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Abstract

During the planning phase, the drilling rate of penetration (ROP) optimization simulation

studies are performed in order to increase ROP, reduce the drilling time - and bit wear.

Optimizing ROP is important to improve the overall drilling performance and reduce operational

costs.

This thesis presents the ROP modelling based on the drilling data obtained from Morvin

Field 6506/11 in the Norwegian Sea. The models used for the assessment were Multiple

regression, MSE, D-exp, Warren and Bourgoyne & Young models. The modelling approaches

were based on the entire well data, hole sections and geological groups. Furthermore, the

models were tested on its own, nearby and far-away wells. Finally, modelling and drilling

ahead ROP predictions on its own well were also tested.

Results show that the model predictions are good enough when applying on the wells they

are derived from. The degree of the prediction reduces when applying on far away wells. It

was also found out that the modelling and application on the drilling ahead approach works

well. From the evaluation, it was observed that using 90 % of the data for the modelling

predicts the 10 % of the drilling ahead quite well. Out of the considered modelling scenarios,

modelling based on the geological groups provided the best results.

Moreover, in this thesis, the Bourgoyne & Young model was modified to include more drilling

parameters. The modelling and application results showed better prediction.
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1. Introduction

1.1 Background

Worldwide energy demand has rapidly increased since the ”oil boom” in the late 1970s.

Both the demand and consumption are increasing in line with increasing industrialization

and growing population. After the ”oil boom”, the petroleum demand was mainly associated

with discovering new hydrocarbon reserves [1].

Since most of the resources are in the reservoirs, it is important to develop new methods

and technologies to exploit more out of the existing reservoirs. Despite the drilling rate

per day increasing due to technological development, the non-productive time associated

with the problem accounts for higher and increase in drilling budget. There is also invisible

non-productive time associated for instance with vibrations, which reduce the drilling rate

and damage of the drill bit, which again reduces the drilling rate.

One of the methods to deal with this issue is by performing an appropriate design during

planning phase. For instance, selecting the right bit and use vibration control equipment as

part of the drilling system. Moreover, performing rate of penetration (ROP) optimization

simulation with the objective of increasing ROP and reducing bit wear will reduce the drilling

time and undesired tripping operation associated with bit damage. For this, it is important

to use a good ROP model that simulates the process well. In the literature study, there are

several models available. These are derived based on physics and empirical-based equations.

The research question addressed is, which model is good enough to model the field ROP?

This thesis therefore deals with the assessment of five ROP models used for application and

investigation of how to optimize parameters in order to improve drilling speed and reduce

drilling time. For the modelling and testing, a total of four well’s drilling data obtained from

Morvin field block 6506/11 were used.
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1.2 Problem Formulation

In literature, there are several ROP models used to predict the penetration rate. However,

each model have their own weaknesses and strengths. In this thesis, Final Well Reports

which are available from the North Sea will be used to model drilling a well. The issues to

be addressed are:

• How good enough are the ROP models to predict the field ROP?

• How good is the multiple regression model compared with the literature models?

• How can the modelling techniques be applied in real-time drilling operations?

• What are the limitation and application range of the models?

• How can we optimize drilling parameters to improve ROP and reduced drilling time

as drilling goes on?

• How dependent is multiple regression modelling technique on drilling parameters?

1.3 Objective

The main objective of this thesis work is to answer the research questions stated in chapter

1.2. For this, the Morvin field data obtained from the Norwegian continental shelf (NCS)

will be used. The activities are:

• Review ROP models.

• Modelling of ROP based on Morvin field drilling data.

• Test the models on its own well, nearby and far-away wells.

• Finally, propose the best modelling approach for field application.
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1.4 Research Methods

The research approaches designed in this thesis consists of three main parts. The first is

the review of the ROP models, from which modelling workflows have been developed. The

second part deals with the application of the workflow to model ROP based on field drilling

data. The third part deals with the testing and modelling of the ROP models. The models

will be tested on its own well, nearby and far-away wells. The objective here is to investigate

the applications and limitations of the models. Figure 1.1 shows the chart of the research

methods used in this thesis.

Figure 1.1: Summary of the research program.
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2. Literature Review

2.1 Drill Bits

Drill bits are in the tip of the drill string, below the drill collar and drill string. The

functionality of the bit is to crush the rock formation by implementing axial- and rotational

forces, WOB and torque. The drill bit usually consists of 2-3 cones depending on the

formation. The cones are made of hard material such as tungsten carbide, steel and natural

diamond. The cones also have hard teeth to cut and gauge the rocks. The rock cuttings are

circulated to the surface by circulating fluid in order to attack the new surface of rock. [2]

Figure 2.1 shows the combination of the two cutting actions, cutting- and indentation that

the drill bit proposes to penetrate through the formation. Indentation is described as the

action where WOB is applied to the drill bit, and it pushes into the formation. By this,

action the bit gets a grip on the rock to make it break. In cutting action, lateral movement

is implemented sideways on the drill bit to break and crush the rock [3]. Drill bits are a

fundamental part of the drilling system and there is a wide range of drill bits. Therefore,

selecting the right bit is important for efficient drilling and reduce undesired drilling cost [4].

Figure 2.1: Drill bits using both indentation and cutting actions [5]
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2.1.1 Roller Cone Bits

Roller cone bits are the most common drill bits used. Roller cones are divided into milled-tooth

and insert-tooth bits. The bit has a large variety when it comes to teeth and bearing design,

meaning they are applicable for a wide range of formations. Long and widely spaced teeth

combined with large offset are used for soft formations. As the formation hardness increases

the tooth length and offset is reduced. Selecting the right bit is important due to reducing

the non-productive time (NPT) and maintaining the desired ROP rate.

The design of Roller cone bits are made up of steel, which makes it sufficiently resistant

to hardenability, machinability, yield strength and heat treatment. The main focus when

designing the bits are material selection, hole deviation, rotary speed, mechanical requirements,

hydraulic requirements and geometry- and cutting shapes [6].

The selection of bit design also depends on the condition of the environment it will operate in

and how it will function. The external factors affecting the drill bit are WOB, rotary speed

and hydraulics, it is also crucial to consider the contribution of conditions as formation

hardness, depth, drilling fluids and hole deviation when designing and a selecting drill bit.

In Figure 2.2 an illustration of a Roller cone bit and its features is presented [7].

Figure 2.2: Illustration of Roller cone bit [7].
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Milled-tooth bit consist of three cones, which are equal in size. The cones are seated on

shafts which are mounted on the legs of the bit body. The bearings allow the cones free

rotation, offset increase cutting action and the nozzles cleans the bit and wellbore. Both

tooth and bearing design vary greatly for Roller cone bits, meaning they are applicable for

several different formations ranging from soft to hard.

Insert-tooth bits are best suited for hard and abrasive formations. The insert-tooth bit is

made up of tungsten carbide inserts, where the teeth are integrated part of the cone body.

Furthermore, the bit functionality is the same as for the milled-tooth bit.

Table 2.1: Relationship between Roller cone bit features [8].

Formation Characteristics Soft Medium High
Insert/Tooth Spacing Wide Relatively Wide Close
Insert/Tooth Properties Long & Sharp Shorter & Stubbier Short & Rounded
Penetration and Cuttings Generator - Relatively High Relatively Low
Cleaning Flow Rate Requirements - Relatively High Relatively Low

2.1.2 Fixed Cutter Bits

Fixed cutter bits are divided into Polycrystalline Diamond Compact (PDC) and Natural-Diamond

bits. What distinguishes Roller cone from Fixed Cutter bits is that Fixed Cutter doesn’t

have any moving parts which makes it suitable when drilling small holes. The cutters are

integrated into the body of the bit. Therefore, unlikely compared to Roller cone bit PDC

bit shears the rock instead of crushing it. High RPM and low WOB are applied because of

dragging and scraping [6].

PDC bits are the most used bits in this category as the rock formation in this bit is

sheared instead of crushed. There is required less energy, which means less WOB is applied,

however, higher RPM is enforced. The PDC is designed by coining a layer of numerous

small polycrystalline artificial diamonds to a cemented tungsten carbide under high pressure

and temperature. By composing the diamonds in the layers in a random orientation, wear

resistance and high strength are obtained [6]. Figure 2.3 shows an illustration of a typical

PDC bit.
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Figure 2.3: Illustration of PDC bit [9].

Diamond bits are the other Fixed Cutter bits available. Diamond bits are used in hard

abrasive formations as diamond is the hardest material to be found. Furthermore, when using

Diamond bits, we drill with high RPM, therefore the grains between the rock cementation is

broken. Fine cuttings are obtained by using low volumes per rotation, however, to obtain the

desired ROP we must drill with high ROP. Diamond bits are mostly used for its resistance

against wear and its hardness. However, this kind of bit is sensitive when it comes to

vibrations and shock in the wellbore. Sufficient circulation is important to avoid overheating

and cuttings agglomerating on the bit. The diamonds in the bit are held in place partial

encapsulation in the matrix body [6].

2.1.3 Bit Optimization

The selection of drill bit is evaluated to be the most important criteria deciding the drilling

rate. Over the years studies of drill bits have been presented in order to develop and improve

them as drill bit efficiency and cost is a major factor in the cost of drilling a well. The equation

for calculating the drilling cost is as following [10] [11]:

7



2.2. Factors Affecting ROP MSc Thesis 2020

Cd =
Cr(tc + td + tt) + Cmtd + Cb

∆D
(2.1)

Where, Cd, Cr, Cm and Cb are the cost of drilling, rig, drilling motor and drill bit given in

[USD/ft]. Moreover, tc, td and tt are connection-, drilling- and trip time, respectively in [hr],

while ∆D is drilled depth in [ft].

Drill bit design and type are directly linked to the cost of drilling a well. Therefore this is

crucial as optimization of the bit will cause lower drilling time and additionally lead to a

higher penetration rate and reduce the number of trips to change the bit due to wear [12].

Choosing the right drill bit in a given formation is a combination of several operational

factors such as the formation characteristics, rule of thumb and mathematical models [10].

The drill bit selection depends upon drilling operational factors including diameter, WOB,

wear and drilling fluid [13].

2.2 Factors Affecting ROP

Rate of Penetration (ROP) is controlled by several factors, such as rock, mechanical and fluid

properties. The cost per foot drilled in a well is directly related to the factors affecting the

ROP. In general, the factors affecting ROP can be divided into two groups, controllable and

uncontrollable variables. The controllable variables are defined as dependent on the drilling

condition and they should be controlled to obtain the required speed to break and crush

the rock formation and avoid problems that occur in the drilling phase. The uncontrolled

variables are mostly associated with the formation characteristics and are independent of

the drilling operation [14] [15].

2.2.1 Bit Type

The choice of the type of drill bit is strongly related to the rate of penetration. Studies

have shown that the highest initial ROP is when Roller cone bits with long teeth and large

cone-offset angle are applied, despite being most applicable in soft formations [16].
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While on Fixed Cutter bits the ROP depends on the number of blades and bottom-cutting

angles to achieve wedging-type rock failure. In recent years, both PDC and Diamond

bits have been developed with certain features to achieve a higher rate of ROP such as

hydraulic-design to avoid bit bailing, mechanical-design and steel-bodied bits [6].

2.2.2 Formation Characteristics

The formation properties affecting the penetration rate the most are yield point and ultimate

strength of the formation. Hence, in permeable rocks, the drilling fluids tend to migrate

through the rock decreasing the differential pressure as it causes pressure from beneath the

rock on the drill bit. The penetration rate is also a function of the mineral composition

of the rock. Hard and abrasive containing rocks may lead to rapid dulling of the cutting

elements, while rock with soft minerals may cause the bit to ball up. This leading to an

inefficient drilling operation [6].

2.2.3 Drilling Fluid Properties

The drilling fluid properties are a major influence on ROP. The penetration rate is function

of several drilling fluid parameters such as fluid viscosity, density, size, and content of solid

and chemical composition. Increasing fluid viscosity, density and solid content lead to a

lower rate of penetration.

Overbalance is caused by pressure differences between the well pressure and hydrostatic

pressure of formation fluid. Bourgoyne & Young (1974) showed the effect of overbalance on

ROP on a semi-log plot. Figure 2.4 shows that the penetration rate decreases with increased

overbalance [6].

log
R

R0

= −0.052mD(gp − ρf ) (2.2)

Where, R is the ROP. R0 is ROP without overbalance. m is the slope of the line. D is the

depth (TVD). gp is pore pressure gradient and gf is ECD.
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2.2.4 Operating Conditions

Several studies have been done in order to show the impact of WOB and RPM on the

penetration rate. Bourgoyne & Young (1991) developed a model to show the impact of

WOB on ROP experimentally. The formulation required that all the drilling parameters

should be held as constants.

Figure 2.4 clarifies that no penetration is achieved before the threshold formation is exceeded

(Point a). For low WOB values the ROP increases linearly (Point b). Point b is also where

the bit transforms from scraping/grinding to shearing the rock, as the WOB increases the

correlation between WOB and ROP still increase linearly, however, the slope is steeper. This

indicates that drilling operation is more efficient (Point c). When the WOB exceeds a certain

limit (Point C), an increase in WOB leads to a small change in ROP (Point d). Finally,

in the last segment high bit-weight may cause a decrease in penetration rate because of bit

foundering which is caused by poor hole-cleaning due to large amounts of cuttings (Point e).

Figure 2.4: Relation between WOB and ROP [17].
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In 1962 Maurer derived an equation to show the relationship between rotational speed and

penetration rate, where all the drilling parameters were treated as constant. At low RPM

the ROP increases linearly, however, for larger rates the cuttings generated causes inefficient

drilling operation. The equation formulated for Roller cone bits by Maurer were built on

the following assumptions: The crater volume is proportional to the square of the depth

of cutter penetration and the depth of cutter penetration is inversely proportional to the

formation strength.

ROP =
K

S2

[
W

Db

−
(
W

db

)
t

]2
·N (2.3)

Where, S is the compressive strength of the rock. K is a constant and (W/db)t is the threshold

value.

When Fixed Cutter bits are compared to Roller cone bits, they usually crave lower bit weight,

but higher rotary speed in order to cut and crush the rocks efficiently and to achieve the

desired torque. Insufficient WOB and RPM may lead to cutter wear, chipping of diamond

and poor penetration rate.

2.2.5 Drill Bit Hydraulics

To optimize the desired potential rate of penetration, hydraulic horsepower (HHP) and jet

impact force (Fj) are two important criteria used. Experimental studies have shown that

an increase in the rotation of the drillstring causes a decrease in slip velocity and the drag

coefficient, leading to a more efficient hole-cleaning [18].

One of the main objectives of the drilling fluids is to transport the rock-cuttings from wellbore

to surface and the efficiency of this process depends on the properties and system of the

drilling fluid. Poor hole-cleaning leads to a decrease in penetration rate. Moreover, as the

rock is crushed by the bit the bit nozzles will provide the desired jet force to clean the

wellbore. If the horsepower applied isn’t enough the cuttings will accumulate in the well,

meaning poor ROP [18].
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The pressure loss across the drill bit may arise in a turbulent region and is a function of bit

nozzles, hydraulic horsepower, jet impact force and flowrate. The equation for pressure loss

across the bit is expressed in equation (2.4) [19] [6]:

∆PB = ρmud ·
q2

12032C2
dA

2
n

(2.4)

Where, ∆PB is the pressure loss across the drill bit, ρmud is density of the drilling fluid, q is

the flow rate, Cd is the drag coefficient and An is the cross-sectional area of the nozzles.
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3. ROP Models

There are several ROP models documented in literature’s. Prior to drilling ROP optimization

simulation studies should be conducted in order to optimize drilling parameters with the

objective of obtaining higher ROP, lower drilling time, reduce bit wear and hence, reduce

undesired tripping operation due to bit damage. For this, the ROP predictive power of the

models play a key role. The ROP models depend on operational parameters, hydraulics

parameters, bit cutter parameters, and formation strength as well [15]. Table 3.1 shows the

different models along with the parameters they are derived from.

Table 3.1: Overview of drilling variables for ROP Models.

ROP
Model

Multiple Reg. MSE D-exponent
Bourgoyne
& Young

Hareland
& Ramperstad

Bingham Warren

Operational Variables
Weight on Bit, WOB X X X X X X X

Torque, T X X X
Rotary Speed, RPM X X X X X X X

Flow Rate, q X X
Well Depth, D X

ECD X X
Bit Wear, Wf X X

Rock Properties
Formation Pressure, FP X X

UCS X X
Compressive Strength, S X

Bit Properties
Bit Diameter, Db X X X X X X

Nozzle Diameter, Dn X
PDC Design Properties

Number of Cutters, Nc X
Cutter Diameter, Dc X

Cutter Siderake Angle, α X
Cutter Backrake Angle, θ X

Drilling Fluid Properties
Mud Weight, MW X X X

Viscosity, µ X X
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3.1 MSE Model

The concept of Mechanical Specific Energy was first introduced by Teale in 1965. The use of

MSE was introduced to evaluate the bit and to know when to replace it [20]. MSE is defined

as the energy that is required to excavate one volume of rock from the formation. In other

words, it is the definition of how much work is done per unit of volume, expressed as [21]:

MSE =
Input Energy

Output ROP
(3.1)

MSE is the sum of work done by rotational force (T) and axial force (WOB). By considering

a drill string, the work done per minute can be expressed:

Work Done

min
= ROP · F + 2πNT (3.2)

Where, ROP is the rate of penetration. F is thrust force. Torque is given as T. N is rotary

speed. Moreover, the relationship between the volume of rock cuttings carried out after

drilling per unit time, V and ROP are given as:

Vrock
min

= Area ·ROP (3.3)

By combining the equations above we achieve equation (3.4). Where WOB and torque are

expressed as first and second terms, respectively.

MSE =
F

A
+

2π

A
· N · T
ROP

(3.4)

MSE can also be expressed as:

MSE =
480 · T ·N
D2
b ·ROP

+
4 ·WOB

D2
b · π

(3.5)
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Unconfined compressive strength (UCS) is the maximum axial load that can be applied to

the rock before it breaks. Teale studied the relation between MSE and UCS and he noticed

that there was a clear association between them. In a lab test, he derived that MSE was

exactly to UCS. By further studying this relationship he discovered that MSE and UCS were

numerically equal if the bit is efficient, and unequal when the energy in bit is lost. The drill

bit efficiency, EFFM , is assumed to be 30 % - 40 % [22]:

UCS = EFFM ·MSE (3.6)

Therefore equation (3.5) can in terms of considering bit efficiency and unconfined compressive

strength be expressed:

UCS = EFFM ·
(

480 · T ·N
D2
b ·ROP

+
4 ·WOB

D2
b · π

)
(3.7)

The field data provided are in the form WOB, RPM and ROP, therefore friction factor needs

to be introduced in order to present penetration rate, ROP. [23].

T =
µ ·Db ·WOB

36
(3.8)

By substituting equation (3.8) into equation (3.7) and rearranging the equation with respect

to ROP, we can finally express ROP as:

ROP =
13.333Nµ

Db

(
UCS

EFFMWOB
− 4

πD2
b

) (3.9)

3.2 D-exponent Model

When drilling in over-pressurized formations it’s difficult to detect by using ROP models.

This is due to ROP models being a function of several parameters including formation

pressure such as WOB, rotary speed, drilling fluid, circulation rate and drill bit properties.
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Therefore, the D-exponent model was initially developed with the intention of normalizing

the ROP when drilling in over-pressurized zones by neglecting the contribution of the drilling

parameters mentioned above. In 1964 Bingham derived an equation for normalizing ROP

models by including a drillability exponent, Dexp [24] [25]:

ROP = AMN
E

(
WOB

Db

)Dexp

(3.10)

Where, AM is the rock matrix strength and E is an exponent for the rotary speed. Furthermore,

Jorden and Shirley [6] developed the model further my assuming that both the rock matrix

strength and rotary speed exponents were constants equal to 1. By considering these

assumptions, rearranging equation (3.10) with respect to Dexp and considering the mud

contribution, then the following equation is obtained [25]:

Dexp =
log ROP

60N

log 12WOB
106Db

·
(
ρn
ρa

)
(3.11)

Here ρn is the normal hydrostatic gradient and ρa is the equivalent circulation density (ECD).

Equation (3.11) calibrates the correlation between the bit’s capacity to drill trough a zone also

known as drillability and the over-pressurized zones. Figure 3.1 shows how ROP decreases

a function of depth while the D-exponent increases in the normal-pressured zone. In the

over-pressured zone we observe that ROP increases and D-exponent decreases due to the

formation rock becoming more porous and less dense [26] [24] [27].
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Figure 3.1: Overpressure effect on ROP and D-exponent [26].

3.3 Warren Model

In 1951 Warren proposed a ROP model for soft formation bits. The ROP model attained from

Roller cone bits are either limited due to cutting-removal or cuttings-generation. Warren

developed the ROP model from an experimental test in the laboratory under steady-state

drilling condition. The model presented by Warren relates the mechanical factors ROP to

WOB, RPM, bit strength, bit size and rock strength. The Warren model was improved

and made more applicable in a larger scale of formations by combining the Warren model

with more generalizing models taking the effects of mud properties, hydraulics, differential

pressure etc. into account [28].

Developing a ROP model related to mechanical factors has been discussed and searched

for several years. The initial model was assuming perfect hole condition, but the model

was modified by Warren to make it more applicable and realistic in imperfect hole-cleaning

conditions. Galle and Woods [29] proposed a model for soft formations. This model has

regularly been used, however the model is limited when applied in practical situation as the

assumption it is built on is disobeyed.
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The Perfect-cleaning model was presented by Maurer [28]. This model takes the study of

single tooth into account. However, the model is also limited when predicting ROP in soft

formations as deviation occurs between the model and the experimental data. Cunningham

proposed a model in recent years, but also this model lacked in the correlation to the

experimental data [30].

3.3.1 Perfect-Cleaning Model

The Perfect-cleaning model was developed by Warren, but was later modified by Hareland.

This model implies under the drilling process with tricone bits. The ROP model indicates

that the rate where new cutting-chips are being formed is equal to the rate of cutting

removal from the drill bit. Thus, this ROP model is being controlled by the rate of new

chips being formed or the rate of cuttings removal. A combination of both processes is also a

controlling factor. The Perfect-cleaning model calculates ROP from the mechanical factors

using dimensional analysis and generalized response curves. The Perfect-cleaning model is

viewed as the initial starting point for developing the Imperfect-cleaning model [31]:

ROP = (
a · S2 ·D3

b

N b ·WOB2
+

c

N ·Db

)−1 (3.12)

Where, ”a” and ”c” are bit constants. S is the confined rock strength. The first term in

equation (3.12) explains the rate where the formation rock is cut into small chips by the drill

bit. The second term modifies the predictions to account for the distribution of the applied

WOB to more teeth, as the WOB is increased and the teeth penetrate deeper into the rock.

Because of the first term being predominant for low ROP-values and the second term being

predominant for high-ROP values, the ROP increase, as WOB increases to a certain point

called inflection point. After this point, the ROP starts to increase at a decreasing rate [31].

3.3.2 Imperfect-Cleaning Model

In reality, the ROP model in most of the field cases is significantly affected by the rate where

the rock cuttings are evacuated under the bit.
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Equation (3.13) is not ideal for estimating field ROP without modification to account for

imperfect cleaning, which is the case when dealing with reality. Hence, the ROP model is

expressed as [6]:

ROP = (
a · S2 ·D3

b

N ·WOB2
+

b

N ·Db

+
c ·Db · γf · µ

Fjm
)−1 (3.13)

Where, the bit constant ”b”, has been included. γf and µ are the specific gravity and

viscosity of the drilling fluid, respectively. Moreover, dimensional analysis is used to isolate

a group of variables consisting of the modified jet impact force, Fjm:

Fjm = [1− A−0.122
v ]Fj (3.14)

Where, Av is the ratio of jet velocity to return velocity. Jet impact force is expressed as, Fj.

Av and Fj can mathematically be defined as:

Av =
vn
vf

=
0.15D2

b

3d2n
(3.15)

Fj = 0.000516ρqvn (3.16)

Whereas, vn and vf are the fluid velocities for the nozzles and the returned fluids. Furthermore,

in Roller cone bits the ratio between the area available for fluid return and cross-sectional

area is 15 %. The Roller cone bit has 3 jets. Moreover, ρ and q are respectively density and

flow rate of the drilling fluid [30].

3.4 Bingham Model

In 1964 Bingham derived a relation between WOB, RPM, ROP and bit diameter. The model

was unique because he added an empirical exponent to the relation which made the ROP

model more applicable in a wide range of circumstances.
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In fact, Murray and Cunningham (1955) were first in including an exponent depending on

WOB in a ROP model, attributing the concept to H.B Woods. The Bingham model is

defined as:

ROP = a

(
WOB

Db

)b
RPM (3.17)

Where, ”a” is drillability constant, ”b” is an empirical WOB exponent. Both ”a” and ”b” are

dimensionless constants for each formation. The model is viewed to be simple as it is most

useful in low RPM and WOB values and therefore it doesn’t take the depth into account.

The Bingham is also limited as it doesn’t consider changes in physical drilling conditions in

different formation regions [15] [32].

3.5 Bourgoyne & Young Model

Bourgoyne & Young Model is viewed to be the most well-development ROP model to this

day as it correlates for different eight parameters affecting the ROP. The Bourgoyne & Young

Model was first derived for drilling with Roller cone bits, however, it is frequently used in

drilling operations with PDC bits [33] [34] [35] [36].

ROP = f1 · f2 · f3 · f4 · f5 · f6 · f7 · f8 (3.18)

Where respectively the eight parameters affecting ROP are defined as:

• Strength of the formation (f1)

• Normal compaction trend exponent (f2)

• Undercompaction exponent (f3)

• Differential pressure exponent (f4)

• WOB exponent (f5)

• Torque exponent (f6)
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• Tooth wear exponent (f7)

• Hydraulic exponent (f8)

A new modified model of the Bourgoyne & Young Model was presented. The formulation is

simplified concerning the core real-time drilling optimization variables and well depth.

As a matter of fact, equation (3.18) doesn’t take depth of the well into account. For this

reason a modified Bourgoyne & Young model was introduced. The newly modified Bourgoyne

& Young model includes the depth and real-time drilling optimization parameters

[37]:

ROP = a1D
a2WOBa4RPMa6qa8 (3.19)

To have a more precise description of the interaction of rock-bit, the force and moments

are analyzed. This is more complicated in reality because of to compute failure criteria and

stresses a full geometric description of contact points and deviation between the wellbore

and bit is required [37].
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4. Morvin Field and ROP Modelling

Workflow Description

4.1 Overview of Morvin Field

Morvin is located in block 6506/11 in the Norwegian Sea approximately 15 km west of Åsgard

Field, as shown in Figure 4.1. The field was discovered in 2001, however, the production

started in 2010 with Equinor Energy AS being the operator with 64.0 % of the licensees. V̊ar

Energi AS and PGNiG Upstream Norway AS have licensees at 30.0 % and 6.0 %, respectively

[38].

Figure 4.1: Location of Morvin in Norwegian Sea [39].
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Morvin Field is produced by pressure depletion and the major problem being drillability as

the cost-benefit factor of drilling new wells is directly linked with well intervention operations

to proceed production in already producing wells [38]. The field produces both gas and oil

from the different formations which are of Jurassic sandstones. The Spekk Formation is said

to have good reservoir properties, while the Garn and Ile Formations are relatively homo-

and heterogeneous. Because of the position of the reservoirs lying in tilted and rotated fault

block at the depth of around 4,500 m, there are some issues associated with high pressure

and high temperature (HPHT) formations [38].

4.1.1 Welldata

The wells used for modelling and testing in this thesis are 6506/11-A-1, 6506/11-A-2, 6506/11-A-3

and 6506/11-A-4. The status of the wells and locations are shown in Table 4.1 and Figure

4.2, respectively.

The drilling data for Morvin field were provided by NPD, where they had to be filtered

before being modelled. The filtration examples are illustrated in chapter 4.2.

Table 4.1: Overview of wellbore developments [38].

Wellbore Entered date Completed date Purpose Content
6506/11-A-1 24/11/2009 12/08/2010 Production Oil, Gas and Condensate
6506/11-A-2 12/03/2010 13/05/2011 Production Oil
6506/11-A-3 27/11/2009 17/02/2010 Production Not Applicable
6506/11-A-4 22/10/2010 15/11/2010 Production Oil
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Figure 4.2: Map of study area. The wells used for modelling are in blue. [38].

4.1.2 Stratigraphic Correlation

In order to study the lateral geology in the wells considered for modelling, stratigraphic

correlation is performed. The objective of stratigraphic correlation is to compare the lithostratigraphy

groups of the different wells. The stratigraphic correlation is illustrated in Figure 4.3. It was

constructed based on the geological information documented in ”Final Well Report”. The

descriptions of the geological groups and formations within are summarized in the following.

Nordaland Group

Nordaland Group is the shallowest group in the field. However, according to the Final Well

Report, it only occurs in well 6506-11-A-1. Nordaland Group consists of Kai and Naust

Formations.
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• Kai Formation is mainly of large claystones and fractions of limestone.

• Naust Formation consists of claystone with some traces of quartzitic grains intercalations.

Hordaland Group

Hordaland Group only cross the subsurface in well 6506/11-A-1, 6506/11-A-2 and 6506/11-A-3.

• The Hordaland Group consists of Brygge Formation which is dominated by claystone

and fragments of limestone and siltstone.

Rogaland Group

Rogaland Group is to be found in all the wells with Tare and Tang Formations.

• Tare Formation is predominantly of claystone with fragments of limestone and siltstone.

• Tang Formation is on the other hand also predominantly of claystone with some traces

of limestone.

Shetland Group

Shetland Group across the four wells. Shetland Group is formed by Springar, Nise and

Kvitnos Formations.

• Springar Formation is dominated claystones. In well 6506/11-A-1, 6506/11-A-2 and

6506/11-A-3 limestone appear in thin layers. In well 6506/11-A-4 in addition to

claystone, dolomitic limestones occur in thin layers.

• Nise Formation is also dominated by claystones, with stringers of limestone in well

6506/11-1, 6506/11-2 and 6506/11-3. In well 6506/11-4 the interval has stringers of

dolomitic limestone in claystone interval.

• Kvitnos Formation consists of the same sedimentary rocks as Nise Formation with

claystone and fragments of limestone and dolomitic limestone. However, in the lower

part of the formation layers of sandstone tend to occur.
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Cromer Knoll Group

Cromer Knoll Group is the second deepest for all the wells. This group is the most advanced

groups. In well 6506/11-A-1 Lysning, Lange and Lyr Formations occur. In well 6506/11-A-2

the same formations for well 6506/11-A-1 occur as well, in addition to Albian Formation.

Well 6506/11-A-3 being the shallowest well, only Lysning and Lange Formations occur. For

well 6506/11-A-4 the formations are Lysning, Lange and Lyr Formations.

• Lysning Formation is mainly dominated by claystone with limestone bedding. Layers

of sandstone may be present in the formation in addition.

• Lange Formation interval is mostly claystones with few limestone stringers. Also in

this formation sandstones tend to be present in the final part of the formation. In well

6506/11-A-4 siltstone appear in the final depth.

• Albian Formation is dominated by claystone, with few sandstone and limestone stringers.

• Lyr Formation consists of claystone, stringers of either minor limestone or dolomite

are also common.

Viking Group

Viking Group cross through well 6506/11-A-1, 6506/11-A-2 and 6506/11-A-4. In this group,

the formations appear differently in the wells. For instance in well 6506/11-A-1 Spekk,

Melke, Garn, Not, Ile and Ror Formations are the formations. The formations present in well

6506/11-A-2 are Spekk, Ile, Ror, Tofte (I-III), Lower Ror, Tilje (1-6) and Aare Formations.

For well 6506/11-A-4 the formations that occur are Spekk, Melke, Garn, Not, Ile and Ror

Formations.

• Spekk and Melke Formations are broadly of sandstone with increasing claystone with

depth. Fractions of limestone stringers appear also.

• Garn Formation consists mostly of sandstone in kaolin matrix with some claystone.

In the upper part of the formation an unexpected interval of claystone are present in

addition to stringers of limestone.

26



4.1. Overview of Morvin Field MSc Thesis 2020

• Not Formation is mostly of sandstone and claystone. The lower and middle part of the

formation is of siltstone, small amount of limestone are present as well.

• Ile Formation consists of alternating sandstone and claystone. Minor limestone stringers

are also to be found in this formation.

• Ror Formation also consists of alternating sandstone and claystone.

• Tofte Formation can be categorized into three, Tofte III, Tofte II and Tofte I. The

top formation (Tofte III) consists of sandstone and claystone. In the middle and lower

formations (Tofte II and Tofte I) limestone stringers are occurring.

• Lower Ror formation is a formation consisting of claystone and sandstone.

• Tilje Formation are divided into Tilje Formation 1 - 6. In the top formation, Tilje

Formation 6 consists of sandstone and interbedded sandstone. Tilje Formation 5

consists of interbedded sandstone, claystone and siltstone. Tilje Formation 4 consists of

sandstone and silty claystone. Tilje Formation 2 and 3 are of sandstone, siltstone and

claystone. Tilje Formation 1 consists of sandstone with minor claystone and siltstone.

• Aare formation is primarily of sandstone, siltstone and claystone.
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Figure 4.3: Stratigraphic correlation between the wells.
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4.2 Data Filtration

4.2.1 Moving Average Filter

Moving average filter is a simple low pass FIR (Finite Impulse Response). However, it is one

of the most effective and reliable when it comes to Digital Signal Processing (DSP). Moving

average filter is used in cases to remove noise from signals. It smooths an array of sampled

data or signals. In other words, it takes an average of a defined number of input point and

produces a single output point, the higher filter length the smoother output. Moving average

filter is said to have a superlative time response domain, however, the frequency domain is

quite poor [40].

yi =
1

N

m−1∑
i=0

xN−i (4.1)

Where, yi is the calculated signal outcome, N is the size of the sliding window. The smoothing

of the signal strongly depends on the value of N, as larger sliding window leads to a smoother

signal. However, in reality, if the window size is too large the signal will lose its sharpness.

This phenomenon is illustrated in Figure 4.4

The Moving average filter was applied to the drilling data provided which were used to

calculate ROP in order to reduce the contribution of unwanted signals and noises, this was

done in Microsoft Excel. The window size used in this thesis were N=5. Thus, equation

(4.1) can be transformed into equation (4.2) when dealing with ROP.

ROPFiltered =
1

N

m−1∑
i=0

ROPN−i (4.2)
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Figure 4.4: Illustration of moving average filter.

4.2.2 Exponential Smoothing

Exponential smoothing is a time series forecasting method for univariate data. This type of

filter can be used to trend or extended data with a systematic trend. Compared to the Moving

average filter where the previous data points are weighted equally, Exponential smoothing

is used in exponential decreasing functions, as a function of time and is based on weighted

averages. Exponential smoothing is a low pass filter, where it removes high-frequency noises

in data. The equation for Exponential smoothing is shown below: [41]:

St+1 = α · yt + (1− α) · St (4.3)

Where, St+1 is the forecast value calculated. α is the smoothing factor [0-1]. St is the

foregoing forecast and yt is the foregoing value of the dataset being filtered.

Exponential smoothing was also tested in this thesis to the dataset provided. However,

compared to Moving average this filter was mainly used to smooth the spikes and the result

is shown in Figure 4.5. The smoothing factor was chosen to be α=0.85. When equation

(4.3) is accounted for ROP it is expressed as:

ROP Filt
t+1 = α ·ROP Filt

t + (1− α) ·ROP Field
t (4.4)
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Figure 4.5: Illustration of exponential smoothing filter.

4.3 Modelling and Workflow Techniques

4.3.1 Multiple Regression Workflow

Multiple regression is a popular dataset-technique used in many fields. This method is

applicable in datasets where there exists a correlation between the input variables within

each other and with the dependent variables to a certain degree, assumed there is a linear

relationship. The objective of Multiple regression is to study the relationship between the

dependent variable and multiple independent variables. Initially in this method, one studies

how strong the relationship between a single dependent variable and several input variables

are. Later, it is possible to predict the contribution of each input variable and finally find

the best-predicted equation [42] [43].

Y = β0 + β1X1 + β2X2 + ...+ βkXk (4.5)

Where the dependent variable is given as Y and is the predicted value. Independent variables

as X1–Xk. β1–βk are the regression coefficients assigned to each independent variable and

β0 is the intersection point. Implementing equation (4.6) in terms of ROP and drilling

parameters the equation can be written as.
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ROP = β0 + β1WOB + β2RPM + β3Torque+ β4FP + β5MW + β6FlowRate (4.6)

Equation (4.6) is based on several drilling data, where they make up the independent variable

and ROP is Y-value predicted. Note that equation (4.6) is built on a few assumptions such

as it doesn’t take the well deviation into account. The depth of the well is only a reference

and isn’t considered in the analysis and the wells are correlated with respect to geological

sections and modelled respectively.

The Multiple regression model is modelled in Microsoft Excel where each drilling data is

provided to predict the rate of penetration. The regression coefficients are listed as constants

as the independent variables in terms of drilling data are varying with the depth of the well.

Initially, we start out the regression based modelling with the reference well. Furthermore,

the coefficients are implemented in equation (4.6) to predict the ROP of the nearby and

far-away wells. The workflow is presented in Figure 4.6:

Figure 4.6: Multiple regression model workflow.
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4.3.2 MSE Model Workflow

MSE is used to model ROP. As described in Chapter 3, MSE is the energy required to

excavate one volume of rock from the formation. The procedure is that, first MSE values are

calculated using equation (3.5) for reference well. The calculated MSE value is implemented

into equation (4.7) to calculate ROP for the nearby and far-away wells. In this technique, it

is assumed that the mechanical formation strength of the reference well, nearby and far-away

wells are nearly equivalent. The MSE workflow is presented in Figure 4.7:

Figure 4.7: MSE model workflow.

The units for the parameters used for this ROP model are following: MSE in [Kpsi], WOB

in [lbs], Db in [in] and T in [lbf-ft].

MSE =
480NT

ROP · 1000D2
b

+
4WOB

π · 1000D2
b

ROP =
120NT

250MSED2
b − WOB

π

(4.7)
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4.3.3 D-Exponent Model Workflow

The D-exponent model previously stated in Chapter 3 is a ROP model that is based on

normalizing the drilling parameters for calculating ROP. Rehm et al. developed equation

(3.11) that corrects for the contribution of ECD [27]. However, in this thesis due to lack of

ECD values from the wells provided the last term ρn/ρa is neglected. The equation used in

predicting the ROP in the D-exponent model is therefore equation (3.11) simplified to:

Dexp =
log ROP

60N

log 12WOB
106D

(4.8)

By using equation (4.8) as a reference equation the D-exponent from the reference well is

used to predict the modelled ROP for the next well by substituting it into equation (4.9),

which is obtained by rearranging equation (4.8) with respect to ROP.

Dexp =
log ROP

60N

log 12WOB
106D

log
ROP

60N
= Dexp · log

12WOB

106Db

ROP = 10
Dexp log 12WOB

106Db · 60N (4.9)

The units for the parameters in this model are ROP in [ft/hr], Db in [in], WOB in [lbf] and

RPM in [ft/min]. The workflow for D-exponent is presented in Figure 4.8
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Figure 4.8: D-Exponent model workflow.

4.3.4 Warren Model Workflow

Warren model being introduced in Chapter 3.2 is a ROP for soft formation bits. This model

relates the penetration rate to several factors such as rock strength, WOB, rotational speed,

jet impact force and size- and type of the bit. When developing ROP for the Warren model

the imperfect-cleaning model is used equation (3.13). Due to being more applicable as the

ROP is significantly affected by the rate where the rock cuttings are evacuated under the

bit.

In order to calculate the rock strength, which is not provided in the drilling data, we must

assume the uniaxial compressive strength of the rock (UCS) is equal to 35 % of MSE, hence

peak performance of drill bits is achieved when UCS is equal to 30-40 % of MSE. In order to

calculate ROP by using imperfect cleaning model equation (3.13) must be rearranged:

ROP =

(
aS2D3

b

N ·WOB2
+

b

N ·Db

+
cDbγfµ

Fjm

)−1

1

ROP
=

aS2D3
b

N ·WOB2
+

b

N ·Db

+
cDbγfµ

Fjm
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ROP = a

(
S2D3

bROP

N ·WOB2

)
+ b

(
ROP

N ·Db

)
+ c

(
DbγfµROP

Fjm

)
(4.10)

To be able to use equation (4.10), the equation must be expressed as a matrix with the three

terms for the reference well
(

S2D3
b

N ·WOB2

)
,
(

1
N ·Db

)
and

(
Dbγfµ

Fjm

)
. The equation be expressed as

following matrix:


a

b

c



x1 y1 z1

x2 y2 z2
...

...
...

xn yn zn

 =


1

1
...

1


The terms are solved as matrix in MATLAB, generating ”x”, ”y” and ”z” values. Where,

”x”, ”y” and ”z” are respectively, the first, second and third terms. Furthermore, the matrix

equation can now be solved in MATLAB to calculate ”a”, ”b” and ”c” coefficients. These

values are now implemented into equation 4.10 for the next well and the following equation

is obtained:

ROP =
1

a
(

S2D3
b

N ·WOB2

)
+ b
(

1
N ·Db

)
+ c
(
Dbγfµ

Fjm

) (4.11)

The workflow for Warren model is presented in Figure 4.9.
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Figure 4.9: Warren model workflow.

4.3.5 Bourgoyne & Young Model Workflow

Bourgoyne & Young model equation is based on several drilling parameters. The ROP is

modelled by combining the Bourgoyne & Young coefficients with the drilling parameters as

presented in equation (4.12). In order to determine the coefficient values, regression analysis

is performed. The steps to simplify equation 4.12 is converting the equation to logarithmic.

ROP = a1D
a2WOBa4RPMa6qa8 (4.12)

log(ROP ) = log(a1D
a2WOBa4RPMa6qa8)
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log(ROP ) = log(a1) + a4 log(D) + a4 log(WOB) + a6 log(RPM) + a8 log(q) (4.13)

The coefficients shown in equation (4.13) are derived by using the measured field data and

regression technique. Figure 4.10 shows the process of computation. The coefficients are then

implemented back into equation 4.10 where they are combined with the drilling parameters.

Figure 4.10: Bourgoyne & Young model workflow.
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5. Modelling and Results

During modelling, the workflows outlined in Chapter 4.3 are implemented. These are

multiple regression (Figure 4.6), MSE (Figure 4.7), D-exponent (Figure 4.8), Warren (Figure

4.9) and Bourgoyne & Young (Figure 4.10) models. The modelling scenarios are based on

entire well data, section by section, geology by geology after being correlated for, and drilling

ahead approaches. To briefly describe the modelling hypothesis:

• Entire well data: This modelling approach uses the entire drilling data, which

comprises of different geological groups.

• Section by section: The hole sections data associated with the 36” 26” 17.5 and

12.25” are used to develop models for each section. Here, each section may represent

a single geology or a combination.

• Lateral geological groups: Using drilling reports, the geological sections of the

drilled well are identified and correlated for, as shown in Figure 4.3 in chapter 4.1.2.

Based on the geological group data, the ROP model was modelled and constants or

coefficients are generated.

• Drill ahead ROP prediction: The main idea here is to develop a model in real-time

and apply the model when planning to drill ahead. This method uses 90 % of the

drilled well for modelling, but the coefficients/constants are applied for the whole

section including the remaining 10 % data.

The ROP modelling is based on field drilling data, which comprises of field ROP, WOB,

RPM, torque, drill bit size, mud weight, flow rate and pore pressure. Figure 5.1 shows the

whole process of modelling, testing and reporting.
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Figure 5.1: Summary of the modelling techniques, testing scenarios and reporting of results.

Modelling Testing

As illustrated in Figure 5.2, the models are tested on the considered wells. For instance,

the model generated from well 6506/11-A-3 data will be tested on its own, nearby well

(eg. well 6506/11-A-1) and far-away wells (6506/11-A-2 and 6506/11-A-4). The process is

repeated for the other wells as well. The main idea here is to investigate the applicability

and limitations of the models.
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Figure 5.2: Illustration of well 6506/11-A-3 based model application on the nearby and
far-away wells.

Criteria for reporting

It is well known that all modelling approaches will not give good results. The application of

the models where it is applied for its own well or very close wells with similar geology, the

applicability is higher. However, for the quality of the report, the criteria for pass or fail

is introduced. If the testing result is good enough for most of the wells, it is reliable and

reported in the main thesis. However, there are also cases when the testing results show huge

discrepancy between the model and the measured, then it will be moved to Appendix. By

studying the data, the poor results may be to modelling and the lateral geological variations.

The possible reason for this could be because of poor quality of the measured input drilling

data.
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5.1 Multiple Regression Modelling

5.1.1 Investigating ROP Dependent Parameters

As reviewed in the theory part several parameters control the penetration rate. However, in

this modelling part seven drilling parameters will be used for application. For instance, the

Warren model comprises of three terms that control the ROP, with the first term dealing

with indentation, the second part with the cutter and the third term with the effects of

hydraulic.

The parameters affecting the ROP can be divided into drilling- and hydraulics parameters.

Drilling parameters include WOB, torque and RPM. Drilling hydraulics related parameters

are mud weight, formation pressure and flow rate. In order to study the effect of the drilling-

and hydraulic parameters on ROP, field data from well 6506/11-A-2 in Morvin field are used

to model the rate of penetration with Multiple regression model. The objective of this task

is to verify the parameters ROP depends on. Initially the model consists of 6 parameters

and is decreased with the step of one variable at the time. The quality of the modelled ROP

is tested by considering the coefficient of determination (R2) which is an element of [0,1].

R2 = 0 means none of the parameters are function of ROP and if R2 = 1 the parameters

can predict the ROP without errors.

Table 5.1: Investigating ROP Dependent Parameters regression coefficient values.

Case C0 C1 C2 C3 C4 C5 C6 R2

#1 -816.069 0.001 -0.007 0.089 0.297 59.737 94.868 0.728
#2 -696.206 -0.001 -0.003 0.125 0.256 62.499 0.714
#3 166.784 -0.004 0.002 0.525 -0.041 0.223
#4 124.628 -0.004 0.003 0.468 0.220

Case 1

Equation 5.1 is the model, which consists of seven parameters. The modelling result is shown

in subfigure 5.3a and the coefficient values of the case are provided in Table 5.1. The model

for case 1 is shown in equation (5.1)
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ROP

(
ft

h

)
= C0 + C1WOB + C2T + C3RPM + C4Flow + C5FP + C6MW (5.1)

The model fits relatively well with the measured ROP where, R2 =0.777. As shown in

subfigure 5.3a, the correlation between the model and field data are good.

Case 2

By omitting mud weight, the second model uses six parameters. The coefficient values are

shown in Table 5.1 and the result of the modelling is shown in subfigure 5.3b. The model

fits with R2 =0.749, which is nearly similar to the seven-parameters model.

ROP

(
ft

h

)
= C0 + C1WOB + C2T + C3RPM + C4Flow + C5FP (5.2)

Case 3

Furthermore, in the third model, the formation pressure is omitted. The model clearly shows

that ROP strongly depends on formation pressure as R2=0.213 and ROP modelled clearly

deviates from the measured ROP. The modelling result is illustrated in subfigure 5.3c and

the coefficient values are provided in Table 5.1.

ROP

(
ft

h

)
= C0 + C1WOB + C2T + C3RPM + C4Flow (5.3)

Case 4

In the last model flow rate is removed and the only parameter left are WOB, T and RPM.

The coefficient of determination is almost similar to case 3 being 0.212, indicating flow rate

is a minor contribution on ROP. The modelling result is shown in subfigure 5.3d and the

coefficient values in Table 5.1.

ROP

(
ft

h

)
= C0 + C1WOB + C2T + C3RPM (5.4)
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 5.3: Investigating ROP Dependent Parameters modelling results.
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From the modelling results, we observe that the first two cases show a good correlation

with the measured ROP. Reducing the parameters in the last two cases showed that the

discrepancy between the model and the measured data increases. Furthermore, we observe

that when removing one parameter in each case, the correlation factor decreases. This

indicates that the penetration rate depends on all the parameters as demonstrated in case

1.

5.1.2 Testing for its Own, Nearby and Far-Away Wells

The depth of the overburden except for well 6506/11-A-3 are all deeper than 8450 ft. Here,

the total vertical depth until the top of the reservoir (i.e 8.5) hole sections data is considered

for the modelling and application. Figure 5.4 shows the well depths.

Figure 5.4: Sketch of entire wells.
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In this section the wells 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 are modelled

with coefficient values extracted from each of their well. The outcomes of the plots are

presented in Figure 5.5. The modelled ROP is calculated using equation (5.5). The result

coefficient values for the overburden sections are presented in Table 5.2 where ROP is plotted

against true vertical depth (TVD).

ROP

(
ft

h

)
= C0 + C1WOB + C2T + C3RPM + C4FP + C5Flow + C6MW (5.5)

Table 5.2: Multiple regression model - Regression coefficient values for entire well data.

Well C0 C1 C2 C3 C4 C5 C6 R2

6506/11-A-2 43.254 -0.002 -0.012 0.460 8.585 -0.058 113.964 0.605
6506/11-A-2 -816.069 0.001 -0.007 0.089 59.737 0.297 94.868 0.728
6506/11-A-3 -211.664 -0.002 0.011 0.478 32.210 0.104 -141.171 0.553
6506/11-A-4 -168.627 -0.002 0.004 -0.102 0.890 0.154 83.256 0.434
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.5: Multiple regression model - Using their own regression coeff. values.
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Testing coefficients from nearby and far-away wells

The coefficients extracted from the wells are implemented in the nearby and far-away wells

to the modelled ROP. The results are compared with the measured ROP of the wells in

Figure 5.6 - 5.9.

(a) using 6506/11-A-2 regression
coefficient values

(b) using 6506/11-A-3 regression
coefficient values

(c) using 6506/11-A-4 regression
coefficient values

Figure 5.6: Multiple regression model - Nearby and far-away regression coeff. on
6506/11-A-1.
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(a) using 6506/11-A-2 regression
coefficient values

(b) using 6506/11-A-3 regression
coefficient values

(c) using 6506/11-A-4 regression
coefficient values

Figure 5.7: Multiple regression model - Nearby and far-away regression coeff. on
6506/11-A-2. 49
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(a) using 6506/11-A-1 regression
coefficient values

(b) using 6506/11-A-2 regression
coefficient values

(c) using 6506/11-A-4 regression
coefficient values

Figure 5.8: Multiple regression model - Nearby and far-away regression coeff. on
6506/11-A-3. 50
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(a) using 6506/11-A-1 regression
coefficient values

(b) using 6506/11-A-2 regression
coefficient values

(c) using 6506/11-A-3 regression
coefficient values

Figure 5.9: Multiple regression model - Nearby and far-away regression coeff. on
6506/11-A-4. 51
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The results are showed in Figure 5.6. The model coefficients obtained from well 6506/11-A-2

and 6506/11-A-3 predict well 6506/11-A-1 quite good. However, at the deeper section

associated with the Cromer Knoll group, the model predictions deviate. The three wells

have the same formations (Lysning, Lange and Lyr Formations), which consist of claystone,

stringers of either minor limestone or dolomite. However, the homogeneity is not the same

in the three wells. The application on well 6506/11-A-4 shows poor correlation.

Similarly, the application on the nearby and far-away wells (6506/11-A-1, A-3 and A-4)

on well 6506/11-A-2 show a quite poor prediction. Furthermore, the application of well

6506/11-A-1, 6506/11-A-2 and 6506/11-A-4 on well 6506/11-A-3 show a good prediction.

The reason for this could be due to the fact that when applying the models, all wells have the

same depth since well 6506/11-A-3 is shorter than the rest. These results suggest developing

a new scenario called ”Same well depth from mudline”, as shown in chapter 5.1.3.

The results displayed in Figure 5.9 is the application of the three well models on well

6506/11-A-4. Since the well 6506/11-A-4 data contains a lot of spikes, it is difficult to

model the details. The ROP of the well might experience a lot of axial vibrations. Due to

the disturbances on the ROP data, the model could not capture the ROP of the measured

data. From the model testing results, one can observe that the application of the models

on the nearby and far-away wells is sometimes good enough and sometimes bad. The main

reasons associated with this are the quality of the data inputs used, and the lateral geology

dissimilarities between the wells.

5.1.3 Same Well Depth From Mudline Scenario

In this modelling scenario, all the wells are set to have the same depth of 8450 ft in order to

correlate for the same depths. Figure 5.10 shows a sketch of the well depths.
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Figure 5.10: Illustration of ”Same well depth from the mudline”.

Table 5.3 provides the value of the regression coefficients and the results are plotted in Figure

5.12 to 5.15

Table 5.3: Same well depth from mudline - Regression coefficient values.

Well C0 C1 C2 C3 C4 C5 C6 R2

6506/11-A-1 234.328 0.001 0.005 -0.142 -0.342 -0.170 28.615 0.605
6506/11-A-2 -41.376 -0.001 0.005 0.270 33.460 -0.128 -60.739 0.728
6506/11-A-3 -211.664 -0.002 -0.002 0.478 32.210 0.105 -141.171 0.553
6506/11-A-4 -235.965 -0.001 0.006 -0.252 9.010 0.135 84.250 0.520

The UCS profiles of the ”Same Well Depth From Mudline” are displayed in Figure 5.11.

At shallow depths until 2500 ft, all the wells exhibited the same UCS values. One can

also observe that until 7000 ft, except for well 6506/11-A-2, the UCS profiles seem nearly

equivalent and deviates afterward. On the other hand, well 6506/11-A-2 shows a stronger

UCS between 2500 ft - 7000 ft. The strength reduces afterward. Remember that the

calculation results depend on the measured drilling parameters in each well.
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Figure 5.11: Same well depth from mudline - UCS values.

Testing coefficients from nearby and far-away wells

The ROP results obtained by implementing the nearby and far-away coefficient values on

each well are plotted in Figure 5.12 - 5.15.
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(a) 6506/11-A-1 regression coeff. on itself.
(b) 6506/11-A-2 regression coeff. applied on
6506/11-A-1

(c) 6506/11-A-3 regression coeff. applied on
6506/11-A-1

(d) 6506/11-A-3 regression coeff. applied on
6506/11-A-1

Figure 5.12: Same well depth from mudline - 6506/11-A-1.
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(a) 6506/11-A-2 regression coeff. on itself
(b) 6506/11-A-1 regression coeff. applied on
6506/11-A-2

(c) 6506/11-A-2 regression coeff. applied on
6506/11-A-2

(d) 6506/11-A-4 regression coeff. applied on
6506/11-A-2

Figure 5.13: Same well depth from mudline - 6506/11-A-2.
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(a) 6506/11-A-3 regression coeff. on itself
(b) 6506/11-A-1 regression coeff. applied on
6506/11-A-3

(c) 6506/11-A-2 regression coeff. applied on
6506/11-A-3

(d) 6506/11-A-4 regression coeff. applied on
6506/11-A-3

Figure 5.14: Same well depth from mudline - 6506/11-A-3.
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(a) 6506/11-A-4 regression coeff. on itself
(b) 6506/11-A-1 regression coeff. applied on
6506/11-A-4

(c) 6506/11-A-2 regression coeff. applied on
6506/11-A-4

(d) 6506/11-A-3 regression coeff. applied on
6506/11-A-4

Figure 5.15: Same well depth from mudline - 6506/11-A-4.
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Figure 5.12 shows the application of the model derived from well 6506/11-A-1 on its own

and on distance wells (6506/11-A-2, A-3 and A-4). The prediction seems quite well, but

not perfect. However, it is interesting to observe that the same depth based modelling

application on the nearby wells show better prediction compared with the entire well data

based modelling presented in chapter 5.1.2

Similarly, the testing of well 6506/11-A-2 on its own and far distance wells (6506/11-A-1,

A-3, A-4) demonstrated nearly the same performance. In general, one can observe the poor

quality of the data sets that show several spikes, which could be associated with torsional or

axial vibrations. Therefore, the model predictions based on the considered dataset (entire

well or same depth) estimate without capturing the details. This suggest in developing a

new modelling scenario called drilling ahead based modelling. The main reason was that as

shown in the model application, the models predict best when applying on its own well.

5.1.4 Drilling Ahead ROP Prediction Scenario

The most important question here is how can we apply the modelling approach for practical

design and analysis purposes. The idea of this scenario is to continuously model and predict

the ROP. From the model, one can obtain the highly ROP dominating drilling parameters in

order to optimize them and hence increase ROP. For this, only two wells have been considered

for modelling as sketched in Figure 5.16. During modelling, the limitation and the reliability

of the concept for predicting ROP ahead of the drilling will be investigated. In this scenario,

four different data points will be considered to model well 6506/11-A-1 and 6506/11-A-4. In

Figure 5.16 the red area of the well is already modelled. Based on the coefficients generated

from Multiple regression model, the coefficients are implemented in the green area, and ROP

is modelled for the rest of the well.
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Figure 5.16: Illustration of ”Drilling Ahead ROP Prediction Scenario”.

1. Well 6506/11-A-1

First, the model approach is tested for well 6506/11-A-1 using different numbers of observation

points (OP). Figure 5.17 represents the results when ROP is predicted. Table 5.4 provides

the value of the regression coefficients.

Table 5.4: Drilling Ahead ROP Prediction Scenario - 6506/11-A-1 coefficient values.

Model C0 C1 C2 C3 C4 C5 C6 R2 OP
100 % Data 151.272 -0.002 -0.013 0.632 9.318 -0.114 68.29 0.625 792
90.7 % Data 170.727 -0.002 -0.010 0.685 9.676 -0.115 31.282 0.549 719
87.3 % Data 169.824 -0.002 -0.010 0.692 9.970 -0.117 30.589 0.516 692
75 % Data 184.866 -0.002 -0.003 0.887 19.273 -0.155 -78.664 0.464 592
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Figure 5.17: Drilling Ahead ROP Prediction Scenario - 6506/11-A-1.

Based on the results in the figure above, the correlation between field ROP and the modelled

ROP is greater, the more observation points. For example in the model where 90.7 % of the

data points are used, the correlation is greater than for the case with 75.0 % of the data

points.

2. Well 6506/11-A-4

Secondly, the model approach is tested on well 6506/11-A-4 using different numbers of

observation points (OP). Figure 5.5 represents the result when ROP is predicted. Table

5.5 provides the value of the coefficients and the number of observation points.
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Table 5.5: Drilling Ahead ROP Prediction Scenario - 6506/11-A-4 coefficient values.

Model C0 C1 C2 C3 C4 C5 C6 R2 OP
100 % Data 151.272 -0.002 -0.013 0.632 9.318 -0.114 68.29 0.625 792
90.7 % Data 170.727 -0.002 -0.010 0.685 9.676 -0.115 31.282 0.549 719
87.3 % Data 169.824 -0.002 -0.010 0.692 9.970 -0.117 30.589 0.516 692
75 % Data 184.866 -0.002 -0.003 0.887 19.273 -0.155 -78.664 0.464 592

Figure 5.18: Drilling Ahead ROP Prediction Scenario - 6506/11-A-4.

The second model yields the same results as well 6506/11-A-1. The more observation points,

the higher correlation between the modelled and field ROP. From the studies, one can observe

the prediction works best when 90 % of the dataset is used for modelling and the application

is limited to 10 % of drilling ahead.
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5.1.5 Section by Section Scenario

In general, the modelling results based on entire well modelling and its application showed

a quite good prediction as presented in the previous section. In order to minimize the

percentile error deviations, this scenario presents section by section based modelling. The

drilled sections are 36”, 26”, 17.5” and 12.25”. For comparison purpose, the section by

section modelling result is presented with the entire hole section.

Figure 5.19 illustrates a sketch of the wells modelled using ”Section by Section”. The results

show that the Multiple regression model by using section by section match excellent when

it is applied on its own well. Figure 5.20 presents the results for the four wells.

Figure 5.19: Illustration of ”Section by section scenario”.
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Table 5.6: Section by section - 6506/11-A-1 coefficient values.

Section C0 C1 C2 C3 C4 C5 C6 R2

36” 1706.493 -0.008 0.011 0.525 0 1.742 0 0.970
26” -687.472 0.002 -0.007 1.095 89.881 -0.018 -39.144 0.646

17.5” 1097.755 0.004 0.007 0.204 17.002 -0.538 -363.847 0.701
12.25” 3180.788 -0.001 -0.001 0.168 17.763 -0.420 -1683.480 0.880

Table 5.7: Section by section - 6506/11-A-2 coefficient values.

Section C0 C1 C2 C3 C4 C5 C6 R2

36” -550.903 -0.007 0.042 2.691 0 0.222 0 0.984
26” 617.540 -0.005 0.026 -0.152 0 0.238 -730.472 0.873

17.5” -1682.185 0.001 0.008 -1.481 234.235 0.083 -209.419 0.378
12.25” -720.283 0.002 -0.001 -0.095 65.723 0.309 2.295 0.763

Table 5.8: Section by section - 6506/11-A-3 coefficient values.

Section C0 C1 C2 C3 C4 C5 C6 R2

36” 978.620 -0.007 -0.026 -6.452 0 -0.178 0 0.986
26” 864.150 -0.005 0.034 0.599 -52.552 -0.151 -305.878 0.428

17.5” 621.417 0.002 -0.004 0.714 49.836 0.055 -741.234 0.525
12.25” -2620.787 0.001 0.062 -0.947 25.322 0.166 1011.350 0.858

Table 5.9: Section by section - 6506/11-A-4 coefficient values.

Section C0 C1 C2 C3 C4 C5 C6 R2

36” -30.892 0.007 -0.018 0.722 10.409 -0.038 0 0.968
26” -477.802 -0.003 0.004 -0.062 75.446 0.014 -51.679 0.446

17.5” -452.742 0.001 0.002 -0.386 22.542 0.433 64.956 0.593
12.25” 160.161 0.001 -0.008 0.267 6.501 -0.098 22.822 0.531
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.20: Section by section modelling results.
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5.1.6 Geological Groups Scenario

In this modelling approach, all the wells will be modelled by regression coefficients extracted

from each lateral geological group. However, due to the provided well report doesn’t cover all

the geological groups of the wells, this modelling approach is only implemented on geological

groups that cover the given drilling dataset. Table 5.10 - 5.13 provides the regression

coefficient values for geological groups of the different wells. In Figure 5.21 the results

are illustrated.

As shown in the tables, the modelling R2 values indicate good correlations. The results

displayed in Figure 5.21 show a very good match between the model predictions and the

measured ROPs. The results show that the geological groups based modelling scenario is

better than the entire well data based modelling.

Table 5.10: Geological Groups - Regression coefficient values from 6506/11-A-1.

Well 6506/11-A-1
Geo. Groups C0 C1 C2 C3 C4 C5 C6 R2

Nordaland Gr. 33.424 0.002 0.008 -0.547 -0.660 0.239 -135.447 0.939
Hordaland Gr. -2416.160 0.002 -0.001 1.614 17.020 -0.089 1376.243 0.939
Rogaland Gr. -1599.056 0.006 -0.025 -3.387 42.863 1.382 481.222 0.913
Shetland Gr. 3458.036 -0.003 0.012 -0.109 0.155 0.476 -1761.236 0.885

Cromer Knoll Gr. 1015.939 0.001 -0.004 -0.100 15.576 -0.190 -506.013 0.981

Table 5.11: Geological Groups - Regression coefficient values from 6506/11-A-2.

Well 6506/11-A-2
Geo. Groups C0 C1 C2 C3 C4 C5 C6 R2

Hordaland Gr. -6963.215 0.001 -0.009 -12.520 -44.591 3.336 3558.822 1
Rogaland Gr. 36464.453 -0.001 0.039 1.243 29.603 -40.778 -2865.695 0.943
Shetland Gr. 3970.562 0.007 -0.015 -0.037 39.022 -0.493 -2121.362 0.429

Cromer Knoll Gr. -16.239 0.001 0.001 -0.210 27.140 0.338 -273.279 0.935
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Table 5.12: Geological Groups - Regression coefficient values from 6506/11-A-3.

Well 6506/11-A-3
Geo. Groups C0 C1 C2 C3 C4 C5 C6 R2

Hordaland Gr. -2528.383 0.005 0.008 -4.714 20.140 0.147 1040.791 0.999
Rogaland Gr. -10435.953 0.001 0.032 -0.492 34.608 0.347 5640.873 0.979
Shetland Gr. 1008.025 -0.002 0.053 -0.268 11.424 -0.030 -893.068 0.712

Table 5.13: Geological Groups - Regression coefficient values from 6506/11-A-4.

Well 6506/11-A-4
Geo. Groups C0 C1 C2 C3 C4 C5 C6 R2

Rogaland Gr. 379.545 0.002 0.014 0.836 17.410 0.056 0 0.406
Shetland Gr. 253.568 -0.002 0.009 0.450 14.110 -0.469 -39.640 0.571
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.21: Geological Groups modelling results.
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5.1.7 Drilling Ahead ROP Prediction for Geological Groups

The ”Drilling Ahead ROP Prediction Scenario” was examined in chapter 5.1.4. The idea of

the scenario is to continuously model and predict the ROP with the objective of obtaining the

highly dominant drilling parameters and optimize parameters to increase ROP. However, in

this chapter, all the four wells 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 have

been considered for modelling with Multiple regression modelling approach. Furthermore,

Drilling Ahead ROP Prediction for geological groups previously showed the model was most

reliable when around 90 % of the data points (red region), were used for modelling. As

illustrated in Figure 5.22, for each of the wells 90 % of the data points for each geological

group is used to predict ROP in 10 % of the modelled depth section (green area), based on

coefficient values generated from the red areas.

Figure 5.22: Illustration of ”Drilling Ahead ROP Prediction” for geological groups.
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This modelling approach is very similar to the work done in chapter 5.1.6, except for ROP

only being based on the coefficients extracted from 90 % of the data points. In Table 5.14 -

5.17 the regression coefficients values for all four wells are presented and Figure 5.23 displays

the comparisons between the models and the measurements.

The results show that 90 % data of geological groups based modelling and application on the

10 % of the data, forecast the measured data perfectly. This indicates the reliability of the

modelling approach and can be used in real-time while drilling operations goes on.

Table 5.14: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-1 regression
coeff. values.

Well 6506/11-A-1
Geo. Groups C0 C1 C2 C3 C4 C5 C6

Nordaland Group 20.999 0.002 0.007 -0.763 -10.623 0.289 -78.687
Hordaland Group -2237.047 0.002 -0.006 1.181 17.167 -0.070 1334.217
Rogaland Group -506.712 0.008 -0.027 -4.705 51.529 0.749 183.849
Shetland Group 3604.634 -0.003 0.015 -0.205 -3.407 -0.535 -1801.527

Cromer Knoll Group 674.636 0 -0.001 0.022 8.492 -0.118 -333.427

Table 5.15: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-2 regression
coeff. values.

Well 6506/11-A-2
Geo. Groups C0 C1 C2 C3 C4 C5 C6

Hordaland Group -2429.315 -0.010 -0.045 -25.433 42.492 5.788 0
Rogaland Group 33594.045 -0.002 0.053 1.279 48.793 -35.456 -3874.747
Shetland Group 1958.537 0.004 -0.009 0.308 27.984 -0.461 -945.204

Cromer Knoll Group 338.072 0.002 -0.004 0.062 38.966 0.145 -440.657

Table 5.16: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-3 regression
coeff. values.

Well 6506/11-A-3
Geo. Groups C0 C1 C2 C3 C4 C5 C6

Hordaland Group -2797.239 0.005 0.078 -4.201 20.366 0.156 1169.209
Rogaland Group -9891.379 0.001 0.036 -0.453 39.310 0.311 5275.435
Shetland Group 91.208 0.005 0.012 -0.683 20.634 -0.238 -20.776
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Table 5.17: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-4 regression
coeff. values.

Well 6506/11-A-4
Geo. Groups C0 C1 C2 C3 C4 C5 C6

Rogaland Group -419.254 0.003 0.017 0.282 19.369 0.144 0
Shetland Group 293.259 0.001 0.005 0.172 14.352 -0.411 -37.726
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.23: Drilling Ahead ROP Prediction for geological groups - Using their own
regression coeff. values.
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5.2 MSE Modelling

The concept of MSE modelling was proposed by Teale in 1965. The model is a function

of several drilling parameters such as WOB, Torque and RPM. The MSE model is based

on the assumption that the amount of energy required to drill a certain volume of rock is

correlative for the nearby and far-away wells. However, in reality this correlation between

the wells creates inaccuracy when applying this model and is invalid when applied on remote

wells. This is a result of MSE being a function of compressive strength and geostatic pressure,

these values vary within the wells.

The modelling technique in this section is based on the MSE workflow presented in Chapter

4.1 and the final results are presented in subfigures in Figure 5.25. Note that the TVD is

correlated for TVD of each depth of each well, therefore the resulting plots doesn’t yield the

same TVD for all cases.

In Figure 5.24 all the UCS values are plotted against each other as a function of TVD (ft).

All the wells show promising correlations in the shallowest section. However, as the depth

increases well 6506/11-A-2 deviates from the other wells. This is an indication that the

wells have very similar lateral geology, and well 6506/11-A-2 exhibited relatively stronger

mechanical strength within 2500 ft - 7000 ft compared to the other wells. Moreover, well

6506/11-A-4 differs from the other wells as we exceed 7000 ft because UCS increases rapidly.
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Figure 5.24: Computed UCS values for the four wells.
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.25: MSE modelling results.
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When UCS values from well 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 are applied on

6506/11-A-1, the results are showed in subfigure 5.25a. The modelled ROPs correlates fairly

with the filtered ROP. The model with UCS values from 6506/11-A-2 underestimates the

ROP in the depth of 1377 ft - 7000 ft, before catching the filtered ROP.

The MSE model with UCS values from well 6506/11-A-1, 6506/11-A-3 and 6506/11-A-4

applied on 6506/11-A-2 is shown in subfigure 5.25b. When applying UCS values from the

other wells, well 6506/11-A-3 has the most similar lateral geological features and is most

correlative. UCS values from well 6506/11-A-1 and 6506/11-A-4 overestimates penetration

rates in the depth of 2400 ft - 2900 ft, meaning there is different geology in this depth

sections.

In subfigure 5.25b the MSE model with UCS values from well 6506/11-A-1, 6506/11-A-2

and 6506/11-A-4 applied on 6506/11-A-3 is shown. In this modelling technique, UCS values

from well 6506/11-A-2 correlates best with 6506/11-A-3 which confirms geological similarities

between the wells. Also in this modelling case well 6506/11-A-1 and 6506/11-A-4 have very

high amplitudes at 4000 ft - 5000 ft. However, they correlate decently with the filtered ROP

after this depth, indicating the same geological features.

Finally, in the last subfigure 5.25d is well 6506/11-A-4, where nearby and far-away wells

values are implemented is illustrated. UCS values from 6506/11-A-2 deviates from the filtered

ROP as there are geological differences. Except for a few high amplitudes, the ROP model

with UCS values from well 6506/11-A-1 and 6506/11-A-3 correlates fairly with the measured

ROP.

5.3 D-exponent Modelling

This chapter will present the results of Drillability exponent, and the results are presented

in Figure 5.27. The modelling procedure for D-exp is previously described in Chapter 4.3

(D-Exponent Workflow). In general, the D-exponent is a drilling parameter that gives

information about the drillability of the formation.
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The drilling exponent increases with the depth of the formation for normally pressurized

formations and is proportional to the formation strength. The harder it is to penetrate

through the formation, the greater will the D-exp value be. The D-exponent model is built

on the assumption that the drillability of the different wells are more correlative, the more

lateral geology of the wells are similar.

Figure 5.26: Computed D-exponent for the four wells.

By studying Figure 5.26 we observe up to 9000 ft the D-exponent for all the wells are

almost similar, meaning the drillabillity of the formations are very similar. Furthermore, by

exceeding the vertical depth of 9000 ft, we observe that the D-exponent for well 6506/11-A-1

and 6506/11-A-2 starts to deviate from one and another, as the formation in well 6506/11-A-1

is harder to penetrate through.
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.27: D-exponent modelling results.
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In subfigure 5.27a, the D-exponent obtained from well 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4

are substituted into well 6506/11-A-1. The penetration rate is very similar until the drilling

reaches the Kai formation in Nordaland group (6000 ft). Initially, well 6506/11-A-3 result is

greatly larger than the filtered ROP for well 6506/11-A-1. Well 6506/11-A-4 also deviates

from the filtered ROP as we approach Hordaland group at 7800 ft - 8500 ft.

Subfigure 5.27b shows the D-exponent values generated from well 6506/11-A-1, 6506/11-A-3

and 6506/11-A-4 implemented in well 6506/11-A-2. This case is very similar to the first

case with well 6506/11-A-1, as well 6506/11-A-3 and 6506/11-A-4 starts to deviate, when

we approach Nordaland and Hordaland Groups. Besides that Figure 5.27b shows promising

results.

The results of applying the D-exponent values from the other three wells on well 6506/11-A-3

is shown in subfigure 5.27c. Here, the ROP with D-exp from well 6506/11-A-4 is deviating

from the filtered ROP for well 6506/11-A-3, showing very high peaks.

In the last subfigure 5.27d, well 6506/11-A-4 is tested with well 6506/11-A-1, 6506/11-A-2

and 6506/11-A-3 drillability exponents. The figure shows good correlation, except for high

peaks at approximately 6800 ft for ROPs with D-exponent from well 6506/11-A-1 and

6506/11-A-2. This indicates that for most of the depth sections, the drillability to penetrate

through the formations is quite similar.

5.4 Warren Modelling

Warren model is a function of several drilling parameters as stated in equation 3.13 in chapter

3.3. The modelling technique is based on Warrens imperfect-cleaning model. Furthermore,

the Warren model constants ”a”, ”b” and ”c” are generated using MATLAB. The workflow

used modelling the field data is presented in Figure 4.9 in Chapter 4.3.4.
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5.4.1 Modelling by Entire Well Data

In this section the wells 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 are modelled

with Warren constants extracted from each of their well. The ROP results modelled for the

wells are presented in Figure 5.28. Warren constants ”a”, ”b” and ”c” are shown in Table

5.18.

Figure 5.28 shows the application of Warren model on its own well by using the coefficients

presented in Table 5.18. The results show that the model prediction on well 6506/11-A-1

is quite good at the top and bottom part of the well. However, in the middle section, the

model deviates from the measurement. On well 6506/11-A-3, the model deviates from the

well throughout the drilling depth. Well 6506/11-A-2 and 6506/11-A-4 also show quite big

discrepancy between the model and the measurement. The overall results suggest that the

entire well data based modelling approach is not good enough when using Warren model. In

the next section, the performance of the Warren model on section by section approach will

be evaluated.

Table 5.18: Warren Model - Warren constant values for entire well data.

Well a b c
6506/11-A-1 1.364E-05 16.525 4.279E-07
6506/11-A-2 1.169E-05 8.0492 4.996E-07
6506/11-A-3 1.273E-06 16.388 -1.185E-06
6506/11-A-4 0 0 1.521E-06
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.28: Warren model - Using their own Warren constant values for entire well data.
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5.4.2 Modelling by Hole Sections

In this section the well 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 are modelled

by correlating the hole sections to the overburden section of the wells, i.e 36”, 26”, 17,5”

and 12,25”, respectively. In the first case, the wells are modelled with Warren constants

extracted from their own wells. Table 5.19 - 5.22 provides the values for Warren constants

and the results are shown in Figure 5.29

When modelling Warren model using section by section approach, the results are better

compared to the entire well data approach. However, the model fails to capture some parts

of the drilling data. It can be noted that the prediction is not consistent, which may be due

to the input parameters.

Table 5.19: Warren Model - Warren constant values for 6506/11-A-1 for hole sections.

Well 6506/11-A-1
Hole Section a b c

36” 2.313E-04 180.938 -5.159E-05
26” -4.339E-07 -3.843 6.231E-06

17.5” 6.827E-06 7.568 1.439E-06
12.25” 1.252E-05 -25.939 3.940E-06

Table 5.20: Warren Model - Warren constant values for 6506/11-A-2 for hole sections.

Well 6506/11-A-2
Hole Section a b c

36” 1.650E-04 3.585 6.279E-06
26” -1.950E-05 7.639 3.990E-06

17.5” 9.745E-05 -1.427 2.370E-06
12.25” 1.134E-05 -9.878 2.051E-06

Table 5.21: Warren Model - Warren constant values for 6506/11-A-3 for hole sections.

Well 6506/11-A-3
Hole Section a b c

36” 1.019E-04 164.175 -3.358E-05
26” 1.193E-04 28.691 -1.752E-06

17.5” 4.790E-05 -7.375 3,397E-06
12.25” 1.336E-06 -1.477 8.494E-07
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Table 5.22: Warren Model - Warren constant values for 6506/11-A-4 for hole sections.

Well 6506/11-A-4
Hole Section a b c

36” 1.742E-05 61.518 -3.529E-06
26” 1.413E-04 5.189 1.810E-06

17.5” 8.306E-05 -7.616 2.440E-06
12.25” 0 0 1.048E-06
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.29: Warren model - Using their own Warren constant values for hole sections.

84



5.4. Warren Modelling MSc Thesis 2020

5.4.3 Modelling by Geological Groups

The test method for ”Modelling by geological groups” is executed by dividing the well depths

into different geological groups as illustrated in Figure 4.3 in Chapter 4.1.2. The depths of

the wells had to be in terms of the same lateral geological groups. Table 5.23 - 5.26 provides

the Warren constant values for the geological groups of the different wells.

Table 5.23: Warren Model - Warren constant values for 6506/11-A-1 for geological groups.

Well 6506/11-A-1
Group a b c

Nordaland Group 4.425E-05 -13.043 3.775E-06
Hordaland Group 9.056E-06 57.870 -4.718E-06
Rogaland Group -1.236E-06 -10.725 1.812E-06
Shetland Group 2.049E-05 60.641 -4.116E-06

Cromer Knoll Group 1.145E-05 14.403 1.555E-06

Table 5.24: Warren Model - Warren constant values for 6506/11-A-2 for geological groups.

Well 6506/11-A-2
Group a b c

Hordaland Group 1.880E-05 -0.248 5.708E-07
Rogaland Group -3.7616E-06 0.705 6.831E-07
Shetland Group 1.506E-06 -4.834 1.1396E-06

Cromer Knoll Group 1.014E-05 -0.410 1.738E-06

Table 5.25: Warren Model - Warren constant values for 6506/11-A-3 for geological groups.

Well 6506/11-A-3
Group a b c

Hordaland Group 1.245E-06 -4.912 1.569E-06.
Rogaland Group 1.741E-07 -2.557 1.108E-06
Shetland Group -1.900E-07 0.645 5.425E-07

Table 5.26: Warren Model - Warren constant values for 6506/11-A-4 for geological groups.

Well 6506/11-A-4
Group a b c

Rogaland Group 0 0 1.023E-06
Shetland Group 3.816E-09 9.883 2.997E-07
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.30: Warren model - Using their own Warren constant values for geological groups.
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In subfigure 5.30a, ROP Warren constants are extracted from Nordaland, Hordaland, Rogaland,

Shetland and Cromer Knoll Groups. From the modelled ROP the correlation between actual

and modelled ROPs are very good in all group sections. The modelled ROP in Shetland

Group (7500 ft - 10,000 ft) overestimates the field ROP.

When modelling by geological groups using Warren constants in well 6506/11-A-2, the

correlation is very promising. However, the model is slightly limited as it doesn’t generate

a good representation of the high and low peaks of ROP. Overall modelled ROP yields

satisfying results.

Modelling well 6506/11-A-3 by geological groups, the modelled ROP gives poor correlation

with field ROP. The modelled ROP follows the trendline of actual ROP, but underestimates

the prediction of ROP in most depths of the well.

Well 6506/11-A-4 is hard to model as signal is very sensitive to disturbances. The geological

groups Rogaland and Shetland Groups where the constants are extracted from, generates

the poor result.

5.4.4 Drilling Ahead ROP Prediction for Geological Groups

The Warren model application method in this testing results follows the same procedure in

chapter 5.1.7, where the Warren constants are extracted from the red area in Figure 5.22.

Warren modelling approach for all the four wells are presented in Figure 5.31 and the Warren

constant values are shown in Table 5.27 - 5.30 below:

Table 5.27: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-1 Warren
constants values.

Well 6506/11-A-1
Geo. Groups a b c

Nordaland Group 4.3245E-05 -13.347 3.926E-06
Hordaland Group 1.109E-05 46.215 -3.420E-06
Rogaland Group -1.543E-06 -12.697 2.139E-06
Shetland Group 1.746E-05 59.646 -4.324E-06

Cromer Knoll Group 2.363E-05 27.686 -2.266E-06
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Table 5.28: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-2 Warren
constants values.

Well 6506/11-A-2
Geo. Groups a b c

Hordaland Group 1.554E-05 -3.600 1.174E-06
Rogaland Group -1.208E-06 -1.464 5.725E-07
Shetland Group 9.237E-07 -0.992 8.360E-07

Cromer Knoll Group 1.467E-05 39.729 -1.552E-06

Table 5.29: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-3 Warren
constant values.

Well 6506/11-A-3
Geo. Groups a b c

Hordaland Group 1.170E-06 -4.749 1.327E-06
Rogaland Group 4.249E-07 -2.354 9.053E-07
Shetland Group -5.117E-07 -0.133 5.962E-07

Table 5.30: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-4 Warren
constant values.

Well 6506/11-A-4
Geo. Groups a b c

Rogaland Group 1.806E-08 -24.209 2.345E-06
Shetland Group 4.312E-09 4.123 5.770E-07
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.31: Drilling Ahead ROP Prediction for geological groups - Using their own Warren
constant values.
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In subfigure 5.31a, drilling ahead ROP prediction for well 6506/11-A-1 is illustrated. The well

is very well predicted in all the geological groups, although it underestimates in Rogaland

and Shetland Groups at 7100 ft - 9000 ft. We can summarize by concluding with well

6506/11-A-1 being good predicted.

Well 6506/11-A-2 prediction is showed in subfigure 5.31b. The ROP prediction for this

well is very alternating as the bottom and top sections of the well are excellently modelled.

However, the modelled ROP is unpleasant in Shetland Group as it is poor to model the ROP

peaks. The result in well 6506/11-A-2 when modelling by drilling ahead ROP prediction the

modelled ROP is viewed to be acceptable.

The result generated in subfigure 5.31c with well 6506/11-A-3 is good, although it doesn’t

match fully with the field ROP.

In subfigure 5.31d well 6506/11-A-4 is modelled using drilling ahead ROP prediction. Earlier

results show that Warren model is moderate when generating ROP peaks. Therefore modelling

well 6506/11-A-4 suffers from this condition. The ROP prediction for well 6506/11-A-4 in

this section yields the poorest results.

5.5 Bourgoyne & Young Modelling

The analysis of Bourgoyne & Young model is presented in chapter 4.3.5. As described earlier

in the thesis, Bourgoyne & Young Model is based on multiple drilling parameters.

Table 5.31 presents Bourgoyne & Young Model coefficient values extracted from each well

and in Figure 5.32 the coefficient values are plotted in the well against field ROP.

Table 5.31: Bourgoyne & Young model - B&Y coeff. values for entire well data.

Well a1 a2 a4 a6 a8 R2

6506/11-A-1 1.881 0.031 -0.732 0.490 1.249 0.440
6506/11-A-2 0.008 0.312 -0.593 0.430 1.540 0.231
6506/11-A-3 1.465 0.393 -0.209 0.268 0.279 0.321
6506/11-A-4 0.009 0.592 -0.058 -0.169 0.832 0.397
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.32: Bourgoyne & Young Model - Using their own B&Y coeff. values for entire
well data.
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The results show that the ”Entire well data” based coefficients provide very well predictions

of the field ROP. Although the model clearly deviates from the actual ROP in Shetland Group

at 8300 ft - 10300 ft. One of the main reasons for the deviation was that the measured WOB

was very low compared with the upper-lying formation dataset. However, the overall results

show satisfactory.

In the figure above (Figure 5.32b) the wells give poor estimations of the field ROP. The

deviation is significant at 5000 ft - 7000 ft (12.25” hole section) and Shetland at 8500 ft -

11100 ft. However, the modelled ROP follows the trendline, presenting a fair correlation.

The Bourgoyne & Young model fails to predict the high and low peaks of ROP in well

6506/11-A-3. Therefore the correlation factor, R2 is low. The modelled ROP in this well

gives good result in terms of the trendline, but doesn’t fit the details of the ROP values.

As described in the previous cases with the other wells, the Bourgoyne & Young model is

poor to capture the ROP peaks. Therefore ROP in well 6506/11-A-4 which is very sensitive

to disturbances it isn’t favorable when it comes to modelling. Even though R2 is greater

than for well 6506/11-A-2 and 6506/11-A-3, the model is not sufficient to model ROP.

The model is a five parameter model, which is missing some important ROP governing

parameters. This could be the reason for the weakness of the model. This suggests the need

to modify the model. The next section deals with the modification and testing process.

5.6 Modified Bourgoyne & Young Modelling

The Bourgoyne & Young model results presented in Chapter 5.5 show that equation (3.19)

is limited when it comes to predicting field ROP. Therefore, in this thesis a new improved

model developed with the idea of improving the predictive power of Bourgoyne & Young

model is modified. The background for the model improvement is the results obtained from

chapter 5.1.1. Here, the work done was in an attempt to investigate the ROP dependent

parameters.
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The new model proposed is built on the assumption of equation (3.19) being correlated for

the depth of the wellbore and being simplified with respect to the core real-time drilling

optimization variables. As demonstrated in chapter 5.1.1, the ROP depends on torque (T),

formation pressure (FM) and mud weight (MW). The Modified Bourgoyne & Young model

is expressed as:

ROP = γ1D
γ2WOBγ3RPMγ4qγ5T γ6FP γ7MW γ8 (5.6)

The workflow for solving ROP is the same as the one presented for Bourgoyne & Young in

Figure 4.10 in chapter 4.3.5, p. 37.

5.6.1 Modelling by Entire Well Data

In this chapter well 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 are modelled

by Bourgoyne & Young coefficients extracted from the entire well. The resultant coefficient

values, γ1 - γ8, are presented in Table 5.32. The coefficient values are implemented in equation

(5.6) on well 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4. The outcomes are

presented in Figure 5.33.

Table 5.32: Modified Bourgoyne & Young model - Modified B&Y coeff. values for entire
well data.

Well γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

6506/11-A-1 62037.7223 -0.0335 -0.532 0.082 1.022 -0.775 0.252 2.501 0.492
6506/11-A-2 4.547E-11 -0.579 0.025 0.267 3.251 -0.372 5.420 2.382 0.757
6506/11-A-3 2.849E-05 0.151 -0.262 0.447 0.349 1.125 1.039 -1.731 0.427
6506/11-A-4 0.018 -0.052 -0.080 -0.146 0.595 0.723 -0.233 1.016 0.467
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.33: Modified Bourgoyne & Young Model - Using their own B&Y coeff. values for
entire well data.
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The modelled ROPs in subfigures 5.33a and 5.33b have great correlation factors for all the

four wells. However, the generated penetration rates aren’t extremely predictive for field

ROP, the model is clearly improved. The model tends to minimize the geological areas

where the deviation was large, especially in well 6506/11-A-1.

As the modelling results in subfigures 5.33d and 5.33c showed good correlation with field

ROP, the coefficients from the reference well are tested on the nearby and far-away wells

in order to model ROP model with respect to the measured one. However, note that well

6506/11-A-4 is not included as this well were hard to predict with this modified model, and

produced poor results when implemented with its own coefficients.

Testing Mod. B&Y coeff. from nearby and far-away wells

The coefficient values achieved from well 6506/11-A-1 seen in Table 5.32 are implemented

from nearby and far-away wells for well 6506/11-A-1, 6506/11-A-2 and 6506/11-A-3. The

resultant ROPs are presented in Figure 5.34 - 5.36.
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Figure 5.34: Modified Bourgoyne & Young Model - 6506/11-A-1 using 6506/11-A-2 and
6506/11-A-3 B&Y coeff. values.

Figure 5.35: Modified Bourgoyne & Young Model - 6506/11-A-2 using 6506/11-A-1 and
6506/11-A-3 B&Y coeff. values.
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Figure 5.36: Modified Bourgoyne & Young Model - 6506/11-A-3 using 6506/11-A-1 and
6506/11-A-2 B&Y coeff. values.

Figure 5.34 show a decent correlation throughout most sections of the wells. When ROP

is modelled with well 6056/11-A-2 coefficients a large deviation occurs in Nordaland and

Hordaland Group at 4800 ft - 7000 ft. For ROP with coefficients from well 6506/11-A-3 the

modelled ROP highly overestimates field ROP as we drill through Shetland Group at 10000

ft.

When coefficients from well 6506/11-A-1 are implemented in well 6506/11-A-2, the modelled

ROP prediction is weaker than when well 6506/11-A-1 is implemented with its own coefficients.

Some minor high-value peaks occur in the shallowest sections and the model tends to deviate

from the measured ROP at 8500 ft in Shetland Group.
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Applying coefficients from well 6506/11-A-3, the result is fluctuating. However, in this case

also with coefficients from well 6506/11-A-1 deviates clearly as we approach Shetland Group.

We observe that the results obtained in well 6506/11-A-3 are very alternating for both cases.

In the first case with coefficients from well 6506/11-A-1 the model shows a very promising

correlation until the last 2000 ft of the well. In the second case with coefficients from well

6506/11-A-2 it is poor to predict ROP with a large offset at around 4000 ft.

5.6.2 Modelling by Hole Sections

Furthermore, well 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 are divided into

intervals depending on the hole sections. The wells are modelled by correlating the hole

sections to the overburden section. The wells are first modelled with their own coefficients

extracted from each hole section of the wells.

Table 5.33 - 5.36 provides the Bourgoyne & Young coefficient values extracted from the hole

sections. The result is shown in Figure 5.33 - 5.36.

Results show that the application of the model on its own well where they are derived from

predicts the measured ROP perfectly. This suggests the applicability of the model as well as

the hole section based modelling. The modelling approach could describe the same geological

sections. However, it may also contain other geological groups as well. To be more specific

the next chapter (5.6.3), will look at geological groups based modelling.

Table 5.33: Modified Bourgoyne & Young model - Modified B&Y coeff. for 6506/11-A-1
hole sections.

Well 6506/11-A-1
Hole section γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

36” 0.847 2.979 -0.833 -5.061 5.394 -3.30 0 0 0.962
26” -33.130 -0.246 0.113 -0.238 -3.866 0.372 49.707 -7.900 0.176

17.5” 6.614 -1.137 0.233 0.340 -1.854 0.595 1.147 0.812 0.584
12.25” 17.912 -7.426 1.294 0.635 -0.177 0.817 4.448 -2.374 0.934
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Table 5.34: Modified Bourgoyne & Young model - Modified B&Y coeff. values for
6506/11-A-2 hole sections.

Well 6506/11-A-2
Hole section γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

36” 167.612 10.616 -2.439 2.321 -65.797 0 0 0 0.737
26” -1.812 0.133 -0.464 0.257 1.476 0 0 -2.638 0.561

17.5” 18.059 -2.921 -0.524 0 -2.255 2.683 -8.766 6.989 0.804
12.25” 17.912 -7.426 1.294 0.635 -0.177 0.817 4.448 -2.374 0.934

Table 5.35: Modified Bourgoyne & Young model - Modified B&Y coeff. values for
6506/11-A-3 hole sections.

Well 6506/11-A-3
Hole section γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

36” 177.796 -29.797 2.458 -18.251 -2.350 -13.510 0 0 0.912
26” 2.569 -0.390 -0.599 0.728 -1.664 1.782 0.233 -2.521 0.540

17.5” -7.140 -2.900 0.599 1.089 -1.526 0.334 3.955 1.320 0.728
12.25” -21.881 0.446 -0.078 -0.406 0.530 3.979 0.903 20.373 0.872

Table 5.36: Modified Bourgoyne & Young model - Modified B&Y coeff. values for
6506/11-A-4 hole sections.

Well 6506/11-A-4
Hole section γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

36” 22.837 -10.705 1.081 -1.346 0.769 -1.076 13.179 0 0.552
26” -3.210 0.485 -0.524 -0.292 0.725 0.589 1.806 0 0.266

17.5” -5.939 -1.505 0.223 -0.553 2.964 0.267 3.991 -0.352 0.684
12.25” 7.011 -3.232 -0.019 0.556 -1.626 2.486 1.210 -0.332 0.450
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.37: Modified Bourgoyne & Young Mode - Using their own B&Y coeff. values for
hole section.
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5.6.3 Modelling by Geological Groups

In this chapter well 6506/11-A-1, 6506/11-A-2, 6506/11-A-3 and 6506/11-A-4 are modelled

by coefficients extracted from the geological groups. This modelling technique approach is

similar to the explanation in chapter 5.1.6 and 5.4.3

Table 5.37 - 5.40 presents the Modified Bourgoyne & Young coefficients obtained from the

four wells. Figure 5.38 shows that the the Modified Bourgoyne & Young model perfectly

capture the field ROPs. Results also show that geological group based model prediction

improved the one obtained from the section by section modelling method.

The results presented in Figure 5.40 are application of the geological groups based model on

its own well, showing there is an excellent match with the field ROP.

Table 5.37: Modified Bourgoyne & Young model - Modified B&Y coeff. values for
6506/11-A-1 geological groups.

Well 6506/11-A-1
Geo. Groups γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

Nordaland Group -7.153 -2.031 0.765 0.346 2.915 0.392 2.463 -0.737 0.884
Hordaland Group 6.995 -3.306 0.044 1.034 -0.449 0.542 1.072 16.887 0.950
Rogaland Group 17.109 -6.761 0.143 -1.011 3.377 -0.974 3.013 17.243 0.935

Shetland 2.955 -6.624 0.369 0.352 1.635 4.197 2.281 -5.381 0.976
Cromer Knoll Group 35.266 -10.484 1.712 0.847 -1.859 -0.202 6.317 -1.428 0.976

Table 5.38: Modified Bourgoyne & Young model - Modified B&Y coeff. values for
6506/11-A-2 geological groups.

Well 6506/11-A-2
Geo. Groups γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

Hordaland Group -6.674 0 0.628 -0.541 -0.529 2.515 -1.212 0 1
Rogaland Group 370.397 12.216 0.337 -0.350 -142.707 -0.647 2.658 -10.665 0.952

Shetland 15.474 -5.372 -0.220 0.764 -1.178 1.894 1.267 -0.833 0.790
Cromer Knoll Group 3.484 -4.762 0.841 0.137 1.524 1.093 4.727 -0.346 0.968
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Table 5.39: Modified Bourgoyne & Young model - Modified B&Y coeff. values for
6506/11-A-3 geological groups.

Well 6506/11-A-3
Geo. Groups γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

Hordaland Group -23.229 -4.484 0.164 -2.239 1.024 9.071 2.513 16.911 1
Rogaland Group -22.065 -0.735 0.008 -0.203 1.292 2.991 2.817 37.209 0.980
Shetland Group -7.294 0.452 -0.042 -0.047 -0.537 2.517 0.812 -6.451 0.718

Table 5.40: Modified Bourgoyne & Young model - Modified B&Y coeff. values for
6506/11-A-4 geological groups.

Well 6506/11-A-4
Geo. Groups γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 R2

Rogaland Group -7.270 -0.096 0.058 0.467 0.863 1.157 1.346 0 0.398
Shetland Group 8.383 -5.596 -0.039 0.349 -0.589 3.899 0.786 0.053 0.692
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.38: Modified Bourgoyne & Young Model - Using their own B&Y coeff. values for
geological groups.
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5.6.4 Drilling Ahead ROP Prediction for Geological Groups

In this chapter, the wells are modelled by Modified Bourgoyne & Young coefficients extracted

from the red area in Figure 5.22 in page 69. The modelling technique is similar to the

application method in Chapter 5.1.7 in page 69. Table 5.41 - 5.44 provides the coefficient

values and in Figure 5.31 the resulting plots are plotted.

In subfigure 5.39a ROP is perfectly modelled for all geological groups of the well. A high-value

ROP prediction occurs at bottom of Hordaland Group. Well 6506/11-A-1 can be concluded

with that it generates excellent results using the Modified Bourgoyne & Young model when

drilling ahead ROP prediction is applied.

Subfigure 5.39b illustrates drilling ahead ROP prediction for well 6506/11-A-2. This well

also experiences the deviation as well 6506/11-A-1 when high-value ROP is generated in

Hordaland Group, but note that this section isn’t for where drilling ahead ROP prediction

is applied.

In subfigures 5.39c and 5.39d, well 6506/11-A-3 and 6506/11-A-4 are respectively modelled.

The outcome results are viewed to be the finest results, generating perfect ROP prediction

in all geological groups. This is an indication that these two wells behave perfectly under

this modelling application.

Table 5.41: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-1 Modified
B&Y coeff. values.

Well 6506/11-A-1
Geological Group γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Nordaland -7.335 -2.022 0.782 0.187 3.225 0.357 1.981 -0.287
Hordaland 6.452 -3.247 0.053 1.111 -0.475 0.597 1.053 16.857
Rogaland 39.481 -9.717 -0.189 -1.191 -0.822 -0.971 -3.775 20.543
Shetland 5.209 -6.976 0.356 0.485 1.079 4.368 2.152 -5.532

Cromer Knoll 31.419 -10.160 1.448 0.932 -1.264 0.270 5.561 0.865

104



5.6. Modified Bourgoyne & Young Modelling MSc Thesis 2020

Table 5.42: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-2 Modified
B&Y coeff. values.

Well 6506/11-A-2
Geological Group γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Hordaland -7.325 0 0.600 -0.731 0 2.383 -1.099 0
Rogaland 283.224 11.979 0.269 -0.310 -113.125 0.330 3.874 -22.414
Shetland -0.878 -1.221 -0.165 -0.016 -0.350 1.622 0.791 9.358

Cromer Knoll 8.081 -3.113 1.473 1.179 -0.850 -1.105 6.341 -7.229

Table 5.43: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-3 Modified
B&Y coeff. values.

Well 6506/11-A-3
Geological Group γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Hordaland -56.294 0 -0.005 0.515 1.778 12.956 0.123 0
Rogaland -26.524 0.793 0.015 -0.171 0.799 3.149 2.939 33.398
Shetland -5.856 0.057 -0.066 -0.125 -0.320 1.938 0.955 -6.320

Table 5.44: Drilling Ahead ROP Prediction for Geological Groups 6506/11-A-4 Modified
B&Y coeff. values.

Well 6506/11-A-4
Geological Group γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

Rogaland -33.009 8.468 0.184 -0.059 -3.062 2.073 2.444 0
Shetland 9.294 -3.884 0.005 0.261 -1.310 2.498 1.048 -0.059
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(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 5.39: Drilling Ahead ROP Prediction for geological groups - Using their own B&Y
coeff. values.
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6. Analysis and Discussion

Chapter 6 summarizes the result and simulation studies work presented in Chapter 5. The

previous work presented earlier were presented as qualitative research, however, in this

chapter results of the predicted models will be analyzed and be presented as quantitative

research. The work in this chapter is based on several outlined analysis methods to test the

accuracy of the modelled ROPs.

6.1 Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error (MAPE) measures the size of the errors in percentage terms,

where the predicted model deviates from the actual model. MAPE is used to calculate the

accuracy of a predicted model. The better the model predicts the actual model, the lower is

MAPE value, meaning if modelled dataset is 100 % accurate, then MAPE value is equal to

0 and there exists no deviation.

In this thesis MAPE evaluation is used to analyse the accuracy for each modelled ROP

approach. The objective of this analysis is to observe the deviation between measured and

modelled ROP nummerically. MAPE is calculated in Microsoft Excel with the use of equation

6.1 as shown in Table 6.1 - 6.4.

MAPE =
100 %

n

n∑
i=1

|
ROP(mod)i −ROP(filt)i

ROP(filt)i
| (6.1)

Where ”n” is number of datasets, ROPmod is modelled ROP and ROPfilt is actual or filtered

ROP.
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Table 6.1: MAPE values for Multiple regression model.

MAPE Values Well
Multiple Regression Model 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4

Multiple Reg. model -
Using its own coeff.

42.121% 26.772% 25.857% 24.480%

Multiple Reg. model -
Coeff from 6506/11-A-1

50.690% 40.365% 50.061%

Multiple Reg. model -
Coeff from 6506/11-A-2

98.210% 54.673% 54.433%

Multiple Reg. model -
Coeff from 6506/11-A-3

120.460% 89.735% 51.715%

Multiple Reg. model -
Coeff from 6506/11-A-4

93.461% 72.897% 28.937%

Same Well Depth -
Using its own coeff.

15.611% 18.495% 25.857% 24.432%

Same Well Depth -
Coeff from 6506/11-A-1

46.342% 31.861% 47.195%

Same Well Depth -
Coeff from 6506/11-A-2

24.136% 34.778% 44.247%

Same Well Depth -
Coeff from 6506/11-A-3

23.082% 42.136% 42.888%

Same Well Depth -
Coeff from 6506/11-A-4

23.420% 41.470% 27.485%

Multiple Reg. - Section by
section using its own coeff.

20.297% 20.495% 11.576% 9.331%

Multiple Reg. - geological groups
using its own coeff.

18.106% 8.550% 4.259% 13.707%

Multiple Reg. - Drilling
ahead ROP prediction

22.251% 12.010% 9.624% 14.291%

MAPE Values

Investigating ROP Dependent Parameters
Case 1

26.772%
Case 2

+27.272%
Case 3

55.728%
Case 4

54.893%
Drilling Ahead ROP Prediction -

6506/11-A-1
100%

41.026%
91.3%

46.328%
90.7%

46.960%
87.3%

47.278%
75%

87.116%
Drilling Ahead ROP Prediction -

6506/11-A-4
100%

33.561%
90.1%

33.606%
85.4%

33.740%
75.3%

63.657%
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Table 6.2: MAPE values for MSE and D-exponent models.

MAPE Values Well
MSE & D-Exponent Models 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4
MSE - values from 6506/11-A-1 69.130% 41.884% 37.410%
MSE - values from 6506/11-A-2 108.966% 162.428% 185.035%
MSE - values from 6506/11-A-3 70.800% 53.113% 80.819%
MSE - values from 6506/11-A-4 41.504% 67.937% 55.100%

D-exp. - values from 6506/11-A-1 110.481% 131.966% 103.263%
D-exp. - values from 6506/11-A-2 67.929% 170.155% 119.238%
D-exp. - values from 6506/11-A-3 62.009% 54.324% 120.114%
D-exp. - values from 6506/11-A-4 66.542% 57.287% 51.086%

Table 6.3: MAPE values for Warren model.

MAPE Values Well
Warren Model 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4

Warren model - Entire well
using its own const.

35.121% 53.612% 125.164% 163.276%

Warren model - Section by section
using its own const.

31.634% 35.616% 15.431% 23.312%

Warren model - Geological groups
using its own const.

23.351% 15.703% 17.416% 19.061%

Warren model - Geological groups
const. from 6506/11-A-1

47.935% 111.911% 235.566%

Warren model - Geological groups
const. from 6506/11-A-2

78.399% 30.969% 55.166%

Warren model - Geological groups
const. from 6506/11-A-3

124.598% 25.761% 170.085%

Warren model - Geological groups
const. from 6506/11-A-4

50.231% 38.085% 57.488

Warren Model - Drilling Ahead
ROP prediction

22.664% 14.085% 10.073% 17.175%
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Table 6.4: MAPE values for Bourgoyne & Young model.

MAPE Values Well
Bourgoyne & Young Model 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4

Bourgoyne & Young model - Entire
well using its own coeff.

44.595% 44.293% 27.079% 25.471%

Modified B&Y model - Entire well
using its own coeff.

42.863% 21.814% 23.862% 23.239%

Modified B&Y - Entire well
coeff. from 6506/11-A-1

44.803 50.569%

Modified B&Y - Entire well
coeff. from 6506/11-A-2

84.532% 79.144%

Modified B&Y - Entire well
coeff. from 6506/11-A-3

233.873% 122.412%

Modified B&Y model - Section by
section using its own coeff.

14.317% 21.339% 9.890% 15.664%

Modified B&Y model - Geological groups
using its own coeff.

5.435% 24.045% 4.260% 9.748%

Modified B&Y - Drilling Ahead
ROP prediction

-5.843% 6.230% 7.166% 10.069%

Table 6.1 - 6.4 confirms the qualitative modelling reporting in chapter 5. The results obtained

in the tables above are quite alternating. However, when the wells are plotted with the

coefficients or constants extracted from their own well, gave the best estimation of field

ROPs, indicating that they had least errors.

By observing the results achieved in this subchapter its clearly that ”Drilling Ahead ROP

Prediction for Geological Groups” application gives by far the best correlation between the

field and modelled ROP. When this application is applied using Modified Bourgoyne & Young

model it gives least errors.

Furthermore, MSE and D-exponent models in Table 6.2, gave the worst correlation to field

ROP. Additionally when wells where plotted with coefficients from the nearby and far-away

wells often tend to perform the poorest results which are the case in Multiple regression,

Warren and Bourgoyne & Young models.

Note – Well 6506/11-A-4 was not modelled with Modified Bourgoyne & Young

model using nearby and far-away coefficient values.

110



6.2. Time Analysis MSc Thesis 2020

6.2 Time Analysis

Time analysis is used to evaluate how fast drilling is completed for the wells used for

modelling in real-life application. An advantage with time analysis is that it allows models

which initially had variations or fluctuations in their data points to still predict ROP and

drilling time with decent results. The assumption in this analysis is there is no non-productive

time.

When calculating the drilling time for the proposed models generated in Chapter 5 the

drilling time for each depth interval is calculated, where the well is divided into multiple

depth consisting of two and two data points. The time interval for each intervals are then

added together to get the whole drilling time for the well. This steps are performed for both

field and modelled ROPs, and the total time deviation is calculated. The equation used for

time analysis to present the time deviation are presented in equation 6.2.

ti = 2
(MD)i+1 − (MD)i

(ROP )i+1 + (ROP )i

T =
n∑
i=1

ti

%Time Deviation =
TMod − TField

TField
(6.2)

Where, ti is time for each section and T is total time.
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Table 6.5: Time deviation values for Multiple regression model.

Time Deviation (%) Well
Multiple Regression Model 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4

Multiple Reg. model -
Using its own coeff.

-21.072% -58.613% -11.865% +17.465%

Multiple Reg. model -
Coeff from 6506/11-A-1

-36.910% +8.690% -41.204%

Multiple Reg. model -
Coeff from6506/11-A-2

-40.754% -19.321% -36.980%

Multiple Reg. model -
Coeff from 6506/11-A-3

-43.057% -43.326% -28.642%

Multiple Reg. model -
Coeff from 6506/11-A-4

-41.139% -28.830% +10.676%

Same Well Depth -
Using its own coeff.

-5.798% -5.299% -11.825% -8.175%

Same Well Depth -
Coeff from 6506/11-A-1

-28.609% -9.454% -25.355%

Same Well Depth -
Coeff from 6506/11-A-2

+13.029% +4.619% -6.472%

Same Well Depth -
Coeff from 6506/11-A-3

-4.505% -22.383% -25.237%

Same Well Depth -
Coeff from 6506/11-A-4

+20.732% -2.193% +15.463%

Multiple Reg. - Section by
section using its own coeff.

+3.252% -15.535% -4.148% -3.628%

Multiple Reg. - geological groups
using its own coeff.

-11.543% +5.198% -50.098 -2.514%

Multiple Reg. - Drilling
ahead ROP prediction

-16.779% +5.698% -5.644% -4.805%

Time Deviation (%)

Investigating ROP Dependent Parameters
Case 1

-58.613%
Case 2

+51.047%
Case 3

-23.581%
Case 4

-23.747%
Drilling Ahead ROP Prediction -

6506/11-A-1
100%

-19.638%
91.3%

-27.379%
90.7%

-28.035%
87.3%

-28.401%
75%

-43.482%
Drilling Ahead ROP Prediction -

6506/11-A-4
100%

+1.365%
90.1%

11.476%
85.4%

+52.535%
75.3%

-37.463%
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Table 6.6: Time deviation values for MSE and D-exponent models.

Time Deviation (%) Well
MSE & D-Exponent Models 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4
MSE - values from 6506/11-A-1 +6.875% +50.837% +6.265%
MSE - values from 6506/11-A-2 +24.045% -40.419% -30.780%
MSE - values from 6506/11-A-3 -9.577% +116.287% -16.630%
MSE - values from 6506/11-A-4 +1.818% +200.076% +53.532%

D-exp. - values from 6506/11-A-1 -25.607% +37.782% -12.716%
D-exp. - values from 6506/11-A-2 +84.745% -13.761% -28.660
D-exp. - values from 6506/11-A-3 +116.990% +247.259% +176.339%
D-exp. - values from 6506/11-A-4 +70.311% +155.716% +166.964

Table 6.7: Time deviation values for Warren model.

Time Deviation (%) Well
Warren Model 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4

Warren model - Entire well
using its own const.

-1.746% -7.568% -37.543% -31.996%

Warren model - Section by section
using its own const.

-1.048% -2.162% +0.307% -32.425%

Warren model - Geological groups
using its own const.

+1.700% -3.526% +20.556% +9.201%

Warren model - Geological groups
const. from 6506/11-A-1

+62.590% +507.315% +332.851%

Warren model - Geological groups
const. from 6506/11-A-2

-34.353% +52.501% -20.314%

Warren model - Geological groups
const. from 6506/11-A-3

-54.015% -16.287% -39.104%

Warren model - Geological groups
const. from 6506/11-A-4

-13.220% +63.470% +153.940

Warren Model - Drilling Ahead
ROP prediction

+12.415% +4.669% +1.571% -2.374%
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Table 6.8: Time deviation values for Bourgoyne & Young model.

Time Deviation (%) Well
Bourgoyne & Young Model 6506/11-A-1 6506/11-A-2 6506/11-A-3 6506/11-A-4

Bourgoyne & Young model - Entire
well using its own coeff.

-18.581% -13.843% -8.167% -4.445%

Modified B&Y model - Entire well
using its own coeff.

-17.693% -5.714% -6.915% -4.020%

Modified B&Y - Entire well
coeff. from 6506/11-A-1

+23.031% -3.218%

Modified B&Y - Entire well
coeff. from 6506/11-A-2

-23.863% -11.956%

Modified B&Y - Entire well
coeff. from 6506/11-A-3

-52.390% 47.790%

Modified B&Y model - Section by
section using its own coeff.

-5.260% 7.208% +1.646% -1.807%

Modified B&Y model - Geological groups
using its own coeff.

+0.809% +13.007% -0.087% -0.323%

Modified B&Y - Drilling Ahead
ROP prediction

-2.901% -6.715% +5.949% -1.968%

The results obtained in the tables below provide positive and negative percent-values for

time deviation. The positive terms mean the estimated drilling time is greater than actual

drilling time, while negative values are the other way around.

When using time analysis the results above are very alter when the different ROP models

are implemented under different applications, where most of them required less drilling time.

Time analysis also confirms the observations calculations made in previous work in both

chapter 5 and MAPE analysis, where the best results are obtained when a well is plotted

with its own constants or coefficients.

Modified Bourgoyne & Young model gave the least errors, where especially ”Drilling ahead

ROP Prediction” had the most accurate time estimation. Additionally, in this analysis

”Drilling ahead ROP Prediction” for Multiple regression, Warren and Bourgoyne & Young

models estimated time very good.

Note – Well 6506/11-A-4 was not modelled with Modified Bourgoyne & Young

model using nearby and far-away coefficient values.
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The wells that are modelled with MSE and D-exp models show the largest time deviation.

Also as we observed in chapter 5 and MAPE analysis, the largest time differences occur

when wells are modelled with constants or coefficients from nearby and far-way wells.

6.3 Parametric Sensitivity Analysis

Parametric sensitivity analysis was performed in order to figure out the most controlling

drilling parameters on ROP. The main objective of this study is to optimize these drilling

parameters to increase the rate of penetration and reduce drilling time. The overall results

are reflected in the reduction of drilling cost. By doing so, the idea behind this is to give

the operator which parameters it should increase or decrease when the new section is to be

drilled.

The parametric analysis will be applied on Nordaland Group in well 6506/11-A-1. Furthermore,

the drilling parameters used for analysis are WOB, torque and RPM where they are increased

or decreased with 10% depending on their coefficient values. The single drilling parameter

and their combined effects on the average ROP and drilling time are shown in Figures 6.1

and 6.2, respectively.

Figure 6.1: Average ROP for Nordaland Group.
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Figure 6.2: Total time for Nordaland Group.

The red column represents the reference well where the values extracted from field measurements.

The dark-blue and light-blue columns are 10 % increase in WOB and torque. While purple

is a 10 % decrease in RPM. The green bar shown at the left end of the figure is the result of

the combined effect of drilling parameters.

Finally, it is clear that the value of the regression coefficient values will directly contribute

to the optimization of the ROP. By optimizing WOB, T and RPM with 10 % will increase

the average drilling rate by 22 % and reduce the drilling time by 17 %.

6.4 ROP Optimization Process

The main purpose of the ROP optimization is selecting the appropriate drilling parameters,

which provides an increase in ROP and reduce drilling time per footage. For this first,

verify the applicability of the models. Based on the model coefficients, a sensitivity study

will be carried out by changing the drilling parameter to ±10 %. Here, the single and the

combined effect of parameters based evaluation will be compared to the reference measured

data. Finally, the thesis work presents the systematic optimization procedures.

1. First of all well-to-well and stratigraphic correlations are performed.

2. Remove data outliers and apply Moving average filter to the drilling data.
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3. The proposed ROP models are applied in order to generate the coefficients used for

modelling.

4. The coefficients values are implemented on either its own, nearby or far-away wells,

where it is compared to the field ROP of that well.

5. The model proposed can be verified on modelling pre-drilled nearby and far-away wells

and also on its own well.

6. For the pre-drilled well average time and ROP are then computed where it is used as

reference well. Furthermore, average time and ROP are then compared to the next

well.

7. The drilling parameters with the greatest attribution on the ROP models are defined.

These parameters are the ones that have the highest positive coefficient values. Furthermore,

a sensitivity analysis is carried out, where the parameters are increased or decreased.

Finally, average time and ROP are calculated where they are compared to the reference

well specified in step 4.

8. Lastly, if combining larger and smaller coefficient values are combined more sensitivity

analysis can be performed. The best-case scenario and the most realistic can be

implemented in the future well.

6.5 Uncertainties in Modelling

• Quality of the drilling data parameters.

• Failure or non-optimal LWD and MWD-tools. Also, uncertainties in measurements

may cause errors.

• Lateral geological variations between the proposed wells
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7. Summary and Conclusion

7.1 Summary

Based on the time and ROP analysis, the application of the models are compared. The

model testing was on its own well, nearby and far-away wells. The summary is shown in

Table 7.1. The color code in green is to represent an excellent prediction, yellow is very good

and red is poor. Results show that the application of coefficients derived from its own well

exhibited excellent prediction. However, when applying on the nearby and far-away wells,

the prediction is not as on its own well. The main reason is due to the lateral geological

variations in terms of type and strength. The analysis shows that Multiple regression, MSE

and D-exponent based ROP models works good on the nearby-well. On the other hand, the

rest of the models show poor both on the nearby and far-away wells.

Table 7.1: Modelling limitation summary for the ROP models.

ROP Model On its own Nearby Far-away

Multiple Regression Model

(Chapter 5.1)

- Excellent in modelling by entire well,
section by section and geological groups.

- Very good in modelling by entire well.
Poor modelling by section by section

and geological groups.

- Acceptable in modelling by entire well.
Poor modelling section by section

and geological groups.

MSE

(Chapter 5.2)

- Excellent correlation between field
and calculated UCS values.

- Acceptable correlation between
field and calculated ROP

- Acceptable correlation between
field and calculated ROP

D-Exponent Model

(Chapter 5.3)

- Excellent correlation between field
and calculated D-exp values.

- Acceptable correlation between
field and calculated ROP

- Poor correlation between
field and calculated ROP

Warren Model

(Chapter 5.4)

- Very good in modelling by section by section
and geological groups. Poor in entire well

- Acceptable in modelling by
section by section. Poor modelling by

entire well and geological groups.

- Poor in modelling by entire well,
section by section and geological groups.

Bourgoyne & Young Model

(Chapter 5.5)
- Acceptable in modelling by entire well. - Poor in modelling by entire well. - Poor in modelling by entire well.

Modified Bourgoyne & Young
Model

(Chapter 5.6)

- Excellent in modelling by entire well,
section by section and geological groups.

- Poor in modelling by entire well,
section by section and

geological groups.

- Acceptable in modelling by entire well.
Poor in modelling by section by section

and geological groups
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7.2 Conclusion

In this thesis work, six models were implemented on four different modelling scenarios. The

model predictions were evaluated on its own, nearby and far-away wells. The overall analysis

results are summarized as:

• The primary step is to filter out the raw drilling data with respect to spikes and

removal of outliers. It is important to remove unmeasured and data with noises before

modelling is performed.

• The application of the models on the wells derived from its own well gave excellent

predictions. However, applying on distance wells reduced the prediction.

• Modelling based on geological group found out to be the best on all the ROP models.

• All the modelling methods are found to be applicable on “Drilling ahead ROP Prediction

for Geological Groups” scenario. The drilling ahead method can be applied on entire

well data, section by section and geological groups data. From the analysis, it was

found out that modelling part with 90 % of data gave excellent results. Decreasing the

number of data points will deteriorate the prediction.

• Best drilling ahead prediction is the geological groups based modelling and application.

For instance, modelling 90 % of the geological sections (eg. Shetland Group) and

applying the model for the 10 % of the Shetland Group, the model works magnificently.

The values obtained from one geological group can’t be used in predicting other

geological groups. Therefore, each group is modelled with their own values extracted

from 90 % of the drilling data.

• In this thesis, the Bourgoyne & Young model was modified by including torque,

formation pressure and mud weight drilling parameters. The results showed excellent

predictions, when using drilling ahead with 90 % of the data. The Modified Bourgoyne

& Young provided the best and most reliable results.
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8. APPENDICES

8.1 APPENDIX A

The main objective of the modelling and testing process was to figure out which modeling

and application methods are practically acceptable. The results presented in the main report

are the qualified ones. However, applications on the nearby and far-away wells found out to

be poor. Therefore in the following Appendix, the poor results are displayed.

• Chapter 8.1.1: Multiple Regression Model - Modelling by Geological Groups on Nearby

and Far-Away Wells.

• Chapter 8.1.2: Warren Model - Modelling by Entire Well Data on Nearby and Far-Away

Wells.

• Chapter 8.1.3: Warren Model - Modelling by Section by Sections on Nearby and

Far-Away Wells.

• Chapter 8.1.4: Warren Model - Modelling by Geological Groups on Nearby and Far-Away

Wells.

• Chapter 8.1.5: Bourgoyne & Young - Modelling by Entire Well Data on Nearby and

Far-Away Wells.

• Chapter 8.1.6: Modified Bourgoyne & Young - Modelling by Entire Well Data on

Nearby and Far-Away Wells.

• Chapter 8.1.7: Modified Bourgoyne & Young - Modelling by Section by Section on

Nearby and Far-away Wells.

• Chapter 8.1.8: Modified Bourgoyne & Young - Modelling by Geological Groups on

Nearby and Far-Away Wells.
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Multiple Regression Model - Modelling by Geological Groups on

Nearby and Far-Away Wells

(a) using 6506/11-A-2 regression coeff.
values

(b) using 6506/11-A-3 regression coeff.
values

(c) using 6506/11-A-4 regression coeff.
values

Figure 8.1: Warren Model - Nearby and far-away regression coeff. on 6506/11-A-1.
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(a) using 6506/11-A-1 regression coeff.
values

(b) using 6506/11-A-3 regression coeff.
values

(c) using 6506/11-A-4 regression coeff.
values

Figure 8.2: Warren Model - Nearby and far-away regression coeff. on 6506/11-A-2.

126



8.1. APPENDIX A MSc Thesis 2020

(a) using 6506/11-A-1 regression coeff.
values

(b) using 6506/11-A-2 regression coeff.
values

(c) using 6506/11-A-4 regression coeff.
values

Figure 8.3: Warren Model - Nearby and far-away regression coeff. on 6506/11-A-3.
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(a) using 6506/11-A-1 regression coeff.
values

(b) using 6506/11-A-2 regression coeff.
values

(c) using 6506/11-A-3 regression coeff.
values

Figure 8.4: Warren Model - Nearby and far-away regression coeff. on 6506/11-A-4.
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Warren Model - Modelling by Entire Well Data on Nearby and

Far-Away Wells

(a) using 6506/11-A-2 Warren constant
values

(b) using 6506/11-A-3 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.5: Warren Model - Nearby and far-away Warren constants on 6506/11-A-1 for
hole sections.
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-3 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.6: Warren Model - Nearby and far-away Warren constants on 6506/11-A-2 for
hole sections. 130
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-2 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.7: Warren Model - Nearby and far-away Warren constants on 6506/11-A-3 for
hole sections. 131
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-2 Warren constant
values

(c) using 6506/11-A-3 Warren constant
values

Figure 8.8: Warren Model - Nearby and far-away Warren constants on 6506/11-A-4 for
hole sections. 132
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Warren Model - Modelling by Section by Sections on Nearby and

Far-Away Wells

(a) using 6506/11-A-2 Warren constant
values

(b) using 6506/11-A-3 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.9: Warren model - Nearby and far-away constants on 6506/11-A-1 for hole
sections.
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-3 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.10: Warren model - Nearby and far-away constants on 6506/11-A-2 for hole
sections. 134
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-2 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.11: Warren model - Nearby and far-away constants on 6506/11-A-3 for hole
sections. 135
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-2 Warren constant
values

(c) using 6506/11-A-3 Warren constant
values

Figure 8.12: Warren model - Nearby and far-away constants on 6506/11-A-4 for hole
sections. 136
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Warren Model - Modelling by Geological Groups on Nearby and

Far-Away Wells

(a) using 6506/11-A-2 Warren constant
values

(b) using 6506/11-A-3 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.13: Warren Model - Nearby and far-away Warren constants on 6506/11-A-1 for
geological groups. 137
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-3 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.14: Warren Model - Nearby and far-away Warren constants on 6506/11-A-2 for
geological groups. 138
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(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-2 Warren constant
values

(c) using 6506/11-A-4 Warren constant
values

Figure 8.15: Warren Model - Nearby and far-away Warren constants on 6506/11-A-3 for
geological groups. 139



8.1. APPENDIX A MSc Thesis 2020

(a) using 6506/11-A-1 Warren constant
values

(b) using 6506/11-A-2 Warren constant
values

(c) using 6506/11-A-3 Warren constant
values

Figure 8.16: Warren Model - Nearby and far-away Warren constants on 6506/11-A-4 for
geological groups. 140
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Bourgoyne & Young - Modelling by Entire Well Data on Nearby

and Far-Away Wells

(a) using 6506/11-A-2 B&Y coefficient
values

(b) using 6506/11-A-3 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.17: Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on 6506/11-A-1
for entire well data.
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-3 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.18: Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on 6506/11-A-2
for entire well data. 142
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-2 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.19: Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on 6506/11-A-3
for entire well data. 143



8.1. APPENDIX A MSc Thesis 2020

(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-2 B&Y coefficient
values

(c) using 6506/11-A-3 B&Y coefficient
values

Figure 8.20: Bourgoyne & Young Model - Nearby and far-away regression coeff. on
6506/11-A-4 for entire well data. 144
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Modified Bourgoyne & Young - Modelling by Entire Well Data on

Nearby and Far-Away Wells

(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-2 B&Y coefficient
values

(c) using 6506/11-A-3 B&Y coefficient
values

Figure 8.21: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-1 for hole sections. 145
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Modified Bourgoyne & Young - Modelling by Section by Section

on Nearby and Far-away Wells

(a) using 6506/11-A-2 B&Y coefficient
values

(b) using 6506/11-A-3 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.22: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-1 for hole sections. 146
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-3 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.23: Modified Bourgoyne & Young Model - Nearby and far-away Warren constants
on 6506/11-A-2 for hole sections.
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-2 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.24: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-3 for hole sections.
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-2 B&Y coefficient
values

(c) using 6506/11-A-3 B&Y coefficient
values

Figure 8.25: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-4 for hole sections.
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Modified Bourgoyne & Young - Modelling by Geological Groups

on Nearby and Far-Away Wells

(a) using 6506/11-A-2 B&Y coefficient
values

(b) using 6506/11-A-3 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.26: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-1 for geological groups. 150
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-3 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.27: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-2 for geological groups.
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-2 B&Y coefficient
values

(c) using 6506/11-A-4 B&Y coefficient
values

Figure 8.28: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-3 for geological groups.
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(a) using 6506/11-A-1 B&Y coefficient
values

(b) using 6506/11-A-2 B&Y coefficient
values

(c) using 6506/11-A-3 B&Y coefficient
values

Figure 8.29: Modified Bourgoyne & Young Model - Nearby and far-away B&Y coeff. on
6506/11-A-4 for geological groups.
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8.2 APPENDIX B

Bingham Model

Bingham Model being described in Chapter 3.4 in page 19, which shows the relation between

WOB, RMP, ROP and bit diameter. The model is viewed to be unique as it adds empirical

exponent to the equation and therefore being applicable in large circumstances. However

the Bingham model shows poor prediction of ROP in this thesis, due to it is limited drilling

parameters input. In Figure 8.30 modelled ROP is illustrated.

When implementing Bingham model to predict ROP it is done in Microsoft Excel using

regression analysis function. The steps for the equation is showed below:

ROP = a

(
WOB

Db

)b
RPM c

logROP = log a+ b log

(
WOB

Db

)
+ c logRPM

Furthermore, a, b and c coefficients are carried out using regression analysis function. This

values are now implemented back into the Bingham model. This Bingham model is is

modified as the original equation is without c-exponent, this exponent limits the deviations

errors in RPM.

154



8.2. APPENDIX B MSc Thesis 2020

(a) 6506/11-A-1 (b) 6506/11-A-2

(c) 6506/11-A-3 (d) 6506/11-A-4

Figure 8.30: Bingham model - Using their own coefficient values.
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The results generated in Figure 8.30 shows that the modelling is poor in throught almost all

section of all wells, except for Nordaland and Hordaland groups for well 6506/11-A-1 and

6506/11-A-2.

The main reason for why the model struggles to correlate well with field ROP is due to few

drilling parameters being accounted for in the model. The modelling confirms the research

done in ”Investigating ROP Dependent Variables” Chapter 5.1.1, the ROP prediction is

limited to fewer drilling parameters.

Hareland & Rampersad Model

Hareland & Ramperstad (1994) made a description of the penetration of a single cutter

acting on the formation where they applied conservation of mass. The model were built on

the assumption that the volume of rock compressed and removed is proportional to contact

area and WOB applied. Hareland & Rampersad model is expressed as [44]:

ROP = Wf
a

(RPM bWOBc)

14.14NcRPM

Db

cosα · sinθ · F (8.1)

Where ”F” is calculated as:

F =


[
dc
2

]2
cos−1

[
1− 4Wmech

πcosθd2cσc

]
−

√(
2Wmech

πcosθσc

)
−
(

4Wmech

πcosθdcσc

)2

·
[
dc
2
− (

W 2
mech

πcosθdcσc

]
Whereas ”a”, ”b” and ”c” are respectively correction factors for cutter geometry, Wf is a

function of bit wear. Wmech is mechanical load of each cutter, Nc is number of PDC cutters,

α and θ are the cutter and side- and back rake angle, dc is the diameter of the cutter and

finally the UCS is given as σc [44].

Hareland & Rampersad Model wasn’t included in this thesis due to limitations with the

input data.
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