Following equation is for the NEV-axes [26].
The computational steps and mathematical details can be found in [41].

[C]nev =

 σ2
N Cov(N,E) Cov(N, V )

Cov(N,E) σ2
E Cov(E, V )

Cov(N, V ) Cov(E, V ) σ2
V

 (4.22)

Where σ2
N , σ

2
E and σ2

V are the variances in their respective axes, with uncertainty
in north axis at 1 standard deviation being ±

√
σ2
N . The rest of the terms are

the covariances, which represent the orientation of the ellipsoid with respect to the
principle axes. Equation 4.22 can be transformed into borehole reference using
following equation.

[C]hla = [T ]nev
T

hla [C]nev[T ]nevhla (4.23)

The direction cosine matrix equation 4.24 is used to transform the [C]nev matrix
into a matrix for borehole reference frame (HLA) [41].

[T ]nevhla =

cos(I)cos(A) −sin(A) sin(I)cos(A)
cos(I)sin(A) cos(A) sin(I)sin(A)
−sin(I) 0 cos(I)

 (4.24)

With the covariance matrices one can present and visualise both the 2D and 3D
error ellipse/ellipsoid.

4.5 Ellipse and Ellipsoid of Uncertainty

An error ellipse is a 2D or 3D ellipsoid representing the volume of uncertainty in
a wellbore position at a specific depth [36]. The volume occupied by the ellipse
is a result of the error sources, such as measurements of inclination and azimuth.
In addition to the the chosen confidence level of the ellipse. The inclination error
creates a high side dimension, azimuth error causes a lateral dimension and the
measured depth error creates a third component along the axis of the wellbore [7].
These errors will propagate and accumulate with increasing depth, as shown by the

31



mathematical framework from ISCWSA, meaning the total area or volume of the
ellipse will become larger as MD increases.

The magnitude of the ellipse will be defined by the confidence level. In tables 4.2 and
4.3 from [9] confidence levels with respect to dimensions are presented. A standard
value for confidence level is 95% and would for 2D and 3D error ellipse yield standard
deviation of 2.4477 and 2.7954. This assumes that the sensor errors follow a normal
distribution [28].

Probability Standard deviations
dimensions ±1 ±2 ±2.58 ±2.79 ±3
1 68.27% 95.45% 99.081 99.47% 99.73%
2 39.35% 86.47% 96.41% 97.96% 98.89%
3 19.87% 73.85% 91.63% 94.93% 97.07%

Table 4.2: Number of standard deviations. Confidence level is implicit [9].

Probability Confidence level
dimensions 68.3% 90.0% 95.0% 99.0% 99.7%
1 0.9999 1.5448 1.9599 2.5758 2.9677
2 1.5151 2.1459 2.4477 3.0348 3.4086
3 1.8779 2.5002 2.7954 3.3682 3.7325

Table 4.3: Confidence level at specified number of dimensions. Number of standard
deviations are implicit [9].

Tables 4.3 and 4.2 can be presented as a curve. Figure 4.3 illustrates normal distri-
bution.

32



Figure 4.3: Normal Distribution Curve [5].

4.5.1 2D Ellipse of Uncertainty

For the calculation and visualisation of the 2D-error ellipse the method of eigen-
values and eigenvector will be used. The method is based on that the roots of the
eigenvalues in matrix 4.25 represents the major and minor axes of the error ellipse.
Furthermore, the eigenvectors are used to define the direction and orientation of the
ellipse [27].

[
σ2
N Cov(N,E)

Cov(N,E) σ2
E

]
(4.25)

To find the eigenvalues the matrix, the determinant of the matrix must be set to
equal zero.

[
σ2
N − λ Cov(N,E)

Cov(N,E) σ2
E − λ

]
= 0 (4.26)

Finding the determinant of the matrix

(σ2
N − λ)(σ2

E − λ)− Cov(N,E)2 = 0 (4.27)

λ2 − λ(σ2
N + σ2

E) + (σ2
Nσ

2
E + Cov(N,E)2) = 0 (4.28)
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From [28, 36] the two eigenvalues λ1 and λ2 can be found using the quadratic formula

λ1,2 =
−b±

√
b2 − 4ac

2a
(4.29)

Where

a = 1

b = −(σ2
N + σ2

E)

c = σ2
Nσ

2
E − Cov(N,E)2

Using a,b and c following equation 4.29 is obtained.

λ1,2 =
(σ2

N + σ2
E)±

√
(σ2

N + σ2
E)2 + 4(Cov(N,E)2 − σ2

Nσ
2
E)

2
(4.30)

As shown on figure 4.4 an ellipse can be expressed as semi-major axis a, and semi-
minor axis b.

Figure 4.4: Overview of an ellipse, highlighting the axes [39].

These can be calculated using the eigenvalues λ1,2 and the confidence constant k.

Semi−majoraxis =
√
λ1 · k (4.31)

Semi−minoraxis =
√
λ2 · k (4.32)
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4.5.2 3D Ellipsoid of Uncertainty

For visualisation of an ellipsoid, the methodology is similar to a 2D ellipse. The 2x2
covariance matrix is replaced by a 3x3 matrix with a third component being V -
vertical depth.

[C]nev =

 σ2
N Cov(N,E) Cov(N, V )

Cov(N,E) σ2
E Cov(E, V )

Cov(N, V ) Cov(E, V ) σ2
V

 (4.33)

From L. Xiuashan, 2019 [42], by obtaining the eigenvalues for the covariance matrix
in NEV-axes, the three axis radii can be expressed as:

Ri = k
√
λi (i = 1, 2, 3) (4.34)

Where λ1 is radius in N-axis, λ2 in E-axis and λ3 is for the depth element.
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Chapter 5

Case Study: Position Uncertainty
- Field Data

This chapter is dedicated to the position uncertainty calculations based on the IS-
CWSA model. A MATLAB script has been written for the theory presented in
Chapter 4. It is based on an excel spreadsheet for calculations according to the
ISCWSA model. The spreadsheet is published by ISCWSA-representatives and can
be found at [24]. The calculations in the spreadsheet have been verified on ISCWSA
test wells. This makes it possible to confirm that the computational methods pre-
sented in MATLAB yields correct results.

5.1 Field Data

The field is labeled ISCWSA Test #1, and has total MD of the well is 8000
m and TVD is 3521 m. Initial inclination and azimuth is 0◦, inclination is 90◦ and
azimuth is 75◦ at finale depth. The well is characterised by a vertical section down to
1230 m TVD, before a build-section is held until inclination reaches 60◦ at a TVD
of 1945 m. The inclination is held until 3444 m TVD where a new build-section
starts. Complete horizontal drilling is reached at TVD 3521 m and 5400 m MD.
This section is drilled until a MD of 8000 m is reached. The well has a geomagnetic
field intensity B of 50000 nT, magnetic dip and declination of 72◦ and -4◦. The
meridian convergence is set to 0◦. The well trajectory is visualised in figure 5.1.
The data set provides a complete overview weighting functions, magnitudes, units
and sources. A total of 27 weighting functions are considered for this case. Survey
data is given in appendix D, for full access to the excel spreadsheet see [24].
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Figure 5.1: ISCWSA Test #1 Well

5.2 Confirmation of Computational Method

The spreadsheet contains calculations for the different matrices, but the ellipsoid of
uncertainty itself is not calculated nor visualised. Validation of the values yielded by
the script will be done by comparing the matrices. If the calculations performed in
MATLAB are equal to the confirmed values in the spreadsheet, all other equations
that are functions of these matrices should yield correct results. This assumes the
calculation methods used are correct.

5.2.1 Covariance matrix with NEV-axes

The first matrix is the 3x3 covariance matrix which describes the error ellipsoid
at specified station with respect to the [E,N,V] coordinate system. The covariance
matrix is given as 5.1.
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[C]nev =

 σ2
N Cov(N,E) Cov(N, V )

Cov(N,E) σ2
E Cov(E, V )

Cov(N, V ) Cov(E, V ) σ2
V

 (5.1)

For following data, the variances σ2
N ,σ2

E and σ2
V are all denoted as NN,EE and VV.

And Cov(N,E), Cov(N,V) and Cov(E,V) are presented as NE,NV and EV. Figure
5.5 shows the matrix elements calculated using the spreadsheet, and the same plot
using values generated by MATLAB on figure 5.6. By observation of the plots 5.5
and 5.6 both sets of matrix elements follow the same trend. By closer inspection of
the matrix elements, relatively minor changes can be observed when comparing the
elements from excel and MATLAB. Figure 5.2 and 5.3 is an overview of the 8 last
rows with data points for the covariance matrix elements. The values are sorted from
the left: NN,EE,VV,NE,NV and EV, the values are to be multiplied by 103. Figure
5.4 is the difference between the two sets of matrix elements. It is calculated by
subtracting the excel values from MATLAB. The resulting values are the difference
between the two sets of calculated values. The differences accumulates at the end
rows, the highest difference is for the 268th row. Where the highest difference in
values are for the NN and NE with 0.18%. The source of the error is not identified,
the difference in use of significant figures between the spreadsheet and MATLAB
script can be one potential source responsible for marginally deviating results. As
the deviation from validated values are 0.18% at highest, the results are approved.

Figure 5.2: Last 8 rows with matrix elements from excel [24].

Figure 5.3: Last 8 rows with matrix elements from MATLAB
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Figure 5.4: Difference in the last 8 rows.

Figure 5.5: Matrix Elements and MD from excel spreadsheet [24].
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Figure 5.6: Matrix Elements and MD from MATLAB.

5.2.2 Covariance matrix with HLA-axes

This subsection will showcase the values for the matrix elements and their differences
in the spreadsheet and MATLAB. The HLA-axes is the local coordinates in the
borehole, commonly referred to as lateral, high-side and along hole. The procedure
of presenting the 8 last rows with matrix elements, as the error accumulates and is
largest towards the end of the depth. The same pattern is observed for the covariance
matrix with the HLA-axes. Figure 5.7 and 5.8 are to be multiplied with 103, and
are sorted from left: HH,LL,AA,HL,HA and LA. Figure 5.9 show the difference in
matrix elements from the two sources. Majority of the deviation is to be found for
LL, which is approximately an 0.18% increase compared to the spreadsheet values.

Figure 5.7: Last 8 rows from excel (HLA-axes) [24].
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Figure 5.8: Last 8 rows from MATLAB (HLA-axes).

Figure 5.9: Difference in the last 8 rows (HLA-axes).

The data clearly shows the variance to be largest for NN and LL followed by EE
and HH. Which is expected as the accumulation of error is usually largest in the
lateral dimension followed by the high side dimension, the opposite can be observed
if inclination measurements are more precise than azimuth measurements [17]. Con-
sequences of this is visualised in the following section, where the covariance matrix
is used to plot the ellipsoid of uncertainty.

5.3 Ellipsoid of Uncertainty

For visualisation of the ellipsoid of uncertainty the covariance matrices previously
presented are used. Initially in the MATLAB script the covariance matrix elements
are stored as a 1x6 array. Before an ellipsoid of uncertainty is visualised, the array
must be rearranged. This is done by taking the elements from the array and sorting
them in a 3x3 matrix which is the covariance matrix. The process is shown on figure
5.10 for the matrix in NEV-axes. The process for rearranging 1x6 arrays into 3x3
matrices is performed for all error sources and error models.
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Figure 5.10: Arranging the 1x6 array into a 3x3 covariance matrix in MATLAB.

The covariance matrix shown in figure 5.10 is a summation of all error sources com-
bined into one finale NEV-axes matrix. Including sensor, azimuth reference, align-
ment, depth and magnetic interference errors. By finding the eigenvalues of the total
covariance matrix in NEV-axes, the trajectory can be visualised in a NEV coordi-
nate system. Following figure shows the trajectory with ellipsoids of uncertainty for
every 25th element of the covariance matrix at 1-standard deviation. Figure 5.11 is
two figures showcasing the trajectory with EOU visualised. The green lines running
along the trajectory is the semi-minor and major axes of the ellipsoid. The largest
uncertainty is in the N-axis, the ellipsoids increase in size as depth from surface
increases. Due to the independent sources of errors propagating and increasing in
proportion with how far the survey point is from the origin [17]. The EOU visualised
in figure 5.11 are not oriented with respect to their eigenvalues. Only considering
the dimensions of the radii with center-points E,N,V.

42



Figure 5.11: Ellipsoid of uncertainty at 1-standard deviation, k = 1.8779.

Figure 5.11 is visualised with k = 1.8779 at 1-standard deviation, statistically this
gives the ellipsoid a confidence level of 68.3% that the well is in fact within the
volume occupied by it. The semi-minor and major axes are visualised below using k
at 1-standard deviation in 3 dimensions. The green line represents the semi-minor
axis visualising uncertainty along the E-axis, and the red line is for the semi-major
axis for uncertainty along the N-axis.
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Figure 5.12: Semi-major and semi-minor axis with respect to MD, k = 1.8779 scaled
for 3x3 matrix.

If higher precision is required for N/E direction, k can be set to 1.5151 for 68.3%
confidence level (1-standard deviation) in 2 dimensions. This is done by sorting the
calculated covariance matrix elements into a 2x2 matrix, as presented in 4.5.1.
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Figure 5.13: Semi-major and semi-minor axis with respect to MD, k = 1.5151 scaled
for 2x2 matrix.

Figure 5.14: Trajectory plotted in N/E with ellipses of uncertainty in 2D, k = 1.5151.

The plots presented thus far have not taken the eigenvectors into consideration when
visualising the ellipses. Figure 5.14 can be recreated using the calculated eigenvalues
and eigenvector from the 2x2 covariance matrix.
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Figure 5.15: From 2x2 covariance matrix, k = 1.5151. Ellipses oriented with respect
to eigenvectors.

Figure 5.16: Showing that both ellipses are equal, k = 1.5151 for 2x2 covariance
matrix.

Due to how the axes are scaled in MATLAB, initially the ellipses of 5.15 appear
smaller than those of 5.14. This tendency is clear when one rotated ellipse is plotted
with the non-rotated. It can be proven that these ellipses are equal by simply
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calculating the area of the ellipse using π ·r1 ·r2. This is shown on figure 5.16, where
rad1/rad2 are for the non-rotated case, and a/b are the radii of the ellipses rotated
using the eigenvectors. If a practical approach is to be adopted, the confidence level
of 68.3% must be increased. For a confidence level of 95% for an ellipsoid (3D) the
k is set to 2.7954. This generates figure 5.17. With the semi-major and semi-minor
axes given on figure 5.18.

Figure 5.17: Based on 3x3 covariance matrix, k = 2.7954
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Figure 5.18: Semi-major and semi-minor axis, k = 2.7954

The major contributor to the overall uncertainty is along the north-axis. With a
sharp increase at approximately 1650 m MD. This can be due to errors accumulating
when the well goes from a vertical section to a direction well. The deviated drilling
starts at 1230 m TVD, but the changes are minimal between MD and TVD until
1650 m. It is at 1650 m MD the displacement along the horizontal plane accelerates.
At 8000 m MD the semi-major axis is 267 m (N) and semi-minor axis is 60.5 m (E).
The uncertainty ellipsoids form a cone shape around well if an ellipsoid is plotted
for every survey point. This visualises clearly how the error accumulates along the
wellbore with increasing depth. This is shown on figure 5.19, where the black frame
on the ellipsoid is turned off. The volume occupied by the ellipsoids of uncertainty
is visualised by the green colour.
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Figure 5.19: Ellipsoid plotted for every survey point, k = 2.7954
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5.3.1 Discussion: Uncertainty Dimensions

The values for the covariance matrices have been confirmed to be correct, thus should
the error ellipses and ellipsoids calculated based on them be. Yet the calculated
uncertainty dimensions are above generally accepted values in the industry. From
A. Buchanan 2013, [14]: ”For typical well depths and step-out, or horizontal reach,
the dimensions of the uncertainty envelope may be on the order of 100 ft [30 m] or
more unless action is taken to correct error sources and run high-accuracy surveys.”.
The paper excludes mentioning a range for typical well depths. From the U.S Energy
Information Administration [1] following data for average well depths in the period
1949-2008 can be found.

Figure 5.20: Average Depth of Crude Oil and Natural Gas Wells [1].

The y-axis shows feet/well, where majority of the depths are between 4000 ft (1219.2
m) to 6000 ft (1828.8 m). If a rough approximation is made, where 6000 ft well
could potentially have an error radius of 30 m, assuming this increases linearly. The
ISCWSA Test #1 field with a depth of 3521 m TVD would have maximum radius
between 57.8 m - 86.7 m.
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From [14], the case of 30 m radius for ellipsoid of uncertainty is regarding wells with
insufficient survey-accuracy and error correction. This range is further supported
by L. Xiushan, 2019 [42] for following well:

”A horizontal well was surveyed and calculated according to the industry norms,
and the calculation results with the true north as the reference direction are shown
in Table 1. The well had a geomagnetic field intensity of 56 356.51 nT, magnetic
declination of -10.60◦, magnetic dip of 64.72◦, meridian convergence of 0.876◦, and
the scaling factor of error ellipsoid of 2.0.” [42].

The well described in [42] has a MD of 10161.32 m and TVD of 8000 m. With
total displacement in N-axis 1155 m and E-axis 2000.52 m. The well ends with a
horizontal section where inclination is 90◦ and azimuth 68.76◦. For this well, the
paper presents following radii along the principal axes at MD 10161.32 m. R1 =
27.78 m, R2 = 60.68 m and R3 = 39.16 m. A direct comparison with data presented
in this thesis is difficult. Mainly due to the lack of information regarding the specific
tools, quality control of the data, if any pre- or post-processing has been done and
what specific weighting functions and magnitudes have been used. These factors
may also contribute to the large radii for the calculated ellipsoids and ellipses based
on the spreadsheet. The spreadsheet is mainly published to show the calculations
and mathematical framework of the ISCWSA methodology to calculate covariance
matrices, and not to visualise the EOU. Thus, it can not be confirmed that the data
has been a subject of sufficient data quality control that would be expected before
position uncertainty is calculated.
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Chapter 6

Well Trajectory Design

This chapter will present computer generated well trajectories using the Bézier
method [34]. Main focus being optimising well trajectory by minimizing the MD
(e.g tortuosity), limiting DLS and changes to azimuth. The Bézier method will be
used to generate trajectories based on the mechanical limitations of our rig, and the
dimensions of the competition rock.

6.1 Bézier Method

This section will give a brief introduction to the Bézier method. The code for well
trajectory optimisation, and visualisation is given in appendix B and C. The core
code used is written by E. Elsayed who is part of the UiS Drillbotics Team B,
with some modifications made by the writer of this thesis. To obtain the 3D well
trajectories used in this case study, second and third order Bézier curves are used,
where the second order curve is defined as

B(u) = (1− u)2S + 2(1− u)uCS + u2E (6.1)

And third order,

B(u) = (1− u)3S + 3(1− u)2uCS + 3(1− u)u2CE + u3E (6.2)

Second order curves are typically used for free end trajectories, where the end point
of the trajectory is not defined. While the third order curves are used for instances
where the end of the trajectory is set and defined [34]. This section will focus on
the third order equation, as this case study makes use of a defined end point. The
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parameters in the equations are: u is a dimensionless parameter in the interval [1,0],
S is the defined starting point, E is the ending point of the curve, CS and CE are the
attractors. The dashed-line is the support line of the trajectory, a tangent line to
the starting point S or ending point E, going through the attractors, the direction
of the dashed line is determined by the inclination and azimuth at S. The distance
of the attractor points from S will dictate the direction of the trajectory to E [34].

Figure 6.1: Third order Bézier curves with varying CS and fixed CE. Attractor CS4

is not shown for B4 [34].

To obtain the well trajectories, some data points must be defined. The initial starting
point S must be given as [vS, nS, eS], initial inclination Is and azimuth As. Lastly,
the target point of the trajectory, must as S be given in following coordinates E =
[vE, nE, eE],IE and AE. The inclination and azimuth at any point of the trajectory,
is used to determine an unit tangent vector, where ti can be set to tS or tE depending
on if one is considering free-end case, or defined-end case [34].

ti = (cos(Ii); sin(Ii)cos(Ai); sin(Ii)sin(Ai)) (6.3)

This tangent vector and an arbitrary scalar parameter di is used to determine the
position of the attractor point Ci, which controls the shape and curvature of the
trajectory. The position of attractor point CS with respect to IS and As is given by

CS = S + dStS (6.4)
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For the defined end point case an additional tangent vector is defined

tE = (cos(IE); sin(IE)cos(AE); sin(IE)sin(AE)) (6.5)

Giving the position of attractor CE as

CE = E − dEtE (6.6)

The CS and CE are determined by the tangents at each end point of the trajectory
(S and E), and their distance to their respective ends provide two degrees of freedom,
which are used to control the shape of the 3D trajectory [34]. The code in B are used
to find the optimal values for dS and dE with respect to DLS, maximum change in
azimuth and reducing MD between the start and end-point S and E. This is shown in
figure 6.1, where CE is set, and CS have varying values, due to varying dS. Resulting
in trajectories with higher or lower degree of curvature. Examples of this in 3D-
space will be given later in this chapter. For further reading regarding theory and
the mathematical framework of this method, see [34, 35].

6.2 Generating Trajectories

In this section the code will be showcased to the reader, to give further understanding
of the theory presented in section 6.1. Where example wells are generated to show
what the code is capable of, and its functions. Before generating trajectories for the
competition rock and the Drillbotics competition specifically.

6.2.1 Assumptions

The 3D-space the trajectories are generated in, have no physical attributes assigned
to it, such as hardness, porosity or permeability. The trajectory is generated in an
environment with no geological features, such as faults or salt domes, thus trajecto-
ries have no geological features to avoid or interact with. This must be taken into
account when the optimal trajectory is generated and interpreted, where properties
of rock mass and soil or geological features are not considered. The trajectories
will not be perfectly applicable in the real world, where such variables have to be
considered. The only considerations and limitations of the code, are the initial and
finale conditions (e.g coordinates) of the well, inclination and azimuth and finally
the DLS limit assigned to a specific trajectory. The code will be used to minimize
the MD with respect to these parameters.
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6.2.2 Trajectory Examples

First step is to define our start- and end-point, S and E. In this example S =
[vS, nS, eS] = [0,0,0], and E = [vE, nE, eE] = [1000, 150, -60]. Initial and finale
inclination and azimuth are both set to [0,10]. Finale boundary condition, is the
maximum DLS for the trajectory, in this case set to 5◦/30m. An addition to the
code, is the parameter md0, which defines the measured depth at our initial vertical
depth. An example being, if initial vertical depth is set to 0 m, and md0 = 100.
The measured depth at initial vertical depth of 0 m will be 100 m and not 0 m. For
calculations in this example md0 = 0 m. Finale parameter to define is celln, which
is used to define the desired survey points, set to 30 in this example. The code for
this section is given in appendix B, can find the optimal dS and dE, in the code
these are named k0 and k1.

With set limitations the code calculates the optimal dS and dE to be 201 and 251.
These are then used to calculate the well trajectory with code given in appendix C.
Calculating following trajectory,

Figure 6.2: 3D-trajectory with ds and de as 201 and 251.

With cross sections,
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Figure 6.3: Cross sections of the same trajectory.

And survey measurements generated by the code,

Figure 6.4: Table with data from the survey stations.
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From figure 6.4 one can see that our initial- and end-point conditions are met. The
DLS stays below the 5◦/30m limit set initially. To further illustrate how dS and
dE affect the trajectory, three more trajectories are visualised and presented below.
These have the same initial and finale conditions as the trajectory just presented.
But dS and dE values are changed manually, without considering how realistic the
trajectory is, but rather to showcase the planned trajectory with varying values
for dS and dE. Figure 6.5 clearly shows the effect of changing parameters dS and
dE beyond the optimal values. With case (a) being the optimal case previously
explained, it is the benchmark that cases (b),(c) and (d) are compared against.

For case (b), from observation alone, it is clear that the trajectory has a higher value
for MD, where the trajectory moves further down the North axis, negative values
indicating movement in south direction. It is first when the parameters for case
(c) are applied that trajectories beyond what is practical are generated. Trajectory
(c) is observed from a different angle in figure 6.6. In the interval 0 m to 245 m
along the vertical axis, an inclination of 98◦ is achieved. At this point the eastern
and northern coordinates are 29 m and -61 m. The trajectory continues to build
an angle up to 121.7◦ before dropping of. At the inclination of 121.7◦, the vertical
depth is 214 m. The finale section is defined by a sharp declination down to the
specified end-point of [1000,150,-60].

Figure 6.6: Trajectory (c) from a different viewpoint.
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(a) dS = 201 and dE = 251 (b) dS = 200 and dE = 600

(c) dS = 700 and dE = 1500 (d) dS = 1000 and dE = 3500

Figure 6.5: Trajectories with the same initial and finale conditions as previously defined,
this time with varying dS and dE .
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The major challenge with trajectory (c) is the DLS throughout the wellpath. With
values ranging from 0-78◦/30m, the swift changes in inclination over short intervals
are beyond what is realistic for a well trajectory. The trajectory also adds to the
total MD compared to the optimal case (a). Trajectory (d) continues the trend set
by (c). With a section where inclination > 90◦, at the highest 163◦. The direction of
the well changes from positive values along the vertical-axis to negative. The lowest
depth along the vertical-axis is -568 m, in practice this mean drilling 568 m above
set datum plane.

Figure 6.7: Trajectory (d) from a different viewpoint.

Figure 6.7 shows upwards trend of trajectory (d). This dramatically increases the
inclination and MD. Compared to the optimal case (a), where the total measured
depth was 1015 m, whereas MD for (d) is 2616 m. This further highlights the
importance of finding the optimal values for dS and dE. As mentioned in assumptions
for this subject, these trajectories are not necessarily applicable in real life. This
can be due to limitations of equipment, geological features or rock properties. But
the idea is to see what is theoretically possible, then applying the overall trend of
generated trajectories.

There is yet another option with the code. That is manually choosing values for
dS and dE that are below, the calculated optimal values. This results in a lower
degree of curvature, and the tendency for straight line between initial and end point
increases with lower values. This is shown on figure 6.8.
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(e) dS = 180 and dE = 200 (f) dS = 140 and dE = 160

(g) dS = 50 and dE = 70 (h) dS = 5 and dE = 10

Figure 6.8: Same trajectory as in fig 6.5, but with dS and dE lower than optimal values.
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The third order Bézier curve staying strictly between S and E when assigned lower
dS and dE values, can be explained mathematically. If we revisit the quadratic
Bézier equation from [34].

B(u) = (1− u)3S + 3(1− u)2uCs + 3(1− u)u2Ce + u3E (6.7)

If we assume that the initial position S and finale position E are constant and u is
set to be in the interval [0,1]. What is left to define is CS and CE. From following
equations,

CS = S + dStS (6.8)

CE = E − dEtE (6.9)

Only parameters that can be changed independently are dS and dE, as the tangential
unit vector tS ad tE are functions of AS, AE, IES and IE which also are constant
as those parameters are defined for initial and finale point. Thus, smaller values of
dS and dE will result in CS and CE that will be closer to S and E. Inserting these in
the cubic equation will yield increasing values for B(u) in the interval [S,E] where u
= [0,1], the opposite being, large values of dS and dE will cause fluctuations in CS
and CE in the interval u = (0,1), which may result in values for B(u) outside the
interval [S,E]. Nonetheless both cases will yield S for u = 0, and E for u = 1.
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Chapter 7

Case Study: Trajectory
Optimisation and Position
Uncertainty for Laboratory
Drilling Rig

7.1 Assumptions and Limitations

When using this method for the UiS Drillbotics rig, there is two main limitations
to consider. The first one is the mechanical and technical limitations of the rig, and
second being the dimensions of the competition rock. In addition to the physical
limitations, the framework of the guidelines will be discussed. This section will give
an overview over the limitations to consider, and the effect of these on the trajectory
optimisation process.

7.1.1 Competition Rock and Guidelines

As presented in 1.2.1, the dimensions of the homogeneous sandstone is set to (
30 x 60 x 60) cm. For drilling, the rock will be resting on the 30 cm x 60 cm
face, giving a total depth of 60 cm. In 1.2.1 some physical properties of the rock
were presented, which will not be considered when trajectories are generated. From
previous experiments drilling in cement samples as a substitute for sandstone, and
drilling in the competition rock 2019. The experience is that sandstone is easy
to drill in and the rig can obtain high values for ROP. Based on vertical drilling
from 2018 [18], the rig could achieve ROP of 4.454 cm/min in cement rock samples.
From this experience, a benchmark of what constitutes a realistic trajectory will be
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defined, as no drilling has been conducted due to the worldwide pandemic in 2020.

In [29] documentation of an experiment using concrete is presented. The concrete
sample made using Portland cement is used for deviated well drilling with the whip-
stock. When drilling was complected, and inspection of the rock was made. It
was discovered that 55 mm horizontal build was achieved along the east-axis over
a TVD of 490 mm [29]. Unintentionally, during the experiment displacement along
the north-axis of approximately 10 mm was observed, potentially due to connections
in knuckle-joint or BHA experiencing a twist or loose connections.

Figure 7.1: Well profile using 7◦ whipstock in cement [29].

For directional drilling, the ROP in the same cement is reduced to 0.833 cm/min
[29]. If we use this ROP as the benchmark, and multiply it with the amount of
time that is allowed for drilling according to the guidelines, 3 hours or 180 min
[13]. All trajectories shorter than 150 cm in MD should be theoretically possible.
This assumes that a ROP of 0.833 cm/min is kept constant for 180 minutes of
the competition, which is unlikely. But rather gives an approximation of what the
maximum measured depth of a trajectory can be. Figure 7.1 can be presented as a
simple schematic.
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Figure 7.2: A simple representation of a well after kick-off point with fixed angle.

Figure 7.2 is a simple representation of the well after KOP. According to the guide-
lines, deviated drilling can start at any point below or at the defined 4” (101.6
mm) vertical section. It assumes no change in azimuth (e.g stays constant along
the north-axis). And that the angle β at KOP stays constant throughout the well.
With simple trigonometry we can calculate multiple values for measured depth and
horizontal displacement, with a set TVD and varying β. If KOP is right after the
101.6 mm vertical section. The TVD used in table 7.1 is 498.4 mm.

β [◦] MD [mm] ∆h [mm] Total MD [mm]
7.000 502.143 61.196 603.743
8.000 503.298 70.046 604.898
9.000 504.613 78.939 606.213
10.000 506.089 87.881 607.689
12.000 509.535 105.938 611.135
14.000 513.658 124.265 615.258

Table 7.1: Length of MD shown in figure 7.2, with varying β. Total MD is including
the vertical section.

The total MD values in table 7.1 are all well below 150 cm. Taking into account
that these calculations are based on the KOP being exactly at a depth of 101.6 mm,
and that the angle at KOP stays constant. These calculations are approximations
intended to show that most wells within the guidelines are below the set 150 cm
limit.
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7.1.2 Mechanical Limitations

The main mechanical components to consider, are the downhole tools. Mainly the
BHA-assembly. It consists of three sections, a top, mid and bottom section. The
dimensions of the three parts given in following figures 2.3, 2.4 and 2.5. The metal
and total length of the BHA limits the mobility of the drilling rig. The design is
optimised for a well trajectory which favours straight sections with constant inclina-
tion. The static angle for the bent section at 8◦ will be the deciding factor horizontal
displacement by just rotating the downhole motor. For change in azimuth both the
pneumatic and top-drive will rotate simultaneously. This method of drilling is not
time efficient and limits the potential ROP of the system. Considering these factors,
a trajectory should be designed by minimizing change in azimuth for time efficiency.

7.2 Trajectories: Competition Rock

To drill the vertical section of the rock, both the top-drive and pneumatic will rotate
simultaneously. When a TVD of 101.6 mm is reached, the top drive will be turned
off and drilling will commence using the downhole pneumatic motor. The simplest
and preferred trajectory, is a trajectory with a kickoff point at the 101.6 mm mark,
followed by a linear build section down to the finale depth. With close to no change
in azimuth and movement along the north-axis. Generating wells for the competition
rock will be done by scaling up the dimensions, due to the code being optimised
for integers and not floats. All real values in meters will be multiplied by 104 for
the code. Example: dimensions of the rock will be set to ( 3000 x 6000 x 6000 ) m
in the code. Likewise, to recreate a horizontal displacement of 70 mm, this will be
equal to 700 m in the code.
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Figure 7.3: The simplest form of trajectory, with no change in azimuth and a small
displacement along the east-axis.

7.2.1 Definition of Trajectory Parameters

The parameters of the trajectory are defined as, S = [vS,nS,eS] = [0,0,0] and E =
[4984,100,700]. A change along the north-axis is added, based on experience from
previous year. A few of the drilled deviated wells have some deviation along the
north-axis. In some cases due to problems related to loose connection or vibrations.
Thus, change in azimuth must may be considered. Initial and finale inclination are
both set to 8 degrees, and initial and finale azimuth are set to 90 degrees. At vS the
parameter md is set to 1016 m. Survey points are set to 20, and upper DLS limit is
8◦/30m.

7.2.2 Simple Trajectories

With given values, the optimal dS and dE are both calculated to be 120. Resulting
in following trajectory.
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Figure 7.4: dS = dE = 120

Figure 7.5: Same as figure 7.4, but with axes limits equal to that of the competition
rock.
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Figure 7.5 is to emphasize that the displacement along the north-axis is minimal,
relative to the dimensions of the competition rock. The total measured depth of
this trajectory was 604.991 mm when scaled down to millimeters, nearly identical
to the 604.894 mm, calculated using a constant angle of 8 degrees and no change in
azimuth. The slight increase in MD is due to the displacement along the north-axis.
A trajectory of 604.991 mm in MD is well within what the rig is capable of with
respect to the ROP and time limit of the competition.

Figure 7.6: V/E and V/N plotted with survey points, dS = dE = 120.

The MD can be further reduced by assigning dS and dE with lower values, and having
no displacement along the north-axis. The new trajectory shown on figure 7.7 is a
straight line from our zero-point, where MD is 101.6 mm and down to finale vertical
depth of 498.4 mm. The finale total measured depth is 604.892 mm. Compared to
the previous trajectory with 10 mm displacement along the north-axis and MD of
604.991 mm, the decrease in MD is insignificant. All these values were scaled down
to millimeters.
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Figure 7.7: dS = dE = 3.

Figure 7.8: Survey measurements for trajectory 7.7.
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7.2.3 Complex Trajectories

In this paper, complex trajectories are defined to be: trajectories which have one
or multiple target points between start-point S and end-point E. This is how the
competition was set to be, where on the day of the competition teams would be given
one or multiple [X,Y,Z] coordinates to hit before exiting the rock. The position of
these target points must be within a reasonable interval, based on the limitations
of the drilling rig. The old guidelines for the 2018-2019 competition will be used to
get a general idea of the deviation from [0,0,0] that can be expected.

Figure 7.9: Scoring system used for the 2018-2019 competition [12].

Figure 7.9 (2018-2019 guidelines) shows the maximum score that can be obtained for
deviation along the north-south axis and east-west axis. For both axes the maximum
score is given in interval ± 2.4”, which in millimeters is ± 60.96 mm. Negative
displacement in the vertical-axis is not mentioned in the guidelines, thus the interval
for the vertical-axis is set to [0,498.4] from the KOP. The complex trajectories are
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generated and visualised in parts. For example: [XS,YS,ZS] to [Xi,Yi,Zi], [Xi,Yi,Zi]
to [Xi+1,Yi+1,Zi+1] and [Xi+1,Yi+1,Zi+1] to [XE,YE,ZE]. Between every iteration,
the survey data is exported to an Excel file, where all the survey data is collected.
Finally, using a simple python script. The data is pulled from the Excel file and
used to visualise the full trajectory.

Figure 7.10: Unoptimised complex trajectory with two target points.

Trajectory 7.10 was generated with no regards to optimal dS and dE, in this case
those were set to dS = dE = 120. This trajectory was generated with target points
[E,N,V] being [300,100,2000] and [200,50,3000], with end-point [200,50,4984]. Pur-
pose of this trajectory was to test the capabilities of the code with regards to using
it for optimisation between target points and a chosen exit point. Total MD of this
trajectory was 604.007 mm.
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Figure 7.11: Visualisation used for designing complex trajectories

When designing a complex trajectory, one can imagine each point on a isolated layer
in the rock. This is visualised in figure 7.11. Where S and E are start and end-points
and T1 and T2 are target points 1 and 2. For this figure only two targets points were
chosen. Each point is defined by [E,N,V] coordinates on that layer. The trajectory
must go through these selected target points. The figure shows ”West-East” and
”North-South”, where ”West” and ”South” are indicated by negative values on their
respective axes.

Table 7.2 shows a planned well with target point which a trajectory will be generated
for. Between S and E, three targets point have been defined. The code will be run
a total of four times, the intervals are S-T1, T1-T2, T2-T3 and T3-E. For every
interval the optimal dS and dE will be obtained and used for trajectory generation.
md0 for the first interval is 1016 m, for the second interval md0 will be set to the
total MD of previous interval. Same procedure is repeated for all intervals.
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E N V I1 I2 A1 A2
S 0 0 0 8 8 0 45

T1 300 300 1500 8 9 45 60
T2 450 400 3000 9 9 60 75
T3 600 500 4000 9 9 75 80
E 600 600 4984 9 9 80 80

Table 7.2: Target points.

All trajectories are generated using optimal dS and dE, given in table 7.3.

dS dE
S-T1 211 181

T1-T2 91 91
T2-T3 71 91
T3-E 161 161

Table 7.3: dS and dE values for the different intervals

Figure 7.12: Complete trajectory, axes limits scaled up to that of the competition
rock.
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Figure 7.12 shows the complete trajectory starting at S, going through all three
target points and ending at E. A noticeable change in direction is observable at
point T1 at 1500 m. This is clearly seen on figure 7.13 as well. The MD of the
well, including the vertical section down to 1016 m, is 6092.825 m. When scaled
down to millimeters, this is equal to 609.2825 mm. Approximately 5 mm longer
than previous trajectories. This is due to displacement along North and East-axis
that corresponds to the maximum displacement expected, based on the guidelines
2018-2019 [12].

Figure 7.13: Trajectory 7.12 from V/E and V/N perspective.

Section T3-E is characterised by its curvature, shown on figure 7.14. The first half
of the trajectory is above 600 m on the East-axis, then it turns around and moves
under the 600 m on the same axis, finally it moves along the positive direction of
the East-axis and ends on 600 m. All values for this section, including the DLS
are withing the defined limits. As the trajectory is generated in 3D space with no
physical attributes, trajectories with high degree of curvature must be discussed.
Section T3-E would require the BHA-assembly to rotate 180◦ twice. This is not
time efficient or a practical solution considering the technical capabilities of the rig.
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(S-T1) dS = 211 and dE = 181 (T1-T2) dS = 91 and dE = 91

(T2-T3) dS = 71 and dE = 91 (T3-E) dS = 161 and dE = 161

Figure 7.14: Trajectory 7.12 in sections.

To achieve a linear and practical trajectory for the T3-E section. The eastern-
coordinates for T3 and E can be changed to increase or decrease in one direction.
Else, if the eastern-coordinates are set to stay constant at T3 and E, as the northern-
coordinates increase, a trajectory with a S-shape is inevitable. This can be done,
by changing the E coordinates to [E,N,V] = [700,600,4984]. Only change applied is
the increase in displacement along the eastern-axis with 100 m. No changes have
been applied for S, T1, T2 and T3. The new trajectory for T3-E on figure 7.15 is
a more time efficient option, compared to the shorter alternative which required a
180 degree rotation of the BHA. The total trajectory from S to E with new T3-E
section has a MD of 6097.141 m or 609.714 mm when scaled down. An increase of
approximately 0.5 mm, insignificant compared to overall time efficiency.
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E N V I1 I2 A1 A2
S 0 0 0 8 8 0 45

T1 300 300 1500 8 9 45 60
T2 450 400 3000 9 9 60 75
T3 600 500 4000 9 9 75 80
E 700 600 4984 9 9 80 80

Table 7.4: Targets point with new E-point.

Figure 7.15: Improved (T3-E): dS = dE = 121
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Figure 7.16: Trajectory 7.12 from V/E and V/N perspective with new T3-E section.

7.3 Implementation of Trajectory Optimization

The method presented in this chapter can be implemented and used for planning
of a trajectory. The user must take into account that generated trajectories do not
consider the physical properties of the rock or the capabilities of the rig. Thus,
the trajectories generated are to be used as an approximation of what the finale
drilled well might look like. The survey measurements generated by the code, can
be used as a template to follow and for confirmation that the drilling is commencing
according to the generated survey measurements. The code can be implemented as
a separate section in the GUI before drilling is initiated. The person responsible
for the drilling session, will be assigned to define the target points. The GUI must
be intuitive and give the user the choice between a simple or complex trajectory.
Simple trajectory requiring to define S and E, together with values for azimuth,
inclination, DLS, survey points and md0.
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Figure 7.17: How a GUI for trajectory optimization can be presented, this example
is for the simple case.

The grey rectangles in figure 7.17 are for data input. The idea is to integrate the code
into the existing control system, where all survey measurements and visualisation
of the trajectory is accessible to the user. The data from the generated survey
measurements can be imported to the main GUI. So that the trajectory that is
visualised in real time, with data from the sensor package can be plotted together
with the generated trajectory for real time comparison. The GUI that is used today,
and designed for the 2019 competition is shown on figure 7.18.
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Figure 7.18: The Digital Well Environment-GUI that is currently used on the rig
[29].

The ”Digital Well Environment” includes visualisation of the well being drilled from
different angles, by importing data from generated survey, both can easily be pre-
sented to the driller and audience. For the complex trajectory, the GUI can be
designed with the same structure as on figure 7.17. A system must be in place to
run multiple iterations to find dS and dE between all intervals. A flowchart has been
designed 7.19 to visualise the logic. The user is asked define all start and end-point
conditions. Then n-amount of target points (T-points) should be defined, next step
is to assign values to the target points. The system should warn the user, if input
will lead to a trajectory with high degree of curvature, as discussed in 7.2.3. If
that is not the case, or the user chooses to ignore the warning, proceeding step is
calculating optimal dS and dE values. Using these, a survey will be printed, where
the coordinates will be used to visualise the trajectory. With approval of the user,
the data will be exported to main GUI, if not the option will be given to hard code
dS/dE. If user manually assigns values to dS/dE the code will repeat previous step,
otherwise a choice will be given to redefine target points or all points, repeating the
whole process.
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Figure 7.19: Flowchart for trajectory optimisation implementation.
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7.4 Position Uncertainty Calculations: Generated

Wells

This part is dedicated to the visualisation of ellipses and ellipsoids of uncertainty,
presented in chapter 5 on generated wells. As the work on the downhole sensor
package has been delayed and can not be used this semester to collect data while
drilling. Generated wells within the capabilities of the rig will be used as data.
The MATLAB script previously presented will be used, by importing survey points
from generated wells. A substantial change to the calculations will be the change
in number of weighting functions. As a majority of the weighting functions used on
the field data from the Excel spreadsheet [24], are for MWD-tools developed for full
scale drilling rigs. And can not be applied for the laboratory drilling rig.

7.5 Considering Weighting Functions

For the rig, the main weighting functions considered are those for the accelerometer
and magnetometer. The weighting function δp

δεi
is given with labels according to

the error it represents. For example ABXY is the weighting function δp
δεi

for ac-
celerometer bias error for x and y-axis. In this case study, only bias and scale-factor
errors for the accelerometer and magnetometer will be considered. These have been
chosen due to the importance for acquiring data such as azimuth and inclination.
In addition to inclination and azimuth data being the largest uncertainties for the
laboratory drilling rig.

7.5.1 Accelerometer Bias Error

Uncorrected accelerometer bias will contribute to position error and pitch-or-roll
angle error for orientation systems. Where roll is rotation about the x-axis and
roll is rotation with respect to the y-axis. The bias error for accelerometers are
measured in mg, which is milli-g’s [38]. In addition a bias error magnitude must be
specified for the MWD error model, to be used in the weighting functions. Where
the the gravitational acceleration is often set to g = 9.81m/s2. The accelerometer
bias errors and their respective weighting functions has to be defined for all three
axes of the sensor. In the data-sheet for our sensor the following values are given
for the bias errors [23].
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Bias Description Magnitude Unit
Initial Tolerance Board-level, all axes ±50 mg

Table 7.5: Accelerometer specifications for the ICM-20948 sensor, with focus on bias
error.

The magnitude of the bias error can be set to σbias = 0.05m/s2. Having identified
the magnitude of the bias error for the specific sensor used. Following weighting
functions for accelerometer bias error for x,y and z are presented [41].

ABXY =
1

G

 0
−cos(I)

tan(θ)cos(I)sin(A)

 (7.1)

ABZ =
1

G

 0
−sin(I)

tan(θ)sin(I)sin(A)

 (7.2)

7.5.2 Accelerometer Scale-Factor Error

Similar to the bias error, the scale-factor error contributes to errors in position cal-
culations. Where the bias error is a constant offset, the scale-factor error increases
as the input accelerations increases. Thus, the total error effect is when the accelera-
tion range is wide [38]. In [23], the data sheet provides us with the scale-factor error
values (e.g. sensitivity) for the accelerometer where σ = 0.5% = 0.005. Weighting
functions for the scale-factor error from the accelerometer are [41]:

ASXY =

 0
sin(I)cos(I)√

2

− tan(θ)sin(I)cos(I)sin(A)√
2

 (7.3)

ASZ =

 0
−sin(I)cos(I)

tan(θ)sin(I)cos(I)sin(A)

 (7.4)

7.5.3 Magnetometer Bias Error

For the magnetometer the data sheet provides us with a zero-field output of ± 2000.
The sensor is a digital 16-bit device, where the magnetometer has a fixed range of
± 4900 µT , giving a full range of 9800µT [23]. Giving us
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9800µT

216
= 0.14953µT/bit (7.5)

With a tolerance of ±2000LSB in zero-field conditions, LSB can be converted to
µT with following equation.

0.14953µT/bit · 2000LSB = ±299µT (7.6)

Following terms are weighting functions for the magnetometer bias errors. Where σ
= 299 µT .

MBXY =

 0
0

−cos(I)sin(a)
Bcos(θ)

 (7.7)

For the z-axis:

MBZ =

 0
0

−sin(I)sin(a)
Bcos(θ)

 (7.8)

7.5.4 Magnetometer Scale-Factor Error

For a 16-bit sensor the general sensitivity will be

1

216
= 0.00152 (7.9)

The scale-factor error of the magnetometer is σ = 0.00152, and weighting functions
from [41]:

For XY, assuming scale-factor error is systematic

MSXY =

 0
0

sin(I)sin(A)(tan(θ)cos(I)+sin(I)+cos(A))√
2

 (7.10)

For scale-factor error z-axis
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MSZ =

 0
0

−(sin(I)cos(A) + tan(θ)cos(I))sin(I)sin(A)

 (7.11)

7.5.5 Limitations

The spreadsheet from ISCWSA states ”Although an attempt has been made to
ensure that the formulation is general, no assumptions should be made as to the
validity of the data on any other well paths or with any other error models” [24].
For this study, a majority of the weighting functions will not be included, and the
ones mentioned will have their magnitudes changed based on the data-sheet [23].
The magnitude σ of the error is according to ISCWSA determined by finding the
standard deviation of an error, based on test data [41]. Due to time constraints,
experiments have not been conducted to map the error distribution of the sensors.

7.6 Magnetic Variables

Values for magnetic dip, geomagnetic field strength and declination are all collected
from maps developed by National Center For Environmental Information et.al. The
data which is used, will be approximately for the Stavanger area, and not precisely
the location of the drilling rig at the University of Stavanger. Magnetic dip angle is
set to 72◦ [30], geomagnetic field strength is 51000 nT [32] and declination is set to
2◦ [31]. Convergence is 0◦ as reference is true north. The gravitational acceleration
is set to 9.81m/s2 based on data from [33].

7.7 Trajectory

For calculation of EOU a simple trajectory with a start- S and end-point E will
be generated. A constant azimuth of 90◦ and inclination of 8◦ is preferred. As
previously demonstrated, the dimensions for the competition rock will be scaled up.
A simple trajectory is chosen for this part of the study, as the main task is to apply
the methodology of uncertainty calculations for a laboratory rig, using generated
data. The trajectory will be generated from the KOP. The trajectory has following
coordinates, S = [E,N,V] = [0,0,0] and E = [700,1,4984]. Initial and finale inclination
at 8◦, initial and finale azimuth 90◦. Survey points n = 100, and md0 at S is 0 m.
Using calculated optimal dS = 11 and dE = 21.
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7.7.1 Data Formatting

The survey measurements from the generated survey is exported from the Python
script to Excel for adequate formatting. Based on the azimuth along the trajec-
tory, following terms have to be calculated: AzT, AzG and AzMag. Which are the
azimuth values for True North, Grid North and Magnetic North. Found using con-
vergence and declination values. All parameters with degrees as unit, are converted
to radians. Data must be formatted in Excel, such that the MATLAB script can eas-
ily extract necessary data such as MD, AzT, AzG, AzMag, dip angle, gravitational
acceleration, total field strength, σ (magnitude of weighting functions), inclination
and TVD.

7.8 Results and Discussion

The trajectory itself is visualised on figure 7.20. The axes are scaled up, and the
displacement of 700 m along the East-axis is equal to 70 mm when scaled down to
the capabilities of the rig.

Figure 7.20: Trajectory which position uncertainty calculations will be done for.

Figure 7.21 shows the calculated ellipsoids using the 3x3 covariance matrix with
a confidence level of 95%, k = 2.7954. The ellipsoids are plotted for every survey
point, based on the data generated using the Bezier method.
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Figure 7.21: Ellipsoids of uncertainty, k = 2.7954.

Due to displacement along East-axis and change in weighting functions and their
respective magnitudes. The uncertainty is largest along the E-axis. This is clear from
observing the covariance matrix sorted in 1x6 array as discussed earlier in the thesis.
The second column from left, being the EE or σ2

E is the largest element in the 3x3
covariance matrix. The high variance σ2

E means that the data in eastern coordinates
(NEV-axes) have a higher spread compared to the other variances. Resulting in a
higher uncertainty of the true position along the East-axis.

Figure 7.22: Covariance matrix 3x3 elements, k = 2.7954

The change in radii of the ellipsoids is visualised in figure 7.23. Where the red lines
are the semi-major axis along the East-axis (80.1 m) and the green lines are the
semi-minor axis along the North-axis (33.5 m). The distance between two lines of
the same colour is equal to the total length of the ellipse along that axis.
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Figure 7.23: Semi-major and semi-minor axes, k = 2.7954 from 3x3 covariance
matrix (NEV).

Compared to the field case, the uncertainty is considerably smaller. This is mainly
due to the elimination of over twenty weighting functions that would lead to a larger
accumulation of error with increasing well depth. In addition to the ellipsoids, the
ellipses of uncertainty can be plotted based on the 2x2 covariance matrix. Where k
= 2.4477 for 95% confidence level for two dimensions. The uncertainty ellipses are
rotated with respect to their eigenvalues on figure 7.24. The ellipses are plotted for
N/E axes for every survey point. This forms a cone shape around the trajectory,
which with 95% probability the trajectory will be within. As the trajectory moves
along the East-axis, the uncertainty ellipse shifts it orientation making the uncer-
tainty largest along the East-axis. As k is smaller for a 95% confidence level for two
dimensions, compared to three dimensions. Logically, the axes of the uncertainty
ellipse are smaller for the 2x2 covariance matrix. As the formula for semi-axes is
Semi− axisi =

√
λi ∗ k.
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Figure 7.24: Based on 2x2 covariance matrix, k = 2.4477.

Figure 7.25: Semi-major and semi-minor axes, k = 2.4477 from 2x2 covariance
matrix.
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Figure 7.26: Semi-major and semi-minor axes, k = 2.4477 from 2x2 covariance
matrix in centimeters.

For figure 7.24 the semi-major (E) axis is 70.6 m and semi-minor (N) axis 29.4
m. These are smaller than the 80.1 m and 30.5 m axes calculated from the 3x3
covariance matrix. As the 2x2 covariance matrix do not include the variance for
depth measurements, thus the total uncertainty is smaller compared to the 3x3
case. If the trajectory is scaled down, the 700 m displacement along the East-axis
corresponds to 70 mm. Assuming the uncertainty stays proportional and can be
scaled down using the same factor as for the trajectory coordinates. A semi-major
axis of 80.1 m in the MATLAB script would corresponds to a 0.00801 m or 8.01
mm uncertainty on the rig, shown on figure 7.26. Where the data is scaled up,
where 0.07 m displacement on the rig, is equal to 700 m displacement in the script.
The small values for uncertainty for the rig are expected, as the overall scale is
considerably smaller when compared to field data. The precise and small uncertainty
values for this case, is due to good survey measurements from the generated data.
Technical challenges that must be solved before implementing following system on
the laboratory drilling rig. Is the calculation of well coordinates in [E,N,V] format,
as discussed in chapter 3. The quality of the uncertainty measurement are directly
related to the quality of the survey measurements. If the sensor-package used on the
rig, leads to unreliable data for coordinates of the well and inclination and azimuth
values. The uncertainty calculations will be unreliable and not representative of
the downhole conditions. As the uncertainties calculated are with magnitudes σ
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from the data-sheet of the proposed sensor, and not based on the proposed methods
from ISCWSA, where the errors of the sensors is mapped through experiments. The
calculated ellipsoids and ellipses for the rig case are not necessarily correct.

This case study considered a total of 8 weighting functions with magnitudes from
the data-sheet of the sensor. Yet, with a small amount of weighting functions the un-
certainty along the E-axis is up 80.1 m. Compared to the industry cases discussed
earlier, the uncertainty is disproportionately larger than the field case mentioned
from [42]. Preferably the code used to generate the trajectories for test data, is
optimised for small scale use. As scaling up and down the data can lead to errors.
In addition, it is not verified that the uncertainty calculations scale proportionally.
ISCWSA highlights the importance of correct survey interval, as this need to be suf-
ficiently short for accurate calculations. The report recommends using the industry
standard of 100 ft or 30 m as a general rule [41]. Whereas the script used to generate
survey measurements currently do not offer the options to set survey measurement
interval, and is randomly defined based on the trajectory boundaries and selected
survey points to print. Currently, the ∆MD is different throughout the u = [0,1]
interval. Meaning that the depth between survey point 1 and 2 can be 20 m, then
between survey point 2 and 3 the depth can be 45 meters. For these calculations, a
constant survey interval should be programmed, as this is the standard the ISCWSA
model follows.

As the ISCWSA is mainly developed for industry cases, it must be confirmed that
these methods can be applied for smaller case systems. An error in one direction of
8.01 mm when the total MD is over 60 cm is negligible for the laboratory drilling
rig. If the downhole sensor output lacks in data quality for azimuth and inclination,
the uncertainty will be larger. Moving average filters are used to average out the
data output from the sensors to eliminate heavy fluctuations, as downhole vibra-
tions can produce data with noise. Disadvantage of using filters to average data
output is the delay of data, depending on the defined window of the filter. Correct
and precise inclination and azimuth values are essential to calculate trustworthy
values for easting (E) and northing (N) coordinates. With improved sensor data
the simple task of visualising the trajectory in 3D would be simple, and helpful for
the driller and audience. The trajectories currently drilled with the rig, are simple
and are characterised by a vertical section, a KOP and a small displacement along
the horizontal plane. As the rig becomes more complicated and capable of more de-
manding complex trajectories, the uncertainty calculations will become valuable to
determine the true position of the bit. As the now cancelled Drillbotics competition
2020 was based on hitting target points decided by the jury. Having the possibility
to calculate uncertainty of the bit position would be an advantage to decide if the
target is hit with a predefined confidence level.
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Or if the driller should consider tripping out a small section of the well, and initiate
directional drilling from a new depth, to increase the probability of hitting the target.

The diameter of the well does not stay constant during drilling. Based on previous
experiments, hole diameter enlargement is often due to reaming of the well or vi-
brations. On figure 7.1 the well diameter is larger than the bit diameter in some
sections. As directional drilling is initiated, lateral vibrations are introduced. The
larger well diameter will be included in the uncertainty calculations. Likewise, the
magnitude of which the well diameter has increased will be reflected in the error
ellipsoids. As the well diameter increases in size over the bit diameter, the larger
the uncertainty calculations will become. As more experimental data is collected,
when these models and the sensor are installed on the BHA. A threshold or interval
can be defined for what dimensions of uncertainty is expected at different depths
with given sensor configuration. If anomalies are detected, where the uncertainty
calculations are larger than expected, it can be a sign of well diameter above bit
diameter. Figure 7.27 illustrates how both pre-planed and drilled trajectory can be
visualised on the same plot, including position uncertainty calculations.

Figure 7.27: Pre-planned trajectory in blue, drilled trajectory and ellipsoids of un-
certainty in red.
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Chapter 8

Conclusion and Recommendations

8.1 Conclusion

By implementing error models adopted by the industry, uncertainty calculations
have been performed for both field data and generated trajectories. For the gen-
erated trajectories, the magnitudes and number of weighting functions were chosen
with the physical laboratory rig in mind. The purpose of these test were to apply
the methods used in by the industry for small scale use. To make the transition
easier when the models presented are in the future fully integrated on the rig.

As the industry and Drillbotics competition moves towards a digital future, these
methods will be valuable for time efficient and user friendly well planning. The
well planning of trajectories is an easy task where only a few parameters are to be
defined. The generated trajectory can be plotted with the real trajectory drilled to
stay on course. By being able to compare both trajectories in real time, the driller
can decide if the operation is going according to the plan. As presented, currently
the code for trajectory optimisation is only functional for larger dimensions. The
scalability of depth and displacement in the horizontal plane, are believed to scale
proportionally. The main concern for having to scale up the system for trajectory
optimisation, is how it affects the position uncertainty calculations. Thus, the code
should be optimised for floats, so the user can give the depth of the rock as 0.6 m
rather than 6 m, 60 m, 600 m etc. Due to extraordinary circumstances, the work
related to the new sensor was not finalised. Thus, the proposed methods have not
been tested with data from the sensor during drilling.

With methods to calculate position uncertainty calculations on small scale system,
the aim is to recreate realistic industry scenarios in a laboratory setup, opening the
possibility to drill multiple wells from the same pilot hole. The code for plotting the
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uncertainty ellipses/ellipsoids is working, and can be used for real field data given
that the necessary data is available. The code calculates the covariance matrix
in NEV and HLA axes, the latter calculated using the cosine directional matrix.
These can be used to calculate the radii of the ellipse or ellipsoid along the principal
axes. With the possibility to visualise the ellipsoids together with the trajectory,
the driller gets a clear picture of the well. For future competitions and research
projects, this opens the possibility to do research on uncertainty calculations in a safe
and controlled laboratory environment. Where different sensors and configurations
can be used to drill different well profiles for research, but also to optimise the
rig for the Drillbotics competition. With the current rig setup the trajectories are
limited to simple wells with straight section. As the deviated drilling techniques and
mechanical components improve, the uncertainty generations will play a increasingly
important role. In addition the methods presented in this thesis is highly relevant
for UiS Drillbotics Team B, as they operate in a exclusively digital environment.

8.2 Recommendations

This section is dedicated to personal recommendations from the writer to future
members of the project.

• Sensors: Implementation of a sensor-package with high precision and data
quality. A thorough method for calibration of sensor should be defined. A
proposed and discussed method is to buy a robot arm with integrated mapping
system. Mount the proposed sensor to be used downhole on the robot arm
and calibrate accordingly. The data from the sensor attached to the arm
should be calibrated with respect to the mapping system of the robot. All
sensor errors must be defined based on test data. As this data is necessary
to define the standard deviation to determine the magnitude σ used for the
weighting function for calculations of position uncertainty. Shielding of the
sensor components. It has been observed that the electromagnetic interference
from the top drive when turned on, affects the data from the sensor. A proper
shielding solution of the sensor components and wires, or the top drive itself
should be worked out.

• Trajectory Optimisation: The current state of the trajectory generation
script for well planning and visualisation works well. Yet, the script should
be optimised for smaller scale use, as currently the script cannot correctly
interpret floats, just integers. Other options that can be added: 1. Define the
survey measurement interval, as in take a measurement for every X meters. 2.
An integrated solution to add multiple points that the trajectory should hit,
before ending at end-point E.
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• Uncertainty Calculations: Streamline the script and translate it to Python,
so that it can be implemented directly into the control system of the laboratory
rig. Develop an intuitive GUI where user can simply choose which weighting
functions should be considered and define their respective magnitudes. For
ellipsoid visualisation, this should be done with respect to their orientation
and eigenvalues. This was only implemented for the 2D-cases this year. More
testing is necessary, collaboration with a company that is willing to give access
to survey measurements and their calculated ellipsoids for comparison and fine
tuning. Relies on quality data from the sensor, data quality from the sensor
should be prioritised for reliable uncertainty calculations.

• Mechanical: The main mechanical part to reconsider is the BHA. A short
BHA is preferred as it allows the system to be more flexible and mobile con-
sidering directional drilling. Steel is great for durability and for strength, but
challenging for directional drilling at this scale. A more unorthodox approach,
experimenting with different materials can be valuable. Where ductility and
flexibility is prioritised, at the same time the material should have durability
to handle vibrations, erosion and heat. By keeping the same design philoso-
phy used today, where the BHA consists of multiple parts screwed together.
A new design could consist of stabilizers made of steel, and the rest of the
BHA made using softer and more flexible material with smaller diameter. To
avoid friction and heating problems from having contact with the rock. The
distance between the sensor package and the bit should be minimized. By
placing the sensors close to the bit, the data [E,N,V] would be a more precise
representation of the bits location. A recommendation was made last year
by E. Løken and J.Løkkevik, 2019 [29] to place a sensor immediately behind
the bit with internal memory that could be extracted after a drilling session
was completed. This was to avoid problems with wiring over rotating parts.
This would be an interesting approach to fine tune the uncertainty calculations
model with reliable data.

After the implementation of the pneumatic motor (downhole motor) for the
2019 competition, vibrations are less of an issue. As some vibrations are still
present during drilling, this leads to data with noise, or rapid fluctuations in
data.This problem is especially prevalent for the WOB measurements, as axial
vibrations are the main issue. These external forces may damage equipment
such as the sensors which can results in data of low quality, or loss of downhole
data. A different approach to drilling should be considered and experimented
with. Where the priority is higher RPM and lower WOB. A spring element in
the BHA can be a potential solution for dampening the axial vibrations.
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Appendix A

List of Error Sources and
Weighting Functions

Following weighting functions are from [41].

i



ii



Appendix B

Code: Trajectory Optimization

1 # To add a new cell , type ’# %%’

2 # To add a new markdown cell , type ’# %% [markdown]’

3

4 # %%

5 import numpy as np

6 import matplotlib.pyplot as plt

7 import seaborn as sns

8 from matplotlib.colors import LogNorm

9 import math as m

10 import random

11 import pandas as pd

12

13

14 # %%

15 #given data

16 v0,v1=0 ,1200 # vertical depth of point 0,1

17 e0,e1=0 ,200 # east coordinates of point 0,1

18 n0,n1=0 ,510 # north coordinates of point 0,1

19 inc0 ,inc1=np.radians (0.0001) ,np.radians (90) # inclination angles

of point 0,1 in deg (transfer to radian)

20 az0 ,az1=np.radians (0.0001) ,np.radians (0.0001) # azimuth angles

of point 0,1in deg (transfer to radian)

21

22 ### we will get the optimum values of k0 and k1 from the coding of

trajectory optimization

23 md0= 101.6 # measure depth of point 0

24 celln =50 #number of survy points

25

26

27 # %%

28 k0=range (100 ,5000 ,100) # free parameter at point 0

29 k1=range (100 ,5000 ,100) # free parameter at point 1
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30 csv ,csn ,cse ,cev ,cen ,cee =[] ,[] ,[] ,[] ,[] ,[]

31 optiValues = []

32 iter = 0

33 for i in k0:

34 for j in k1:

35 w0v=m.cos(inc0)

36 w0n=m.sin(inc0)*np.cos(az0)

37 w0e=m.sin(inc0)*np.sin(az0)

38 k0w0v=i*w0v

39 k0w0n=i*w0n

40 k0w0e=i*w0e

41 w1v=m.cos(inc1)

42 w1n=m.sin(inc1)*np.cos(az1)

43 w1e=m.sin(inc1)*np.sin(az1)

44 k1w1v=j*w1v

45 k1w1n=j*w1n

46 k1w1e=j*w1e

47 csv.append(v0+k0w0v)

48 csn.append(n0+k0w0n)

49 cse.append(e0+k0w0e)

50 cev.append(v1 -k1w1v)

51 cen.append(n1 -k1w1n)

52 cee.append(e1 -k1w1e)

53 breaker = True

54 bv,bn,be,Bv,Bn,Be,B,Bm,tv,tn,te,bbv ,bbn ,bbe ,BB,kv,kn,ke,km

=[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]

55 U,v,n,e,md,dls ,Dls ,MD=[] ,[] ,[] ,[] ,[] ,[] ,[] ,[]

56 for num in range(0,celln +1):

57 u=float(num/celln)

58 U.append(u)

59 v.append(v0*(1-u)**3+3*u*csv[iter ]*(1-u)**2+3* cev[iter

]*(1-u)*u**2+u**3*v1)

60 n.append(n0*(1-u)**3+3*u*csn[iter ]*(1-u)**2+3* cen[iter

]*(1-u)*u**2+u**3*n1)

61 e.append(e0*(1-u)**3+3*u*cse[iter ]*(1-u)**2+3* cee[iter

]*(1-u)*u**2+u**3*e1)

62 if (num > 0):

63 md.append(md[num -1]+m.sqrt((v[num]-v[num -1]) **2+(n[

num]-n[num -1]) **2+(e[num]-e[num -1]) **2))

64 else:

65 md.append(md0)

66 bv.append (-3*v0*(1-u)**2+3*(1 -u)*(1 -3*u)*csv[iter

]+3*(2 -3*u)*u*cev[iter ]+3*v1*u**2)

67 bn.append (-3*n0*(1-u)**2+3*(1 -u)*(1 -3*u)*csn[iter

]+3*(2 -3*u)*u*cen[iter ]+3*n1*u**2)

68 be.append (-3*e0*(1-u)**2+3*(1 -u)*(1 -3*u)*cse[iter

]+3*(2 -3*u)*u*cee[iter ]+3*e1*u**2)

69 Bv.append(bv[num]*bv[num])

70 Bn.append(bn[num]*bn[num])
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71 Be.append(be[num]*be[num])

72 B.append(Bv[num]+Bn[num]+Be[num])

73 Bm.append(np.sqrt(B[num]))

74 tv.append(bv[num]/Bm[num])

75 tn.append(bn[num]/Bm[num])

76 te.append(be[num]/Bm[num])

77 bbv.append (6*v0*(1-u) -6*csv[iter ]*(2 -3*u)+6*cev[iter

]*(1 -3*u)+6*u*v1)

78 bbn.append (6*n0*(1-u) -6*csn[iter ]*(2 -3*u)+6*cen[iter

]*(1 -3*u)+6*u*n1)

79 bbe.append (6*e0*(1-u) -6*cse[iter ]*(2 -3*u)+6*cee[iter

]*(1 -3*u)+6*u*e1)

80 BB.append(bv[num]*bbv[num]+bn[num]*bbn[num]+be[num]*bbe

[num])

81 kv.append (((1/B[num])*bbv[num]) -((BB[num ]/(B[num])**2)*

bv[num]))

82 kn.append (((1/B[num])*bbn[num]) -((BB[num ]/(B[num])**2)*

bn[num]))

83 ke.append (((1/B[num])*bbe[num]) -((BB[num ]/(B[num])**2)*

be[num]))

84 km.append(np.sqrt((kv[num]*kv[num])+(kn[num]*kn[num])+(

ke[num]*ke[num])))

85 dls.append(km[num ]*(180*30/ np.pi))

86 if (dls[num] >= 5):

87 breaker = False

88 if (breaker == True):

89 optiValues.append ([i,j,md[num]]) # the optimum values

of k0,k1 and its correspond md

90 iter += 1

91 min = optiValues [0][2]

92 opti = []

93 for l in range(len(optiValues)):

94 if optiValues[l][2] <= min:

95 opti.append(optiValues[l])

96 min = optiValues[l][2] # calling for k0 ,k1 whose

the min md among the optimum values

97 print(opti [-1])

98

99

100 # %%

101 k0=opti [ -1][0]

102 print(k0)

103

104

105 # %%

106 k1=opti [ -1][1]

107 print(k1)
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Appendix C

Code: Well Trajectory By Bzier

1 # To add a new cell , type ’# %%’

2 # To add a new markdown cell , type ’# %% [markdown]’

3 # %%

4 from IPython import get_ipython

5

6

7 # %%

8 import numpy as np

9 import matplotlib.pyplot as plt

10 import seaborn as sns

11 from matplotlib.colors import LogNorm

12 import math as m

13 import random

14 import pandas as pd

15

16

17 # %%

18 #given data

19 v0,v1=0 ,1200 # vertical depth of point 0,1

20 e0,e1=0 ,200 # east coordinates of point 0,1

21 n0,n1=0 ,510 # north coordinates of point 0,1

22 inc0 ,inc1=np.radians (0.0001) ,np.radians (90) # inclination angles

of point 0,1 in deg (transfer to radian)

23 az0 ,az1=np.radians (0.0001) ,np.radians (0.0001) # azimuth angles

of point 0,1in deg (transfer to radian)

24 k0,k1=400 ,500 # free parameters of point 0, 1 (control dls and

md of the curvature)

25 ### we will get the optimum values of k0 and k1 from the coding of

trajectory optimization

26 md0 =101.6 # measure depth of point 0

27 celln =50 #number of survy points

28
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29

30 # %%

31 # calculations

32 w0v=m.cos(inc0)

33 w0n=m.sin(inc0)*np.cos(az0)

34 w0e=m.sin(inc0)*np.sin(az0)

35 k0w0v=k0*w0v

36 k0w0n=k0*w0n

37 k0w0e=k0*w0e

38 w1v=m.cos(inc1)

39 w1n=m.sin(inc1)*np.cos(az1)

40 w1e=m.sin(inc1)*np.sin(az1)

41 k1w1v=k1*w1v

42 k1w1n=k1*w1n

43 k1w1e=k1*w1e

44 csv=v0+k0w0v

45 csn=n0+k0w0n

46 cse=e0+k0w0e

47 cev=v1 -k1w1v

48 cen=n1 -k1w1n

49 cee=e1 -k1w1e

50

51

52

53 # %%

54

55 U,bv ,bn ,be ,Bv ,Bn ,Be ,B,Bm ,tv ,tn ,te

=[],[],[],[],[],[],[],[],[],[],[],[]

56 bbv ,bbn ,bbe ,BB ,Bm ,kv ,kn ,ke ,km ,inc ,az ,dls ,TF

=[],[],[],[],[],[],[],[],[],[],[],[],[]

57 R,cv ,cn ,ce ,hv ,hn ,he ,PHI ,hcv ,hcn ,hce ,hct

=[],[],[],[],[],[],[],[],[],[],[],[]

58 v,n,e,md ,INC ,AZ ,TolFace =[] ,[] ,[] ,[] ,[] ,[] ,[]

59 def trajectory (*args):

60 for num in range(0,celln +1):

61 u=float(num/celln)

62 U.append(u)

63 v.append(v0*(1-u)**3+3*u*csv*(1-u)**2+3* cev*(1-u)*u**2+u

**3*v1)

64 n.append(n0*(1-u)**3+3*u*csn*(1-u)**2+3* cen*(1-u)*u**2+u

**3*n1)

65 e.append(e0*(1-u)**3+3*u*cse*(1-u)**2+3* cee*(1-u)*u**2+u

**3*e1)

66 if (num > 0):

67 md.append(md[num -1]+m.sqrt((v[num]-v[num -1]) **2+(n[num

]-n[num -1]) **2+(e[num]-e[num -1]) **2))

68 else:

69 md.append(md0)

70 bv.append (-3*v0*(1-u)**2+3*(1 -u)*(1 -3*u)*csv +3*(2 -3*u)*u*
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cev+3*v1*u**2)

71 bn.append (-3*n0*(1-u)**2+3*(1 -u)*(1 -3*u)*csn +3*(2 -3*u)*u*

cen+3*n1*u**2)

72 be.append (-3*e0*(1-u)**2+3*(1 -u)*(1 -3*u)*cse +3*(2 -3*u)*u*

cee+3*e1*u**2)

73 Bv.append(bv[num]*bv[num])

74 Bn.append(bn[num]*bn[num])

75 Be.append(be[num]*be[num])

76 B.append(Bv[num]+Bn[num]+Be[num])

77 Bm.append(np.sqrt(B[num]))

78 tv.append(bv[num]/Bm[num])

79 tn.append(bn[num]/Bm[num])

80 te.append(be[num]/Bm[num])

81 bbv.append (6*v0*(1-u) -6*csv *(2-3*u)+6*cev*(1-3*u)+6*u*v1)

82 bbn.append (6*n0*(1-u) -6*csn *(2-3*u)+6*cen*(1-3*u)+6*u*n1)

83 bbe.append (6*e0*(1-u) -6*cse *(2-3*u)+6*cee*(1-3*u)+6*u*e1)

84 BB.append(bv[num]*bbv[num]+bn[num]*bbn[num]+be[num]*bbe[num

])

85 kv.append (((1/B[num])*bbv[num]) -((BB[num ]/(B[num])**2)*bv[

num]))

86 kn.append (((1/B[num])*bbn[num]) -((BB[num ]/(B[num])**2)*bn[

num]))

87 ke.append (((1/B[num])*bbe[num]) -((BB[num ]/(B[num])**2)*be[

num]))

88 km.append(np.sqrt((kv[num]*kv[num])+(kn[num]*kn[num])+(ke[

num]*ke[num])))

89 inc.append(m.acos(tv[num]))

90 az.append(m.atan(te[num]/tn[num]))

91 dls.append(km[num ]*(180*30/ np.pi))

92 R.append (1/km[num])

93 cv.append(kv[num]/km[num])

94 cn.append(kn[num]/km[num])

95 ce.append(ke[num]/km[num])

96 hv.append ((tv[num]/np.tan(inc[num])) -(1/np.sin(inc[num])))

97 hn.append(tn[num]/np.tan(inc[num]))

98 he.append(te[num]/np.tan(inc[num]))

99 PHI.append(m.acos(hv[num]*cv[num]+hn[num]*cn[num]+he[num]*

ce[num]))

100 hcv.append ((hn[num]*ce[num]) -(he[num]*cn[num]))

101 hcn.append ((he[num]*cv[num]) -(hv[num]*ce[num]))

102 hce.append ((hv[num]*cn[num]) -(hn[num]*cv[num]))

103 hct.append(hcv[num]*tv[num]+hcn[num]*tn[num]+hce[num]*te[

num])

104 if inc[num]>0:

105 if hcv[num]>=0:

106 TF.append(PHI[num])

107 else:

108 TF.append (360-PHI[num])

109 INC.append(inc[num ]*180/ np.pi)
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110 AZ.append(az[num ]*180/ np.pi)

111 TolFace.append(TF[num ]*180/m.pi)

112

113

114 v[num]=round(v[num] ,3) # vertical depth

115 n[num]=round(n[num] ,3) # north coordinate

116 e[num]=round(e[num] ,3) # east coordinate

117 md[num]= round(md[num] ,3) # measure depth

118 inc[num]= round(inc[num] ,3) # inclnation

119 az[num]= round(az[num] ,3) # azimuth

120 dls[num]= round(dls[num] ,3) # dog leg severity

121 PHI[num]= round(PHI[num] ,3)

122 TF[num]= round(TF[num] ,3) # tool face angle

123

124 return list(zip(U,v,n,e,md ,inc ,INC ,az ,AZ ,dls ,PHI ,TF ,TolFace))

125

126

127

128 # %%

129 writer = pd.ExcelWriter(’OutputFromWell.xlsx’)

130

131 #configuration = [v0,v1,n0,n1,e0,e1,inc0 ,inc1 ,az0 ,az1 ,md0 ,k0,k1]

then your function will be

132 #def calculate_stuff (u, *configuration):

133 #[v0,v1,n0,n1,e0,e1,inc0 ,inc1 ,az0 ,az1 ,md0 ,k0,k1]= configuration

#unpackng all the variables

134 #return v, n, e, md, INC , AZ

135 result= trajectory(U,v,n,e,md ,inc ,INC ,az ,AZ ,dls ,PHI ,TF ,TolFace)

136 df=pd.DataFrame(list(zip(U,v,n,e,md ,inc ,INC ,az ,AZ ,dls ,PHI ,TF ,

TolFace)),columns =[’U’,’v’,’n’,’e’,’md’,’inc’,’INC’,’az’,’AZ’,’

dls’,’PHI’,’TF’,’TolFace ’])

137 print(df)

138

139 df.to_excel(writer , sheet_name=’Data’, index=False)

140 writer.save()

141 writer.close()

142

143 plt.plot(e,n)

144 plt.plot(e,n,v)

145 plt.xlabel(’East’)

146 plt.ylabel(’North’)

147

148

149 # %%

150 from mpl_toolkits import mplot3d

151 get_ipython ().run_line_magic(’matplotlib ’, ’notebook ’)

152

153

154 # %%
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155 plt.figure (1)

156 ax = plt.axes(projection=’3d’)

157

158 ax.plot3D(e, n, v, c=’r’)

159

160 ax.set_xlabel(’East’)

161 ax.set_ylabel(’North’)

162 ax.set_zlabel(’Vertical ’)

163 ax.invert_zaxis ()

164 ax.zaxis._axinfo[’juggled ’] = (1,2,0)

165

166 plt.tight_layout ()

167

168

169 # %%

170 from matplotlib.ticker import (MultipleLocator , FormatStrFormatter ,

171 AutoMinorLocator)

172

173 fig = plt.figure (2)

174

175

176 plt.subplot(3, 1, 1)

177 plt.title(’Cross sections ’)

178 plt.plot(e, n, ’-’)

179 plt.xlabel(’East’)

180 plt.ylabel(’North’)

181 plt.grid()

182

183 plt.subplot(3, 1, 2)

184 plt.plot(e, v, ’-’)

185 plt.xlabel(’East’)

186 plt.ylabel(’Vertical ’)

187 plt.gca().invert_yaxis ()

188 plt.grid()

189

190 plt.subplot(3, 1, 3)

191 plt.plot(n,e,’-’)

192 plt.xlabel(’North’)

193 plt.ylabel(’Vertical ’)

194 plt.gca().invert_yaxis ()

195 plt.grid()

196 plt.tight_layout ()

197

198

199

200 # %%
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Appendix E

Code: Position Uncertainty
Calculations

Section of the code, including 8 weighting functions for laboratory drilling rig.

1 clear

2 clc

3 close all

4

5 rho=xlsread (’error -model -example -mwdrev4 -iscwsa -1CASE’,’Model’,’W4

:W30’);

6 MD=xlsread (’error -model -example -mwdrev4 -iscwsa -1CASE’,’Wellpath ’,’

K3:K103’);

7 Inc=xlsread (’error -model -example -mwdrev4 -iscwsa -1CASE’,’Wellpath ’,

’L3:L103’);

8 AzT=xlsread (’error -model -example -mwdrev4 -iscwsa -1CASE’,’Wellpath ’,

’M3:M103’);

9 AzG=xlsread (’error -model -example -mwdrev4 -iscwsa -1CASE’,’Wellpath ’,

’N3:N103’);

10 AzMag=xlsread (’error -model -example -mwdrev4 -iscwsa -1CASE’,’Wellpath

’,’O3:O103’);

11 TVD=xlsread (’error -model -example -mwdrev4 -iscwsa -1CASE’,’Wellpath ’,

’P3:P103’);

12

13 %% other parameters

14

15 G=9.81;

16 B=51000; %magnetic field strength

17 Dip =1.257; %dip angle

18 VInc =0.0001;%inclination limit

19 Sing =10;%sigular matrix condition

20 SF =2.7954; % k-constant for confidence level

21
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22 %% caclulate drdp_k from eq (10)

23

24 drdp_k=drdpk(Inc , AzT , MD);

25

26 %% caclulate drdp_k +1 from eq (13)

27

28 drdp_k1=drdpk1(Inc , AzT , MD ,drdp_k);

29

30 %% Determine weighting matrix dpde %case:DRFR

---------------------------

31

32 dpde_DRFR =[];

33 for i=1: length(Inc)

34 dpde_DRFR =[ dpde_DRFR ;1 0 0];

35 end

36

37 %% Determine weighting matrix dpde -systematic errors %case:ABXY1

38

39 dpde_ABXY1 =[0,-cos(Inc(1))/G,tan(Dip)*cos(Inc(1))*sin(AzMag (1))/G];

40 for i=2: length(Inc)

41 dpde_ABXY1 =[ dpde_ABXY1;0,-cos(Inc(i))/G,tan(Dip)*cos(Inc(i))*

sin(AzMag(i))/G];

42 end

43

44 %% Determine covariance matrix %case:ABXY1

45 index =4;

46 type =2;%systematic error

47

48 COV_ABXY1=conmatrix(dpde_ABXY1 ,index ,type ,drdp_k ,drdp_k1 ,rho , MD,

Inc , AzT , AzG , AzMag , TVD ,Sing ,G,B);

49

50 %% Determine weighting matrix dpde -systematic errors %case:ABZ

51

52 dpde_ABZ =[];

53 for i=1: length(Inc)

54 dpde_ABZ =[ dpde_ABZ;0,-sin(Inc(i))/G,tan(Dip)*sin(Inc(i))*sin(

AzMag(i))/G];

55 end

56

57 %% Determine covariance matrix %case:ABZ

58 index =6;

59 type =2;%systematic error

60

61 COV_ABZ=conmatrix(dpde_ABZ ,index ,type ,drdp_k ,drdp_k1 ,rho , MD , Inc ,

AzT , AzG , AzMag , TVD ,Sing ,G,B);

62

63 %% Determine weighting matrix dpde -systematic errors %case:ASXY1

64

65 dpde_ASXY1 =[];
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66 for i=1: length(Inc)

67 dpde_ASXY1 =[ dpde_ASXY1 ;0,sin(Inc(i))*cos(Inc(i))/sqrt (2) ,-tan(

Dip)*sin(Inc(i))*cos(Inc(i))*sin(AzMag(i))/sqrt (2)];

68 end

69

70 %% Determine covariance matrix %case:ASXY1

71 index =7;

72 type =2;%systematic error

73

74 COV_ASXY1=conmatrix(dpde_ASXY1 ,index ,type ,drdp_k ,drdp_k1 ,rho , MD,

Inc , AzT , AzG , AzMag , TVD ,Sing ,G,B);

75

76 %% Determine weighting matrix dpde -systematic errors %case:ASZ

77

78 dpde_ASZ =[];

79 for i=1: length(Inc)

80 dpde_ASZ =[ dpde_ASZ;0,-sin(Inc(i))*cos(Inc(i)),tan(Dip)*sin(Inc(

i))*cos(Inc(i))*sin(AzMag(i))];

81 end

82

83 %% Determine covariance matrix %case:ASZ

84 index =10;

85 type =2;%systematic error

86

87 COV_ASZ=conmatrix(dpde_ASZ ,index ,type ,drdp_k ,drdp_k1 ,rho , MD , Inc ,

AzT , AzG , AzMag , TVD ,Sing ,G,B);

88

89 %% Determine weighting matrix dpde -systematic errors %case:MBXY1

90

91 dpde_MBXY1 =[];

92 for i=1: length(Inc)

93 dpde_MBXY1 =[ dpde_MBXY1 ;0,0,-cos(Inc(i))*sin(AzMag(i))/B/cos(Dip

)];

94 end

95

96 %% Determine covariance matrix %case:MBXY1

97 index =11;

98 type =2;%systematic error

99

100 COV_MBXY1=conmatrix(dpde_MBXY1 ,index ,type ,drdp_k ,drdp_k1 ,rho , MD,

Inc , AzT , AzG , AzMag , TVD ,Sing ,G,B);

101

102 %% Determine weighting matrix dpde -systematic errors %case:MBZ

103

104 dpde_MBZ =[];

105 for i=1: length(Inc)

106 dpde_MBZ =[ dpde_MBZ;0,0,-sin(Inc(i))*sin(AzMag(i))/B/cos(Dip)];

107 end

108
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109 %% Determine covariance matrix %case:MBZ

110 index =13;

111 type =2;%systematic error

112

113 COV_MBZ=conmatrix(dpde_MBZ ,index ,type ,drdp_k ,drdp_k1 ,rho , MD , Inc ,

AzT , AzG , AzMag , TVD ,Sing ,G,B);

114

115 %% %% Determine weighting matrix dpde -systematic errors %case:

MSXY1

116

117 dpde_MSXY1 =[];

118 for i=1: length(Inc)

119 dpde_MSXY1 =[ dpde_MSXY1 ;0,0,sin(Inc(i))*sin(AzMag(i))*(tan(Dip)*

cos(Inc(i))+sin(Inc(i))*cos(AzMag(i)))/sqrt (2)];

120 end

121

122 %% %% Determine covariance matrix %case:MSXY1

123 index =14;

124 type =2;%systematic error

125

126 COV_MSXY1=conmatrix(dpde_MSXY1 ,index ,type ,drdp_k ,drdp_k1 ,rho , MD,

Inc , AzT , AzG , AzMag , TVD ,Sing ,G,B);

127

128

129 %% Determine weighting matrix dpde -systematic errors %case:MSZ

130

131 dpde_MSZ =[];

132 for i=1: length(Inc)

133 dpde_MSZ =[ dpde_MSZ ;0,0,-(sin(Inc(i))*cos(AzMag(i))+tan(Dip)*cos(

Inc(i)))*sin(Inc(i))*sin(AzMag(i))];

134 end

135

136 %% Determine covariance matrix %case:MSZ

137 index =17;

138 type =2;%systematic error

139

140 COV_MSZ=conmatrix(dpde_MSZ ,index ,type ,drdp_k ,drdp_k1 ,rho , MD , Inc ,

AzT , AzG , AzMag , TVD ,Sing ,G,B);

141

142 %% sum up all convariant matrix -global/local coordinate

143 rn=length(Inc);

144 COV_total =[ COV_ABXY1;COV_ABZ;COV_ASXY1;COV_ASZ;COV_MBXY1;COV_MBZ;

COV_MSXY1;COV_MSZ ];

145 [COV ,COV_L ]= covsum(COV_total ,rn,MD, Inc , AzT , AzG , AzMag , TVD);

146

147 %% reformulate convariance matrix

148 [COV_3D ,COV_2D ,COV_L3D , eig_v ]= covmatrix(COV ,COV_L ,rn,SF);

149

150 %% calculate surevey point ([E,N,V])
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151 [E,N,V]=mcm(MD, Inc , AzT ,rn);

152

153 %% 3D plot

154

155 for i=1:1:rn -1

156

157 plot3(E(i),N(i),V(i),’r’); hold on;

158 [x, y, z] = ellipsoid(E(i),N(i),V(i),eig_v(i,1),eig_v(i,2),

eig_v(i,3));

159 surf(x, y, z)

160 mymap = [ 0 0.6 0

161 0 0.6 0

162 0 0.8 0

163 0 0.7 0

164 0 0.65 0];

165 colormap(mymap)

166 view (90 ,0)

167 shading(gca ,’interp ’) %interp colour // faceted for border

168 alpha 0.4

169 set(gca , ’ZDir’, ’reverse ’)

170 xlabel(’EAST’)

171 ylabel(’NORTH’)

172 zlabel(’TVD’)

173 grid on

174 box on

175 hold on

176 plot3(E,N,V,’Linewidth ’,2,’color ’,’red’)

177 end

178

179 %% Plot major/minor axes vs tvd this is for 3d

180 figure (3)

181 e1 = eig_v (:,1) /100;

182 e2 = eig_v (:,2) /100;

183 e3 = eig_v (:,3) /100;

184 e11 = -1*e1;

185 e22 = -1*e2;

186 e33 = -1*e3;

187 plot(e1 ,MD/100,’color’,’red’)

188 hold on

189 % plot(e2,MD,’color ’,’blue ’)

190 plot(e2 ,MD/100,’color’,’green’)

191 plot(e11 ,MD/100,’color’,’red’)

192 % plot(e22 ,MD,’color ’,’blue ’)

193 plot(e22 ,MD/100,’color’,’green’)

194 set(gca , ’YDir’, ’reverse ’)

195 xlabel(’Radius [cm]’)

196 ylabel(’MD [cm]’)

197 ylim ([0 50.33])

198 grid on
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199 hold off

200

201

202 %% Plot 2D rotated ellipse

203 figure (7)

204 data =[];

205 special_e =[];

206 for i=1:1:rn

207 data(i,:,:)= [ COV_L(i,1),COV_L(i,4);

208 COV_L(i,4),COV_L(i,2);];

209 covariance =[ COV_L(i,1),COV_L(i,4);

210 COV_L(i,4),COV_L(i,2)];

211

212

213 special_e_temp = eig(covariance);

214 special_e =[ special_e ;[sqrt(special_e_temp (2))*2.4477 , sqrt(

special_e_temp (1))*2.4477]];

215 [eigenvec , eigenval ] = eig(covariance);

216

217 [largest_eigenvec_ind_c , r] = find(eigenval == max(max(eigenval)));

218 largest_eigenvec = eigenvec(:, largest_eigenvec_ind_c);

219

220

221 largest_eigenval = max(max(eigenval));

222

223 if(largest_eigenvec_ind_c == 1)

224 smallest_eigenval = max(eigenval (:,2))

225 smallest_eigenvec = eigenvec (:,2);

226 else

227 smallest_eigenval = max(eigenval (:,1))

228 smallest_eigenvec = eigenvec (1,:);

229 end

230

231 angle = atan2(largest_eigenvec (2), largest_eigenvec (1));

232

233 if(angle < 0)

234 angle = angle + 2*pi;

235 end

236

237 % Get the 95% confidence interval error ellipse

238 chisquare_val = 2.4477;

239 theta_grid = linspace (0,2*pi);

240 phi = angle;

241 X0=E(i);

242 Y0=N(i);

243 a=chisquare_val*sqrt(largest_eigenval);

244 b=chisquare_val*sqrt(smallest_eigenval);

245

246 ellipse_x_r = b*cos( theta_grid );
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247 ellipse_y_r = a*sin( theta_grid );

248

249 R = [ cos(phi) sin(phi); -sin(phi) cos(phi) ];

250

251

252 r_ellipse = [ellipse_y_r;ellipse_x_r]’ * R;

253

254

255 plot(r_ellipse (:,1) + X0 ,r_ellipse (:,2) + Y0 ,’-’,’color’,’blue’)

256 hold on;

257

258

259 grid on

260

261 hXLabel = xlabel(’East’);

262 hYLabel = ylabel(’North’);

263

264 plot(E,N,’color’,’red’)

265 axis equal

266

267 end

268

269 %%

270 making =[];

271 sorting =[];

272 for i=1:10:rn -1

273 figure (9)

274 making(i,:,:)= [ COV(i,1),COV(i,4);

275 COV(i,4),COV(i,2) ;];

276 sorting =[ COV(i,1),COV(i,4);

277 COV(i,4),COV(i,2)];

278 f_eig = eig(sorting);

279 rad1 = sqrt(f_eig (1,:))*SF;

280 rad2 = sqrt(f_eig (2,:))*SF;

281 t_angle = 0:((2* pi)/(267)):2*pi;

282 centerx = E(i);

283 centery = N(i);

284 el_x = centerx + rad1*cos(t_angle);

285 el_y = centery + rad2*sin(t_angle);

286 plot(el_x ,el_y ,’color’,’blue’)

287 ylim ([0 1800])

288 xlim ([0 6000])

289 axis equal

290 grid on

291 xlabel(’East’)

292 ylabel(’North’)

293 hold on

294 plot(E,N,’color’,’red’)

295 plot(r_ellipse (:,1) + X0 ,r_ellipse (:,2) + Y0 ,’-’,’color’,’blue’)
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296 end

297

298 %% just traj

299

300 figure (10)

301 plot3(E,N,V,’color ’,’red’,’Linewidth ’ ,2)

302 grid on

303 box on

304 ylabel(’North’)

305 xlabel(’East’)

306 zlabel(’TVD’)

307 set(gca , ’ZDir’, ’reverse ’)
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