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Abstract 

The material function of Partially Hydrolyzed Polyacrylamide (HPAM) in three concentration 

of Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5.104 ppm both for steady and transient flow was 

studied in this research. Then data was fitted to proposed physical  in literature such as Modified 

Finitely Elongated Nonlinear Elastic Dumbbell model (FENE-P),Charged  Modified Finitely 

Elongated Nonlinear Elastic Dumbbell model (C-FENE-P), and different version of Phan-

Thien-Tanner model (PTT) to recognize the best representative model for describing material 

function description of  Partially Hydrolyzed Polyacrylamide polymer (HPAM ) both for steady 

and transient flow. Although the concentration is not focus of this work, it was observed that  

the slope of power-law region of first normal stress coefficient (𝛹1) versus applied shear rate 

(�̇�) is almost independent of concentration at least for three tested concentration tested in this 

research (Cc=3.104 ppm , 2.104 ppm ppm,1.5.104 ppm). On the other hand, the slope of power-

law region of viscosity (𝜂) versus shear rate (�̇�) is relatively dependent on concentration again 

at least for three tested concentration in this research. Moreover, monotonous relation between 

concentration and material function of both startup and cessation of steady shear flow was 

observed for these three tested concentrations of HPAM polymer. Finally, the importance of 

adopting correct approach of data fitting was shown in modeling part of this research, where 

one should not be relay on slope of exponential decay of cessation of steady shear rate test for 

modeling part anymore. Furthermore, for almost first time in literature the most recent proposed 

physical model by Dmitry Shogin and Amundsen (Shogin and Amundsen 2020) called C-

FENE-P was evaluated in this research and it was recognized as the best model for describing 

the material function of both steady and transient flow of HPAM polymer specially regarding 

more dilute concentrations (Cc=2.104 ppm and Cc=1.5.104 ppm) .Finally, it was observed that 

both single-mode affine LPPT and single-mode FENE-P model had relatively good 

performance for describing material function of HPAM polymer for more concentrated sample 

(Cc=3.104 ppm), though they both relatively failed in prediction of size of overshoot in stress  

growth of start-up of steady shear rate flow test. 
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Nomenclature 

Scalars 

 

𝑎  Yasuda exponent [-,first used in Eq.2.28]     

b  nonlinearity parameter [-,defined by equation 2.42] 

C desired concentration of dilute polymer [ppm, defined by Eq.3.5]  

Cc concentration of polymer [ppm, first used in Eq.3.1] 

Cconvert converting factor [s,defined by Eq.2.43] 

𝐶0 true concentration of concentrated polymer [ppm, first used in Eq.3.5] 

𝐶𝑟𝑒𝑙 true concentration of resulted solution [ppm,defined by Eq.3.2 ] 

d𝑆 Surface element [m2, first used Eq.2.3] 

∆T time interval [s] 

d𝑉  volume element [m3, first used Eq.2.4] 

E  electric-to-elastic energy ratio [-,defined by Eq.2.46] 

𝜀  relative permittivity of the solvent [-,first used in Eq.2.442.45]  

𝜀0 permittivity of vacuum [F m-1, first used in Eq.2.44] 

𝜖  extensional parameter [-,first used in Eq.2.48 ]  

𝜉 affinity parameter [-,first used in Eq.2.48]  

𝜂 non-Newtonian viscosity [Pa s, first used in Eq. 2.20] 

𝜂∞ infinite -shear- rate Non-Newtonian viscosity [Pa s, first used in Eq.2.29 2.28] 

𝜂0 zero- shear- rate Non-Newtonian viscosity [Pa s, first used in Eq. 2.28] 

η+ Shear stress growth function [Pa s, first used in Eq.2.21]  

η− Shear stress relaxation function [Pa s, first used in Eq.2.22]  

H Warner spring coefficient [N m-1, first used in Eq.2.29]   

𝑘 Boltzmann’s constant [J.K-1, first used in Eq.2.32]  

k coefficient of additional transport quantity related to dilatational viscosity [Pa s, first used in 

Eq.2.13] 

ko permeability of formation relative to oil [md, first used in Eq. 2.1]  

kw permeability of formation relative to water [md, first used in Eq. 2.1] 
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L0 initial state length [m] 

LS steady state expanded length [m] 

𝜆 time constant [s, first used in Eq. 2.28]  

𝜆𝑒 experimental time constant [s, defined by Eq.2.41] 

𝜆𝐻 time constant of FENE-P model [t, defined by Eq.2.412.40]  

𝜆𝑄 time constant of rigid dumbbell model [s, first used in Eq.2.41] 

𝑚 model parameter called consistency index [Pa sn, first used in Eq.2.27] 

M relative mobility ratio of water in comparison with oil [–, defined by Eq. 2.1] 

Mc theoretical mass of concentrated polymer [g,first used in Eq.3.4] 

Mcp mass of concentrated solution taken in practice [g,first used in Eq.3.5]  

md  desired mass of dilute solution [g,first used in Eq.3.3]  

ML local mass flow rate [Kg, defined by Eq.2.3] 

mo mobility ratio of oil [md (Pa s)-1, first used in Eq. 2.1] 

m overshoot magnitude of overshoot [-] 

MP required mass of polymer [g,defined by Eq.3.13.13.13.1] 

MPa practical mass of polymer taken in practice [g,first used in Eq.3.2] 

m relax slope of exponential decay of cessation of steady shear rate test [-, defined by Eq.2.57] 

MS  measured mass of solvent [g, first used in  3.2]  

mt total mass of dilute solution required [g, defined by Eq.3.4] 

Mw molecular weight [g mole -1] 

mw mobility ratio of water [md (Pa s)-1, first used in Eq. 2.1] 

𝜇  Newtonian viscosity [Pa s, first used in Eq.2.13] 

μo  oil viscosity [Pa s, first used in Eq. 2.1] 

μw water viscosity [Pa s, first used in Eq. 2.1] 

𝑛  power-law region exponent [-,first used in Eq. 2.282.29]   

𝑛  model parameter, called the power -law index[-,first used in Eq.2.27]  

n  number concentration of dumbbells [m-3, first used in Eq.2.32] 

𝒏 normal force vector of    

P thermodynamic pressure [Pa, first used in Eq.2.12] 
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𝑄  length of dumbbell extension (or the absolute value of connector force) [m, first used in 

Eq.2.31 2.30] 

𝑄0 maximum length of dumbbell extension [m, first used in Eq. 2.30] 

𝑞  effective charge [C, first used in Eq.2.442.45]  

𝜌 fluid density [Kg.m3, first used Eq.2.3] 

𝛹1 first normal stress differences coefficient [Pa s2, first used in Eq. 2.20]  

𝛹1
+ First normal stress difference growth coefficient [Pa s2, first used in Eq. 2.21]   

𝛹1
− First normal stress difference growth coefficient [Pa s2, first used in Eq. 2.22] 

𝛹2 second normal stress differences coefficient [Pa s2, first used in Eq. 2.20] 

T  thermodynamic temperature [K, first used in Eq.2.32]  

𝜏𝑥𝑥 − 𝜏𝑦𝑦 first normal stress differences [Pa, defined by Eq.2.21 2.20] 

𝜏𝑥𝑦 shear stress [Pa, defined by Eq.2.24] 

𝜏𝑦𝑦 − 𝜏𝑧𝑧 second normal stress differences [Pa, defined by Eq. 2.20] 

VL local volume rate [m3. S-1, defined by Eq.2.2] 

𝑤𝑖 Weissenberge number [-] 

 𝑥 mean-square relative dumbbell extension[-,first used in Eq.2.36 2.35]  

𝑍 𝑍-factor [-, defined by Eq.2.37] 

𝛾 ̇ shear rate [Pa] 

𝛾 ̇ 𝐷 dimensionless shear rate [-, defined by Eq.2.44] 

𝜁  hydrodynamic drag coefficient [Kg s-1, first used in Eq.2.32] 

 

Vectors 

 

𝑭𝒄  connector force [N, defined by Eq.2.29] 

𝒈 gravitational acceleration [ms-2 first used in Eq.2.9]  

𝒏 normal force vector [N, first used in Eq.2.2] 

𝑸  connector vector [m,first used in Eq. 2.29] 

𝒗 velocity vector [m.s-1, first used in Eq.2.2] 

𝐝𝒗𝒙

𝒅𝒚
  Velocity gradient [m.s-1, first used in Eq.2.23] 
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Tensors 

 

𝝅 total flux momentum displaced during flow or total stress tensor [Pa, first used in Eq.2.12 ]  

𝜹 unit tensor [Pa, first used in Eq.2.12] 

 𝝉 deviatoric, commonly called "extra stress tensor’’ [Pa, defined by Eq.2.132.12]  

(𝛁𝒗) nabla velocity tensor [ms-1, first used in Eq.2.13] 

(𝛁𝒗)𝑻  transpose of nabla velocity tensor [m.s-1, first used in Eq.2.13]  

  �̇� rate- of - strain tensor [s-1, first used in Eq.2.16] 

 

Special 

 

𝛁 del operator [m-1, first used in Eq.2.5] 

𝐃 the material derivative [s-1, first used in Eq.2.38 ] 

〈 〉 configuration-space average [-, first used in Eq.2.322.312.30  ] 
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1 Introduction 

The difference in quantity is considered as a key point in generation and movement. For 

example, electricity moves from one point to another point due to difference in electric potential 

between these two points. Likewise, water moves from one point with higher height to another 

point with lower height due to difference in gravitational energy (the energy that is stored in 

material due to their height from earth). The same happens for movement of  oil from its stored 

place (called reservoir).In fact, it moves from high pressure region of reservoir (called cap rock 

) to low pressure  region (oil well) due to differences in pressure. This production is called 

primary production which can only lead to production of ten present of original oil in place 

(OOIP). The more production, the more reduction in pressure differences between reservoir and 

wellbore and consequently the more trapped source of oil and gas in reservoir, leading to 

implementation of secondary recovery technology. With secondary recovery we mean 

production of between 15 to 60 percent of remaining OOIP by injection of external fluid, such 

as gas and water to maintain the reservoir pressure. Ultimately, oil industry went through 

Enhanced Oil Recovery (EOR) processing methods to extract even more oil and gas resources 

from reservoir. The EOR methods can be classified in three categories, namely chemical, 

thermal, and microbial treatment. But, according to Norwegian Petroleum Directorate (NPD), 

chemical EOR and in particular  polymer flooding is predicted to be most applicable chemical 

approach for Enhanced oil recovery on the Norwegian Continental Shelf (NCS)  (Lake 1989, 

Thomas 2016, Rellegadla, Prajapat et al. 2017, Dr. R. Giri Prasad1 2018, NPD 2018)  

In fact, Injection of high viscosity polymers in to well can simply mobilize the trapped oil in 

reservoir, resulting in higher oil recovery (Rellegadla, Prajapat et al. 2017). So, as noted above 

polymers are considered as a promising way of EOR processing in oil industry.  

 

On the other hand, there is some limitations and uncertainties which caused some serious issues 

in utilization of polymers in operational phase. Apart from some environmental issues, polymer 

loss and polymer degradation (loss of  some its main properties like viscosity) during processing 

is considered as main drawbacks of polymer based flooding (Rellegadla, Prajapat et al. 2017). 

Moreover, for material to be used in the well, all its engineering properties should be 

predictable. In this concept rheological properties of polymers (the properties of material which 

relate stress to deformation empirically) and also the functions that describes these rheological 

properties (called material function in academia) are of great importance ((Rudolph and 
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Osswald 2014, Morris 2016)). But, since polymers are classified as non-Newtonian fluid (kind 

of fluid which does not obey classic physics rules), advanced complex models are required for 

prediction of their rheological properties. So, although, polymers are promising ways of EOR, 

there is still long way to being utilized in operation phase. This was addressed in this research 

and this thesis has organized accordingly to provide better understanding of not only rheology 

and material function properties of polymer itself, but also its behavioral proposed models. 

 

1.1 Objective 

Aline with above introduction, this master thesis has aimed primarily to study the material 

functions of specific kind of polymer called  Partially Hydrolyzed Polyacrylamide (HPAM ) 

polymer in three different concentration of Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5.104 ppm  

in steady and transient experiments: shear ramping, start-up and cessation of steady shear. Up 

to this point has been analyzed in Islam thesis (Islam 2019), though with different sample. But 

here the major key distinction is focusing on more data analysis both with considering physical 

models and without considering physical models via both quantitative and qualitative data 

analysis. In other words, performing more analysis, instead of conducting more experimental 

works. Hence, the secondary objective can be classified as a below. 

• first experimental data related to material function of these three experiments is 

analyzed without considering  proposed models in literature to see whether the proposed 

theory by Islam thesis (Islam 2019), regarding the effect of concentration on material 

function of steady and transient flow, can be also verified with new polymer sample 

(HPAM polymer) with mentioned concentrations. Though the focus of this thesis is not 

on concentration. 

•  then gained experimental data is fitted to typical physical models proposed in literature 

to obtain the most representative model for describing this special kind of polymer. 
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1.2  Research structure 

 The structure of this research for obtaining above defined goals, has been summarized in 

below. 

• Literature review: 

 where some materials and references, is reviewed to acquire a basic knowledge about 

the topic. 

• Experimental procedure: 

 where experimental procedure for running tests is introduced. 

• Data analysis: 

where resulted data from experiment part is analyzed to obtain practical outcomes in 

conclusion part. 

• Discussion and conclusions: 

where conclusion is made from data analysis in order to satisfy objectives listed in part 

1.1. 
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2 Literature review 

2.1 Quick introduction on polymer flooding process 

The concept of polymer flooding, in which polymer is injected to the injection well to extract 

trapped oil is shown in  Figure 2.1. From reservoir engineering point of view, all the concept 

arises from mobility ratio properties of fluid (the ratio between reservoir permeability relative 

to fluid and fluid viscosity). In fact, as it can be seen from  equation 2.1 utilization of higher 

viscous fluids (polymers) instead of water, can lead to reduction of relative mobility ratio (the 

ratio between mobility of displacing fluid (water or polymer) and mobility of displaced fluid 

(oil). This reduction is considered as favorable phenomenon since it can lead to more reservoir 

volume contacted by displacing fluid and higher degree of sweep efficiency of EOR process. 

Moreover, high viscous polymer solution has a plugging effect on high permeable thief zone 

which again is considered as a favorable effect on oil displacement (Rellegadla, Prajapat et al. 

2017) 

𝑀 =
𝑚𝑤

𝑚𝑜
=

𝑘𝑤
𝜇𝑤

𝑘𝑜
𝜇𝑜

 . (2.1) 

 Where: 

• 𝑀 is relative mobility ratio of water in comparison with oil [–] 

• 𝑚𝑤 is mobility ratio of water [md (Pa s)-1] 

• 𝑚𝑜 is mobility ratio of oil [md (Pa s)-1] 

• 𝑘𝑤 is permeability of formation relative to water [md] 

• 𝜇𝑤 is water viscosity [Pa s] 

• 𝑘𝑜 is permeability of formation relative to oil [md] 

• 𝜇𝑜  is oil viscosity [Pa s] 
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Figure 2.1. Basic definition of polymer flooding (Rellegadla et al., 2017) 

 

 

 

 

Figure 2.2. Normalized oil recovery for different mobility ratio based on mobility ratio (Stavland, Jonsbråten, & Strand, 

2013) 

Apart from mathematical description noted in equation 2.1 the concept of polymer flooding 

was addressed by practical well test in oil field ( Figure 2.2). It  is seen from Figure 2.2 that 

how this low relatively mobility ratio could increase oil recovery up to 100 percent (Stavland, 

Jonsbråten et al. 2013).   
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2.2   Introduction on polymer basics 

2.2.1 Polymer categorization 

Polymers are large molecules made of many small simple chemical units known as structural 

unit. polymers are divided in to two categories namely, synthetic (man-made) and natural 

(biopolymers). Synthetics are those polymers with estimated molecular weight ranging from 

Mw=104 g/mole until Mw=106 g/mole. Hydrolyzed polyacrylamide (HPAM), polyethylene, 

polyvinylchloride and polystyrene are some examples of synthetic polymers. On the other hand, 

natural (biopolymers) polymers are those built from two or more different type of polymers 

structural unit. Typical biopolymers are DNA, proteins, xanthan, and their molecular weight is 

of the order Mw=103-104 g/mole. It is also worth to note that Partially Hydrolyzed 

Polyacrylamides (HPAM) with molecular weight of Mw= 5.105 g/mole is used in this research. 

This polymer structural unit ( monomer)  is shown in Figure 2.3. Following Table 2.1 also 

summarizes fundamental differences between natural and synthetic polymers (Pearce 1978, 

Bird, Curtiss et al. 1987, Thomas 2016, Rellegadla, Prajapat et al. 2017, Dr. R. Giri Prasad1 

2018).  

 

 

Figure 2.3.  Chemical structure of Partially Hydrolyzed Polyacrylamides (HPAM) polymer (Bird, Curtiss et al. 1987) 
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Table 2.1.   Systematic comparison between different types of polymers taken from(Thomas 2016, Rellegadla, Prajapat et al. 

2017, Dr. R. Giri Prasad1 2018) 

Partially 

Hydrolyzed 

Polyacrylamide 

(HPAM), 

Advantageous Disadvantageous 

Low cost 

 

Has low shear residence tolerance due to its 

high molecular weight 

Has plugging effect which 

ultimately results in higher 

EOR 

 

Lower salt tolerance 

 

Degradation of synthetic polymer can cause 

formation damage 

Biopolymers 

(Xanthan 

polymer), 

Advantageous Disadvantageous 

Good shear stability High cost 

 

Good thickening power at 

High salinity  

 

Difficulty in preparing  

 

 

Higher salt tolerance 

Degradation of biopolymer 

ultimately cause bio-

plugging which is 

favorable for EOR 

recovery  

They can be consumed by bacteria and then 

bacteria inhibitor chemical treatments are 

needed which ultimately would result in 

environmental problems 
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2.3 Introduction on fluid dynamic 

Before proceeding to next part, it is worth to first categorize physical quantities as a below  to 

avoid further confusion in next parts (Fleisch 2011):   

Scalars (30 =1): Are described by one number like temperature (T) and density (𝜌) 

Vectors (31 =3): assign a number to each direction like velocity (𝒗) and force (F) 

Tensors (32 =9): assign a number to each ordered pair of directions like stress tensor (𝝉) 

One should also remember that matrixes are only one way of showing tensor. The bold font 

also used for scalars and vectors throughout this research. 

2.3.1  Introduction on equation of fluid dynamic (“Generalized Navier-Stokes 

equations”) 

As noted in introduction all rheological properties of material should be known for being 

utilized in EOR processing methods. Then, to obtain full description of polymers during flow, 

one should first drive the physical dynamic equation that describe polymeric properties (called 

“Generalized Navier-Stokes equations”), then this equation should be solved either analytically 

or numerically. Solving this equation for polymers either analytically or numerically is not an 

easy task since they do not obey classical physics rules. Though, obtaining full description of 

fluid motion including both scalar fields like temperature (T) and density (ρ), and vector fields 

like velocity (𝒗) at any point of fluid and any  time of flow is considered as a great inspiration 

for solving this equation.  

The equation of fluid dynamic is result of two equations, namely equation of continuity and 

equation of motion. These two equations can be obtain from conservation rules summarized 

below (Bird, Curtiss et al. 1987, Shogin 2020): 

• Conservation of mass 

• Conservation of momentum 

• Conservation of energy 

 

Conservation of energy is important for non-isothermal flows, while flows of polymers can be 

considered locally isothermal. So, we ignore the conservation of energy in this research. 
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2.3.2 Conservation of Mass 

Figure 2.4 is considered as an arbitrary control volume, fixed in space. Then, if flow initiates 

over surface element of d𝑆 , and  volume element of d𝑉 with normal force vector of 𝒏, with 

velocity of 𝒗, the local volume rate over surface of d𝑆 is defined as (Bird, Curtiss et al. 1987)  

 

 

𝑉𝐿 = (𝒏 ∙ 𝒗)𝑑𝑆. (2.2) 

 

 

Where:  

• VL is local volume rate over surface element of d𝑆 [m3 S-1]  

• Inward flow is defined with negative sign (-)  

• Outward flow is defined with positive sign (+) 

 

 

Then local mass flow rate (ML) is written as: 

 

𝑀𝐿 = (𝒏 ∙ 𝜌𝒗)𝑑𝑆. (2.3) 

Where 𝜌 is fluid density [Kg m3] 

 

Now rate of rise on mass with volume of V is only dependent on rate of addition of mass over 

surface of d𝑆. This can be mathematically expressed as  

 

𝑑

𝑑𝑡
∫ 𝜌 d𝑉

𝑉

= − ∫(𝒏 ∙ 𝜌𝒗)d𝑆
𝑆

. (2.4) 

 

According to Gauss divergence theorem, equation 2.4 can be rewritten as 

 

 

𝑑

𝑑𝑡
∫ 𝜌 dV

𝑉

= − ∫ (𝛁 ∙ 𝜌𝒗)dV
𝑉

, (2.5) 
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Where 𝛁 is del operator. 

 

 By bringing time derivative inside integral, equation 2.5 is reformed as 

 

∫ [
𝜕𝜌

𝜕𝑡
+ (𝛁 ∙ 𝝆𝒗)]d𝑉

𝑉

= 0. (2.6) 

In this case (integral over arbitrary volume equals to zero), the terms under integral is also 

equals zero. So, 

 

 

[
𝜕𝜌

𝜕𝑡
+ (𝛁 ∙ 𝜌𝒗)] = 0.  (2.7) 

 

 Finally, if the fluid is assumed to be polymer which is liquid and therefore incompressible, one 

of the most important equations in fluid dynamic called continuity equation is driven as  

 

𝛁 ∙ 𝒗 = 0 . (2.8) 

 

 

Figure 2.4.  Arbitrary volume over space (Bird et al., 1987 

  

2.3.3 Conservation of momentum 

Aline with conservation of mass discussed at pervious section, the transport of momentum 

equation plays crucial role in driving dynamic of fluid equation. This conservation rule can be 

interpreted in two different ways which are identical mathematically. In fact, the interpretation 

of macroscopic (flow) and microscopic contributions to momentum transfer is key distinction 

between these two approaches. According to first approach; the transportation of momentum 
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of fluid across surface element of d𝑆 (see Figure 2.5) can be done internally  via both 

contribution due to bulk flow ([𝒏 ∙ 𝜌𝒗𝒗]d𝑆) and contribution due to macroscopic flow  

([𝒏 ∙ 𝝅]dS) ,and externally via external applied force like gravity (𝜌𝒈 dV). This can be 

expressed mathematically as (Bird, Curtiss et al. 1987)  

 

𝑑

𝑑𝑡
∫ 𝜌𝒗 d𝑉

𝑉

= − ∫[𝒏 ∙ 𝜌𝒗𝒗]d𝑆
𝑆

− ∫[𝒏 ∙ 𝝅]d𝑆
𝑆

+ ∫ 𝜌𝒈 d𝑉.
𝑉

 (2.9) 

Where: 

• 𝒈 is gravitational acceleration [m s-2]  

• 𝝅 is tensor associated with contribution due to microscopic flow [Pa] 

• 𝒗  is velocity of fluid, dependent on position and time [m s-1] 

• 𝜌 is fluid density assumed to be constant in case of incompressible fluid [Kg m3] 

 

Again, using Gauss divergence theorem and convert surface element d𝑆 to volume element d𝑉  

, to obtain consistent equation one can arrive at 

 

∫
𝜕

𝜕𝑡
 𝜌𝒗 d𝑉

𝑉
= − ∫ [∇ ∙ 𝜌𝒗𝒗]d𝑉

𝑉
− ∫ [𝛁 ∙ 𝝅]d𝑉

𝑉
+ ∫ 𝜌𝒈 d𝑉

𝑉
 . (2.10) 

 

Integral can be eliminated from both side of equation 2.10, resulting in  

 

𝜕

𝜕𝑡
 𝜌𝒗 = −[𝛁 ∙ 𝜌𝒗𝒗] − [𝛁 ∙ 𝝅] + 𝜌𝒈. (2.11) 

 Equation 2.11is called equation of motion. 

So, as it is seen in equation 2.9, the total microscopic transport of momentum across surface 

element of d𝑆  , has been described as a 𝝅𝒏 = [𝒏 ∙ 𝝅]dS ,where 𝝅 is tensor associated with 

contribution due to microscopic flow and  𝜋𝑖𝑗  as a component of this second order  tensor in 

positive flux 𝑗 momentum in positive 𝑖 direction. 

On the other hand, if this microscopic contribution of fluid to total transported momentum is 

considered as an external way of transporting momentum, the second approach of definition is 

gained. According to this impression, the conservation of momentum across fluid flowing with 

velocity of 𝒗 , crossing surface boundary dS , is conducted by bulk flow internally ([𝒏 ∙ 𝜌𝒗𝒗]dS) 

and by applying additional forces, externally .This external force is consist of  surface 
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surrounded fluid force (𝜋𝑛d𝑠) and body gravitational force (𝜌𝒈 dV) (see Figure 2.6). Hence, 

with the current definition, former microscopic terms in mathematical definition ([𝒏. 𝝅]ds) 

shows itself as 𝝅𝒏𝑑𝑠 . This is ‘’force vector exerted by fluid located in negative side of the 

surface dS on the fluid located on positive side of dS ‘’.So, now it is wise to call 𝝅 as  total 

stress tensor or pressure tensor, and component of 𝜋𝑖𝑗  as a force per unit in positive  𝒋 direction 

acting on the surface perpendicular to 𝒊 direction (Bird, Curtiss et al. 1987). 

 

 

 

 

 

Figure 2.5.  Element of 𝑑𝑠 across which a force 𝜋𝑛𝑑𝑠 is transmitted (Bird et al., 1987) 

 

 

 

Figure 2.6.Skech showing the sign convection and index convection for components of stress tensor 𝜋 (Bird, Dotson et al. 

1980) 
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2.3.4  Solving the equation of fluid dynamic (“Generalized Navier-Stokes 

equations”) 

After obtaining required equation (equation of continuity and motion) for solving equation of 

fluid dynamic in previous parts, it is favorable to initiate an effort to solve it either analytically 

or numerically. Moreover, determination of 𝝅  either as a total flux momentum displaced during 

flowing flow due to microscopic contribution or total stress tensor plays a key role in solving 

equation of fluid dynamic. It is convenient to drive 𝝅 as (Bird, Curtiss et al. 1987, Shogin 2020) 

 

𝝅 = P𝜹 + 𝝉 . 

 

 

(2.12) 

Where: 

𝝅 is stress tensor [Pa] 

P is thermodynamic pressure [Pa] 

𝜹 is unit tensor [Pa] 

𝝉  deviatoric, commonly called "extra stress tensor’’ [Pa] 

 

Proceed to this point, almost all derived equations are also valid for non-fluids. So, this is the 

first time the fact that the substance is originally fluid is considered. This would enable us to 

extract isotropic (pressure) component from it. 

Furthermore, equation 2.12 comprises of two independent components: 

 

• isotropic part which is result of multiplication of a thermodynamic pressure (𝑃) and (𝜹) 

as unit stress tensor. 

• anisotropic or deviatoric part (𝝉) which makes a difference where fluid is out of rest. In 

fact, the anisotropic part of total stress tensor (𝝉) is vanished in rest state. Hence, at 

equilibrium condition fluid has isotropic pressure (equal pressure in every direction of 

flow) and substance that does not show this important property, is not fluid at all. 

 

The equation which specify τ is called constitutive equation. Newton derived a theoretical value 

for 𝝉 which has shown good accordance with experimental data. This equation can be expressed 

as 
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𝝉 = −𝜇[𝛁𝒗 + (𝛁𝒗)𝑻] + (
2

3
𝜇 − 𝑘) (𝛁 ∙ 𝒗)𝜹. (2.13) 

 where: 

• 𝜇  is called Newtonian viscosity [Pa s] 

• (𝛁𝒗) is defined as nabla velocity tensor [m s-1] 

• (𝛁𝒗)𝑻 is transpose of nabla velocity tensor [m s-1] 

• 𝑘 is called additional transport quantity related to dilatational viscosity [-] 

as it was noted in driving continuity equation in part 2.3.2, in case of incompressible fluid (
𝑑𝜌

d𝑡
=

0) we have 𝛁 ∙ 𝒗 = 0  , and so the terms which contain k is eliminated, resulting in reduced 

equation  

 

𝝉 = −𝜇[𝛁𝒗 + (𝛁𝒗)𝑻] . (2.14) 

Then it is convenient to reform equation 2.14  as  

 

𝝉 = −𝜇�̇� . 

 
(2.15) 

Where: 

�̇� = [𝛁𝒗 + (𝛁𝒗)𝑻], 

 
(2.16) 

And �̇� is called rate- of - strain tensor [s-1]. 

2.3.5  Definition of Newtonian and non-Newtonian fluid 

Fluids which obey derived equation by Newton ( equation 2.13) is called Newtonian fluid like 

most of liquid which are consist of quite small molecular, such as oil and water. All other fluid 

which do not obey this constitutive equation is called Non-Newtonian fluid such as polymers 

and drilling fluid (mud and cement). In fact, the difference in constitutive equation poses a 

major change in flow behavior which is explained more in next section (Bird, Curtiss et al. 

1987, Shogin 2020).  
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2.4  Non-Newtonian phenomena in polymeric solution 

As it was noted in Previous part, the difference in constitutive equation causes a major 

difference in motion and behavior between Newtonian and non-Newtonian fluid. In this section 

we will go through some experiments that clearly differentiate these differences. 

Non-Newtonian phenomena in polymeric solution is divided to three categories (Shogin 2020) 

• shear-dependent viscosity  

• Normal stresses and their differences  

• time-dependent phenomena 

2.4.1 shear-dependent viscosity 

Stress can be simply defined as an internal reaction of material relative to applying external 

pressure (force per unit area). The diagonal components of this generated stress (𝝉) called 

normal stress, while off-diagonal component of 𝝉 called shear stress. Moreover, the rate at 

which this shear stress is created called rate-of-strain tensor (�̇�), and the scaler value of this 

tensor called shear rate (�̇�). Now if fluid does obey classic physics rules (Newtonian fluid) ,then 

its viscosity (𝜇) which is defined as fraction of shear stress versus applied shear rate is constant 

for given temperature, pressure, and composition and not dependent on value of applied shear 

rate anymore .On the contrast, for fluid which does not follow classic physics  their non-

Newtonian viscosity (𝜂) is  not constant and dependent on applied shear rare. Thus, non-

Newtonian fluid can show different behavior  relative to applied shear rate (see Figure 2.7)  .In 

this respect, kind of fluid in which viscosity (the slope of shear stress versus shear rate in 

diagram) increases with increase in applied shear rate is called shear thickening fluid. On the 

other hand, kind of fluid in which viscosity (the slope of shear stress versus shear rate in 

diagram) decreases with increase in applied shear rate is called shear thinning. Polymers are 

well-known as a kind of fluid which show shear thinning behavior. Some representative 

phenomena which shows  this properties  has been summarized in following (Bird, Curtiss et 

al. 1987, Shogin 2020). 
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Figure 2.7. different behavior of different types of fluid regarding applied shear rate (Researchgate.com) 

 

2.4.1.1 Tube flow 

At this experiment we have two identical tube, both covered from bottom by same shape of 

plate, one filled with Newtonian fluid and another one filled by non-Newtonian polymeric fluid. 

(Figure 2.8).   

 

 

Figure 2.8. flow of Newtonian and non-Newtonian flow in a) in primary state (bottom covered) and b) in secondary state 

(removed bottom covered) (Bird et al., 1987)(Islam 2019)  
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First some high density identical small spheres are dropped into both fluids to make sure about 

having analogues viscosity at primary condition (when the covered plate has not removed yet). 

Covered plate is removed for both fluids in same velocity and same manner in secondary stage 

of this experiment. It is observed that non-Newtonian tube is drained much faster than 

Newtonian fluid. This clearly proves shear-dependent viscosity in polymeric solution, where 

viscosity decreases as shear rate increases (shear thinning behavior), while viscosity is constant 

in Newtonian fluid.(Bird, Curtiss et al. 1987) 

2.4.2 Normal stress and their differences 

Existence of normal stress and their differences is another property of polymer solution as noted 

in part 2.4. some of experiments which shows this property of polymeric solutions is 

summarized in below.  

 

2.4.2.1  Rod climbing 

Rod climbing phenomenon is one of the most outstanding phenomena in polymeric behavior. 

First two rotating rods is inserted in to two beakers, one of which is filled with Newtonian fluid 

and another one with non-Newtonian polymeric fluid. Completely opposite behaviors are 

observed when rotating rods start to rotate in these two beakers. The surrounded Newtonian 

fluid is pushed away in outward shape due to centrifugal force while polymer fluid moves 

toward the center of breaker and even climb up the rod in completely opposite behavior (Figure 

2.9).The reason ,as it is explained extensively in material section part2.5, roots up in  presence 

of extra tension along the direction of streamline caused by stretching and alignment of 

polymeric molecule. In fact, polymer molecules are stretched by flow along the streamline. A 

"restoring" force will therefore attempt to compress the fluid along the streamline, like what a 

stretched spring does. And, since fluid is incompressible, a "compression" along the streamline 

would result in an attempt of "extension" normal to the same streamline (another reason to call 

these stresses "normal")(Bird, Curtiss et al. 1987) . 
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Figure 2.9. rod climbing phenomena (Youtube.com) 

 

 

2.4.2.2 Extrude swell (die swell) 

In the other simple experiment called die swell, the fluid is let to exit into air, from capillarity 

with diameter of D. As it is appeared in  Figure 2.10, the result is impressive. it is observed that 

although there is almost no significant change in exit diameter of Newtonian fluid both in small 

and large Reynolds number laminar flow, the extrude diameter (De) of polymeric solution 

would increase up to 300 percent in comparison with capillarity diameter (D). Apart from 

elastic and memory properties (the ability of polymer to remember its some crucial properties 

like viscosity) of polymer that could be responsible for this phenomenon at least partially, the 

reason is believed to roots up again in extra tension along streamline. In fact, this extra tension 

shows clearly its effect when the flow is exiting from tube, at this point this extra tension cannot 

be tolerated anymore, which lead to fluid to be contacted axially and to be expanded radially 

(Bird, Curtiss et al. 1987).  

 



 37 

 

Figure 2.10. Die swelling phenomena in right (Newtonian) and left (polymeric) solution(Youtube.com) 

 

2.4.3  Time-dependent phenomena 

Time dependent properties of polymers are those properties that are dependent on the time of 

experiment. One of the most important time-dependent properties of material is called 

‘’memory’’ properties which is defined as the ability of material to remember and maintain 

some its initial properties like viscosity .This property of polymer is highly dependent on elastic 

properties of polymer such that as it has been clarified in Bird book (Bird, Curtiss et al. 1987), 

the probability of exhibiting memory properties is relatively low, in case flow does not show 

an elastic behavior. Moreover, since polymers are not cross-linked material , their  memory 

property is considered as a temporary one, in which memory is faded as time elapses (Bird, 

Curtiss et al. 1987). Some most important representative of time-dependent properties of 

polymeric solution has been summarized below. 

 

2.4.3.1  Cutting an Aluminum soap solution 

Cutting an Aluminum soap solution in half is one of funniest and most representative of the 

time-dependent properties in polymeric solution. At this experiment conducted first by Lodge 

in 1964 (Lodge 1964), first according to Figure 2.11 the Aluminum soap is poured out from 

breakers in initial condition(a). Then the polymeric solution is cut in half during secondary 

stage (b). Finally it is observed that only flow above the cut point falls down to the container 

and the flow below the cut point returns again into breaker in third stage of experiment (c) 

(Bird, Curtiss et al. 1987). 
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Figure 2.11. Cutting an Aluminum soap solution phenomena first conducted by Lodge (Lodge 1964) taken from  (Bird et al., 

1987)  

 

2.4.3.2 Filament of low-density Polyethylene 

In other interesting experiment, elastic recoil properties of polymeric solution (‘’the tendency 

of fluid to snap back to its original state upon removing the extra forces’’) was tested first by 

Meissner (Meissner 1971). First one centimeter of filament of low-density Polyethylene is 

stretched up to 30 𝑐𝑚 at temperature of 423 𝑘, and then suddenly it is set to free state. It is 

observed that it returns up to 3 cm of its initial lengths, which clearly shows the fact that 

complete memory concept is somehow ideal in polymeric solution. Moreover, it is observed 

during this experiment that the length of recovery is highly time dependent such that the more 

you wait after stretching the filament, the less recovered lengths is observed. This recalls the 

concept of  fading memory mentioned in the introduction (Bird, Curtiss et al. 1987). 

 

2.4.3.3 The tubeless siphon 

The tubeless siphon is one of the simplest but outstanding representative of time dependent 

properties in polymeric solution. In this experiment, as it is appeared in Figure 2.12, two fluids, 

one Newtonian and one polymeric are being sucked from their container. After running siphon 

for sometimes, suddenly the operation is stopped by lifting the tubes. It is observed that in case 

of Newtonian fluid the flow is stopped immediately, whereas for polymeric fluid the flow 

persists for short time. Polymer-polymer interactions and time dependent properties are the key 

factors here. Therefore, this phenomenon is not observed in dilute polymeric solutions. 
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Figure 2.12. Tubeless siphon phenomenon  in (a) Newtonian and( b) polymeric solution  (Islam 2019) 

 

2.5  Material function 

From last part 2.4, we learned that there are fundamental differences between motion of 

Newtonian and non-Newtonian fluid rooted in fundamental difference in their constitutive 

equation. This shows its effects in different experiments conducted on last section. In fact, 

serious issue regarding measuring the inconstant viscosity arises due to lack of constitutive 

equation analogous to equation 2.13 and existence of normal stresses in polymeric fluid. Hence, 

some scientist tried to first drive the constitutive equation representative for non-Newtonian 

fluid. And, then solve this equation to drive the functions that describe material properties (shear 

and normal stress) during deformation. These functions are called material function 

collectively. These material functions are of great importance specially regarding fluid 

classification, where each type of flow has its exclusive material function (Bird et al., 1987). In 

the following, shear flow itself and its different branches, namely steady shear flow, start-up 

and cessation of steady shear flow is explained. 

2.5.1  Shear flow 

2.5.1.1  Shear flow Characteristic 

Now let us consider the flow between two parallel plates with axial distance of b in which upper 

plate can move with velocity of 𝒗 while lower plate is kept in static condition (see Figure 2.13). 

In the simplest way, velocity field for this type of flow can be expressed as a below  
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𝒗 = {

𝑣𝑥 = �̇�𝑦𝑥𝑦,

𝑣𝑦 = 0,

𝑣𝑧 = 0.

 (2.17) 

 

Where (�̇�) is called rate-of -strain or velocity gradient and it is dependent on time, though it is 

constant in simple shear steady flow pattern.  

 

   

Figure 2.13. represented shape of shear flow (chegg.com) 

 

2.5.1.2 Shear flow stress tensor 

there is three directions , locally at any type of flow in shear flow (Bird, Curtiss et al. 1987, 

Shogin 2020):  

• 1st direction: the direction in which flow is flowing  

• 2nd direction: the direction in which the velocity changes 

• 3rd direction: the neutral direction in which nothing will change 

 

Take flow in  Figure 2.13 (flow between two parallel infinite plate in 2𝐷 space) as an example, 

following conclusions can be made 

• 1st direction: x 

•  2nd directions: y 

• 3rd directions: z  

 

 

 

Alline with above introduction, total stress tensor required for initiating shear flow is compares 

of both normal and shear stress and in case of having isotropic fluid (there is no suppository 
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regarding fluid properties in different direction of flow ‘’other than the direction introduced by 

flow itself ‘’(Bird, Curtiss et al. 1987) ) it can be described as symmetric independent matrix 

based on equation 2.12 as 

𝝅 = P𝜹 + 𝝉 = [

P + 𝜏𝑥𝑥 𝜏𝑥𝑦 0

𝜏𝑦𝑥 P + 𝜏𝑦𝑦 0

0 0 P + 𝜏𝑧𝑧

]. (2.18) 

 

Then following can be extracted from above tensor as 

 

{

𝜏𝑥𝑦 = shear stress ,

𝜏𝑥𝑥 − 𝜏𝑦𝑦 = First normal stress differences ,

𝜏𝑦𝑦 − 𝜏𝑧𝑧 = Second normal stress differences .
 (2.19) 

These three quantities are called viscoelastic properties collectively. 

On the other hand, the shear stress is the only component of total stress tensor in shear flow of 

Newtonian fluid. In other words existence of shear stress is sufficient to create shear flow in 

Newtonian fluid, while apart from shear stress , implementation of normal stress are essential 

to generation of shear flow in non-Newtonian fluid such as polymer (Bird, Curtiss et al. 1987) 

2.5.2 Steady shear flow 

2.5.2.1  Steady shear rate material function 

Material functions of shear steady flow are only relying on absolute value of rate- of-strain (�̇�) 

called shear rate (�̇�). These material functions have been summarized in below  

 

{

𝜏𝑥𝑦 = −η(γ̇)�̇�𝑦𝑥 ,

𝜏𝑥𝑥 − 𝜏𝑦𝑦 = −𝛹1(γ̇)�̇�𝑦𝑥
2  ,

𝜏𝑦𝑦 − 𝜏𝑧𝑧 = −𝛹2(γ̇)�̇�𝑦𝑥
2 .

 (2.20) 

Where: 

• 𝛹1 is first normal stress differences coefficient [Pa s2] 

• 𝛹2 is second normal stress differences coefficient [Pa s2] 
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• Steady shear rate Non-Newtonian viscosity (𝜂) 

Lots of experiments has been conducted on measuring non-Newtonian viscosity which makes 

this quantity as a well-known viscoelastic properties in literature. The changing trend of non-

Newtonian viscosity of low-density polyethylene melts  versus applying different steady shear 

rate(called shear steady ramping) in different temperature is depicted in Figure 2.14. As it 

appears in the Figure 2.14, Non-Newtonian viscosity shows Newtonian behavior (constant 

viscosity(𝜂0)) at low shear rate region (also called lower Newtonian region).Then it starts its 

shear thinning behavior when shear rate increase in the middle region (also called power-law 

region) .And, finally it switches back again to Newtonian behavior (constant viscosity(𝜂∞)) at 

very high shear rate region (also called upper Newtonian region),though this region is not seen 

in log-log scale of figure (Bird, Curtiss et al. 1987, Dunstan 2019).  

 

 

Figure 2.14. Non-Newtonian viscosity(𝜂) of low-density melted polyethylene versus shear rate(𝛾) in different temperature in 

log-log scale axis(Dunstan 2019) 

 

Moreover, if logarithmic viscosity (log η) versus logarithmic shear rate (log 𝛾) is plotted, the 

former power-law region is appeared as a linear reduction region, and according to Bird (Bird, 

Curtiss et al. 1987) the slope of this linear reduction is between m= -0.4 and m= -0.9 for typical 

polymer solution. 
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• Steady shear rate first normal stress differences coefficient (𝛹1) 

As it has shown in Figure 2.15 , the typical changing trend of first normal stress difference 

coefficient (𝛹1 ) versus shear rate is similar to those of viscosity trend. First, it is positive and 

constant in lower Newtonian region, then it starts to decrease more rapidly in comparison with 

viscosity in power-law region. Finally, it  again  reaches to constant value ( zero ) in lower 

Newtonian region. (Bird, Curtiss et al. 1987) . 

 

 

 

 

 

Figure 2.15. The typical changing trend of first normal stress coefficient(Ψ) versus reduced applied shear rate 

(𝛾)  𝑓𝑜𝑟 𝑎 𝑙𝑜𝑤 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑝𝑜𝑙𝑦𝑒𝑡ℎ𝑦𝑙𝑒𝑛𝑒 𝑚𝑒𝑙𝑡 (Ribau, Ferrás et al. 2019) 

 

• Steady shear rate second normal stress differences coefficient (𝛹2) 

It is negative and much smaller than first normal stresses coefficient ( 𝛹2~0.1 × (𝛹1) ), though 

it experiences completely similar reduction trend versus increase of shear rate. Modern 

rheometers allow for measurement of second normal stress differences, though it is still not an 

easy task. So, information on second normal stress coefficient  (𝛹2) are rare to find in literature 

specially in very low shear rate and very high shear rate region  (Carreau, Choplin et al. 1985, 

Bird, Curtiss et al. 1987). 
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2.5.3 start-up of steady shear flow 

2.5.3.1 start-up of steady shear flow characteristic 

For this experiment as it is depicted in Figure 2.16, the flow is on rest state before starting this 

experiment  (for all time t < 0). And, then constant initial shear rate (called step-rate) is applied  

for t > 0 to investigate on how  shear stress  shifts to its steady state value (Bird, Curtiss et al. 

1987). From physical point of view, this experiment is similar to put a weight on the spring and 

see how it is expanded from its initial state length (L0) to its steady state expanded length (LS) 

possibly after some oscillations around LS. 

 

 

 

 Figure 2.16. Simple schematic of startup flow (Bird et al., 1987) 

 

2.5.3.2  Material function of startup of steady shear flow 

the material function of start-up of steady shear flow is summarized in below (Bird, Curtiss et 

al. 1987)  

 

{

𝜏𝑥𝑦 = −η+(𝑡, γ̇
0)γ̇

0
,

𝜏𝑥𝑥 − 𝜏𝑦𝑦 = −𝛹1
+(𝑡, γ̇

0)γ̇
0
2,

𝜏𝑦𝑦 − 𝜏𝑧𝑧 = −𝛹2
+(𝑡, γ̇

0)γ̇
0
2.

 (2.21) 

 

So, it is seen that they are identical to their corresponding equation in steady shear rate flow, 

except all material functions are now function of time (𝑡). Moreover, the positive sign (+) in 

the formula is just an indication of the fact that the steady rate is only applied for positive time. 

Alternatively, "+" can stand for the increase (growth) of stresses(Bird, Curtiss et al. 1987). 
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• Shear stress growth function of start-up of steady shear flow (η+) 

Figure 2.17, shows shear stress growth function of start-up of steady shear flow for melted low-

density polyethylene regarding different initial shear rates. It can be seen that only for very low 

shear rate called linear viscoelastic envelope (the curve below which all other stress growth 

curves lie) the shear stress reaches to its steady state value in monotonous increasing fashion. 

But from some critical boundary called the linear viscoelastic limit (around 𝛾 = 1.5 for low-

density melted polyethylene) the significant divergence from linear viscoelastic envelope is 

appeared. This is the region where the data first increases up to their maximum (also called 

overshoot), then it starts to decrease and reaches to its steady state value, possibly with some 

oscillation around this steady state value. The more step-rate the sooner data is deviated from 

linear viscoelastic envelope(Bird, Curtiss et al. 1987).  

 

 

Figure 2.17. shear stress growth (𝜂+(𝑡, �̇�0)) versus of time (𝑡) for melted low-density polyethylene with respected to different 

initial shear rate (Bird et al., 1987) 

 

below Figure 2.18 also  shows same quantity for polyacrylamide in 50/50 mixture weight of 

water and glycerin, but here the data have been normalized with respect to steady state value of 

shear stress growth such that the overshoot value is easier to be observed  
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Figure 2.18.  Normalized shear stress growth (
𝜼+(𝒕,�̇�𝟎)

𝜼( �̇�𝟎)
) versus time( 𝑡 )  for 1.5% polyacrylamide in 50/50 mixture by weight 

of water and glycerin (Bird, Curtiss et al. 1987) 

 

• First normal stress differences growth coefficient of start-up of shear steady flow 

(𝛹1
+) 

The below Figure 2.19, shows first normal stress differences growth coefficient of coefficient 

growth (𝛹1
+) of melted low-density polyethylene over elapsed time (𝑡). As it is obvious from 

chart the first normal stress also experiences completely similar trend toward steady state value 

regarding application of different shear rate. But here the major difference is time of reaction 

which is much slower than shear stress growth. Moreover, the size of overshoot is much greater 

than those of shear stress (Bird, Curtiss et al. 1987). 
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Figure 2.19. shows first normal stress coefficient growth (𝛹1
+(𝑡, �̇�0)) of melted low-density polyethylene over elapsed time 

(Bird et al., 1987) 

 

2.5.4 Cessation of steady shear flow 

2.5.4.1 Cessation of steady flow characteristic 

In this experiment which is in complete opposition with startup experiment, the constant initial 

shear rates  is applied to the flow only for time before relaxation period (t < 0) .Then  for t > 0 

there is sudden stop of initial shear rate to observe how  flow relax its shear stress toward zero 

(Bird, Curtiss et al. 1987). Recall to spring example it is similar to release the mentioned weight 

from spring to see how it returns  to its initial length state (Lo) from its extended stable state 

length (Ls). 

 

 

Figure 2.20. Simple schematic of relaxation flow (Bird et al., 1987) 
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2.5.4.2  cessation of steady shear rate flow material function 

as it is appeared in equation 2.22, material function of  cessation of steady shear rate is again 

identical to those of shear steady regime except now all material functions are dependent on 

time (𝑡) and negative sign(−) only shows the fact that constant shear rate has been applied only 

for  time t < 0 .Material functions of cessation of steady shear rate flow material function can 

be expressed as (Bird, Curtiss et al. 1987) 

 

{

𝜏𝑥𝑦 = −η−(𝑡, γ̇
0)γ̇

0
,

𝜏𝑥𝑥 − 𝜏𝑦𝑦 = −𝛹1
−(𝑡, γ̇

0)γ̇
0
2,

𝜏𝑦𝑦 − 𝜏𝑧𝑧 = −𝛹2
−(𝑡, γ̇

0)γ̇
0
2.

 (2.22) 

 

• Shear stress relaxation function of cessation of steady shear flow relaxation flow 

(η−) 

Again, the objective of this experiment is set up to observe shifting change of material function 

toward zero in relaxation state, after cession of initial constant shear rate (step-rate). Figure 

2.21, shows the typical expected result of shear stress relaxation of cessation of steady shear 

flow. Following observation can be made (Bird, Curtiss et al. 1987): 

• Again, it takes times for polymeric solution to get implemented changes due to their 

‘’laziness’’ and elastic memory properties. While the Newtonian fluid behaves in 

opposite way and takes implemented changes immediately after implementation. 

• The monotonous decreasing trend toward zero is seen in all curves regarding different 

step-rate. And again, all curves lie below the linear viscoelastic envelope. 

• Though, two different slope of reduction is observed in typical ways of showing data 

(linear-log scale) . In fact, the reduction in earlier time (also called ‘’non-exponential 

region’’) is much faster than late time (also called exponential region). This exponential 

region shows itself as a straight line in linear-log scale, though it is exponential in linear-

linear scale. Moreover, the slope of reduction is independent of step-rate in exponential 

region. On the contrast, this slope accelerates as step-rate increases in non-exponential 

region. So, the more step-rate the sooner polymer lost its stored energy in early time 

region. 
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Figure 2.21. Normalized logarithmic shear stress relaxation (𝒍𝑜𝑔
𝜼−(𝒕,�̇�𝟎)

𝜼( �̇�𝟎)) 
) versus time(𝑡) of low density polyethylene  

implementation of different initial shear rate taken from (Bird et al., 1987) 

 

• First normal stress differences relaxation coefficient of cessation of steady shear 

flow (𝛹1
−) 

 

According to below Figure 2.22, the first normal stress difference relaxation coefficient in  

cessation of steady shear flow shows exactly similar trend of reduction toward zero, but it is 

again so ‘’lazy’’ that reacts to implemented change much slower than shear stress (Bird et al., 

1987) 
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Figure 2.22. Systematic comparison for relaxation mood between shear stress (shown  with                    ) first normal stress  

differences coefficient( shown with             ) (Bird, Curtiss et al. 1987) 

 

2.6 Modeling part 

After obtaining basic knowledge about material function of polymer both in steady and transient 

flow in last part, it would be favorable to initiate an effort to model these functions. In fact, lots 

of scientist tried to make behavioral models for polymers. At the first stages huge number of 

pure mathematical models were proposed. Mathematical models can give amazing predictions 

at certain circumstances, but they are not general. They "fail" in certain situations or for certain 

flow patterns, while work perfectly for the others.  

Then the advent of physical models proved to be successful to predict polymeric behaviors at 

least partially.  Here first we summarize most important one of polymeric mathematical models 

and then will go through some physical outstanding models  (Bird, Curtiss et al. 1987, Shogin 

2020) 
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2.6.1  Mathematical modeling  

2.6.1.1 ‘’The generalized Newtonian fluid model’’ 

As noted, before, the viscosity is constant in the Newtonian fluid for given temperature, 

pressure, and composition. So, if the elementary flow velocity field is assumed to be 

𝒗 = {

𝑣𝑥 = 𝒗𝒙𝑦
𝑣𝑦 = 0

𝑣𝑧 = 0
) ,Newtonian viscosity relation with shear stress can be expressed as (Bird, 

Curtiss et al. 1987) 

 

𝝉𝒚𝒙 = −𝜇
𝐝𝒗𝒙

𝒅𝒚
. (2.23) 

Where: 

• 𝝉𝒚𝒙 is shear stress [Pa] 

• 𝜇 is Newtonian viscosity [Pa s] 

• 
𝐝𝒗𝒙

𝒅𝒚
  is velocity gradient [m s-1] 

Then modification of equation 2.23 such that it allows for viscosity change when velocity 

gradient changes, was first attempt to obtain representative relationship for Non-Newtonian 

fluid. This modified (called generalized) Newtonian viscosity can be expressed as 

 

𝝉𝒚𝒙 = −𝜂 (
𝐝𝒗𝒙

𝒅𝒚
)

𝐝𝒗𝒙

𝒅𝒚
. 

 

(2.24) 

Where: 

𝜂(
𝐝𝒗𝒙

𝒅𝒚
 ) is non-Newtonian viscosity dependent on velocity gradient (

𝐝𝒗𝒙

𝒅𝒚
) [Pa  s]. 

The negative sign in each formula is just to make sure that the change in viscosity is only 

dependent on magnitude of velocity gradient not its direction. Then the idea in of  equation 2.23 

can be further extended to obtain the formula which can describe all steady shear flow velocity 

field (𝑣𝑥, 𝑣𝑦, 𝑣𝑧).For incompressible fluid it can be written as 

𝝉 = −𝜇�̇�. 

 
(2.25) 
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Where, �̇� is rate-of-strain tensor is defined by equation 2.16  ([𝛁𝒗 + (𝛁𝒗)𝑻]). In case the fluid 

is non-Newtonian then equation 2.25 can be rewritten as 

 

𝝉 = −𝜂(�̇�)𝜸 .̇  

 
(2.26) 

 

2.6.1.2 ‘’The Power- law model’’ of Ostwald and de Waele (with m and n 

parameters) 

Power- law model is one type of the generalized Newtonian (time independent non-Newtonian) 

model .The power low relationship can be expresses as (De Waele 1923, Ostwald 1923, 

Ostwald 1929)  

 

𝜂 = 𝑚�̇�𝑛−1 . (2.27) 

Where: 

• 𝑚  model parameter called consistency index [Pa sn] 

• �̇� is shear rate [s-1] 

• 𝑛 is model parameter, called the power -law index [-] 

 

 

Figure 2.23.  Viscosity curve (solid line) and approximation by the Power Law model (dashed line) in Eq. 41 (Rudolph and 

Osswald 2014)  (De Waele 1923, Ostwald 1923, Ostwald 1929) 
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So, as it is seen from Figure 2.23 ,power-law model is linear in log-log scale setup .Moreover, 

it shows  good accuracy in flow prediction both regarding shear thinning and shear thickening 

phenomena. The model is also simple and works with only two parameters (m,n), though it is 

unable to describe both lower and upper Newtonian region in very small and very large shear 

rate, respectively. This model also has a difficulty in description of Non-Newtonian time 

dependent phenomena (Bird et al., 1987).  

On the other hand, power law model can be generalized to predict other type of flow behavior 

(Figure 2.24). for example, it is seen that Newtonian fluid set up, can be obtained with  m = 𝜇 

and  n = 1 .Furthermore, as it is  seen in Figure 2.24 , In case  n > 1  the non-Newtonian power-

law  fluid, called ‘’dilatant fluid’’ with shear thickening behavior would be gained, whereas in 

case n < 1 other common type of non-Newtonian  fluid (‘’pseudo-plastic fluid’’) with shear 

thinning behavior would be recovered. One should also remember that Bingham plastic fluid 

shown in Figure 2.24 is not classified as a fluid, because it can withstand stress. 

 

 

 

Figure 2.24. Concept of generalized fluid model for all different kind of flow ("What are the properties of non-Newtonian 

fluids,") 
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2.6.1.3 The Bird-Carreau-Yasuda Model (with  𝜼∞ , 𝜼𝟎  , 𝝀  , 𝒂  , 𝒏   parameters)         

The Bird-Carreau-Yasuda Model (see Figure 2.25) is one of other type of generalization of 

Newtonian models. This model proved to be more accurate than power-law model. The model 

relate stress with applied shear rate as a below (Bird, Curtiss et al. 1987, Andrade, Petronílio et 

al. 2007)  

 

𝜂 = 𝜂∞ + (𝜂0 − 𝜂∞)[1 + (𝜆�̇�)𝑎]
𝑛−1

𝑎  , (2.28) 

Where: 

 

• 𝜂∞ is infinite -shear- rate Non-Newtonian viscosity [Pa s] 

• 𝜂0 is zero- shear- rate Non-Newtonian viscosity [Pa s] 

• 𝜆 is time constant [s] 

• 𝑎 is model constant [-] 

• 𝑛 is power-law region exponent (since it describes the slope of (
(𝜂−𝜂∞)

(𝜂0−𝜂∞)
)) [-] 

 

 

Figure 2.25. The Bird-Carreau-Yasuda Model schematic (Rudolph and Osswald 2014) 
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So, the zero- shear- rate viscosity (𝜂0) and infinite-shear-rate viscosity (𝜂∞) has been included 

in this model to get better description of these upper and lower Newtonian region which is one 

of the main disadvantage of power-law model. In fact, the model was proposed first with four 

parameters by Carreau with constant parameter 𝑎 = 2 and then the dimensions parameter 𝑎 was 

introduced to this model by Yasuda to gain better description of transitional region between 

zero-shear-rate viscosity and power-law region (Bird et al., 1987). Thus, this model has a better 

performance in comparison with the power-law model specially regarding prediction of upper 

and lower Newtonian region in very high and very low shear rate, respectively. But it still has 

fundamental drawbacks  for prediction of time dependent flow properties like memory effect 

and also it does not predict normal stresses at all (Shogin 2020) (Bird, Curtiss et al. 1987). 

2.6.2  Physical modeling 

As has been mentioned in earlier stage in this master thesis, usage of the mathematical models 

proved to be insufficient for prediction of polymeric behavior. So, scientist pushed to combine 

mathematics with physical models to achieve more reliable models. Physical model is 

categorized in two classifications, physical models applicable for dilute solutions (kinetic 

theory) and physical models applicable for concentrated solution (network theory) (Shogin 

2020) (Bird, Curtiss et al. 1987). 

 

• Physical model applicable for dilute solution (Kinetic theory) 

 As it was noted beforehand the kinetic theory in which solvent is dominate and the     

concentration of polymer is such low that polymeric molecules more interact with solvent rather 

than each other, has been used for description of dilute solution (Bird, Curtiss et al. 1987, 

Shogin 2020). 

 

• Dumbbell based models 

The idea of simplification of polymers molecule to an elastic dumbbell with two beads, each of 

them with mass (m), attached by a spring (elastic dumbbell) or by rigid rod (rigid dumbbell),was 

first introduced to physical modeling by Kramers. This idea is simple but useful since this 

assumed dumbbell can justify some most representative properties of polymers. In fact, 

dumbbells can orient, stretch, contract and aligned like what is done by real polymer molecule. 

Then if two beads marked with label (‘’1’’) and label (‘’2’’) (Figure 2.27) and their location 

relative to one reference point (R1) in space nominated as r1 and r2 respectively, the ‘’connector 
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vector’’(the vector which connect 𝐫𝟏 to 𝐫𝟐)  is defined mathematically as 𝑸 = 𝒓𝟐 − 𝒓𝟏. This 

connector vector is of great importance since it clearly shows the dumbbell “state”. "State" 

implies orientation and stretching and as it was noted it is specified by connector vector 𝑸  

(Bird, Curtiss et al. 1987, D. Shogin1 2020). Some dumbbell-based models have been 

summarized below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.26. Dumbbells model schematic 

 

2.6.2.1  Hookean Dumbbells model 

Up to this point we have not yet specified the type of connector or spring (linear or nonlinear). 

But the type of connection (spring) is assumed to be linear in Hookean Dumbbells model. So, 

the connector force (the force which is resulted of beads interactions) obeys Hook law such that 

the below relation is verified  (Bird, Curtiss et al. 1987, D. Shogin1 2020) 

 

𝑭𝒄 = 𝐻𝑸 . (2.29) 

Where: 

• 𝑭𝒄 is connector force [N] 

• H is stiffness of the spring [N m-1] 

• Q is connector vector [m] 

 

 

2 

R1 

1 

𝒓𝟐 

𝒓𝟏 

Q 
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This model had some serious disadvantages which caused to be not valid for describing 

polymeric flow and forces anymore. First, this model is simple, and it is not able to describe 

shear thinning phenomena (it predicts constant shear viscosity). Then, by formulating model 

and start investigating its properties, one would find out that in extensional flow (shear free 

flow), the molecules (dumbbells) are infinitely stretched at a finite elongation rate. This, of 

course, cannot happen to a real molecule. (Van Heel, Hulsen et al. 1998, Shogin 2020). 

 

2.6.2.2  Finitely Elongated Nonlinear Elastic (FENE) Dumbbell 

The proposal of considering non-linear elastic spring which can extend only to maximum value 

(𝑄 = 𝑄0) has been offered by Warner (Warner Jr and Fundamentals 1972) based on simple 

approximation of the inverse Langevin function. Based on such Idea the related relationship 

between molecular force and connector vector can be expressed as 

 

𝑭𝒄 =
𝐻𝑸

1 −
𝑄2

𝑄0
2

 . 
(2.30) 

 

Where: 

• 𝑄  is length of dumbbell extension (or the absolute value of connector force) [m] 

• 𝐻 is Warner spring coefficient [N m-1] 

• 𝑄0 is maximum length of dumbbell extension [m] 

• Q is connector vector [m] 

as it is appearing from the equation, the initial amount of force is zero in Q = 0 , then when Q 

increases up to its maximum value (𝑄 → 𝑄0) the force blows up to infinity and never reaches 

its maximal value which simply does not exist.  

Similar to other  kinetic based physical model the deviatoric (𝝉) stress tensor for this model is 

expressed as a sum of  solvent contribution (𝝉𝒔) and polymer contribution (𝝉𝒑).In case the 

solvent is assumed to be Newtonian, Its contribution (𝝉𝒔) is well understood, and therefore one 

concentrates on the polymer part (𝝉𝒑). 

 

 

 

The polymer contribution (𝝉𝒑) is expressed by two different form called Kramer’s form and 

Gieseku’s form, respectively as (Shogin and Amundsen 2020)  
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𝝉𝒑 = −𝑛〈𝑸𝑭𝑪〉 + 𝑛𝑘𝑇𝜹, 

 

(2.31) 

 

𝝉𝒑 =
1

4
𝑛𝜁〈𝑸𝑸〉(1), (2.32) 

Where: 

𝑛 is number concentration of dumbbells [m-3] 

𝑘 is Boltzmann’s constant [J K-1] 

T is thermodynamic temperature [K] 

𝜹 is unit stress tensor [Pa] 

𝜁 is hydrodynamic drag coefficient [Kg s-1] 

‘’The angular brackets also shows the configuration -space averaging and subscript “(1)” stands 

for the upper-convected time derivative, introduced by Oldroyd to shows the rate of change in 

tensor properties of a fluid element in a coordinate system deforming with the fluid’’(Shogin 

and Amundsen 2020). 

Then adopting Kramer’s form and substituting connector force proposed by FENE model, one 

can arrived at 

 

𝝉𝒑 = −𝑛𝐻 〈
𝑸𝑸

1 − (𝑄
𝑄0

⁄ )2
〉 + 𝑛𝐾𝑇𝜹 . (2.33) 

 

This equation is called FENE constitutive equation.  

 

2.6.2.3  FENE-P dumbbell model (with (nkT), b, 𝝀𝑯 model parameters) 

Although infinite elongation concept which was one of the main disadvantageous of the   

Hookean dumbbells model has been totally addressed in FENE model, the model constitutive 

equation cannot be written in close form. In fact, the average term in the constitutive equation 

of FENE model should be obtained by averaging with respect  to the configuration’’ distribution 

function’’ Ψ (Q, t) in each single point which is very difficult task .The distribution function 

comes from statistical physics and shows the probability of finding a particular dumbbell in a 
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given state in each single point. R.Bird and his colleagues (Bird, Dotson et al. 1980) initiated 

an effort to eliminate averaging term in FENE constitutive equation and thus arriving at closed-

form constitutive equation based on idea proposed by Peterlin .So,P in model nomination stand 

as a honor for Peterlin. He proposed following approximation (also called pre-averaging) for 

averaging part  

 

 

〈
𝑸𝑸

1 − (
𝑄
𝑄0

)2
〉 ≈

〈𝑸𝑸〉

1 −
〈𝑄2〉

𝑄0
2

  . 
(2.34) 

 

Moreover, mean-square relative dumbbell extension (𝑥) is defined as 

𝑥 =
〈𝑄2〉

𝑄0
2  . (2.35) 

Inserting equation2.34 2.35,2.35 and into equation2.33 one can obtain 

 

𝝉 = −𝑛𝐻
〈𝑸𝑸〉

1 − 𝑥
+ 𝑛𝐾𝑇𝜹 . (2.36) 

 

By defining 𝑍  factor such as 

 

 

𝑍 =
1

1 − 𝑥
 , (2.37) 

 

 

 

equation 2.37 can be written as: 

 

𝝉 = −𝑛𝐻𝑍〈𝑸𝑸〉 + 𝑛𝐾𝑇𝜹. (2.38) 

One can still proceed the simplification process by first take taking the Oldroyd derivatives of 

both sides of the equation, and then  using Giesekus form of constitutive equation to eliminate 

the averaging term(〈𝑸𝑸〉),resulting in below equation 
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𝑍𝜏𝑝 + 𝜆𝐻𝜏𝑝(1) − 𝜆𝐻{𝜏𝑝 − 𝑛𝑘𝑇𝜹} D ln
𝑍

𝐷𝑡
= −𝑛𝑘𝑇𝜆𝐻γ̇  . (2.39) 

This equation is called FENE-P constitutive equation. Where 𝑍  factor is defined by equation 

21 of  Dmitry Shogin and Amundsen article (Shogin and Amundsen 2020), 𝑡 is the time 

variable, while D stands for the material derivative and 𝜆𝐻 is time constant to return to the 

original state after deformation based on FENE-P model, defined as  

𝜆𝐻 =
𝜁

4𝐻
. (2.40) 

 

R.Bird (Bird, Dotson et al. 1980) also related experimental time constant 𝜆𝑒   (time constant 

to return to the original state after deformation based on experiment) and 𝜆𝑄(time constant 

to return to the original state after deformation for rigid dumbbell ) to 𝜆𝐻  such that  

 

𝜆𝑒 = 𝜆𝐻

𝑏

(𝑏 + 3)
=

3𝜆𝑄

𝑏 + 3
. (2.41) 

Where, b is dimensions parameter (also called nonlinearity parameter) defined as 

 

𝑏 =
𝐻𝑄0

2

𝑘𝑇
 . (2.42) 

Figure below figure, summarize model prediction regarding steady shear rate dimensionless 

viscosity (
η−η∞

η0−η∞
) versus dimensionless shear rate (λe γ ̇ ) based on defined equation 21 in the 

Bird article (Bird, Dotson et al. 1980): 
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Figure 2.27.  dimensionless viscosity(
𝜼−𝜼∞

𝜼𝟎−𝜼∞
)versus  dimensionless shear rate (𝝀𝒆 𝜸 ̇ ) for dilute solution of FENE-P 

Dumbbells based on equation( 21) in (Bird, Dotson et al. 1980) 

 

Now it can be seen that as it is appearing in the Figure 2.27 , the viscosity curves are dependent 

on model parameter ( b) , so variety of curves can be created with change in model parameter 

b. To obtain one master curve (the curve which is only dependent on one parameter) the shear 

rate is converted to dimensionless shear rate by multiplying it in to converting coefficient (C 

convert) which has same unit as relaxation time (s) and is defined such that change in b shows 

itself in this converting factor.it can be mathematically expressed as 

𝐶𝐶𝑜𝑛𝑣𝑒𝑟𝑡 =
3√3

√2 + (𝑏 + 3)3
𝜆𝑄 (2.43) 

So, in case Weissenberg number (𝑤𝑖 = 𝜆𝑄γ̇) is introduced, then dimensionless shear rate is 

defined as (γ̇𝐷 ) is  

 

γ̇𝐷 = 𝐶𝐶𝑜𝑛𝑣𝑒𝑟𝑡γ̇ =
3√3

√2 + (𝑏 + 3)3
𝜆𝑄γ̇

̇
=

3√3

√2 + (𝑏 + 3)3
𝑤𝑖 (2.44) 
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The resulted master curve based on been shown in following. 

 

 

 

Figure 2.28. Master curve of dimensionless viscosity (
𝜼

𝜼𝟎
) (shown with blue curve) and normalized first normal stress 

coefficient (shown with red curve) versus dimensionless shear rate ( �̇�
𝐷

= 𝐶𝐶𝑜𝑛𝑣𝑒𝑟𝑡. �̇�) 

The FENE-P model also predicts shear stress relaxation as a function of time in cessation 

of steady shear flow, based on equation (49) of (R. Bird et al., 1980). The resulted diagram 

has been summarized in below: 
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 Figure 2.29. dimensionless shear Stress relaxation( 
𝜼−𝜼∞

𝜼𝟎−𝜼∞

−
) as a function of dimensionless time(

𝒕

𝝀𝒆
) after cessation of steady 

shear flow for FENE-P  dumbbells, from equation( 49) of (Bird, Dotson et al. 1980) 

As it can be seen from diagrams, the proposed model predicts shear thinning behavior of shear 

flow in satisfactory state. But the slope of shear thinning region is proposed to be constant 

amount (-
2

3
) which can be considered as drawback. Furthermore, the model cannot  describe the 

wide distribution of relaxation time that real polymer shows.(Wedgewood, Ostrov et al. 1991). 

2.6.2.4 C-FENE-P Dumbbell Model (with (nkT), b, 𝝀𝑯 and E model parameters)               

The FENE-P model is not able to describe ‘’charged’’ dilute polyelectrolyte solutions. The 

charged implies the repulsive force between charged parts of a polyion, one can take the 

repulsive force between negatively charged part of HPAM polymer (Carboxyl COO− ) as 

an example. This fact was addressed by Shogin and Amundsen in 2020, where they tried to 

modify former FENE-P model such that it could describe the rheological properties of 

polyelectrolyte solutions, again based on kinetic theory. They called their model C-FENE-

P (C stands for charged) and started to modify former FENE-P connector force. In fact, 

‘they assumed the beads to carry identical effective charges 𝑞 , interacting via an 

electrostatic Coulomb force’ ’Now, the modified connector force in this model can be 

expressed as (Shogin and Amundsen 2020) 

 

𝐹 =
𝐻𝑸

1 −
𝑄2

𝑄0
2

+
𝑞2

4𝜋𝜀0𝜀

𝑸

𝑄3
 . 

(2.45) 
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Where: 

• 𝜀 is relative permittivity of the solvent [-] 

• 𝜀0 is permittivity of vacuum [F m-1] 

• 𝑞 is effective charge [C] 

 

Then to take the strength of the electric interactions into their account, they defined new 

parameter (E)  as  

 

E =
𝑞2

(4𝜋𝜀0𝜀𝑄0)𝐾𝑇
 (2.46) 

 

And ,then they repeated all the procedures described in driving FENE-P constitutive 

equation except they used modified connector force (equation2.45)  in all procedure. And 

they arrived at C-FENE-P constitutive equation as  

 

𝑏

3
𝑍𝜏𝑝 + 𝜆𝜏𝑝(1) − 𝜆{𝜏𝑝 − 𝑛𝑘𝑇𝜹}𝐷𝑡 ln 𝑍 = −𝑛𝑘𝑇γ̇ , (2.47) 

 

      Where 𝑍𝐶−𝐹𝐸𝑁𝐸−𝑃 can be defined as 

 

𝑍 =
1

1 − 𝑥
−

𝐸

𝑏

1

𝑥
3
2

=
(𝑍𝐹𝐸𝑁𝐸 − 1)

𝐹(𝑍𝐹𝐸𝑁𝐸 − 1,
𝐸
𝑏

)
 . (2.48) 

Where, 𝐹 is mathematical function defined by equation 21 of Dmitry Shogin and Amundsen  

article (Shogin and Amundsen 2020) and also 𝑍𝐹𝐸𝑁𝐸 factor is defined by equation 21 of  same 

article. 

So, the C-FENE-P constitutive equation is analogous to corresponding FENE-P equation in 

form. But here the key distinction is the modified Z factor in which the  E parameters has been 

included. This E can vary from E = 0 to E = ∞ ,and it has an inverse relationship with salinity 

.’’The reason roots up in “ionic interaction between polyions and counterions ,e.g. from  

dissolved salt resulting in reduction of repulsive force, and consequently more flexible 

polyiones”(Shogin and Amundsen 2020) .Hence E is responsible of stiffness of the assumed 

spring between beads such that, as it can be seen from constitutive equation ,when it decrease 
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to zero (E → 0) in high level of salinity, the repulsive force reaches to its minimum amount ( 

the most flexible state) and uncharged FENE-P model is recovered. On the contrast, when  E 

increase up to its maximum margin (E → ∞) in the lowest salinity, the repulsive force gets its 

maximum value and the most rigid dumbbell is recovered. The model prediction regarding 

dimensionless steady shear rate viscosity versus dimensionless shear rate , dimensionless stress 

growth as function of dimensionless time after start-up of steady shear stress and dimensionless 

stress relaxation as a function of dimensionless time after cessation of steady shear flow has 

been summarized in following figures respectively (Shogin and Amundsen 2020): 

 

 

Figure 2.30. non-Newtonian viscosity (b) of C-FENE-P dumbbells, plotted as a function of dimensionless shear rate (𝜆�̇�), , 

for different values of 𝐸 . The limiting cases 𝐸 = 0 (uncharged FENE-P dumbbells) and E → ∞ (rigid dumbbells) are 

marked. The nonlinearity parameter, b, is set to a moderate value of 50.(Shogin and Amundsen 2020)  
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Figure 2.31. Normalized polymer contribution to shear stress [(a), (c), and (e)] and first normal stress difference [(b), 

(d), and (f)] growth functions of C-FENE-P dumbbells, plotted against dimensionless time, t/λ, for different values of 

parameter at 𝐸 at 𝜆𝛾 = 0.5̇  [(a) and (b)], 𝜆𝛾 = 5̇  [(c) and (d)], and 𝜆𝛾 = 5̇ 0 [(e) and (f)]. The limiting cases 𝐸 = 0 

(FENE-P dumbbells) and 𝐸 →∞ (rigid dumbbells) are shown. All curves are plotted at b = 50 (Shogin and Amundsen 

2020) 
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Figure 2.32. Normalized polymer contribution to shear stress and first normal stress difference relaxation functions of C-

FENE-P dumbbells, plotted against dimensionless time t/λ at 𝜆𝛾 = 5̇  (a) and 𝜆𝛾 = 5̇ 0 (b) for different values of E. The 

FENE-P limit, E = 0, and the RDB limit, E → ∞, are also shown. The value of b is set to 50 (Shogin and Amundsen 2020) 
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• Physical model applicable for Concentrated solution (network theory) 

The network theory was proposed to describe the material function of concentrated solution, 

where the concentration of solution is such that the solution is dominated by solution rather 

than solvents, and polymeric molecules interact more with each other rather than solvent 

molecules. 

 

2.6.2.5  Phan-Thien-Tanner model (PTT) (𝒘𝒊𝒕𝒉 𝝐, 𝝃, 𝛌 𝐚𝐧𝐝   𝜼𝟎 model parameters) 

In 1977 Theien and Tanner initiated an effort to derive constitutive representative equation for 

description of material function of concentrated polymeric solution based on network theory 

and idea proposed by Lodge (Lodge 1968).The representative example of this network theory 

is shown in Figure 2.33 .Where polymer solution is shown as ‘’a networks of junctions in this 

theory and  each ‘’network strand’’ is represented by vector 𝝆 between junction’’. The full 

version (also called non-affine ) of this model has only two free (independent) parameters 𝜖 and 

𝜉 . 𝜖 is the extensional parameter of the order 10−2- 10−1  and 0 < 𝜉 < 1 is the affinity 

parameter, such that at 𝜉 = 0, the model is affine with only one free parameters (𝜖) .Model 

constitutive equation can be expressed as(Thien and Tanner 1977) : 

 

𝑍(tr𝝉)𝝉 + 𝜆𝝉(𝟏) +
𝜉

2
{�̇� • 𝝉 + 𝝉 •  �̇� } = −𝜂0𝛄 .̇   (2.49) 

Where:  

• λ is relaxation time[s] 

• �̇� is rate-of- strain tensor [s-1] 

• 𝜂0 is zero -shear- rate viscosity [Pa s] 

 

In case of affine PPT, this constitutive equation can be expressed as  

 

𝑍(tr𝝉) 𝝉 + 𝜆𝜏(1) = −𝜂0𝛄 .̇   

 

 

(2.50) 
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Figure 2.33. Simple representative of Phan-Thien-Tanner model (PTT) (Thien and Tanner 1977)  

 

The model also has two branches called linear PPT (LPPT) and exponential PPT (EPPT) which 

are basically same in fundamental. Here The major difference is the representative equation for 

Z factor. Z factor can be expressed either as   

 

𝑍 = 1 − 𝜖𝜆
(tr𝜏)

𝜂0
, (2.51) 

 

Or  

 

𝑍 = 𝑒
−𝜖𝜆

(tr𝜏)
𝜂0 . (2.52) 

In case first approach (the linear relation) is implemented for obtaining Z factor, the whole 

model is called linear PPT ( LPPT) ,but if the second approach (exponential relationship ) is 

implemented ,second branch of model called exponential PPT (EPPT) is recovered (Phan‐Thien 

1978). t is worth to mention some distinguishing properties of all these model branches at this 

stage of this research. Affine LPTT is somewhat similar to FENE-P, with power-law shear-

thinning exponent of order 2/3. On the contrast, affine EPTT does not give a power-law at all, 
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predicting a polylogarithmic shear-thinning. But non-affine versions predict the non-zero 

second normal stress differences. Non-affine LPTT exhibits some "weird" properties though. It 

shear-thins with a very large negative exponent (-2): this leads to shear stress being not 

monotonic in shear rates but having a maximum, which is kind of sick. The model has a 

"constitutional instability" because of that, as described by Alves et al (2001) in their "Study of 

steady pipe and channel flows of a single-mode Phan-Thien-Tan ‘’ article (Alves, Pinho et al. 

2001).On the other hand non-affine EPTT, is a really good model which has shown fantastic 

predictions for concentrated solutions and melts, especially the ‘’multimode’’ version(Shogin 

2020). ’Multimode’’ implies having different relaxation time (𝜆𝑒) that collaborates in 

constitutive equation such that as Dmitry Shogin has shown in his recent article for LPPT model 

(Shogin 2020), the resulted constitutive equation is the result of contribution from all spectrum 

of these different relaxation time.it is also worth to note that the maximum amount of overshoot 

prediction by LPPT single-mode based model is mathematically proven to not exceeding 1.14  

which is considered as a drawback in case the larger overshoot is observed within data range 

(Shogin 2020). 

The following diagrams summarized some LPP model predictions regarding steady shear 

ramping dimensionless viscosity versus dimensionless shear rate. 

 

Figure 2.34.. Dimensionless viscosity.𝑩 = 𝝀𝟎�̇� , dimensionless shear rate. for 𝝐 = 𝟎. 𝟎𝟏 , for 𝝐 = 𝟎. 𝟐 
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Again, above diagram can be shown with one master curve based on dimensionless shear rate 

(γ̇𝐷) for affine LPPT model as  

 

 

Figure 2.35. Master curve of dimensionless viscosity (
𝜂

𝜂0
) (shown with blue curve) and normalized first normal stress 

coefficient (shown with red curve) versus dimensionless shear rate (�̇�𝐷 = 𝐶𝐶𝑜𝑛𝑣𝑒𝑟𝑡. �̇�) for affine LPPT model 

So again, it is observed that there is a coefficient (C convert) which convert shear rate to 

dimensionless shear rate (γ̇𝐷). It is defined by LPPT parameters terminology as  

𝐶𝐶𝑜𝑛𝑣𝑒𝑟𝑡 = √
3𝜖

2
𝜆γ̇ (2.53) 

One should also remember that he Weissenberg number (𝑤𝑖) here is simply defined as 𝑤𝑖 = 𝜆γ̇  

Moreover, although as mentioned beforehand, different theory has been used in driving PPT 

constitutive equation, the constitutive equation of PPT model is interestingly equals to 

corresponding equation of FENE-P at least in all shear steady flows and extensional flows .PPT 

model parameters can be converted to FENE-P model as (Shogin 2020) 
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𝜂0 ↔
𝑏

𝑏 + 3
𝑛𝑘𝑇λ 𝐻 , (2.54) 

 

 

λ ↔
𝑏

𝑏 + 3
λ 𝐻 , (2.55) 

 

𝜖 ↔
1

𝑏 + 3
 . (2.56) 

 

 

 This fact was relatively unknown for some period in literature. Tanner himself learned this fact 

only in 2019 and therefore could not mention it in 1977.(Poole, Davoodi et al. 2019),(Bird, 

Dotson et al. 1980). Moreover, the main advantages of PPT model is that it is only rely on two 

parameters (𝜖and𝜉) which can be extracted by experiment (Thien and Tanner 1977) 

It is also worth to mention that according to theory, model parameter 𝜆 for affine LPPT, can be 

gained from the slope of exponential decay (m relax) in cessations of steady shear ramp test such 

that 

𝜆 = −
1

𝑚𝑟𝑒𝑙𝑎𝑥
. (2.57) 
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3 Experimental workflow 

3.1  Quick introduction on experimental workflow 

As it was mentioned beforehand, the objective of this study was set to focus on more analysis, 

instead of doing laboratory experiments in extensive way. So only one mother solution (not 

modified HPAM) with Mw=5.105 g/mole studied in three different concentrations Cc=3.104 

ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm 

 

Laboratory workflow regarding preparing the solution can be summarized in below . 

• First stage: Preparation of mother solution 

preparation of mother solution based on predefined concentration and Mathematica 

program codes  

 

• Second step: Dilution of mother solution 

dilution of mother solution and making lower concentration solutions again based on 

predefined dilute concentrations and Mathematica program codes 

 

• Final stage: Conducting tests 

making rheology measurements with Anton Paar rhemoter in three different 

experiments namely, steady shear ramping and start-up of steady shear flow and 

cessation of steady shear flow. 
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3.1.1 First step: Preparation of mother solution 

In this part the goal is set to prepare mother solution with predefined concentration of Cc=3.104 

ppm such that lower concentration solutions can be obtained from this mother solution.  

Following Steps were taken to prepare mother solution. 

• First: 

Pouring about 500 𝑚𝑙 desilted water into graduated cylinder and measuring the pour 

weight of water by scale number 2 

• Second: 

At the next stage, the required weight of polymer solution is measured based on desired 

polymeric concentration (concentrations Cc=3.104 ppm) with usage of following formula 

 𝑀𝑃 =
𝐶𝑐. 𝑀𝑆. 10−6

1 − (𝐶. 10−6)
 . 

 
(3.1) 

Where: 

MP  is required mass of polymer [g] 

Cc is Concentration of polymer [ppm] 

MS is Measured mass of solvent [g] 

• Third: 

Then in the next stage called practical calculation, taken weight of polymer in practice 

is measured (by scale number 2) as it is almost impossible to take exact theoretical 

amount of polymer powder calculated in former stage. Then real concentration of 

mother solution (Crel) can be obtained as 

 

𝐶𝑟𝑒𝑙 =
𝑀𝑃𝑎

𝑀𝑃𝑎 + 𝑀𝑆
. 106 . (3.2) 

Where: 

Crel is true concentration of resulted solution [ppm] 

MPa is Practical mass of polymer taken in practice [g] 

• Final stage: 

In the final stage of experiment, polymer powder is mixed with distilled water about 

two hours by mixer to gain desired concentration. Then the resulted polymeric solution 

is mixed with magnetic stirrer for 24 hours, while it has been covered with parafilm to 

prevent water from evaporating. 
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Figure 3.1. from left; graduated cylinder, measuring spoon, scale number 1 and scale number 2 

 

 

Figure 3.2 from left; HPAM polymer powder ,mother solution Cc=3.104 ppm, mixer for mixing polymer powder and water 

and magnetic mixer 
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3.1.2 Dilution of mother solution 

At this stage lower concentrations (Cc=2.104 ppm, Cc=1.5.104 ppm) is derived from mother 

solution. The procedure defined by Mathematica software and by following stages 

• First: 

the theoretical mass of the concentrated solution required for making dilute solution is 

obtained from following as 

 

𝑀𝑐 = (
𝐶

𝐶0
. 𝑚𝑑). (3.3) 

Where: 

Mcis theoretical mass of concentrated polymer [g] 

C is desired concentration of dilute polymer [ppm] 

C0 is true concentration of concentrated polymer [ppm] 

md is desired mass of dilute solution [g] 

• Second: 

Then in the next stage the total true mass of dilute solution with desired concentration 

gained based on the mass of concentrated polymer taken in practice, as again it is almost 

 Impossible to take exact amount of polymer calculated in former stage according to   

Following  

𝑚𝑡 = (
𝑀𝑐 . 𝐶0

𝐶
). (3.4) 

 

Where: 

mt is total mass of dilute solution required [g] 

Mc is mass of concentrated solution taken in practice [g] 

C0is true concentration of concentrated polymer [ppm] 

C is desired concentration of dilute polymer [ppm] 
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• Third stage: 

In the third stage, finally the evaluation of true concentration of dilute solution is  

done based on the measured total mass of dilute solution in practice via  

𝐶 = (
𝑀𝑐𝑝. 𝐶0

𝑚
). (3.5) 

Where: 

C is final and true concentration of dilute polymer [ppm] 

Mcp is mass of concentrated solution taken in practice [g] 

C0 is the true concentration of concentrated polymer [ppm] 

m is measured total mass of dilute solution required [g] 

•Final stage: 

Then magnetic components are put in resulted dilute solution and it is mix with magnetic 

stirrer for about 15 minutes and then it can be poured into sample container and put in 

the refrigerator.   

 

 

 

Figure 3.3. HPAM polymer with concentration from left; 𝐶𝑐 = 1.5. 104 𝑝𝑝𝑚, 𝐶𝑐 = 2. 104 𝑝𝑝𝑚 
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So, the predefined and true concentrations of HPAM polymer Cc=3.104 ppm, Cc=2.104 ppm 

and Cc=1.5.104 ppm solution can be compacted as a below 

 

Table 3.1:Predefined concentration versus concentration on practice 

Name of solution Predefined concentration Concentration on practice 

HPAM 

Solution 

Cc=3.104 ppm Cc=3.16.104 ppm 

HPAM solution  Cc=2.104 ppm Cc=1.96 .104 ppm 

HPAM  

Solution  

 Cc=1.5 .104 ppm Cc=1.5 .104 ppm 
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3.1.3  Conducting tests 

 

Before explaining the mechanism and setting adjustment by which the experiments has been 

done, it is worth to go through some more details on the rheometer instrument and how it 

measures the viscoelastic properties. 

 

3.1.3.1  Introduction on Rheometer 

The Anton Paar rheometer (MCR302) was used in this experiment. This kind of rheometer can 

work with different kind of attached instrument, each are suitable for especial kind of flow 

listed below(Mezger 2006): 

 

• Concentric cylinder measuring system 

• Parallel plate measuring system 

• Mooney-Evart measuring system 

• Cone-and-plate measuring system 

 

The cone-and-plate attached system has been used in this research as it can maintain constant 

shear rate due to its special geometric figuration.  

 

 

Figure 3.4. from left; Anton paar rheometer, cone-and-plate attachment, graduated pipette for poring polymer into 

rheometer 
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3.1.3.2 shear ramping test 

As it can be seen from nomination, at this experiments the viscosity of polymer is measured 

relative to the applied shear rate which ramps up from very low shear rates (γ̇ = 10−3  
1

𝑠
) to 

extremely high shear rates (γ̇ = 103  
1

𝑠
 ). As it is depicted in Figure 3.5, the setting part is adjusted 

in such a way that 25 viscosity points is measured in shear rates interval ranging from 10−3 ≥

γ̇ ≤ 103 .But as it is shown in Figure 3.5, more time is dedicated for lower shear rates 

measurements (120 s/measurement for mother solution and 60 s/measurement for lower 

concentrations) and less time for higher shear rates (7 s/measurement).The reason roots up in 

the  fact that  more time is required for gaining consistent results in lower shear rates region. 

Thus, the obtained viscosity data from the shear ramping experiments in measuring shear rates 

can be considered as a steady shear rates value of the specific steady shear rates. 

 

 

 

Figure 3.5. Setting parameter of shear ramping test 
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3.1.3.3  startup of steady shear rate experiment 

 

As noted in chapter 2 the start-up of steady shear rate experiment is kind of experiment in which 

the constant shear rate is applied to fluid only from start point of experiment (𝑡 > 0) and fluid 

is on rest for all time before starting point of experiment (for all 𝑡 < 0). So, as it is depicted in 

Figure 3.6, the setting options should be changed such that it  able us to reach specific constant 

shear rate whiten specific amount of time from starting point of experiment (t=0). Thus, 40  

measuring points were implemented such that less time per measurement (0.001 

s/measurement) is dedicated for initial time interval and more time per measurement (0.25 

s/measurement) for final time interval.  

 

 

 

Figure 3.6.Setting parameter of startup of steady shear rate experiment 
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3.1.3.4  Cessation of steady shear rate test 

 

As it was noted in chapter 2 in this experiment which is in complete opposition compare to 

start-up of steady shear flow test, the constant shear rate is only applied to fluid for time before 

starting the experiment (𝑡 < 0) and then there is sudden stop of applied shear rate for all 𝑡 > 0 

to see how fluid relaxes its stored shear stress. So, to have constant shear rate before starting 

point (for all 𝑡 < 0) this experiment conducted immediately after startup experiment. Moreover 

setting parameters should be arranged exactly similar to Figure 3.6 except the shear rate value 

is set up to zero from starting point of this experiment  (for all 𝑡 > 0) where there is a sudden 

stop in applied  constant shear rate to obtain measure 40 measuring relaxation points.   

 

4 Data analysis 

4.1 Data analysis without considering physical models 

As it was discussed in the project objective, at the first stage, the obtained data in experiments 

part is plotted and fitted to their representative trends (linear, power-law, etc.) via both 

quantitative and qualitative analysis without considering physical representative model. 

It is also worthwhile to mention that all figures represented in this part of thesis produced with 

the help of Wolfram Mathematica software.  

 

4.1.1  Shear ramping experiments 

4.1.1.1  Viscosity analysis (𝜼) 

The below Figure 4.1, is produced representative of viscosity versus shear rates for HPAM 

polymer in three different concentrations, Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm. 
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             Figure 4.1. Produced graph of viscosity (𝜂) versus shear rate (�̇�) for Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 

ppm HPAM polymer solution in log-log axis scale 

 

So, there is no surprising regarding above trends. In other words, what is observed from this 

diagram is in great accordance with what was reviewed extensively in chapter 2,from main 

reference book (Bird, Curtiss et al. 1987).  

Then above data normalized relative to upper Newtonian region viscosity value (
𝜂

𝜂0
) and fitted 

to representative lines from Figure 4.2 to Figure 4.4. Finally, the slope of power-law region or 

linear reduction in log-log scale (m) was extracted from these fitted lines to investigate more 

about the relation and trend between slope of reduction and dilution degree of the solution.  
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                   Figure 4.2.  Normalized viscosity (
𝜂

𝜂0
) versus applied shear rate (�̇�) for Cc=3.104 ppm HPAM polymer solution in 

log-log axis 

       

 

 

          Figure 4.3.  Normalized viscosity (
𝜂

𝜂0
) versus applied shear rate (�̇�) for Cc=2.104 ppm HPAM polymer solution in log-

log axis 
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               Figure 4.4.  Normalized viscosity (
𝜂

𝜂0
) versus applied shear rate (�̇�) for Cc=1.5.104 ppm HPAM polymer solution in 

log-log axis 

 

Figure 4.5. Cumulative result of  Figure 4.2 to Figure 4.4  
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From  Figure 4.5 it is seen that; 

• first, the slope of power-law region for HPAM polymer in all concentration level lies in 

the typical range for polymeric solution (– 0.4<m>- 0.9) 

• then it also seen that the slope of reduction slows down as the concentration decreases.  

 

4.1.1.2 First normal stress differences coefficient (𝜳𝟏) analysis 

As it has been mentioned in literature review, low level of practical information on first normal 

stress differences coefficient (𝛹1), is a great motivation to study this quantity in this research. 

Though, it is not easy task to measure this coefficient especially for low shear rate, where the 

forces involved are small, therefore the instrumental error becomes significant compared with 

what we measure. Also, sensitivity of the rheometer in the normal direction is another issue 

which needs to be addressed. Figure 4.6 to Figure 4.8 show first normal stress differences 

coefficient (𝛹1) versus applies shear rate (�̇�) of HPAM polymer in three concentration, 

Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm. 

 

 

 

 

                    Figure 4.6.  first normal stress differences coefficient (𝛹1) versus shear rate (�̇�) of Cc=3.104 ppm HPAM 

polymer solution in log-log axis 
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                     Figure 4.7.  first normal stress differences coefficient (𝛹1) versus shear rate (�̇�) of Cc=2.104 ppm HPAM 

polymer solution in log-log axis 
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                                       Figure 4.8. first normal stress differences coefficient (𝛹1) versus shear rate (�̇�) of Cc=1.5.104 ppm 

HPAM polymer solution in log-log axis 

 

Following observation about first normal stress difference coefficient (𝛹1) can be made from 

above diagrams: 

• It is seen as it was expected, first normal stress difference coefficient (𝛹1) versus shear 

rate trend is similar to what was observed regarding viscosity. 

• Though, the slope of fitted line in power-law region (m= -1.12, m= -1.22 and m= -1.06, 

for Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm, respectively)shows that 𝛹1 

decreases much more intensively in comparison with viscosity.  

• Almost constant slope of fitted lines in power-law region of all three concentrations also 

shows that the slope of power-law region of first normal stress difference coefficient 

(𝛹1) is not dependent on concentration at all, whereas it was observed in viscosity part, 

the slope of power-law region is dependent on level of concentration.  
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4.1.2  Startup of steady shear flow experiment 

There are two fundamentally different ways regarding data analysis for this experiment. One is 

sorting data based on concentration of the fluid, and another one is relying on initial applied 

shear rate (step-rate). Second approach has been applied in below Figure 4.9 to Figure 4.15.  

Below Figure 4.9 to Figure 4.15 show normalized shear stress growth(
η+(t,γ̇0)

η( γ̇0)
) versus elapsed 

time (𝑡) related to different applied shear rate (�̇�), for HPAM polymer in three concentration 

Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm. 

 

 

 

Figure 4.9. Normalized start up  growth(
𝜼+(𝒕,�̇�𝟎)

𝜼( �̇�𝟎)
)) versus time (𝑡)  for shear rate �̇� = 0.01 
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Figure 4.10. Normalized start up  growth(
𝜼+(𝒕,�̇�𝟎)

𝜼( �̇�𝟎)
)) versus time (𝑡)  for shear rate �̇� = 0.1 

 

  Figure 4.11.  Normalized start up  growth(
𝜼+(𝒕,�̇�𝟎)

𝜼( �̇�𝟎)
)) versus time (𝑡)  for shear rate �̇� = 1 
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                  Figure 4.12.  Normalized start up  growth(
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
)) versus time (𝑡)  for shear rate �̇� = 10 

 

 

 

 

Figure 4.13. Normalized start up  growth(
𝜼+(𝒕,�̇�𝟎)

𝜼( �̇�𝟎)
)) versus time (𝑡)  for shear rate �̇� = 20 
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             Figure 4.14. Normalized start up  growth(
𝜼+(𝒕,�̇�𝟎)

𝜼( �̇�𝟎)
)) versus time (𝑡)  for shear rate �̇� = 60 

 

Figure 4.15.Normalized start up  growth(
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
)) versus time (𝑡)  for shear rate �̇� = 100 
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Following impression can be made from above figures: 

1. the completely similar trend is observed regarding all level of concentration for fixed 

initial constant shear rate. For example, both  the  position of overshoot relative to time  

and the time required to arrive at steady state value seems to be only dependent on initial 

shear rate and independent of concentration in fixed step-rate (some small discrepancy 

seen in the plot is within uncertainty) .This is the fact that was observed also by Islam 

in his thesis (Islam 2019) . 

2. Though, there is some differences by which these three concentrations can be 

differentiated: 

• Size of overshoot: 

As it is seen also from Figure 4.16, in fix initial applied shear rate (step-rate) size of 

overshoot  is highly dependent on value of step-rate (which was already known from 

Bird (Bird, Curtiss et al. 1987) and concentration. In fact, size of overshoot increases 

with increase in concentration in monotonous fashion. So, the former hypothesis on 

non-monotonous dependency of the size of overshoot on the concentration, made by 

Islam in his thesis (Islam 2019) is not observed for HPAM polymer. In fact, he noticed 

some abnormal points about the dependency of overshoot size on concentration in fixed 

shear rate. And then he proposed the non-monotonous theory based on some chemical-

based justifications. But as noted before, no abnormal point can be observed for HPAM 

polymer at least for three tested concentrations.  

• Level of noise: 

It is seen that as the concentration and shear rate increase, unfavorable data (both outlier 

and noises) will reduce considerably. There is a simple explanation for this. When the 

fluid is subject to high shear rates, the stresses are also high. That makes the instrumental 

noise small compared to the quantities one can measure 

3. in the first three diagrams (Figure 4.9 to Figure 4.11) regarding very low shear rates �̇� =

0.01 , �̇� = 0.1 and  �̇� = 1 respectively, the shear stress grows monotonously toward its 

steady state value.  

4. Then when shear rate increases up to �̇� = 10 and �̇� = 20 (                  Figure 4.12,Figure 

4.13 respectively) such that it exceeds the critical shear rate (called linear viscoelastic 

limit), the significant deviation from linear viscoelastic envelope occurs whiten short 

time (t < 1 s). So, the shear stress first growths up to some maximum amount 

(overshoot), then it starts to reduce up to steady state value. 
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5. For ultimate shear rates 𝛾 = 60   and 𝛾 = 100  (Figure 4.14,Figure 4.15 respectively) 

it is seen that data deviate from linear envelope even in shorter period (t < 0.5 s) such 

that the increasing region toward overshoot value is almost impossible to be observed. 

 

Figure 4.16. Cumulative comparison on size of overshoot regarding different initial shear rates and concentrations 

 

 

 

Figure 4.17. Cumulative comparison on deviation time regarding different initial shear rates and concentrations. 
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4.1.3 cessation of steady shear flow experiment 

Here to see the effect of applying different step-rates the resulted data are first sorted based on 

fixed concentration regarding different applied step-rate proceed to cession, in vertical 

logarithmic, horizontal linear scale of axis. The data again has been normalized relative to 

steady state value (Figure 4.18 to Figure 4.20).  

 

 

Figure 4.18. Normalized stress relaxation (
𝜼−(𝒕,�̇�𝟎)

𝜼( �̇�𝟎))
) of HPAM polymer Cc=3.104 ppm versus time(𝑡) regarding different 

initial shear rate before cession in log-linear scale axis. 
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Figure 4.19. Normalized stress relaxation (
𝜂−(𝑡,�̇�0)

𝜂( �̇�0))
) of HPAM polymer Cc=2.104 ppm time(𝑡) regarding different initial shear 

rate before cession in log-linear scale axis 

 

Figure 4.20. Normalized stress relaxation ((
𝜂−(𝑡,�̇�0)

𝜂( �̇�0))
) of HPAM polymer Cc=1.5.104  ppm versus time(𝑡) regarding different 

initial shear rate before cession in log-linear scale axis 
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Following impressions can be made from above Figure 4.18 to Figure 4.20: 

 

1. As it was expected, in all concentration and applied shear initial shear rate, shear stress 

relaxes from its steady state value in monotonous fashion. 

2. Though, as it was also predictable, this monotonous reduction is occurred with two 

different slopes in two different regions, namely ‘’non-exponential ‘’ region and 

exponential region (appears as line in the log-linear scale). In fact, shear stress data 

decays more rapidly in non-exponential region for early times in comparison with 

exponential region for late times. Moreover, the non-exponential stage of decay 

becomes more pronounced at higher step-rates. But in the exponential regime, the slope 

is almost independent of the step-rate (in Figure 4.18 to Figure 4.20  three blue lines are 

almost parallel).     

 

The resulted data has been analyzed also based on initial applied shear rate before cession, in 

order to conduct more investigation on the effect of concentration through below Figure 4.21to 

Figure 4.23 . 

 

 

             Figure 4.21. Normalized stress relaxation  ((
𝜼−(𝒕,�̇�𝟎)

𝜼( �̇�𝟎))
)   versus time (𝑡) of different concentration regarding initial 

shear rate (�̇� = 0.1) 
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Figure 4.22. Normalized stress relaxation
𝜼−(𝒕,�̇�𝟎)

𝜼( �̇�𝟎))
 versus time(t )of different concentration regarding initial shear rate (�̇� =

1)  

 

 

 

Figure 4.23. Normalized stress relaxation
𝜼−(𝒕,�̇�𝟎)

𝜼( �̇�𝟎))
  versus time (t) of different concentration regarding initial shear rate 

(�̇�=10) 
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So, it is observed that again all concentrations experience similar trends of reduction from initial 

steady state value in monotonous fashion (faster at non-exponential region in early time and 

slower in exponential region in late time ).It is also seen that as the dilution increases the 

relaxation accelerates in non-exponential region. So again ,the non-monotonous dependency of  

the slope of non-exponential region decay proposed by Islam (Islam 2019) is not observed for 

HPAM polymer at least for three tested concentrations since  in all step-rates the non-

exponential decay accelerates with decrease in concentration without any abnormally. 

 Though, again almost parallel blue lines in figures clearly shows that the slope of reduction is 

independent of concentration in exponential region. This was also observed by Islam in his 

thesis(Islam 2019) 

The below Figure 4.24 is cumulative result of Figure 4.18 to Figure 2.22 regarding the slope of 

exponential reduction which shows how the slope of reduction in this region is almost 

independent of step-rates and concentration (the small level of differences seen in diagrams is 

only due to some uncertainties and measurement errors) 

 

 

Figure 4.24. Cumulative result of slope of reduction in exponential region 
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4.2  Data analysis with considering physical model 

At this stage of this research the data is fitted to physical models (affine LPPT, full LPPT, affine 

EPPT, FENE-P and C-FENE-P) to obtain best representative model for HPAM polymer. It is 

worth to mention that first the analytical or numerical solution of models were coded in 

Mathematica software and then data fitting conducted. 

 

Data fitting approach 

In following we will show the importance of the approach by which real data is fitted to model. 

There were two approach by which real data could fitted to model summarized below. 

 

First approach: 

First, the master curve of dimensionless viscosity versus dimensionless shear rate data (γ̇𝐷) is 

fitted in shear ramping test to obtain the’’ appropriate’’ converting coefficient (C convert) exactly 

like what was shown in Figure 2.28 and Figure 2.35. The terms ‘’appropriate’’ implies the C 

convert value by which perfect possible math is obtained between data and model. Then as it was 

shown in chapter 2 in equations 2.43 and 2.53 this C convert equals to some products of b and 𝜆𝑄 

or 𝜀 and 𝜆𝑒 based on model. On the other hand, as it was also  discussed in chapter two, 

according to theory, model parameter 𝜆 for affine LPPT, can be gained from the slope of 

exponential region that  was obtained from relaxation test based on equation 2.57.Hence other 

model parameter ( 𝜀  for affine LPPT) would automatically yields. Now one has all model 

parameters that is required for data fitting of both start-up and cessation of steady shear rate test 

in numerical and analytical solution coded in Mathematica. One should also remember that 

even if getting perfect math of dimensionless viscosity versus dimensionless shear rate (𝑤𝑖) 

data in shear ramping test does not necessarily mean that the model is representative, but whole 

picture included start-up and relaxation test result should be taken into account to recognize the 

best model for describing HPAM polymer in different level of concentrations Cc=3.104 ppm, 

Cc=2.104 ppm and Cc=1.5 .104 ppm. On the contrast, by getting unfavorable result (C convert) 

regarding data fitting of shear ramping test one can conclude on relative failure of the model 

for transient flow (start-up and cessation of steady shear flow).  
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• Second approach: 

First the dimensionless viscosity versus dimensionless shear rate (γ̇𝐷) curve is fitted with model 

to obtain converting coefficient (C convert) exactly like first approach. This coefficient would 

stablish relaxation between 𝜆 and 𝜀 , or  𝜆𝑄 and b, depending on the model. So, specifying one 

of these parameters will automatically yield the other. The stablished relation is coded in 

Mathematica and that will give the function (not solid number) which relates  model 

parameters (take 𝜆 as function of 𝜀, as an example ).Then for example model parameter 𝜀 in 

affine LPPT model is fitted in ‘’dynamic ways’’ in Mathematica software which also changes 

𝜆 accordingly such that both start-up and cessation curves is fitted simultaneously. 

Here’’dynamic’’ implies the command in Mathematica (called manipulate) software codding 

which able us to change parameters as much as it is favorable.   

So, the major difference in second approach is dynamic model parameter (like 𝜀 and 𝜆 ) which 

has been related to each other based on function (𝜆(𝜀) or 𝜀(𝜆)) instead of relying on solid 

(constant and not changeable) parameters (like 𝜆) based on the slope of exponential decay of 

cessation  of steady shear rate test in first approach. Moreover, as mentioned earlier, this would 

able us to conduct best possible model fitting in start-up and relaxation simultaneously. One 

also should bear in mind that to reach the best possible fit, first shear ramping fitting must be 

precise, then the stress growth and overshoot magnitude must be as accurate as possible, and 

the stress relaxation is desired to be accurate at least in the start of decay. 

 

4.2.1.1 Viscosity data fitting using full LPPT 

In below dimensionless viscosity (
𝜂

𝜂0
) versus dimensionless shear rate (𝜆�̇�) data is fitted relative 

to full LPPT to obtain appropriate converting coefficient (C convert) for HPAM polymer 

Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm. 
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Figure 4.25. Dimensionless viscosity (
𝜼

𝜼𝟎
) versus dimensionless shear rate (𝜆�̇�) is fitted to full LPPT model (shown with blue 

curve) for Cc=3.104 ppm HPAM polymer solution 

 

Figure 4.26. Dimensionless viscosity (
𝜼

𝜼𝟎
) versus dimensionless shear rate (𝜆�̇�) is fitted to full LPPT model (shown with blue 

curve) for Cc=2.104 ppm HPAM polymer solution 

 



 103 

 

Figure 4.27. Dimensionless viscosity (
𝜼

𝜼𝟎
) versus dimensionless shear rate (𝜆�̇�) is fitted to full LPPT model (shown with blue 

curve) for Cc=1.5 .104 ppm   HPAM polymer solution 

 

As it is seen from the figures the large divergence between real data and full LPPPT model is 

seen for all tested concentration of HPAM polymer .So even it is difficult to obtain appropriate 

converting coefficient (C convert) that provide math between dimensionless viscosity (
𝜂

𝜂0
) and 

dimensionless shear rate (γ̇𝐷 = 𝜆�̇�) for this model. Hence, this model is not recognized as 

representative model such that no further analysis is required to be conducted in startup and 

relaxation test for this model for all three tested concentrations.  

 

4.2.1.2 Viscosity data fitting using affine LPPT 

As noted in literature review chapter PPT model and FENE-P model are so similar that affine 

version of LPPT model data fitting is also representative for FENE-P model at least for shear 

ramping test. Here the figures are based on affine LPPT model parameters ,for parameter 

conversion one refer to equation2.54,2.552.56 noted in part 2.6.2.5. 

In below the dimensionless viscosity (
𝜂

𝜂0
) versus dimensionless shear rate (γ̇𝐷) is fitted relative 

to affine LPPT model (which is also valid for FENE-P model at least for steady flow) to obtain 

appropriate dimensionless converting  coefficient (C convert ) defined by equations 2.43 and 2.53 

for affine LPPT and FENE-P model respectively) for HPAM polymer Cc=3.104 ppm, Cc=2.104 
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ppm and Cc=1.5 .104 ppm. It is also worth to mention that LPPT (and also FENE-P one) model 

predicts dimensionless viscosity versus dimensionless shear rate based on equation 32 of 

Dmitry Shogin and Amundsen most recent article (Shogin 2020) and so Mathematica code for 

showing model was written based on it accordingly. 

 

 

 

Figure 4.28. dimensionless viscosity (
𝜂

𝜂0
) versus dimensionless shear rate (√

3𝜀

2
  𝜆𝛾 )̇  is fitted to affine LPPT mode(shown with 

blue curve) for HPAM polymer Cc=3.104 ppm   
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Figure 4.29. dimensionless viscosity (
𝜼

𝜼𝟎
) versus dimensionless shear rate (√

3𝜀

2
  𝜆𝛾 )̇  for HPAM polymer Cc=2.104 ppm   

 

Figure 4.30. dimensionless viscosity (
𝜼

𝜼𝟎
) versus dimensionless shear rate (√

3𝜀

2
  𝜆𝛾 )̇  is fitted to affine LPPT mode(shown with 

blue curve) for HPAM polymer Cc=1.5.104 ppm   
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So, the appropriate converting factor (C convert) for affine LPPT model (which is also valid for 

FENE-P model) is determined via dynamic diagrams in Mathematica software as C convert =1.72  

, C convert =0.25 and C convert =0.09 for HPAM polymer Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 

.104 ppm These coefficients will be used further in start-up and relaxation test to see whether 

this model is representative. Moreover, as the obtained coefficient for Cc=2.104 ppm and 

Cc=1.5 .104 ppm (0.25,0.09 respectively) are so small both affine LPPT model and FENE-P 

model are not valid for further analysis of startup and relaxation of these two concentrations. 

 

4.2.1.3 Viscosity data fitting using affine exponential PPT(EPPT) 

In below dimensionless viscosity (
𝜂

𝜂0
) versus dimensionless shear rate  (2√𝜀 𝜆�̇�) is fitted relative 

to affine EPPT  to obtain appropriate converting coefficient (𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = 2√𝜀 𝜆)  for HPAM 

polymer Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm. 

 

 

 
 
Figure 4.31. dimensionless viscosity (

𝜼

𝜼𝟎
) versus dimensionless shear rate (2√𝜀 𝜆𝛾 ̇ ) is fitted to affine EPPT mode(shown with 

blue curve) for HPAM Cc=3.104 ppm 
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Figure 4.32. dimensionless viscosity (

𝜼

𝜼𝟎
) versus dimensionless shear rate (2√𝜀 𝜆𝛾 ̇ ) is fitted to affine EPPT mode(shown with 

blue curve) for HPAM polymer Cc=2.104 ppm 

 

 

 

 

 
Figure 4.33. dimensionless viscosity (

𝜼

𝜼𝟎
) versus dimensionless shear rate (2√𝜀 𝜆𝛾 ̇ ) ) is fitted to affine EPPT mode(shown 

with blue curve) for HPAM polymer Cc=1.5.104 ppm for HPAM  
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So, the appropriate coefficient (C convert) for affine EPPT model is determined via dynamic 

diagrams as C convert=1.1, C convert=0.25 and C convert=0.09  for   HPAM polymer Cc=3.104 ppm, 

Cc=2.104 ppm and Cc=1.5 .104 ppm. Moreover, no further analysis was conducted for this 

model for transient flow due to the relatively large gap between model and data and unfavorable 

obtained converting factors (C convert) for all level of tested concentrations. Moreover power-

law slope of data is not well-described by the polylogarithmic shear-thinning of the EPTT 

model. 

 

4.2.1.4 Viscosity data fitting using affine C-FENE-P model 

In below dimensionless viscosity (
𝜂

𝜂0
) versus dimensionless shear rate (𝜆𝑄𝛾̇ )  is fitted relative to 

C-FENE-P model to obtain appropriate converting factor (𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = 𝜆𝑄) for HPAM polymer 

Cc=3.104 ppm, Cc=2.104 ppm and Cc=1.5 .104 ppm respectively. But here our data fitting 

approach is somehow different from other models since there are three parameters to be 

adjusted (E, b, 𝜆𝑄) for C-FENE-P model. So, E and b is determined based on guess and then 

appropriate converting factor (𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡 = 𝜆𝑄) is gained based on best possible fit.  

 

 
Figure 4.34. dimensionless viscosity (

𝜼

𝜼𝟎
) versus dimensionless shear rate (𝜆�̇�) is fitted to C-FENE-P model (shown with blue 

curve) for HPAM polymer Cc=3.104 ppm 
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Figure 4.35. dimensionless viscosity (

𝜼

𝜼𝟎
) versus dimensionless shear rate (𝜆�̇�) is fitted to C-FENE-P model (shown with blue 

curve) for HPAM polymer Cc=2.104 ppm  

 

 

 
Figure 4.36. Dimensionless viscosity (

𝜼

𝜼𝟎
) versus dimensionless shear rate (𝜆�̇� is fitted to C-FENE-P model (shown with blue 

curve) for HPAM polymer Cc=1.5.104 ppm)  
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Hence, the appropriate converting coefficient (C convert) for C-FENE-P model is determined via 

dynamic diagrams as 𝜆𝑄=50, 𝜆𝑄=10 and 𝜆𝑄=3 for HPAM polymer sample Cc=3.104 ppm, 

Cc=2.104 ppm and Cc=1.5 .104 ppm respectively, based on guessed E and b as order of E=1 and 

b=50. These coefficients will be used further in start-up and relaxation test to see whether this 

model is representative. Moreover, as it is appearing in the figures there is almost perfect match 

between experimental data and C-FENE-P model, though one may notice deviations at higher 

shear rates. In fact, it is observed that the experimental curves "bending up": this is due to a 

gradually developing flow instability. The shear rate becomes so high that it becomes 

impossible to maintain steady shear flow in the device. The experimental data from this region 

cannot be relied upon. Hence the deviation of experimental data from model at very high shear 

rate is due to measurement error rather than inaccuracy of model prediction. 

 

 

4.2.2 Startup and relaxation of steady shear flow experiment 

4.2.2.1 Startup and relaxation of steady shear flow data fitting with affine LPPT model 

 

• First approach  

As it was mentioned the model parameter 𝜆 is determined based on the slope of exponential 

decay in cessation of shear steady test (m relax) in this approach. This slope was already known 

as m relax= -0.26 from cessation of shear steady test, and consequently  model parameter 𝜆 was 

calculated as a 𝜆 = 3.84 based on equation 2.57 in chapter 2 .Then the product of 𝜆 and 𝜀 was 

also known from converting factor (C convert) that was obtained from shear ramping test in last 

section  (C convert =1.72 ). Hence, other model parameter (𝜀) is easily obtained as order of  𝜀=0.13 

based on equation 2.53 in chapter 2 and Weissenberg number (𝑤𝑖 = 𝜆γ̇) order of 𝑤𝑖=0.384 

 , 𝑤𝑖=3.84 and 𝑤𝑖=38.4. In the following dimensionless shear stress growth of  Startup of steady 

shear flow (
η+(t,γ̇0)

η( γ̇0)
) versus time (t) and dimensionless shear stress relaxation of  cessation of 

steady shear flow (
η−(t,γ̇0)

η( γ̇0)
) versus time(t)  is fitted with affine LPPT model, for HPAM polymer 

Cc=3.104 ppm with first approach. 
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Figure 4.37. The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus time (t) is fitted with first 

approach relative to affine PPT model(red, blue, green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚, of 𝑤𝑖=0.384 , 𝑤𝑖=3.84 

and 𝑤𝑖=38.4 

 

 

 
Figure 4.38. The dimensionless shear stress relaxation  of  cessation of  steady shear flow 

𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 )versus time (t) is fitted 

with first approach relative to affine PPT model(red, blue, green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚,with 

of 𝑤𝑖=0.384  , 𝑤𝑖=3.84 and 𝑤𝑖=38.4 
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• Second approach 

As it was noted before, the model parameter 𝜀 and consequently  𝜆 for this approach are 

determined based on dynamic diagrams and the function (𝜆(𝜀) or 𝜀(𝜆)) that relates them 

to each other and they are not dependent on slope of exponential decay of cessation of steady 

shear rate test (m relax ) anymore. Furthermore, start-up and relaxation test are fitted 

simultaneously such that best possible fit is obtained with 𝜀=1.13 and 𝜆=1.32 and 

Weissenberg number (𝑤𝑖 = 𝜆γ̇) as order of 𝑤𝑖=0.132  , 𝑤𝑖=1.32 and 𝑤𝑖=13.2.following 

diagrams summarizes data fitting with second approach. 

 

 
 

Figure 4.39. .The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus time (t) is fitted with 

second approach relative to affine PPT model(red, blue, green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚, 𝑤𝑖=0.132 

 , 𝑤𝑖=1.32 and 𝑤𝑖=13.2 
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Figure 4.40. The dimensionless shear stress relaxation  of  cessation of  steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 )versus time (t)is fitted with 

second approach relative to affine PPT model(red, blue, green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚,with 𝑤𝑖=0.132 

 , 𝑤𝑖=1.32 and 𝑤𝑖=13.2 

 

• So, the importance of methodology by which the data is fitted to model is clearly seen 

from Above diagrams. It is seen that in case one rely on experimental result (m relax) in 

first approach, then may end up with wrong conclusion that affine LPPT model is not 

representative model for describing data, though model parameter ε is on the typical 

expected range (ε=0.13). 

 

• On the other hand it is also observed that in case one adopted second approach of data 

fitting which is based on dynamic data fitting, one would gain relatively good match 

between data and model, though as it seen from diagram the size of overshoot is 

underpredicted with affine version of LPPT model even if in best possible dynamic fit. 

The reason for this underprediction roots up in the nature of model, where as noted in 

chapter 2 the maximum magnitude overshoot that affine LPPT model can predicts is of 

the order of m overshoot =1.14 ,while the size of overshoot for 𝑤𝑖 =13.2  was already 

estimated as m overshoot= 1.5, and hence the model failure regarding size of overshoot 

was completely predictable. Moreover, is interestingly seen that almost perfect fit was 
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obtained with relatively large ε in this approach (ε=1), while one may expect ε as order 

of 10-2-10-1. 

 

 

 

4.2.2.2 Startup of and relaxation of steady shear flow data fitting with FENE-P 

model 

 

• First approach 

Here again model parameters are gained based on experiment result. So, we had already obtain 

converting factor from shear ramping data fitting of affine LPPT model (C convert=1.72) which 

gives product of model parameters (𝜆𝑄and b) based on equation 2.43 ,Then model parameter b 

is obtained from calculated 𝜀=0.13 of affine LPPT model based on equation 2.56 of chapter 2 

as b=4.5 .Hence, again other model parameters 𝜆𝑄 easily yields as 𝜆𝑄=9.16 .So, b=4.5 and 

𝜆𝑄=9.16  with Weissenberg number (𝑤𝑖 = γ𝜆𝑄
̇ ) with order of 𝑤𝑖=0.961  , 𝑤𝑖=9.61 and 𝑤𝑖=96.1 

is gained based on slope of exponential decay of cessation of steady shear rate test (m relax=- 

0.26) and the converting factor (𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡) of shear ramping data fitting.            

The dimensionless shear stress growth of  Startup of steady shear flow (
η+(t,γ̇0)

η( γ̇0)
) versus time (t) 

and dimensionless shear stress relaxation of cessation of steady shear flow (
η−(t,γ̇0)

η( γ̇0)
) versus 

time(t)  is fitted with FENE-P  model, for HPAM polymer Cc=3.104 ppm with first approach in 

below. 
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Figure 4.41. The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus time(t) is fitted with first 

approach relative to FENE-P model(red,, blue ,green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚, 𝑤𝑖=0.961  , 𝑤𝑖=9.61 and 

𝑤𝑖=96.1     

 

 
 

 

Figure 4.42.  The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus time(t) is fitted with 

first approach relative to FENE-P model(red, blue ,green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚,with 𝑤𝑖=0.961 

 , 𝑤𝑖=9.61 and 𝑤𝑖=96.1     
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• Second approach 

As it was noted before, the model parameter b and consequently 𝜆𝑄  for this approach are 

determined based on dynamic diagrams and in fact there is a function (𝝀𝑸(𝐛)) that relates 

them to each other. Hence, are not dependent on m relax anymore. Furthermore, startup and 

cessation of shear steady test are fitted simultaneously such that best possible fit is obtained 

with b=1 and 𝜆𝑄 = 3.74 and Wassenberg number as (𝑤𝑖 = γ̇𝜆𝑄) as order 𝑤𝑖=0.374 

 , 𝑤𝑖=3.74 and 𝑤𝑖=37.4.following diagrams summarizes data fitting with second approach.       

 

 

 
 

Figure 4.43.The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus time(t) is fitted with 

second approach relative to FENE-P model(red,, blue ,green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚,with 𝑤𝑖=0.374 

 , 𝑤𝑖=3.74 and 𝑤𝑖=37.4 
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Figure 4.44 The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus time(t) is fitted with 

first second approach relative to FENE-P model(red,, blue ,green curve), for HPAM polymer 𝐶𝑐 = 3 . 104 𝑝𝑝𝑚, 𝑤𝑖=0.374 

 , 𝑤𝑖=3.74 and 𝑤𝑖=37.4 

So again, above diagrams shows clearly the importance of adopting correct approach of data 

fitting. With first approach (based on experiment) one could wrongly conclude on the relative 

failure of the model. On the other hand, when fitting is conducted based on dynamic data fitting 

approach (second approach), the model shows relatively favorable performance in both start-

up and relaxation of steady shear ramping. Though is it seen model overpredicts the size of 

overshoot. The reason as it was noted in chapter 2 might be due to the fact that the model is 

constructed based on single-mode (relaxation time) that might react much faster or much slower 

relative to applied shear stress and consequently predict larger overshoot. In fact, this larger 

amount of overshoot can get relief by considering multiple-mode FENE-P model in which the 

constitutive equation and consequently size of overshoot is result of contribution from all mode. 

Hence even larger amount overshoot might be canceled by contribution from other mode. This 

is something that was addresses by Dmitry Shogin and Amundsen in their most recent article 

(Shogin 2020) . 

Moreover, relatively good fitting was observed with low amount of b=1, while one should 

expect b to be large amount to obtain good fitting result. 
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4.2.2.3 Startup and cessation of steady shear flow data fitting with C-FENE-P 

model 

 

The data fitting methodology here is done only based on second approach of data fitting. In 

fact, since all these parameters (E, b, 𝜆𝑄) are known from data fitting of shear ramping test, so 

we do not rely on experimental result (m relax) anymore. Moreover, as we got favorable 

converting factor  (𝜆𝑄=10, 𝜆𝑄=3) for HPAM polymer Cc=2.104 ppm, and polymer Cc=2.104 

ppm, and the model itself has constructed based on dilute solution, these two concentrations 

were analyzed with this model. 

The dimensionless shear stress growth of  Startup of steady shear flow (
η+(t,γ̇0)

η( γ̇0)
) versus 

dimensionless time (r) and dimensionless shear stress relaxation of cessation of steady shear 

flow (
η−(t,γ̇0)

η( γ̇0)
) versus dimensionless time(r)  is fitted with C-FENE-P  model, for HPAM 

polymer Cc=2.104 ppm with first approach in below.  

 

 

Figure 4.45. The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus dimensionless time (r) is 

relative to C-FENE-P model ( blue curve), for HPAM polymer 𝐶𝑐 = 2. 104 𝑝𝑝𝑚, (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 1 
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Figure 4.46. The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus dimensionless time (r) is 

relative to C-FENE-P model ( blue curve), for HPAM polymer 𝐶𝑐 = 2. 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 10 

 

 

 

Figure 4.47. The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus dimensionless time (r) is 

relative to C-FENE-P model ( blue curve), for HPAM polymer 𝐶𝑐 = 2. 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 100 
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Figure 4.48. The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus dimensionless time(r) 

is fitted with relative to C -FENE-P model(blue curve), for HPAM polymer 𝐶𝑐 = 2 . 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 1 
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Figure 4.49. The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus dimensionless time(r) 

is fitted with relative to C -FENE-P model(blue curve), for HPAM polymer 𝐶𝑐 = 2 . 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 10 

 

Figure 4.50. The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus dimensionless time(r) 

is fitted with relative to C -FENE-P model(blue curve), for HPAM polymer 𝐶𝑐 = 2 . 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 100 
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The dimensionless shear stress growth of  Startup of steady shear flow (
η+(t,γ̇0)

η( γ̇0)
) versus 

dimensionless time (r) and dimensionless shear stress relaxation of cessation of steady shear 

flow (
η−(t,γ̇0)

η( γ̇0)
) versus dimensionless time (r) is fitted with C-FENE-P  model, for HPAM 

polymer Cc=1.5.104 ppm with first approach in below.  

 

 

 

 

 

Figure 4.51 The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus dimensionless time (r) is 

relative to C-FENE-P model ( blue curve), for HPAM polymer 𝐶𝑐 = 1.5. 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 0.3 
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Figure 4.52. The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus dimensionless time (r) is 

relative to C-FENE-P model ( blue curve), for HPAM polymer 𝐶𝑐 = 1.5. 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 3 

 

 

Figure 4.53. The dimensionless shear stress growth of  Startup of steady shear flow (
𝜂+(𝑡,�̇�0)

𝜂( �̇�0)
) versus dimensionless time (r) is 

relative to C-FENE-P model ( blue curve), for HPAM polymer 𝐶𝑐 = 1.5. 104 𝑝𝑝𝑚,with dimensionless shear rate(𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 

𝑤𝑖 = 30 
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Figure 4.54. The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus dimensionless time(r) 

is fitted with relative to C -FENE-P model(blue curve), for HPAM polymer 𝐶𝑐 = 1.5 . 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 0.3 

 

 

Figure 4.55. The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus dimensionless time(r) 

is fitted with relative to C -FENE-P model(blue curve), for HPAM polymer 𝐶𝑐 = 1.5 . 104 𝑝𝑝𝑚,with (𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 3 
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Figure 4.56. The dimensionless shear stress relaxation of  cessation of steady shear flow 
𝜂−(𝑡,�̇�0)

𝜂( �̇�0)
 versus dimensionless time(r) 

is fitted with relative to C -FENE-P model(blue curve), for HPAM polymer 𝐶𝑐 = 1.5 . 104 𝑝𝑝𝑚,with dimensionless shear 

rate(𝑤𝑖 = 𝛾𝜆𝑄
̇ ) 𝑤𝑖 = 30 

 

So, it can be observed from diagrams that again model overpredicts both size of overshoot and 

its position relative to time. Though, the level of overprediction is reduced as the concentration 

decrease which makes perfect sense since the model has constructed to justify dilute solution. 

Moreover, model predict shear stress relaxation of cessation of shear flow with relatively good 

accuracy at least regarding non-exponential region of decay. 
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5 Discussion and conclusions 

5.1 Discussion and conclusion regarding data analysis without considering 

physical models 

 

Following conclusions can be made in his part: 

 

1. It was observed that the slope of power-law region of viscosity versus shear rate for 

HPAM polymer is dependent on the concentration.  

2. Though the slope of power-law region for first normal stress differences coefficient (𝛹1) 

seems to be independent of concentration. This clearly shows that first normal stress 

differences coefficient (𝛹1) is viscoelastic properties of polymer which is more rely on 

nature properties of polymer rather than different derivatives (concentrations) of 

polymer. 

3. The proposed theory by Islam in his thesis (Islam 2019) about the independency of both 

position of overshoot relative to time and the time required to arrive at steady state value, 

on concentration is verified by HPAM polymer at least for three concentration of 

Cc=3.104 ppm ,Cc=2.104  ppm and Cc= 1.5.104 ppm  .   

4. On the other hand, the proposed hypothesis made by Islam in his thesis (Islam 

2019)about non-monotonous dependency of size of overshoot , on concentration in 

startup of steady shear rate experiment is not observed with HPAM polymer at least in 

three concentrations of Cc= 3.104 ppm ,Cc= 2.104 ppm and Cc=1.5.104 ppm (maybe 

more dilute concentration is needed to observe this phenomenon).In, fact in all these 

three concentrations, there is monotonous dependency between size of overshoot and 

concentration such that  the size of overshoot increase with increase in concentration. 

5. The proposed theory  made by Islam in his thesis (Islam 2019) about independency of 

the slope of decay in non-exponential region ,on both step-rate and concentration in 

cessation of steady shear rate experiment is verified by HPAM polymer at least in three 

concentration of Cc=3.104 ppm , Cc=2.104 ppm and Cc=1.5.104 ppm. 

6. On the other hand, the proposed hypothesis by Islam (Islam 2019) about non-

monotonous dependency of the slope of reduction in exponential region ,on 

concentration in cessation of steady shear rate experiment is not observed in HPAM 

polymer at least in three concentration of Cc= 3.104 ppm ,Cc= 2.104 ppm and 

Cc=.1.5.104 (again maybe more dilute concentrations is required for this phenomenon 
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to be observed).In fact, the slope of exponential decay accelerate with decrease in 

concentration for HPAM polymer in monotonous fashion at least for these thee 

concentration. 

 

 

5.2 Discussion and conclusion regarding data analysis with considering physical 

models 

1. It was observed that both full LPPT model and affine EPPT model failed to 

describe both steady and transient flow for HPAM polymer in all level of tested 

concentration due to the relatively high divergence between real data and 

proposed model. 

2. The importance of methodology by which the data is fitted against model was 

shown throughout this work for affine-LPPT and FENE-P model. In fact, it was 

shown that how wrong impression can be made about efficiency of the model 

prediction when one is rely on  extracting model parameter (𝜆) from slope of 

decay (m relax) in exponential part of cessation of  steady shear rate test defined 

by equation 2.57. It is an interesting point where theory clashes with 

experimental techniques; 

• In theory, cessation of  steady shear rate test is a good way to extract 𝜆𝑒 

based on equation 2.57 

• In practice, it is not so good because of the noise related to measuring 

very small stresses (recall that the stresses decay even faster than 

exponentially so that they become very small quickly). 

 

3. Then relatively good model prediction (only for most concentrated sample 

Cc=3.104) was observed for affine LPPT and FENE-P model both in steady and 

transient flow. It was done by adopting second approach of data fitting, where 

one is relying on determining model parameter (like 𝜆) based on dynamic 

diagrams and pre-defined functions instead of experimental technique (first 

approach) to get best possible fit. 

4. Though it was seen that even by adopting second approach of data fitting, both 

affine LPPT model models and FENE-P model relatively failed in determination 
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of exact magnitude of overshoot. In fact, affine LPPT model underpredicts the 

size of overshoot, whereas the FENE-P model overpredict this magnitude. The 

underprediction of affine LPPT model was predictable since as it was noted in 

chapter 2,the maximum magnitude of overshoot which this model can describe 

as order of m overshoot=1.14,while the maximum overshoot for real data was as a 

order of m overshoot=1.4. But overprediction of FENE-P maybe roots up in 

considering single mode (relaxation time (𝜆)) for model. In fact, the problem 

with having single-mode based model is considering one relaxation time (𝜆) that 

would react faster or slower than real relaxation time relative to applied stress. 

Moreover, this single-based model can predict size of overshoot greater than real 

magnitude, while the real size of overshoot is result of contribution from all 

other mode and hence this relatively high overshoot can be canceled by 

considering other magnitude contribution from other mode. This is why it is 

important to consider multiple-based mode models, where  constitutive equation 

is result of contribution from each single modes, as Dmitry Shogin has 

mentioned in his most recent article (Shogin 2020) .In this context, considering 

multiple modes will not help LPTT but can help FENE-P because adding several 

modes will "smooth" everything out so that the overshoot will decrease. 

5. Almost for the first time in literature the efficiency of most recent physical based 

model proposed by Shogin and Amundsen (Shogin and Amundsen 2020)  called 

C-FENE-P was evaluated in this research. This was the only model which did 

not fail for description of material function of more dilute concentrations of 

HPAM polymer (Cc=2.104 ppm and Cc=1.5.104 ppm).On the other hand model 

relatively failed for description of  material function of most concentrated 

sample (Cc=3.104 ppm) which as noted makes complete sense as model has 

constructed based on kinetic theory which is only applicable for more dilute 

solution. But, in general C-FENE-P model was recognized as a most 

representative model for description of material function of HPAM polymer for 

both steady and transient specially for more dilute tested concentrations 

(Cc=2.104 ppm and Cc=1.5.104 ppm). Though like FENE-P model it 

overpredicts both the magnitude of overshoot and its position relative to time. 

But as noted, the more dilute solution, the more accurate is model prediction 

about magnitude of overshoot. 
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potentials of further works: 

It would be favorable if one could conduct test even on more concentration of HPAM polymer 

to observe following: 

 

1. Whether monotonous dependency of material function of  HPAM polymer on 

concentration observed by this research for three tested concentrations can be extended 

for other degrees of concentration. 

2. Whether C-FENE-P model is also recognized as the best model for describing material 

function of HPAM polymer both in steady and transient flow. 

3. As only pure sample of HPAM polymer was tested in this research.it would be 

interesting to see whether C-FENE-P model also can justify the material function of 

salty version of HPAM polymer. 

4. Also, it would also be interesting to give the normal stresses more attention. 
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